sched.c 216 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. static inline int rt_policy(int policy)
  112. {
  113. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  114. return 1;
  115. return 0;
  116. }
  117. static inline int task_has_rt_policy(struct task_struct *p)
  118. {
  119. return rt_policy(p->policy);
  120. }
  121. /*
  122. * This is the priority-queue data structure of the RT scheduling class:
  123. */
  124. struct rt_prio_array {
  125. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  126. struct list_head queue[MAX_RT_PRIO];
  127. };
  128. struct rt_bandwidth {
  129. /* nests inside the rq lock: */
  130. raw_spinlock_t rt_runtime_lock;
  131. ktime_t rt_period;
  132. u64 rt_runtime;
  133. struct hrtimer rt_period_timer;
  134. };
  135. static struct rt_bandwidth def_rt_bandwidth;
  136. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  137. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  138. {
  139. struct rt_bandwidth *rt_b =
  140. container_of(timer, struct rt_bandwidth, rt_period_timer);
  141. ktime_t now;
  142. int overrun;
  143. int idle = 0;
  144. for (;;) {
  145. now = hrtimer_cb_get_time(timer);
  146. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  147. if (!overrun)
  148. break;
  149. idle = do_sched_rt_period_timer(rt_b, overrun);
  150. }
  151. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  152. }
  153. static
  154. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  155. {
  156. rt_b->rt_period = ns_to_ktime(period);
  157. rt_b->rt_runtime = runtime;
  158. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  159. hrtimer_init(&rt_b->rt_period_timer,
  160. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  161. rt_b->rt_period_timer.function = sched_rt_period_timer;
  162. }
  163. static inline int rt_bandwidth_enabled(void)
  164. {
  165. return sysctl_sched_rt_runtime >= 0;
  166. }
  167. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  168. {
  169. ktime_t now;
  170. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  171. return;
  172. if (hrtimer_active(&rt_b->rt_period_timer))
  173. return;
  174. raw_spin_lock(&rt_b->rt_runtime_lock);
  175. for (;;) {
  176. unsigned long delta;
  177. ktime_t soft, hard;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  181. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  182. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  183. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. raw_spin_unlock(&rt_b->rt_runtime_lock);
  189. }
  190. #ifdef CONFIG_RT_GROUP_SCHED
  191. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  192. {
  193. hrtimer_cancel(&rt_b->rt_period_timer);
  194. }
  195. #endif
  196. /*
  197. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  198. * detach_destroy_domains and partition_sched_domains.
  199. */
  200. static DEFINE_MUTEX(sched_domains_mutex);
  201. #ifdef CONFIG_CGROUP_SCHED
  202. #include <linux/cgroup.h>
  203. struct cfs_rq;
  204. static LIST_HEAD(task_groups);
  205. /* task group related information */
  206. struct task_group {
  207. struct cgroup_subsys_state css;
  208. #ifdef CONFIG_FAIR_GROUP_SCHED
  209. /* schedulable entities of this group on each cpu */
  210. struct sched_entity **se;
  211. /* runqueue "owned" by this group on each cpu */
  212. struct cfs_rq **cfs_rq;
  213. unsigned long shares;
  214. #endif
  215. #ifdef CONFIG_RT_GROUP_SCHED
  216. struct sched_rt_entity **rt_se;
  217. struct rt_rq **rt_rq;
  218. struct rt_bandwidth rt_bandwidth;
  219. #endif
  220. struct rcu_head rcu;
  221. struct list_head list;
  222. struct task_group *parent;
  223. struct list_head siblings;
  224. struct list_head children;
  225. };
  226. #define root_task_group init_task_group
  227. /* task_group_lock serializes add/remove of task groups and also changes to
  228. * a task group's cpu shares.
  229. */
  230. static DEFINE_SPINLOCK(task_group_lock);
  231. #ifdef CONFIG_FAIR_GROUP_SCHED
  232. #ifdef CONFIG_SMP
  233. static int root_task_group_empty(void)
  234. {
  235. return list_empty(&root_task_group.children);
  236. }
  237. #endif
  238. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  239. /*
  240. * A weight of 0 or 1 can cause arithmetics problems.
  241. * A weight of a cfs_rq is the sum of weights of which entities
  242. * are queued on this cfs_rq, so a weight of a entity should not be
  243. * too large, so as the shares value of a task group.
  244. * (The default weight is 1024 - so there's no practical
  245. * limitation from this.)
  246. */
  247. #define MIN_SHARES 2
  248. #define MAX_SHARES (1UL << 18)
  249. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  250. #endif
  251. /* Default task group.
  252. * Every task in system belong to this group at bootup.
  253. */
  254. struct task_group init_task_group;
  255. /* return group to which a task belongs */
  256. static inline struct task_group *task_group(struct task_struct *p)
  257. {
  258. struct task_group *tg;
  259. #ifdef CONFIG_CGROUP_SCHED
  260. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  261. struct task_group, css);
  262. #else
  263. tg = &init_task_group;
  264. #endif
  265. return tg;
  266. }
  267. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  268. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  269. {
  270. #ifdef CONFIG_FAIR_GROUP_SCHED
  271. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  272. p->se.parent = task_group(p)->se[cpu];
  273. #endif
  274. #ifdef CONFIG_RT_GROUP_SCHED
  275. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  276. p->rt.parent = task_group(p)->rt_se[cpu];
  277. #endif
  278. }
  279. #else
  280. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  281. static inline struct task_group *task_group(struct task_struct *p)
  282. {
  283. return NULL;
  284. }
  285. #endif /* CONFIG_CGROUP_SCHED */
  286. /* CFS-related fields in a runqueue */
  287. struct cfs_rq {
  288. struct load_weight load;
  289. unsigned long nr_running;
  290. u64 exec_clock;
  291. u64 min_vruntime;
  292. struct rb_root tasks_timeline;
  293. struct rb_node *rb_leftmost;
  294. struct list_head tasks;
  295. struct list_head *balance_iterator;
  296. /*
  297. * 'curr' points to currently running entity on this cfs_rq.
  298. * It is set to NULL otherwise (i.e when none are currently running).
  299. */
  300. struct sched_entity *curr, *next, *last;
  301. unsigned int nr_spread_over;
  302. #ifdef CONFIG_FAIR_GROUP_SCHED
  303. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  304. /*
  305. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  306. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  307. * (like users, containers etc.)
  308. *
  309. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  310. * list is used during load balance.
  311. */
  312. struct list_head leaf_cfs_rq_list;
  313. struct task_group *tg; /* group that "owns" this runqueue */
  314. #ifdef CONFIG_SMP
  315. /*
  316. * the part of load.weight contributed by tasks
  317. */
  318. unsigned long task_weight;
  319. /*
  320. * h_load = weight * f(tg)
  321. *
  322. * Where f(tg) is the recursive weight fraction assigned to
  323. * this group.
  324. */
  325. unsigned long h_load;
  326. /*
  327. * this cpu's part of tg->shares
  328. */
  329. unsigned long shares;
  330. /*
  331. * load.weight at the time we set shares
  332. */
  333. unsigned long rq_weight;
  334. #endif
  335. #endif
  336. };
  337. /* Real-Time classes' related field in a runqueue: */
  338. struct rt_rq {
  339. struct rt_prio_array active;
  340. unsigned long rt_nr_running;
  341. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  342. struct {
  343. int curr; /* highest queued rt task prio */
  344. #ifdef CONFIG_SMP
  345. int next; /* next highest */
  346. #endif
  347. } highest_prio;
  348. #endif
  349. #ifdef CONFIG_SMP
  350. unsigned long rt_nr_migratory;
  351. unsigned long rt_nr_total;
  352. int overloaded;
  353. struct plist_head pushable_tasks;
  354. #endif
  355. int rt_throttled;
  356. u64 rt_time;
  357. u64 rt_runtime;
  358. /* Nests inside the rq lock: */
  359. raw_spinlock_t rt_runtime_lock;
  360. #ifdef CONFIG_RT_GROUP_SCHED
  361. unsigned long rt_nr_boosted;
  362. struct rq *rq;
  363. struct list_head leaf_rt_rq_list;
  364. struct task_group *tg;
  365. struct sched_rt_entity *rt_se;
  366. #endif
  367. };
  368. #ifdef CONFIG_SMP
  369. /*
  370. * We add the notion of a root-domain which will be used to define per-domain
  371. * variables. Each exclusive cpuset essentially defines an island domain by
  372. * fully partitioning the member cpus from any other cpuset. Whenever a new
  373. * exclusive cpuset is created, we also create and attach a new root-domain
  374. * object.
  375. *
  376. */
  377. struct root_domain {
  378. atomic_t refcount;
  379. cpumask_var_t span;
  380. cpumask_var_t online;
  381. /*
  382. * The "RT overload" flag: it gets set if a CPU has more than
  383. * one runnable RT task.
  384. */
  385. cpumask_var_t rto_mask;
  386. atomic_t rto_count;
  387. #ifdef CONFIG_SMP
  388. struct cpupri cpupri;
  389. #endif
  390. };
  391. /*
  392. * By default the system creates a single root-domain with all cpus as
  393. * members (mimicking the global state we have today).
  394. */
  395. static struct root_domain def_root_domain;
  396. #endif
  397. /*
  398. * This is the main, per-CPU runqueue data structure.
  399. *
  400. * Locking rule: those places that want to lock multiple runqueues
  401. * (such as the load balancing or the thread migration code), lock
  402. * acquire operations must be ordered by ascending &runqueue.
  403. */
  404. struct rq {
  405. /* runqueue lock: */
  406. raw_spinlock_t lock;
  407. /*
  408. * nr_running and cpu_load should be in the same cacheline because
  409. * remote CPUs use both these fields when doing load calculation.
  410. */
  411. unsigned long nr_running;
  412. #define CPU_LOAD_IDX_MAX 5
  413. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  414. #ifdef CONFIG_NO_HZ
  415. unsigned char in_nohz_recently;
  416. #endif
  417. /* capture load from *all* tasks on this cpu: */
  418. struct load_weight load;
  419. unsigned long nr_load_updates;
  420. u64 nr_switches;
  421. struct cfs_rq cfs;
  422. struct rt_rq rt;
  423. #ifdef CONFIG_FAIR_GROUP_SCHED
  424. /* list of leaf cfs_rq on this cpu: */
  425. struct list_head leaf_cfs_rq_list;
  426. #endif
  427. #ifdef CONFIG_RT_GROUP_SCHED
  428. struct list_head leaf_rt_rq_list;
  429. #endif
  430. /*
  431. * This is part of a global counter where only the total sum
  432. * over all CPUs matters. A task can increase this counter on
  433. * one CPU and if it got migrated afterwards it may decrease
  434. * it on another CPU. Always updated under the runqueue lock:
  435. */
  436. unsigned long nr_uninterruptible;
  437. struct task_struct *curr, *idle;
  438. unsigned long next_balance;
  439. struct mm_struct *prev_mm;
  440. u64 clock;
  441. atomic_t nr_iowait;
  442. #ifdef CONFIG_SMP
  443. struct root_domain *rd;
  444. struct sched_domain *sd;
  445. unsigned char idle_at_tick;
  446. /* For active balancing */
  447. int post_schedule;
  448. int active_balance;
  449. int push_cpu;
  450. /* cpu of this runqueue: */
  451. int cpu;
  452. int online;
  453. unsigned long avg_load_per_task;
  454. struct task_struct *migration_thread;
  455. struct list_head migration_queue;
  456. u64 rt_avg;
  457. u64 age_stamp;
  458. u64 idle_stamp;
  459. u64 avg_idle;
  460. #endif
  461. /* calc_load related fields */
  462. unsigned long calc_load_update;
  463. long calc_load_active;
  464. #ifdef CONFIG_SCHED_HRTICK
  465. #ifdef CONFIG_SMP
  466. int hrtick_csd_pending;
  467. struct call_single_data hrtick_csd;
  468. #endif
  469. struct hrtimer hrtick_timer;
  470. #endif
  471. #ifdef CONFIG_SCHEDSTATS
  472. /* latency stats */
  473. struct sched_info rq_sched_info;
  474. unsigned long long rq_cpu_time;
  475. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  476. /* sys_sched_yield() stats */
  477. unsigned int yld_count;
  478. /* schedule() stats */
  479. unsigned int sched_switch;
  480. unsigned int sched_count;
  481. unsigned int sched_goidle;
  482. /* try_to_wake_up() stats */
  483. unsigned int ttwu_count;
  484. unsigned int ttwu_local;
  485. /* BKL stats */
  486. unsigned int bkl_count;
  487. #endif
  488. };
  489. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  490. static inline
  491. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  492. {
  493. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  494. }
  495. static inline int cpu_of(struct rq *rq)
  496. {
  497. #ifdef CONFIG_SMP
  498. return rq->cpu;
  499. #else
  500. return 0;
  501. #endif
  502. }
  503. /*
  504. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  505. * See detach_destroy_domains: synchronize_sched for details.
  506. *
  507. * The domain tree of any CPU may only be accessed from within
  508. * preempt-disabled sections.
  509. */
  510. #define for_each_domain(cpu, __sd) \
  511. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  512. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  513. #define this_rq() (&__get_cpu_var(runqueues))
  514. #define task_rq(p) cpu_rq(task_cpu(p))
  515. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  516. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  517. inline void update_rq_clock(struct rq *rq)
  518. {
  519. rq->clock = sched_clock_cpu(cpu_of(rq));
  520. }
  521. /*
  522. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  523. */
  524. #ifdef CONFIG_SCHED_DEBUG
  525. # define const_debug __read_mostly
  526. #else
  527. # define const_debug static const
  528. #endif
  529. /**
  530. * runqueue_is_locked
  531. * @cpu: the processor in question.
  532. *
  533. * Returns true if the current cpu runqueue is locked.
  534. * This interface allows printk to be called with the runqueue lock
  535. * held and know whether or not it is OK to wake up the klogd.
  536. */
  537. int runqueue_is_locked(int cpu)
  538. {
  539. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  540. }
  541. /*
  542. * Debugging: various feature bits
  543. */
  544. #define SCHED_FEAT(name, enabled) \
  545. __SCHED_FEAT_##name ,
  546. enum {
  547. #include "sched_features.h"
  548. };
  549. #undef SCHED_FEAT
  550. #define SCHED_FEAT(name, enabled) \
  551. (1UL << __SCHED_FEAT_##name) * enabled |
  552. const_debug unsigned int sysctl_sched_features =
  553. #include "sched_features.h"
  554. 0;
  555. #undef SCHED_FEAT
  556. #ifdef CONFIG_SCHED_DEBUG
  557. #define SCHED_FEAT(name, enabled) \
  558. #name ,
  559. static __read_mostly char *sched_feat_names[] = {
  560. #include "sched_features.h"
  561. NULL
  562. };
  563. #undef SCHED_FEAT
  564. static int sched_feat_show(struct seq_file *m, void *v)
  565. {
  566. int i;
  567. for (i = 0; sched_feat_names[i]; i++) {
  568. if (!(sysctl_sched_features & (1UL << i)))
  569. seq_puts(m, "NO_");
  570. seq_printf(m, "%s ", sched_feat_names[i]);
  571. }
  572. seq_puts(m, "\n");
  573. return 0;
  574. }
  575. static ssize_t
  576. sched_feat_write(struct file *filp, const char __user *ubuf,
  577. size_t cnt, loff_t *ppos)
  578. {
  579. char buf[64];
  580. char *cmp = buf;
  581. int neg = 0;
  582. int i;
  583. if (cnt > 63)
  584. cnt = 63;
  585. if (copy_from_user(&buf, ubuf, cnt))
  586. return -EFAULT;
  587. buf[cnt] = 0;
  588. if (strncmp(buf, "NO_", 3) == 0) {
  589. neg = 1;
  590. cmp += 3;
  591. }
  592. for (i = 0; sched_feat_names[i]; i++) {
  593. int len = strlen(sched_feat_names[i]);
  594. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  595. if (neg)
  596. sysctl_sched_features &= ~(1UL << i);
  597. else
  598. sysctl_sched_features |= (1UL << i);
  599. break;
  600. }
  601. }
  602. if (!sched_feat_names[i])
  603. return -EINVAL;
  604. *ppos += cnt;
  605. return cnt;
  606. }
  607. static int sched_feat_open(struct inode *inode, struct file *filp)
  608. {
  609. return single_open(filp, sched_feat_show, NULL);
  610. }
  611. static const struct file_operations sched_feat_fops = {
  612. .open = sched_feat_open,
  613. .write = sched_feat_write,
  614. .read = seq_read,
  615. .llseek = seq_lseek,
  616. .release = single_release,
  617. };
  618. static __init int sched_init_debug(void)
  619. {
  620. debugfs_create_file("sched_features", 0644, NULL, NULL,
  621. &sched_feat_fops);
  622. return 0;
  623. }
  624. late_initcall(sched_init_debug);
  625. #endif
  626. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  627. /*
  628. * Number of tasks to iterate in a single balance run.
  629. * Limited because this is done with IRQs disabled.
  630. */
  631. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  632. /*
  633. * ratelimit for updating the group shares.
  634. * default: 0.25ms
  635. */
  636. unsigned int sysctl_sched_shares_ratelimit = 250000;
  637. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  638. /*
  639. * Inject some fuzzyness into changing the per-cpu group shares
  640. * this avoids remote rq-locks at the expense of fairness.
  641. * default: 4
  642. */
  643. unsigned int sysctl_sched_shares_thresh = 4;
  644. /*
  645. * period over which we average the RT time consumption, measured
  646. * in ms.
  647. *
  648. * default: 1s
  649. */
  650. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  651. /*
  652. * period over which we measure -rt task cpu usage in us.
  653. * default: 1s
  654. */
  655. unsigned int sysctl_sched_rt_period = 1000000;
  656. static __read_mostly int scheduler_running;
  657. /*
  658. * part of the period that we allow rt tasks to run in us.
  659. * default: 0.95s
  660. */
  661. int sysctl_sched_rt_runtime = 950000;
  662. static inline u64 global_rt_period(void)
  663. {
  664. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  665. }
  666. static inline u64 global_rt_runtime(void)
  667. {
  668. if (sysctl_sched_rt_runtime < 0)
  669. return RUNTIME_INF;
  670. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  671. }
  672. #ifndef prepare_arch_switch
  673. # define prepare_arch_switch(next) do { } while (0)
  674. #endif
  675. #ifndef finish_arch_switch
  676. # define finish_arch_switch(prev) do { } while (0)
  677. #endif
  678. static inline int task_current(struct rq *rq, struct task_struct *p)
  679. {
  680. return rq->curr == p;
  681. }
  682. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  683. static inline int task_running(struct rq *rq, struct task_struct *p)
  684. {
  685. return task_current(rq, p);
  686. }
  687. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  688. {
  689. }
  690. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  691. {
  692. #ifdef CONFIG_DEBUG_SPINLOCK
  693. /* this is a valid case when another task releases the spinlock */
  694. rq->lock.owner = current;
  695. #endif
  696. /*
  697. * If we are tracking spinlock dependencies then we have to
  698. * fix up the runqueue lock - which gets 'carried over' from
  699. * prev into current:
  700. */
  701. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  702. raw_spin_unlock_irq(&rq->lock);
  703. }
  704. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  705. static inline int task_running(struct rq *rq, struct task_struct *p)
  706. {
  707. #ifdef CONFIG_SMP
  708. return p->oncpu;
  709. #else
  710. return task_current(rq, p);
  711. #endif
  712. }
  713. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  714. {
  715. #ifdef CONFIG_SMP
  716. /*
  717. * We can optimise this out completely for !SMP, because the
  718. * SMP rebalancing from interrupt is the only thing that cares
  719. * here.
  720. */
  721. next->oncpu = 1;
  722. #endif
  723. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  724. raw_spin_unlock_irq(&rq->lock);
  725. #else
  726. raw_spin_unlock(&rq->lock);
  727. #endif
  728. }
  729. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  730. {
  731. #ifdef CONFIG_SMP
  732. /*
  733. * After ->oncpu is cleared, the task can be moved to a different CPU.
  734. * We must ensure this doesn't happen until the switch is completely
  735. * finished.
  736. */
  737. smp_wmb();
  738. prev->oncpu = 0;
  739. #endif
  740. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  741. local_irq_enable();
  742. #endif
  743. }
  744. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  745. /*
  746. * __task_rq_lock - lock the runqueue a given task resides on.
  747. * Must be called interrupts disabled.
  748. */
  749. static inline struct rq *__task_rq_lock(struct task_struct *p)
  750. __acquires(rq->lock)
  751. {
  752. for (;;) {
  753. struct rq *rq = task_rq(p);
  754. raw_spin_lock(&rq->lock);
  755. if (likely(rq == task_rq(p)))
  756. return rq;
  757. raw_spin_unlock(&rq->lock);
  758. }
  759. }
  760. /*
  761. * task_rq_lock - lock the runqueue a given task resides on and disable
  762. * interrupts. Note the ordering: we can safely lookup the task_rq without
  763. * explicitly disabling preemption.
  764. */
  765. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  766. __acquires(rq->lock)
  767. {
  768. struct rq *rq;
  769. for (;;) {
  770. local_irq_save(*flags);
  771. rq = task_rq(p);
  772. raw_spin_lock(&rq->lock);
  773. if (likely(rq == task_rq(p)))
  774. return rq;
  775. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  776. }
  777. }
  778. void task_rq_unlock_wait(struct task_struct *p)
  779. {
  780. struct rq *rq = task_rq(p);
  781. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  782. raw_spin_unlock_wait(&rq->lock);
  783. }
  784. static void __task_rq_unlock(struct rq *rq)
  785. __releases(rq->lock)
  786. {
  787. raw_spin_unlock(&rq->lock);
  788. }
  789. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  790. __releases(rq->lock)
  791. {
  792. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  793. }
  794. /*
  795. * this_rq_lock - lock this runqueue and disable interrupts.
  796. */
  797. static struct rq *this_rq_lock(void)
  798. __acquires(rq->lock)
  799. {
  800. struct rq *rq;
  801. local_irq_disable();
  802. rq = this_rq();
  803. raw_spin_lock(&rq->lock);
  804. return rq;
  805. }
  806. #ifdef CONFIG_SCHED_HRTICK
  807. /*
  808. * Use HR-timers to deliver accurate preemption points.
  809. *
  810. * Its all a bit involved since we cannot program an hrt while holding the
  811. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  812. * reschedule event.
  813. *
  814. * When we get rescheduled we reprogram the hrtick_timer outside of the
  815. * rq->lock.
  816. */
  817. /*
  818. * Use hrtick when:
  819. * - enabled by features
  820. * - hrtimer is actually high res
  821. */
  822. static inline int hrtick_enabled(struct rq *rq)
  823. {
  824. if (!sched_feat(HRTICK))
  825. return 0;
  826. if (!cpu_active(cpu_of(rq)))
  827. return 0;
  828. return hrtimer_is_hres_active(&rq->hrtick_timer);
  829. }
  830. static void hrtick_clear(struct rq *rq)
  831. {
  832. if (hrtimer_active(&rq->hrtick_timer))
  833. hrtimer_cancel(&rq->hrtick_timer);
  834. }
  835. /*
  836. * High-resolution timer tick.
  837. * Runs from hardirq context with interrupts disabled.
  838. */
  839. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  840. {
  841. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  842. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  843. raw_spin_lock(&rq->lock);
  844. update_rq_clock(rq);
  845. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  846. raw_spin_unlock(&rq->lock);
  847. return HRTIMER_NORESTART;
  848. }
  849. #ifdef CONFIG_SMP
  850. /*
  851. * called from hardirq (IPI) context
  852. */
  853. static void __hrtick_start(void *arg)
  854. {
  855. struct rq *rq = arg;
  856. raw_spin_lock(&rq->lock);
  857. hrtimer_restart(&rq->hrtick_timer);
  858. rq->hrtick_csd_pending = 0;
  859. raw_spin_unlock(&rq->lock);
  860. }
  861. /*
  862. * Called to set the hrtick timer state.
