kmemleak.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647
  1. /*
  2. * mm/kmemleak.c
  3. *
  4. * Copyright (C) 2008 ARM Limited
  5. * Written by Catalin Marinas <catalin.marinas@arm.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. *
  21. * For more information on the algorithm and kmemleak usage, please see
  22. * Documentation/kmemleak.txt.
  23. *
  24. * Notes on locking
  25. * ----------------
  26. *
  27. * The following locks and mutexes are used by kmemleak:
  28. *
  29. * - kmemleak_lock (rwlock): protects the object_list modifications and
  30. * accesses to the object_tree_root. The object_list is the main list
  31. * holding the metadata (struct kmemleak_object) for the allocated memory
  32. * blocks. The object_tree_root is a priority search tree used to look-up
  33. * metadata based on a pointer to the corresponding memory block. The
  34. * kmemleak_object structures are added to the object_list and
  35. * object_tree_root in the create_object() function called from the
  36. * kmemleak_alloc() callback and removed in delete_object() called from the
  37. * kmemleak_free() callback
  38. * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39. * the metadata (e.g. count) are protected by this lock. Note that some
  40. * members of this structure may be protected by other means (atomic or
  41. * kmemleak_lock). This lock is also held when scanning the corresponding
  42. * memory block to avoid the kernel freeing it via the kmemleak_free()
  43. * callback. This is less heavyweight than holding a global lock like
  44. * kmemleak_lock during scanning
  45. * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46. * unreferenced objects at a time. The gray_list contains the objects which
  47. * are already referenced or marked as false positives and need to be
  48. * scanned. This list is only modified during a scanning episode when the
  49. * scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50. * Note that the kmemleak_object.use_count is incremented when an object is
  51. * added to the gray_list and therefore cannot be freed. This mutex also
  52. * prevents multiple users of the "kmemleak" debugfs file together with
  53. * modifications to the memory scanning parameters including the scan_thread
  54. * pointer
  55. *
  56. * The kmemleak_object structures have a use_count incremented or decremented
  57. * using the get_object()/put_object() functions. When the use_count becomes
  58. * 0, this count can no longer be incremented and put_object() schedules the
  59. * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  60. * function must be protected by rcu_read_lock() to avoid accessing a freed
  61. * structure.
  62. */
  63. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  64. #include <linux/init.h>
  65. #include <linux/kernel.h>
  66. #include <linux/list.h>
  67. #include <linux/sched.h>
  68. #include <linux/jiffies.h>
  69. #include <linux/delay.h>
  70. #include <linux/module.h>
  71. #include <linux/kthread.h>
  72. #include <linux/prio_tree.h>
  73. #include <linux/gfp.h>
  74. #include <linux/fs.h>
  75. #include <linux/debugfs.h>
  76. #include <linux/seq_file.h>
  77. #include <linux/cpumask.h>
  78. #include <linux/spinlock.h>
  79. #include <linux/mutex.h>
  80. #include <linux/rcupdate.h>
  81. #include <linux/stacktrace.h>
  82. #include <linux/cache.h>
  83. #include <linux/percpu.h>
  84. #include <linux/hardirq.h>
  85. #include <linux/mmzone.h>
  86. #include <linux/slab.h>
  87. #include <linux/thread_info.h>
  88. #include <linux/err.h>
  89. #include <linux/uaccess.h>
  90. #include <linux/string.h>
  91. #include <linux/nodemask.h>
  92. #include <linux/mm.h>
  93. #include <linux/workqueue.h>
  94. #include <asm/sections.h>
  95. #include <asm/processor.h>
  96. #include <asm/atomic.h>
  97. #include <linux/kmemcheck.h>
  98. #include <linux/kmemleak.h>
  99. /*
  100. * Kmemleak configuration and common defines.
  101. */
  102. #define MAX_TRACE 16 /* stack trace length */
  103. #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
  104. #define SECS_FIRST_SCAN 60 /* delay before the first scan */
  105. #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
  106. #define GRAY_LIST_PASSES 25 /* maximum number of gray list scans */
  107. #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
  108. #define BYTES_PER_POINTER sizeof(void *)
  109. /* GFP bitmask for kmemleak internal allocations */
  110. #define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
  111. /* scanning area inside a memory block */
  112. struct kmemleak_scan_area {
  113. struct hlist_node node;
  114. unsigned long offset;
  115. size_t length;
  116. };
  117. /*
  118. * Structure holding the metadata for each allocated memory block.
  119. * Modifications to such objects should be made while holding the
  120. * object->lock. Insertions or deletions from object_list, gray_list or
  121. * tree_node are already protected by the corresponding locks or mutex (see
  122. * the notes on locking above). These objects are reference-counted
  123. * (use_count) and freed using the RCU mechanism.
  124. */
  125. struct kmemleak_object {
  126. spinlock_t lock;
  127. unsigned long flags; /* object status flags */
  128. struct list_head object_list;
  129. struct list_head gray_list;
  130. struct prio_tree_node tree_node;
  131. struct rcu_head rcu; /* object_list lockless traversal */
  132. /* object usage count; object freed when use_count == 0 */
  133. atomic_t use_count;
  134. unsigned long pointer;
  135. size_t size;
  136. /* minimum number of a pointers found before it is considered leak */
  137. int min_count;
  138. /* the total number of pointers found pointing to this object */
  139. int count;
  140. /* memory ranges to be scanned inside an object (empty for all) */
  141. struct hlist_head area_list;
  142. unsigned long trace[MAX_TRACE];
  143. unsigned int trace_len;
  144. unsigned long jiffies; /* creation timestamp */
  145. pid_t pid; /* pid of the current task */
  146. char comm[TASK_COMM_LEN]; /* executable name */
  147. };
  148. /* flag representing the memory block allocation status */
  149. #define OBJECT_ALLOCATED (1 << 0)
  150. /* flag set after the first reporting of an unreference object */
  151. #define OBJECT_REPORTED (1 << 1)
  152. /* flag set to not scan the object */
  153. #define OBJECT_NO_SCAN (1 << 2)
  154. /* flag set on newly allocated objects */
  155. #define OBJECT_NEW (1 << 3)
  156. /* number of bytes to print per line; must be 16 or 32 */
  157. #define HEX_ROW_SIZE 16
  158. /* number of bytes to print at a time (1, 2, 4, 8) */
  159. #define HEX_GROUP_SIZE 1
  160. /* include ASCII after the hex output */
  161. #define HEX_ASCII 1
  162. /* max number of lines to be printed */
  163. #define HEX_MAX_LINES 2
  164. /* the list of all allocated objects */
  165. static LIST_HEAD(object_list);
  166. /* the list of gray-colored objects (see color_gray comment below) */
  167. static LIST_HEAD(gray_list);
  168. /* prio search tree for object boundaries */
  169. static struct prio_tree_root object_tree_root;
  170. /* rw_lock protecting the access to object_list and prio_tree_root */
  171. static DEFINE_RWLOCK(kmemleak_lock);
  172. /* allocation caches for kmemleak internal data */
  173. static struct kmem_cache *object_cache;
  174. static struct kmem_cache *scan_area_cache;
  175. /* set if tracing memory operations is enabled */
  176. static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
  177. /* set in the late_initcall if there were no errors */
  178. static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
  179. /* enables or disables early logging of the memory operations */
  180. static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
  181. /* set if a fata kmemleak error has occurred */
  182. static atomic_t kmemleak_error = ATOMIC_INIT(0);
  183. /* minimum and maximum address that may be valid pointers */
  184. static unsigned long min_addr = ULONG_MAX;
  185. static unsigned long max_addr;
  186. static struct task_struct *scan_thread;
  187. /* used to avoid reporting of recently allocated objects */
  188. static unsigned long jiffies_min_age;
  189. static unsigned long jiffies_last_scan;
  190. /* delay between automatic memory scannings */
  191. static signed long jiffies_scan_wait;
  192. /* enables or disables the task stacks scanning */
  193. static int kmemleak_stack_scan = 1;
  194. /* protects the memory scanning, parameters and debug/kmemleak file access */
  195. static DEFINE_MUTEX(scan_mutex);
  196. /*
  197. * Early object allocation/freeing logging. Kmemleak is initialized after the
  198. * kernel allocator. However, both the kernel allocator and kmemleak may
  199. * allocate memory blocks which need to be tracked. Kmemleak defines an
  200. * arbitrary buffer to hold the allocation/freeing information before it is
  201. * fully initialized.
