ll_rw_blk.c 91 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643
  1. /*
  2. * linux/drivers/block/ll_rw_blk.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  6. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  7. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  8. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  9. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10. */
  11. /*
  12. * This handles all read/write requests to block devices
  13. */
  14. #include <linux/config.h>
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/bio.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/highmem.h>
  21. #include <linux/mm.h>
  22. #include <linux/kernel_stat.h>
  23. #include <linux/string.h>
  24. #include <linux/init.h>
  25. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  26. #include <linux/completion.h>
  27. #include <linux/slab.h>
  28. #include <linux/swap.h>
  29. #include <linux/writeback.h>
  30. /*
  31. * for max sense size
  32. */
  33. #include <scsi/scsi_cmnd.h>
  34. static void blk_unplug_work(void *data);
  35. static void blk_unplug_timeout(unsigned long data);
  36. /*
  37. * For the allocated request tables
  38. */
  39. static kmem_cache_t *request_cachep;
  40. /*
  41. * For queue allocation
  42. */
  43. static kmem_cache_t *requestq_cachep;
  44. /*
  45. * For io context allocations
  46. */
  47. static kmem_cache_t *iocontext_cachep;
  48. static wait_queue_head_t congestion_wqh[2] = {
  49. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  50. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  51. };
  52. /*
  53. * Controlling structure to kblockd
  54. */
  55. static struct workqueue_struct *kblockd_workqueue;
  56. unsigned long blk_max_low_pfn, blk_max_pfn;
  57. EXPORT_SYMBOL(blk_max_low_pfn);
  58. EXPORT_SYMBOL(blk_max_pfn);
  59. /* Amount of time in which a process may batch requests */
  60. #define BLK_BATCH_TIME (HZ/50UL)
  61. /* Number of requests a "batching" process may submit */
  62. #define BLK_BATCH_REQ 32
  63. /*
  64. * Return the threshold (number of used requests) at which the queue is
  65. * considered to be congested. It include a little hysteresis to keep the
  66. * context switch rate down.
  67. */
  68. static inline int queue_congestion_on_threshold(struct request_queue *q)
  69. {
  70. return q->nr_congestion_on;
  71. }
  72. /*
  73. * The threshold at which a queue is considered to be uncongested
  74. */
  75. static inline int queue_congestion_off_threshold(struct request_queue *q)
  76. {
  77. return q->nr_congestion_off;
  78. }
  79. static void blk_queue_congestion_threshold(struct request_queue *q)
  80. {
  81. int nr;
  82. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  83. if (nr > q->nr_requests)
  84. nr = q->nr_requests;
  85. q->nr_congestion_on = nr;
  86. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  87. if (nr < 1)
  88. nr = 1;
  89. q->nr_congestion_off = nr;
  90. }
  91. /*
  92. * A queue has just exitted congestion. Note this in the global counter of
  93. * congested queues, and wake up anyone who was waiting for requests to be
  94. * put back.
  95. */
  96. static void clear_queue_congested(request_queue_t *q, int rw)
  97. {
  98. enum bdi_state bit;
  99. wait_queue_head_t *wqh = &congestion_wqh[rw];
  100. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  101. clear_bit(bit, &q->backing_dev_info.state);
  102. smp_mb__after_clear_bit();
  103. if (waitqueue_active(wqh))
  104. wake_up(wqh);
  105. }
  106. /*
  107. * A queue has just entered congestion. Flag that in the queue's VM-visible
  108. * state flags and increment the global gounter of congested queues.
  109. */
  110. static void set_queue_congested(request_queue_t *q, int rw)
  111. {
  112. enum bdi_state bit;
  113. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  114. set_bit(bit, &q->backing_dev_info.state);
  115. }
  116. /**
  117. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  118. * @bdev: device
  119. *
  120. * Locates the passed device's request queue and returns the address of its
  121. * backing_dev_info
  122. *
  123. * Will return NULL if the request queue cannot be located.
  124. */
  125. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  126. {
  127. struct backing_dev_info *ret = NULL;
  128. request_queue_t *q = bdev_get_queue(bdev);
  129. if (q)
  130. ret = &q->backing_dev_info;
  131. return ret;
  132. }
  133. EXPORT_SYMBOL(blk_get_backing_dev_info);
  134. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  135. {
  136. q->activity_fn = fn;
  137. q->activity_data = data;
  138. }
  139. EXPORT_SYMBOL(blk_queue_activity_fn);
  140. /**
  141. * blk_queue_prep_rq - set a prepare_request function for queue
  142. * @q: queue
  143. * @pfn: prepare_request function
  144. *
  145. * It's possible for a queue to register a prepare_request callback which
  146. * is invoked before the request is handed to the request_fn. The goal of
  147. * the function is to prepare a request for I/O, it can be used to build a
  148. * cdb from the request data for instance.
  149. *
  150. */
  151. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  152. {
  153. q->prep_rq_fn = pfn;
  154. }
  155. EXPORT_SYMBOL(blk_queue_prep_rq);
  156. /**
  157. * blk_queue_merge_bvec - set a merge_bvec function for queue
  158. * @q: queue
  159. * @mbfn: merge_bvec_fn
  160. *
  161. * Usually queues have static limitations on the max sectors or segments that
  162. * we can put in a request. Stacking drivers may have some settings that
  163. * are dynamic, and thus we have to query the queue whether it is ok to
  164. * add a new bio_vec to a bio at a given offset or not. If the block device
  165. * has such limitations, it needs to register a merge_bvec_fn to control
  166. * the size of bio's sent to it. Note that a block device *must* allow a
  167. * single page to be added to an empty bio. The block device driver may want
  168. * to use the bio_split() function to deal with these bio's. By default
  169. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  170. * honored.
  171. */
  172. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  173. {
  174. q->merge_bvec_fn = mbfn;
  175. }
  176. EXPORT_SYMBOL(blk_queue_merge_bvec);
  177. /**
  178. * blk_queue_make_request - define an alternate make_request function for a device
  179. * @q: the request queue for the device to be affected
  180. * @mfn: the alternate make_request function
  181. *
  182. * Description:
  183. * The normal way for &struct bios to be passed to a device
  184. * driver is for them to be collected into requests on a request
  185. * queue, and then to allow the device driver to select requests
  186. * off that queue when it is ready. This works well for many block
  187. * devices. However some block devices (typically virtual devices
  188. * such as md or lvm) do not benefit from the processing on the
  189. * request queue, and are served best by having the requests passed
  190. * directly to them. This can be achieved by providing a function
  191. * to blk_queue_make_request().
  192. *
  193. * Caveat:
  194. * The driver that does this *must* be able to deal appropriately
  195. * with buffers in "highmemory". This can be accomplished by either calling
  196. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  197. * blk_queue_bounce() to create a buffer in normal memory.
  198. **/
  199. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  200. {
  201. /*
  202. * set defaults
  203. */
  204. q->nr_requests = BLKDEV_MAX_RQ;
  205. q->max_phys_segments = MAX_PHYS_SEGMENTS;
  206. q->max_hw_segments = MAX_HW_SEGMENTS;
  207. q->make_request_fn = mfn;
  208. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  209. q->backing_dev_info.state = 0;
  210. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  211. blk_queue_max_sectors(q, MAX_SECTORS);
  212. blk_queue_hardsect_size(q, 512);
  213. blk_queue_dma_alignment(q, 511);
  214. blk_queue_congestion_threshold(q);
  215. q->nr_batching = BLK_BATCH_REQ;
  216. q->unplug_thresh = 4; /* hmm */
  217. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  218. if (q->unplug_delay == 0)
  219. q->unplug_delay = 1;
  220. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  221. q->unplug_timer.function = blk_unplug_timeout;
  222. q->unplug_timer.data = (unsigned long)q;
  223. /*
  224. * by default assume old behaviour and bounce for any highmem page
  225. */
  226. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  227. blk_queue_activity_fn(q, NULL, NULL);
  228. INIT_LIST_HEAD(&q->drain_list);
  229. }
  230. EXPORT_SYMBOL(blk_queue_make_request);
  231. static inline void rq_init(request_queue_t *q, struct request *rq)
  232. {
  233. INIT_LIST_HEAD(&rq->queuelist);
  234. rq->errors = 0;
  235. rq->rq_status = RQ_ACTIVE;
  236. rq->bio = rq->biotail = NULL;
  237. rq->buffer = NULL;
  238. rq->ref_count = 1;
  239. rq->q = q;
  240. rq->waiting = NULL;
  241. rq->special = NULL;
  242. rq->data_len = 0;
  243. rq->data = NULL;
  244. rq->sense = NULL;
  245. rq->end_io = NULL;
  246. rq->end_io_data = NULL;
  247. }
  248. /**
  249. * blk_queue_ordered - does this queue support ordered writes
  250. * @q: the request queue
  251. * @flag: see below
  252. *
  253. * Description:
  254. * For journalled file systems, doing ordered writes on a commit
  255. * block instead of explicitly doing wait_on_buffer (which is bad
  256. * for performance) can be a big win. Block drivers supporting this
  257. * feature should call this function and indicate so.
  258. *
  259. **/
  260. void blk_queue_ordered(request_queue_t *q, int flag)
  261. {
  262. switch (flag) {
  263. case QUEUE_ORDERED_NONE:
  264. if (q->flush_rq)
  265. kmem_cache_free(request_cachep, q->flush_rq);
  266. q->flush_rq = NULL;
  267. q->ordered = flag;
  268. break;
  269. case QUEUE_ORDERED_TAG:
  270. q->ordered = flag;
  271. break;
  272. case QUEUE_ORDERED_FLUSH:
  273. q->ordered = flag;
  274. if (!q->flush_rq)
  275. q->flush_rq = kmem_cache_alloc(request_cachep,
  276. GFP_KERNEL);
  277. break;
  278. default:
  279. printk("blk_queue_ordered: bad value %d\n", flag);
  280. break;
  281. }
  282. }
  283. EXPORT_SYMBOL(blk_queue_ordered);
  284. /**
  285. * blk_queue_issue_flush_fn - set function for issuing a flush
  286. * @q: the request queue
  287. * @iff: the function to be called issuing the flush
  288. *
  289. * Description:
  290. * If a driver supports issuing a flush command, the support is notified
  291. * to the block layer by defining it through this call.
  292. *
  293. **/
  294. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  295. {
  296. q->issue_flush_fn = iff;
  297. }
  298. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  299. /*
  300. * Cache flushing for ordered writes handling
  301. */
  302. static void blk_pre_flush_end_io(struct request *flush_rq)
  303. {
  304. struct request *rq = flush_rq->end_io_data;
  305. request_queue_t *q = rq->q;
  306. rq->flags |= REQ_BAR_PREFLUSH;
  307. if (!flush_rq->errors)
  308. elv_requeue_request(q, rq);
  309. else {
  310. q->end_flush_fn(q, flush_rq);
  311. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  312. q->request_fn(q);
  313. }
  314. }
  315. static void blk_post_flush_end_io(struct request *flush_rq)
  316. {
  317. struct request *rq = flush_rq->end_io_data;
  318. request_queue_t *q = rq->q;
  319. rq->flags |= REQ_BAR_POSTFLUSH;
  320. q->end_flush_fn(q, flush_rq);
  321. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  322. q->request_fn(q);
  323. }
  324. struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
  325. {
  326. struct request *flush_rq = q->flush_rq;
  327. BUG_ON(!blk_barrier_rq(rq));
  328. if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
  329. return NULL;
  330. rq_init(q, flush_rq);
  331. flush_rq->elevator_private = NULL;
  332. flush_rq->flags = REQ_BAR_FLUSH;
  333. flush_rq->rq_disk = rq->rq_disk;
  334. flush_rq->rl = NULL;
  335. /*
  336. * prepare_flush returns 0 if no flush is needed, just mark both
  337. * pre and post flush as done in that case
  338. */
  339. if (!q->prepare_flush_fn(q, flush_rq)) {
  340. rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
  341. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  342. return rq;
  343. }
  344. /*
  345. * some drivers dequeue requests right away, some only after io
  346. * completion. make sure the request is dequeued.
  347. */
  348. if (!list_empty(&rq->queuelist))
  349. blkdev_dequeue_request(rq);
  350. elv_deactivate_request(q, rq);
  351. flush_rq->end_io_data = rq;
  352. flush_rq->end_io = blk_pre_flush_end_io;
  353. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  354. return flush_rq;
  355. }
  356. static void blk_start_post_flush(request_queue_t *q, struct request *rq)
  357. {
  358. struct request *flush_rq = q->flush_rq;
  359. BUG_ON(!blk_barrier_rq(rq));
  360. rq_init(q, flush_rq);
  361. flush_rq->elevator_private = NULL;
  362. flush_rq->flags = REQ_BAR_FLUSH;
  363. flush_rq->rq_disk = rq->rq_disk;
  364. flush_rq->rl = NULL;
  365. if (q->prepare_flush_fn(q, flush_rq)) {
  366. flush_rq->end_io_data = rq;
  367. flush_rq->end_io = blk_post_flush_end_io;
  368. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  369. q->request_fn(q);
  370. }
  371. }
  372. static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
  373. int sectors)
  374. {
  375. if (sectors > rq->nr_sectors)
  376. sectors = rq->nr_sectors;
  377. rq->nr_sectors -= sectors;
  378. return rq->nr_sectors;
  379. }
  380. static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
  381. int sectors, int queue_locked)
  382. {
  383. if (q->ordered != QUEUE_ORDERED_FLUSH)
  384. return 0;
  385. if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
  386. return 0;
  387. if (blk_barrier_postflush(rq))
  388. return 0;
  389. if (!blk_check_end_barrier(q, rq, sectors)) {
  390. unsigned long flags = 0;
  391. if (!queue_locked)
  392. spin_lock_irqsave(q->queue_lock, flags);
  393. blk_start_post_flush(q, rq);
  394. if (!queue_locked)
  395. spin_unlock_irqrestore(q->queue_lock, flags);
  396. }
  397. return 1;
  398. }
  399. /**
  400. * blk_complete_barrier_rq - complete possible barrier request
  401. * @q: the request queue for the device
  402. * @rq: the request
  403. * @sectors: number of sectors to complete
  404. *
  405. * Description:
  406. * Used in driver end_io handling to determine whether to postpone
  407. * completion of a barrier request until a post flush has been done. This
  408. * is the unlocked variant, used if the caller doesn't already hold the
  409. * queue lock.
