sh_eth.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2009 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/delay.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/mdio-bitbang.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/phy.h>
  30. #include <linux/cache.h>
  31. #include <linux/io.h>
  32. #include <linux/pm_runtime.h>
  33. #include <linux/slab.h>
  34. #include <linux/ethtool.h>
  35. #include <asm/cacheflush.h>
  36. #include "sh_eth.h"
  37. #define SH_ETH_DEF_MSG_ENABLE \
  38. (NETIF_MSG_LINK | \
  39. NETIF_MSG_TIMER | \
  40. NETIF_MSG_RX_ERR| \
  41. NETIF_MSG_TX_ERR)
  42. /* There is CPU dependent code */
  43. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  44. #define SH_ETH_RESET_DEFAULT 1
  45. static void sh_eth_set_duplex(struct net_device *ndev)
  46. {
  47. struct sh_eth_private *mdp = netdev_priv(ndev);
  48. if (mdp->duplex) /* Full */
  49. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  50. else /* Half */
  51. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  52. }
  53. static void sh_eth_set_rate(struct net_device *ndev)
  54. {
  55. struct sh_eth_private *mdp = netdev_priv(ndev);
  56. switch (mdp->speed) {
  57. case 10: /* 10BASE */
  58. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
  59. break;
  60. case 100:/* 100BASE */
  61. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
  62. break;
  63. default:
  64. break;
  65. }
  66. }
  67. /* SH7724 */
  68. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  69. .set_duplex = sh_eth_set_duplex,
  70. .set_rate = sh_eth_set_rate,
  71. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  72. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  73. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  74. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  75. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  76. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  77. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  78. .apr = 1,
  79. .mpr = 1,
  80. .tpauser = 1,
  81. .hw_swap = 1,
  82. .rpadir = 1,
  83. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  84. };
  85. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  86. #define SH_ETH_RESET_DEFAULT 1
  87. static void sh_eth_set_duplex(struct net_device *ndev)
  88. {
  89. struct sh_eth_private *mdp = netdev_priv(ndev);
  90. if (mdp->duplex) /* Full */
  91. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  92. else /* Half */
  93. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  94. }
  95. static void sh_eth_set_rate(struct net_device *ndev)
  96. {
  97. struct sh_eth_private *mdp = netdev_priv(ndev);
  98. switch (mdp->speed) {
  99. case 10: /* 10BASE */
  100. sh_eth_write(ndev, 0, RTRATE);
  101. break;
  102. case 100:/* 100BASE */
  103. sh_eth_write(ndev, 1, RTRATE);
  104. break;
  105. default:
  106. break;
  107. }
  108. }
  109. /* SH7757 */
  110. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  111. .set_duplex = sh_eth_set_duplex,
  112. .set_rate = sh_eth_set_rate,
  113. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  114. .rmcr_value = 0x00000001,
  115. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  116. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  117. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  118. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  119. .apr = 1,
  120. .mpr = 1,
  121. .tpauser = 1,
  122. .hw_swap = 1,
  123. .no_ade = 1,
  124. };
  125. #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
  126. #define SH_ETH_HAS_TSU 1
  127. static void sh_eth_chip_reset(struct net_device *ndev)
  128. {
  129. /* reset device */
  130. writel(ARSTR_ARSTR, ARSTR);
  131. mdelay(1);
  132. }
  133. static void sh_eth_reset(struct net_device *ndev)
  134. {
  135. int cnt = 100;
  136. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  137. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST, EDMR);
  138. while (cnt > 0) {
  139. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  140. break;
  141. mdelay(1);
  142. cnt--;
  143. }
  144. if (cnt == 0)
  145. printk(KERN_ERR "Device reset fail\n");
  146. /* Table Init */
  147. sh_eth_write(ndev, 0x0, TDLAR);
  148. sh_eth_write(ndev, 0x0, TDFAR);
  149. sh_eth_write(ndev, 0x0, TDFXR);
  150. sh_eth_write(ndev, 0x0, TDFFR);
  151. sh_eth_write(ndev, 0x0, RDLAR);
  152. sh_eth_write(ndev, 0x0, RDFAR);
  153. sh_eth_write(ndev, 0x0, RDFXR);
  154. sh_eth_write(ndev, 0x0, RDFFR);
  155. }
  156. static void sh_eth_set_duplex(struct net_device *ndev)
  157. {
  158. struct sh_eth_private *mdp = netdev_priv(ndev);
  159. if (mdp->duplex) /* Full */
  160. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  161. else /* Half */
  162. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  163. }
  164. static void sh_eth_set_rate(struct net_device *ndev)
  165. {
  166. struct sh_eth_private *mdp = netdev_priv(ndev);
  167. switch (mdp->speed) {
  168. case 10: /* 10BASE */
  169. sh_eth_write(ndev, GECMR_10, GECMR);
  170. break;
  171. case 100:/* 100BASE */
  172. sh_eth_write(ndev, GECMR_100, GECMR);
  173. break;
  174. case 1000: /* 1000BASE */
  175. sh_eth_write(ndev, GECMR_1000, GECMR);
  176. break;
  177. default:
  178. break;
  179. }
  180. }
  181. /* sh7763 */
  182. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  183. .chip_reset = sh_eth_chip_reset,
  184. .set_duplex = sh_eth_set_duplex,
  185. .set_rate = sh_eth_set_rate,
  186. .ecsr_value = ECSR_ICD | ECSR_MPD,
  187. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  188. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  189. .tx_check = EESR_TC1 | EESR_FTC,
  190. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  191. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  192. EESR_ECI,
  193. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  194. EESR_TFE,
  195. .apr = 1,
  196. .mpr = 1,
  197. .tpauser = 1,
  198. .bculr = 1,
  199. .hw_swap = 1,
  200. .no_trimd = 1,
  201. .no_ade = 1,
  202. };
  203. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  204. #define SH_ETH_RESET_DEFAULT 1
  205. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  206. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  207. .apr = 1,
  208. .mpr = 1,
  209. .tpauser = 1,
  210. .hw_swap = 1,
  211. };
  212. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  213. #define SH_ETH_RESET_DEFAULT 1
  214. #define SH_ETH_HAS_TSU 1
  215. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  216. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  217. };
  218. #endif
  219. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  220. {
  221. if (!cd->ecsr_value)
  222. cd->ecsr_value = DEFAULT_ECSR_INIT;
  223. if (!cd->ecsipr_value)
  224. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  225. if (!cd->fcftr_value)
  226. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  227. DEFAULT_FIFO_F_D_RFD;
  228. if (!cd->fdr_value)
  229. cd->fdr_value = DEFAULT_FDR_INIT;
  230. if (!cd->rmcr_value)
  231. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  232. if (!cd->tx_check)
  233. cd->tx_check = DEFAULT_TX_CHECK;
  234. if (!cd->eesr_err_check)
  235. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  236. if (!cd->tx_error_check)
  237. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  238. }
  239. #if defined(SH_ETH_RESET_DEFAULT)
  240. /* Chip Reset */
  241. static void sh_eth_reset(struct net_device *ndev)
  242. {
  243. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST, EDMR);
  244. mdelay(3);
  245. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST, EDMR);
  246. }
  247. #endif
  248. #if defined(CONFIG_CPU_SH4)
  249. static void sh_eth_set_receive_align(struct sk_buff *skb)
  250. {
  251. int reserve;
  252. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  253. if (reserve)
  254. skb_reserve(skb, reserve);
  255. }
  256. #else
  257. static void sh_eth_set_receive_align(struct sk_buff *skb)
  258. {
  259. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  260. }
  261. #endif
  262. /* CPU <-> EDMAC endian convert */
  263. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  264. {
  265. switch (mdp->edmac_endian) {
  266. case EDMAC_LITTLE_ENDIAN:
  267. return cpu_to_le32(x);
  268. case EDMAC_BIG_ENDIAN:
  269. return cpu_to_be32(x);
  270. }
  271. return x;
  272. }
  273. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  274. {
  275. switch (mdp->edmac_endian) {
  276. case EDMAC_LITTLE_ENDIAN:
  277. return le32_to_cpu(x);
  278. case EDMAC_BIG_ENDIAN:
  279. return be32_to_cpu(x);
  280. }
  281. return x;
  282. }
  283. /*
  284. * Program the hardware MAC address from dev->dev_addr.