  202. */
  203. /* kmemleak operation type for early logging */
  204. enum {
  205. KMEMLEAK_ALLOC,
  206. KMEMLEAK_FREE,
  207. KMEMLEAK_FREE_PART,
  208. KMEMLEAK_NOT_LEAK,
  209. KMEMLEAK_IGNORE,
  210. KMEMLEAK_SCAN_AREA,
  211. KMEMLEAK_NO_SCAN
  212. };
  213. /*
  214. * Structure holding the information passed to kmemleak callbacks during the
  215. * early logging.
  216. */
  217. struct early_log {
  218. int op_type; /* kmemleak operation type */
  219. const void *ptr; /* allocated/freed memory block */
  220. size_t size; /* memory block size */
  221. int min_count; /* minimum reference count */
  222. unsigned long offset; /* scan area offset */
  223. size_t length; /* scan area length */
  224. unsigned long trace[MAX_TRACE]; /* stack trace */
  225. unsigned int trace_len; /* stack trace length */
  226. };
  227. /* early logging buffer and current position */
  228. static struct early_log
  229. early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
  230. static int crt_early_log __initdata;
  231. static void kmemleak_disable(void);
  232. /*
  233. * Print a warning and dump the stack trace.
  234. */
  235. #define kmemleak_warn(x...) do { \
  236. pr_warning(x); \
  237. dump_stack(); \
  238. } while (0)
  239. /*
  240. * Macro invoked when a serious kmemleak condition occured and cannot be
  241. * recovered from. Kmemleak will be disabled and further allocation/freeing
  242. * tracing no longer available.
  243. */
  244. #define kmemleak_stop(x...) do { \
  245. kmemleak_warn(x); \
  246. kmemleak_disable(); \
  247. } while (0)
  248. /*
  249. * Printing of the objects hex dump to the seq file. The number of lines to be
  250. * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
  251. * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
  252. * with the object->lock held.
  253. */
  254. static void hex_dump_object(struct seq_file *seq,
  255. struct kmemleak_object *object)
  256. {
  257. const u8 *ptr = (const u8 *)object->pointer;
  258. int i, len, remaining;
  259. unsigned char linebuf[HEX_ROW_SIZE * 5];
  260. /* limit the number of lines to HEX_MAX_LINES */
  261. remaining = len =
  262. min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
  263. seq_printf(seq, " hex dump (first %d bytes):\n", len);
  264. for (i = 0; i < len; i += HEX_ROW_SIZE) {
  265. int linelen = min(remaining, HEX_ROW_SIZE);
  266. remaining -= HEX_ROW_SIZE;
  267. hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
  268. HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
  269. HEX_ASCII);
  270. seq_printf(seq, " %s\n", linebuf);
  271. }
  272. }
  273. /*
  274. * Object colors, encoded with count and min_count:
  275. * - white - orphan object, not enough references to it (count < min_count)
  276. * - gray - not orphan, not marked as false positive (min_count == 0) or
  277. * sufficient references to it (count >= min_count)
  278. * - black - ignore, it doesn't contain references (e.g. text section)
  279. * (min_count == -1). No function defined for this color.
  280. * Newly created objects don't have any color assigned (object->count == -1)
  281. * before the next memory scan when they become white.
  282. */
  283. static bool color_white(const struct kmemleak_object *object)
  284. {
  285. return object->count != -1 && object->count < object->min_count;
  286. }
  287. static bool color_gray(const struct kmemleak_object *object)
  288. {
  289. return object->min_count != -1 && object->count >= object->min_count;
  290. }
  291. static bool color_black(const struct kmemleak_object *object)
  292. {
  293. return object->min_count == -1;
  294. }
  295. /*
  296. * Objects are considered unreferenced only if their color is white, they have
  297. * not be deleted and have a minimum age to avoid false positives caused by
  298. * pointers temporarily stored in CPU registers.
  299. */
  300. static bool unreferenced_object(struct kmemleak_object *object)
  301. {
  302. return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
  303. time_before_eq(object->jiffies + jiffies_min_age,
  304. jiffies_last_scan);
  305. }
  306. /*
  307. * Printing of the unreferenced objects information to the seq file. The
  308. * print_unreferenced function must be called with the object->lock held.
  309. */
  310. static void print_unreferenced(struct seq_file *seq,
  311. struct kmemleak_object *object)
  312. {
  313. int i;
  314. seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
  315. object->pointer, object->size);
  316. seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
  317. object->comm, object->pid, object->jiffies);
  318. hex_dump_object(seq, object);
  319. seq_printf(seq, " backtrace:\n");
  320. for (i = 0; i < object->trace_len; i++) {
  321. void *ptr = (void *)object->trace[i];
  322. seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
  323. }
  324. }
  325. /*
  326. * Print the kmemleak_object information. This function is used mainly for
  327. * debugging special cases when kmemleak operations. It must be called with
  328. * the object->lock held.
  329. */
  330. static void dump_object_info(struct kmemleak_object *object)
  331. {
  332. struct stack_trace trace;
  333. trace.nr_entries = object->trace_len;
  334. trace.entries = object->trace;
  335. pr_notice("Object 0x%08lx (size %zu):\n",
  336. object->tree_node.start, object->size);
  337. pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
  338. object->comm, object->pid, object->jiffies);
  339. pr_notice(" min_count = %d\n", object->min_count);
  340. pr_notice(" count = %d\n", object->count);
  341. pr_notice(" flags = 0x%lx\n", object->flags);
  342. pr_notice(" backtrace:\n");
  343. print_stack_trace(&trace, 4);
  344. }
  345. /*
  346. * Look-up a memory block metadata (kmemleak_object) in the priority search
  347. * tree based on a pointer value. If alias is 0, only values pointing to the
  348. * beginning of the memory block are allowed. The kmemleak_lock must be held
  349. * when calling this function.