  410. **/
  411. int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
  412. {
  413. return __blk_complete_barrier_rq(q, rq, sectors, 0);
  414. }
  415. EXPORT_SYMBOL(blk_complete_barrier_rq);
  416. /**
  417. * blk_complete_barrier_rq_locked - complete possible barrier request
  418. * @q: the request queue for the device
  419. * @rq: the request
  420. * @sectors: number of sectors to complete
  421. *
  422. * Description:
  423. * See blk_complete_barrier_rq(). This variant must be used if the caller
  424. * holds the queue lock.
  425. **/
  426. int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
  427. int sectors)
  428. {
  429. return __blk_complete_barrier_rq(q, rq, sectors, 1);
  430. }
  431. EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
  432. /**
  433. * blk_queue_bounce_limit - set bounce buffer limit for queue
  434. * @q: the request queue for the device
  435. * @dma_addr: bus address limit
  436. *
  437. * Description:
  438. * Different hardware can have different requirements as to what pages
  439. * it can do I/O directly to. A low level driver can call
  440. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  441. * buffers for doing I/O to pages residing above @page. By default
  442. * the block layer sets this to the highest numbered "low" memory page.
  443. **/
  444. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  445. {
  446. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  447. /*
  448. * set appropriate bounce gfp mask -- unfortunately we don't have a
  449. * full 4GB zone, so we have to resort to low memory for any bounces.
  450. * ISA has its own < 16MB zone.
  451. */
  452. if (bounce_pfn < blk_max_low_pfn) {
  453. BUG_ON(dma_addr < BLK_BOUNCE_ISA);
  454. init_emergency_isa_pool();
  455. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  456. } else
  457. q->bounce_gfp = GFP_NOIO;
  458. q->bounce_pfn = bounce_pfn;
  459. }
  460. EXPORT_SYMBOL(blk_queue_bounce_limit);
  461. /**
  462. * blk_queue_max_sectors - set max sectors for a request for this queue
  463. * @q: the request queue for the device
  464. * @max_sectors: max sectors in the usual 512b unit
  465. *
  466. * Description:
  467. * Enables a low level driver to set an upper limit on the size of
  468. * received requests.
  469. **/
  470. void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
  471. {
  472. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  473. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  474. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  475. }
  476. q->max_sectors = q->max_hw_sectors = max_sectors;
  477. }
  478. EXPORT_SYMBOL(blk_queue_max_sectors);
  479. /**
  480. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  481. * @q: the request queue for the device
  482. * @max_segments: max number of segments
  483. *
  484. * Description:
  485. * Enables a low level driver to set an upper limit on the number of
  486. * physical data segments in a request. This would be the largest sized
  487. * scatter list the driver could handle.
  488. **/
  489. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  490. {
  491. if (!max_segments) {
  492. max_segments = 1;
  493. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  494. }
  495. q->max_phys_segments = max_segments;
  496. }
  497. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  498. /**
  499. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  500. * @q: the request queue for the device
  501. * @max_segments: max number of segments
  502. *
  503. * Description:
  504. * Enables a low level driver to set an upper limit on the number of
  505. * hw data segments in a request. This would be the largest number of
  506. * address/length pairs the host adapter can actually give as once
  507. * to the device.
  508. **/
  509. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  510. {
  511. if (!max_segments) {
  512. max_segments = 1;
  513. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  514. }
  515. q->max_hw_segments = max_segments;
  516. }
  517. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  518. /**
  519. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  520. * @q: the request queue for the device
  521. * @max_size: max size of segment in bytes
  522. *
  523. * Description:
  524. * Enables a low level driver to set an upper limit on the size of a
  525. * coalesced segment
  526. **/
  527. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  528. {
  529. if (max_size < PAGE_CACHE_SIZE) {
  530. max_size = PAGE_CACHE_SIZE;
  531. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  532. }
  533. q->max_segment_size = max_size;
  534. }
  535. EXPORT_SYMBOL(blk_queue_max_segment_size);
  536. /**
  537. * blk_queue_hardsect_size - set hardware sector size for the queue
  538. * @q: the request queue for the device
  539. * @size: the hardware sector size, in bytes
  540. *
  541. * Description:
  542. * This should typically be set to the lowest possible sector size
  543. * that the hardware can operate on (possible without reverting to
  544. * even internal read-modify-write operations). Usually the default
  545. * of 512 covers most hardware.
  546. **/
  547. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  548. {
  549. q->hardsect_size = size;
  550. }
  551. EXPORT_SYMBOL(blk_queue_hardsect_size);
  552. /*
  553. * Returns the minimum that is _not_ zero, unless both are zero.
  554. */
  555. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  556. /**
  557. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  558. * @t: the stacking driver (top)
  559. * @b: the underlying device (bottom)
  560. **/
  561. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  562. {
  563. /* zero is "infinity" */
  564. t->max_sectors = t->max_hw_sectors =
  565. min_not_zero(t->max_sectors,b->max_sectors);
  566. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  567. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  568. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  569. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  570. }
  571. EXPORT_SYMBOL(blk_queue_stack_limits);
  572. /**
  573. * blk_queue_segment_boundary - set boundary rules for segment merging
  574. * @q: the request queue for the device
  575. * @mask: the memory boundary mask
  576. **/
  577. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  578. {
  579. if (mask < PAGE_CACHE_SIZE - 1) {
  580. mask = PAGE_CACHE_SIZE - 1;
  581. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  582. }
  583. q->seg_boundary_mask = mask;
  584. }
  585. EXPORT_SYMBOL(blk_queue_segment_boundary);
  586. /**
  587. * blk_queue_dma_alignment - set dma length and memory alignment
  588. * @q: the request queue for the device
  589. * @mask: alignment mask
  590. *
  591. * description:
  592. * set required memory and length aligment for direct dma transactions.
  593. * this is used when buiding direct io requests for the queue.
  594. *
  595. **/
  596. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  597. {
  598. q->dma_alignment = mask;
  599. }
  600. EXPORT_SYMBOL(blk_queue_dma_alignment);
  601. /**
  602. * blk_queue_find_tag - find a request by its tag and queue
  603. *
  604. * @q: The request queue for the device
  605. * @tag: The tag of the request
  606. *
  607. * Notes:
  608. * Should be used when a device returns a tag and you want to match
  609. * it with a request.
  610. *
  611. * no locks need be held.
  612. **/
  613. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  614. {
  615. struct blk_queue_tag *bqt = q->queue_tags;
  616. if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
  617. return NULL;
  618. return bqt->tag_index[tag];
  619. }
  620. EXPORT_SYMBOL(blk_queue_find_tag);
  621. /**
  622. * __blk_queue_free_tags - release tag maintenance info
  623. * @q: the request queue for the device
  624. *
  625. * Notes:
  626. * blk_cleanup_queue() will take care of calling this function, if tagging
  627. * has been used. So there's no need to call this directly.
  628. **/
  629. static void __blk_queue_free_tags(request_queue_t *q)
  630. {
  631. struct blk_queue_tag *bqt = q->queue_tags;
  632. if (!bqt)
  633. return;
  634. if (atomic_dec_and_test(&bqt->refcnt)) {
  635. BUG_ON(bqt->busy);
  636. BUG_ON(!list_empty(&bqt->busy_list));
  637. kfree(bqt->tag_index);
  638. bqt->tag_index = NULL;
  639. kfree(bqt->tag_map);
  640. bqt->tag_map = NULL;
  641. kfree(bqt);
  642. }
  643. q->queue_tags = NULL;
  644. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  645. }
  646. /**
  647. * blk_queue_free_tags - release tag maintenance info
  648. * @q: the request queue for the device
  649. *
  650. * Notes:
  651. * This is used to disabled tagged queuing to a device, yet leave
  652. * queue in function.
  653. **/
  654. void blk_queue_free_tags(request_queue_t *q)
  655. {
  656. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  657. }
  658. EXPORT_SYMBOL(blk_queue_free_tags);
  659. static int
  660. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  661. {
  662. int bits, i;
  663. struct request **tag_index;
  664. unsigned long *tag_map;
  665. if (depth > q->nr_requests * 2) {
  666. depth = q->nr_requests * 2;
  667. printk(KERN_ERR "%s: adjusted depth to %d\n",
  668. __FUNCTION__, depth);
  669. }
  670. tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  671. if (!tag_index)
  672. goto fail;
  673. bits = (depth / BLK_TAGS_PER_LONG) + 1;
  674. tag_map = kmalloc(bits * sizeof(unsigned long), GFP_ATOMIC);
  675. if (!tag_map)
  676. goto fail;
  677. memset(tag_index, 0, depth * sizeof(struct request *));
  678. memset(tag_map, 0, bits * sizeof(unsigned long));
  679. tags->max_depth = depth;
  680. tags->real_max_depth = bits * BITS_PER_LONG;
  681. tags->tag_index = tag_index;
  682. tags->tag_map = tag_map;
  683. /*
  684. * set the upper bits if the depth isn't a multiple of the word size
  685. */
  686. for (i = depth; i < bits * BLK_TAGS_PER_LONG; i++)
  687. __set_bit(i, tag_map);
  688. return 0;
  689. fail:
  690. kfree(tag_index);
  691. return -ENOMEM;
  692. }
  693. /**
  694. * blk_queue_init_tags - initialize the queue tag info
  695. * @q: the request queue for the device
  696. * @depth: the maximum queue depth supported
  697. * @tags: the tag to use
  698. **/
  699. int blk_queue_init_tags(request_queue_t *q, int depth,
  700. struct blk_queue_tag *tags)
  701. {
  702. int rc;
  703. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  704. if (!tags && !q->queue_tags) {
  705. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  706. if (!tags)
  707. goto fail;
  708. if (init_tag_map(q, tags, depth))
  709. goto fail;
  710. INIT_LIST_HEAD(&tags->busy_list);
  711. tags->busy = 0;
  712. atomic_set(&tags->refcnt, 1);
  713. } else if (q->queue_tags) {
  714. if ((rc = blk_queue_resize_tags(q, depth)))
  715. return rc;
  716. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  717. return 0;
  718. } else
  719. atomic_inc(&tags->refcnt);
  720. /*
  721. * assign it, all done
  722. */
  723. q->queue_tags = tags;
  724. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  725. return 0;
  726. fail:
  727. kfree(tags);
  728. return -ENOMEM;
  729. }
  730. EXPORT_SYMBOL(blk_queue_init_tags);
  731. /**
  732. * blk_queue_resize_tags - change the queueing depth
  733. * @q: the request queue for the device
  734. * @new_depth: the new max command queueing depth
  735. *
  736. * Notes:
  737. * Must be called with the queue lock held.
  738. **/
  739. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  740. {
  741. struct blk_queue_tag *bqt = q->queue_tags;
  742. struct request **tag_index;
  743. unsigned long *tag_map;
  744. int bits, max_depth;
  745. if (!bqt)
  746. return -ENXIO;
  747. /*
  748. * don't bother sizing down
  749. */
  750. if (new_depth <= bqt->real_max_depth) {
  751. bqt->max_depth = new_depth;
  752. return 0;
  753. }
  754. /*
  755. * save the old state info, so we can copy it back
  756. */
  757. tag_index = bqt->tag_index;
  758. tag_map = bqt->tag_map;
  759. max_depth = bqt->real_max_depth;
  760. if (init_tag_map(q, bqt, new_depth))
  761. return -ENOMEM;
  762. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  763. bits = max_depth / BLK_TAGS_PER_LONG;
  764. memcpy(bqt->tag_map, tag_map, bits * sizeof(unsigned long));
  765. kfree(tag_index);
  766. kfree(tag_map);
  767. return 0;
  768. }
  769. EXPORT_SYMBOL(blk_queue_resize_tags);
  770. /**
  771. * blk_queue_end_tag - end tag operations for a request
  772. * @q: the request queue for the device
  773. * @rq: the request that has completed
  774. *
  775. * Description:
  776. * Typically called when end_that_request_first() returns 0, meaning
  777. * all transfers have been done for a request. It's important to call
  778. * this function before end_that_request_last(), as that will put the
  779. * request back on the free list thus corrupting the internal tag list.
  780. *
  781. * Notes:
  782. * queue lock must be held.
  783. **/
  784. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  785. {
  786. struct blk_queue_tag *bqt = q->queue_tags;
  787. int tag = rq->tag;
  788. BUG_ON(tag == -1);
  789. if (unlikely(tag >= bqt->real_max_depth))
  790. return;
  791. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  792. printk("attempt to clear non-busy tag (%d)\n", tag);
  793. return;
  794. }
  795. list_del_init(&rq->queuelist);
  796. rq->flags &= ~REQ_QUEUED;
  797. rq->tag = -1;
  798. if (unlikely(bqt->tag_index[tag] == NULL))
  799. printk("tag %d is missing\n", tag);
  800. bqt->tag_index[tag] = NULL;
  801. bqt->busy--;
  802. }
  803. EXPORT_SYMBOL(blk_queue_end_tag);
  804. /**
  805. * blk_queue_start_tag - find a free tag and assign it
  806. * @q: the request queue for the device
  807. * @rq: the block request that needs tagging
  808. *
  809. * Description:
  810. * This can either be used as a stand-alone helper, or possibly be
  811. * assigned as the queue &prep_rq_fn (in which case &struct request
  812. * automagically gets a tag assigned). Note that this function
  813. * assumes that any type of request can be queued! if this is not
  814. * true for your device, you must check the request type before
  815. * calling this function. The request will also be removed from
  816. * the request queue, so it's the drivers responsibility to readd
  817. * it if it should need to be restarted for some reason.