  863. *
  864. * called with rq->lock held and irqs disabled
  865. */
  866. static void hrtick_start(struct rq *rq, u64 delay)
  867. {
  868. struct hrtimer *timer = &rq->hrtick_timer;
  869. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  870. hrtimer_set_expires(timer, time);
  871. if (rq == this_rq()) {
  872. hrtimer_restart(timer);
  873. } else if (!rq->hrtick_csd_pending) {
  874. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  875. rq->hrtick_csd_pending = 1;
  876. }
  877. }
  878. static int
  879. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  880. {
  881. int cpu = (int)(long)hcpu;
  882. switch (action) {
  883. case CPU_UP_CANCELED:
  884. case CPU_UP_CANCELED_FROZEN:
  885. case CPU_DOWN_PREPARE:
  886. case CPU_DOWN_PREPARE_FROZEN:
  887. case CPU_DEAD:
  888. case CPU_DEAD_FROZEN:
  889. hrtick_clear(cpu_rq(cpu));
  890. return NOTIFY_OK;
  891. }
  892. return NOTIFY_DONE;
  893. }
  894. static __init void init_hrtick(void)
  895. {
  896. hotcpu_notifier(hotplug_hrtick, 0);
  897. }
  898. #else
  899. /*
  900. * Called to set the hrtick timer state.
  901. *
  902. * called with rq->lock held and irqs disabled
  903. */
  904. static void hrtick_start(struct rq *rq, u64 delay)
  905. {
  906. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  907. HRTIMER_MODE_REL_PINNED, 0);
  908. }
  909. static inline void init_hrtick(void)
  910. {
  911. }
  912. #endif /* CONFIG_SMP */
  913. static void init_rq_hrtick(struct rq *rq)
  914. {
  915. #ifdef CONFIG_SMP
  916. rq->hrtick_csd_pending = 0;
  917. rq->hrtick_csd.flags = 0;
  918. rq->hrtick_csd.func = __hrtick_start;
  919. rq->hrtick_csd.info = rq;
  920. #endif
  921. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  922. rq->hrtick_timer.function = hrtick;
  923. }
  924. #else /* CONFIG_SCHED_HRTICK */
  925. static inline void hrtick_clear(struct rq *rq)
  926. {
  927. }
  928. static inline void init_rq_hrtick(struct rq *rq)
  929. {
  930. }
  931. static inline void init_hrtick(void)
  932. {
  933. }
  934. #endif /* CONFIG_SCHED_HRTICK */
  935. /*
  936. * resched_task - mark a task 'to be rescheduled now'.
  937. *
  938. * On UP this means the setting of the need_resched flag, on SMP it
  939. * might also involve a cross-CPU call to trigger the scheduler on
  940. * the target CPU.
  941. */
  942. #ifdef CONFIG_SMP
  943. #ifndef tsk_is_polling
  944. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  945. #endif
  946. static void resched_task(struct task_struct *p)
  947. {
  948. int cpu;
  949. assert_raw_spin_locked(&task_rq(p)->lock);
  950. if (test_tsk_need_resched(p))
  951. return;
  952. set_tsk_need_resched(p);
  953. cpu = task_cpu(p);
  954. if (cpu == smp_processor_id())
  955. return;
  956. /* NEED_RESCHED must be visible before we test polling */
  957. smp_mb();
  958. if (!tsk_is_polling(p))
  959. smp_send_reschedule(cpu);
  960. }
  961. static void resched_cpu(int cpu)
  962. {
  963. struct rq *rq = cpu_rq(cpu);
  964. unsigned long flags;
  965. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  966. return;
  967. resched_task(cpu_curr(cpu));
  968. raw_spin_unlock_irqrestore(&rq->lock, flags);
  969. }
  970. #ifdef CONFIG_NO_HZ
  971. /*
  972. * When add_timer_on() enqueues a timer into the timer wheel of an
  973. * idle CPU then this timer might expire before the next timer event
  974. * which is scheduled to wake up that CPU. In case of a completely
  975. * idle system the next event might even be infinite time into the
  976. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  977. * leaves the inner idle loop so the newly added timer is taken into
  978. * account when the CPU goes back to idle and evaluates the timer
  979. * wheel for the next timer event.
  980. */
  981. void wake_up_idle_cpu(int cpu)
  982. {
  983. struct rq *rq = cpu_rq(cpu);
  984. if (cpu == smp_processor_id())
  985. return;
  986. /*
  987. * This is safe, as this function is called with the timer
  988. * wheel base lock of (cpu) held. When the CPU is on the way
  989. * to idle and has not yet set rq->curr to idle then it will
  990. * be serialized on the timer wheel base lock and take the new
  991. * timer into account automatically.
  992. */
  993. if (rq->curr != rq->idle)
  994. return;
  995. /*
  996. * We can set TIF_RESCHED on the idle task of the other CPU
  997. * lockless. The worst case is that the other CPU runs the
  998. * idle task through an additional NOOP schedule()
  999. */
  1000. set_tsk_need_resched(rq->idle);
  1001. /* NEED_RESCHED must be visible before we test polling */
  1002. smp_mb();
  1003. if (!tsk_is_polling(rq->idle))
  1004. smp_send_reschedule(cpu);
  1005. }
  1006. #endif /* CONFIG_NO_HZ */
  1007. static u64 sched_avg_period(void)
  1008. {
  1009. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1010. }
  1011. static void sched_avg_update(struct rq *rq)
  1012. {
  1013. s64 period = sched_avg_period();
  1014. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1015. rq->age_stamp += period;
  1016. rq->rt_avg /= 2;
  1017. }
  1018. }
  1019. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1020. {
  1021. rq->rt_avg += rt_delta;
  1022. sched_avg_update(rq);
  1023. }
  1024. #else /* !CONFIG_SMP */
  1025. static void resched_task(struct task_struct *p)
  1026. {
  1027. assert_raw_spin_locked(&task_rq(p)->lock);
  1028. set_tsk_need_resched(p);
  1029. }
  1030. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1031. {
  1032. }
  1033. #endif /* CONFIG_SMP */
  1034. #if BITS_PER_LONG == 32
  1035. # define WMULT_CONST (~0UL)
  1036. #else
  1037. # define WMULT_CONST (1UL << 32)
  1038. #endif
  1039. #define WMULT_SHIFT 32
  1040. /*
  1041. * Shift right and round:
  1042. */
  1043. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1044. /*
  1045. * delta *= weight / lw
  1046. */
  1047. static unsigned long
  1048. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1049. struct load_weight *lw)
  1050. {
  1051. u64 tmp;
  1052. if (!lw->inv_weight) {
  1053. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1054. lw->inv_weight = 1;
  1055. else
  1056. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1057. / (lw->weight+1);
  1058. }
  1059. tmp = (u64)delta_exec * weight;
  1060. /*
  1061. * Check whether we'd overflow the 64-bit multiplication:
  1062. */
  1063. if (unlikely(tmp > WMULT_CONST))
  1064. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1065. WMULT_SHIFT/2);
  1066. else
  1067. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1068. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1069. }
  1070. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1071. {
  1072. lw->weight += inc;
  1073. lw->inv_weight = 0;
  1074. }
  1075. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1076. {
  1077. lw->weight -= dec;
  1078. lw->inv_weight = 0;
  1079. }
  1080. /*
  1081. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1082. * of tasks with abnormal "nice" values across CPUs the contribution that
  1083. * each task makes to its run queue's load is weighted according to its
  1084. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1085. * scaled version of the new time slice allocation that they receive on time
  1086. * slice expiry etc.
  1087. */
  1088. #define WEIGHT_IDLEPRIO 3
  1089. #define WMULT_IDLEPRIO 1431655765
  1090. /*
  1091. * Nice levels are multiplicative, with a gentle 10% change for every
  1092. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1093. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1094. * that remained on nice 0.
  1095. *
  1096. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1097. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1098. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1099. * If a task goes up by ~10% and another task goes down by ~10% then
  1100. * the relative distance between them is ~25%.)
  1101. */
  1102. static const int prio_to_weight[40] = {
  1103. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1104. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1105. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1106. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1107. /* 0 */ 1024, 820, 655, 526, 423,
  1108. /* 5 */ 335, 272, 215, 172, 137,
  1109. /* 10 */ 110, 87, 70, 56, 45,
  1110. /* 15 */ 36, 29, 23, 18, 15,
  1111. };
  1112. /*
  1113. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1114. *
  1115. * In cases where the weight does not change often, we can use the
  1116. * precalculated inverse to speed up arithmetics by turning divisions
  1117. * into multiplications:
  1118. */
  1119. static const u32 prio_to_wmult[40] = {
  1120. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1121. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1122. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1123. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1124. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1125. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1126. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1127. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1128. };
  1129. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1130. enum cpuacct_stat_index {
  1131. CPUACCT_STAT_USER, /* ... user mode */
  1132. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1133. CPUACCT_STAT_NSTATS,
  1134. };
  1135. #ifdef CONFIG_CGROUP_CPUACCT
  1136. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1137. static void cpuacct_update_stats(struct task_struct *tsk,
  1138. enum cpuacct_stat_index idx, cputime_t val);
  1139. #else
  1140. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1141. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1142. enum cpuacct_stat_index idx, cputime_t val) {}
  1143. #endif
  1144. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1145. {
  1146. update_load_add(&rq->load, load);
  1147. }
  1148. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1149. {
  1150. update_load_sub(&rq->load, load);
  1151. }
  1152. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1153. typedef int (*tg_visitor)(struct task_group *, void *);
  1154. /*
  1155. * Iterate the full tree, calling @down when first entering a node and @up when
  1156. * leaving it for the final time.
  1157. */
  1158. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1159. {
  1160. struct task_group *parent, *child;
  1161. int ret;
  1162. rcu_read_lock();
  1163. parent = &root_task_group;
  1164. down:
  1165. ret = (*down)(parent, data);
  1166. if (ret)
  1167. goto out_unlock;
  1168. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1169. parent = child;
  1170. goto down;
  1171. up:
  1172. continue;
  1173. }
  1174. ret = (*up)(parent, data);
  1175. if (ret)
  1176. goto out_unlock;
  1177. child = parent;
  1178. parent = parent->parent;
  1179. if (parent)
  1180. goto up;
  1181. out_unlock:
  1182. rcu_read_unlock();
  1183. return ret;
  1184. }
  1185. static int tg_nop(struct task_group *tg, void *data)
  1186. {
  1187. return 0;
  1188. }
  1189. #endif
  1190. #ifdef CONFIG_SMP
  1191. /* Used instead of source_load when we know the type == 0 */
  1192. static unsigned long weighted_cpuload(const int cpu)
  1193. {
  1194. return cpu_rq(cpu)->load.weight;
  1195. }
  1196. /*
  1197. * Return a low guess at the load of a migration-source cpu weighted
  1198. * according to the scheduling class and "nice" value.
  1199. *
  1200. * We want to under-estimate the load of migration sources, to
  1201. * balance conservatively.
  1202. */
  1203. static unsigned long source_load(int cpu, int type)
  1204. {
  1205. struct rq *rq = cpu_rq(cpu);
  1206. unsigned long total = weighted_cpuload(cpu);
  1207. if (type == 0 || !sched_feat(LB_BIAS))
  1208. return total;
  1209. return min(rq->cpu_load[type-1], total);
  1210. }
  1211. /*
  1212. * Return a high guess at the load of a migration-target cpu weighted
  1213. * according to the scheduling class and "nice" value.
  1214. */
  1215. static unsigned long target_load(int cpu, int type)
  1216. {
  1217. struct rq *rq = cpu_rq(cpu);
  1218. unsigned long total = weighted_cpuload(cpu);
  1219. if (type == 0 || !sched_feat(LB_BIAS))
  1220. return total;
  1221. return max(rq->cpu_load[type-1], total);
  1222. }
  1223. static struct sched_group *group_of(int cpu)
  1224. {
  1225. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1226. if (!sd)
  1227. return NULL;
  1228. return sd->groups;
  1229. }
  1230. static unsigned long power_of(int cpu)
  1231. {
  1232. struct sched_group *group = group_of(cpu);
  1233. if (!group)
  1234. return SCHED_LOAD_SCALE;
  1235. return group->cpu_power;
  1236. }
  1237. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1238. static unsigned long cpu_avg_load_per_task(int cpu)
  1239. {
  1240. struct rq *rq = cpu_rq(cpu);
  1241. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1242. if (nr_running)
  1243. rq->avg_load_per_task = rq->load.weight / nr_running;
  1244. else
  1245. rq->avg_load_per_task = 0;
  1246. return rq->avg_load_per_task;
  1247. }
  1248. #ifdef CONFIG_FAIR_GROUP_SCHED
  1249. static __read_mostly unsigned long *update_shares_data;
  1250. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1251. /*
  1252. * Calculate and set the cpu's group shares.
  1253. */
  1254. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1255. unsigned long sd_shares,
  1256. unsigned long sd_rq_weight,
  1257. unsigned long *usd_rq_weight)
  1258. {
  1259. unsigned long shares, rq_weight;
  1260. int boost = 0;
  1261. rq_weight = usd_rq_weight[cpu];
  1262. if (!rq_weight) {
  1263. boost = 1;
  1264. rq_weight = NICE_0_LOAD;
  1265. }
  1266. /*
  1267. * \Sum_j shares_j * rq_weight_i
  1268. * shares_i = -----------------------------
  1269. * \Sum_j rq_weight_j
  1270. */
  1271. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1272. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1273. if (abs(shares - tg->se[cpu]->load.weight) >
  1274. sysctl_sched_shares_thresh) {
  1275. struct rq *rq = cpu_rq(cpu);
  1276. unsigned long flags;
  1277. raw_spin_lock_irqsave(&rq->lock, flags);
  1278. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1279. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1280. __set_se_shares(tg->se[cpu], shares);
  1281. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1282. }
  1283. }
  1284. /*
  1285. * Re-compute the task group their per cpu shares over the given domain.
  1286. * This needs to be done in a bottom-up fashion because the rq weight of a
  1287. * parent group depends on the shares of its child groups.
  1288. */
  1289. static int tg_shares_up(struct task_group *tg, void *data)
  1290. {
  1291. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1292. unsigned long *usd_rq_weight;
  1293. struct sched_domain *sd = data;
  1294. unsigned long flags;
  1295. int i;
  1296. if (!tg->se[0])
  1297. return 0;
  1298. local_irq_save(flags);
  1299. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1300. for_each_cpu(i, sched_domain_span(sd)) {
  1301. weight = tg->cfs_rq[i]->load.weight;
  1302. usd_rq_weight[i] = weight;
  1303. rq_weight += weight;
  1304. /*
  1305. * If there are currently no tasks on the cpu pretend there
  1306. * is one of average load so that when a new task gets to
  1307. * run here it will not get delayed by group starvation.
  1308. */
  1309. if (!weight)
  1310. weight = NICE_0_LOAD;
  1311. sum_weight += weight;
  1312. shares += tg->cfs_rq[i]->shares;
  1313. }
  1314. if (!rq_weight)
  1315. rq_weight = sum_weight;
  1316. if ((!shares && rq_weight) || shares > tg->shares)
  1317. shares = tg->shares;
  1318. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1319. shares = tg->shares;
  1320. for_each_cpu(i, sched_domain_span(sd))
  1321. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1322. local_irq_restore(flags);
  1323. return 0;
  1324. }
  1325. /*
  1326. * Compute the cpu's hierarchical load factor for each task group.
  1327. * This needs to be done in a top-down fashion because the load of a child
  1328. * group is a fraction of its parents load.
  1329. */
  1330. static int tg_load_down(struct task_group *tg, void *data)
  1331. {
  1332. unsigned long load;
  1333. long cpu = (long)data;
  1334. if (!tg->parent) {
  1335. load = cpu_rq(cpu)->load.weight;
  1336. } else {
  1337. load = tg->parent->cfs_rq[cpu]->h_load;
  1338. load *= tg->cfs_rq[cpu]->shares;
  1339. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1340. }
  1341. tg->cfs_rq[cpu]->h_load = load;
  1342. return 0;
  1343. }
  1344. static void update_shares(struct sched_domain *sd)
  1345. {
  1346. s64 elapsed;
  1347. u64 now;
  1348. if (root_task_group_empty())
  1349. return;
  1350. now = cpu_clock(raw_smp_processor_id());
  1351. elapsed = now - sd->last_update;
  1352. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1353. sd->last_update = now;
  1354. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1355. }
  1356. }
  1357. static void update_h_load(long cpu)
  1358. {
  1359. if (root_task_group_empty())
  1360. return;
  1361. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1362. }
  1363. #else
  1364. static inline void update_shares(struct sched_domain *sd)
  1365. {
  1366. }
  1367. #endif
  1368. #ifdef CONFIG_PREEMPT
  1369. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1370. /*
  1371. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1372. * way at the expense of forcing extra atomic operations in all
  1373. * invocations. This assures that the double_lock is acquired using the
  1374. * same underlying policy as the spinlock_t on this architecture, which
  1375. * reduces latency compared to the unfair variant below. However, it
  1376. * also adds more overhead and therefore may reduce throughput.
  1377. */
  1378. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1379. __releases(this_rq->lock)
  1380. __acquires(busiest->lock)
  1381. __acquires(this_rq->lock)
  1382. {
  1383. raw_spin_unlock(&this_rq->lock);
  1384. double_rq_lock(this_rq, busiest);
  1385. return 1;
  1386. }
  1387. #else
  1388. /*
  1389. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1390. * latency by eliminating extra atomic operations when the locks are
  1391. * already in proper order on entry. This favors lower cpu-ids and will
  1392. * grant the double lock to lower cpus over higher ids under contention,
  1393. * regardless of entry order into the function.
  1394. */
  1395. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1396. __releases(this_rq->lock)
  1397. __acquires(busiest->lock)
  1398. __acquires(this_rq->lock)
  1399. {
  1400. int ret = 0;
  1401. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1402. if (busiest < this_rq) {
  1403. raw_spin_unlock(&this_rq->lock);
  1404. raw_spin_lock(&busiest->lock);
  1405. raw_spin_lock_nested(&this_rq->lock,
  1406. SINGLE_DEPTH_NESTING);
  1407. ret = 1;
  1408. } else
  1409. raw_spin_lock_nested(&busiest->lock,
  1410. SINGLE_DEPTH_NESTING);
  1411. }
  1412. return ret;
  1413. }
  1414. #endif /* CONFIG_PREEMPT */
  1415. /*
  1416. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1417. */
  1418. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1419. {
  1420. if (unlikely(!irqs_disabled())) {
  1421. /* printk() doesn't work good under rq->lock */
  1422. raw_spin_unlock(&this_rq->lock);
  1423. BUG_ON(1);
  1424. }
  1425. return _double_lock_balance(this_rq, busiest);
  1426. }
  1427. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1428. __releases(busiest->lock)
  1429. {
  1430. raw_spin_unlock(&busiest->lock);
  1431. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1432. }
  1433. /*
  1434. * double_rq_lock - safely lock two runqueues
  1435. *
  1436. * Note this does not disable interrupts like task_rq_lock,
  1437. * you need to do so manually before calling.
  1438. */
  1439. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1440. __acquires(rq1->lock)
  1441. __acquires(rq2->lock)
  1442. {
  1443. BUG_ON(!irqs_disabled());
  1444. if (rq1 == rq2) {
  1445. raw_spin_lock(&rq1->lock);
  1446. __acquire(rq2->lock); /* Fake it out ;) */
  1447. } else {
  1448. if (rq1 < rq2) {
  1449. raw_spin_lock(&rq1->lock);
  1450. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1451. } else {
  1452. raw_spin_lock(&rq2->lock);
  1453. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1454. }
  1455. }
  1456. update_rq_clock(rq1);
  1457. update_rq_clock(rq2);
  1458. }
  1459. /*
  1460. * double_rq_unlock - safely unlock two runqueues
  1461. *
  1462. * Note this does not restore interrupts like task_rq_unlock,
  1463. * you need to do so manually after calling.
  1464. */
  1465. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1466. __releases(rq1->lock)
  1467. __releases(rq2->lock)
  1468. {
  1469. raw_spin_unlock(&rq1->lock);
  1470. if (rq1 != rq2)
  1471. raw_spin_unlock(&rq2->lock);
  1472. else
  1473. __release(rq2->lock);
  1474. }
  1475. #endif
  1476. #ifdef CONFIG_FAIR_GROUP_SCHED
  1477. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1478. {
  1479. #ifdef CONFIG_SMP
  1480. cfs_rq->shares = shares;
  1481. #endif
  1482. }
  1483. #endif
  1484. static void calc_load_account_active(struct rq *this_rq);
  1485. static void update_sysctl(void);
  1486. static int get_update_sysctl_factor(void);
  1487. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1488. {
  1489. set_task_rq(p, cpu);
  1490. #ifdef CONFIG_SMP
  1491. /*
  1492. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1493. * successfuly executed on another CPU. We must ensure that updates of
  1494. * per-task data have been completed by this moment.
  1495. */
  1496. smp_wmb();
  1497. task_thread_info(p)->cpu = cpu;
  1498. #endif
  1499. }
  1500. static const struct sched_class rt_sched_class;
  1501. #define sched_class_highest (&rt_sched_class)
  1502. #define for_each_class(class) \
  1503. for (class = sched_class_highest; class; class = class->next)
  1504. #include "sched_stats.h"
  1505. static void inc_nr_running(struct rq *rq)
  1506. {
  1507. rq->nr_running++;
  1508. }
  1509. static void dec_nr_running(struct rq *rq)
  1510. {
  1511. rq->nr_running--;
  1512. }
  1513. static void set_load_weight(struct task_struct *p)
  1514. {
  1515. if (task_has_rt_policy(p)) {
  1516. p->se.load.weight = prio_to_weight[0] * 2;
  1517. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1518. return;
  1519. }
  1520. /*
  1521. * SCHED_IDLE tasks get minimal weight:
  1522. */
  1523. if (p->policy == SCHED_IDLE) {
  1524. p->se.load.weight = WEIGHT_IDLEPRIO;
  1525. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1526. return;
  1527. }
  1528. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1529. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1530. }
  1531. static void update_avg(u64 *avg, u64 sample)
  1532. {
  1533. s64 diff = sample - *avg;
  1534. *avg += diff >> 3;
  1535. }
  1536. static void
  1537. enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
  1538. {
  1539. if (wakeup)
  1540. p->se.start_runtime = p->se.sum_exec_runtime;
  1541. sched_info_queued(p);
  1542. p->sched_class->enqueue_task(rq, p, wakeup, head);
  1543. p->se.on_rq = 1;
  1544. }
  1545. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1546. {
  1547. if (sleep) {
  1548. if (p->se.last_wakeup) {
  1549. update_avg(&p->se.avg_overlap,
  1550. p->se.sum_exec_runtime - p->se.last_wakeup);
  1551. p->se.last_wakeup = 0;
  1552. } else {
  1553. update_avg(&p->se.avg_wakeup,
  1554. sysctl_sched_wakeup_granularity);
  1555. }
  1556. }
  1557. sched_info_dequeued(p);
  1558. p->sched_class->dequeue_task(rq, p, sleep);
  1559. p->se.on_rq = 0;
  1560. }
  1561. /*
  1562. * activate_task - move a task to the runqueue.
  1563. */
  1564. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1565. {
  1566. if (task_contributes_to_load(p))
  1567. rq->nr_uninterruptible--;
  1568. enqueue_task(rq, p, wakeup, false);
  1569. inc_nr_running(rq);
  1570. }
  1571. /*
  1572. * deactivate_task - remove a task from the runqueue.
  1573. */
  1574. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1575. {
  1576. if (task_contributes_to_load(p))
  1577. rq->nr_uninterruptible++;
  1578. dequeue_task(rq, p, sleep);
  1579. dec_nr_running(rq);
  1580. }
  1581. #include "sched_idletask.c"
  1582. #include "sched_fair.c"
  1583. #include "sched_rt.c"
  1584. #ifdef CONFIG_SCHED_DEBUG
  1585. # include "sched_debug.c"
  1586. #endif
  1587. /*
  1588. * __normal_prio - return the priority that is based on the static prio
  1589. */
  1590. static inline int __normal_prio(struct task_struct *p)
  1591. {
  1592. return p->static_prio;
  1593. }
  1594. /*
  1595. * Calculate the expected normal priority: i.e. priority
  1596. * without taking RT-inheritance into account. Might be
  1597. * boosted by interactivity modifiers. Changes upon fork,
  1598. * setprio syscalls, and whenever the interactivity
  1599. * estimator recalculates.
  1600. */
  1601. static inline int normal_prio(struct task_struct *p)
  1602. {
  1603. int prio;
  1604. if (task_has_rt_policy(p))
  1605. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1606. else
  1607. prio = __normal_prio(p);
  1608. return prio;
  1609. }
  1610. /*
  1611. * Calculate the current priority, i.e. the priority
  1612. * taken into account by the scheduler. This value might
  1613. * be boosted by RT tasks, or might be boosted by
  1614. * interactivity modifiers. Will be RT if the task got
  1615. * RT-boosted. If not then it returns p->normal_prio.