  350. */
  351. static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
  352. {
  353. struct prio_tree_node *node;
  354. struct prio_tree_iter iter;
  355. struct kmemleak_object *object;
  356. prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
  357. node = prio_tree_next(&iter);
  358. if (node) {
  359. object = prio_tree_entry(node, struct kmemleak_object,
  360. tree_node);
  361. if (!alias && object->pointer != ptr) {
  362. kmemleak_warn("Found object by alias");
  363. object = NULL;
  364. }
  365. } else
  366. object = NULL;
  367. return object;
  368. }
  369. /*
  370. * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
  371. * that once an object's use_count reached 0, the RCU freeing was already
  372. * registered and the object should no longer be used. This function must be
  373. * called under the protection of rcu_read_lock().
  374. */
  375. static int get_object(struct kmemleak_object *object)
  376. {
  377. return atomic_inc_not_zero(&object->use_count);
  378. }
  379. /*
  380. * RCU callback to free a kmemleak_object.
  381. */
  382. static void free_object_rcu(struct rcu_head *rcu)
  383. {
  384. struct hlist_node *elem, *tmp;
  385. struct kmemleak_scan_area *area;
  386. struct kmemleak_object *object =
  387. container_of(rcu, struct kmemleak_object, rcu);
  388. /*
  389. * Once use_count is 0 (guaranteed by put_object), there is no other
  390. * code accessing this object, hence no need for locking.
  391. */
  392. hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
  393. hlist_del(elem);
  394. kmem_cache_free(scan_area_cache, area);
  395. }
  396. kmem_cache_free(object_cache, object);
  397. }
  398. /*
  399. * Decrement the object use_count. Once the count is 0, free the object using
  400. * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
  401. * delete_object() path, the delayed RCU freeing ensures that there is no
  402. * recursive call to the kernel allocator. Lock-less RCU object_list traversal
  403. * is also possible.
  404. */
  405. static void put_object(struct kmemleak_object *object)
  406. {
  407. if (!atomic_dec_and_test(&object->use_count))
  408. return;
  409. /* should only get here after delete_object was called */
  410. WARN_ON(object->flags & OBJECT_ALLOCATED);
  411. call_rcu(&object->rcu, free_object_rcu);
  412. }
  413. /*
  414. * Look up an object in the prio search tree and increase its use_count.
  415. */
  416. static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
  417. {
  418. unsigned long flags;
  419. struct kmemleak_object *object = NULL;
  420. rcu_read_lock();
  421. read_lock_irqsave(&kmemleak_lock, flags);
  422. if (ptr >= min_addr && ptr < max_addr)
  423. object = lookup_object(ptr, alias);
  424. read_unlock_irqrestore(&kmemleak_lock, flags);
  425. /* check whether the object is still available */
  426. if (object && !get_object(object))
  427. object = NULL;
  428. rcu_read_unlock();
  429. return object;
  430. }
  431. /*
  432. * Save stack trace to the given array of MAX_TRACE size.
  433. */
  434. static int __save_stack_trace(unsigned long *trace)
  435. {
  436. struct stack_trace stack_trace;
  437. stack_trace.max_entries = MAX_TRACE;
  438. stack_trace.nr_entries = 0;
  439. stack_trace.entries = trace;
  440. stack_trace.skip = 2;
  441. save_stack_trace(&stack_trace);
  442. return stack_trace.nr_entries;
  443. }
  444. /*
  445. * Create the metadata (struct kmemleak_object) corresponding to an allocated
  446. * memory block and add it to the object_list and object_tree_root.
  447. */
  448. static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
  449. int min_count, gfp_t gfp)
  450. {
  451. unsigned long flags;
  452. struct kmemleak_object *object;
  453. struct prio_tree_node *node;
  454. object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
  455. if (!object) {
  456. kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
  457. return NULL;
  458. }
  459. INIT_LIST_HEAD(&object->object_list);
  460. INIT_LIST_HEAD(&object->gray_list);
  461. INIT_HLIST_HEAD(&object->area_list);
  462. spin_lock_init(&object->lock);
  463. atomic_set(&object->use_count, 1);
  464. object->flags = OBJECT_ALLOCATED | OBJECT_NEW;
  465. object->pointer = ptr;
  466. object->size = size;
  467. object->min_count = min_count;
  468. object->count = -1; /* no color initially */
  469. object->jiffies = jiffies;
  470. /* task information */
  471. if (in_irq()) {
  472. object->pid = 0;
  473. strncpy(object->comm, "hardirq", sizeof(object->comm));
  474. } else if (in_softirq()) {
  475. object->pid = 0;
  476. strncpy(object->comm, "softirq", sizeof(object->comm));
  477. } else {
  478. object->pid = current->pid;
  479. /*
  480. * There is a small chance of a race with set_task_comm(),
  481. * however using get_task_comm() here may cause locking
  482. * dependency issues with current->alloc_lock. In the worst
  483. * case, the command line is not correct.
  484. */
  485. strncpy(object->comm, current->comm, sizeof(object->comm));
  486. }
  487. /* kernel backtrace */
  488. object->trace_len = __save_stack_trace(object->trace);
  489. INIT_PRIO_TREE_NODE(&object->tree_node);
  490. object->tree_node.start = ptr;
  491. object->tree_node.last = ptr + size - 1;
  492. write_lock_irqsave(&kmemleak_lock, flags);
  493. min_addr = min(min_addr, ptr);
  494. max_addr = max(max_addr, ptr + size);
  495. node = prio_tree_insert(&object_tree_root, &object->tree_node);
  496. /*
  497. * The code calling the kernel does not yet have the pointer to the
  498. * memory block to be able to free it. However, we still hold the
  499. * kmemleak_lock here in case parts of the kernel started freeing
  500. * random memory blocks.
  501. */
  502. if (node != &object->tree_node) {
  503. unsigned long flags;
  504. kmemleak_stop("Cannot insert 0x%lx into the object search tree "
  505. "(already existing)\n", ptr);
  506. object = lookup_object(ptr, 1);
  507. spin_lock_irqsave(&object->lock, flags);
  508. dump_object_info(object);
  509. spin_unlock_irqrestore(&object->lock, flags);
  510. goto out;
  511. }
  512. list_add_tail_rcu(&object->object_list, &object_list);
  513. out:
  514. write_unlock_irqrestore(&kmemleak_lock, flags);
  515. return object;
  516. }
  517. /*
  518. * Remove the metadata (struct kmemleak_object) for a memory block from the
  519. * object_list and object_tree_root and decrement its use_count.