  818. *
  819. * Notes:
  820. * queue lock must be held.
  821. **/
  822. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  823. {
  824. struct blk_queue_tag *bqt = q->queue_tags;
  825. unsigned long *map = bqt->tag_map;
  826. int tag = 0;
  827. if (unlikely((rq->flags & REQ_QUEUED))) {
  828. printk(KERN_ERR
  829. "request %p for device [%s] already tagged %d",
  830. rq, rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  831. BUG();
  832. }
  833. for (map = bqt->tag_map; *map == -1UL; map++) {
  834. tag += BLK_TAGS_PER_LONG;
  835. if (tag >= bqt->max_depth)
  836. return 1;
  837. }
  838. tag += ffz(*map);
  839. __set_bit(tag, bqt->tag_map);
  840. rq->flags |= REQ_QUEUED;
  841. rq->tag = tag;
  842. bqt->tag_index[tag] = rq;
  843. blkdev_dequeue_request(rq);
  844. list_add(&rq->queuelist, &bqt->busy_list);
  845. bqt->busy++;
  846. return 0;
  847. }
  848. EXPORT_SYMBOL(blk_queue_start_tag);
  849. /**
  850. * blk_queue_invalidate_tags - invalidate all pending tags
  851. * @q: the request queue for the device
  852. *
  853. * Description:
  854. * Hardware conditions may dictate a need to stop all pending requests.
  855. * In this case, we will safely clear the block side of the tag queue and
  856. * readd all requests to the request queue in the right order.
  857. *
  858. * Notes:
  859. * queue lock must be held.
  860. **/
  861. void blk_queue_invalidate_tags(request_queue_t *q)
  862. {
  863. struct blk_queue_tag *bqt = q->queue_tags;
  864. struct list_head *tmp, *n;
  865. struct request *rq;
  866. list_for_each_safe(tmp, n, &bqt->busy_list) {
  867. rq = list_entry_rq(tmp);
  868. if (rq->tag == -1) {
  869. printk("bad tag found on list\n");
  870. list_del_init(&rq->queuelist);
  871. rq->flags &= ~REQ_QUEUED;
  872. } else
  873. blk_queue_end_tag(q, rq);
  874. rq->flags &= ~REQ_STARTED;
  875. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  876. }
  877. }
  878. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  879. static char *rq_flags[] = {
  880. "REQ_RW",
  881. "REQ_FAILFAST",
  882. "REQ_SOFTBARRIER",
  883. "REQ_HARDBARRIER",
  884. "REQ_CMD",
  885. "REQ_NOMERGE",
  886. "REQ_STARTED",
  887. "REQ_DONTPREP",
  888. "REQ_QUEUED",
  889. "REQ_PC",
  890. "REQ_BLOCK_PC",
  891. "REQ_SENSE",
  892. "REQ_FAILED",
  893. "REQ_QUIET",
  894. "REQ_SPECIAL",
  895. "REQ_DRIVE_CMD",
  896. "REQ_DRIVE_TASK",
  897. "REQ_DRIVE_TASKFILE",
  898. "REQ_PREEMPT",
  899. "REQ_PM_SUSPEND",
  900. "REQ_PM_RESUME",
  901. "REQ_PM_SHUTDOWN",
  902. };
  903. void blk_dump_rq_flags(struct request *rq, char *msg)
  904. {
  905. int bit;
  906. printk("%s: dev %s: flags = ", msg,
  907. rq->rq_disk ? rq->rq_disk->disk_name : "?");
  908. bit = 0;
  909. do {
  910. if (rq->flags & (1 << bit))
  911. printk("%s ", rq_flags[bit]);
  912. bit++;
  913. } while (bit < __REQ_NR_BITS);
  914. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  915. rq->nr_sectors,
  916. rq->current_nr_sectors);
  917. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  918. if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
  919. printk("cdb: ");
  920. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  921. printk("%02x ", rq->cmd[bit]);
  922. printk("\n");
  923. }
  924. }
  925. EXPORT_SYMBOL(blk_dump_rq_flags);
  926. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  927. {
  928. struct bio_vec *bv, *bvprv = NULL;
  929. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  930. int high, highprv = 1;
  931. if (unlikely(!bio->bi_io_vec))
  932. return;
  933. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  934. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  935. bio_for_each_segment(bv, bio, i) {
  936. /*
  937. * the trick here is making sure that a high page is never
  938. * considered part of another segment, since that might
  939. * change with the bounce page.
  940. */
  941. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  942. if (high || highprv)
  943. goto new_hw_segment;
  944. if (cluster) {
  945. if (seg_size + bv->bv_len > q->max_segment_size)
  946. goto new_segment;
  947. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  948. goto new_segment;
  949. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  950. goto new_segment;
  951. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  952. goto new_hw_segment;
  953. seg_size += bv->bv_len;
  954. hw_seg_size += bv->bv_len;
  955. bvprv = bv;
  956. continue;
  957. }
  958. new_segment:
  959. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  960. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  961. hw_seg_size += bv->bv_len;
  962. } else {
  963. new_hw_segment:
  964. if (hw_seg_size > bio->bi_hw_front_size)
  965. bio->bi_hw_front_size = hw_seg_size;
  966. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  967. nr_hw_segs++;
  968. }
  969. nr_phys_segs++;
  970. bvprv = bv;
  971. seg_size = bv->bv_len;
  972. highprv = high;
  973. }
  974. if (hw_seg_size > bio->bi_hw_back_size)
  975. bio->bi_hw_back_size = hw_seg_size;
  976. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  977. bio->bi_hw_front_size = hw_seg_size;
  978. bio->bi_phys_segments = nr_phys_segs;
  979. bio->bi_hw_segments = nr_hw_segs;
  980. bio->bi_flags |= (1 << BIO_SEG_VALID);
  981. }
  982. int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  983. struct bio *nxt)
  984. {
  985. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  986. return 0;
  987. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  988. return 0;
  989. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  990. return 0;
  991. /*
  992. * bio and nxt are contigous in memory, check if the queue allows
  993. * these two to be merged into one
  994. */
  995. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  996. return 1;
  997. return 0;
  998. }
  999. EXPORT_SYMBOL(blk_phys_contig_segment);
  1000. int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1001. struct bio *nxt)
  1002. {
  1003. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1004. blk_recount_segments(q, bio);
  1005. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1006. blk_recount_segments(q, nxt);
  1007. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1008. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1009. return 0;
  1010. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1011. return 0;
  1012. return 1;
  1013. }
  1014. EXPORT_SYMBOL(blk_hw_contig_segment);
  1015. /*
  1016. * map a request to scatterlist, return number of sg entries setup. Caller
  1017. * must make sure sg can hold rq->nr_phys_segments entries
  1018. */
  1019. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1020. {
  1021. struct bio_vec *bvec, *bvprv;
  1022. struct bio *bio;
  1023. int nsegs, i, cluster;
  1024. nsegs = 0;
  1025. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1026. /*
  1027. * for each bio in rq
  1028. */
  1029. bvprv = NULL;
  1030. rq_for_each_bio(bio, rq) {
  1031. /*
  1032. * for each segment in bio
  1033. */
  1034. bio_for_each_segment(bvec, bio, i) {
  1035. int nbytes = bvec->bv_len;
  1036. if (bvprv && cluster) {
  1037. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1038. goto new_segment;
  1039. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1040. goto new_segment;
  1041. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1042. goto new_segment;
  1043. sg[nsegs - 1].length += nbytes;
  1044. } else {
  1045. new_segment:
  1046. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1047. sg[nsegs].page = bvec->bv_page;
  1048. sg[nsegs].length = nbytes;
  1049. sg[nsegs].offset = bvec->bv_offset;
  1050. nsegs++;
  1051. }
  1052. bvprv = bvec;
  1053. } /* segments in bio */
  1054. } /* bios in rq */
  1055. return nsegs;
  1056. }
  1057. EXPORT_SYMBOL(blk_rq_map_sg);
  1058. /*
  1059. * the standard queue merge functions, can be overridden with device
  1060. * specific ones if so desired
  1061. */
  1062. static inline int ll_new_mergeable(request_queue_t *q,
  1063. struct request *req,
  1064. struct bio *bio)
  1065. {
  1066. int nr_phys_segs = bio_phys_segments(q, bio);
  1067. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1068. req->flags |= REQ_NOMERGE;
  1069. if (req == q->last_merge)
  1070. q->last_merge = NULL;
  1071. return 0;
  1072. }
  1073. /*
  1074. * A hw segment is just getting larger, bump just the phys
  1075. * counter.
  1076. */
  1077. req->nr_phys_segments += nr_phys_segs;
  1078. return 1;
  1079. }
  1080. static inline int ll_new_hw_segment(request_queue_t *q,
  1081. struct request *req,
  1082. struct bio *bio)
  1083. {
  1084. int nr_hw_segs = bio_hw_segments(q, bio);
  1085. int nr_phys_segs = bio_phys_segments(q, bio);
  1086. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1087. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1088. req->flags |= REQ_NOMERGE;
  1089. if (req == q->last_merge)
  1090. q->last_merge = NULL;
  1091. return 0;
  1092. }
  1093. /*
  1094. * This will form the start of a new hw segment. Bump both
  1095. * counters.
  1096. */
  1097. req->nr_hw_segments += nr_hw_segs;
  1098. req->nr_phys_segments += nr_phys_segs;
  1099. return 1;
  1100. }
  1101. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1102. struct bio *bio)
  1103. {
  1104. int len;
  1105. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1106. req->flags |= REQ_NOMERGE;
  1107. if (req == q->last_merge)
  1108. q->last_merge = NULL;
  1109. return 0;
  1110. }
  1111. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1112. blk_recount_segments(q, req->biotail);
  1113. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1114. blk_recount_segments(q, bio);
  1115. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1116. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1117. !BIOVEC_VIRT_OVERSIZE(len)) {
  1118. int mergeable = ll_new_mergeable(q, req, bio);
  1119. if (mergeable) {
  1120. if (req->nr_hw_segments == 1)
  1121. req->bio->bi_hw_front_size = len;
  1122. if (bio->bi_hw_segments == 1)
  1123. bio->bi_hw_back_size = len;
  1124. }
  1125. return mergeable;
  1126. }
  1127. return ll_new_hw_segment(q, req, bio);
  1128. }
  1129. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1130. struct bio *bio)
  1131. {
  1132. int len;
  1133. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1134. req->flags |= REQ_NOMERGE;
  1135. if (req == q->last_merge)
  1136. q->last_merge = NULL;
  1137. return 0;
  1138. }
  1139. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1140. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1141. blk_recount_segments(q, bio);
  1142. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1143. blk_recount_segments(q, req->bio);
  1144. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1145. !BIOVEC_VIRT_OVERSIZE(len)) {
  1146. int mergeable = ll_new_mergeable(q, req, bio);
  1147. if (mergeable) {
  1148. if (bio->bi_hw_segments == 1)
  1149. bio->bi_hw_front_size = len;
  1150. if (req->nr_hw_segments == 1)
  1151. req->biotail->bi_hw_back_size = len;
  1152. }
  1153. return mergeable;
  1154. }
  1155. return ll_new_hw_segment(q, req, bio);
  1156. }
  1157. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1158. struct request *next)
  1159. {
  1160. int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
  1161. int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1162. /*
  1163. * First check if the either of the requests are re-queued
  1164. * requests. Can't merge them if they are.
  1165. */
  1166. if (req->special || next->special)
  1167. return 0;
  1168. /*
  1169. * Will it become to large?
  1170. */
  1171. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1172. return 0;
  1173. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1174. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1175. total_phys_segments--;
  1176. if (total_phys_segments > q->max_phys_segments)
  1177. return 0;
  1178. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1179. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1180. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1181. /*
  1182. * propagate the combined length to the end of the requests
  1183. */
  1184. if (req->nr_hw_segments == 1)
  1185. req->bio->bi_hw_front_size = len;
  1186. if (next->nr_hw_segments == 1)
  1187. next->biotail->bi_hw_back_size = len;
  1188. total_hw_segments--;
  1189. }
  1190. if (total_hw_segments > q->max_hw_segments)
  1191. return 0;
  1192. /* Merge is OK... */
  1193. req->nr_phys_segments = total_phys_segments;
  1194. req->nr_hw_segments = total_hw_segments;
  1195. return 1;
  1196. }
  1197. /*
  1198. * "plug" the device if there are no outstanding requests: this will
  1199. * force the transfer to start only after we have put all the requests
  1200. * on the list.
  1201. *
  1202. * This is called with interrupts off and no requests on the queue and
  1203. * with the queue lock held.
  1204. */
  1205. void blk_plug_device(request_queue_t *q)
  1206. {
  1207. WARN_ON(!irqs_disabled());
  1208. /*
  1209. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1210. * which will restart the queueing
  1211. */
  1212. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1213. return;
  1214. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1215. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1216. }
  1217. EXPORT_SYMBOL(blk_plug_device);
  1218. /*
  1219. * remove the queue from the plugged list, if present. called with
  1220. * queue lock held and interrupts disabled.