  1616. */
  1617. static int effective_prio(struct task_struct *p)
  1618. {
  1619. p->normal_prio = normal_prio(p);
  1620. /*
  1621. * If we are RT tasks or we were boosted to RT priority,
  1622. * keep the priority unchanged. Otherwise, update priority
  1623. * to the normal priority:
  1624. */
  1625. if (!rt_prio(p->prio))
  1626. return p->normal_prio;
  1627. return p->prio;
  1628. }
  1629. /**
  1630. * task_curr - is this task currently executing on a CPU?
  1631. * @p: the task in question.
  1632. */
  1633. inline int task_curr(const struct task_struct *p)
  1634. {
  1635. return cpu_curr(task_cpu(p)) == p;
  1636. }
  1637. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1638. const struct sched_class *prev_class,
  1639. int oldprio, int running)
  1640. {
  1641. if (prev_class != p->sched_class) {
  1642. if (prev_class->switched_from)
  1643. prev_class->switched_from(rq, p, running);
  1644. p->sched_class->switched_to(rq, p, running);
  1645. } else
  1646. p->sched_class->prio_changed(rq, p, oldprio, running);
  1647. }
  1648. #ifdef CONFIG_SMP
  1649. /*
  1650. * Is this task likely cache-hot:
  1651. */
  1652. static int
  1653. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1654. {
  1655. s64 delta;
  1656. if (p->sched_class != &fair_sched_class)
  1657. return 0;
  1658. /*
  1659. * Buddy candidates are cache hot:
  1660. */
  1661. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1662. (&p->se == cfs_rq_of(&p->se)->next ||
  1663. &p->se == cfs_rq_of(&p->se)->last))
  1664. return 1;
  1665. if (sysctl_sched_migration_cost == -1)
  1666. return 1;
  1667. if (sysctl_sched_migration_cost == 0)
  1668. return 0;
  1669. delta = now - p->se.exec_start;
  1670. return delta < (s64)sysctl_sched_migration_cost;
  1671. }
  1672. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1673. {
  1674. #ifdef CONFIG_SCHED_DEBUG
  1675. /*
  1676. * We should never call set_task_cpu() on a blocked task,
  1677. * ttwu() will sort out the placement.
  1678. */
  1679. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1680. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1681. #endif
  1682. trace_sched_migrate_task(p, new_cpu);
  1683. if (task_cpu(p) != new_cpu) {
  1684. p->se.nr_migrations++;
  1685. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1686. }
  1687. __set_task_cpu(p, new_cpu);
  1688. }
  1689. struct migration_req {
  1690. struct list_head list;
  1691. struct task_struct *task;
  1692. int dest_cpu;
  1693. struct completion done;
  1694. };
  1695. /*
  1696. * The task's runqueue lock must be held.
  1697. * Returns true if you have to wait for migration thread.
  1698. */
  1699. static int
  1700. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1701. {
  1702. struct rq *rq = task_rq(p);
  1703. /*
  1704. * If the task is not on a runqueue (and not running), then
  1705. * the next wake-up will properly place the task.
  1706. */
  1707. if (!p->se.on_rq && !task_running(rq, p))
  1708. return 0;
  1709. init_completion(&req->done);
  1710. req->task = p;
  1711. req->dest_cpu = dest_cpu;
  1712. list_add(&req->list, &rq->migration_queue);
  1713. return 1;
  1714. }
  1715. /*
  1716. * wait_task_context_switch - wait for a thread to complete at least one
  1717. * context switch.
  1718. *
  1719. * @p must not be current.
  1720. */
  1721. void wait_task_context_switch(struct task_struct *p)
  1722. {
  1723. unsigned long nvcsw, nivcsw, flags;
  1724. int running;
  1725. struct rq *rq;
  1726. nvcsw = p->nvcsw;
  1727. nivcsw = p->nivcsw;
  1728. for (;;) {
  1729. /*
  1730. * The runqueue is assigned before the actual context
  1731. * switch. We need to take the runqueue lock.
  1732. *
  1733. * We could check initially without the lock but it is
  1734. * very likely that we need to take the lock in every
  1735. * iteration.
  1736. */
  1737. rq = task_rq_lock(p, &flags);
  1738. running = task_running(rq, p);
  1739. task_rq_unlock(rq, &flags);
  1740. if (likely(!running))
  1741. break;
  1742. /*
  1743. * The switch count is incremented before the actual
  1744. * context switch. We thus wait for two switches to be
  1745. * sure at least one completed.
  1746. */
  1747. if ((p->nvcsw - nvcsw) > 1)
  1748. break;
  1749. if ((p->nivcsw - nivcsw) > 1)
  1750. break;
  1751. cpu_relax();
  1752. }
  1753. }
  1754. /*
  1755. * wait_task_inactive - wait for a thread to unschedule.
  1756. *
  1757. * If @match_state is nonzero, it's the @p->state value just checked and
  1758. * not expected to change. If it changes, i.e. @p might have woken up,
  1759. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1760. * we return a positive number (its total switch count). If a second call
  1761. * a short while later returns the same number, the caller can be sure that
  1762. * @p has remained unscheduled the whole time.
  1763. *
  1764. * The caller must ensure that the task *will* unschedule sometime soon,
  1765. * else this function might spin for a *long* time. This function can't
  1766. * be called with interrupts off, or it may introduce deadlock with
  1767. * smp_call_function() if an IPI is sent by the same process we are
  1768. * waiting to become inactive.
  1769. */
  1770. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1771. {
  1772. unsigned long flags;
  1773. int running, on_rq;
  1774. unsigned long ncsw;
  1775. struct rq *rq;
  1776. for (;;) {
  1777. /*
  1778. * We do the initial early heuristics without holding
  1779. * any task-queue locks at all. We'll only try to get
  1780. * the runqueue lock when things look like they will
  1781. * work out!
  1782. */
  1783. rq = task_rq(p);
  1784. /*
  1785. * If the task is actively running on another CPU
  1786. * still, just relax and busy-wait without holding
  1787. * any locks.
  1788. *
  1789. * NOTE! Since we don't hold any locks, it's not
  1790. * even sure that "rq" stays as the right runqueue!
  1791. * But we don't care, since "task_running()" will
  1792. * return false if the runqueue has changed and p
  1793. * is actually now running somewhere else!
  1794. */
  1795. while (task_running(rq, p)) {
  1796. if (match_state && unlikely(p->state != match_state))
  1797. return 0;
  1798. cpu_relax();
  1799. }
  1800. /*
  1801. * Ok, time to look more closely! We need the rq
  1802. * lock now, to be *sure*. If we're wrong, we'll
  1803. * just go back and repeat.
  1804. */
  1805. rq = task_rq_lock(p, &flags);
  1806. trace_sched_wait_task(rq, p);
  1807. running = task_running(rq, p);
  1808. on_rq = p->se.on_rq;
  1809. ncsw = 0;
  1810. if (!match_state || p->state == match_state)
  1811. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1812. task_rq_unlock(rq, &flags);
  1813. /*
  1814. * If it changed from the expected state, bail out now.
  1815. */
  1816. if (unlikely(!ncsw))
  1817. break;
  1818. /*
  1819. * Was it really running after all now that we
  1820. * checked with the proper locks actually held?
  1821. *
  1822. * Oops. Go back and try again..
  1823. */
  1824. if (unlikely(running)) {
  1825. cpu_relax();
  1826. continue;
  1827. }
  1828. /*
  1829. * It's not enough that it's not actively running,
  1830. * it must be off the runqueue _entirely_, and not
  1831. * preempted!
  1832. *
  1833. * So if it was still runnable (but just not actively
  1834. * running right now), it's preempted, and we should
  1835. * yield - it could be a while.
  1836. */
  1837. if (unlikely(on_rq)) {
  1838. schedule_timeout_uninterruptible(1);
  1839. continue;
  1840. }
  1841. /*
  1842. * Ahh, all good. It wasn't running, and it wasn't
  1843. * runnable, which means that it will never become
  1844. * running in the future either. We're all done!
  1845. */
  1846. break;
  1847. }
  1848. return ncsw;
  1849. }
  1850. /***
  1851. * kick_process - kick a running thread to enter/exit the kernel
  1852. * @p: the to-be-kicked thread
  1853. *
  1854. * Cause a process which is running on another CPU to enter
  1855. * kernel-mode, without any delay. (to get signals handled.)
  1856. *
  1857. * NOTE: this function doesnt have to take the runqueue lock,
  1858. * because all it wants to ensure is that the remote task enters
  1859. * the kernel. If the IPI races and the task has been migrated
  1860. * to another CPU then no harm is done and the purpose has been
  1861. * achieved as well.
  1862. */
  1863. void kick_process(struct task_struct *p)
  1864. {
  1865. int cpu;
  1866. preempt_disable();
  1867. cpu = task_cpu(p);
  1868. if ((cpu != smp_processor_id()) && task_curr(p))
  1869. smp_send_reschedule(cpu);
  1870. preempt_enable();
  1871. }
  1872. EXPORT_SYMBOL_GPL(kick_process);
  1873. #endif /* CONFIG_SMP */
  1874. /**
  1875. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1876. * @p: the task to evaluate
  1877. * @func: the function to be called
  1878. * @info: the function call argument
  1879. *
  1880. * Calls the function @func when the task is currently running. This might
  1881. * be on the current CPU, which just calls the function directly
  1882. */
  1883. void task_oncpu_function_call(struct task_struct *p,
  1884. void (*func) (void *info), void *info)
  1885. {
  1886. int cpu;
  1887. preempt_disable();
  1888. cpu = task_cpu(p);
  1889. if (task_curr(p))
  1890. smp_call_function_single(cpu, func, info, 1);
  1891. preempt_enable();
  1892. }
  1893. #ifdef CONFIG_SMP
  1894. static int select_fallback_rq(int cpu, struct task_struct *p)
  1895. {
  1896. int dest_cpu;
  1897. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1898. /* Look for allowed, online CPU in same node. */
  1899. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1900. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1901. return dest_cpu;
  1902. /* Any allowed, online CPU? */
  1903. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1904. if (dest_cpu < nr_cpu_ids)
  1905. return dest_cpu;
  1906. /* No more Mr. Nice Guy. */
  1907. if (dest_cpu >= nr_cpu_ids) {
  1908. rcu_read_lock();
  1909. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  1910. rcu_read_unlock();
  1911. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  1912. /*
  1913. * Don't tell them about moving exiting tasks or
  1914. * kernel threads (both mm NULL), since they never
  1915. * leave kernel.
  1916. */
  1917. if (p->mm && printk_ratelimit()) {
  1918. printk(KERN_INFO "process %d (%s) no "
  1919. "longer affine to cpu%d\n",
  1920. task_pid_nr(p), p->comm, cpu);
  1921. }
  1922. }
  1923. return dest_cpu;
  1924. }
  1925. /*
  1926. * Called from:
  1927. *
  1928. * - fork, @p is stable because it isn't on the tasklist yet
  1929. *
  1930. * - exec, @p is unstable, retry loop
  1931. *
  1932. * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
  1933. * we should be good.
  1934. */
  1935. static inline
  1936. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1937. {
  1938. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1939. /*
  1940. * In order not to call set_task_cpu() on a blocking task we need
  1941. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1942. * cpu.
  1943. *
  1944. * Since this is common to all placement strategies, this lives here.
  1945. *
  1946. * [ this allows ->select_task() to simply return task_cpu(p) and
  1947. * not worry about this generic constraint ]
  1948. */
  1949. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1950. !cpu_online(cpu)))
  1951. cpu = select_fallback_rq(task_cpu(p), p);
  1952. return cpu;
  1953. }
  1954. #endif
  1955. /***
  1956. * try_to_wake_up - wake up a thread
  1957. * @p: the to-be-woken-up thread
  1958. * @state: the mask of task states that can be woken
  1959. * @sync: do a synchronous wakeup?
  1960. *
  1961. * Put it on the run-queue if it's not already there. The "current"
  1962. * thread is always on the run-queue (except when the actual
  1963. * re-schedule is in progress), and as such you're allowed to do
  1964. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1965. * runnable without the overhead of this.
  1966. *
  1967. * returns failure only if the task is already active.
  1968. */
  1969. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1970. int wake_flags)
  1971. {
  1972. int cpu, orig_cpu, this_cpu, success = 0;
  1973. unsigned long flags;
  1974. struct rq *rq, *orig_rq;
  1975. if (!sched_feat(SYNC_WAKEUPS))
  1976. wake_flags &= ~WF_SYNC;
  1977. this_cpu = get_cpu();
  1978. smp_wmb();
  1979. rq = orig_rq = task_rq_lock(p, &flags);
  1980. update_rq_clock(rq);
  1981. if (!(p->state & state))
  1982. goto out;
  1983. if (p->se.on_rq)
  1984. goto out_running;
  1985. cpu = task_cpu(p);
  1986. orig_cpu = cpu;
  1987. #ifdef CONFIG_SMP
  1988. if (unlikely(task_running(rq, p)))
  1989. goto out_activate;
  1990. /*
  1991. * In order to handle concurrent wakeups and release the rq->lock
  1992. * we put the task in TASK_WAKING state.
  1993. *
  1994. * First fix up the nr_uninterruptible count:
  1995. */
  1996. if (task_contributes_to_load(p))
  1997. rq->nr_uninterruptible--;
  1998. p->state = TASK_WAKING;
  1999. if (p->sched_class->task_waking)
  2000. p->sched_class->task_waking(rq, p);
  2001. __task_rq_unlock(rq);
  2002. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2003. if (cpu != orig_cpu)
  2004. set_task_cpu(p, cpu);
  2005. rq = __task_rq_lock(p);
  2006. update_rq_clock(rq);
  2007. WARN_ON(p->state != TASK_WAKING);
  2008. cpu = task_cpu(p);
  2009. #ifdef CONFIG_SCHEDSTATS
  2010. schedstat_inc(rq, ttwu_count);
  2011. if (cpu == this_cpu)
  2012. schedstat_inc(rq, ttwu_local);
  2013. else {
  2014. struct sched_domain *sd;
  2015. for_each_domain(this_cpu, sd) {
  2016. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2017. schedstat_inc(sd, ttwu_wake_remote);
  2018. break;
  2019. }
  2020. }
  2021. }
  2022. #endif /* CONFIG_SCHEDSTATS */
  2023. out_activate:
  2024. #endif /* CONFIG_SMP */
  2025. schedstat_inc(p, se.nr_wakeups);
  2026. if (wake_flags & WF_SYNC)
  2027. schedstat_inc(p, se.nr_wakeups_sync);
  2028. if (orig_cpu != cpu)
  2029. schedstat_inc(p, se.nr_wakeups_migrate);
  2030. if (cpu == this_cpu)
  2031. schedstat_inc(p, se.nr_wakeups_local);
  2032. else
  2033. schedstat_inc(p, se.nr_wakeups_remote);
  2034. activate_task(rq, p, 1);
  2035. success = 1;
  2036. /*
  2037. * Only attribute actual wakeups done by this task.
  2038. */
  2039. if (!in_interrupt()) {
  2040. struct sched_entity *se = &current->se;
  2041. u64 sample = se->sum_exec_runtime;
  2042. if (se->last_wakeup)
  2043. sample -= se->last_wakeup;
  2044. else
  2045. sample -= se->start_runtime;
  2046. update_avg(&se->avg_wakeup, sample);
  2047. se->last_wakeup = se->sum_exec_runtime;
  2048. }
  2049. out_running:
  2050. trace_sched_wakeup(rq, p, success);
  2051. check_preempt_curr(rq, p, wake_flags);
  2052. p->state = TASK_RUNNING;
  2053. #ifdef CONFIG_SMP
  2054. if (p->sched_class->task_woken)
  2055. p->sched_class->task_woken(rq, p);
  2056. if (unlikely(rq->idle_stamp)) {
  2057. u64 delta = rq->clock - rq->idle_stamp;
  2058. u64 max = 2*sysctl_sched_migration_cost;
  2059. if (delta > max)
  2060. rq->avg_idle = max;
  2061. else
  2062. update_avg(&rq->avg_idle, delta);
  2063. rq->idle_stamp = 0;
  2064. }
  2065. #endif
  2066. out:
  2067. task_rq_unlock(rq, &flags);
  2068. put_cpu();
  2069. return success;
  2070. }
  2071. /**
  2072. * wake_up_process - Wake up a specific process
  2073. * @p: The process to be woken up.
  2074. *
  2075. * Attempt to wake up the nominated process and move it to the set of runnable
  2076. * processes. Returns 1 if the process was woken up, 0 if it was already
  2077. * running.
  2078. *
  2079. * It may be assumed that this function implies a write memory barrier before
  2080. * changing the task state if and only if any tasks are woken up.
  2081. */
  2082. int wake_up_process(struct task_struct *p)
  2083. {
  2084. return try_to_wake_up(p, TASK_ALL, 0);
  2085. }
  2086. EXPORT_SYMBOL(wake_up_process);
  2087. int wake_up_state(struct task_struct *p, unsigned int state)
  2088. {
  2089. return try_to_wake_up(p, state, 0);
  2090. }
  2091. /*
  2092. * Perform scheduler related setup for a newly forked process p.
  2093. * p is forked by current.
  2094. *
  2095. * __sched_fork() is basic setup used by init_idle() too:
  2096. */
  2097. static void __sched_fork(struct task_struct *p)
  2098. {
  2099. p->se.exec_start = 0;
  2100. p->se.sum_exec_runtime = 0;
  2101. p->se.prev_sum_exec_runtime = 0;
  2102. p->se.nr_migrations = 0;
  2103. p->se.last_wakeup = 0;
  2104. p->se.avg_overlap = 0;
  2105. p->se.start_runtime = 0;
  2106. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2107. #ifdef CONFIG_SCHEDSTATS
  2108. p->se.wait_start = 0;
  2109. p->se.wait_max = 0;
  2110. p->se.wait_count = 0;
  2111. p->se.wait_sum = 0;
  2112. p->se.sleep_start = 0;
  2113. p->se.sleep_max = 0;
  2114. p->se.sum_sleep_runtime = 0;
  2115. p->se.block_start = 0;
  2116. p->se.block_max = 0;
  2117. p->se.exec_max = 0;
  2118. p->se.slice_max = 0;
  2119. p->se.nr_migrations_cold = 0;
  2120. p->se.nr_failed_migrations_affine = 0;
  2121. p->se.nr_failed_migrations_running = 0;
  2122. p->se.nr_failed_migrations_hot = 0;
  2123. p->se.nr_forced_migrations = 0;
  2124. p->se.nr_wakeups = 0;
  2125. p->se.nr_wakeups_sync = 0;
  2126. p->se.nr_wakeups_migrate = 0;
  2127. p->se.nr_wakeups_local = 0;
  2128. p->se.nr_wakeups_remote = 0;
  2129. p->se.nr_wakeups_affine = 0;
  2130. p->se.nr_wakeups_affine_attempts = 0;
  2131. p->se.nr_wakeups_passive = 0;
  2132. p->se.nr_wakeups_idle = 0;
  2133. #endif
  2134. INIT_LIST_HEAD(&p->rt.run_list);
  2135. p->se.on_rq = 0;
  2136. INIT_LIST_HEAD(&p->se.group_node);
  2137. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2138. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2139. #endif
  2140. }
  2141. /*
  2142. * fork()/clone()-time setup:
  2143. */
  2144. void sched_fork(struct task_struct *p, int clone_flags)
  2145. {
  2146. int cpu = get_cpu();
  2147. __sched_fork(p);
  2148. /*
  2149. * We mark the process as waking here. This guarantees that
  2150. * nobody will actually run it, and a signal or other external
  2151. * event cannot wake it up and insert it on the runqueue either.
  2152. */
  2153. p->state = TASK_WAKING;
  2154. /*
  2155. * Revert to default priority/policy on fork if requested.
  2156. */
  2157. if (unlikely(p->sched_reset_on_fork)) {
  2158. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2159. p->policy = SCHED_NORMAL;
  2160. p->normal_prio = p->static_prio;
  2161. }
  2162. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2163. p->static_prio = NICE_TO_PRIO(0);
  2164. p->normal_prio = p->static_prio;
  2165. set_load_weight(p);
  2166. }
  2167. /*
  2168. * We don't need the reset flag anymore after the fork. It has
  2169. * fulfilled its duty:
  2170. */
  2171. p->sched_reset_on_fork = 0;
  2172. }
  2173. /*
  2174. * Make sure we do not leak PI boosting priority to the child.
  2175. */
  2176. p->prio = current->normal_prio;
  2177. if (!rt_prio(p->prio))
  2178. p->sched_class = &fair_sched_class;
  2179. if (p->sched_class->task_fork)
  2180. p->sched_class->task_fork(p);
  2181. #ifdef CONFIG_SMP
  2182. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2183. #endif
  2184. set_task_cpu(p, cpu);
  2185. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2186. if (likely(sched_info_on()))
  2187. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2188. #endif
  2189. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2190. p->oncpu = 0;
  2191. #endif
  2192. #ifdef CONFIG_PREEMPT
  2193. /* Want to start with kernel preemption disabled. */
  2194. task_thread_info(p)->preempt_count = 1;
  2195. #endif
  2196. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2197. put_cpu();
  2198. }
  2199. /*
  2200. * wake_up_new_task - wake up a newly created task for the first time.
  2201. *
  2202. * This function will do some initial scheduler statistics housekeeping
  2203. * that must be done for every newly created context, then puts the task
  2204. * on the runqueue and wakes it.
  2205. */
  2206. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2207. {
  2208. unsigned long flags;
  2209. struct rq *rq;
  2210. rq = task_rq_lock(p, &flags);
  2211. BUG_ON(p->state != TASK_WAKING);
  2212. p->state = TASK_RUNNING;
  2213. update_rq_clock(rq);
  2214. activate_task(rq, p, 0);
  2215. trace_sched_wakeup_new(rq, p, 1);
  2216. check_preempt_curr(rq, p, WF_FORK);
  2217. #ifdef CONFIG_SMP
  2218. if (p->sched_class->task_woken)
  2219. p->sched_class->task_woken(rq, p);
  2220. #endif
  2221. task_rq_unlock(rq, &flags);
  2222. }
  2223. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2224. /**
  2225. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2226. * @notifier: notifier struct to register
  2227. */
  2228. void preempt_notifier_register(struct preempt_notifier *notifier)
  2229. {
  2230. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2231. }
  2232. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2233. /**
  2234. * preempt_notifier_unregister - no longer interested in preemption notifications
  2235. * @notifier: notifier struct to unregister
  2236. *
  2237. * This is safe to call from within a preemption notifier.
  2238. */
  2239. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2240. {
  2241. hlist_del(&notifier->link);
  2242. }
  2243. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2244. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2245. {
  2246. struct preempt_notifier *notifier;
  2247. struct hlist_node *node;
  2248. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2249. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2250. }
  2251. static void
  2252. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2253. struct task_struct *next)
  2254. {
  2255. struct preempt_notifier *notifier;
  2256. struct hlist_node *node;
  2257. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2258. notifier->ops->sched_out(notifier, next);
  2259. }
  2260. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2261. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2262. {
  2263. }
  2264. static void
  2265. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2266. struct task_struct *next)
  2267. {
  2268. }
  2269. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2270. /**
  2271. * prepare_task_switch - prepare to switch tasks
  2272. * @rq: the runqueue preparing to switch
  2273. * @prev: the current task that is being switched out
  2274. * @next: the task we are going to switch to.
  2275. *
  2276. * This is called with the rq lock held and interrupts off. It must
  2277. * be paired with a subsequent finish_task_switch after the context
  2278. * switch.
  2279. *
  2280. * prepare_task_switch sets up locking and calls architecture specific
  2281. * hooks.
  2282. */
  2283. static inline void
  2284. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2285. struct task_struct *next)
  2286. {
  2287. fire_sched_out_preempt_notifiers(prev, next);
  2288. prepare_lock_switch(rq, next);
  2289. prepare_arch_switch(next);
  2290. }
  2291. /**
  2292. * finish_task_switch - clean up after a task-switch
  2293. * @rq: runqueue associated with task-switch
  2294. * @prev: the thread we just switched away from.
  2295. *
  2296. * finish_task_switch must be called after the context switch, paired
  2297. * with a prepare_task_switch call before the context switch.
  2298. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2299. * and do any other architecture-specific cleanup actions.
  2300. *
  2301. * Note that we may have delayed dropping an mm in context_switch(). If
  2302. * so, we finish that here outside of the runqueue lock. (Doing it
  2303. * with the lock held can cause deadlocks; see schedule() for
  2304. * details.)