  520. */
  521. static void __delete_object(struct kmemleak_object *object)
  522. {
  523. unsigned long flags;
  524. write_lock_irqsave(&kmemleak_lock, flags);
  525. prio_tree_remove(&object_tree_root, &object->tree_node);
  526. list_del_rcu(&object->object_list);
  527. write_unlock_irqrestore(&kmemleak_lock, flags);
  528. WARN_ON(!(object->flags & OBJECT_ALLOCATED));
  529. WARN_ON(atomic_read(&object->use_count) < 2);
  530. /*
  531. * Locking here also ensures that the corresponding memory block
  532. * cannot be freed when it is being scanned.
  533. */
  534. spin_lock_irqsave(&object->lock, flags);
  535. object->flags &= ~OBJECT_ALLOCATED;
  536. spin_unlock_irqrestore(&object->lock, flags);
  537. put_object(object);
  538. }
  539. /*
  540. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  541. * delete it.
  542. */
  543. static void delete_object_full(unsigned long ptr)
  544. {
  545. struct kmemleak_object *object;
  546. object = find_and_get_object(ptr, 0);
  547. if (!object) {
  548. #ifdef DEBUG
  549. kmemleak_warn("Freeing unknown object at 0x%08lx\n",
  550. ptr);
  551. #endif
  552. return;
  553. }
  554. __delete_object(object);
  555. put_object(object);
  556. }
  557. /*
  558. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  559. * delete it. If the memory block is partially freed, the function may create
  560. * additional metadata for the remaining parts of the block.
  561. */
  562. static void delete_object_part(unsigned long ptr, size_t size)
  563. {
  564. struct kmemleak_object *object;
  565. unsigned long start, end;
  566. object = find_and_get_object(ptr, 1);
  567. if (!object) {
  568. #ifdef DEBUG
  569. kmemleak_warn("Partially freeing unknown object at 0x%08lx "
  570. "(size %zu)\n", ptr, size);
  571. #endif
  572. return;
  573. }
  574. __delete_object(object);
  575. /*
  576. * Create one or two objects that may result from the memory block
  577. * split. Note that partial freeing is only done by free_bootmem() and
  578. * this happens before kmemleak_init() is called. The path below is
  579. * only executed during early log recording in kmemleak_init(), so
  580. * GFP_KERNEL is enough.
  581. */
  582. start = object->pointer;
  583. end = object->pointer + object->size;
  584. if (ptr > start)
  585. create_object(start, ptr - start, object->min_count,
  586. GFP_KERNEL);
  587. if (ptr + size < end)
  588. create_object(ptr + size, end - ptr - size, object->min_count,
  589. GFP_KERNEL);
  590. put_object(object);
  591. }
  592. /*
  593. * Make a object permanently as gray-colored so that it can no longer be
  594. * reported as a leak. This is used in general to mark a false positive.
  595. */
  596. static void make_gray_object(unsigned long ptr)
  597. {
  598. unsigned long flags;
  599. struct kmemleak_object *object;
  600. object = find_and_get_object(ptr, 0);
  601. if (!object) {
  602. kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr);
  603. return;
  604. }
  605. spin_lock_irqsave(&object->lock, flags);
  606. object->min_count = 0;
  607. spin_unlock_irqrestore(&object->lock, flags);
  608. put_object(object);
  609. }
  610. /*
  611. * Mark the object as black-colored so that it is ignored from scans and
  612. * reporting.
  613. */
  614. static void make_black_object(unsigned long ptr)
  615. {
  616. unsigned long flags;
  617. struct kmemleak_object *object;
  618. object = find_and_get_object(ptr, 0);
  619. if (!object) {
  620. kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr);
  621. return;
  622. }
  623. spin_lock_irqsave(&object->lock, flags);
  624. object->min_count = -1;
  625. object->flags |= OBJECT_NO_SCAN;
  626. spin_unlock_irqrestore(&object->lock, flags);
  627. put_object(object);
  628. }
  629. /*
  630. * Add a scanning area to the object. If at least one such area is added,
  631. * kmemleak will only scan these ranges rather than the whole memory block.
  632. */
  633. static void add_scan_area(unsigned long ptr, unsigned long offset,
  634. size_t length, gfp_t gfp)
  635. {
  636. unsigned long flags;
  637. struct kmemleak_object *object;
  638. struct kmemleak_scan_area *area;
  639. object = find_and_get_object(ptr, 0);
  640. if (!object) {
  641. kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
  642. ptr);
  643. return;
  644. }
  645. area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
  646. if (!area) {
  647. kmemleak_warn("Cannot allocate a scan area\n");
  648. goto out;
  649. }
  650. spin_lock_irqsave(&object->lock, flags);
  651. if (offset + length > object->size) {
  652. kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
  653. dump_object_info(object);
  654. kmem_cache_free(scan_area_cache, area);
  655. goto out_unlock;
  656. }
  657. INIT_HLIST_NODE(&area->node);
  658. area->offset = offset;
  659. area->length = length;
  660. hlist_add_head(&area->node, &object->area_list);
  661. out_unlock:
  662. spin_unlock_irqrestore(&object->lock, flags);
  663. out:
  664. put_object(object);
  665. }
  666. /*
  667. * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
  668. * pointer. Such object will not be scanned by kmemleak but references to it
  669. * are searched.
  670. */
  671. static void object_no_scan(unsigned long ptr)
  672. {
  673. unsigned long flags;
  674. struct kmemleak_object *object;
  675. object = find_and_get_object(ptr, 0);
  676. if (!object) {
  677. kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
  678. return;
  679. }
  680. spin_lock_irqsave(&object->lock, flags);
  681. object->flags |= OBJECT_NO_SCAN;
  682. spin_unlock_irqrestore(&object->lock, flags);
  683. put_object(object);
  684. }
  685. /*
  686. * Log an early kmemleak_* call to the early_log buffer. These calls will be
  687. * processed later once kmemleak is fully initialized.
  688. */
  689. static void __init log_early(int op_type, const void *ptr, size_t size,
  690. int min_count, unsigned long offset, size_t length)
  691. {
  692. unsigned long flags;
  693. struct early_log *log;
  694. if (crt_early_log >= ARRAY_SIZE(early_log)) {
  695. pr_warning("Early log buffer exceeded\n");
  696. kmemleak_disable();
  697. return;
  698. }
  699. /*
  700. * There is no need for locking since the kernel is still in UP mode
  701. * at this stage. Disabling the IRQs is enough.
  702. */
  703. local_irq_save(flags);
  704. log = &early_log[crt_early_log];
  705. log->op_type = op_type;
  706. log->ptr = ptr;
  707. log->size = size;
  708. log->min_count = min_count;
  709. log->offset = offset;
  710. log->length = length;
  711. if (op_type == KMEMLEAK_ALLOC)
  712. log->trace_len = __save_stack_trace(log->trace);
  713. crt_early_log++;
  714. local_irq_restore(flags);
  715. }
  716. /*
  717. * Log an early allocated block and populate the stack trace.
  718. */
  719. static void early_alloc(struct early_log *log)
  720. {
  721. struct kmemleak_object *object;
  722. unsigned long flags;
  723. int i;
  724. if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
  725. return;
  726. /*
  727. * RCU locking needed to ensure object is not freed via put_object().