  285. */
  286. static void update_mac_address(struct net_device *ndev)
  287. {
  288. sh_eth_write(ndev,
  289. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  290. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  291. sh_eth_write(ndev,
  292. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  293. }
  294. /*
  295. * Get MAC address from SuperH MAC address register
  296. *
  297. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  298. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  299. * When you want use this device, you must set MAC address in bootloader.
  300. *
  301. */
  302. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  303. {
  304. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  305. memcpy(ndev->dev_addr, mac, 6);
  306. } else {
  307. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  308. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  309. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  310. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  311. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  312. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  313. }
  314. }
  315. struct bb_info {
  316. struct mdiobb_ctrl ctrl;
  317. u32 addr;
  318. u32 mmd_msk;/* MMD */
  319. u32 mdo_msk;
  320. u32 mdi_msk;
  321. u32 mdc_msk;
  322. };
  323. /* PHY bit set */
  324. static void bb_set(u32 addr, u32 msk)
  325. {
  326. writel(readl(addr) | msk, addr);
  327. }
  328. /* PHY bit clear */
  329. static void bb_clr(u32 addr, u32 msk)
  330. {
  331. writel((readl(addr) & ~msk), addr);
  332. }
  333. /* PHY bit read */
  334. static int bb_read(u32 addr, u32 msk)
  335. {
  336. return (readl(addr) & msk) != 0;
  337. }
  338. /* Data I/O pin control */
  339. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  340. {
  341. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  342. if (bit)
  343. bb_set(bitbang->addr, bitbang->mmd_msk);
  344. else
  345. bb_clr(bitbang->addr, bitbang->mmd_msk);
  346. }
  347. /* Set bit data*/
  348. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  349. {
  350. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  351. if (bit)
  352. bb_set(bitbang->addr, bitbang->mdo_msk);
  353. else
  354. bb_clr(bitbang->addr, bitbang->mdo_msk);
  355. }
  356. /* Get bit data*/
  357. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  358. {
  359. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  360. return bb_read(bitbang->addr, bitbang->mdi_msk);
  361. }
  362. /* MDC pin control */
  363. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  364. {
  365. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  366. if (bit)
  367. bb_set(bitbang->addr, bitbang->mdc_msk);
  368. else
  369. bb_clr(bitbang->addr, bitbang->mdc_msk);
  370. }
  371. /* mdio bus control struct */
  372. static struct mdiobb_ops bb_ops = {
  373. .owner = THIS_MODULE,
  374. .set_mdc = sh_mdc_ctrl,
  375. .set_mdio_dir = sh_mmd_ctrl,
  376. .set_mdio_data = sh_set_mdio,
  377. .get_mdio_data = sh_get_mdio,
  378. };
  379. /* free skb and descriptor buffer */
  380. static void sh_eth_ring_free(struct net_device *ndev)
  381. {
  382. struct sh_eth_private *mdp = netdev_priv(ndev);
  383. int i;
  384. /* Free Rx skb ringbuffer */
  385. if (mdp->rx_skbuff) {
  386. for (i = 0; i < RX_RING_SIZE; i++) {
  387. if (mdp->rx_skbuff[i])
  388. dev_kfree_skb(mdp->rx_skbuff[i]);
  389. }
  390. }
  391. kfree(mdp->rx_skbuff);
  392. /* Free Tx skb ringbuffer */
  393. if (mdp->tx_skbuff) {
  394. for (i = 0; i < TX_RING_SIZE; i++) {
  395. if (mdp->tx_skbuff[i])
  396. dev_kfree_skb(mdp->tx_skbuff[i]);
  397. }
  398. }
  399. kfree(mdp->tx_skbuff);
  400. }
  401. /* format skb and descriptor buffer */
  402. static void sh_eth_ring_format(struct net_device *ndev)
  403. {
  404. struct sh_eth_private *mdp = netdev_priv(ndev);
  405. int i;
  406. struct sk_buff *skb;
  407. struct sh_eth_rxdesc *rxdesc = NULL;
  408. struct sh_eth_txdesc *txdesc = NULL;
  409. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  410. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  411. mdp->cur_rx = mdp->cur_tx = 0;
  412. mdp->dirty_rx = mdp->dirty_tx = 0;
  413. memset(mdp->rx_ring, 0, rx_ringsize);
  414. /* build Rx ring buffer */
  415. for (i = 0; i < RX_RING_SIZE; i++) {
  416. /* skb */
  417. mdp->rx_skbuff[i] = NULL;
  418. skb = dev_alloc_skb(mdp->rx_buf_sz);
  419. mdp->rx_skbuff[i] = skb;
  420. if (skb == NULL)
  421. break;
  422. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  423. DMA_FROM_DEVICE);
  424. skb->dev = ndev; /* Mark as being used by this device. */
  425. sh_eth_set_receive_align(skb);
  426. /* RX descriptor */
  427. rxdesc = &mdp->rx_ring[i];
  428. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  429. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  430. /* The size of the buffer is 16 byte boundary. */
  431. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  432. /* Rx descriptor address set */
  433. if (i == 0) {
  434. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  435. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  436. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  437. #endif
  438. }
  439. }
  440. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  441. /* Mark the last entry as wrapping the ring. */
  442. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  443. memset(mdp->tx_ring, 0, tx_ringsize);
  444. /* build Tx ring buffer */
  445. for (i = 0; i < TX_RING_SIZE; i++) {
  446. mdp->tx_skbuff[i] = NULL;
  447. txdesc = &mdp->tx_ring[i];
  448. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  449. txdesc->buffer_length = 0;
  450. if (i == 0) {
  451. /* Tx descriptor address set */
  452. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  453. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  454. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  455. #endif
  456. }
  457. }
  458. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  459. }
  460. /* Get skb and descriptor buffer */
  461. static int sh_eth_ring_init(struct net_device *ndev)
  462. {
  463. struct sh_eth_private *mdp = netdev_priv(ndev);
  464. int rx_ringsize, tx_ringsize, ret = 0;
  465. /*
  466. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  467. * card needs room to do 8 byte alignment, +2 so we can reserve
  468. * the first 2 bytes, and +16 gets room for the status word from the
  469. * card.