  1221. */
  1222. int blk_remove_plug(request_queue_t *q)
  1223. {
  1224. WARN_ON(!irqs_disabled());
  1225. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1226. return 0;
  1227. del_timer(&q->unplug_timer);
  1228. return 1;
  1229. }
  1230. EXPORT_SYMBOL(blk_remove_plug);
  1231. /*
  1232. * remove the plug and let it rip..
  1233. */
  1234. void __generic_unplug_device(request_queue_t *q)
  1235. {
  1236. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1237. return;
  1238. if (!blk_remove_plug(q))
  1239. return;
  1240. /*
  1241. * was plugged, fire request_fn if queue has stuff to do
  1242. */
  1243. if (elv_next_request(q))
  1244. q->request_fn(q);
  1245. }
  1246. EXPORT_SYMBOL(__generic_unplug_device);
  1247. /**
  1248. * generic_unplug_device - fire a request queue
  1249. * @q: The &request_queue_t in question
  1250. *
  1251. * Description:
  1252. * Linux uses plugging to build bigger requests queues before letting
  1253. * the device have at them. If a queue is plugged, the I/O scheduler
  1254. * is still adding and merging requests on the queue. Once the queue
  1255. * gets unplugged, the request_fn defined for the queue is invoked and
  1256. * transfers started.
  1257. **/
  1258. void generic_unplug_device(request_queue_t *q)
  1259. {
  1260. spin_lock_irq(q->queue_lock);
  1261. __generic_unplug_device(q);
  1262. spin_unlock_irq(q->queue_lock);
  1263. }
  1264. EXPORT_SYMBOL(generic_unplug_device);
  1265. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1266. struct page *page)
  1267. {
  1268. request_queue_t *q = bdi->unplug_io_data;
  1269. /*
  1270. * devices don't necessarily have an ->unplug_fn defined
  1271. */
  1272. if (q->unplug_fn)
  1273. q->unplug_fn(q);
  1274. }
  1275. static void blk_unplug_work(void *data)
  1276. {
  1277. request_queue_t *q = data;
  1278. q->unplug_fn(q);
  1279. }
  1280. static void blk_unplug_timeout(unsigned long data)
  1281. {
  1282. request_queue_t *q = (request_queue_t *)data;
  1283. kblockd_schedule_work(&q->unplug_work);
  1284. }
  1285. /**
  1286. * blk_start_queue - restart a previously stopped queue
  1287. * @q: The &request_queue_t in question
  1288. *
  1289. * Description:
  1290. * blk_start_queue() will clear the stop flag on the queue, and call
  1291. * the request_fn for the queue if it was in a stopped state when
  1292. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1293. **/
  1294. void blk_start_queue(request_queue_t *q)
  1295. {
  1296. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1297. /*
  1298. * one level of recursion is ok and is much faster than kicking
  1299. * the unplug handling
  1300. */
  1301. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1302. q->request_fn(q);
  1303. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1304. } else {
  1305. blk_plug_device(q);
  1306. kblockd_schedule_work(&q->unplug_work);
  1307. }
  1308. }
  1309. EXPORT_SYMBOL(blk_start_queue);
  1310. /**
  1311. * blk_stop_queue - stop a queue
  1312. * @q: The &request_queue_t in question
  1313. *
  1314. * Description:
  1315. * The Linux block layer assumes that a block driver will consume all
  1316. * entries on the request queue when the request_fn strategy is called.
  1317. * Often this will not happen, because of hardware limitations (queue
  1318. * depth settings). If a device driver gets a 'queue full' response,
  1319. * or if it simply chooses not to queue more I/O at one point, it can
  1320. * call this function to prevent the request_fn from being called until
  1321. * the driver has signalled it's ready to go again. This happens by calling
  1322. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1323. **/
  1324. void blk_stop_queue(request_queue_t *q)
  1325. {
  1326. blk_remove_plug(q);
  1327. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1328. }
  1329. EXPORT_SYMBOL(blk_stop_queue);
  1330. /**
  1331. * blk_sync_queue - cancel any pending callbacks on a queue
  1332. * @q: the queue
  1333. *
  1334. * Description:
  1335. * The block layer may perform asynchronous callback activity
  1336. * on a queue, such as calling the unplug function after a timeout.
  1337. * A block device may call blk_sync_queue to ensure that any
  1338. * such activity is cancelled, thus allowing it to release resources
  1339. * the the callbacks might use. The caller must already have made sure
  1340. * that its ->make_request_fn will not re-add plugging prior to calling
  1341. * this function.
  1342. *
  1343. */
  1344. void blk_sync_queue(struct request_queue *q)
  1345. {
  1346. del_timer_sync(&q->unplug_timer);
  1347. kblockd_flush();
  1348. }
  1349. EXPORT_SYMBOL(blk_sync_queue);
  1350. /**
  1351. * blk_run_queue - run a single device queue
  1352. * @q: The queue to run
  1353. */
  1354. void blk_run_queue(struct request_queue *q)
  1355. {
  1356. unsigned long flags;
  1357. spin_lock_irqsave(q->queue_lock, flags);
  1358. blk_remove_plug(q);
  1359. q->request_fn(q);
  1360. spin_unlock_irqrestore(q->queue_lock, flags);
  1361. }
  1362. EXPORT_SYMBOL(blk_run_queue);
  1363. /**
  1364. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1365. * @q: the request queue to be released
  1366. *
  1367. * Description:
  1368. * blk_cleanup_queue is the pair to blk_init_queue() or
  1369. * blk_queue_make_request(). It should be called when a request queue is
  1370. * being released; typically when a block device is being de-registered.
  1371. * Currently, its primary task it to free all the &struct request
  1372. * structures that were allocated to the queue and the queue itself.
  1373. *
  1374. * Caveat:
  1375. * Hopefully the low level driver will have finished any
  1376. * outstanding requests first...
  1377. **/
  1378. void blk_cleanup_queue(request_queue_t * q)
  1379. {
  1380. struct request_list *rl = &q->rq;
  1381. if (!atomic_dec_and_test(&q->refcnt))
  1382. return;
  1383. if (q->elevator)
  1384. elevator_exit(q->elevator);
  1385. blk_sync_queue(q);
  1386. if (rl->rq_pool)
  1387. mempool_destroy(rl->rq_pool);
  1388. if (q->queue_tags)
  1389. __blk_queue_free_tags(q);
  1390. blk_queue_ordered(q, QUEUE_ORDERED_NONE);
  1391. kmem_cache_free(requestq_cachep, q);
  1392. }
  1393. EXPORT_SYMBOL(blk_cleanup_queue);
  1394. static int blk_init_free_list(request_queue_t *q)
  1395. {
  1396. struct request_list *rl = &q->rq;
  1397. rl->count[READ] = rl->count[WRITE] = 0;
  1398. rl->starved[READ] = rl->starved[WRITE] = 0;
  1399. init_waitqueue_head(&rl->wait[READ]);
  1400. init_waitqueue_head(&rl->wait[WRITE]);
  1401. init_waitqueue_head(&rl->drain);
  1402. rl->rq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, request_cachep);
  1403. if (!rl->rq_pool)
  1404. return -ENOMEM;
  1405. return 0;
  1406. }
  1407. static int __make_request(request_queue_t *, struct bio *);
  1408. request_queue_t *blk_alloc_queue(int gfp_mask)
  1409. {
  1410. request_queue_t *q = kmem_cache_alloc(requestq_cachep, gfp_mask);
  1411. if (!q)
  1412. return NULL;
  1413. memset(q, 0, sizeof(*q));
  1414. init_timer(&q->unplug_timer);
  1415. atomic_set(&q->refcnt, 1);
  1416. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1417. q->backing_dev_info.unplug_io_data = q;
  1418. return q;
  1419. }
  1420. EXPORT_SYMBOL(blk_alloc_queue);
  1421. /**
  1422. * blk_init_queue - prepare a request queue for use with a block device
  1423. * @rfn: The function to be called to process requests that have been
  1424. * placed on the queue.
  1425. * @lock: Request queue spin lock
  1426. *
  1427. * Description:
  1428. * If a block device wishes to use the standard request handling procedures,
  1429. * which sorts requests and coalesces adjacent requests, then it must
  1430. * call blk_init_queue(). The function @rfn will be called when there
  1431. * are requests on the queue that need to be processed. If the device
  1432. * supports plugging, then @rfn may not be called immediately when requests
  1433. * are available on the queue, but may be called at some time later instead.
  1434. * Plugged queues are generally unplugged when a buffer belonging to one
  1435. * of the requests on the queue is needed, or due to memory pressure.
  1436. *
  1437. * @rfn is not required, or even expected, to remove all requests off the
  1438. * queue, but only as many as it can handle at a time. If it does leave
  1439. * requests on the queue, it is responsible for arranging that the requests
  1440. * get dealt with eventually.
  1441. *
  1442. * The queue spin lock must be held while manipulating the requests on the
  1443. * request queue.
  1444. *
  1445. * Function returns a pointer to the initialized request queue, or NULL if
  1446. * it didn't succeed.
  1447. *
  1448. * Note:
  1449. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1450. * when the block device is deactivated (such as at module unload).
  1451. **/
  1452. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1453. {
  1454. request_queue_t *q = blk_alloc_queue(GFP_KERNEL);
  1455. if (!q)
  1456. return NULL;
  1457. if (blk_init_free_list(q))
  1458. goto out_init;
  1459. q->request_fn = rfn;
  1460. q->back_merge_fn = ll_back_merge_fn;
  1461. q->front_merge_fn = ll_front_merge_fn;
  1462. q->merge_requests_fn = ll_merge_requests_fn;
  1463. q->prep_rq_fn = NULL;
  1464. q->unplug_fn = generic_unplug_device;
  1465. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1466. q->queue_lock = lock;
  1467. blk_queue_segment_boundary(q, 0xffffffff);
  1468. blk_queue_make_request(q, __make_request);
  1469. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1470. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1471. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1472. /*
  1473. * all done
  1474. */
  1475. if (!elevator_init(q, NULL)) {
  1476. blk_queue_congestion_threshold(q);
  1477. return q;
  1478. }
  1479. blk_cleanup_queue(q);
  1480. out_init:
  1481. kmem_cache_free(requestq_cachep, q);
  1482. return NULL;
  1483. }
  1484. EXPORT_SYMBOL(blk_init_queue);
  1485. int blk_get_queue(request_queue_t *q)
  1486. {
  1487. if (!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  1488. atomic_inc(&q->refcnt);
  1489. return 0;
  1490. }
  1491. return 1;
  1492. }
  1493. EXPORT_SYMBOL(blk_get_queue);
  1494. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1495. {
  1496. elv_put_request(q, rq);
  1497. mempool_free(rq, q->rq.rq_pool);
  1498. }
  1499. static inline struct request *blk_alloc_request(request_queue_t *q, int rw,
  1500. int gfp_mask)
  1501. {
  1502. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1503. if (!rq)
  1504. return NULL;
  1505. /*
  1506. * first three bits are identical in rq->flags and bio->bi_rw,
  1507. * see bio.h and blkdev.h
  1508. */
  1509. rq->flags = rw;
  1510. if (!elv_set_request(q, rq, gfp_mask))
  1511. return rq;
  1512. mempool_free(rq, q->rq.rq_pool);
  1513. return NULL;
  1514. }
  1515. /*
  1516. * ioc_batching returns true if the ioc is a valid batching request and
  1517. * should be given priority access to a request.
  1518. */
  1519. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1520. {
  1521. if (!ioc)
  1522. return 0;
  1523. /*
  1524. * Make sure the process is able to allocate at least 1 request
  1525. * even if the batch times out, otherwise we could theoretically
  1526. * lose wakeups.
  1527. */
  1528. return ioc->nr_batch_requests == q->nr_batching ||
  1529. (ioc->nr_batch_requests > 0
  1530. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1531. }
  1532. /*
  1533. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1534. * will cause the process to be a "batcher" on all queues in the system. This
  1535. * is the behaviour we want though - once it gets a wakeup it should be given
  1536. * a nice run.
  1537. */
  1538. void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1539. {
  1540. if (!ioc || ioc_batching(q, ioc))
  1541. return;
  1542. ioc->nr_batch_requests = q->nr_batching;
  1543. ioc->last_waited = jiffies;
  1544. }
  1545. static void __freed_request(request_queue_t *q, int rw)
  1546. {
  1547. struct request_list *rl = &q->rq;
  1548. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1549. clear_queue_congested(q, rw);
  1550. if (rl->count[rw] + 1 <= q->nr_requests) {
  1551. smp_mb();
  1552. if (waitqueue_active(&rl->wait[rw]))
  1553. wake_up(&rl->wait[rw]);
  1554. blk_clear_queue_full(q, rw);
  1555. }
  1556. }
  1557. /*
  1558. * A request has just been released. Account for it, update the full and
  1559. * congestion status, wake up any waiters. Called under q->queue_lock.
  1560. */
  1561. static void freed_request(request_queue_t *q, int rw)
  1562. {
  1563. struct request_list *rl = &q->rq;
  1564. rl->count[rw]--;
  1565. __freed_request(q, rw);
  1566. if (unlikely(rl->starved[rw ^ 1]))
  1567. __freed_request(q, rw ^ 1);
  1568. if (!rl->count[READ] && !rl->count[WRITE]) {
  1569. smp_mb();
  1570. if (unlikely(waitqueue_active(&rl->drain)))
  1571. wake_up(&rl->drain);
  1572. }
  1573. }
  1574. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1575. /*
  1576. * Get a free request, queue_lock must not be held
  1577. */
  1578. static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
  1579. {
  1580. struct request *rq = NULL;
  1581. struct request_list *rl = &q->rq;
  1582. struct io_context *ioc = get_io_context(gfp_mask);
  1583. if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
  1584. goto out;
  1585. spin_lock_irq(q->queue_lock);
  1586. if (rl->count[rw]+1 >= q->nr_requests) {
  1587. /*
  1588. * The queue will fill after this allocation, so set it as
  1589. * full, and mark this process as "batching". This process
  1590. * will be allowed to complete a batch of requests, others
  1591. * will be blocked.