  728. */
  729. rcu_read_lock();
  730. object = create_object((unsigned long)log->ptr, log->size,
  731. log->min_count, GFP_KERNEL);
  732. spin_lock_irqsave(&object->lock, flags);
  733. for (i = 0; i < log->trace_len; i++)
  734. object->trace[i] = log->trace[i];
  735. object->trace_len = log->trace_len;
  736. spin_unlock_irqrestore(&object->lock, flags);
  737. rcu_read_unlock();
  738. }
  739. /*
  740. * Memory allocation function callback. This function is called from the
  741. * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
  742. * vmalloc etc.).
  743. */
  744. void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
  745. gfp_t gfp)
  746. {
  747. pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
  748. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  749. create_object((unsigned long)ptr, size, min_count, gfp);
  750. else if (atomic_read(&kmemleak_early_log))
  751. log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
  752. }
  753. EXPORT_SYMBOL_GPL(kmemleak_alloc);
  754. /*
  755. * Memory freeing function callback. This function is called from the kernel
  756. * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
  757. */
  758. void __ref kmemleak_free(const void *ptr)
  759. {
  760. pr_debug("%s(0x%p)\n", __func__, ptr);
  761. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  762. delete_object_full((unsigned long)ptr);
  763. else if (atomic_read(&kmemleak_early_log))
  764. log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
  765. }
  766. EXPORT_SYMBOL_GPL(kmemleak_free);
  767. /*
  768. * Partial memory freeing function callback. This function is usually called
  769. * from bootmem allocator when (part of) a memory block is freed.
  770. */
  771. void __ref kmemleak_free_part(const void *ptr, size_t size)
  772. {
  773. pr_debug("%s(0x%p)\n", __func__, ptr);
  774. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  775. delete_object_part((unsigned long)ptr, size);
  776. else if (atomic_read(&kmemleak_early_log))
  777. log_early(KMEMLEAK_FREE_PART, ptr, size, 0, 0, 0);
  778. }
  779. EXPORT_SYMBOL_GPL(kmemleak_free_part);
  780. /*
  781. * Mark an already allocated memory block as a false positive. This will cause
  782. * the block to no longer be reported as leak and always be scanned.
  783. */
  784. void __ref kmemleak_not_leak(const void *ptr)
  785. {
  786. pr_debug("%s(0x%p)\n", __func__, ptr);
  787. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  788. make_gray_object((unsigned long)ptr);
  789. else if (atomic_read(&kmemleak_early_log))
  790. log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
  791. }
  792. EXPORT_SYMBOL(kmemleak_not_leak);
  793. /*
  794. * Ignore a memory block. This is usually done when it is known that the
  795. * corresponding block is not a leak and does not contain any references to
  796. * other allocated memory blocks.
  797. */
  798. void __ref kmemleak_ignore(const void *ptr)
  799. {
  800. pr_debug("%s(0x%p)\n", __func__, ptr);
  801. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  802. make_black_object((unsigned long)ptr);
  803. else if (atomic_read(&kmemleak_early_log))
  804. log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
  805. }
  806. EXPORT_SYMBOL(kmemleak_ignore);
  807. /*
  808. * Limit the range to be scanned in an allocated memory block.
  809. */
  810. void __ref kmemleak_scan_area(const void *ptr, unsigned long offset,
  811. size_t length, gfp_t gfp)
  812. {
  813. pr_debug("%s(0x%p)\n", __func__, ptr);
  814. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  815. add_scan_area((unsigned long)ptr, offset, length, gfp);
  816. else if (atomic_read(&kmemleak_early_log))
  817. log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
  818. }
  819. EXPORT_SYMBOL(kmemleak_scan_area);
  820. /*
  821. * Inform kmemleak not to scan the given memory block.
  822. */
  823. void __ref kmemleak_no_scan(const void *ptr)
  824. {
  825. pr_debug("%s(0x%p)\n", __func__, ptr);
  826. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  827. object_no_scan((unsigned long)ptr);
  828. else if (atomic_read(&kmemleak_early_log))
  829. log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
  830. }
  831. EXPORT_SYMBOL(kmemleak_no_scan);
  832. /*
  833. * Memory scanning is a long process and it needs to be interruptable. This
  834. * function checks whether such interrupt condition occured.
  835. */
  836. static int scan_should_stop(void)
  837. {
  838. if (!atomic_read(&kmemleak_enabled))
  839. return 1;
  840. /*
  841. * This function may be called from either process or kthread context,
  842. * hence the need to check for both stop conditions.
  843. */
  844. if (current->mm)
  845. return signal_pending(current);
  846. else
  847. return kthread_should_stop();
  848. return 0;
  849. }
  850. /*
  851. * Scan a memory block (exclusive range) for valid pointers and add those
  852. * found to the gray list.
  853. */
  854. static void scan_block(void *_start, void *_end,
  855. struct kmemleak_object *scanned, int allow_resched)
  856. {
  857. unsigned long *ptr;
  858. unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
  859. unsigned long *end = _end - (BYTES_PER_POINTER - 1);
  860. for (ptr = start; ptr < end; ptr++) {
  861. struct kmemleak_object *object;
  862. unsigned long flags;
  863. unsigned long pointer;
  864. if (allow_resched)
  865. cond_resched();
  866. if (scan_should_stop())
  867. break;
  868. /* don't scan uninitialized memory */
  869. if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
  870. BYTES_PER_POINTER))
  871. continue;
  872. pointer = *ptr;
  873. object = find_and_get_object(pointer, 1);
  874. if (!object)
  875. continue;
  876. if (object == scanned) {
  877. /* self referenced, ignore */
  878. put_object(object);
  879. continue;
  880. }
  881. /*
  882. * Avoid the lockdep recursive warning on object->lock being
  883. * previously acquired in scan_object(). These locks are
  884. * enclosed by scan_mutex.
  885. */
  886. spin_lock_irqsave_nested(&object->lock, flags,
  887. SINGLE_DEPTH_NESTING);
  888. if (!color_white(object)) {
  889. /* non-orphan, ignored or new */
  890. spin_unlock_irqrestore(&object->lock, flags);
  891. put_object(object);
  892. continue;
  893. }
  894. /*
  895. * Increase the object's reference count (number of pointers
  896. * to the memory block). If this count reaches the required
  897. * minimum, the object's color will become gray and it will be
  898. * added to the gray_list.
  899. */
  900. object->count++;
  901. if (color_gray(object))
  902. list_add_tail(&object->gray_list, &gray_list);
  903. else
  904. put_object(object);
  905. spin_unlock_irqrestore(&object->lock, flags);
  906. }
  907. }
  908. /*
  909. * Scan a memory block corresponding to a kmemleak_object. A condition is
  910. * that object->use_count >= 1.
  911. */
  912. static void scan_object(struct kmemleak_object *object)
  913. {
  914. struct kmemleak_scan_area *area;
  915. struct hlist_node *elem;
  916. unsigned long flags;
  917. /*
  918. * Once the object->lock is aquired, the corresponding memory block
  919. * cannot be freed (the same lock is aquired in delete_object).