  470. */
  471. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  472. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  473. if (mdp->cd->rpadir)
  474. mdp->rx_buf_sz += NET_IP_ALIGN;
  475. /* Allocate RX and TX skb rings */
  476. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  477. GFP_KERNEL);
  478. if (!mdp->rx_skbuff) {
  479. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  480. ret = -ENOMEM;
  481. return ret;
  482. }
  483. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  484. GFP_KERNEL);
  485. if (!mdp->tx_skbuff) {
  486. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  487. ret = -ENOMEM;
  488. goto skb_ring_free;
  489. }
  490. /* Allocate all Rx descriptors. */
  491. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  492. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  493. GFP_KERNEL);
  494. if (!mdp->rx_ring) {
  495. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  496. rx_ringsize);
  497. ret = -ENOMEM;
  498. goto desc_ring_free;
  499. }
  500. mdp->dirty_rx = 0;
  501. /* Allocate all Tx descriptors. */
  502. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  503. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  504. GFP_KERNEL);
  505. if (!mdp->tx_ring) {
  506. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  507. tx_ringsize);
  508. ret = -ENOMEM;
  509. goto desc_ring_free;
  510. }
  511. return ret;
  512. desc_ring_free:
  513. /* free DMA buffer */
  514. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  515. skb_ring_free:
  516. /* Free Rx and Tx skb ring buffer */
  517. sh_eth_ring_free(ndev);
  518. return ret;
  519. }
  520. static int sh_eth_dev_init(struct net_device *ndev)
  521. {
  522. int ret = 0;
  523. struct sh_eth_private *mdp = netdev_priv(ndev);
  524. u_int32_t rx_int_var, tx_int_var;
  525. u32 val;
  526. /* Soft Reset */
  527. sh_eth_reset(ndev);
  528. /* Descriptor format */
  529. sh_eth_ring_format(ndev);
  530. if (mdp->cd->rpadir)
  531. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  532. /* all sh_eth int mask */
  533. sh_eth_write(ndev, 0, EESIPR);
  534. #if defined(__LITTLE_ENDIAN__)
  535. if (mdp->cd->hw_swap)
  536. sh_eth_write(ndev, EDMR_EL, EDMR);
  537. else
  538. #endif
  539. sh_eth_write(ndev, 0, EDMR);
  540. /* FIFO size set */
  541. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  542. sh_eth_write(ndev, 0, TFTR);
  543. /* Frame recv control */
  544. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  545. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  546. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  547. sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
  548. if (mdp->cd->bculr)
  549. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  550. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  551. if (!mdp->cd->no_trimd)
  552. sh_eth_write(ndev, 0, TRIMD);
  553. /* Recv frame limit set register */
  554. sh_eth_write(ndev, RFLR_VALUE, RFLR);
  555. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  556. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  557. /* PAUSE Prohibition */
  558. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  559. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  560. sh_eth_write(ndev, val, ECMR);
  561. if (mdp->cd->set_rate)
  562. mdp->cd->set_rate(ndev);
  563. /* E-MAC Status Register clear */
  564. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  565. /* E-MAC Interrupt Enable register */
  566. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  567. /* Set MAC address */
  568. update_mac_address(ndev);
  569. /* mask reset */
  570. if (mdp->cd->apr)
  571. sh_eth_write(ndev, APR_AP, APR);
  572. if (mdp->cd->mpr)
  573. sh_eth_write(ndev, MPR_MP, MPR);
  574. if (mdp->cd->tpauser)
  575. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  576. /* Setting the Rx mode will start the Rx process. */
  577. sh_eth_write(ndev, EDRRR_R, EDRRR);
  578. netif_start_queue(ndev);
  579. return ret;
  580. }
  581. /* free Tx skb function */
  582. static int sh_eth_txfree(struct net_device *ndev)
  583. {
  584. struct sh_eth_private *mdp = netdev_priv(ndev);
  585. struct sh_eth_txdesc *txdesc;
  586. int freeNum = 0;
  587. int entry = 0;
  588. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  589. entry = mdp->dirty_tx % TX_RING_SIZE;
  590. txdesc = &mdp->tx_ring[entry];
  591. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  592. break;
  593. /* Free the original skb. */
  594. if (mdp->tx_skbuff[entry]) {
  595. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  596. mdp->tx_skbuff[entry] = NULL;
  597. freeNum++;
  598. }
  599. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  600. if (entry >= TX_RING_SIZE - 1)
  601. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  602. mdp->stats.tx_packets++;
  603. mdp->stats.tx_bytes += txdesc->buffer_length;
  604. }
  605. return freeNum;
  606. }
  607. /* Packet receive function */
  608. static int sh_eth_rx(struct net_device *ndev)
  609. {
  610. struct sh_eth_private *mdp = netdev_priv(ndev);
  611. struct sh_eth_rxdesc *rxdesc;
  612. int entry = mdp->cur_rx % RX_RING_SIZE;
  613. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  614. struct sk_buff *skb;
  615. u16 pkt_len = 0;
  616. u32 desc_status;
  617. rxdesc = &mdp->rx_ring[entry];
  618. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  619. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  620. pkt_len = rxdesc->frame_length;
  621. if (--boguscnt < 0)
  622. break;
  623. if (!(desc_status & RDFEND))
  624. mdp->stats.rx_length_errors++;
  625. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  626. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  627. mdp->stats.rx_errors++;
  628. if (desc_status & RD_RFS1)
  629. mdp->stats.rx_crc_errors++;
  630. if (desc_status & RD_RFS2)
  631. mdp->stats.rx_frame_errors++;
  632. if (desc_status & RD_RFS3)
  633. mdp->stats.rx_length_errors++;