  1592. */
  1593. if (!blk_queue_full(q, rw)) {
  1594. ioc_set_batching(q, ioc);
  1595. blk_set_queue_full(q, rw);
  1596. }
  1597. }
  1598. switch (elv_may_queue(q, rw)) {
  1599. case ELV_MQUEUE_NO:
  1600. goto rq_starved;
  1601. case ELV_MQUEUE_MAY:
  1602. break;
  1603. case ELV_MQUEUE_MUST:
  1604. goto get_rq;
  1605. }
  1606. if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
  1607. /*
  1608. * The queue is full and the allocating process is not a
  1609. * "batcher", and not exempted by the IO scheduler
  1610. */
  1611. spin_unlock_irq(q->queue_lock);
  1612. goto out;
  1613. }
  1614. get_rq:
  1615. rl->count[rw]++;
  1616. rl->starved[rw] = 0;
  1617. if (rl->count[rw] >= queue_congestion_on_threshold(q))
  1618. set_queue_congested(q, rw);
  1619. spin_unlock_irq(q->queue_lock);
  1620. rq = blk_alloc_request(q, rw, gfp_mask);
  1621. if (!rq) {
  1622. /*
  1623. * Allocation failed presumably due to memory. Undo anything
  1624. * we might have messed up.
  1625. *
  1626. * Allocating task should really be put onto the front of the
  1627. * wait queue, but this is pretty rare.
  1628. */
  1629. spin_lock_irq(q->queue_lock);
  1630. freed_request(q, rw);
  1631. /*
  1632. * in the very unlikely event that allocation failed and no
  1633. * requests for this direction was pending, mark us starved
  1634. * so that freeing of a request in the other direction will
  1635. * notice us. another possible fix would be to split the
  1636. * rq mempool into READ and WRITE
  1637. */
  1638. rq_starved:
  1639. if (unlikely(rl->count[rw] == 0))
  1640. rl->starved[rw] = 1;
  1641. spin_unlock_irq(q->queue_lock);
  1642. goto out;
  1643. }
  1644. if (ioc_batching(q, ioc))
  1645. ioc->nr_batch_requests--;
  1646. rq_init(q, rq);
  1647. rq->rl = rl;
  1648. out:
  1649. put_io_context(ioc);
  1650. return rq;
  1651. }
  1652. /*
  1653. * No available requests for this queue, unplug the device and wait for some
  1654. * requests to become available.
  1655. */
  1656. static struct request *get_request_wait(request_queue_t *q, int rw)
  1657. {
  1658. DEFINE_WAIT(wait);
  1659. struct request *rq;
  1660. generic_unplug_device(q);
  1661. do {
  1662. struct request_list *rl = &q->rq;
  1663. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1664. TASK_UNINTERRUPTIBLE);
  1665. rq = get_request(q, rw, GFP_NOIO);
  1666. if (!rq) {
  1667. struct io_context *ioc;
  1668. io_schedule();
  1669. /*
  1670. * After sleeping, we become a "batching" process and
  1671. * will be able to allocate at least one request, and
  1672. * up to a big batch of them for a small period time.
  1673. * See ioc_batching, ioc_set_batching
  1674. */
  1675. ioc = get_io_context(GFP_NOIO);
  1676. ioc_set_batching(q, ioc);
  1677. put_io_context(ioc);
  1678. }
  1679. finish_wait(&rl->wait[rw], &wait);
  1680. } while (!rq);
  1681. return rq;
  1682. }
  1683. struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
  1684. {
  1685. struct request *rq;
  1686. BUG_ON(rw != READ && rw != WRITE);
  1687. if (gfp_mask & __GFP_WAIT)
  1688. rq = get_request_wait(q, rw);
  1689. else
  1690. rq = get_request(q, rw, gfp_mask);
  1691. return rq;
  1692. }
  1693. EXPORT_SYMBOL(blk_get_request);
  1694. /**
  1695. * blk_requeue_request - put a request back on queue
  1696. * @q: request queue where request should be inserted
  1697. * @rq: request to be inserted
  1698. *
  1699. * Description:
  1700. * Drivers often keep queueing requests until the hardware cannot accept
  1701. * more, when that condition happens we need to put the request back
  1702. * on the queue. Must be called with queue lock held.
  1703. */
  1704. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1705. {
  1706. if (blk_rq_tagged(rq))
  1707. blk_queue_end_tag(q, rq);
  1708. elv_requeue_request(q, rq);
  1709. }
  1710. EXPORT_SYMBOL(blk_requeue_request);
  1711. /**
  1712. * blk_insert_request - insert a special request in to a request queue
  1713. * @q: request queue where request should be inserted
  1714. * @rq: request to be inserted
  1715. * @at_head: insert request at head or tail of queue
  1716. * @data: private data
  1717. * @reinsert: true if request it a reinsertion of previously processed one
  1718. *
  1719. * Description:
  1720. * Many block devices need to execute commands asynchronously, so they don't
  1721. * block the whole kernel from preemption during request execution. This is
  1722. * accomplished normally by inserting aritficial requests tagged as
  1723. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1724. * scheduled for actual execution by the request queue.
  1725. *
  1726. * We have the option of inserting the head or the tail of the queue.
  1727. * Typically we use the tail for new ioctls and so forth. We use the head
  1728. * of the queue for things like a QUEUE_FULL message from a device, or a
  1729. * host that is unable to accept a particular command.
  1730. */
  1731. void blk_insert_request(request_queue_t *q, struct request *rq,
  1732. int at_head, void *data, int reinsert)
  1733. {
  1734. unsigned long flags;
  1735. /*
  1736. * tell I/O scheduler that this isn't a regular read/write (ie it
  1737. * must not attempt merges on this) and that it acts as a soft
  1738. * barrier
  1739. */
  1740. rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
  1741. rq->special = data;
  1742. spin_lock_irqsave(q->queue_lock, flags);
  1743. /*
  1744. * If command is tagged, release the tag
  1745. */
  1746. if (reinsert)
  1747. blk_requeue_request(q, rq);
  1748. else {
  1749. int where = ELEVATOR_INSERT_BACK;
  1750. if (at_head)
  1751. where = ELEVATOR_INSERT_FRONT;
  1752. if (blk_rq_tagged(rq))
  1753. blk_queue_end_tag(q, rq);
  1754. drive_stat_acct(rq, rq->nr_sectors, 1);
  1755. __elv_add_request(q, rq, where, 0);
  1756. }
  1757. if (blk_queue_plugged(q))
  1758. __generic_unplug_device(q);
  1759. else
  1760. q->request_fn(q);
  1761. spin_unlock_irqrestore(q->queue_lock, flags);
  1762. }
  1763. EXPORT_SYMBOL(blk_insert_request);
  1764. /**
  1765. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1766. * @q: request queue where request should be inserted
  1767. * @rw: READ or WRITE data
  1768. * @ubuf: the user buffer
  1769. * @len: length of user data
  1770. *
  1771. * Description:
  1772. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1773. * a kernel bounce buffer is used.
  1774. *
  1775. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1776. * still in process context.
  1777. *
  1778. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1779. * before being submitted to the device, as pages mapped may be out of
  1780. * reach. It's the callers responsibility to make sure this happens. The
  1781. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1782. * unmapping.
  1783. */
  1784. struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
  1785. unsigned int len)
  1786. {
  1787. unsigned long uaddr;
  1788. struct request *rq;
  1789. struct bio *bio;
  1790. if (len > (q->max_sectors << 9))
  1791. return ERR_PTR(-EINVAL);
  1792. if ((!len && ubuf) || (len && !ubuf))
  1793. return ERR_PTR(-EINVAL);
  1794. rq = blk_get_request(q, rw, __GFP_WAIT);
  1795. if (!rq)
  1796. return ERR_PTR(-ENOMEM);
  1797. /*
  1798. * if alignment requirement is satisfied, map in user pages for
  1799. * direct dma. else, set up kernel bounce buffers
  1800. */
  1801. uaddr = (unsigned long) ubuf;
  1802. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1803. bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
  1804. else
  1805. bio = bio_copy_user(q, uaddr, len, rw == READ);
  1806. if (!IS_ERR(bio)) {
  1807. rq->bio = rq->biotail = bio;
  1808. blk_rq_bio_prep(q, rq, bio);
  1809. rq->buffer = rq->data = NULL;
  1810. rq->data_len = len;
  1811. return rq;
  1812. }
  1813. /*
  1814. * bio is the err-ptr
  1815. */
  1816. blk_put_request(rq);
  1817. return (struct request *) bio;
  1818. }
  1819. EXPORT_SYMBOL(blk_rq_map_user);
  1820. /**
  1821. * blk_rq_unmap_user - unmap a request with user data
  1822. * @rq: request to be unmapped
  1823. * @bio: bio for the request
  1824. * @ulen: length of user buffer
  1825. *
  1826. * Description:
  1827. * Unmap a request previously mapped by blk_rq_map_user().
  1828. */
  1829. int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
  1830. {
  1831. int ret = 0;
  1832. if (bio) {
  1833. if (bio_flagged(bio, BIO_USER_MAPPED))
  1834. bio_unmap_user(bio);
  1835. else
  1836. ret = bio_uncopy_user(bio);
  1837. }
  1838. blk_put_request(rq);
  1839. return ret;
  1840. }
  1841. EXPORT_SYMBOL(blk_rq_unmap_user);
  1842. /**
  1843. * blk_execute_rq - insert a request into queue for execution
  1844. * @q: queue to insert the request in
  1845. * @bd_disk: matching gendisk
  1846. * @rq: request to insert
  1847. *
  1848. * Description:
  1849. * Insert a fully prepared request at the back of the io scheduler queue
  1850. * for execution.
  1851. */
  1852. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  1853. struct request *rq)
  1854. {
  1855. DECLARE_COMPLETION(wait);
  1856. char sense[SCSI_SENSE_BUFFERSIZE];
  1857. int err = 0;
  1858. rq->rq_disk = bd_disk;
  1859. /*
  1860. * we need an extra reference to the request, so we can look at
  1861. * it after io completion
  1862. */
  1863. rq->ref_count++;
  1864. if (!rq->sense) {
  1865. memset(sense, 0, sizeof(sense));
  1866. rq->sense = sense;
  1867. rq->sense_len = 0;
  1868. }
  1869. rq->flags |= REQ_NOMERGE;
  1870. rq->waiting = &wait;
  1871. rq->end_io = blk_end_sync_rq;
  1872. elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
  1873. generic_unplug_device(q);
  1874. wait_for_completion(&wait);
  1875. rq->waiting = NULL;
  1876. if (rq->errors)
  1877. err = -EIO;
  1878. return err;
  1879. }
  1880. EXPORT_SYMBOL(blk_execute_rq);
  1881. /**
  1882. * blkdev_issue_flush - queue a flush
  1883. * @bdev: blockdev to issue flush for
  1884. * @error_sector: error sector
  1885. *
  1886. * Description:
  1887. * Issue a flush for the block device in question. Caller can supply
  1888. * room for storing the error offset in case of a flush error, if they
  1889. * wish to. Caller must run wait_for_completion() on its own.
  1890. */
  1891. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  1892. {
  1893. request_queue_t *q;
  1894. if (bdev->bd_disk == NULL)
  1895. return -ENXIO;
  1896. q = bdev_get_queue(bdev);
  1897. if (!q)
  1898. return -ENXIO;
  1899. if (!q->issue_flush_fn)
  1900. return -EOPNOTSUPP;
  1901. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  1902. }
  1903. EXPORT_SYMBOL(blkdev_issue_flush);
  1904. /**
  1905. * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
  1906. * @q: device queue
  1907. * @disk: gendisk
  1908. * @error_sector: error offset
  1909. *
  1910. * Description:
  1911. * Devices understanding the SCSI command set, can use this function as
  1912. * a helper for issuing a cache flush. Note: driver is required to store
  1913. * the error offset (in case of error flushing) in ->sector of struct
  1914. * request.
  1915. */
  1916. int blkdev_scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
  1917. sector_t *error_sector)
  1918. {
  1919. struct request *rq = blk_get_request(q, WRITE, __GFP_WAIT);
  1920. int ret;
  1921. rq->flags |= REQ_BLOCK_PC | REQ_SOFTBARRIER;
  1922. rq->sector = 0;
  1923. memset(rq->cmd, 0, sizeof(rq->cmd));
  1924. rq->cmd[0] = 0x35;
  1925. rq->cmd_len = 12;
  1926. rq->data = NULL;
  1927. rq->data_len = 0;
  1928. rq->timeout = 60 * HZ;
  1929. ret = blk_execute_rq(q, disk, rq);
  1930. if (ret && error_sector)
  1931. *error_sector = rq->sector;
  1932. blk_put_request(rq);
  1933. return ret;
  1934. }
  1935. EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn);
  1936. void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  1937. {
  1938. int rw = rq_data_dir(rq);
  1939. if (!blk_fs_request(rq) || !rq->rq_disk)
  1940. return;
  1941. if (rw == READ) {
  1942. __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
  1943. if (!new_io)
  1944. __disk_stat_inc(rq->rq_disk, read_merges);
  1945. } else if (rw == WRITE) {
  1946. __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
  1947. if (!new_io)
  1948. __disk_stat_inc(rq->rq_disk, write_merges);
  1949. }
  1950. if (new_io) {
  1951. disk_round_stats(rq->rq_disk);
  1952. rq->rq_disk->in_flight++;
  1953. }
  1954. }
  1955. /*
  1956. * add-request adds a request to the linked list.