  920. */
  921. spin_lock_irqsave(&object->lock, flags);
  922. if (object->flags & OBJECT_NO_SCAN)
  923. goto out;
  924. if (!(object->flags & OBJECT_ALLOCATED))
  925. /* already freed object */
  926. goto out;
  927. if (hlist_empty(&object->area_list)) {
  928. void *start = (void *)object->pointer;
  929. void *end = (void *)(object->pointer + object->size);
  930. while (start < end && (object->flags & OBJECT_ALLOCATED) &&
  931. !(object->flags & OBJECT_NO_SCAN)) {
  932. scan_block(start, min(start + MAX_SCAN_SIZE, end),
  933. object, 0);
  934. start += MAX_SCAN_SIZE;
  935. spin_unlock_irqrestore(&object->lock, flags);
  936. cond_resched();
  937. spin_lock_irqsave(&object->lock, flags);
  938. }
  939. } else
  940. hlist_for_each_entry(area, elem, &object->area_list, node)
  941. scan_block((void *)(object->pointer + area->offset),
  942. (void *)(object->pointer + area->offset
  943. + area->length), object, 0);
  944. out:
  945. spin_unlock_irqrestore(&object->lock, flags);
  946. }
  947. /*
  948. * Scan data sections and all the referenced memory blocks allocated via the
  949. * kernel's standard allocators. This function must be called with the
  950. * scan_mutex held.
  951. */
  952. static void kmemleak_scan(void)
  953. {
  954. unsigned long flags;
  955. struct kmemleak_object *object, *tmp;
  956. int i;
  957. int new_leaks = 0;
  958. int gray_list_pass = 0;
  959. jiffies_last_scan = jiffies;
  960. /* prepare the kmemleak_object's */
  961. rcu_read_lock();
  962. list_for_each_entry_rcu(object, &object_list, object_list) {
  963. spin_lock_irqsave(&object->lock, flags);
  964. #ifdef DEBUG
  965. /*
  966. * With a few exceptions there should be a maximum of
  967. * 1 reference to any object at this point.
  968. */
  969. if (atomic_read(&object->use_count) > 1) {
  970. pr_debug("object->use_count = %d\n",
  971. atomic_read(&object->use_count));
  972. dump_object_info(object);
  973. }
  974. #endif
  975. /* reset the reference count (whiten the object) */
  976. object->count = 0;
  977. object->flags &= ~OBJECT_NEW;
  978. if (color_gray(object) && get_object(object))
  979. list_add_tail(&object->gray_list, &gray_list);
  980. spin_unlock_irqrestore(&object->lock, flags);
  981. }
  982. rcu_read_unlock();
  983. /* data/bss scanning */
  984. scan_block(_sdata, _edata, NULL, 1);
  985. scan_block(__bss_start, __bss_stop, NULL, 1);
  986. #ifdef CONFIG_SMP
  987. /* per-cpu sections scanning */
  988. for_each_possible_cpu(i)
  989. scan_block(__per_cpu_start + per_cpu_offset(i),
  990. __per_cpu_end + per_cpu_offset(i), NULL, 1);
  991. #endif
  992. /*
  993. * Struct page scanning for each node. The code below is not yet safe
  994. * with MEMORY_HOTPLUG.
  995. */
  996. for_each_online_node(i) {
  997. pg_data_t *pgdat = NODE_DATA(i);
  998. unsigned long start_pfn = pgdat->node_start_pfn;
  999. unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
  1000. unsigned long pfn;
  1001. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1002. struct page *page;
  1003. if (!pfn_valid(pfn))
  1004. continue;
  1005. page = pfn_to_page(pfn);
  1006. /* only scan if page is in use */
  1007. if (page_count(page) == 0)
  1008. continue;
  1009. scan_block(page, page + 1, NULL, 1);
  1010. }
  1011. }
  1012. /*
  1013. * Scanning the task stacks (may introduce false negatives).
  1014. */
  1015. if (kmemleak_stack_scan) {
  1016. struct task_struct *p, *g;
  1017. read_lock(&tasklist_lock);
  1018. do_each_thread(g, p) {
  1019. scan_block(task_stack_page(p), task_stack_page(p) +
  1020. THREAD_SIZE, NULL, 0);
  1021. } while_each_thread(g, p);
  1022. read_unlock(&tasklist_lock);
  1023. }
  1024. /*
  1025. * Scan the objects already referenced from the sections scanned
  1026. * above. More objects will be referenced and, if there are no memory
  1027. * leaks, all the objects will be scanned. The list traversal is safe
  1028. * for both tail additions and removals from inside the loop. The
  1029. * kmemleak objects cannot be freed from outside the loop because their
  1030. * use_count was increased.
  1031. */
  1032. repeat:
  1033. object = list_entry(gray_list.next, typeof(*object), gray_list);
  1034. while (&object->gray_list != &gray_list) {
  1035. cond_resched();
  1036. /* may add new objects to the list */
  1037. if (!scan_should_stop())
  1038. scan_object(object);
  1039. tmp = list_entry(object->gray_list.next, typeof(*object),
  1040. gray_list);
  1041. /* remove the object from the list and release it */
  1042. list_del(&object->gray_list);
  1043. put_object(object);
  1044. object = tmp;
  1045. }
  1046. if (scan_should_stop() || ++gray_list_pass >= GRAY_LIST_PASSES)
  1047. goto scan_end;
  1048. /*
  1049. * Check for new objects allocated during this scanning and add them
  1050. * to the gray list.
  1051. */
  1052. rcu_read_lock();
  1053. list_for_each_entry_rcu(object, &object_list, object_list) {
  1054. spin_lock_irqsave(&object->lock, flags);
  1055. if ((object->flags & OBJECT_NEW) && !color_black(object) &&
  1056. get_object(object)) {
  1057. object->flags &= ~OBJECT_NEW;
  1058. list_add_tail(&object->gray_list, &gray_list);
  1059. }
  1060. spin_unlock_irqrestore(&object->lock, flags);
  1061. }
  1062. rcu_read_unlock();
  1063. if (!list_empty(&gray_list))
  1064. goto repeat;
  1065. scan_end:
  1066. WARN_ON(!list_empty(&gray_list));
  1067. /*
  1068. * If scanning was stopped or new objects were being allocated at a
  1069. * higher rate than gray list scanning, do not report any new
  1070. * unreferenced objects.
  1071. */
  1072. if (scan_should_stop() || gray_list_pass >= GRAY_LIST_PASSES)
  1073. return;
  1074. /*
  1075. * Scanning result reporting.
  1076. */
  1077. rcu_read_lock();
  1078. list_for_each_entry_rcu(object, &object_list, object_list) {
  1079. spin_lock_irqsave(&object->lock, flags);
  1080. if (unreferenced_object(object) &&
  1081. !(object->flags & OBJECT_REPORTED)) {
  1082. object->flags |= OBJECT_REPORTED;
  1083. new_leaks++;
  1084. }
  1085. spin_unlock_irqrestore(&object->lock, flags);
  1086. }
  1087. rcu_read_unlock();
  1088. if (new_leaks)
  1089. pr_info("%d new suspected memory leaks (see "
  1090. "/sys/kernel/debug/kmemleak)\n", new_leaks);
  1091. }
  1092. /*
  1093. * Thread function performing automatic memory scanning. Unreferenced objects
  1094. * at the end of a memory scan are reported but only the first time.