  2305. */
  2306. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2307. __releases(rq->lock)
  2308. {
  2309. struct mm_struct *mm = rq->prev_mm;
  2310. long prev_state;
  2311. rq->prev_mm = NULL;
  2312. /*
  2313. * A task struct has one reference for the use as "current".
  2314. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2315. * schedule one last time. The schedule call will never return, and
  2316. * the scheduled task must drop that reference.
  2317. * The test for TASK_DEAD must occur while the runqueue locks are
  2318. * still held, otherwise prev could be scheduled on another cpu, die
  2319. * there before we look at prev->state, and then the reference would
  2320. * be dropped twice.
  2321. * Manfred Spraul <manfred@colorfullife.com>
  2322. */
  2323. prev_state = prev->state;
  2324. finish_arch_switch(prev);
  2325. perf_event_task_sched_in(current, cpu_of(rq));
  2326. finish_lock_switch(rq, prev);
  2327. fire_sched_in_preempt_notifiers(current);
  2328. if (mm)
  2329. mmdrop(mm);
  2330. if (unlikely(prev_state == TASK_DEAD)) {
  2331. /*
  2332. * Remove function-return probe instances associated with this
  2333. * task and put them back on the free list.
  2334. */
  2335. kprobe_flush_task(prev);
  2336. put_task_struct(prev);
  2337. }
  2338. }
  2339. #ifdef CONFIG_SMP
  2340. /* assumes rq->lock is held */
  2341. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2342. {
  2343. if (prev->sched_class->pre_schedule)
  2344. prev->sched_class->pre_schedule(rq, prev);
  2345. }
  2346. /* rq->lock is NOT held, but preemption is disabled */
  2347. static inline void post_schedule(struct rq *rq)
  2348. {
  2349. if (rq->post_schedule) {
  2350. unsigned long flags;
  2351. raw_spin_lock_irqsave(&rq->lock, flags);
  2352. if (rq->curr->sched_class->post_schedule)
  2353. rq->curr->sched_class->post_schedule(rq);
  2354. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2355. rq->post_schedule = 0;
  2356. }
  2357. }
  2358. #else
  2359. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2360. {
  2361. }
  2362. static inline void post_schedule(struct rq *rq)
  2363. {
  2364. }
  2365. #endif
  2366. /**
  2367. * schedule_tail - first thing a freshly forked thread must call.
  2368. * @prev: the thread we just switched away from.
  2369. */
  2370. asmlinkage void schedule_tail(struct task_struct *prev)
  2371. __releases(rq->lock)
  2372. {
  2373. struct rq *rq = this_rq();
  2374. finish_task_switch(rq, prev);
  2375. /*
  2376. * FIXME: do we need to worry about rq being invalidated by the
  2377. * task_switch?
  2378. */
  2379. post_schedule(rq);
  2380. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2381. /* In this case, finish_task_switch does not reenable preemption */
  2382. preempt_enable();
  2383. #endif
  2384. if (current->set_child_tid)
  2385. put_user(task_pid_vnr(current), current->set_child_tid);
  2386. }
  2387. /*
  2388. * context_switch - switch to the new MM and the new
  2389. * thread's register state.
  2390. */
  2391. static inline void
  2392. context_switch(struct rq *rq, struct task_struct *prev,
  2393. struct task_struct *next)
  2394. {
  2395. struct mm_struct *mm, *oldmm;
  2396. prepare_task_switch(rq, prev, next);
  2397. trace_sched_switch(rq, prev, next);
  2398. mm = next->mm;
  2399. oldmm = prev->active_mm;
  2400. /*
  2401. * For paravirt, this is coupled with an exit in switch_to to
  2402. * combine the page table reload and the switch backend into
  2403. * one hypercall.
  2404. */
  2405. arch_start_context_switch(prev);
  2406. if (likely(!mm)) {
  2407. next->active_mm = oldmm;
  2408. atomic_inc(&oldmm->mm_count);
  2409. enter_lazy_tlb(oldmm, next);
  2410. } else
  2411. switch_mm(oldmm, mm, next);
  2412. if (likely(!prev->mm)) {
  2413. prev->active_mm = NULL;
  2414. rq->prev_mm = oldmm;
  2415. }
  2416. /*
  2417. * Since the runqueue lock will be released by the next
  2418. * task (which is an invalid locking op but in the case
  2419. * of the scheduler it's an obvious special-case), so we
  2420. * do an early lockdep release here:
  2421. */
  2422. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2423. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2424. #endif
  2425. /* Here we just switch the register state and the stack. */
  2426. switch_to(prev, next, prev);
  2427. barrier();
  2428. /*
  2429. * this_rq must be evaluated again because prev may have moved
  2430. * CPUs since it called schedule(), thus the 'rq' on its stack
  2431. * frame will be invalid.
  2432. */
  2433. finish_task_switch(this_rq(), prev);
  2434. }
  2435. /*
  2436. * nr_running, nr_uninterruptible and nr_context_switches:
  2437. *
  2438. * externally visible scheduler statistics: current number of runnable
  2439. * threads, current number of uninterruptible-sleeping threads, total
  2440. * number of context switches performed since bootup.
  2441. */
  2442. unsigned long nr_running(void)
  2443. {
  2444. unsigned long i, sum = 0;
  2445. for_each_online_cpu(i)
  2446. sum += cpu_rq(i)->nr_running;
  2447. return sum;
  2448. }
  2449. unsigned long nr_uninterruptible(void)
  2450. {
  2451. unsigned long i, sum = 0;
  2452. for_each_possible_cpu(i)
  2453. sum += cpu_rq(i)->nr_uninterruptible;
  2454. /*
  2455. * Since we read the counters lockless, it might be slightly
  2456. * inaccurate. Do not allow it to go below zero though:
  2457. */
  2458. if (unlikely((long)sum < 0))
  2459. sum = 0;
  2460. return sum;
  2461. }
  2462. unsigned long long nr_context_switches(void)
  2463. {
  2464. int i;
  2465. unsigned long long sum = 0;
  2466. for_each_possible_cpu(i)
  2467. sum += cpu_rq(i)->nr_switches;
  2468. return sum;
  2469. }
  2470. unsigned long nr_iowait(void)
  2471. {
  2472. unsigned long i, sum = 0;
  2473. for_each_possible_cpu(i)
  2474. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2475. return sum;
  2476. }
  2477. unsigned long nr_iowait_cpu(void)
  2478. {
  2479. struct rq *this = this_rq();
  2480. return atomic_read(&this->nr_iowait);
  2481. }
  2482. unsigned long this_cpu_load(void)
  2483. {
  2484. struct rq *this = this_rq();
  2485. return this->cpu_load[0];
  2486. }
  2487. /* Variables and functions for calc_load */
  2488. static atomic_long_t calc_load_tasks;
  2489. static unsigned long calc_load_update;
  2490. unsigned long avenrun[3];
  2491. EXPORT_SYMBOL(avenrun);
  2492. /**
  2493. * get_avenrun - get the load average array
  2494. * @loads: pointer to dest load array
  2495. * @offset: offset to add
  2496. * @shift: shift count to shift the result left
  2497. *
  2498. * These values are estimates at best, so no need for locking.
  2499. */
  2500. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2501. {
  2502. loads[0] = (avenrun[0] + offset) << shift;
  2503. loads[1] = (avenrun[1] + offset) << shift;
  2504. loads[2] = (avenrun[2] + offset) << shift;
  2505. }
  2506. static unsigned long
  2507. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2508. {
  2509. load *= exp;
  2510. load += active * (FIXED_1 - exp);
  2511. return load >> FSHIFT;
  2512. }
  2513. /*
  2514. * calc_load - update the avenrun load estimates 10 ticks after the
  2515. * CPUs have updated calc_load_tasks.
  2516. */
  2517. void calc_global_load(void)
  2518. {
  2519. unsigned long upd = calc_load_update + 10;
  2520. long active;
  2521. if (time_before(jiffies, upd))
  2522. return;
  2523. active = atomic_long_read(&calc_load_tasks);
  2524. active = active > 0 ? active * FIXED_1 : 0;
  2525. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2526. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2527. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2528. calc_load_update += LOAD_FREQ;
  2529. }
  2530. /*
  2531. * Either called from update_cpu_load() or from a cpu going idle
  2532. */
  2533. static void calc_load_account_active(struct rq *this_rq)
  2534. {
  2535. long nr_active, delta;
  2536. nr_active = this_rq->nr_running;
  2537. nr_active += (long) this_rq->nr_uninterruptible;
  2538. if (nr_active != this_rq->calc_load_active) {
  2539. delta = nr_active - this_rq->calc_load_active;
  2540. this_rq->calc_load_active = nr_active;
  2541. atomic_long_add(delta, &calc_load_tasks);
  2542. }
  2543. }
  2544. /*
  2545. * Update rq->cpu_load[] statistics. This function is usually called every
  2546. * scheduler tick (TICK_NSEC).
  2547. */
  2548. static void update_cpu_load(struct rq *this_rq)
  2549. {
  2550. unsigned long this_load = this_rq->load.weight;
  2551. int i, scale;
  2552. this_rq->nr_load_updates++;
  2553. /* Update our load: */
  2554. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2555. unsigned long old_load, new_load;
  2556. /* scale is effectively 1 << i now, and >> i divides by scale */
  2557. old_load = this_rq->cpu_load[i];
  2558. new_load = this_load;
  2559. /*
  2560. * Round up the averaging division if load is increasing. This
  2561. * prevents us from getting stuck on 9 if the load is 10, for
  2562. * example.
  2563. */
  2564. if (new_load > old_load)
  2565. new_load += scale-1;
  2566. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2567. }
  2568. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2569. this_rq->calc_load_update += LOAD_FREQ;
  2570. calc_load_account_active(this_rq);
  2571. }
  2572. }
  2573. #ifdef CONFIG_SMP
  2574. /*
  2575. * sched_exec - execve() is a valuable balancing opportunity, because at
  2576. * this point the task has the smallest effective memory and cache footprint.
  2577. */
  2578. void sched_exec(void)
  2579. {
  2580. struct task_struct *p = current;
  2581. struct migration_req req;
  2582. int dest_cpu, this_cpu;
  2583. unsigned long flags;
  2584. struct rq *rq;
  2585. again:
  2586. this_cpu = get_cpu();
  2587. dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
  2588. if (dest_cpu == this_cpu) {
  2589. put_cpu();
  2590. return;
  2591. }
  2592. rq = task_rq_lock(p, &flags);
  2593. put_cpu();
  2594. /*
  2595. * select_task_rq() can race against ->cpus_allowed
  2596. */
  2597. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2598. || unlikely(!cpu_active(dest_cpu))) {
  2599. task_rq_unlock(rq, &flags);
  2600. goto again;
  2601. }
  2602. /* force the process onto the specified CPU */
  2603. if (migrate_task(p, dest_cpu, &req)) {
  2604. /* Need to wait for migration thread (might exit: take ref). */
  2605. struct task_struct *mt = rq->migration_thread;
  2606. get_task_struct(mt);
  2607. task_rq_unlock(rq, &flags);
  2608. wake_up_process(mt);
  2609. put_task_struct(mt);
  2610. wait_for_completion(&req.done);
  2611. return;
  2612. }
  2613. task_rq_unlock(rq, &flags);
  2614. }
  2615. #endif
  2616. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2617. EXPORT_PER_CPU_SYMBOL(kstat);
  2618. /*
  2619. * Return any ns on the sched_clock that have not yet been accounted in
  2620. * @p in case that task is currently running.
  2621. *
  2622. * Called with task_rq_lock() held on @rq.
  2623. */
  2624. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2625. {
  2626. u64 ns = 0;
  2627. if (task_current(rq, p)) {
  2628. update_rq_clock(rq);
  2629. ns = rq->clock - p->se.exec_start;
  2630. if ((s64)ns < 0)
  2631. ns = 0;
  2632. }
  2633. return ns;
  2634. }
  2635. unsigned long long task_delta_exec(struct task_struct *p)
  2636. {
  2637. unsigned long flags;
  2638. struct rq *rq;
  2639. u64 ns = 0;
  2640. rq = task_rq_lock(p, &flags);
  2641. ns = do_task_delta_exec(p, rq);
  2642. task_rq_unlock(rq, &flags);
  2643. return ns;
  2644. }
  2645. /*
  2646. * Return accounted runtime for the task.
  2647. * In case the task is currently running, return the runtime plus current's
  2648. * pending runtime that have not been accounted yet.
  2649. */
  2650. unsigned long long task_sched_runtime(struct task_struct *p)
  2651. {
  2652. unsigned long flags;
  2653. struct rq *rq;
  2654. u64 ns = 0;
  2655. rq = task_rq_lock(p, &flags);
  2656. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2657. task_rq_unlock(rq, &flags);
  2658. return ns;
  2659. }
  2660. /*
  2661. * Return sum_exec_runtime for the thread group.
  2662. * In case the task is currently running, return the sum plus current's
  2663. * pending runtime that have not been accounted yet.
  2664. *
  2665. * Note that the thread group might have other running tasks as well,
  2666. * so the return value not includes other pending runtime that other
  2667. * running tasks might have.
  2668. */
  2669. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2670. {
  2671. struct task_cputime totals;
  2672. unsigned long flags;
  2673. struct rq *rq;
  2674. u64 ns;
  2675. rq = task_rq_lock(p, &flags);
  2676. thread_group_cputime(p, &totals);
  2677. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2678. task_rq_unlock(rq, &flags);
  2679. return ns;
  2680. }
  2681. /*
  2682. * Account user cpu time to a process.
  2683. * @p: the process that the cpu time gets accounted to
  2684. * @cputime: the cpu time spent in user space since the last update
  2685. * @cputime_scaled: cputime scaled by cpu frequency
  2686. */
  2687. void account_user_time(struct task_struct *p, cputime_t cputime,
  2688. cputime_t cputime_scaled)
  2689. {
  2690. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2691. cputime64_t tmp;
  2692. /* Add user time to process. */
  2693. p->utime = cputime_add(p->utime, cputime);
  2694. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2695. account_group_user_time(p, cputime);
  2696. /* Add user time to cpustat. */
  2697. tmp = cputime_to_cputime64(cputime);
  2698. if (TASK_NICE(p) > 0)
  2699. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2700. else
  2701. cpustat->user = cputime64_add(cpustat->user, tmp);
  2702. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2703. /* Account for user time used */
  2704. acct_update_integrals(p);
  2705. }
  2706. /*
  2707. * Account guest cpu time to a process.
  2708. * @p: the process that the cpu time gets accounted to
  2709. * @cputime: the cpu time spent in virtual machine since the last update
  2710. * @cputime_scaled: cputime scaled by cpu frequency
  2711. */
  2712. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2713. cputime_t cputime_scaled)
  2714. {
  2715. cputime64_t tmp;
  2716. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2717. tmp = cputime_to_cputime64(cputime);
  2718. /* Add guest time to process. */
  2719. p->utime = cputime_add(p->utime, cputime);
  2720. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2721. account_group_user_time(p, cputime);
  2722. p->gtime = cputime_add(p->gtime, cputime);
  2723. /* Add guest time to cpustat. */
  2724. if (TASK_NICE(p) > 0) {
  2725. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2726. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2727. } else {
  2728. cpustat->user = cputime64_add(cpustat->user, tmp);
  2729. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2730. }
  2731. }
  2732. /*
  2733. * Account system cpu time to a process.
  2734. * @p: the process that the cpu time gets accounted to
  2735. * @hardirq_offset: the offset to subtract from hardirq_count()
  2736. * @cputime: the cpu time spent in kernel space since the last update
  2737. * @cputime_scaled: cputime scaled by cpu frequency
  2738. */
  2739. void account_system_time(struct task_struct *p, int hardirq_offset,
  2740. cputime_t cputime, cputime_t cputime_scaled)
  2741. {
  2742. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2743. cputime64_t tmp;
  2744. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2745. account_guest_time(p, cputime, cputime_scaled);
  2746. return;
  2747. }
  2748. /* Add system time to process. */
  2749. p->stime = cputime_add(p->stime, cputime);
  2750. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2751. account_group_system_time(p, cputime);
  2752. /* Add system time to cpustat. */
  2753. tmp = cputime_to_cputime64(cputime);
  2754. if (hardirq_count() - hardirq_offset)
  2755. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2756. else if (softirq_count())
  2757. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2758. else
  2759. cpustat->system = cputime64_add(cpustat->system, tmp);
  2760. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2761. /* Account for system time used */
  2762. acct_update_integrals(p);
  2763. }
  2764. /*
  2765. * Account for involuntary wait time.
  2766. * @steal: the cpu time spent in involuntary wait
  2767. */
  2768. void account_steal_time(cputime_t cputime)
  2769. {
  2770. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2771. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2772. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2773. }
  2774. /*
  2775. * Account for idle time.
  2776. * @cputime: the cpu time spent in idle wait
  2777. */
  2778. void account_idle_time(cputime_t cputime)
  2779. {
  2780. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2781. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2782. struct rq *rq = this_rq();
  2783. if (atomic_read(&rq->nr_iowait) > 0)
  2784. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2785. else
  2786. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2787. }
  2788. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2789. /*
  2790. * Account a single tick of cpu time.
  2791. * @p: the process that the cpu time gets accounted to
  2792. * @user_tick: indicates if the tick is a user or a system tick
  2793. */
  2794. void account_process_tick(struct task_struct *p, int user_tick)
  2795. {
  2796. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2797. struct rq *rq = this_rq();
  2798. if (user_tick)
  2799. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2800. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2801. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2802. one_jiffy_scaled);
  2803. else
  2804. account_idle_time(cputime_one_jiffy);
  2805. }
  2806. /*
  2807. * Account multiple ticks of steal time.
  2808. * @p: the process from which the cpu time has been stolen
  2809. * @ticks: number of stolen ticks
  2810. */
  2811. void account_steal_ticks(unsigned long ticks)
  2812. {
  2813. account_steal_time(jiffies_to_cputime(ticks));
  2814. }
  2815. /*
  2816. * Account multiple ticks of idle time.
  2817. * @ticks: number of stolen ticks
  2818. */
  2819. void account_idle_ticks(unsigned long ticks)
  2820. {
  2821. account_idle_time(jiffies_to_cputime(ticks));
  2822. }
  2823. #endif
  2824. /*
  2825. * Use precise platform statistics if available:
  2826. */
  2827. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2828. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2829. {
  2830. *ut = p->utime;
  2831. *st = p->stime;
  2832. }
  2833. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2834. {
  2835. struct task_cputime cputime;
  2836. thread_group_cputime(p, &cputime);
  2837. *ut = cputime.utime;
  2838. *st = cputime.stime;
  2839. }
  2840. #else
  2841. #ifndef nsecs_to_cputime
  2842. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2843. #endif
  2844. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2845. {
  2846. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2847. /*
  2848. * Use CFS's precise accounting:
  2849. */
  2850. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2851. if (total) {
  2852. u64 temp;
  2853. temp = (u64)(rtime * utime);
  2854. do_div(temp, total);
  2855. utime = (cputime_t)temp;
  2856. } else
  2857. utime = rtime;
  2858. /*
  2859. * Compare with previous values, to keep monotonicity:
  2860. */
  2861. p->prev_utime = max(p->prev_utime, utime);
  2862. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2863. *ut = p->prev_utime;
  2864. *st = p->prev_stime;
  2865. }
  2866. /*
  2867. * Must be called with siglock held.
  2868. */
  2869. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2870. {
  2871. struct signal_struct *sig = p->signal;
  2872. struct task_cputime cputime;
  2873. cputime_t rtime, utime, total;
  2874. thread_group_cputime(p, &cputime);
  2875. total = cputime_add(cputime.utime, cputime.stime);
  2876. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2877. if (total) {
  2878. u64 temp;
  2879. temp = (u64)(rtime * cputime.utime);
  2880. do_div(temp, total);
  2881. utime = (cputime_t)temp;
  2882. } else
  2883. utime = rtime;
  2884. sig->prev_utime = max(sig->prev_utime, utime);
  2885. sig->prev_stime = max(sig->prev_stime,
  2886. cputime_sub(rtime, sig->prev_utime));
  2887. *ut = sig->prev_utime;
  2888. *st = sig->prev_stime;
  2889. }
  2890. #endif
  2891. /*
  2892. * This function gets called by the timer code, with HZ frequency.
  2893. * We call it with interrupts disabled.
  2894. *
  2895. * It also gets called by the fork code, when changing the parent's
  2896. * timeslices.
  2897. */
  2898. void scheduler_tick(void)
  2899. {
  2900. int cpu = smp_processor_id();
  2901. struct rq *rq = cpu_rq(cpu);
  2902. struct task_struct *curr = rq->curr;
  2903. sched_clock_tick();
  2904. raw_spin_lock(&rq->lock);
  2905. update_rq_clock(rq);
  2906. update_cpu_load(rq);
  2907. curr->sched_class->task_tick(rq, curr, 0);
  2908. raw_spin_unlock(&rq->lock);
  2909. perf_event_task_tick(curr, cpu);
  2910. #ifdef CONFIG_SMP
  2911. rq->idle_at_tick = idle_cpu(cpu);
  2912. trigger_load_balance(rq, cpu);
  2913. #endif
  2914. }
  2915. notrace unsigned long get_parent_ip(unsigned long addr)
  2916. {
  2917. if (in_lock_functions(addr)) {
  2918. addr = CALLER_ADDR2;
  2919. if (in_lock_functions(addr))
  2920. addr = CALLER_ADDR3;
  2921. }
  2922. return addr;
  2923. }
  2924. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2925. defined(CONFIG_PREEMPT_TRACER))
  2926. void __kprobes add_preempt_count(int val)
  2927. {
  2928. #ifdef CONFIG_DEBUG_PREEMPT
  2929. /*
  2930. * Underflow?
  2931. */
  2932. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2933. return;
  2934. #endif
  2935. preempt_count() += val;
  2936. #ifdef CONFIG_DEBUG_PREEMPT
  2937. /*
  2938. * Spinlock count overflowing soon?
  2939. */
  2940. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2941. PREEMPT_MASK - 10);
  2942. #endif
  2943. if (preempt_count() == val)
  2944. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2945. }
  2946. EXPORT_SYMBOL(add_preempt_count);
  2947. void __kprobes sub_preempt_count(int val)
  2948. {
  2949. #ifdef CONFIG_DEBUG_PREEMPT
  2950. /*
  2951. * Underflow?
  2952. */
  2953. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2954. return;
  2955. /*
  2956. * Is the spinlock portion underflowing?
  2957. */
  2958. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2959. !(preempt_count() & PREEMPT_MASK)))
  2960. return;
  2961. #endif
  2962. if (preempt_count() == val)
  2963. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2964. preempt_count() -= val;
  2965. }
  2966. EXPORT_SYMBOL(sub_preempt_count);
  2967. #endif
  2968. /*
  2969. * Print scheduling while atomic bug:
  2970. */
  2971. static noinline void __schedule_bug(struct task_struct *prev)
  2972. {
  2973. struct pt_regs *regs = get_irq_regs();
  2974. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2975. prev->comm, prev->pid, preempt_count());
  2976. debug_show_held_locks(prev);
  2977. print_modules();
  2978. if (irqs_disabled())
  2979. print_irqtrace_events(prev);
  2980. if (regs)
  2981. show_regs(regs);
  2982. else
  2983. dump_stack();
  2984. }
  2985. /*
  2986. * Various schedule()-time debugging checks and statistics:
  2987. */
  2988. static inline void schedule_debug(struct task_struct *prev)
  2989. {
  2990. /*
  2991. * Test if we are atomic. Since do_exit() needs to call into
  2992. * schedule() atomically, we ignore that path for now.
  2993. * Otherwise, whine if we are scheduling when we should not be.
  2994. */
  2995. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2996. __schedule_bug(prev);
  2997. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2998. schedstat_inc(this_rq(), sched_count);
  2999. #ifdef CONFIG_SCHEDSTATS
  3000. if (unlikely(prev->lock_depth >= 0)) {
  3001. schedstat_inc(this_rq(), bkl_count);
  3002. schedstat_inc(prev, sched_info.bkl_count);
  3003. }
  3004. #endif
  3005. }
  3006. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3007. {
  3008. if (prev->state == TASK_RUNNING) {
  3009. u64 runtime = prev->se.sum_exec_runtime;
  3010. runtime -= prev->se.prev_sum_exec_runtime;
  3011. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  3012. /*
  3013. * In order to avoid avg_overlap growing stale when we are
  3014. * indeed overlapping and hence not getting put to sleep, grow
  3015. * the avg_overlap on preemption.