  634. if (desc_status & RD_RFS4)
  635. mdp->stats.rx_length_errors++;
  636. if (desc_status & RD_RFS6)
  637. mdp->stats.rx_missed_errors++;
  638. if (desc_status & RD_RFS10)
  639. mdp->stats.rx_over_errors++;
  640. } else {
  641. if (!mdp->cd->hw_swap)
  642. sh_eth_soft_swap(
  643. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  644. pkt_len + 2);
  645. skb = mdp->rx_skbuff[entry];
  646. mdp->rx_skbuff[entry] = NULL;
  647. if (mdp->cd->rpadir)
  648. skb_reserve(skb, NET_IP_ALIGN);
  649. skb_put(skb, pkt_len);
  650. skb->protocol = eth_type_trans(skb, ndev);
  651. netif_rx(skb);
  652. mdp->stats.rx_packets++;
  653. mdp->stats.rx_bytes += pkt_len;
  654. }
  655. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  656. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  657. rxdesc = &mdp->rx_ring[entry];
  658. }
  659. /* Refill the Rx ring buffers. */
  660. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  661. entry = mdp->dirty_rx % RX_RING_SIZE;
  662. rxdesc = &mdp->rx_ring[entry];
  663. /* The size of the buffer is 16 byte boundary. */
  664. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  665. if (mdp->rx_skbuff[entry] == NULL) {
  666. skb = dev_alloc_skb(mdp->rx_buf_sz);
  667. mdp->rx_skbuff[entry] = skb;
  668. if (skb == NULL)
  669. break; /* Better luck next round. */
  670. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  671. DMA_FROM_DEVICE);
  672. skb->dev = ndev;
  673. sh_eth_set_receive_align(skb);
  674. skb_checksum_none_assert(skb);
  675. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  676. }
  677. if (entry >= RX_RING_SIZE - 1)
  678. rxdesc->status |=
  679. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  680. else
  681. rxdesc->status |=
  682. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  683. }
  684. /* Restart Rx engine if stopped. */
  685. /* If we don't need to check status, don't. -KDU */
  686. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
  687. sh_eth_write(ndev, EDRRR_R, EDRRR);
  688. return 0;
  689. }
  690. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  691. {
  692. /* disable tx and rx */
  693. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  694. ~(ECMR_RE | ECMR_TE), ECMR);
  695. }
  696. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  697. {
  698. /* enable tx and rx */
  699. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  700. (ECMR_RE | ECMR_TE), ECMR);
  701. }
  702. /* error control function */
  703. static void sh_eth_error(struct net_device *ndev, int intr_status)
  704. {
  705. struct sh_eth_private *mdp = netdev_priv(ndev);
  706. u32 felic_stat;
  707. u32 link_stat;
  708. u32 mask;
  709. if (intr_status & EESR_ECI) {
  710. felic_stat = sh_eth_read(ndev, ECSR);
  711. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  712. if (felic_stat & ECSR_ICD)
  713. mdp->stats.tx_carrier_errors++;
  714. if (felic_stat & ECSR_LCHNG) {
  715. /* Link Changed */
  716. if (mdp->cd->no_psr || mdp->no_ether_link) {
  717. if (mdp->link == PHY_DOWN)
  718. link_stat = 0;
  719. else
  720. link_stat = PHY_ST_LINK;
  721. } else {
  722. link_stat = (sh_eth_read(ndev, PSR));
  723. if (mdp->ether_link_active_low)
  724. link_stat = ~link_stat;
  725. }
  726. if (!(link_stat & PHY_ST_LINK))
  727. sh_eth_rcv_snd_disable(ndev);
  728. else {
  729. /* Link Up */
  730. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  731. ~DMAC_M_ECI, EESIPR);
  732. /*clear int */
  733. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  734. ECSR);
  735. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  736. DMAC_M_ECI, EESIPR);
  737. /* enable tx and rx */
  738. sh_eth_rcv_snd_enable(ndev);
  739. }
  740. }
  741. }
  742. if (intr_status & EESR_TWB) {
  743. /* Write buck end. unused write back interrupt */
  744. if (intr_status & EESR_TABT) /* Transmit Abort int */
  745. mdp->stats.tx_aborted_errors++;
  746. if (netif_msg_tx_err(mdp))
  747. dev_err(&ndev->dev, "Transmit Abort\n");
  748. }
  749. if (intr_status & EESR_RABT) {
  750. /* Receive Abort int */
  751. if (intr_status & EESR_RFRMER) {
  752. /* Receive Frame Overflow int */
  753. mdp->stats.rx_frame_errors++;
  754. if (netif_msg_rx_err(mdp))
  755. dev_err(&ndev->dev, "Receive Abort\n");
  756. }
  757. }
  758. if (intr_status & EESR_TDE) {
  759. /* Transmit Descriptor Empty int */
  760. mdp->stats.tx_fifo_errors++;
  761. if (netif_msg_tx_err(mdp))
  762. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  763. }
  764. if (intr_status & EESR_TFE) {
  765. /* FIFO under flow */
  766. mdp->stats.tx_fifo_errors++;
  767. if (netif_msg_tx_err(mdp))
  768. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  769. }
  770. if (intr_status & EESR_RDE) {
  771. /* Receive Descriptor Empty int */
  772. mdp->stats.rx_over_errors++;
  773. if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
  774. sh_eth_write(ndev, EDRRR_R, EDRRR);
  775. if (netif_msg_rx_err(mdp))
  776. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  777. }
  778. if (intr_status & EESR_RFE) {
  779. /* Receive FIFO Overflow int */
  780. mdp->stats.rx_fifo_errors++;
  781. if (netif_msg_rx_err(mdp))
  782. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  783. }
  784. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  785. /* Address Error */
  786. mdp->stats.tx_fifo_errors++;
  787. if (netif_msg_tx_err(mdp))
  788. dev_err(&ndev->dev, "Address Error\n");
  789. }
  790. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  791. if (mdp->cd->no_ade)
  792. mask &= ~EESR_ADE;
  793. if (intr_status & mask) {
  794. /* Tx error */
  795. u32 edtrr = sh_eth_read(ndev, EDTRR);
  796. /* dmesg */
  797. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  798. intr_status, mdp->cur_tx);
  799. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  800. mdp->dirty_tx, (u32) ndev->state, edtrr);
  801. /* dirty buffer free */
  802. sh_eth_txfree(ndev);
  803. /* SH7712 BUG */
  804. if (edtrr ^ EDTRR_TRNS) {