  1095. */
  1096. static int kmemleak_scan_thread(void *arg)
  1097. {
  1098. static int first_run = 1;
  1099. pr_info("Automatic memory scanning thread started\n");
  1100. set_user_nice(current, 10);
  1101. /*
  1102. * Wait before the first scan to allow the system to fully initialize.
  1103. */
  1104. if (first_run) {
  1105. first_run = 0;
  1106. ssleep(SECS_FIRST_SCAN);
  1107. }
  1108. while (!kthread_should_stop()) {
  1109. signed long timeout = jiffies_scan_wait;
  1110. mutex_lock(&scan_mutex);
  1111. kmemleak_scan();
  1112. mutex_unlock(&scan_mutex);
  1113. /* wait before the next scan */
  1114. while (timeout && !kthread_should_stop())
  1115. timeout = schedule_timeout_interruptible(timeout);
  1116. }
  1117. pr_info("Automatic memory scanning thread ended\n");
  1118. return 0;
  1119. }
  1120. /*
  1121. * Start the automatic memory scanning thread. This function must be called
  1122. * with the scan_mutex held.
  1123. */
  1124. void start_scan_thread(void)
  1125. {
  1126. if (scan_thread)
  1127. return;
  1128. scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
  1129. if (IS_ERR(scan_thread)) {
  1130. pr_warning("Failed to create the scan thread\n");
  1131. scan_thread = NULL;
  1132. }
  1133. }
  1134. /*
  1135. * Stop the automatic memory scanning thread. This function must be called
  1136. * with the scan_mutex held.
  1137. */
  1138. void stop_scan_thread(void)
  1139. {
  1140. if (scan_thread) {
  1141. kthread_stop(scan_thread);
  1142. scan_thread = NULL;
  1143. }
  1144. }
  1145. /*
  1146. * Iterate over the object_list and return the first valid object at or after
  1147. * the required position with its use_count incremented. The function triggers
  1148. * a memory scanning when the pos argument points to the first position.
  1149. */
  1150. static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
  1151. {
  1152. struct kmemleak_object *object;
  1153. loff_t n = *pos;
  1154. int err;
  1155. err = mutex_lock_interruptible(&scan_mutex);
  1156. if (err < 0)
  1157. return ERR_PTR(err);
  1158. rcu_read_lock();
  1159. list_for_each_entry_rcu(object, &object_list, object_list) {
  1160. if (n-- > 0)
  1161. continue;
  1162. if (get_object(object))
  1163. goto out;
  1164. }
  1165. object = NULL;
  1166. out:
  1167. return object;
  1168. }
  1169. /*
  1170. * Return the next object in the object_list. The function decrements the
  1171. * use_count of the previous object and increases that of the next one.
  1172. */
  1173. static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1174. {
  1175. struct kmemleak_object *prev_obj = v;
  1176. struct kmemleak_object *next_obj = NULL;
  1177. struct list_head *n = &prev_obj->object_list;
  1178. ++(*pos);
  1179. list_for_each_continue_rcu(n, &object_list) {
  1180. next_obj = list_entry(n, struct kmemleak_object, object_list);
  1181. if (get_object(next_obj))
  1182. break;
  1183. }
  1184. put_object(prev_obj);
  1185. return next_obj;
  1186. }
  1187. /*
  1188. * Decrement the use_count of the last object required, if any.
  1189. */
  1190. static void kmemleak_seq_stop(struct seq_file *seq, void *v)
  1191. {
  1192. if (!IS_ERR(v)) {
  1193. /*
  1194. * kmemleak_seq_start may return ERR_PTR if the scan_mutex
  1195. * waiting was interrupted, so only release it if !IS_ERR.
  1196. */
  1197. rcu_read_unlock();
  1198. mutex_unlock(&scan_mutex);
  1199. if (v)
  1200. put_object(v);
  1201. }
  1202. }
  1203. /*
  1204. * Print the information for an unreferenced object to the seq file.
  1205. */
  1206. static int kmemleak_seq_show(struct seq_file *seq, void *v)
  1207. {
  1208. struct kmemleak_object *object = v;
  1209. unsigned long flags;
  1210. spin_lock_irqsave(&object->lock, flags);
  1211. if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
  1212. print_unreferenced(seq, object);
  1213. spin_unlock_irqrestore(&object->lock, flags);
  1214. return 0;
  1215. }
  1216. static const struct seq_operations kmemleak_seq_ops = {
  1217. .start = kmemleak_seq_start,
  1218. .next = kmemleak_seq_next,
  1219. .stop = kmemleak_seq_stop,
  1220. .show = kmemleak_seq_show,
  1221. };
  1222. static int kmemleak_open(struct inode *inode, struct file *file)
  1223. {
  1224. if (!atomic_read(&kmemleak_enabled))
  1225. return -EBUSY;
  1226. return seq_open(file, &kmemleak_seq_ops);
  1227. }
  1228. static int kmemleak_release(struct inode *inode, struct file *file)
  1229. {
  1230. return seq_release(inode, file);
  1231. }
  1232. static int dump_str_object_info(const char *str)
  1233. {
  1234. unsigned long flags;
  1235. struct kmemleak_object *object;
  1236. unsigned long addr;
  1237. addr= simple_strtoul(str, NULL, 0);
  1238. object = find_and_get_object(addr, 0);
  1239. if (!object) {
  1240. pr_info("Unknown object at 0x%08lx\n", addr);
  1241. return -EINVAL;
  1242. }
  1243. spin_lock_irqsave(&object->lock, flags);
  1244. dump_object_info(object);
  1245. spin_unlock_irqrestore(&object->lock, flags);
  1246. put_object(object);
  1247. return 0;
  1248. }
  1249. /*
  1250. * File write operation to configure kmemleak at run-time. The following
  1251. * commands can be written to the /sys/kernel/debug/kmemleak file:
  1252. * off - disable kmemleak (irreversible)
  1253. * stack=on - enable the task stacks scanning
  1254. * stack=off - disable the tasks stacks scanning
  1255. * scan=on - start the automatic memory scanning thread
  1256. * scan=off - stop the automatic memory scanning thread
  1257. * scan=... - set the automatic memory scanning period in seconds (0 to
  1258. * disable it)
  1259. * scan - trigger a memory scan
  1260. * dump=... - dump information about the object found at the given address
  1261. */
  1262. static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
  1263. size_t size, loff_t *ppos)
  1264. {
  1265. char buf[64];
  1266. int buf_size;
  1267. int ret;
  1268. buf_size = min(size, (sizeof(buf) - 1));
  1269. if (strncpy_from_user(buf, user_buf, buf_size) < 0)
  1270. return -EFAULT;
  1271. buf[buf_size] = 0;
  1272. ret = mutex_lock_interruptible(&scan_mutex);
  1273. if (ret < 0)
  1274. return ret;
  1275. if (strncmp(buf, "off", 3) == 0)
  1276. kmemleak_disable();
  1277. else if (strncmp(buf, "stack=on", 8) == 0)
  1278. kmemleak_stack_scan = 1;
  1279. else if (strncmp(buf, "stack=off", 9) == 0)
  1280. kmemleak_stack_scan = 0;
  1281. else if (strncmp(buf, "scan=on", 7) == 0)
  1282. start_scan_thread();
  1283. else if (strncmp(buf, "scan=off", 8) == 0)
  1284. stop_scan_thread();
  1285. else if (strncmp(buf, "scan=", 5) == 0) {
  1286. unsigned long secs;
  1287. ret = strict_strtoul(buf + 5, 0, &secs);
  1288. if (ret < 0)
  1289. goto out;
  1290. stop_scan_thread();
  1291. if (secs) {
  1292. jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
  1293. start_scan_thread();
  1294. }
  1295. } else if (strncmp(buf, "scan", 4) == 0)
  1296. kmemleak_scan();
  1297. else if (strncmp(buf, "dump=", 5) == 0)
  1298. ret = dump_str_object_info(buf + 5);
  1299. else
  1300. ret = -EINVAL;
  1301. out:
  1302. mutex_unlock(&scan_mutex);
  1303. if (ret < 0)
  1304. return ret;
  1305. /* ignore the rest of the buffer, only one command at a time */
  1306. *ppos += size;
  1307. return size;
  1308. }
  1309. static const struct file_operations kmemleak_fops = {
  1310. .owner = THIS_MODULE,
  1311. .open = kmemleak_open,
  1312. .read = seq_read,
  1313. .write = kmemleak_write,
  1314. .llseek = seq_lseek,
  1315. .release = kmemleak_release,
  1316. };
  1317. /*
  1318. * Perform the freeing of the kmemleak internal objects after waiting for any
  1319. * current memory scan to complete.