  1957. * queue lock is held and interrupts disabled, as we muck with the
  1958. * request queue list.
  1959. */
  1960. static inline void add_request(request_queue_t * q, struct request * req)
  1961. {
  1962. drive_stat_acct(req, req->nr_sectors, 1);
  1963. if (q->activity_fn)
  1964. q->activity_fn(q->activity_data, rq_data_dir(req));
  1965. /*
  1966. * elevator indicated where it wants this request to be
  1967. * inserted at elevator_merge time
  1968. */
  1969. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  1970. }
  1971. /*
  1972. * disk_round_stats() - Round off the performance stats on a struct
  1973. * disk_stats.
  1974. *
  1975. * The average IO queue length and utilisation statistics are maintained
  1976. * by observing the current state of the queue length and the amount of
  1977. * time it has been in this state for.
  1978. *
  1979. * Normally, that accounting is done on IO completion, but that can result
  1980. * in more than a second's worth of IO being accounted for within any one
  1981. * second, leading to >100% utilisation. To deal with that, we call this
  1982. * function to do a round-off before returning the results when reading
  1983. * /proc/diskstats. This accounts immediately for all queue usage up to
  1984. * the current jiffies and restarts the counters again.
  1985. */
  1986. void disk_round_stats(struct gendisk *disk)
  1987. {
  1988. unsigned long now = jiffies;
  1989. __disk_stat_add(disk, time_in_queue,
  1990. disk->in_flight * (now - disk->stamp));
  1991. disk->stamp = now;
  1992. if (disk->in_flight)
  1993. __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
  1994. disk->stamp_idle = now;
  1995. }
  1996. /*
  1997. * queue lock must be held
  1998. */
  1999. static void __blk_put_request(request_queue_t *q, struct request *req)
  2000. {
  2001. struct request_list *rl = req->rl;
  2002. if (unlikely(!q))
  2003. return;
  2004. if (unlikely(--req->ref_count))
  2005. return;
  2006. req->rq_status = RQ_INACTIVE;
  2007. req->q = NULL;
  2008. req->rl = NULL;
  2009. /*
  2010. * Request may not have originated from ll_rw_blk. if not,
  2011. * it didn't come out of our reserved rq pools
  2012. */
  2013. if (rl) {
  2014. int rw = rq_data_dir(req);
  2015. elv_completed_request(q, req);
  2016. BUG_ON(!list_empty(&req->queuelist));
  2017. blk_free_request(q, req);
  2018. freed_request(q, rw);
  2019. }
  2020. }
  2021. void blk_put_request(struct request *req)
  2022. {
  2023. /*
  2024. * if req->rl isn't set, this request didnt originate from the
  2025. * block layer, so it's safe to just disregard it
  2026. */
  2027. if (req->rl) {
  2028. unsigned long flags;
  2029. request_queue_t *q = req->q;
  2030. spin_lock_irqsave(q->queue_lock, flags);
  2031. __blk_put_request(q, req);
  2032. spin_unlock_irqrestore(q->queue_lock, flags);
  2033. }
  2034. }
  2035. EXPORT_SYMBOL(blk_put_request);
  2036. /**
  2037. * blk_end_sync_rq - executes a completion event on a request
  2038. * @rq: request to complete
  2039. */
  2040. void blk_end_sync_rq(struct request *rq)
  2041. {
  2042. struct completion *waiting = rq->waiting;
  2043. rq->waiting = NULL;
  2044. __blk_put_request(rq->q, rq);
  2045. /*
  2046. * complete last, if this is a stack request the process (and thus
  2047. * the rq pointer) could be invalid right after this complete()
  2048. */
  2049. complete(waiting);
  2050. }
  2051. EXPORT_SYMBOL(blk_end_sync_rq);
  2052. /**
  2053. * blk_congestion_wait - wait for a queue to become uncongested
  2054. * @rw: READ or WRITE
  2055. * @timeout: timeout in jiffies
  2056. *
  2057. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2058. * If no queues are congested then just wait for the next request to be
  2059. * returned.
  2060. */
  2061. long blk_congestion_wait(int rw, long timeout)
  2062. {
  2063. long ret;
  2064. DEFINE_WAIT(wait);
  2065. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2066. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2067. ret = io_schedule_timeout(timeout);
  2068. finish_wait(wqh, &wait);
  2069. return ret;
  2070. }
  2071. EXPORT_SYMBOL(blk_congestion_wait);
  2072. /*
  2073. * Has to be called with the request spinlock acquired
  2074. */
  2075. static int attempt_merge(request_queue_t *q, struct request *req,
  2076. struct request *next)
  2077. {
  2078. if (!rq_mergeable(req) || !rq_mergeable(next))
  2079. return 0;
  2080. /*
  2081. * not contigious
  2082. */
  2083. if (req->sector + req->nr_sectors != next->sector)
  2084. return 0;
  2085. if (rq_data_dir(req) != rq_data_dir(next)
  2086. || req->rq_disk != next->rq_disk
  2087. || next->waiting || next->special)
  2088. return 0;
  2089. /*
  2090. * If we are allowed to merge, then append bio list
  2091. * from next to rq and release next. merge_requests_fn
  2092. * will have updated segment counts, update sector
  2093. * counts here.
  2094. */
  2095. if (!q->merge_requests_fn(q, req, next))
  2096. return 0;
  2097. /*
  2098. * At this point we have either done a back merge
  2099. * or front merge. We need the smaller start_time of
  2100. * the merged requests to be the current request
  2101. * for accounting purposes.
  2102. */
  2103. if (time_after(req->start_time, next->start_time))
  2104. req->start_time = next->start_time;
  2105. req->biotail->bi_next = next->bio;
  2106. req->biotail = next->biotail;
  2107. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2108. elv_merge_requests(q, req, next);
  2109. if (req->rq_disk) {
  2110. disk_round_stats(req->rq_disk);
  2111. req->rq_disk->in_flight--;
  2112. }
  2113. __blk_put_request(q, next);
  2114. return 1;
  2115. }
  2116. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2117. {
  2118. struct request *next = elv_latter_request(q, rq);
  2119. if (next)
  2120. return attempt_merge(q, rq, next);
  2121. return 0;
  2122. }
  2123. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2124. {
  2125. struct request *prev = elv_former_request(q, rq);
  2126. if (prev)
  2127. return attempt_merge(q, prev, rq);
  2128. return 0;
  2129. }
  2130. /**
  2131. * blk_attempt_remerge - attempt to remerge active head with next request
  2132. * @q: The &request_queue_t belonging to the device
  2133. * @rq: The head request (usually)
  2134. *
  2135. * Description:
  2136. * For head-active devices, the queue can easily be unplugged so quickly
  2137. * that proper merging is not done on the front request. This may hurt
  2138. * performance greatly for some devices. The block layer cannot safely
  2139. * do merging on that first request for these queues, but the driver can
  2140. * call this function and make it happen any way. Only the driver knows
  2141. * when it is safe to do so.
  2142. **/
  2143. void blk_attempt_remerge(request_queue_t *q, struct request *rq)
  2144. {
  2145. unsigned long flags;
  2146. spin_lock_irqsave(q->queue_lock, flags);
  2147. attempt_back_merge(q, rq);
  2148. spin_unlock_irqrestore(q->queue_lock, flags);
  2149. }
  2150. EXPORT_SYMBOL(blk_attempt_remerge);
  2151. /*
  2152. * Non-locking blk_attempt_remerge variant.
  2153. */
  2154. void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
  2155. {
  2156. attempt_back_merge(q, rq);
  2157. }
  2158. EXPORT_SYMBOL(__blk_attempt_remerge);
  2159. static int __make_request(request_queue_t *q, struct bio *bio)
  2160. {
  2161. struct request *req, *freereq = NULL;
  2162. int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
  2163. sector_t sector;
  2164. sector = bio->bi_sector;
  2165. nr_sectors = bio_sectors(bio);
  2166. cur_nr_sectors = bio_cur_sectors(bio);
  2167. rw = bio_data_dir(bio);
  2168. sync = bio_sync(bio);
  2169. /*
  2170. * low level driver can indicate that it wants pages above a
  2171. * certain limit bounced to low memory (ie for highmem, or even
  2172. * ISA dma in theory)
  2173. */
  2174. blk_queue_bounce(q, &bio);
  2175. spin_lock_prefetch(q->queue_lock);
  2176. barrier = bio_barrier(bio);
  2177. if (barrier && (q->ordered == QUEUE_ORDERED_NONE)) {
  2178. err = -EOPNOTSUPP;
  2179. goto end_io;
  2180. }
  2181. again:
  2182. spin_lock_irq(q->queue_lock);
  2183. if (elv_queue_empty(q)) {
  2184. blk_plug_device(q);
  2185. goto get_rq;
  2186. }
  2187. if (barrier)
  2188. goto get_rq;
  2189. el_ret = elv_merge(q, &req, bio);
  2190. switch (el_ret) {
  2191. case ELEVATOR_BACK_MERGE:
  2192. BUG_ON(!rq_mergeable(req));
  2193. if (!q->back_merge_fn(q, req, bio))
  2194. break;
  2195. req->biotail->bi_next = bio;
  2196. req->biotail = bio;
  2197. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2198. drive_stat_acct(req, nr_sectors, 0);
  2199. if (!attempt_back_merge(q, req))
  2200. elv_merged_request(q, req);
  2201. goto out;
  2202. case ELEVATOR_FRONT_MERGE:
  2203. BUG_ON(!rq_mergeable(req));
  2204. if (!q->front_merge_fn(q, req, bio))
  2205. break;
  2206. bio->bi_next = req->bio;
  2207. req->bio = bio;
  2208. /*
  2209. * may not be valid. if the low level driver said
  2210. * it didn't need a bounce buffer then it better
  2211. * not touch req->buffer either...
  2212. */
  2213. req->buffer = bio_data(bio);
  2214. req->current_nr_sectors = cur_nr_sectors;
  2215. req->hard_cur_sectors = cur_nr_sectors;
  2216. req->sector = req->hard_sector = sector;
  2217. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2218. drive_stat_acct(req, nr_sectors, 0);
  2219. if (!attempt_front_merge(q, req))
  2220. elv_merged_request(q, req);
  2221. goto out;
  2222. /*
  2223. * elevator says don't/can't merge. get new request
  2224. */
  2225. case ELEVATOR_NO_MERGE:
  2226. break;
  2227. default:
  2228. printk("elevator returned crap (%d)\n", el_ret);
  2229. BUG();
  2230. }
  2231. /*
  2232. * Grab a free request from the freelist - if that is empty, check
  2233. * if we are doing read ahead and abort instead of blocking for
  2234. * a free slot.
  2235. */
  2236. get_rq:
  2237. if (freereq) {
  2238. req = freereq;
  2239. freereq = NULL;
  2240. } else {
  2241. spin_unlock_irq(q->queue_lock);
  2242. if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
  2243. /*
  2244. * READA bit set
  2245. */
  2246. err = -EWOULDBLOCK;
  2247. if (bio_rw_ahead(bio))
  2248. goto end_io;
  2249. freereq = get_request_wait(q, rw);
  2250. }
  2251. goto again;
  2252. }
  2253. req->flags |= REQ_CMD;
  2254. /*
  2255. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2256. */
  2257. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2258. req->flags |= REQ_FAILFAST;
  2259. /*
  2260. * REQ_BARRIER implies no merging, but lets make it explicit
  2261. */
  2262. if (barrier)
  2263. req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2264. req->errors = 0;
  2265. req->hard_sector = req->sector = sector;
  2266. req->hard_nr_sectors = req->nr_sectors = nr_sectors;
  2267. req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
  2268. req->nr_phys_segments = bio_phys_segments(q, bio);
  2269. req->nr_hw_segments = bio_hw_segments(q, bio);
  2270. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2271. req->waiting = NULL;
  2272. req->bio = req->biotail = bio;
  2273. req->rq_disk = bio->bi_bdev->bd_disk;
  2274. req->start_time = jiffies;
  2275. add_request(q, req);
  2276. out:
  2277. if (freereq)
  2278. __blk_put_request(q, freereq);
  2279. if (sync)
  2280. __generic_unplug_device(q);
  2281. spin_unlock_irq(q->queue_lock);
  2282. return 0;
  2283. end_io:
  2284. bio_endio(bio, nr_sectors << 9, err);
  2285. return 0;
  2286. }
  2287. /*
  2288. * If bio->bi_dev is a partition, remap the location
  2289. */
  2290. static inline void blk_partition_remap(struct bio *bio)
  2291. {
  2292. struct block_device *bdev = bio->bi_bdev;
  2293. if (bdev != bdev->bd_contains) {
  2294. struct hd_struct *p = bdev->bd_part;
  2295. switch (bio->bi_rw) {
  2296. case READ:
  2297. p->read_sectors += bio_sectors(bio);
  2298. p->reads++;
  2299. break;
  2300. case WRITE:
  2301. p->write_sectors += bio_sectors(bio);
  2302. p->writes++;
  2303. break;
  2304. }
  2305. bio->bi_sector += p->start_sect;
  2306. bio->bi_bdev = bdev->bd_contains;
  2307. }
  2308. }
  2309. void blk_finish_queue_drain(request_queue_t *q)
  2310. {
  2311. struct request_list *rl = &q->rq;
  2312. struct request *rq;
  2313. spin_lock_irq(q->queue_lock);
  2314. clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
  2315. while (!list_empty(&q->drain_list)) {
  2316. rq = list_entry_rq(q->drain_list.next);
  2317. list_del_init(&rq->queuelist);
  2318. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
  2319. }
  2320. spin_unlock_irq(q->queue_lock);
  2321. wake_up(&rl->wait[0]);
  2322. wake_up(&rl->wait[1]);
  2323. wake_up(&rl->drain);
  2324. }
  2325. static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
  2326. {
  2327. int wait = rl->count[READ] + rl->count[WRITE];
  2328. if (dispatch)
  2329. wait += !list_empty(&q->queue_head);
  2330. return wait;
  2331. }
  2332. /*
  2333. * We rely on the fact that only requests allocated through blk_alloc_request()
  2334. * have io scheduler private data structures associated with them. Any other
  2335. * type of request (allocated on stack or through kmalloc()) should not go
  2336. * to the io scheduler core, but be attached to the queue head instead.