  3016. *
  3017. * We use the average preemption runtime because that
  3018. * correlates to the amount of cache footprint a task can
  3019. * build up.
  3020. */
  3021. update_avg(&prev->se.avg_overlap, runtime);
  3022. }
  3023. prev->sched_class->put_prev_task(rq, prev);
  3024. }
  3025. /*
  3026. * Pick up the highest-prio task:
  3027. */
  3028. static inline struct task_struct *
  3029. pick_next_task(struct rq *rq)
  3030. {
  3031. const struct sched_class *class;
  3032. struct task_struct *p;
  3033. /*
  3034. * Optimization: we know that if all tasks are in
  3035. * the fair class we can call that function directly:
  3036. */
  3037. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3038. p = fair_sched_class.pick_next_task(rq);
  3039. if (likely(p))
  3040. return p;
  3041. }
  3042. class = sched_class_highest;
  3043. for ( ; ; ) {
  3044. p = class->pick_next_task(rq);
  3045. if (p)
  3046. return p;
  3047. /*
  3048. * Will never be NULL as the idle class always
  3049. * returns a non-NULL p:
  3050. */
  3051. class = class->next;
  3052. }
  3053. }
  3054. /*
  3055. * schedule() is the main scheduler function.
  3056. */
  3057. asmlinkage void __sched schedule(void)
  3058. {
  3059. struct task_struct *prev, *next;
  3060. unsigned long *switch_count;
  3061. struct rq *rq;
  3062. int cpu;
  3063. need_resched:
  3064. preempt_disable();
  3065. cpu = smp_processor_id();
  3066. rq = cpu_rq(cpu);
  3067. rcu_sched_qs(cpu);
  3068. prev = rq->curr;
  3069. switch_count = &prev->nivcsw;
  3070. release_kernel_lock(prev);
  3071. need_resched_nonpreemptible:
  3072. schedule_debug(prev);
  3073. if (sched_feat(HRTICK))
  3074. hrtick_clear(rq);
  3075. raw_spin_lock_irq(&rq->lock);
  3076. update_rq_clock(rq);
  3077. clear_tsk_need_resched(prev);
  3078. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3079. if (unlikely(signal_pending_state(prev->state, prev)))
  3080. prev->state = TASK_RUNNING;
  3081. else
  3082. deactivate_task(rq, prev, 1);
  3083. switch_count = &prev->nvcsw;
  3084. }
  3085. pre_schedule(rq, prev);
  3086. if (unlikely(!rq->nr_running))
  3087. idle_balance(cpu, rq);
  3088. put_prev_task(rq, prev);
  3089. next = pick_next_task(rq);
  3090. if (likely(prev != next)) {
  3091. sched_info_switch(prev, next);
  3092. perf_event_task_sched_out(prev, next, cpu);
  3093. rq->nr_switches++;
  3094. rq->curr = next;
  3095. ++*switch_count;
  3096. context_switch(rq, prev, next); /* unlocks the rq */
  3097. /*
  3098. * the context switch might have flipped the stack from under
  3099. * us, hence refresh the local variables.
  3100. */
  3101. cpu = smp_processor_id();
  3102. rq = cpu_rq(cpu);
  3103. } else
  3104. raw_spin_unlock_irq(&rq->lock);
  3105. post_schedule(rq);
  3106. if (unlikely(reacquire_kernel_lock(current) < 0))
  3107. goto need_resched_nonpreemptible;
  3108. preempt_enable_no_resched();
  3109. if (need_resched())
  3110. goto need_resched;
  3111. }
  3112. EXPORT_SYMBOL(schedule);
  3113. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3114. /*
  3115. * Look out! "owner" is an entirely speculative pointer
  3116. * access and not reliable.
  3117. */
  3118. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3119. {
  3120. unsigned int cpu;
  3121. struct rq *rq;
  3122. if (!sched_feat(OWNER_SPIN))
  3123. return 0;
  3124. #ifdef CONFIG_DEBUG_PAGEALLOC
  3125. /*
  3126. * Need to access the cpu field knowing that
  3127. * DEBUG_PAGEALLOC could have unmapped it if
  3128. * the mutex owner just released it and exited.
  3129. */
  3130. if (probe_kernel_address(&owner->cpu, cpu))
  3131. goto out;
  3132. #else
  3133. cpu = owner->cpu;
  3134. #endif
  3135. /*
  3136. * Even if the access succeeded (likely case),
  3137. * the cpu field may no longer be valid.
  3138. */
  3139. if (cpu >= nr_cpumask_bits)
  3140. goto out;
  3141. /*
  3142. * We need to validate that we can do a
  3143. * get_cpu() and that we have the percpu area.
  3144. */
  3145. if (!cpu_online(cpu))
  3146. goto out;
  3147. rq = cpu_rq(cpu);
  3148. for (;;) {
  3149. /*
  3150. * Owner changed, break to re-assess state.
  3151. */
  3152. if (lock->owner != owner)
  3153. break;
  3154. /*
  3155. * Is that owner really running on that cpu?
  3156. */
  3157. if (task_thread_info(rq->curr) != owner || need_resched())
  3158. return 0;
  3159. cpu_relax();
  3160. }
  3161. out:
  3162. return 1;
  3163. }
  3164. #endif
  3165. #ifdef CONFIG_PREEMPT
  3166. /*
  3167. * this is the entry point to schedule() from in-kernel preemption
  3168. * off of preempt_enable. Kernel preemptions off return from interrupt
  3169. * occur there and call schedule directly.
  3170. */
  3171. asmlinkage void __sched preempt_schedule(void)
  3172. {
  3173. struct thread_info *ti = current_thread_info();
  3174. /*
  3175. * If there is a non-zero preempt_count or interrupts are disabled,
  3176. * we do not want to preempt the current task. Just return..
  3177. */
  3178. if (likely(ti->preempt_count || irqs_disabled()))
  3179. return;
  3180. do {
  3181. add_preempt_count(PREEMPT_ACTIVE);
  3182. schedule();
  3183. sub_preempt_count(PREEMPT_ACTIVE);
  3184. /*
  3185. * Check again in case we missed a preemption opportunity
  3186. * between schedule and now.
  3187. */
  3188. barrier();
  3189. } while (need_resched());
  3190. }
  3191. EXPORT_SYMBOL(preempt_schedule);
  3192. /*
  3193. * this is the entry point to schedule() from kernel preemption
  3194. * off of irq context.
  3195. * Note, that this is called and return with irqs disabled. This will
  3196. * protect us against recursive calling from irq.
  3197. */
  3198. asmlinkage void __sched preempt_schedule_irq(void)
  3199. {
  3200. struct thread_info *ti = current_thread_info();
  3201. /* Catch callers which need to be fixed */
  3202. BUG_ON(ti->preempt_count || !irqs_disabled());
  3203. do {
  3204. add_preempt_count(PREEMPT_ACTIVE);
  3205. local_irq_enable();
  3206. schedule();
  3207. local_irq_disable();
  3208. sub_preempt_count(PREEMPT_ACTIVE);
  3209. /*
  3210. * Check again in case we missed a preemption opportunity
  3211. * between schedule and now.
  3212. */
  3213. barrier();
  3214. } while (need_resched());
  3215. }
  3216. #endif /* CONFIG_PREEMPT */
  3217. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3218. void *key)
  3219. {
  3220. return try_to_wake_up(curr->private, mode, wake_flags);
  3221. }
  3222. EXPORT_SYMBOL(default_wake_function);
  3223. /*
  3224. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3225. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3226. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3227. *
  3228. * There are circumstances in which we can try to wake a task which has already
  3229. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3230. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3231. */
  3232. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3233. int nr_exclusive, int wake_flags, void *key)
  3234. {
  3235. wait_queue_t *curr, *next;
  3236. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3237. unsigned flags = curr->flags;
  3238. if (curr->func(curr, mode, wake_flags, key) &&
  3239. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3240. break;
  3241. }
  3242. }
  3243. /**
  3244. * __wake_up - wake up threads blocked on a waitqueue.
  3245. * @q: the waitqueue
  3246. * @mode: which threads
  3247. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3248. * @key: is directly passed to the wakeup function
  3249. *
  3250. * It may be assumed that this function implies a write memory barrier before
  3251. * changing the task state if and only if any tasks are woken up.
  3252. */
  3253. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3254. int nr_exclusive, void *key)
  3255. {
  3256. unsigned long flags;
  3257. spin_lock_irqsave(&q->lock, flags);
  3258. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3259. spin_unlock_irqrestore(&q->lock, flags);
  3260. }
  3261. EXPORT_SYMBOL(__wake_up);
  3262. /*
  3263. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3264. */
  3265. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3266. {
  3267. __wake_up_common(q, mode, 1, 0, NULL);
  3268. }
  3269. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3270. {
  3271. __wake_up_common(q, mode, 1, 0, key);
  3272. }
  3273. /**
  3274. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3275. * @q: the waitqueue
  3276. * @mode: which threads
  3277. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3278. * @key: opaque value to be passed to wakeup targets
  3279. *
  3280. * The sync wakeup differs that the waker knows that it will schedule
  3281. * away soon, so while the target thread will be woken up, it will not
  3282. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3283. * with each other. This can prevent needless bouncing between CPUs.
  3284. *
  3285. * On UP it can prevent extra preemption.
  3286. *
  3287. * It may be assumed that this function implies a write memory barrier before
  3288. * changing the task state if and only if any tasks are woken up.
  3289. */
  3290. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3291. int nr_exclusive, void *key)
  3292. {
  3293. unsigned long flags;
  3294. int wake_flags = WF_SYNC;
  3295. if (unlikely(!q))
  3296. return;
  3297. if (unlikely(!nr_exclusive))
  3298. wake_flags = 0;
  3299. spin_lock_irqsave(&q->lock, flags);
  3300. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3301. spin_unlock_irqrestore(&q->lock, flags);
  3302. }
  3303. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3304. /*
  3305. * __wake_up_sync - see __wake_up_sync_key()
  3306. */
  3307. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3308. {
  3309. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3310. }
  3311. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3312. /**
  3313. * complete: - signals a single thread waiting on this completion
  3314. * @x: holds the state of this particular completion
  3315. *
  3316. * This will wake up a single thread waiting on this completion. Threads will be
  3317. * awakened in the same order in which they were queued.
  3318. *
  3319. * See also complete_all(), wait_for_completion() and related routines.
  3320. *
  3321. * It may be assumed that this function implies a write memory barrier before
  3322. * changing the task state if and only if any tasks are woken up.
  3323. */
  3324. void complete(struct completion *x)
  3325. {
  3326. unsigned long flags;
  3327. spin_lock_irqsave(&x->wait.lock, flags);
  3328. x->done++;
  3329. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3330. spin_unlock_irqrestore(&x->wait.lock, flags);
  3331. }
  3332. EXPORT_SYMBOL(complete);
  3333. /**
  3334. * complete_all: - signals all threads waiting on this completion
  3335. * @x: holds the state of this particular completion
  3336. *
  3337. * This will wake up all threads waiting on this particular completion event.
  3338. *
  3339. * It may be assumed that this function implies a write memory barrier before
  3340. * changing the task state if and only if any tasks are woken up.
  3341. */
  3342. void complete_all(struct completion *x)
  3343. {
  3344. unsigned long flags;
  3345. spin_lock_irqsave(&x->wait.lock, flags);
  3346. x->done += UINT_MAX/2;
  3347. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3348. spin_unlock_irqrestore(&x->wait.lock, flags);
  3349. }
  3350. EXPORT_SYMBOL(complete_all);
  3351. static inline long __sched
  3352. do_wait_for_common(struct completion *x, long timeout, int state)
  3353. {
  3354. if (!x->done) {
  3355. DECLARE_WAITQUEUE(wait, current);
  3356. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3357. __add_wait_queue_tail(&x->wait, &wait);
  3358. do {
  3359. if (signal_pending_state(state, current)) {
  3360. timeout = -ERESTARTSYS;
  3361. break;
  3362. }
  3363. __set_current_state(state);
  3364. spin_unlock_irq(&x->wait.lock);
  3365. timeout = schedule_timeout(timeout);
  3366. spin_lock_irq(&x->wait.lock);
  3367. } while (!x->done && timeout);
  3368. __remove_wait_queue(&x->wait, &wait);
  3369. if (!x->done)
  3370. return timeout;
  3371. }
  3372. x->done--;
  3373. return timeout ?: 1;
  3374. }
  3375. static long __sched
  3376. wait_for_common(struct completion *x, long timeout, int state)
  3377. {
  3378. might_sleep();
  3379. spin_lock_irq(&x->wait.lock);
  3380. timeout = do_wait_for_common(x, timeout, state);
  3381. spin_unlock_irq(&x->wait.lock);
  3382. return timeout;
  3383. }
  3384. /**
  3385. * wait_for_completion: - waits for completion of a task
  3386. * @x: holds the state of this particular completion
  3387. *
  3388. * This waits to be signaled for completion of a specific task. It is NOT
  3389. * interruptible and there is no timeout.
  3390. *
  3391. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3392. * and interrupt capability. Also see complete().
  3393. */
  3394. void __sched wait_for_completion(struct completion *x)
  3395. {
  3396. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3397. }
  3398. EXPORT_SYMBOL(wait_for_completion);
  3399. /**
  3400. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3401. * @x: holds the state of this particular completion
  3402. * @timeout: timeout value in jiffies
  3403. *
  3404. * This waits for either a completion of a specific task to be signaled or for a
  3405. * specified timeout to expire. The timeout is in jiffies. It is not
  3406. * interruptible.
  3407. */
  3408. unsigned long __sched
  3409. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3410. {
  3411. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3412. }
  3413. EXPORT_SYMBOL(wait_for_completion_timeout);
  3414. /**
  3415. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3416. * @x: holds the state of this particular completion
  3417. *
  3418. * This waits for completion of a specific task to be signaled. It is
  3419. * interruptible.
  3420. */
  3421. int __sched wait_for_completion_interruptible(struct completion *x)
  3422. {
  3423. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3424. if (t == -ERESTARTSYS)
  3425. return t;
  3426. return 0;
  3427. }
  3428. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3429. /**
  3430. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3431. * @x: holds the state of this particular completion
  3432. * @timeout: timeout value in jiffies
  3433. *
  3434. * This waits for either a completion of a specific task to be signaled or for a
  3435. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3436. */
  3437. unsigned long __sched
  3438. wait_for_completion_interruptible_timeout(struct completion *x,
  3439. unsigned long timeout)
  3440. {
  3441. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3442. }
  3443. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3444. /**
  3445. * wait_for_completion_killable: - waits for completion of a task (killable)
  3446. * @x: holds the state of this particular completion
  3447. *
  3448. * This waits to be signaled for completion of a specific task. It can be
  3449. * interrupted by a kill signal.
  3450. */
  3451. int __sched wait_for_completion_killable(struct completion *x)
  3452. {
  3453. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3454. if (t == -ERESTARTSYS)
  3455. return t;
  3456. return 0;
  3457. }
  3458. EXPORT_SYMBOL(wait_for_completion_killable);
  3459. /**
  3460. * try_wait_for_completion - try to decrement a completion without blocking
  3461. * @x: completion structure
  3462. *
  3463. * Returns: 0 if a decrement cannot be done without blocking
  3464. * 1 if a decrement succeeded.
  3465. *
  3466. * If a completion is being used as a counting completion,
  3467. * attempt to decrement the counter without blocking. This
  3468. * enables us to avoid waiting if the resource the completion
  3469. * is protecting is not available.
  3470. */
  3471. bool try_wait_for_completion(struct completion *x)
  3472. {
  3473. unsigned long flags;
  3474. int ret = 1;
  3475. spin_lock_irqsave(&x->wait.lock, flags);
  3476. if (!x->done)
  3477. ret = 0;
  3478. else
  3479. x->done--;
  3480. spin_unlock_irqrestore(&x->wait.lock, flags);
  3481. return ret;
  3482. }
  3483. EXPORT_SYMBOL(try_wait_for_completion);
  3484. /**
  3485. * completion_done - Test to see if a completion has any waiters
  3486. * @x: completion structure
  3487. *
  3488. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3489. * 1 if there are no waiters.
  3490. *
  3491. */
  3492. bool completion_done(struct completion *x)
  3493. {
  3494. unsigned long flags;
  3495. int ret = 1;
  3496. spin_lock_irqsave(&x->wait.lock, flags);
  3497. if (!x->done)
  3498. ret = 0;
  3499. spin_unlock_irqrestore(&x->wait.lock, flags);
  3500. return ret;
  3501. }
  3502. EXPORT_SYMBOL(completion_done);
  3503. static long __sched
  3504. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3505. {
  3506. unsigned long flags;
  3507. wait_queue_t wait;
  3508. init_waitqueue_entry(&wait, current);
  3509. __set_current_state(state);
  3510. spin_lock_irqsave(&q->lock, flags);
  3511. __add_wait_queue(q, &wait);
  3512. spin_unlock(&q->lock);
  3513. timeout = schedule_timeout(timeout);
  3514. spin_lock_irq(&q->lock);
  3515. __remove_wait_queue(q, &wait);
  3516. spin_unlock_irqrestore(&q->lock, flags);
  3517. return timeout;
  3518. }
  3519. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3520. {
  3521. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3522. }
  3523. EXPORT_SYMBOL(interruptible_sleep_on);
  3524. long __sched
  3525. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3526. {
  3527. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3528. }
  3529. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3530. void __sched sleep_on(wait_queue_head_t *q)
  3531. {
  3532. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3533. }
  3534. EXPORT_SYMBOL(sleep_on);
  3535. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3536. {
  3537. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3538. }
  3539. EXPORT_SYMBOL(sleep_on_timeout);
  3540. #ifdef CONFIG_RT_MUTEXES
  3541. /*
  3542. * rt_mutex_setprio - set the current priority of a task
  3543. * @p: task
  3544. * @prio: prio value (kernel-internal form)
  3545. *
  3546. * This function changes the 'effective' priority of a task. It does
  3547. * not touch ->normal_prio like __setscheduler().
  3548. *
  3549. * Used by the rt_mutex code to implement priority inheritance logic.
  3550. */
  3551. void rt_mutex_setprio(struct task_struct *p, int prio)
  3552. {
  3553. unsigned long flags;
  3554. int oldprio, on_rq, running;
  3555. struct rq *rq;
  3556. const struct sched_class *prev_class = p->sched_class;
  3557. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3558. rq = task_rq_lock(p, &flags);
  3559. update_rq_clock(rq);
  3560. oldprio = p->prio;
  3561. on_rq = p->se.on_rq;
  3562. running = task_current(rq, p);
  3563. if (on_rq)
  3564. dequeue_task(rq, p, 0);
  3565. if (running)
  3566. p->sched_class->put_prev_task(rq, p);
  3567. if (rt_prio(prio))
  3568. p->sched_class = &rt_sched_class;
  3569. else
  3570. p->sched_class = &fair_sched_class;
  3571. p->prio = prio;
  3572. if (running)
  3573. p->sched_class->set_curr_task(rq);
  3574. if (on_rq) {
  3575. enqueue_task(rq, p, 0, oldprio < prio);
  3576. check_class_changed(rq, p, prev_class, oldprio, running);
  3577. }
  3578. task_rq_unlock(rq, &flags);
  3579. }
  3580. #endif
  3581. void set_user_nice(struct task_struct *p, long nice)
  3582. {
  3583. int old_prio, delta, on_rq;
  3584. unsigned long flags;
  3585. struct rq *rq;
  3586. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3587. return;
  3588. /*
  3589. * We have to be careful, if called from sys_setpriority(),
  3590. * the task might be in the middle of scheduling on another CPU.
  3591. */
  3592. rq = task_rq_lock(p, &flags);
  3593. update_rq_clock(rq);
  3594. /*
  3595. * The RT priorities are set via sched_setscheduler(), but we still
  3596. * allow the 'normal' nice value to be set - but as expected
  3597. * it wont have any effect on scheduling until the task is
  3598. * SCHED_FIFO/SCHED_RR:
  3599. */
  3600. if (task_has_rt_policy(p)) {
  3601. p->static_prio = NICE_TO_PRIO(nice);
  3602. goto out_unlock;
  3603. }
  3604. on_rq = p->se.on_rq;
  3605. if (on_rq)
  3606. dequeue_task(rq, p, 0);
  3607. p->static_prio = NICE_TO_PRIO(nice);
  3608. set_load_weight(p);
  3609. old_prio = p->prio;
  3610. p->prio = effective_prio(p);
  3611. delta = p->prio - old_prio;
  3612. if (on_rq) {
  3613. enqueue_task(rq, p, 0, false);
  3614. /*
  3615. * If the task increased its priority or is running and
  3616. * lowered its priority, then reschedule its CPU:
  3617. */
  3618. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3619. resched_task(rq->curr);
  3620. }
  3621. out_unlock:
  3622. task_rq_unlock(rq, &flags);
  3623. }
  3624. EXPORT_SYMBOL(set_user_nice);
  3625. /*
  3626. * can_nice - check if a task can reduce its nice value
  3627. * @p: task
  3628. * @nice: nice value
  3629. */
  3630. int can_nice(const struct task_struct *p, const int nice)
  3631. {
  3632. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3633. int nice_rlim = 20 - nice;
  3634. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3635. capable(CAP_SYS_NICE));
  3636. }
  3637. #ifdef __ARCH_WANT_SYS_NICE
  3638. /*
  3639. * sys_nice - change the priority of the current process.
  3640. * @increment: priority increment
  3641. *
  3642. * sys_setpriority is a more generic, but much slower function that
  3643. * does similar things.
  3644. */
  3645. SYSCALL_DEFINE1(nice, int, increment)
  3646. {
  3647. long nice, retval;
  3648. /*
  3649. * Setpriority might change our priority at the same moment.
  3650. * We don't have to worry. Conceptually one call occurs first
  3651. * and we have a single winner.
  3652. */
  3653. if (increment < -40)
  3654. increment = -40;
  3655. if (increment > 40)
  3656. increment = 40;
  3657. nice = TASK_NICE(current) + increment;
  3658. if (nice < -20)
  3659. nice = -20;
  3660. if (nice > 19)
  3661. nice = 19;
  3662. if (increment < 0 && !can_nice(current, nice))
  3663. return -EPERM;
  3664. retval = security_task_setnice(current, nice);
  3665. if (retval)
  3666. return retval;
  3667. set_user_nice(current, nice);
  3668. return 0;
  3669. }
  3670. #endif
  3671. /**
  3672. * task_prio - return the priority value of a given task.
  3673. * @p: the task in question.
  3674. *
  3675. * This is the priority value as seen by users in /proc.
  3676. * RT tasks are offset by -200. Normal tasks are centered
  3677. * around 0, value goes from -16 to +15.
  3678. */
  3679. int task_prio(const struct task_struct *p)
  3680. {
  3681. return p->prio - MAX_RT_PRIO;
  3682. }
  3683. /**
  3684. * task_nice - return the nice value of a given task.
  3685. * @p: the task in question.
  3686. */
  3687. int task_nice(const struct task_struct *p)
  3688. {
  3689. return TASK_NICE(p);
  3690. }
  3691. EXPORT_SYMBOL(task_nice);
  3692. /**
  3693. * idle_cpu - is a given cpu idle currently?
  3694. * @cpu: the processor in question.
  3695. */
  3696. int idle_cpu(int cpu)
  3697. {
  3698. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3699. }
  3700. /**
  3701. * idle_task - return the idle task for a given cpu.
  3702. * @cpu: the processor in question.
  3703. */
  3704. struct task_struct *idle_task(int cpu)
  3705. {
  3706. return cpu_rq(cpu)->idle;
  3707. }
  3708. /**
  3709. * find_process_by_pid - find a process with a matching PID value.
  3710. * @pid: the pid in question.