  1320. */
  1321. static void kmemleak_do_cleanup(struct work_struct *work)
  1322. {
  1323. struct kmemleak_object *object;
  1324. mutex_lock(&scan_mutex);
  1325. stop_scan_thread();
  1326. rcu_read_lock();
  1327. list_for_each_entry_rcu(object, &object_list, object_list)
  1328. delete_object_full(object->pointer);
  1329. rcu_read_unlock();
  1330. mutex_unlock(&scan_mutex);
  1331. }
  1332. static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
  1333. /*
  1334. * Disable kmemleak. No memory allocation/freeing will be traced once this
  1335. * function is called. Disabling kmemleak is an irreversible operation.
  1336. */
  1337. static void kmemleak_disable(void)
  1338. {
  1339. /* atomically check whether it was already invoked */
  1340. if (atomic_cmpxchg(&kmemleak_error, 0, 1))
  1341. return;
  1342. /* stop any memory operation tracing */
  1343. atomic_set(&kmemleak_early_log, 0);
  1344. atomic_set(&kmemleak_enabled, 0);
  1345. /* check whether it is too early for a kernel thread */
  1346. if (atomic_read(&kmemleak_initialized))
  1347. schedule_work(&cleanup_work);
  1348. pr_info("Kernel memory leak detector disabled\n");
  1349. }
  1350. /*
  1351. * Allow boot-time kmemleak disabling (enabled by default).
  1352. */
  1353. static int kmemleak_boot_config(char *str)
  1354. {
  1355. if (!str)
  1356. return -EINVAL;
  1357. if (strcmp(str, "off") == 0)
  1358. kmemleak_disable();
  1359. else if (strcmp(str, "on") != 0)
  1360. return -EINVAL;
  1361. return 0;
  1362. }
  1363. early_param("kmemleak", kmemleak_boot_config);
  1364. /*
  1365. * Kmemleak initialization.
  1366. */
  1367. void __init kmemleak_init(void)
  1368. {
  1369. int i;
  1370. unsigned long flags;
  1371. jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
  1372. jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
  1373. object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
  1374. scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
  1375. INIT_PRIO_TREE_ROOT(&object_tree_root);
  1376. /* the kernel is still in UP mode, so disabling the IRQs is enough */
  1377. local_irq_save(flags);
  1378. if (!atomic_read(&kmemleak_error)) {
  1379. atomic_set(&kmemleak_enabled, 1);
  1380. atomic_set(&kmemleak_early_log, 0);
  1381. }
  1382. local_irq_restore(flags);
  1383. /*
  1384. * This is the point where tracking allocations is safe. Automatic
  1385. * scanning is started during the late initcall. Add the early logged
  1386. * callbacks to the kmemleak infrastructure.
  1387. */
  1388. for (i = 0; i < crt_early_log; i++) {
  1389. struct early_log *log = &early_log[i];
  1390. switch (log->op_type) {
  1391. case KMEMLEAK_ALLOC:
  1392. early_alloc(log);
  1393. break;
  1394. case KMEMLEAK_FREE:
  1395. kmemleak_free(log->ptr);
  1396. break;
  1397. case KMEMLEAK_FREE_PART:
  1398. kmemleak_free_part(log->ptr, log->size);
  1399. break;
  1400. case KMEMLEAK_NOT_LEAK:
  1401. kmemleak_not_leak(log->ptr);
  1402. break;
  1403. case KMEMLEAK_IGNORE:
  1404. kmemleak_ignore(log->ptr);
  1405. break;
  1406. case KMEMLEAK_SCAN_AREA:
  1407. kmemleak_scan_area(log->ptr, log->offset, log->length,
  1408. GFP_KERNEL);
  1409. break;
  1410. case KMEMLEAK_NO_SCAN:
  1411. kmemleak_no_scan(log->ptr);
  1412. break;
  1413. default:
  1414. WARN_ON(1);
  1415. }
  1416. }
  1417. }
  1418. /*
  1419. * Late initialization function.
  1420. */
  1421. static int __init kmemleak_late_init(void)
  1422. {
  1423. struct dentry *dentry;
  1424. atomic_set(&kmemleak_initialized, 1);
  1425. if (atomic_read(&kmemleak_error)) {
  1426. /*
  1427. * Some error occured and kmemleak was disabled. There is a
  1428. * small chance that kmemleak_disable() was called immediately
  1429. * after setting kmemleak_initialized and we may end up with
  1430. * two clean-up threads but serialized by scan_mutex.
  1431. */
  1432. schedule_work(&cleanup_work);
  1433. return -ENOMEM;
  1434. }
  1435. dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
  1436. &kmemleak_fops);
  1437. if (!dentry)
  1438. pr_warning("Failed to create the debugfs kmemleak file\n");
  1439. mutex_lock(&scan_mutex);
  1440. start_scan_thread();
  1441. mutex_unlock(&scan_mutex);
  1442. pr_info("Kernel memory leak detector initialized\n");
  1443. return 0;
  1444. }
  1445. late_initcall(kmemleak_late_init);