  2337. */
  2338. void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
  2339. {
  2340. struct request_list *rl = &q->rq;
  2341. DEFINE_WAIT(wait);
  2342. spin_lock_irq(q->queue_lock);
  2343. set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
  2344. while (wait_drain(q, rl, wait_dispatch)) {
  2345. prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
  2346. if (wait_drain(q, rl, wait_dispatch)) {
  2347. __generic_unplug_device(q);
  2348. spin_unlock_irq(q->queue_lock);
  2349. io_schedule();
  2350. spin_lock_irq(q->queue_lock);
  2351. }
  2352. finish_wait(&rl->drain, &wait);
  2353. }
  2354. spin_unlock_irq(q->queue_lock);
  2355. }
  2356. /*
  2357. * block waiting for the io scheduler being started again.
  2358. */
  2359. static inline void block_wait_queue_running(request_queue_t *q)
  2360. {
  2361. DEFINE_WAIT(wait);
  2362. while (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)) {
  2363. struct request_list *rl = &q->rq;
  2364. prepare_to_wait_exclusive(&rl->drain, &wait,
  2365. TASK_UNINTERRUPTIBLE);
  2366. /*
  2367. * re-check the condition. avoids using prepare_to_wait()
  2368. * in the fast path (queue is running)
  2369. */
  2370. if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
  2371. io_schedule();
  2372. finish_wait(&rl->drain, &wait);
  2373. }
  2374. }
  2375. static void handle_bad_sector(struct bio *bio)
  2376. {
  2377. char b[BDEVNAME_SIZE];
  2378. printk(KERN_INFO "attempt to access beyond end of device\n");
  2379. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2380. bdevname(bio->bi_bdev, b),
  2381. bio->bi_rw,
  2382. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2383. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2384. set_bit(BIO_EOF, &bio->bi_flags);
  2385. }
  2386. /**
  2387. * generic_make_request: hand a buffer to its device driver for I/O
  2388. * @bio: The bio describing the location in memory and on the device.
  2389. *
  2390. * generic_make_request() is used to make I/O requests of block
  2391. * devices. It is passed a &struct bio, which describes the I/O that needs
  2392. * to be done.
  2393. *
  2394. * generic_make_request() does not return any status. The
  2395. * success/failure status of the request, along with notification of
  2396. * completion, is delivered asynchronously through the bio->bi_end_io
  2397. * function described (one day) else where.
  2398. *
  2399. * The caller of generic_make_request must make sure that bi_io_vec
  2400. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2401. * set to describe the device address, and the
  2402. * bi_end_io and optionally bi_private are set to describe how
  2403. * completion notification should be signaled.
  2404. *
  2405. * generic_make_request and the drivers it calls may use bi_next if this
  2406. * bio happens to be merged with someone else, and may change bi_dev and
  2407. * bi_sector for remaps as it sees fit. So the values of these fields
  2408. * should NOT be depended on after the call to generic_make_request.
  2409. */
  2410. void generic_make_request(struct bio *bio)
  2411. {
  2412. request_queue_t *q;
  2413. sector_t maxsector;
  2414. int ret, nr_sectors = bio_sectors(bio);
  2415. might_sleep();
  2416. /* Test device or partition size, when known. */
  2417. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2418. if (maxsector) {
  2419. sector_t sector = bio->bi_sector;
  2420. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2421. /*
  2422. * This may well happen - the kernel calls bread()
  2423. * without checking the size of the device, e.g., when
  2424. * mounting a device.
  2425. */
  2426. handle_bad_sector(bio);
  2427. goto end_io;
  2428. }
  2429. }
  2430. /*
  2431. * Resolve the mapping until finished. (drivers are
  2432. * still free to implement/resolve their own stacking
  2433. * by explicitly returning 0)
  2434. *
  2435. * NOTE: we don't repeat the blk_size check for each new device.
  2436. * Stacking drivers are expected to know what they are doing.
  2437. */
  2438. do {
  2439. char b[BDEVNAME_SIZE];
  2440. q = bdev_get_queue(bio->bi_bdev);
  2441. if (!q) {
  2442. printk(KERN_ERR
  2443. "generic_make_request: Trying to access "
  2444. "nonexistent block-device %s (%Lu)\n",
  2445. bdevname(bio->bi_bdev, b),
  2446. (long long) bio->bi_sector);
  2447. end_io:
  2448. bio_endio(bio, bio->bi_size, -EIO);
  2449. break;
  2450. }
  2451. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2452. printk("bio too big device %s (%u > %u)\n",
  2453. bdevname(bio->bi_bdev, b),
  2454. bio_sectors(bio),
  2455. q->max_hw_sectors);
  2456. goto end_io;
  2457. }
  2458. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))
  2459. goto end_io;
  2460. block_wait_queue_running(q);
  2461. /*
  2462. * If this device has partitions, remap block n
  2463. * of partition p to block n+start(p) of the disk.
  2464. */
  2465. blk_partition_remap(bio);
  2466. ret = q->make_request_fn(q, bio);
  2467. } while (ret);
  2468. }
  2469. EXPORT_SYMBOL(generic_make_request);
  2470. /**
  2471. * submit_bio: submit a bio to the block device layer for I/O
  2472. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2473. * @bio: The &struct bio which describes the I/O
  2474. *
  2475. * submit_bio() is very similar in purpose to generic_make_request(), and
  2476. * uses that function to do most of the work. Both are fairly rough
  2477. * interfaces, @bio must be presetup and ready for I/O.
  2478. *
  2479. */
  2480. void submit_bio(int rw, struct bio *bio)
  2481. {
  2482. int count = bio_sectors(bio);
  2483. BIO_BUG_ON(!bio->bi_size);
  2484. BIO_BUG_ON(!bio->bi_io_vec);
  2485. bio->bi_rw = rw;
  2486. if (rw & WRITE)
  2487. mod_page_state(pgpgout, count);
  2488. else
  2489. mod_page_state(pgpgin, count);
  2490. if (unlikely(block_dump)) {
  2491. char b[BDEVNAME_SIZE];
  2492. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2493. current->comm, current->pid,
  2494. (rw & WRITE) ? "WRITE" : "READ",
  2495. (unsigned long long)bio->bi_sector,
  2496. bdevname(bio->bi_bdev,b));
  2497. }
  2498. generic_make_request(bio);
  2499. }
  2500. EXPORT_SYMBOL(submit_bio);
  2501. void blk_recalc_rq_segments(struct request *rq)
  2502. {
  2503. struct bio *bio, *prevbio = NULL;
  2504. int nr_phys_segs, nr_hw_segs;
  2505. unsigned int phys_size, hw_size;
  2506. request_queue_t *q = rq->q;
  2507. if (!rq->bio)
  2508. return;
  2509. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2510. rq_for_each_bio(bio, rq) {
  2511. /* Force bio hw/phys segs to be recalculated. */
  2512. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2513. nr_phys_segs += bio_phys_segments(q, bio);
  2514. nr_hw_segs += bio_hw_segments(q, bio);
  2515. if (prevbio) {
  2516. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2517. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2518. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2519. pseg <= q->max_segment_size) {
  2520. nr_phys_segs--;
  2521. phys_size += prevbio->bi_size + bio->bi_size;
  2522. } else
  2523. phys_size = 0;
  2524. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2525. hseg <= q->max_segment_size) {
  2526. nr_hw_segs--;
  2527. hw_size += prevbio->bi_size + bio->bi_size;
  2528. } else
  2529. hw_size = 0;
  2530. }
  2531. prevbio = bio;
  2532. }
  2533. rq->nr_phys_segments = nr_phys_segs;
  2534. rq->nr_hw_segments = nr_hw_segs;
  2535. }
  2536. void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2537. {
  2538. if (blk_fs_request(rq)) {
  2539. rq->hard_sector += nsect;
  2540. rq->hard_nr_sectors -= nsect;
  2541. /*
  2542. * Move the I/O submission pointers ahead if required.
  2543. */
  2544. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2545. (rq->sector <= rq->hard_sector)) {
  2546. rq->sector = rq->hard_sector;
  2547. rq->nr_sectors = rq->hard_nr_sectors;
  2548. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2549. rq->current_nr_sectors = rq->hard_cur_sectors;
  2550. rq->buffer = bio_data(rq->bio);
  2551. }
  2552. /*
  2553. * if total number of sectors is less than the first segment
  2554. * size, something has gone terribly wrong
  2555. */
  2556. if (rq->nr_sectors < rq->current_nr_sectors) {
  2557. printk("blk: request botched\n");
  2558. rq->nr_sectors = rq->current_nr_sectors;
  2559. }
  2560. }
  2561. }
  2562. static int __end_that_request_first(struct request *req, int uptodate,
  2563. int nr_bytes)
  2564. {
  2565. int total_bytes, bio_nbytes, error, next_idx = 0;
  2566. struct bio *bio;
  2567. /*
  2568. * extend uptodate bool to allow < 0 value to be direct io error
  2569. */
  2570. error = 0;
  2571. if (end_io_error(uptodate))
  2572. error = !uptodate ? -EIO : uptodate;
  2573. /*
  2574. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2575. * sense key with us all the way through
  2576. */
  2577. if (!blk_pc_request(req))
  2578. req->errors = 0;
  2579. if (!uptodate) {
  2580. if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
  2581. printk("end_request: I/O error, dev %s, sector %llu\n",
  2582. req->rq_disk ? req->rq_disk->disk_name : "?",
  2583. (unsigned long long)req->sector);
  2584. }
  2585. total_bytes = bio_nbytes = 0;
  2586. while ((bio = req->bio) != NULL) {
  2587. int nbytes;
  2588. if (nr_bytes >= bio->bi_size) {
  2589. req->bio = bio->bi_next;
  2590. nbytes = bio->bi_size;
  2591. bio_endio(bio, nbytes, error);
  2592. next_idx = 0;
  2593. bio_nbytes = 0;
  2594. } else {
  2595. int idx = bio->bi_idx + next_idx;
  2596. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2597. blk_dump_rq_flags(req, "__end_that");
  2598. printk("%s: bio idx %d >= vcnt %d\n",
  2599. __FUNCTION__,
  2600. bio->bi_idx, bio->bi_vcnt);
  2601. break;
  2602. }
  2603. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2604. BIO_BUG_ON(nbytes > bio->bi_size);
  2605. /*
  2606. * not a complete bvec done
  2607. */
  2608. if (unlikely(nbytes > nr_bytes)) {
  2609. bio_nbytes += nr_bytes;
  2610. total_bytes += nr_bytes;
  2611. break;
  2612. }
  2613. /*
  2614. * advance to the next vector
  2615. */
  2616. next_idx++;
  2617. bio_nbytes += nbytes;
  2618. }
  2619. total_bytes += nbytes;
  2620. nr_bytes -= nbytes;
  2621. if ((bio = req->bio)) {
  2622. /*
  2623. * end more in this run, or just return 'not-done'
  2624. */
  2625. if (unlikely(nr_bytes <= 0))
  2626. break;
  2627. }
  2628. }
  2629. /*
  2630. * completely done
  2631. */
  2632. if (!req->bio)
  2633. return 0;
  2634. /*
  2635. * if the request wasn't completed, update state
  2636. */
  2637. if (bio_nbytes) {
  2638. bio_endio(bio, bio_nbytes, error);
  2639. bio->bi_idx += next_idx;
  2640. bio_iovec(bio)->bv_offset += nr_bytes;
  2641. bio_iovec(bio)->bv_len -= nr_bytes;
  2642. }
  2643. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2644. blk_recalc_rq_segments(req);
  2645. return 1;
  2646. }
  2647. /**
  2648. * end_that_request_first - end I/O on a request
  2649. * @req: the request being processed
  2650. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2651. * @nr_sectors: number of sectors to end I/O on
  2652. *
  2653. * Description:
  2654. * Ends I/O on a number of sectors attached to @req, and sets it up
  2655. * for the next range of segments (if any) in the cluster.
  2656. *
  2657. * Return:
  2658. * 0 - we are done with this request, call end_that_request_last()
  2659. * 1 - still buffers pending for this request
  2660. **/
  2661. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2662. {
  2663. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2664. }
  2665. EXPORT_SYMBOL(end_that_request_first);
  2666. /**
  2667. * end_that_request_chunk - end I/O on a request
  2668. * @req: the request being processed
  2669. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2670. * @nr_bytes: number of bytes to complete
  2671. *
  2672. * Description:
  2673. * Ends I/O on a number of bytes attached to @req, and sets it up
  2674. * for the next range of segments (if any). Like end_that_request_first(),
  2675. * but deals with bytes instead of sectors.