  3711. */
  3712. static struct task_struct *find_process_by_pid(pid_t pid)
  3713. {
  3714. return pid ? find_task_by_vpid(pid) : current;
  3715. }
  3716. /* Actually do priority change: must hold rq lock. */
  3717. static void
  3718. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3719. {
  3720. BUG_ON(p->se.on_rq);
  3721. p->policy = policy;
  3722. p->rt_priority = prio;
  3723. p->normal_prio = normal_prio(p);
  3724. /* we are holding p->pi_lock already */
  3725. p->prio = rt_mutex_getprio(p);
  3726. if (rt_prio(p->prio))
  3727. p->sched_class = &rt_sched_class;
  3728. else
  3729. p->sched_class = &fair_sched_class;
  3730. set_load_weight(p);
  3731. }
  3732. /*
  3733. * check the target process has a UID that matches the current process's
  3734. */
  3735. static bool check_same_owner(struct task_struct *p)
  3736. {
  3737. const struct cred *cred = current_cred(), *pcred;
  3738. bool match;
  3739. rcu_read_lock();
  3740. pcred = __task_cred(p);
  3741. match = (cred->euid == pcred->euid ||
  3742. cred->euid == pcred->uid);
  3743. rcu_read_unlock();
  3744. return match;
  3745. }
  3746. static int __sched_setscheduler(struct task_struct *p, int policy,
  3747. struct sched_param *param, bool user)
  3748. {
  3749. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3750. unsigned long flags;
  3751. const struct sched_class *prev_class = p->sched_class;
  3752. struct rq *rq;
  3753. int reset_on_fork;
  3754. /* may grab non-irq protected spin_locks */
  3755. BUG_ON(in_interrupt());
  3756. recheck:
  3757. /* double check policy once rq lock held */
  3758. if (policy < 0) {
  3759. reset_on_fork = p->sched_reset_on_fork;
  3760. policy = oldpolicy = p->policy;
  3761. } else {
  3762. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3763. policy &= ~SCHED_RESET_ON_FORK;
  3764. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3765. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3766. policy != SCHED_IDLE)
  3767. return -EINVAL;
  3768. }
  3769. /*
  3770. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3771. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3772. * SCHED_BATCH and SCHED_IDLE is 0.
  3773. */
  3774. if (param->sched_priority < 0 ||
  3775. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3776. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3777. return -EINVAL;
  3778. if (rt_policy(policy) != (param->sched_priority != 0))
  3779. return -EINVAL;
  3780. /*
  3781. * Allow unprivileged RT tasks to decrease priority:
  3782. */
  3783. if (user && !capable(CAP_SYS_NICE)) {
  3784. if (rt_policy(policy)) {
  3785. unsigned long rlim_rtprio;
  3786. if (!lock_task_sighand(p, &flags))
  3787. return -ESRCH;
  3788. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3789. unlock_task_sighand(p, &flags);
  3790. /* can't set/change the rt policy */
  3791. if (policy != p->policy && !rlim_rtprio)
  3792. return -EPERM;
  3793. /* can't increase priority */
  3794. if (param->sched_priority > p->rt_priority &&
  3795. param->sched_priority > rlim_rtprio)
  3796. return -EPERM;
  3797. }
  3798. /*
  3799. * Like positive nice levels, dont allow tasks to
  3800. * move out of SCHED_IDLE either:
  3801. */
  3802. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3803. return -EPERM;
  3804. /* can't change other user's priorities */
  3805. if (!check_same_owner(p))
  3806. return -EPERM;
  3807. /* Normal users shall not reset the sched_reset_on_fork flag */
  3808. if (p->sched_reset_on_fork && !reset_on_fork)
  3809. return -EPERM;
  3810. }
  3811. if (user) {
  3812. #ifdef CONFIG_RT_GROUP_SCHED
  3813. /*
  3814. * Do not allow realtime tasks into groups that have no runtime
  3815. * assigned.
  3816. */
  3817. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3818. task_group(p)->rt_bandwidth.rt_runtime == 0)
  3819. return -EPERM;
  3820. #endif
  3821. retval = security_task_setscheduler(p, policy, param);
  3822. if (retval)
  3823. return retval;
  3824. }
  3825. /*
  3826. * make sure no PI-waiters arrive (or leave) while we are
  3827. * changing the priority of the task:
  3828. */
  3829. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3830. /*
  3831. * To be able to change p->policy safely, the apropriate
  3832. * runqueue lock must be held.
  3833. */
  3834. rq = __task_rq_lock(p);
  3835. /* recheck policy now with rq lock held */
  3836. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3837. policy = oldpolicy = -1;
  3838. __task_rq_unlock(rq);
  3839. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3840. goto recheck;
  3841. }
  3842. update_rq_clock(rq);
  3843. on_rq = p->se.on_rq;
  3844. running = task_current(rq, p);
  3845. if (on_rq)
  3846. deactivate_task(rq, p, 0);
  3847. if (running)
  3848. p->sched_class->put_prev_task(rq, p);
  3849. p->sched_reset_on_fork = reset_on_fork;
  3850. oldprio = p->prio;
  3851. __setscheduler(rq, p, policy, param->sched_priority);
  3852. if (running)
  3853. p->sched_class->set_curr_task(rq);
  3854. if (on_rq) {
  3855. activate_task(rq, p, 0);
  3856. check_class_changed(rq, p, prev_class, oldprio, running);
  3857. }
  3858. __task_rq_unlock(rq);
  3859. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3860. rt_mutex_adjust_pi(p);
  3861. return 0;
  3862. }
  3863. /**
  3864. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3865. * @p: the task in question.
  3866. * @policy: new policy.
  3867. * @param: structure containing the new RT priority.
  3868. *
  3869. * NOTE that the task may be already dead.
  3870. */
  3871. int sched_setscheduler(struct task_struct *p, int policy,
  3872. struct sched_param *param)
  3873. {
  3874. return __sched_setscheduler(p, policy, param, true);
  3875. }
  3876. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3877. /**
  3878. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3879. * @p: the task in question.
  3880. * @policy: new policy.
  3881. * @param: structure containing the new RT priority.
  3882. *
  3883. * Just like sched_setscheduler, only don't bother checking if the
  3884. * current context has permission. For example, this is needed in
  3885. * stop_machine(): we create temporary high priority worker threads,
  3886. * but our caller might not have that capability.
  3887. */
  3888. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3889. struct sched_param *param)
  3890. {
  3891. return __sched_setscheduler(p, policy, param, false);
  3892. }
  3893. static int
  3894. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3895. {
  3896. struct sched_param lparam;
  3897. struct task_struct *p;
  3898. int retval;
  3899. if (!param || pid < 0)
  3900. return -EINVAL;
  3901. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3902. return -EFAULT;
  3903. rcu_read_lock();
  3904. retval = -ESRCH;
  3905. p = find_process_by_pid(pid);
  3906. if (p != NULL)
  3907. retval = sched_setscheduler(p, policy, &lparam);
  3908. rcu_read_unlock();
  3909. return retval;
  3910. }
  3911. /**
  3912. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3913. * @pid: the pid in question.
  3914. * @policy: new policy.
  3915. * @param: structure containing the new RT priority.
  3916. */
  3917. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3918. struct sched_param __user *, param)
  3919. {
  3920. /* negative values for policy are not valid */
  3921. if (policy < 0)
  3922. return -EINVAL;
  3923. return do_sched_setscheduler(pid, policy, param);
  3924. }
  3925. /**
  3926. * sys_sched_setparam - set/change the RT priority of a thread
  3927. * @pid: the pid in question.
  3928. * @param: structure containing the new RT priority.
  3929. */
  3930. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3931. {
  3932. return do_sched_setscheduler(pid, -1, param);
  3933. }
  3934. /**
  3935. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3936. * @pid: the pid in question.
  3937. */
  3938. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3939. {
  3940. struct task_struct *p;
  3941. int retval;
  3942. if (pid < 0)
  3943. return -EINVAL;
  3944. retval = -ESRCH;
  3945. rcu_read_lock();
  3946. p = find_process_by_pid(pid);
  3947. if (p) {
  3948. retval = security_task_getscheduler(p);
  3949. if (!retval)
  3950. retval = p->policy
  3951. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3952. }
  3953. rcu_read_unlock();
  3954. return retval;
  3955. }
  3956. /**
  3957. * sys_sched_getparam - get the RT priority of a thread
  3958. * @pid: the pid in question.
  3959. * @param: structure containing the RT priority.
  3960. */
  3961. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3962. {
  3963. struct sched_param lp;
  3964. struct task_struct *p;
  3965. int retval;
  3966. if (!param || pid < 0)
  3967. return -EINVAL;
  3968. rcu_read_lock();
  3969. p = find_process_by_pid(pid);
  3970. retval = -ESRCH;
  3971. if (!p)
  3972. goto out_unlock;
  3973. retval = security_task_getscheduler(p);
  3974. if (retval)
  3975. goto out_unlock;
  3976. lp.sched_priority = p->rt_priority;
  3977. rcu_read_unlock();
  3978. /*
  3979. * This one might sleep, we cannot do it with a spinlock held ...
  3980. */
  3981. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3982. return retval;
  3983. out_unlock:
  3984. rcu_read_unlock();
  3985. return retval;
  3986. }
  3987. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3988. {
  3989. cpumask_var_t cpus_allowed, new_mask;
  3990. struct task_struct *p;
  3991. int retval;
  3992. get_online_cpus();
  3993. rcu_read_lock();
  3994. p = find_process_by_pid(pid);
  3995. if (!p) {
  3996. rcu_read_unlock();
  3997. put_online_cpus();
  3998. return -ESRCH;
  3999. }
  4000. /* Prevent p going away */
  4001. get_task_struct(p);
  4002. rcu_read_unlock();
  4003. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4004. retval = -ENOMEM;
  4005. goto out_put_task;
  4006. }
  4007. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4008. retval = -ENOMEM;
  4009. goto out_free_cpus_allowed;
  4010. }
  4011. retval = -EPERM;
  4012. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4013. goto out_unlock;
  4014. retval = security_task_setscheduler(p, 0, NULL);
  4015. if (retval)
  4016. goto out_unlock;
  4017. cpuset_cpus_allowed(p, cpus_allowed);
  4018. cpumask_and(new_mask, in_mask, cpus_allowed);
  4019. again:
  4020. retval = set_cpus_allowed_ptr(p, new_mask);
  4021. if (!retval) {
  4022. cpuset_cpus_allowed(p, cpus_allowed);
  4023. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4024. /*
  4025. * We must have raced with a concurrent cpuset
  4026. * update. Just reset the cpus_allowed to the
  4027. * cpuset's cpus_allowed
  4028. */
  4029. cpumask_copy(new_mask, cpus_allowed);
  4030. goto again;
  4031. }
  4032. }
  4033. out_unlock:
  4034. free_cpumask_var(new_mask);
  4035. out_free_cpus_allowed:
  4036. free_cpumask_var(cpus_allowed);
  4037. out_put_task:
  4038. put_task_struct(p);
  4039. put_online_cpus();
  4040. return retval;
  4041. }
  4042. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4043. struct cpumask *new_mask)
  4044. {
  4045. if (len < cpumask_size())
  4046. cpumask_clear(new_mask);
  4047. else if (len > cpumask_size())
  4048. len = cpumask_size();
  4049. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4050. }
  4051. /**
  4052. * sys_sched_setaffinity - set the cpu affinity of a process
  4053. * @pid: pid of the process
  4054. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4055. * @user_mask_ptr: user-space pointer to the new cpu mask
  4056. */
  4057. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4058. unsigned long __user *, user_mask_ptr)
  4059. {
  4060. cpumask_var_t new_mask;
  4061. int retval;
  4062. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4063. return -ENOMEM;
  4064. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4065. if (retval == 0)
  4066. retval = sched_setaffinity(pid, new_mask);
  4067. free_cpumask_var(new_mask);
  4068. return retval;
  4069. }
  4070. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4071. {
  4072. struct task_struct *p;
  4073. unsigned long flags;
  4074. struct rq *rq;
  4075. int retval;
  4076. get_online_cpus();
  4077. rcu_read_lock();
  4078. retval = -ESRCH;
  4079. p = find_process_by_pid(pid);
  4080. if (!p)
  4081. goto out_unlock;
  4082. retval = security_task_getscheduler(p);
  4083. if (retval)
  4084. goto out_unlock;
  4085. rq = task_rq_lock(p, &flags);
  4086. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4087. task_rq_unlock(rq, &flags);
  4088. out_unlock:
  4089. rcu_read_unlock();
  4090. put_online_cpus();
  4091. return retval;
  4092. }
  4093. /**
  4094. * sys_sched_getaffinity - get the cpu affinity of a process
  4095. * @pid: pid of the process
  4096. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4097. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4098. */
  4099. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4100. unsigned long __user *, user_mask_ptr)
  4101. {
  4102. int ret;
  4103. cpumask_var_t mask;
  4104. if (len < cpumask_size())
  4105. return -EINVAL;
  4106. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4107. return -ENOMEM;
  4108. ret = sched_getaffinity(pid, mask);
  4109. if (ret == 0) {
  4110. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  4111. ret = -EFAULT;
  4112. else
  4113. ret = cpumask_size();
  4114. }
  4115. free_cpumask_var(mask);
  4116. return ret;
  4117. }
  4118. /**
  4119. * sys_sched_yield - yield the current processor to other threads.
  4120. *
  4121. * This function yields the current CPU to other tasks. If there are no
  4122. * other threads running on this CPU then this function will return.
  4123. */
  4124. SYSCALL_DEFINE0(sched_yield)
  4125. {
  4126. struct rq *rq = this_rq_lock();
  4127. schedstat_inc(rq, yld_count);
  4128. current->sched_class->yield_task(rq);
  4129. /*
  4130. * Since we are going to call schedule() anyway, there's
  4131. * no need to preempt or enable interrupts:
  4132. */
  4133. __release(rq->lock);
  4134. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4135. do_raw_spin_unlock(&rq->lock);
  4136. preempt_enable_no_resched();
  4137. schedule();
  4138. return 0;
  4139. }
  4140. static inline int should_resched(void)
  4141. {
  4142. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4143. }
  4144. static void __cond_resched(void)
  4145. {
  4146. add_preempt_count(PREEMPT_ACTIVE);
  4147. schedule();
  4148. sub_preempt_count(PREEMPT_ACTIVE);
  4149. }
  4150. int __sched _cond_resched(void)
  4151. {
  4152. if (should_resched()) {
  4153. __cond_resched();
  4154. return 1;
  4155. }
  4156. return 0;
  4157. }
  4158. EXPORT_SYMBOL(_cond_resched);
  4159. /*
  4160. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4161. * call schedule, and on return reacquire the lock.
  4162. *
  4163. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4164. * operations here to prevent schedule() from being called twice (once via
  4165. * spin_unlock(), once by hand).
  4166. */
  4167. int __cond_resched_lock(spinlock_t *lock)
  4168. {
  4169. int resched = should_resched();
  4170. int ret = 0;
  4171. lockdep_assert_held(lock);
  4172. if (spin_needbreak(lock) || resched) {
  4173. spin_unlock(lock);
  4174. if (resched)
  4175. __cond_resched();
  4176. else
  4177. cpu_relax();
  4178. ret = 1;
  4179. spin_lock(lock);
  4180. }
  4181. return ret;
  4182. }
  4183. EXPORT_SYMBOL(__cond_resched_lock);
  4184. int __sched __cond_resched_softirq(void)
  4185. {
  4186. BUG_ON(!in_softirq());
  4187. if (should_resched()) {
  4188. local_bh_enable();
  4189. __cond_resched();
  4190. local_bh_disable();
  4191. return 1;
  4192. }
  4193. return 0;
  4194. }
  4195. EXPORT_SYMBOL(__cond_resched_softirq);
  4196. /**
  4197. * yield - yield the current processor to other threads.
  4198. *
  4199. * This is a shortcut for kernel-space yielding - it marks the
  4200. * thread runnable and calls sys_sched_yield().
  4201. */
  4202. void __sched yield(void)
  4203. {
  4204. set_current_state(TASK_RUNNING);
  4205. sys_sched_yield();
  4206. }
  4207. EXPORT_SYMBOL(yield);
  4208. /*
  4209. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4210. * that process accounting knows that this is a task in IO wait state.
  4211. */
  4212. void __sched io_schedule(void)
  4213. {
  4214. struct rq *rq = raw_rq();
  4215. delayacct_blkio_start();
  4216. atomic_inc(&rq->nr_iowait);
  4217. current->in_iowait = 1;
  4218. schedule();
  4219. current->in_iowait = 0;
  4220. atomic_dec(&rq->nr_iowait);
  4221. delayacct_blkio_end();
  4222. }
  4223. EXPORT_SYMBOL(io_schedule);
  4224. long __sched io_schedule_timeout(long timeout)
  4225. {
  4226. struct rq *rq = raw_rq();
  4227. long ret;
  4228. delayacct_blkio_start();
  4229. atomic_inc(&rq->nr_iowait);
  4230. current->in_iowait = 1;
  4231. ret = schedule_timeout(timeout);
  4232. current->in_iowait = 0;
  4233. atomic_dec(&rq->nr_iowait);
  4234. delayacct_blkio_end();
  4235. return ret;
  4236. }
  4237. /**
  4238. * sys_sched_get_priority_max - return maximum RT priority.
  4239. * @policy: scheduling class.
  4240. *
  4241. * this syscall returns the maximum rt_priority that can be used
  4242. * by a given scheduling class.
  4243. */
  4244. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4245. {
  4246. int ret = -EINVAL;
  4247. switch (policy) {
  4248. case SCHED_FIFO:
  4249. case SCHED_RR:
  4250. ret = MAX_USER_RT_PRIO-1;
  4251. break;
  4252. case SCHED_NORMAL:
  4253. case SCHED_BATCH:
  4254. case SCHED_IDLE:
  4255. ret = 0;
  4256. break;
  4257. }
  4258. return ret;
  4259. }
  4260. /**
  4261. * sys_sched_get_priority_min - return minimum RT priority.
  4262. * @policy: scheduling class.
  4263. *
  4264. * this syscall returns the minimum rt_priority that can be used
  4265. * by a given scheduling class.
  4266. */
  4267. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4268. {
  4269. int ret = -EINVAL;
  4270. switch (policy) {
  4271. case SCHED_FIFO:
  4272. case SCHED_RR:
  4273. ret = 1;
  4274. break;
  4275. case SCHED_NORMAL:
  4276. case SCHED_BATCH:
  4277. case SCHED_IDLE:
  4278. ret = 0;
  4279. }
  4280. return ret;
  4281. }
  4282. /**
  4283. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4284. * @pid: pid of the process.
  4285. * @interval: userspace pointer to the timeslice value.
  4286. *
  4287. * this syscall writes the default timeslice value of a given process
  4288. * into the user-space timespec buffer. A value of '0' means infinity.
  4289. */
  4290. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4291. struct timespec __user *, interval)
  4292. {
  4293. struct task_struct *p;
  4294. unsigned int time_slice;
  4295. unsigned long flags;
  4296. struct rq *rq;
  4297. int retval;
  4298. struct timespec t;
  4299. if (pid < 0)
  4300. return -EINVAL;
  4301. retval = -ESRCH;
  4302. rcu_read_lock();
  4303. p = find_process_by_pid(pid);
  4304. if (!p)
  4305. goto out_unlock;
  4306. retval = security_task_getscheduler(p);
  4307. if (retval)
  4308. goto out_unlock;
  4309. rq = task_rq_lock(p, &flags);
  4310. time_slice = p->sched_class->get_rr_interval(rq, p);
  4311. task_rq_unlock(rq, &flags);
  4312. rcu_read_unlock();
  4313. jiffies_to_timespec(time_slice, &t);
  4314. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4315. return retval;
  4316. out_unlock:
  4317. rcu_read_unlock();
  4318. return retval;
  4319. }
  4320. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4321. void sched_show_task(struct task_struct *p)
  4322. {
  4323. unsigned long free = 0;
  4324. unsigned state;
  4325. state = p->state ? __ffs(p->state) + 1 : 0;
  4326. printk(KERN_INFO "%-13.13s %c", p->comm,
  4327. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4328. #if BITS_PER_LONG == 32
  4329. if (state == TASK_RUNNING)
  4330. printk(KERN_CONT " running ");
  4331. else
  4332. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4333. #else
  4334. if (state == TASK_RUNNING)
  4335. printk(KERN_CONT " running task ");
  4336. else
  4337. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4338. #endif
  4339. #ifdef CONFIG_DEBUG_STACK_USAGE
  4340. free = stack_not_used(p);
  4341. #endif
  4342. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4343. task_pid_nr(p), task_pid_nr(p->real_parent),
  4344. (unsigned long)task_thread_info(p)->flags);
  4345. show_stack(p, NULL);
  4346. }
  4347. void show_state_filter(unsigned long state_filter)
  4348. {
  4349. struct task_struct *g, *p;
  4350. #if BITS_PER_LONG == 32
  4351. printk(KERN_INFO
  4352. " task PC stack pid father\n");
  4353. #else
  4354. printk(KERN_INFO
  4355. " task PC stack pid father\n");
  4356. #endif
  4357. read_lock(&tasklist_lock);
  4358. do_each_thread(g, p) {
  4359. /*
  4360. * reset the NMI-timeout, listing all files on a slow
  4361. * console might take alot of time:
  4362. */
  4363. touch_nmi_watchdog();
  4364. if (!state_filter || (p->state & state_filter))
  4365. sched_show_task(p);
  4366. } while_each_thread(g, p);
  4367. touch_all_softlockup_watchdogs();
  4368. #ifdef CONFIG_SCHED_DEBUG
  4369. sysrq_sched_debug_show();
  4370. #endif
  4371. read_unlock(&tasklist_lock);
  4372. /*
  4373. * Only show locks if all tasks are dumped:
  4374. */
  4375. if (!state_filter)
  4376. debug_show_all_locks();
  4377. }
  4378. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4379. {
  4380. idle->sched_class = &idle_sched_class;
  4381. }
  4382. /**
  4383. * init_idle - set up an idle thread for a given CPU
  4384. * @idle: task in question
  4385. * @cpu: cpu the idle task belongs to
  4386. *
  4387. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4388. * flag, to make booting more robust.
  4389. */
  4390. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4391. {
  4392. struct rq *rq = cpu_rq(cpu);
  4393. unsigned long flags;
  4394. raw_spin_lock_irqsave(&rq->lock, flags);
  4395. __sched_fork(idle);
  4396. idle->state = TASK_RUNNING;
  4397. idle->se.exec_start = sched_clock();
  4398. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4399. __set_task_cpu(idle, cpu);
  4400. rq->curr = rq->idle = idle;
  4401. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4402. idle->oncpu = 1;
  4403. #endif
  4404. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4405. /* Set the preempt count _outside_ the spinlocks! */
  4406. #if defined(CONFIG_PREEMPT)
  4407. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4408. #else
  4409. task_thread_info(idle)->preempt_count = 0;
  4410. #endif
  4411. /*
  4412. * The idle tasks have their own, simple scheduling class:
  4413. */
  4414. idle->sched_class = &idle_sched_class;
  4415. ftrace_graph_init_task(idle);
  4416. }
  4417. /*
  4418. * In a system that switches off the HZ timer nohz_cpu_mask
  4419. * indicates which cpus entered this state. This is used
  4420. * in the rcu update to wait only for active cpus. For system
  4421. * which do not switch off the HZ timer nohz_cpu_mask should
  4422. * always be CPU_BITS_NONE.
  4423. */
  4424. cpumask_var_t nohz_cpu_mask;
  4425. /*
  4426. * Increase the granularity value when there are more CPUs,
  4427. * because with more CPUs the 'effective latency' as visible
  4428. * to users decreases. But the relationship is not linear,
  4429. * so pick a second-best guess by going with the log2 of the
  4430. * number of CPUs.
  4431. *
  4432. * This idea comes from the SD scheduler of Con Kolivas:
  4433. */
  4434. static int get_update_sysctl_factor(void)
  4435. {
  4436. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4437. unsigned int factor;
  4438. switch (sysctl_sched_tunable_scaling) {
  4439. case SCHED_TUNABLESCALING_NONE:
  4440. factor = 1;
  4441. break;
  4442. case SCHED_TUNABLESCALING_LINEAR:
  4443. factor = cpus;
  4444. break;
  4445. case SCHED_TUNABLESCALING_LOG:
  4446. default:
  4447. factor = 1 + ilog2(cpus);
  4448. break;
  4449. }
  4450. return factor;
  4451. }
  4452. static void update_sysctl(void)
  4453. {
  4454. unsigned int factor = get_update_sysctl_factor();
  4455. #define SET_SYSCTL(name) \
  4456. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4457. SET_SYSCTL(sched_min_granularity);
  4458. SET_SYSCTL(sched_latency);
  4459. SET_SYSCTL(sched_wakeup_granularity);
  4460. SET_SYSCTL(sched_shares_ratelimit);
  4461. #undef SET_SYSCTL
  4462. }
  4463. static inline void sched_init_granularity(void)
  4464. {
  4465. update_sysctl();
  4466. }
  4467. #ifdef CONFIG_SMP
  4468. /*
  4469. * This is how migration works:
  4470. *
  4471. * 1) we queue a struct migration_req structure in the source CPU's
  4472. * runqueue and wake up that CPU's migration thread.