  805. /* tx dma start */
  806. sh_eth_write(ndev, EDTRR_TRNS, EDTRR);
  807. }
  808. /* wakeup */
  809. netif_wake_queue(ndev);
  810. }
  811. }
  812. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  813. {
  814. struct net_device *ndev = netdev;
  815. struct sh_eth_private *mdp = netdev_priv(ndev);
  816. struct sh_eth_cpu_data *cd = mdp->cd;
  817. irqreturn_t ret = IRQ_NONE;
  818. u32 intr_status = 0;
  819. spin_lock(&mdp->lock);
  820. /* Get interrpt stat */
  821. intr_status = sh_eth_read(ndev, EESR);
  822. /* Clear interrupt */
  823. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  824. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  825. cd->tx_check | cd->eesr_err_check)) {
  826. sh_eth_write(ndev, intr_status, EESR);
  827. ret = IRQ_HANDLED;
  828. } else
  829. goto other_irq;
  830. if (intr_status & (EESR_FRC | /* Frame recv*/
  831. EESR_RMAF | /* Multi cast address recv*/
  832. EESR_RRF | /* Bit frame recv */
  833. EESR_RTLF | /* Long frame recv*/
  834. EESR_RTSF | /* short frame recv */
  835. EESR_PRE | /* PHY-LSI recv error */
  836. EESR_CERF)){ /* recv frame CRC error */
  837. sh_eth_rx(ndev);
  838. }
  839. /* Tx Check */
  840. if (intr_status & cd->tx_check) {
  841. sh_eth_txfree(ndev);
  842. netif_wake_queue(ndev);
  843. }
  844. if (intr_status & cd->eesr_err_check)
  845. sh_eth_error(ndev, intr_status);
  846. other_irq:
  847. spin_unlock(&mdp->lock);
  848. return ret;
  849. }
  850. static void sh_eth_timer(unsigned long data)
  851. {
  852. struct net_device *ndev = (struct net_device *)data;
  853. struct sh_eth_private *mdp = netdev_priv(ndev);
  854. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  855. }
  856. /* PHY state control function */
  857. static void sh_eth_adjust_link(struct net_device *ndev)
  858. {
  859. struct sh_eth_private *mdp = netdev_priv(ndev);
  860. struct phy_device *phydev = mdp->phydev;
  861. int new_state = 0;
  862. if (phydev->link != PHY_DOWN) {
  863. if (phydev->duplex != mdp->duplex) {
  864. new_state = 1;
  865. mdp->duplex = phydev->duplex;
  866. if (mdp->cd->set_duplex)
  867. mdp->cd->set_duplex(ndev);
  868. }
  869. if (phydev->speed != mdp->speed) {
  870. new_state = 1;
  871. mdp->speed = phydev->speed;
  872. if (mdp->cd->set_rate)
  873. mdp->cd->set_rate(ndev);
  874. }
  875. if (mdp->link == PHY_DOWN) {
  876. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_TXF)
  877. | ECMR_DM, ECMR);
  878. new_state = 1;
  879. mdp->link = phydev->link;
  880. }
  881. } else if (mdp->link) {
  882. new_state = 1;
  883. mdp->link = PHY_DOWN;
  884. mdp->speed = 0;
  885. mdp->duplex = -1;
  886. }
  887. if (new_state && netif_msg_link(mdp))
  888. phy_print_status(phydev);
  889. }
  890. /* PHY init function */
  891. static int sh_eth_phy_init(struct net_device *ndev)
  892. {
  893. struct sh_eth_private *mdp = netdev_priv(ndev);
  894. char phy_id[MII_BUS_ID_SIZE + 3];
  895. struct phy_device *phydev = NULL;
  896. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  897. mdp->mii_bus->id , mdp->phy_id);
  898. mdp->link = PHY_DOWN;
  899. mdp->speed = 0;
  900. mdp->duplex = -1;
  901. /* Try connect to PHY */
  902. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  903. 0, PHY_INTERFACE_MODE_MII);
  904. if (IS_ERR(phydev)) {
  905. dev_err(&ndev->dev, "phy_connect failed\n");
  906. return PTR_ERR(phydev);
  907. }
  908. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  909. phydev->addr, phydev->drv->name);
  910. mdp->phydev = phydev;
  911. return 0;
  912. }
  913. /* PHY control start function */
  914. static int sh_eth_phy_start(struct net_device *ndev)
  915. {
  916. struct sh_eth_private *mdp = netdev_priv(ndev);
  917. int ret;
  918. ret = sh_eth_phy_init(ndev);
  919. if (ret)
  920. return ret;
  921. /* reset phy - this also wakes it from PDOWN */
  922. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  923. phy_start(mdp->phydev);
  924. return 0;
  925. }
  926. static int sh_eth_get_settings(struct net_device *ndev,
  927. struct ethtool_cmd *ecmd)
  928. {
  929. struct sh_eth_private *mdp = netdev_priv(ndev);
  930. unsigned long flags;
  931. int ret;
  932. spin_lock_irqsave(&mdp->lock, flags);
  933. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  934. spin_unlock_irqrestore(&mdp->lock, flags);
  935. return ret;
  936. }
  937. static int sh_eth_set_settings(struct net_device *ndev,
  938. struct ethtool_cmd *ecmd)
  939. {
  940. struct sh_eth_private *mdp = netdev_priv(ndev);
  941. unsigned long flags;
  942. int ret;
  943. spin_lock_irqsave(&mdp->lock, flags);
  944. /* disable tx and rx */
  945. sh_eth_rcv_snd_disable(ndev);
  946. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  947. if (ret)
  948. goto error_exit;
  949. if (ecmd->duplex == DUPLEX_FULL)
  950. mdp->duplex = 1;
  951. else
  952. mdp->duplex = 0;
  953. if (mdp->cd->set_duplex)
  954. mdp->cd->set_duplex(ndev);
  955. error_exit:
  956. mdelay(1);
  957. /* enable tx and rx */
  958. sh_eth_rcv_snd_enable(ndev);
  959. spin_unlock_irqrestore(&mdp->lock, flags);
  960. return ret;
  961. }
  962. static int sh_eth_nway_reset(struct net_device *ndev)
  963. {
  964. struct sh_eth_private *mdp = netdev_priv(ndev);
  965. unsigned long flags;
  966. int ret;
  967. spin_lock_irqsave(&mdp->lock, flags);
  968. ret = phy_start_aneg(mdp->phydev);
  969. spin_unlock_irqrestore(&mdp->lock, flags);
  970. return ret;
  971. }
  972. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  973. {
  974. struct sh_eth_private *mdp = netdev_priv(ndev);
  975. return mdp->msg_enable;
  976. }
  977. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  978. {
  979. struct sh_eth_private *mdp = netdev_priv(ndev);
  980. mdp->msg_enable = value;
  981. }
  982. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  983. "rx_current", "tx_current",
  984. "rx_dirty", "tx_dirty",
  985. };