  2676. *
  2677. * Return:
  2678. * 0 - we are done with this request, call end_that_request_last()
  2679. * 1 - still buffers pending for this request
  2680. **/
  2681. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2682. {
  2683. return __end_that_request_first(req, uptodate, nr_bytes);
  2684. }
  2685. EXPORT_SYMBOL(end_that_request_chunk);
  2686. /*
  2687. * queue lock must be held
  2688. */
  2689. void end_that_request_last(struct request *req)
  2690. {
  2691. struct gendisk *disk = req->rq_disk;
  2692. if (unlikely(laptop_mode) && blk_fs_request(req))
  2693. laptop_io_completion();
  2694. if (disk && blk_fs_request(req)) {
  2695. unsigned long duration = jiffies - req->start_time;
  2696. switch (rq_data_dir(req)) {
  2697. case WRITE:
  2698. __disk_stat_inc(disk, writes);
  2699. __disk_stat_add(disk, write_ticks, duration);
  2700. break;
  2701. case READ:
  2702. __disk_stat_inc(disk, reads);
  2703. __disk_stat_add(disk, read_ticks, duration);
  2704. break;
  2705. }
  2706. disk_round_stats(disk);
  2707. disk->in_flight--;
  2708. }
  2709. if (req->end_io)
  2710. req->end_io(req);
  2711. else
  2712. __blk_put_request(req->q, req);
  2713. }
  2714. EXPORT_SYMBOL(end_that_request_last);
  2715. void end_request(struct request *req, int uptodate)
  2716. {
  2717. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2718. add_disk_randomness(req->rq_disk);
  2719. blkdev_dequeue_request(req);
  2720. end_that_request_last(req);
  2721. }
  2722. }
  2723. EXPORT_SYMBOL(end_request);
  2724. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2725. {
  2726. /* first three bits are identical in rq->flags and bio->bi_rw */
  2727. rq->flags |= (bio->bi_rw & 7);
  2728. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2729. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2730. rq->current_nr_sectors = bio_cur_sectors(bio);
  2731. rq->hard_cur_sectors = rq->current_nr_sectors;
  2732. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2733. rq->buffer = bio_data(bio);
  2734. rq->bio = rq->biotail = bio;
  2735. }
  2736. EXPORT_SYMBOL(blk_rq_bio_prep);
  2737. int kblockd_schedule_work(struct work_struct *work)
  2738. {
  2739. return queue_work(kblockd_workqueue, work);
  2740. }
  2741. EXPORT_SYMBOL(kblockd_schedule_work);
  2742. void kblockd_flush(void)
  2743. {
  2744. flush_workqueue(kblockd_workqueue);
  2745. }
  2746. EXPORT_SYMBOL(kblockd_flush);
  2747. int __init blk_dev_init(void)
  2748. {
  2749. kblockd_workqueue = create_workqueue("kblockd");
  2750. if (!kblockd_workqueue)
  2751. panic("Failed to create kblockd\n");
  2752. request_cachep = kmem_cache_create("blkdev_requests",
  2753. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  2754. requestq_cachep = kmem_cache_create("blkdev_queue",
  2755. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  2756. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  2757. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  2758. blk_max_low_pfn = max_low_pfn;
  2759. blk_max_pfn = max_pfn;
  2760. return 0;
  2761. }
  2762. /*
  2763. * IO Context helper functions
  2764. */
  2765. void put_io_context(struct io_context *ioc)
  2766. {
  2767. if (ioc == NULL)
  2768. return;
  2769. BUG_ON(atomic_read(&ioc->refcount) == 0);
  2770. if (atomic_dec_and_test(&ioc->refcount)) {
  2771. if (ioc->aic && ioc->aic->dtor)
  2772. ioc->aic->dtor(ioc->aic);
  2773. if (ioc->cic && ioc->cic->dtor)
  2774. ioc->cic->dtor(ioc->cic);
  2775. kmem_cache_free(iocontext_cachep, ioc);
  2776. }
  2777. }
  2778. EXPORT_SYMBOL(put_io_context);
  2779. /* Called by the exitting task */
  2780. void exit_io_context(void)
  2781. {
  2782. unsigned long flags;
  2783. struct io_context *ioc;
  2784. local_irq_save(flags);
  2785. ioc = current->io_context;
  2786. current->io_context = NULL;
  2787. local_irq_restore(flags);
  2788. if (ioc->aic && ioc->aic->exit)
  2789. ioc->aic->exit(ioc->aic);
  2790. if (ioc->cic && ioc->cic->exit)
  2791. ioc->cic->exit(ioc->cic);
  2792. put_io_context(ioc);
  2793. }
  2794. /*
  2795. * If the current task has no IO context then create one and initialise it.
  2796. * If it does have a context, take a ref on it.
  2797. *
  2798. * This is always called in the context of the task which submitted the I/O.
  2799. * But weird things happen, so we disable local interrupts to ensure exclusive
  2800. * access to *current.
  2801. */
  2802. struct io_context *get_io_context(int gfp_flags)
  2803. {
  2804. struct task_struct *tsk = current;
  2805. unsigned long flags;
  2806. struct io_context *ret;
  2807. local_irq_save(flags);
  2808. ret = tsk->io_context;
  2809. if (ret)
  2810. goto out;
  2811. local_irq_restore(flags);
  2812. ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
  2813. if (ret) {
  2814. atomic_set(&ret->refcount, 1);
  2815. ret->pid = tsk->pid;
  2816. ret->last_waited = jiffies; /* doesn't matter... */
  2817. ret->nr_batch_requests = 0; /* because this is 0 */
  2818. ret->aic = NULL;
  2819. ret->cic = NULL;
  2820. spin_lock_init(&ret->lock);
  2821. local_irq_save(flags);
  2822. /*
  2823. * very unlikely, someone raced with us in setting up the task
  2824. * io context. free new context and just grab a reference.
  2825. */
  2826. if (!tsk->io_context)
  2827. tsk->io_context = ret;
  2828. else {
  2829. kmem_cache_free(iocontext_cachep, ret);
  2830. ret = tsk->io_context;
  2831. }
  2832. out:
  2833. atomic_inc(&ret->refcount);
  2834. local_irq_restore(flags);
  2835. }
  2836. return ret;
  2837. }
  2838. EXPORT_SYMBOL(get_io_context);
  2839. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  2840. {
  2841. struct io_context *src = *psrc;
  2842. struct io_context *dst = *pdst;
  2843. if (src) {
  2844. BUG_ON(atomic_read(&src->refcount) == 0);
  2845. atomic_inc(&src->refcount);
  2846. put_io_context(dst);
  2847. *pdst = src;
  2848. }
  2849. }
  2850. EXPORT_SYMBOL(copy_io_context);
  2851. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  2852. {
  2853. struct io_context *temp;
  2854. temp = *ioc1;
  2855. *ioc1 = *ioc2;
  2856. *ioc2 = temp;
  2857. }
  2858. EXPORT_SYMBOL(swap_io_context);
  2859. /*
  2860. * sysfs parts below
  2861. */
  2862. struct queue_sysfs_entry {
  2863. struct attribute attr;
  2864. ssize_t (*show)(struct request_queue *, char *);
  2865. ssize_t (*store)(struct request_queue *, const char *, size_t);
  2866. };
  2867. static ssize_t
  2868. queue_var_show(unsigned int var, char *page)
  2869. {
  2870. return sprintf(page, "%d\n", var);
  2871. }
  2872. static ssize_t
  2873. queue_var_store(unsigned long *var, const char *page, size_t count)
  2874. {
  2875. char *p = (char *) page;
  2876. *var = simple_strtoul(p, &p, 10);
  2877. return count;
  2878. }
  2879. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  2880. {
  2881. return queue_var_show(q->nr_requests, (page));
  2882. }
  2883. static ssize_t
  2884. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  2885. {
  2886. struct request_list *rl = &q->rq;
  2887. int ret = queue_var_store(&q->nr_requests, page, count);
  2888. if (q->nr_requests < BLKDEV_MIN_RQ)
  2889. q->nr_requests = BLKDEV_MIN_RQ;
  2890. blk_queue_congestion_threshold(q);
  2891. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  2892. set_queue_congested(q, READ);
  2893. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  2894. clear_queue_congested(q, READ);
  2895. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  2896. set_queue_congested(q, WRITE);
  2897. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  2898. clear_queue_congested(q, WRITE);
  2899. if (rl->count[READ] >= q->nr_requests) {
  2900. blk_set_queue_full(q, READ);
  2901. } else if (rl->count[READ]+1 <= q->nr_requests) {
  2902. blk_clear_queue_full(q, READ);
  2903. wake_up(&rl->wait[READ]);
  2904. }
  2905. if (rl->count[WRITE] >= q->nr_requests) {
  2906. blk_set_queue_full(q, WRITE);
  2907. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  2908. blk_clear_queue_full(q, WRITE);
  2909. wake_up(&rl->wait[WRITE]);
  2910. }
  2911. return ret;
  2912. }
  2913. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  2914. {
  2915. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2916. return queue_var_show(ra_kb, (page));
  2917. }
  2918. static ssize_t
  2919. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  2920. {
  2921. unsigned long ra_kb;
  2922. ssize_t ret = queue_var_store(&ra_kb, page, count);
  2923. spin_lock_irq(q->queue_lock);
  2924. if (ra_kb > (q->max_sectors >> 1))
  2925. ra_kb = (q->max_sectors >> 1);
  2926. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  2927. spin_unlock_irq(q->queue_lock);
  2928. return ret;
  2929. }
  2930. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  2931. {
  2932. int max_sectors_kb = q->max_sectors >> 1;
  2933. return queue_var_show(max_sectors_kb, (page));
  2934. }
  2935. static ssize_t
  2936. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  2937. {
  2938. unsigned long max_sectors_kb,
  2939. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  2940. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  2941. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  2942. int ra_kb;
  2943. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  2944. return -EINVAL;
  2945. /*
  2946. * Take the queue lock to update the readahead and max_sectors
  2947. * values synchronously:
  2948. */
  2949. spin_lock_irq(q->queue_lock);
  2950. /*
  2951. * Trim readahead window as well, if necessary:
  2952. */
  2953. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2954. if (ra_kb > max_sectors_kb)
  2955. q->backing_dev_info.ra_pages =
  2956. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  2957. q->max_sectors = max_sectors_kb << 1;
  2958. spin_unlock_irq(q->queue_lock);
  2959. return ret;
  2960. }
  2961. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  2962. {
  2963. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  2964. return queue_var_show(max_hw_sectors_kb, (page));
  2965. }
  2966. static struct queue_sysfs_entry queue_requests_entry = {
  2967. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  2968. .show = queue_requests_show,
  2969. .store = queue_requests_store,
  2970. };
  2971. static struct queue_sysfs_entry queue_ra_entry = {
  2972. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  2973. .show = queue_ra_show,
  2974. .store = queue_ra_store,
  2975. };
  2976. static struct queue_sysfs_entry queue_max_sectors_entry = {
  2977. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  2978. .show = queue_max_sectors_show,
  2979. .store = queue_max_sectors_store,
  2980. };
  2981. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  2982. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  2983. .show = queue_max_hw_sectors_show,
  2984. };
  2985. static struct queue_sysfs_entry queue_iosched_entry = {
  2986. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  2987. .show = elv_iosched_show,
  2988. .store = elv_iosched_store,
  2989. };
  2990. static struct attribute *default_attrs[] = {
  2991. &queue_requests_entry.attr,
  2992. &queue_ra_entry.attr,
  2993. &queue_max_hw_sectors_entry.attr,
  2994. &queue_max_sectors_entry.attr,
  2995. &queue_iosched_entry.attr,
  2996. NULL,
  2997. };
  2998. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  2999. static ssize_t
  3000. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3001. {
  3002. struct queue_sysfs_entry *entry = to_queue(attr);
  3003. struct request_queue *q;
  3004. q = container_of(kobj, struct request_queue, kobj);
  3005. if (!entry->show)
  3006. return 0;
  3007. return entry->show(q, page);
  3008. }
  3009. static ssize_t
  3010. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3011. const char *page, size_t length)
  3012. {
  3013. struct queue_sysfs_entry *entry = to_queue(attr);
  3014. struct request_queue *q;
  3015. q = container_of(kobj, struct request_queue, kobj);
  3016. if (!entry->store)
  3017. return -EINVAL;
  3018. return entry->store(q, page, length);
  3019. }
  3020. static struct sysfs_ops queue_sysfs_ops = {
  3021. .show = queue_attr_show,
  3022. .store = queue_attr_store,
  3023. };
  3024. struct kobj_type queue_ktype = {
  3025. .sysfs_ops = &queue_sysfs_ops,
  3026. .default_attrs = default_attrs,
  3027. };
  3028. int blk_register_queue(struct gendisk *disk)
  3029. {
  3030. int ret;
  3031. request_queue_t *q = disk->queue;
  3032. if (!q || !q->request_fn)
  3033. return -ENXIO;
  3034. q->kobj.parent = kobject_get(&disk->kobj);
  3035. if (!q->kobj.parent)
  3036. return -EBUSY;
  3037. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  3038. q->kobj.ktype = &queue_ktype;
  3039. ret = kobject_register(&q->kobj);
  3040. if (ret < 0)
  3041. return ret;
  3042. ret = elv_register_queue(q);
  3043. if (ret) {
  3044. kobject_unregister(&q->kobj);
  3045. return ret;
  3046. }
  3047. return 0;
  3048. }
  3049. void blk_unregister_queue(struct gendisk *disk)
  3050. {
  3051. request_queue_t *q = disk->queue;
  3052. if (q && q->request_fn) {
  3053. elv_unregister_queue(q);
  3054. kobject_unregister(&q->kobj);
  3055. kobject_put(&disk->kobj);
  3056. }
  3057. }