  4473. * 2) we down() the locked semaphore => thread blocks.
  4474. * 3) migration thread wakes up (implicitly it forces the migrated
  4475. * thread off the CPU)
  4476. * 4) it gets the migration request and checks whether the migrated
  4477. * task is still in the wrong runqueue.
  4478. * 5) if it's in the wrong runqueue then the migration thread removes
  4479. * it and puts it into the right queue.
  4480. * 6) migration thread up()s the semaphore.
  4481. * 7) we wake up and the migration is done.
  4482. */
  4483. /*
  4484. * Change a given task's CPU affinity. Migrate the thread to a
  4485. * proper CPU and schedule it away if the CPU it's executing on
  4486. * is removed from the allowed bitmask.
  4487. *
  4488. * NOTE: the caller must have a valid reference to the task, the
  4489. * task must not exit() & deallocate itself prematurely. The
  4490. * call is not atomic; no spinlocks may be held.
  4491. */
  4492. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4493. {
  4494. struct migration_req req;
  4495. unsigned long flags;
  4496. struct rq *rq;
  4497. int ret = 0;
  4498. /*
  4499. * Since we rely on wake-ups to migrate sleeping tasks, don't change
  4500. * the ->cpus_allowed mask from under waking tasks, which would be
  4501. * possible when we change rq->lock in ttwu(), so synchronize against
  4502. * TASK_WAKING to avoid that.
  4503. */
  4504. again:
  4505. while (p->state == TASK_WAKING)
  4506. cpu_relax();
  4507. rq = task_rq_lock(p, &flags);
  4508. if (p->state == TASK_WAKING) {
  4509. task_rq_unlock(rq, &flags);
  4510. goto again;
  4511. }
  4512. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4513. ret = -EINVAL;
  4514. goto out;
  4515. }
  4516. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4517. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4518. ret = -EINVAL;
  4519. goto out;
  4520. }
  4521. if (p->sched_class->set_cpus_allowed)
  4522. p->sched_class->set_cpus_allowed(p, new_mask);
  4523. else {
  4524. cpumask_copy(&p->cpus_allowed, new_mask);
  4525. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4526. }
  4527. /* Can the task run on the task's current CPU? If so, we're done */
  4528. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4529. goto out;
  4530. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  4531. /* Need help from migration thread: drop lock and wait. */
  4532. struct task_struct *mt = rq->migration_thread;
  4533. get_task_struct(mt);
  4534. task_rq_unlock(rq, &flags);
  4535. wake_up_process(rq->migration_thread);
  4536. put_task_struct(mt);
  4537. wait_for_completion(&req.done);
  4538. tlb_migrate_finish(p->mm);
  4539. return 0;
  4540. }
  4541. out:
  4542. task_rq_unlock(rq, &flags);
  4543. return ret;
  4544. }
  4545. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4546. /*
  4547. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4548. * this because either it can't run here any more (set_cpus_allowed()
  4549. * away from this CPU, or CPU going down), or because we're
  4550. * attempting to rebalance this task on exec (sched_exec).
  4551. *
  4552. * So we race with normal scheduler movements, but that's OK, as long
  4553. * as the task is no longer on this CPU.
  4554. *
  4555. * Returns non-zero if task was successfully migrated.
  4556. */
  4557. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4558. {
  4559. struct rq *rq_dest, *rq_src;
  4560. int ret = 0;
  4561. if (unlikely(!cpu_active(dest_cpu)))
  4562. return ret;
  4563. rq_src = cpu_rq(src_cpu);
  4564. rq_dest = cpu_rq(dest_cpu);
  4565. double_rq_lock(rq_src, rq_dest);
  4566. /* Already moved. */
  4567. if (task_cpu(p) != src_cpu)
  4568. goto done;
  4569. /* Affinity changed (again). */
  4570. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4571. goto fail;
  4572. /*
  4573. * If we're not on a rq, the next wake-up will ensure we're
  4574. * placed properly.
  4575. */
  4576. if (p->se.on_rq) {
  4577. deactivate_task(rq_src, p, 0);
  4578. set_task_cpu(p, dest_cpu);
  4579. activate_task(rq_dest, p, 0);
  4580. check_preempt_curr(rq_dest, p, 0);
  4581. }
  4582. done:
  4583. ret = 1;
  4584. fail:
  4585. double_rq_unlock(rq_src, rq_dest);
  4586. return ret;
  4587. }
  4588. #define RCU_MIGRATION_IDLE 0
  4589. #define RCU_MIGRATION_NEED_QS 1
  4590. #define RCU_MIGRATION_GOT_QS 2
  4591. #define RCU_MIGRATION_MUST_SYNC 3
  4592. /*
  4593. * migration_thread - this is a highprio system thread that performs
  4594. * thread migration by bumping thread off CPU then 'pushing' onto
  4595. * another runqueue.
  4596. */
  4597. static int migration_thread(void *data)
  4598. {
  4599. int badcpu;
  4600. int cpu = (long)data;
  4601. struct rq *rq;
  4602. rq = cpu_rq(cpu);
  4603. BUG_ON(rq->migration_thread != current);
  4604. set_current_state(TASK_INTERRUPTIBLE);
  4605. while (!kthread_should_stop()) {
  4606. struct migration_req *req;
  4607. struct list_head *head;
  4608. raw_spin_lock_irq(&rq->lock);
  4609. if (cpu_is_offline(cpu)) {
  4610. raw_spin_unlock_irq(&rq->lock);
  4611. break;
  4612. }
  4613. if (rq->active_balance) {
  4614. active_load_balance(rq, cpu);
  4615. rq->active_balance = 0;
  4616. }
  4617. head = &rq->migration_queue;
  4618. if (list_empty(head)) {
  4619. raw_spin_unlock_irq(&rq->lock);
  4620. schedule();
  4621. set_current_state(TASK_INTERRUPTIBLE);
  4622. continue;
  4623. }
  4624. req = list_entry(head->next, struct migration_req, list);
  4625. list_del_init(head->next);
  4626. if (req->task != NULL) {
  4627. raw_spin_unlock(&rq->lock);
  4628. __migrate_task(req->task, cpu, req->dest_cpu);
  4629. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  4630. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  4631. raw_spin_unlock(&rq->lock);
  4632. } else {
  4633. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  4634. raw_spin_unlock(&rq->lock);
  4635. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  4636. }
  4637. local_irq_enable();
  4638. complete(&req->done);
  4639. }
  4640. __set_current_state(TASK_RUNNING);
  4641. return 0;
  4642. }
  4643. #ifdef CONFIG_HOTPLUG_CPU
  4644. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4645. {
  4646. int ret;
  4647. local_irq_disable();
  4648. ret = __migrate_task(p, src_cpu, dest_cpu);
  4649. local_irq_enable();
  4650. return ret;
  4651. }
  4652. /*
  4653. * Figure out where task on dead CPU should go, use force if necessary.
  4654. */
  4655. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4656. {
  4657. int dest_cpu;
  4658. again:
  4659. dest_cpu = select_fallback_rq(dead_cpu, p);
  4660. /* It can have affinity changed while we were choosing. */
  4661. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  4662. goto again;
  4663. }
  4664. /*
  4665. * While a dead CPU has no uninterruptible tasks queued at this point,
  4666. * it might still have a nonzero ->nr_uninterruptible counter, because
  4667. * for performance reasons the counter is not stricly tracking tasks to
  4668. * their home CPUs. So we just add the counter to another CPU's counter,
  4669. * to keep the global sum constant after CPU-down:
  4670. */
  4671. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4672. {
  4673. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4674. unsigned long flags;
  4675. local_irq_save(flags);
  4676. double_rq_lock(rq_src, rq_dest);
  4677. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4678. rq_src->nr_uninterruptible = 0;
  4679. double_rq_unlock(rq_src, rq_dest);
  4680. local_irq_restore(flags);
  4681. }
  4682. /* Run through task list and migrate tasks from the dead cpu. */
  4683. static void migrate_live_tasks(int src_cpu)
  4684. {
  4685. struct task_struct *p, *t;
  4686. read_lock(&tasklist_lock);
  4687. do_each_thread(t, p) {
  4688. if (p == current)
  4689. continue;
  4690. if (task_cpu(p) == src_cpu)
  4691. move_task_off_dead_cpu(src_cpu, p);
  4692. } while_each_thread(t, p);
  4693. read_unlock(&tasklist_lock);
  4694. }
  4695. /*
  4696. * Schedules idle task to be the next runnable task on current CPU.
  4697. * It does so by boosting its priority to highest possible.
  4698. * Used by CPU offline code.
  4699. */
  4700. void sched_idle_next(void)
  4701. {
  4702. int this_cpu = smp_processor_id();
  4703. struct rq *rq = cpu_rq(this_cpu);
  4704. struct task_struct *p = rq->idle;
  4705. unsigned long flags;
  4706. /* cpu has to be offline */
  4707. BUG_ON(cpu_online(this_cpu));
  4708. /*
  4709. * Strictly not necessary since rest of the CPUs are stopped by now
  4710. * and interrupts disabled on the current cpu.
  4711. */
  4712. raw_spin_lock_irqsave(&rq->lock, flags);
  4713. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4714. update_rq_clock(rq);
  4715. activate_task(rq, p, 0);
  4716. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4717. }
  4718. /*
  4719. * Ensures that the idle task is using init_mm right before its cpu goes
  4720. * offline.
  4721. */
  4722. void idle_task_exit(void)
  4723. {
  4724. struct mm_struct *mm = current->active_mm;
  4725. BUG_ON(cpu_online(smp_processor_id()));
  4726. if (mm != &init_mm)
  4727. switch_mm(mm, &init_mm, current);
  4728. mmdrop(mm);
  4729. }
  4730. /* called under rq->lock with disabled interrupts */
  4731. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4732. {
  4733. struct rq *rq = cpu_rq(dead_cpu);
  4734. /* Must be exiting, otherwise would be on tasklist. */
  4735. BUG_ON(!p->exit_state);
  4736. /* Cannot have done final schedule yet: would have vanished. */
  4737. BUG_ON(p->state == TASK_DEAD);
  4738. get_task_struct(p);
  4739. /*
  4740. * Drop lock around migration; if someone else moves it,
  4741. * that's OK. No task can be added to this CPU, so iteration is
  4742. * fine.
  4743. */
  4744. raw_spin_unlock_irq(&rq->lock);
  4745. move_task_off_dead_cpu(dead_cpu, p);
  4746. raw_spin_lock_irq(&rq->lock);
  4747. put_task_struct(p);
  4748. }
  4749. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4750. static void migrate_dead_tasks(unsigned int dead_cpu)
  4751. {
  4752. struct rq *rq = cpu_rq(dead_cpu);
  4753. struct task_struct *next;
  4754. for ( ; ; ) {
  4755. if (!rq->nr_running)
  4756. break;
  4757. update_rq_clock(rq);
  4758. next = pick_next_task(rq);
  4759. if (!next)
  4760. break;
  4761. next->sched_class->put_prev_task(rq, next);
  4762. migrate_dead(dead_cpu, next);
  4763. }
  4764. }
  4765. /*
  4766. * remove the tasks which were accounted by rq from calc_load_tasks.
  4767. */
  4768. static void calc_global_load_remove(struct rq *rq)
  4769. {
  4770. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4771. rq->calc_load_active = 0;
  4772. }
  4773. #endif /* CONFIG_HOTPLUG_CPU */
  4774. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4775. static struct ctl_table sd_ctl_dir[] = {
  4776. {
  4777. .procname = "sched_domain",
  4778. .mode = 0555,
  4779. },
  4780. {}
  4781. };
  4782. static struct ctl_table sd_ctl_root[] = {
  4783. {
  4784. .procname = "kernel",
  4785. .mode = 0555,
  4786. .child = sd_ctl_dir,
  4787. },
  4788. {}
  4789. };
  4790. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4791. {
  4792. struct ctl_table *entry =
  4793. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4794. return entry;
  4795. }
  4796. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4797. {
  4798. struct ctl_table *entry;
  4799. /*
  4800. * In the intermediate directories, both the child directory and
  4801. * procname are dynamically allocated and could fail but the mode
  4802. * will always be set. In the lowest directory the names are
  4803. * static strings and all have proc handlers.
  4804. */
  4805. for (entry = *tablep; entry->mode; entry++) {
  4806. if (entry->child)
  4807. sd_free_ctl_entry(&entry->child);
  4808. if (entry->proc_handler == NULL)
  4809. kfree(entry->procname);
  4810. }
  4811. kfree(*tablep);
  4812. *tablep = NULL;
  4813. }
  4814. static void
  4815. set_table_entry(struct ctl_table *entry,
  4816. const char *procname, void *data, int maxlen,
  4817. mode_t mode, proc_handler *proc_handler)
  4818. {
  4819. entry->procname = procname;
  4820. entry->data = data;
  4821. entry->maxlen = maxlen;
  4822. entry->mode = mode;
  4823. entry->proc_handler = proc_handler;
  4824. }
  4825. static struct ctl_table *
  4826. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4827. {
  4828. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4829. if (table == NULL)
  4830. return NULL;
  4831. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4832. sizeof(long), 0644, proc_doulongvec_minmax);
  4833. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4834. sizeof(long), 0644, proc_doulongvec_minmax);
  4835. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4836. sizeof(int), 0644, proc_dointvec_minmax);
  4837. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4838. sizeof(int), 0644, proc_dointvec_minmax);
  4839. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4840. sizeof(int), 0644, proc_dointvec_minmax);
  4841. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4842. sizeof(int), 0644, proc_dointvec_minmax);
  4843. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4844. sizeof(int), 0644, proc_dointvec_minmax);
  4845. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4846. sizeof(int), 0644, proc_dointvec_minmax);
  4847. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4848. sizeof(int), 0644, proc_dointvec_minmax);
  4849. set_table_entry(&table[9], "cache_nice_tries",
  4850. &sd->cache_nice_tries,
  4851. sizeof(int), 0644, proc_dointvec_minmax);
  4852. set_table_entry(&table[10], "flags", &sd->flags,
  4853. sizeof(int), 0644, proc_dointvec_minmax);
  4854. set_table_entry(&table[11], "name", sd->name,
  4855. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4856. /* &table[12] is terminator */
  4857. return table;
  4858. }
  4859. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4860. {
  4861. struct ctl_table *entry, *table;
  4862. struct sched_domain *sd;
  4863. int domain_num = 0, i;
  4864. char buf[32];
  4865. for_each_domain(cpu, sd)
  4866. domain_num++;
  4867. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4868. if (table == NULL)
  4869. return NULL;
  4870. i = 0;
  4871. for_each_domain(cpu, sd) {
  4872. snprintf(buf, 32, "domain%d", i);
  4873. entry->procname = kstrdup(buf, GFP_KERNEL);
  4874. entry->mode = 0555;
  4875. entry->child = sd_alloc_ctl_domain_table(sd);
  4876. entry++;
  4877. i++;
  4878. }
  4879. return table;
  4880. }
  4881. static struct ctl_table_header *sd_sysctl_header;
  4882. static void register_sched_domain_sysctl(void)
  4883. {
  4884. int i, cpu_num = num_possible_cpus();
  4885. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4886. char buf[32];
  4887. WARN_ON(sd_ctl_dir[0].child);
  4888. sd_ctl_dir[0].child = entry;
  4889. if (entry == NULL)
  4890. return;
  4891. for_each_possible_cpu(i) {
  4892. snprintf(buf, 32, "cpu%d", i);
  4893. entry->procname = kstrdup(buf, GFP_KERNEL);
  4894. entry->mode = 0555;
  4895. entry->child = sd_alloc_ctl_cpu_table(i);
  4896. entry++;
  4897. }
  4898. WARN_ON(sd_sysctl_header);
  4899. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4900. }
  4901. /* may be called multiple times per register */
  4902. static void unregister_sched_domain_sysctl(void)
  4903. {
  4904. if (sd_sysctl_header)
  4905. unregister_sysctl_table(sd_sysctl_header);
  4906. sd_sysctl_header = NULL;
  4907. if (sd_ctl_dir[0].child)
  4908. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4909. }
  4910. #else
  4911. static void register_sched_domain_sysctl(void)
  4912. {
  4913. }
  4914. static void unregister_sched_domain_sysctl(void)
  4915. {
  4916. }
  4917. #endif
  4918. static void set_rq_online(struct rq *rq)
  4919. {
  4920. if (!rq->online) {
  4921. const struct sched_class *class;
  4922. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4923. rq->online = 1;
  4924. for_each_class(class) {
  4925. if (class->rq_online)
  4926. class->rq_online(rq);
  4927. }
  4928. }
  4929. }
  4930. static void set_rq_offline(struct rq *rq)
  4931. {
  4932. if (rq->online) {
  4933. const struct sched_class *class;
  4934. for_each_class(class) {
  4935. if (class->rq_offline)
  4936. class->rq_offline(rq);
  4937. }
  4938. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4939. rq->online = 0;
  4940. }
  4941. }
  4942. /*
  4943. * migration_call - callback that gets triggered when a CPU is added.
  4944. * Here we can start up the necessary migration thread for the new CPU.
  4945. */
  4946. static int __cpuinit
  4947. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4948. {
  4949. struct task_struct *p;
  4950. int cpu = (long)hcpu;
  4951. unsigned long flags;
  4952. struct rq *rq;
  4953. switch (action) {
  4954. case CPU_UP_PREPARE:
  4955. case CPU_UP_PREPARE_FROZEN:
  4956. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4957. if (IS_ERR(p))
  4958. return NOTIFY_BAD;
  4959. kthread_bind(p, cpu);
  4960. /* Must be high prio: stop_machine expects to yield to it. */
  4961. rq = task_rq_lock(p, &flags);
  4962. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4963. task_rq_unlock(rq, &flags);
  4964. get_task_struct(p);
  4965. cpu_rq(cpu)->migration_thread = p;
  4966. rq->calc_load_update = calc_load_update;
  4967. break;
  4968. case CPU_ONLINE:
  4969. case CPU_ONLINE_FROZEN:
  4970. /* Strictly unnecessary, as first user will wake it. */
  4971. wake_up_process(cpu_rq(cpu)->migration_thread);
  4972. /* Update our root-domain */
  4973. rq = cpu_rq(cpu);
  4974. raw_spin_lock_irqsave(&rq->lock, flags);
  4975. if (rq->rd) {
  4976. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4977. set_rq_online(rq);
  4978. }
  4979. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4980. break;
  4981. #ifdef CONFIG_HOTPLUG_CPU
  4982. case CPU_UP_CANCELED:
  4983. case CPU_UP_CANCELED_FROZEN:
  4984. if (!cpu_rq(cpu)->migration_thread)
  4985. break;
  4986. /* Unbind it from offline cpu so it can run. Fall thru. */
  4987. kthread_bind(cpu_rq(cpu)->migration_thread,
  4988. cpumask_any(cpu_online_mask));
  4989. kthread_stop(cpu_rq(cpu)->migration_thread);
  4990. put_task_struct(cpu_rq(cpu)->migration_thread);
  4991. cpu_rq(cpu)->migration_thread = NULL;
  4992. break;
  4993. case CPU_DEAD:
  4994. case CPU_DEAD_FROZEN:
  4995. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4996. migrate_live_tasks(cpu);
  4997. rq = cpu_rq(cpu);
  4998. kthread_stop(rq->migration_thread);
  4999. put_task_struct(rq->migration_thread);
  5000. rq->migration_thread = NULL;
  5001. /* Idle task back to normal (off runqueue, low prio) */
  5002. raw_spin_lock_irq(&rq->lock);
  5003. update_rq_clock(rq);
  5004. deactivate_task(rq, rq->idle, 0);
  5005. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5006. rq->idle->sched_class = &idle_sched_class;
  5007. migrate_dead_tasks(cpu);
  5008. raw_spin_unlock_irq(&rq->lock);
  5009. cpuset_unlock();
  5010. migrate_nr_uninterruptible(rq);
  5011. BUG_ON(rq->nr_running != 0);
  5012. calc_global_load_remove(rq);
  5013. /*
  5014. * No need to migrate the tasks: it was best-effort if
  5015. * they didn't take sched_hotcpu_mutex. Just wake up
  5016. * the requestors.
  5017. */
  5018. raw_spin_lock_irq(&rq->lock);
  5019. while (!list_empty(&rq->migration_queue)) {
  5020. struct migration_req *req;
  5021. req = list_entry(rq->migration_queue.next,
  5022. struct migration_req, list);
  5023. list_del_init(&req->list);
  5024. raw_spin_unlock_irq(&rq->lock);
  5025. complete(&req->done);
  5026. raw_spin_lock_irq(&rq->lock);
  5027. }
  5028. raw_spin_unlock_irq(&rq->lock);
  5029. break;
  5030. case CPU_DYING:
  5031. case CPU_DYING_FROZEN:
  5032. /* Update our root-domain */
  5033. rq = cpu_rq(cpu);
  5034. raw_spin_lock_irqsave(&rq->lock, flags);
  5035. if (rq->rd) {
  5036. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5037. set_rq_offline(rq);
  5038. }
  5039. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5040. break;
  5041. #endif
  5042. }
  5043. return NOTIFY_OK;
  5044. }
  5045. /*
  5046. * Register at high priority so that task migration (migrate_all_tasks)
  5047. * happens before everything else. This has to be lower priority than
  5048. * the notifier in the perf_event subsystem, though.