  986. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  987. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  988. {
  989. switch (sset) {
  990. case ETH_SS_STATS:
  991. return SH_ETH_STATS_LEN;
  992. default:
  993. return -EOPNOTSUPP;
  994. }
  995. }
  996. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  997. struct ethtool_stats *stats, u64 *data)
  998. {
  999. struct sh_eth_private *mdp = netdev_priv(ndev);
  1000. int i = 0;
  1001. /* device-specific stats */
  1002. data[i++] = mdp->cur_rx;
  1003. data[i++] = mdp->cur_tx;
  1004. data[i++] = mdp->dirty_rx;
  1005. data[i++] = mdp->dirty_tx;
  1006. }
  1007. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1008. {
  1009. switch (stringset) {
  1010. case ETH_SS_STATS:
  1011. memcpy(data, *sh_eth_gstrings_stats,
  1012. sizeof(sh_eth_gstrings_stats));
  1013. break;
  1014. }
  1015. }
  1016. static struct ethtool_ops sh_eth_ethtool_ops = {
  1017. .get_settings = sh_eth_get_settings,
  1018. .set_settings = sh_eth_set_settings,
  1019. .nway_reset = sh_eth_nway_reset,
  1020. .get_msglevel = sh_eth_get_msglevel,
  1021. .set_msglevel = sh_eth_set_msglevel,
  1022. .get_link = ethtool_op_get_link,
  1023. .get_strings = sh_eth_get_strings,
  1024. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1025. .get_sset_count = sh_eth_get_sset_count,
  1026. };
  1027. /* network device open function */
  1028. static int sh_eth_open(struct net_device *ndev)
  1029. {
  1030. int ret = 0;
  1031. struct sh_eth_private *mdp = netdev_priv(ndev);
  1032. pm_runtime_get_sync(&mdp->pdev->dev);
  1033. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1034. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1035. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1036. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1037. IRQF_SHARED,
  1038. #else
  1039. 0,
  1040. #endif
  1041. ndev->name, ndev);
  1042. if (ret) {
  1043. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1044. return ret;
  1045. }
  1046. /* Descriptor set */
  1047. ret = sh_eth_ring_init(ndev);
  1048. if (ret)
  1049. goto out_free_irq;
  1050. /* device init */
  1051. ret = sh_eth_dev_init(ndev);
  1052. if (ret)
  1053. goto out_free_irq;
  1054. /* PHY control start*/
  1055. ret = sh_eth_phy_start(ndev);
  1056. if (ret)
  1057. goto out_free_irq;
  1058. /* Set the timer to check for link beat. */
  1059. init_timer(&mdp->timer);
  1060. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1061. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  1062. return ret;
  1063. out_free_irq:
  1064. free_irq(ndev->irq, ndev);
  1065. pm_runtime_put_sync(&mdp->pdev->dev);
  1066. return ret;
  1067. }
  1068. /* Timeout function */
  1069. static void sh_eth_tx_timeout(struct net_device *ndev)
  1070. {
  1071. struct sh_eth_private *mdp = netdev_priv(ndev);
  1072. struct sh_eth_rxdesc *rxdesc;
  1073. int i;
  1074. netif_stop_queue(ndev);
  1075. if (netif_msg_timer(mdp))
  1076. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1077. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1078. /* tx_errors count up */
  1079. mdp->stats.tx_errors++;
  1080. /* timer off */
  1081. del_timer_sync(&mdp->timer);
  1082. /* Free all the skbuffs in the Rx queue. */
  1083. for (i = 0; i < RX_RING_SIZE; i++) {
  1084. rxdesc = &mdp->rx_ring[i];
  1085. rxdesc->status = 0;
  1086. rxdesc->addr = 0xBADF00D0;
  1087. if (mdp->rx_skbuff[i])
  1088. dev_kfree_skb(mdp->rx_skbuff[i]);
  1089. mdp->rx_skbuff[i] = NULL;
  1090. }
  1091. for (i = 0; i < TX_RING_SIZE; i++) {
  1092. if (mdp->tx_skbuff[i])
  1093. dev_kfree_skb(mdp->tx_skbuff[i]);
  1094. mdp->tx_skbuff[i] = NULL;
  1095. }
  1096. /* device init */
  1097. sh_eth_dev_init(ndev);
  1098. /* timer on */
  1099. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1100. add_timer(&mdp->timer);
  1101. }
  1102. /* Packet transmit function */
  1103. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1104. {
  1105. struct sh_eth_private *mdp = netdev_priv(ndev);
  1106. struct sh_eth_txdesc *txdesc;
  1107. u32 entry;
  1108. unsigned long flags;
  1109. spin_lock_irqsave(&mdp->lock, flags);
  1110. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  1111. if (!sh_eth_txfree(ndev)) {
  1112. if (netif_msg_tx_queued(mdp))
  1113. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1114. netif_stop_queue(ndev);
  1115. spin_unlock_irqrestore(&mdp->lock, flags);
  1116. return NETDEV_TX_BUSY;
  1117. }
  1118. }
  1119. spin_unlock_irqrestore(&mdp->lock, flags);
  1120. entry = mdp->cur_tx % TX_RING_SIZE;
  1121. mdp->tx_skbuff[entry] = skb;
  1122. txdesc = &mdp->tx_ring[entry];
  1123. txdesc->addr = virt_to_phys(skb->data);
  1124. /* soft swap. */
  1125. if (!mdp->cd->hw_swap)
  1126. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1127. skb->len + 2);
  1128. /* write back */
  1129. __flush_purge_region(skb->data, skb->len);
  1130. if (skb->len < ETHERSMALL)
  1131. txdesc->buffer_length = ETHERSMALL;
  1132. else
  1133. txdesc->buffer_length = skb->len;
  1134. if (entry >= TX_RING_SIZE - 1)
  1135. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1136. else
  1137. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1138. mdp->cur_tx++;
  1139. if (!(sh_eth_read(ndev, EDTRR) & EDTRR_TRNS))
  1140. sh_eth_write(ndev, EDTRR_TRNS, EDTRR);
  1141. return NETDEV_TX_OK;
  1142. }
  1143. /* device close function */
  1144. static int sh_eth_close(struct net_device *ndev)
  1145. {
  1146. struct sh_eth_private *mdp = netdev_priv(ndev);
  1147. int ringsize;
  1148. netif_stop_queue(ndev);
  1149. /* Disable interrupts by clearing the interrupt mask. */
  1150. sh_eth_write(ndev, 0x0000, EESIPR);
  1151. /* Stop the chip's Tx and Rx processes. */
  1152. sh_eth_write(ndev, 0, EDTRR);
  1153. sh_eth_write(ndev, 0, EDRRR);
  1154. /* PHY Disconnect */
  1155. if (mdp->phydev) {
  1156. phy_stop(mdp->phydev);
  1157. phy_disconnect(mdp->phydev);
  1158. }
  1159. free_irq(ndev->irq, ndev);
  1160. del_timer_sync(&mdp->timer);
  1161. /* Free all the skbuffs in the Rx queue. */
  1162. sh_eth_ring_free(ndev);
  1163. /* free DMA buffer */
  1164. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  1165. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  1166. /* free DMA buffer */
  1167. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  1168. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  1169. pm_runtime_put_sync(&mdp->pdev->dev);
  1170. return 0;
  1171. }
  1172. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1173. {
  1174. struct sh_eth_private *mdp = netdev_priv(ndev);
  1175. pm_runtime_get_sync(&mdp->pdev->dev);
  1176. mdp->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1177. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1178. mdp->stats.collisions += sh_eth_read(ndev, CDCR);
  1179. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1180. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1181. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1182. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  1183. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);/* CERCR */
  1184. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1185. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);/* CEECR */
  1186. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1187. #else
  1188. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1189. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1190. #endif
  1191. pm_runtime_put_sync(&mdp->pdev->dev);
  1192. return &mdp->stats;
  1193. }
  1194. /* ioctl to device funciotn*/
  1195. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1196. int cmd)
  1197. {
  1198. struct sh_eth_private *mdp = netdev_priv(ndev);
  1199. struct phy_device *phydev = mdp->phydev;
  1200. if (!netif_running(ndev))
  1201. return -EINVAL;
  1202. if (!phydev)
  1203. return -ENODEV;
  1204. return phy_mii_ioctl(phydev, rq, cmd);
  1205. }
  1206. #if defined(SH_ETH_HAS_TSU)
  1207. /* Multicast reception directions set */
  1208. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1209. {
  1210. if (ndev->flags & IFF_PROMISC) {
  1211. /* Set promiscuous. */
  1212. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_MCT) |
  1213. ECMR_PRM, ECMR);
  1214. } else {
  1215. /* Normal, unicast/broadcast-only mode. */
  1216. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) |
  1217. ECMR_MCT, ECMR);
  1218. }
  1219. }
  1220. /* SuperH's TSU register init function */
  1221. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1222. {
  1223. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1224. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1225. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1226. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1227. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1228. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1229. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1230. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1231. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1232. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1233. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  1234. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1235. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1236. #else
  1237. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1238. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1239. #endif
  1240. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1241. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1242. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1243. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1244. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1245. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1246. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1247. }
  1248. #endif /* SH_ETH_HAS_TSU */
  1249. /* MDIO bus release function */
  1250. static int sh_mdio_release(struct net_device *ndev)
  1251. {
  1252. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1253. /* unregister mdio bus */
  1254. mdiobus_unregister(bus);
  1255. /* remove mdio bus info from net_device */
  1256. dev_set_drvdata(&ndev->dev, NULL);
  1257. /* free interrupts memory */
  1258. kfree(bus->irq);
  1259. /* free bitbang info */
  1260. free_mdio_bitbang(bus);
  1261. return 0;
  1262. }
  1263. /* MDIO bus init function */
  1264. static int sh_mdio_init(struct net_device *ndev, int id)
  1265. {
  1266. int ret, i;
  1267. struct bb_info *bitbang;
  1268. struct sh_eth_private *mdp = netdev_priv(ndev);
  1269. /* create bit control struct for PHY */
  1270. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1271. if (!bitbang) {
  1272. ret = -ENOMEM;
  1273. goto out;
  1274. }
  1275. /* bitbang init */
  1276. bitbang->addr = ndev->base_addr + mdp->reg_offset[PIR];
  1277. bitbang->mdi_msk = 0x08;
  1278. bitbang->mdo_msk = 0x04;
  1279. bitbang->mmd_msk = 0x02;/* MMD */
  1280. bitbang->mdc_msk = 0x01;
  1281. bitbang->ctrl.ops = &bb_ops;
  1282. /* MII controller setting */
  1283. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1284. if (!mdp->mii_bus) {
  1285. ret = -ENOMEM;
  1286. goto out_free_bitbang;
  1287. }
  1288. /* Hook up MII support for ethtool */
  1289. mdp->mii_bus->name = "sh_mii";
  1290. mdp->mii_bus->parent = &ndev->dev;
  1291. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
  1292. /* PHY IRQ */
  1293. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1294. if (!mdp->mii_bus->irq) {
  1295. ret = -ENOMEM;
  1296. goto out_free_bus;
  1297. }
  1298. for (i = 0; i < PHY_MAX_ADDR; i++)
  1299. mdp->mii_bus->irq[i] = PHY_POLL;
  1300. /* regist mdio bus */
  1301. ret = mdiobus_register(mdp->mii_bus);
  1302. if (ret)
  1303. goto out_free_irq;
  1304. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1305. return 0;
  1306. out_free_irq:
  1307. kfree(mdp->mii_bus->irq);
  1308. out_free_bus:
  1309. free_mdio_bitbang(mdp->mii_bus);
  1310. out_free_bitbang:
  1311. kfree(bitbang);
  1312. out:
  1313. return ret;
  1314. }
  1315. static const u16 *sh_eth_get_register_offset(int register_type)
  1316. {
  1317. const u16 *reg_offset = NULL;
  1318. switch (register_type) {
  1319. case SH_ETH_REG_GIGABIT:
  1320. reg_offset = sh_eth_offset_gigabit;
  1321. break;
  1322. case SH_ETH_REG_FAST_SH4:
  1323. reg_offset = sh_eth_offset_fast_sh4;
  1324. break;
  1325. case SH_ETH_REG_FAST_SH3_SH2:
  1326. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1327. break;
  1328. default:
  1329. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1330. break;
  1331. }
  1332. return reg_offset;
  1333. }
  1334. static const struct net_device_ops sh_eth_netdev_ops = {
  1335. .ndo_open = sh_eth_open,
  1336. .ndo_stop = sh_eth_close,
  1337. .ndo_start_xmit = sh_eth_start_xmit,
  1338. .ndo_get_stats = sh_eth_get_stats,
  1339. #if defined(SH_ETH_HAS_TSU)
  1340. .ndo_set_multicast_list = sh_eth_set_multicast_list,
  1341. #endif
  1342. .ndo_tx_timeout = sh_eth_tx_timeout,
  1343. .ndo_do_ioctl = sh_eth_do_ioctl,
  1344. .ndo_validate_addr = eth_validate_addr,
  1345. .ndo_set_mac_address = eth_mac_addr,
  1346. .ndo_change_mtu = eth_change_mtu,
  1347. };
  1348. static int sh_eth_drv_probe(struct platform_device *pdev)
  1349. {
  1350. int ret, devno = 0;
  1351. struct resource *res;
  1352. struct net_device *ndev = NULL;
  1353. struct sh_eth_private *mdp;
  1354. struct sh_eth_plat_data *pd;
  1355. /* get base addr */
  1356. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1357. if (unlikely(res == NULL)) {
  1358. dev_err(&pdev->dev, "invalid resource\n");
  1359. ret = -EINVAL;
  1360. goto out;
  1361. }
  1362. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1363. if (!ndev) {
  1364. dev_err(&pdev->dev, "Could not allocate device.\n");
  1365. ret = -ENOMEM;
  1366. goto out;
  1367. }
  1368. /* The sh Ether-specific entries in the device structure. */
  1369. ndev->base_addr = res->start;
  1370. devno = pdev->id;
  1371. if (devno < 0)
  1372. devno = 0;
  1373. ndev->dma = -1;
  1374. ret = platform_get_irq(pdev, 0);
  1375. if (ret < 0) {
  1376. ret = -ENODEV;
  1377. goto out_release;
  1378. }
  1379. ndev->irq = ret;
  1380. SET_NETDEV_DEV(ndev, &pdev->dev);
  1381. /* Fill in the fields of the device structure with ethernet values. */
  1382. ether_setup(ndev);
  1383. mdp = netdev_priv(ndev);
  1384. spin_lock_init(&mdp->lock);
  1385. mdp->pdev = pdev;
  1386. pm_runtime_enable(&pdev->dev);
  1387. pm_runtime_resume(&pdev->dev);
  1388. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1389. /* get PHY ID */
  1390. mdp->phy_id = pd->phy;
  1391. /* EDMAC endian */
  1392. mdp->edmac_endian = pd->edmac_endian;
  1393. mdp->no_ether_link = pd->no_ether_link;
  1394. mdp->ether_link_active_low = pd->ether_link_active_low;
  1395. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  1396. /* set cpu data */
  1397. mdp->cd = &sh_eth_my_cpu_data;
  1398. sh_eth_set_default_cpu_data(mdp->cd);
  1399. /* set function */
  1400. ndev->netdev_ops = &sh_eth_netdev_ops;
  1401. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  1402. ndev->watchdog_timeo = TX_TIMEOUT;
  1403. /* debug message level */
  1404. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  1405. mdp->post_rx = POST_RX >> (devno << 1);
  1406. mdp->post_fw = POST_FW >> (devno << 1);
  1407. /* read and set MAC address */
  1408. read_mac_address(ndev, pd->mac_addr);
  1409. /* First device only init */
  1410. if (!devno) {
  1411. if (mdp->cd->chip_reset)
  1412. mdp->cd->chip_reset(ndev);
  1413. #if defined(SH_ETH_HAS_TSU)
  1414. /* TSU init (Init only)*/
  1415. mdp->tsu_addr = SH_TSU_ADDR;
  1416. sh_eth_tsu_init(mdp);
  1417. #endif
  1418. }
  1419. /* network device register */
  1420. ret = register_netdev(ndev);
  1421. if (ret)
  1422. goto out_release;
  1423. /* mdio bus init */
  1424. ret = sh_mdio_init(ndev, pdev->id);
  1425. if (ret)
  1426. goto out_unregister;
  1427. /* print device infomation */
  1428. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  1429. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1430. platform_set_drvdata(pdev, ndev);
  1431. return ret;
  1432. out_unregister:
  1433. unregister_netdev(ndev);
  1434. out_release:
  1435. /* net_dev free */
  1436. if (ndev)
  1437. free_netdev(ndev);
  1438. out:
  1439. return ret;
  1440. }
  1441. static int sh_eth_drv_remove(struct platform_device *pdev)
  1442. {
  1443. struct net_device *ndev = platform_get_drvdata(pdev);
  1444. sh_mdio_release(ndev);
  1445. unregister_netdev(ndev);
  1446. pm_runtime_disable(&pdev->dev);
  1447. free_netdev(ndev);
  1448. platform_set_drvdata(pdev, NULL);
  1449. return 0;
  1450. }
  1451. static int sh_eth_runtime_nop(struct device *dev)
  1452. {
  1453. /*
  1454. * Runtime PM callback shared between ->runtime_suspend()
  1455. * and ->runtime_resume(). Simply returns success.
  1456. *
  1457. * This driver re-initializes all registers after
  1458. * pm_runtime_get_sync() anyway so there is no need
  1459. * to save and restore registers here.
  1460. */
  1461. return 0;
  1462. }
  1463. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  1464. .runtime_suspend = sh_eth_runtime_nop,
  1465. .runtime_resume = sh_eth_runtime_nop,
  1466. };
  1467. static struct platform_driver sh_eth_driver = {
  1468. .probe = sh_eth_drv_probe,
  1469. .remove = sh_eth_drv_remove,
  1470. .driver = {
  1471. .name = CARDNAME,
  1472. .pm = &sh_eth_dev_pm_ops,
  1473. },
  1474. };
  1475. static int __init sh_eth_init(void)
  1476. {
  1477. return platform_driver_register(&sh_eth_driver);
  1478. }
  1479. static void __exit sh_eth_cleanup(void)
  1480. {
  1481. platform_driver_unregister(&sh_eth_driver);
  1482. }
  1483. module_init(sh_eth_init);
  1484. module_exit(sh_eth_cleanup);
  1485. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1486. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1487. MODULE_LICENSE("GPL v2");