  5049. */
  5050. static struct notifier_block __cpuinitdata migration_notifier = {
  5051. .notifier_call = migration_call,
  5052. .priority = 10
  5053. };
  5054. static int __init migration_init(void)
  5055. {
  5056. void *cpu = (void *)(long)smp_processor_id();
  5057. int err;
  5058. /* Start one for the boot CPU: */
  5059. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5060. BUG_ON(err == NOTIFY_BAD);
  5061. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5062. register_cpu_notifier(&migration_notifier);
  5063. return 0;
  5064. }
  5065. early_initcall(migration_init);
  5066. #endif
  5067. #ifdef CONFIG_SMP
  5068. #ifdef CONFIG_SCHED_DEBUG
  5069. static __read_mostly int sched_domain_debug_enabled;
  5070. static int __init sched_domain_debug_setup(char *str)
  5071. {
  5072. sched_domain_debug_enabled = 1;
  5073. return 0;
  5074. }
  5075. early_param("sched_debug", sched_domain_debug_setup);
  5076. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5077. struct cpumask *groupmask)
  5078. {
  5079. struct sched_group *group = sd->groups;
  5080. char str[256];
  5081. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5082. cpumask_clear(groupmask);
  5083. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5084. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5085. printk("does not load-balance\n");
  5086. if (sd->parent)
  5087. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5088. " has parent");
  5089. return -1;
  5090. }
  5091. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5092. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5093. printk(KERN_ERR "ERROR: domain->span does not contain "
  5094. "CPU%d\n", cpu);
  5095. }
  5096. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5097. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5098. " CPU%d\n", cpu);
  5099. }
  5100. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5101. do {
  5102. if (!group) {
  5103. printk("\n");
  5104. printk(KERN_ERR "ERROR: group is NULL\n");
  5105. break;
  5106. }
  5107. if (!group->cpu_power) {
  5108. printk(KERN_CONT "\n");
  5109. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5110. "set\n");
  5111. break;
  5112. }
  5113. if (!cpumask_weight(sched_group_cpus(group))) {
  5114. printk(KERN_CONT "\n");
  5115. printk(KERN_ERR "ERROR: empty group\n");
  5116. break;
  5117. }
  5118. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5119. printk(KERN_CONT "\n");
  5120. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5121. break;
  5122. }
  5123. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5124. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5125. printk(KERN_CONT " %s", str);
  5126. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5127. printk(KERN_CONT " (cpu_power = %d)",
  5128. group->cpu_power);
  5129. }
  5130. group = group->next;
  5131. } while (group != sd->groups);
  5132. printk(KERN_CONT "\n");
  5133. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5134. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5135. if (sd->parent &&
  5136. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5137. printk(KERN_ERR "ERROR: parent span is not a superset "
  5138. "of domain->span\n");
  5139. return 0;
  5140. }
  5141. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5142. {
  5143. cpumask_var_t groupmask;
  5144. int level = 0;
  5145. if (!sched_domain_debug_enabled)
  5146. return;
  5147. if (!sd) {
  5148. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5149. return;
  5150. }
  5151. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5152. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5153. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5154. return;
  5155. }
  5156. for (;;) {
  5157. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5158. break;
  5159. level++;
  5160. sd = sd->parent;
  5161. if (!sd)
  5162. break;
  5163. }
  5164. free_cpumask_var(groupmask);
  5165. }
  5166. #else /* !CONFIG_SCHED_DEBUG */
  5167. # define sched_domain_debug(sd, cpu) do { } while (0)
  5168. #endif /* CONFIG_SCHED_DEBUG */
  5169. static int sd_degenerate(struct sched_domain *sd)
  5170. {
  5171. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5172. return 1;
  5173. /* Following flags need at least 2 groups */
  5174. if (sd->flags & (SD_LOAD_BALANCE |
  5175. SD_BALANCE_NEWIDLE |
  5176. SD_BALANCE_FORK |
  5177. SD_BALANCE_EXEC |
  5178. SD_SHARE_CPUPOWER |
  5179. SD_SHARE_PKG_RESOURCES)) {
  5180. if (sd->groups != sd->groups->next)
  5181. return 0;
  5182. }
  5183. /* Following flags don't use groups */
  5184. if (sd->flags & (SD_WAKE_AFFINE))
  5185. return 0;
  5186. return 1;
  5187. }
  5188. static int
  5189. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5190. {
  5191. unsigned long cflags = sd->flags, pflags = parent->flags;
  5192. if (sd_degenerate(parent))
  5193. return 1;
  5194. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5195. return 0;
  5196. /* Flags needing groups don't count if only 1 group in parent */
  5197. if (parent->groups == parent->groups->next) {
  5198. pflags &= ~(SD_LOAD_BALANCE |
  5199. SD_BALANCE_NEWIDLE |
  5200. SD_BALANCE_FORK |
  5201. SD_BALANCE_EXEC |
  5202. SD_SHARE_CPUPOWER |
  5203. SD_SHARE_PKG_RESOURCES);
  5204. if (nr_node_ids == 1)
  5205. pflags &= ~SD_SERIALIZE;
  5206. }
  5207. if (~cflags & pflags)
  5208. return 0;
  5209. return 1;
  5210. }
  5211. static void free_rootdomain(struct root_domain *rd)
  5212. {
  5213. synchronize_sched();
  5214. cpupri_cleanup(&rd->cpupri);
  5215. free_cpumask_var(rd->rto_mask);
  5216. free_cpumask_var(rd->online);
  5217. free_cpumask_var(rd->span);
  5218. kfree(rd);
  5219. }
  5220. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5221. {
  5222. struct root_domain *old_rd = NULL;
  5223. unsigned long flags;
  5224. raw_spin_lock_irqsave(&rq->lock, flags);
  5225. if (rq->rd) {
  5226. old_rd = rq->rd;
  5227. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5228. set_rq_offline(rq);
  5229. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5230. /*
  5231. * If we dont want to free the old_rt yet then
  5232. * set old_rd to NULL to skip the freeing later
  5233. * in this function:
  5234. */
  5235. if (!atomic_dec_and_test(&old_rd->refcount))
  5236. old_rd = NULL;
  5237. }
  5238. atomic_inc(&rd->refcount);
  5239. rq->rd = rd;
  5240. cpumask_set_cpu(rq->cpu, rd->span);
  5241. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5242. set_rq_online(rq);
  5243. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5244. if (old_rd)
  5245. free_rootdomain(old_rd);
  5246. }
  5247. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5248. {
  5249. gfp_t gfp = GFP_KERNEL;
  5250. memset(rd, 0, sizeof(*rd));
  5251. if (bootmem)
  5252. gfp = GFP_NOWAIT;
  5253. if (!alloc_cpumask_var(&rd->span, gfp))
  5254. goto out;
  5255. if (!alloc_cpumask_var(&rd->online, gfp))
  5256. goto free_span;
  5257. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  5258. goto free_online;
  5259. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  5260. goto free_rto_mask;
  5261. return 0;
  5262. free_rto_mask:
  5263. free_cpumask_var(rd->rto_mask);
  5264. free_online:
  5265. free_cpumask_var(rd->online);
  5266. free_span:
  5267. free_cpumask_var(rd->span);
  5268. out:
  5269. return -ENOMEM;
  5270. }
  5271. static void init_defrootdomain(void)
  5272. {
  5273. init_rootdomain(&def_root_domain, true);
  5274. atomic_set(&def_root_domain.refcount, 1);
  5275. }
  5276. static struct root_domain *alloc_rootdomain(void)
  5277. {
  5278. struct root_domain *rd;
  5279. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5280. if (!rd)
  5281. return NULL;
  5282. if (init_rootdomain(rd, false) != 0) {
  5283. kfree(rd);
  5284. return NULL;
  5285. }
  5286. return rd;
  5287. }
  5288. /*
  5289. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5290. * hold the hotplug lock.
  5291. */
  5292. static void
  5293. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5294. {
  5295. struct rq *rq = cpu_rq(cpu);
  5296. struct sched_domain *tmp;
  5297. /* Remove the sched domains which do not contribute to scheduling. */
  5298. for (tmp = sd; tmp; ) {
  5299. struct sched_domain *parent = tmp->parent;
  5300. if (!parent)
  5301. break;
  5302. if (sd_parent_degenerate(tmp, parent)) {
  5303. tmp->parent = parent->parent;
  5304. if (parent->parent)
  5305. parent->parent->child = tmp;
  5306. } else
  5307. tmp = tmp->parent;
  5308. }
  5309. if (sd && sd_degenerate(sd)) {
  5310. sd = sd->parent;
  5311. if (sd)
  5312. sd->child = NULL;
  5313. }
  5314. sched_domain_debug(sd, cpu);
  5315. rq_attach_root(rq, rd);
  5316. rcu_assign_pointer(rq->sd, sd);
  5317. }
  5318. /* cpus with isolated domains */
  5319. static cpumask_var_t cpu_isolated_map;
  5320. /* Setup the mask of cpus configured for isolated domains */
  5321. static int __init isolated_cpu_setup(char *str)
  5322. {
  5323. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5324. cpulist_parse(str, cpu_isolated_map);
  5325. return 1;
  5326. }
  5327. __setup("isolcpus=", isolated_cpu_setup);
  5328. /*
  5329. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5330. * to a function which identifies what group(along with sched group) a CPU
  5331. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5332. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5333. *
  5334. * init_sched_build_groups will build a circular linked list of the groups
  5335. * covered by the given span, and will set each group's ->cpumask correctly,
  5336. * and ->cpu_power to 0.
  5337. */
  5338. static void
  5339. init_sched_build_groups(const struct cpumask *span,
  5340. const struct cpumask *cpu_map,
  5341. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5342. struct sched_group **sg,
  5343. struct cpumask *tmpmask),
  5344. struct cpumask *covered, struct cpumask *tmpmask)
  5345. {
  5346. struct sched_group *first = NULL, *last = NULL;
  5347. int i;
  5348. cpumask_clear(covered);
  5349. for_each_cpu(i, span) {
  5350. struct sched_group *sg;
  5351. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5352. int j;
  5353. if (cpumask_test_cpu(i, covered))
  5354. continue;
  5355. cpumask_clear(sched_group_cpus(sg));
  5356. sg->cpu_power = 0;
  5357. for_each_cpu(j, span) {
  5358. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5359. continue;
  5360. cpumask_set_cpu(j, covered);
  5361. cpumask_set_cpu(j, sched_group_cpus(sg));
  5362. }
  5363. if (!first)
  5364. first = sg;
  5365. if (last)
  5366. last->next = sg;
  5367. last = sg;
  5368. }
  5369. last->next = first;
  5370. }
  5371. #define SD_NODES_PER_DOMAIN 16
  5372. #ifdef CONFIG_NUMA
  5373. /**
  5374. * find_next_best_node - find the next node to include in a sched_domain
  5375. * @node: node whose sched_domain we're building
  5376. * @used_nodes: nodes already in the sched_domain
  5377. *
  5378. * Find the next node to include in a given scheduling domain. Simply
  5379. * finds the closest node not already in the @used_nodes map.
  5380. *
  5381. * Should use nodemask_t.
  5382. */
  5383. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5384. {
  5385. int i, n, val, min_val, best_node = 0;
  5386. min_val = INT_MAX;
  5387. for (i = 0; i < nr_node_ids; i++) {
  5388. /* Start at @node */
  5389. n = (node + i) % nr_node_ids;
  5390. if (!nr_cpus_node(n))
  5391. continue;
  5392. /* Skip already used nodes */
  5393. if (node_isset(n, *used_nodes))
  5394. continue;
  5395. /* Simple min distance search */
  5396. val = node_distance(node, n);
  5397. if (val < min_val) {
  5398. min_val = val;
  5399. best_node = n;
  5400. }
  5401. }
  5402. node_set(best_node, *used_nodes);
  5403. return best_node;
  5404. }
  5405. /**
  5406. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5407. * @node: node whose cpumask we're constructing
  5408. * @span: resulting cpumask
  5409. *
  5410. * Given a node, construct a good cpumask for its sched_domain to span. It
  5411. * should be one that prevents unnecessary balancing, but also spreads tasks
  5412. * out optimally.
  5413. */
  5414. static void sched_domain_node_span(int node, struct cpumask *span)
  5415. {
  5416. nodemask_t used_nodes;
  5417. int i;
  5418. cpumask_clear(span);
  5419. nodes_clear(used_nodes);
  5420. cpumask_or(span, span, cpumask_of_node(node));
  5421. node_set(node, used_nodes);
  5422. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5423. int next_node = find_next_best_node(node, &used_nodes);
  5424. cpumask_or(span, span, cpumask_of_node(next_node));
  5425. }
  5426. }
  5427. #endif /* CONFIG_NUMA */
  5428. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5429. /*
  5430. * The cpus mask in sched_group and sched_domain hangs off the end.
  5431. *
  5432. * ( See the the comments in include/linux/sched.h:struct sched_group
  5433. * and struct sched_domain. )
  5434. */
  5435. struct static_sched_group {
  5436. struct sched_group sg;
  5437. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5438. };
  5439. struct static_sched_domain {
  5440. struct sched_domain sd;
  5441. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5442. };
  5443. struct s_data {
  5444. #ifdef CONFIG_NUMA
  5445. int sd_allnodes;
  5446. cpumask_var_t domainspan;
  5447. cpumask_var_t covered;
  5448. cpumask_var_t notcovered;
  5449. #endif
  5450. cpumask_var_t nodemask;
  5451. cpumask_var_t this_sibling_map;
  5452. cpumask_var_t this_core_map;
  5453. cpumask_var_t send_covered;
  5454. cpumask_var_t tmpmask;
  5455. struct sched_group **sched_group_nodes;
  5456. struct root_domain *rd;
  5457. };
  5458. enum s_alloc {
  5459. sa_sched_groups = 0,
  5460. sa_rootdomain,
  5461. sa_tmpmask,
  5462. sa_send_covered,
  5463. sa_this_core_map,
  5464. sa_this_sibling_map,
  5465. sa_nodemask,
  5466. sa_sched_group_nodes,
  5467. #ifdef CONFIG_NUMA
  5468. sa_notcovered,
  5469. sa_covered,
  5470. sa_domainspan,
  5471. #endif
  5472. sa_none,
  5473. };
  5474. /*
  5475. * SMT sched-domains:
  5476. */
  5477. #ifdef CONFIG_SCHED_SMT
  5478. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5479. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5480. static int
  5481. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5482. struct sched_group **sg, struct cpumask *unused)
  5483. {
  5484. if (sg)
  5485. *sg = &per_cpu(sched_groups, cpu).sg;
  5486. return cpu;
  5487. }
  5488. #endif /* CONFIG_SCHED_SMT */
  5489. /*
  5490. * multi-core sched-domains:
  5491. */
  5492. #ifdef CONFIG_SCHED_MC
  5493. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5494. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5495. #endif /* CONFIG_SCHED_MC */
  5496. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5497. static int
  5498. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5499. struct sched_group **sg, struct cpumask *mask)
  5500. {
  5501. int group;
  5502. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5503. group = cpumask_first(mask);
  5504. if (sg)
  5505. *sg = &per_cpu(sched_group_core, group).sg;
  5506. return group;
  5507. }
  5508. #elif defined(CONFIG_SCHED_MC)
  5509. static int
  5510. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5511. struct sched_group **sg, struct cpumask *unused)
  5512. {
  5513. if (sg)
  5514. *sg = &per_cpu(sched_group_core, cpu).sg;
  5515. return cpu;
  5516. }
  5517. #endif
  5518. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5519. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5520. static int
  5521. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5522. struct sched_group **sg, struct cpumask *mask)
  5523. {
  5524. int group;
  5525. #ifdef CONFIG_SCHED_MC
  5526. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5527. group = cpumask_first(mask);
  5528. #elif defined(CONFIG_SCHED_SMT)
  5529. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5530. group = cpumask_first(mask);
  5531. #else
  5532. group = cpu;
  5533. #endif
  5534. if (sg)
  5535. *sg = &per_cpu(sched_group_phys, group).sg;
  5536. return group;
  5537. }
  5538. #ifdef CONFIG_NUMA
  5539. /*
  5540. * The init_sched_build_groups can't handle what we want to do with node
  5541. * groups, so roll our own. Now each node has its own list of groups which
  5542. * gets dynamically allocated.
  5543. */
  5544. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5545. static struct sched_group ***sched_group_nodes_bycpu;
  5546. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5547. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5548. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5549. struct sched_group **sg,
  5550. struct cpumask *nodemask)
  5551. {
  5552. int group;
  5553. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5554. group = cpumask_first(nodemask);
  5555. if (sg)
  5556. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5557. return group;
  5558. }
  5559. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5560. {
  5561. struct sched_group *sg = group_head;
  5562. int j;
  5563. if (!sg)
  5564. return;
  5565. do {
  5566. for_each_cpu(j, sched_group_cpus(sg)) {
  5567. struct sched_domain *sd;
  5568. sd = &per_cpu(phys_domains, j).sd;
  5569. if (j != group_first_cpu(sd->groups)) {
  5570. /*
  5571. * Only add "power" once for each
  5572. * physical package.
  5573. */
  5574. continue;
  5575. }
  5576. sg->cpu_power += sd->groups->cpu_power;
  5577. }
  5578. sg = sg->next;
  5579. } while (sg != group_head);
  5580. }
  5581. static int build_numa_sched_groups(struct s_data *d,
  5582. const struct cpumask *cpu_map, int num)
  5583. {
  5584. struct sched_domain *sd;
  5585. struct sched_group *sg, *prev;
  5586. int n, j;
  5587. cpumask_clear(d->covered);
  5588. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5589. if (cpumask_empty(d->nodemask)) {
  5590. d->sched_group_nodes[num] = NULL;
  5591. goto out;
  5592. }
  5593. sched_domain_node_span(num, d->domainspan);
  5594. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5595. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5596. GFP_KERNEL, num);
  5597. if (!sg) {
  5598. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5599. num);
  5600. return -ENOMEM;
  5601. }
  5602. d->sched_group_nodes[num] = sg;
  5603. for_each_cpu(j, d->nodemask) {
  5604. sd = &per_cpu(node_domains, j).sd;
  5605. sd->groups = sg;
  5606. }
  5607. sg->cpu_power = 0;
  5608. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5609. sg->next = sg;
  5610. cpumask_or(d->covered, d->covered, d->nodemask);
  5611. prev = sg;
  5612. for (j = 0; j < nr_node_ids; j++) {
  5613. n = (num + j) % nr_node_ids;
  5614. cpumask_complement(d->notcovered, d->covered);
  5615. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5616. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5617. if (cpumask_empty(d->tmpmask))
  5618. break;
  5619. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5620. if (cpumask_empty(d->tmpmask))
  5621. continue;
  5622. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5623. GFP_KERNEL, num);
  5624. if (!sg) {
  5625. printk(KERN_WARNING
  5626. "Can not alloc domain group for node %d\n", j);
  5627. return -ENOMEM;
  5628. }
  5629. sg->cpu_power = 0;
  5630. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5631. sg->next = prev->next;
  5632. cpumask_or(d->covered, d->covered, d->tmpmask);
  5633. prev->next = sg;
  5634. prev = sg;
  5635. }
  5636. out:
  5637. return 0;
  5638. }
  5639. #endif /* CONFIG_NUMA */
  5640. #ifdef CONFIG_NUMA
  5641. /* Free memory allocated for various sched_group structures */
  5642. static void free_sched_groups(const struct cpumask *cpu_map,
  5643. struct cpumask *nodemask)
  5644. {
  5645. int cpu, i;
  5646. for_each_cpu(cpu, cpu_map) {
  5647. struct sched_group **sched_group_nodes
  5648. = sched_group_nodes_bycpu[cpu];
  5649. if (!sched_group_nodes)
  5650. continue;
  5651. for (i = 0; i < nr_node_ids; i++) {
  5652. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5653. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5654. if (cpumask_empty(nodemask))
  5655. continue;
  5656. if (sg == NULL)
  5657. continue;
  5658. sg = sg->next;
  5659. next_sg:
  5660. oldsg = sg;
  5661. sg = sg->next;
  5662. kfree(oldsg);
  5663. if (oldsg != sched_group_nodes[i])
  5664. goto next_sg;
  5665. }
  5666. kfree(sched_group_nodes);
  5667. sched_group_nodes_bycpu[cpu] = NULL;
  5668. }
  5669. }
  5670. #else /* !CONFIG_NUMA */
  5671. static void free_sched_groups(const struct cpumask *cpu_map,
  5672. struct cpumask *nodemask)
  5673. {
  5674. }
  5675. #endif /* CONFIG_NUMA */
  5676. /*
  5677. * Initialize sched groups cpu_power.
  5678. *
  5679. * cpu_power indicates the capacity of sched group, which is used while
  5680. * distributing the load between different sched groups in a sched domain.
  5681. * Typically cpu_power for all the groups in a sched domain will be same unless
  5682. * there are asymmetries in the topology. If there are asymmetries, group
  5683. * having more cpu_power will pickup more load compared to the group having
  5684. * less cpu_power.
  5685. */
  5686. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5687. {
  5688. struct sched_domain *child;
  5689. struct sched_group *group;
  5690. long power;
  5691. int weight;
  5692. WARN_ON(!sd || !sd->groups);
  5693. if (cpu != group_first_cpu(sd->groups))
  5694. return;
  5695. child = sd->child;
  5696. sd->groups->cpu_power = 0;
  5697. if (!child) {
  5698. power = SCHED_LOAD_SCALE;
  5699. weight = cpumask_weight(sched_domain_span(sd));
  5700. /*
  5701. * SMT siblings share the power of a single core.
  5702. * Usually multiple threads get a better yield out of
  5703. * that one core than a single thread would have,
  5704. * reflect that in sd->smt_gain.
  5705. */
  5706. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5707. power *= sd->smt_gain;
  5708. power /= weight;
  5709. power >>= SCHED_LOAD_SHIFT;
  5710. }
  5711. sd->groups->cpu_power += power;
  5712. return;
  5713. }
  5714. /*
  5715. * Add cpu_power of each child group to this groups cpu_power.
  5716. */
  5717. group = child->groups;
  5718. do {
  5719. sd->groups->cpu_power += group->cpu_power;
  5720. group = group->next;
  5721. } while (group != child->groups);
  5722. }
  5723. /*
  5724. * Initializers for schedule domains
  5725. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5726. */
  5727. #ifdef CONFIG_SCHED_DEBUG
  5728. # define SD_INIT_NAME(sd, type) sd->name = #type
  5729. #else
  5730. # define SD_INIT_NAME(sd, type) do { } while (0)
  5731. #endif
  5732. #define SD_INIT(sd, type) sd_init_##type(sd)
  5733. #define SD_INIT_FUNC(type) \
  5734. static noinline void sd_init_##type(struct sched_domain *sd) \
  5735. { \
  5736. memset(sd, 0, sizeof(*sd)); \
  5737. *sd = SD_##type##_INIT; \
  5738. sd->level = SD_LV_##type; \
  5739. SD_INIT_NAME(sd, type); \
  5740. }
  5741. SD_INIT_FUNC(CPU)
  5742. #ifdef CONFIG_NUMA
  5743. SD_INIT_FUNC(ALLNODES)
  5744. SD_INIT_FUNC(NODE)
  5745. #endif
  5746. #ifdef CONFIG_SCHED_SMT
  5747. SD_INIT_FUNC(SIBLING)
  5748. #endif
  5749. #ifdef CONFIG_SCHED_MC
  5750. SD_INIT_FUNC(MC)
  5751. #endif
  5752. static int default_relax_domain_level = -1;
  5753. static int __init setup_relax_domain_level(char *str)
  5754. {
  5755. unsigned long val;
  5756. val = simple_strtoul(str, NULL, 0);
  5757. if (val < SD_LV_MAX)
  5758. default_relax_domain_level = val;
  5759. return 1;
  5760. }
  5761. __setup("relax_domain_level=", setup_relax_domain_level);
  5762. static void set_domain_attribute(struct sched_domain *sd,
  5763. struct sched_domain_attr *attr)
  5764. {
  5765. int request;
  5766. if (!attr || attr->relax_domain_level < 0) {
  5767. if (default_relax_domain_level < 0)
  5768. return;
  5769. else
  5770. request = default_relax_domain_level;
  5771. } else
  5772. request = attr->relax_domain_level;
  5773. if (request < sd->level) {
  5774. /* turn off idle balance on this domain */
  5775. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5776. } else {
  5777. /* turn on idle balance on this domain */
  5778. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5779. }
  5780. }
  5781. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5782. const struct cpumask *cpu_map)
  5783. {
  5784. switch (what) {
  5785. case sa_sched_groups:
  5786. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5787. d->sched_group_nodes = NULL;
  5788. case sa_rootdomain:
  5789. free_rootdomain(d->rd); /* fall through */
  5790. case sa_tmpmask:
  5791. free_cpumask_var(d->tmpmask); /* fall through */
  5792. case sa_send_covered:
  5793. free_cpumask_var(d->send_covered); /* fall through */
  5794. case sa_this_core_map:
  5795. free_cpumask_var(d->this_core_map); /* fall through */
  5796. case sa_this_sibling_map:
  5797. free_cpumask_var(d->this_sibling_map); /* fall through */
  5798. case sa_nodemask:
  5799. free_cpumask_var(d->nodemask); /* fall through */
  5800. case sa_sched_group_nodes:
  5801. #ifdef CONFIG_NUMA
  5802. kfree(d->sched_group_nodes); /* fall through */
  5803. case sa_notcovered:
  5804. free_cpumask_var(d->notcovered); /* fall through */
  5805. case sa_covered:
  5806. free_cpumask_var(d->covered); /* fall through */
  5807. case sa_domainspan:
  5808. free_cpumask_var(d->domainspan); /* fall through */
  5809. #endif
  5810. case sa_none:
  5811. break;
  5812. }
  5813. }
  5814. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5815. const struct cpumask *cpu_map)
  5816. {
  5817. #ifdef CONFIG_NUMA
  5818. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5819. return sa_none;
  5820. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5821. return sa_domainspan;
  5822. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5823. return sa_covered;
  5824. /* Allocate the per-node list of sched groups */
  5825. d->sched_group_nodes = kcalloc(nr_node_ids,
  5826. sizeof(struct sched_group *), GFP_KERNEL);
  5827. if (!d->sched_group_nodes) {
  5828. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5829. return sa_notcovered;
  5830. }
  5831. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5832. #endif
  5833. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5834. return sa_sched_group_nodes;
  5835. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5836. return sa_nodemask;
  5837. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5838. return sa_this_sibling_map;
  5839. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5840. return sa_this_core_map;
  5841. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5842. return sa_send_covered;
  5843. d->rd = alloc_rootdomain();
  5844. if (!d->rd) {
  5845. printk(KERN_WARNING "Cannot alloc root domain\n");
  5846. return sa_tmpmask;
  5847. }
  5848. return sa_rootdomain;
  5849. }
  5850. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5851. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5852. {
  5853. struct sched_domain *sd = NULL;
  5854. #ifdef CONFIG_NUMA
  5855. struct sched_domain *parent;
  5856. d->sd_allnodes = 0;
  5857. if (cpumask_weight(cpu_map) >
  5858. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5859. sd = &per_cpu(allnodes_domains, i).sd;
  5860. SD_INIT(sd, ALLNODES);
  5861. set_domain_attribute(sd, attr);
  5862. cpumask_copy(sched_domain_span(sd), cpu_map);
  5863. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5864. d->sd_allnodes = 1;
  5865. }
  5866. parent = sd;
  5867. sd = &per_cpu(node_domains, i).sd;
  5868. SD_INIT(sd, NODE);
  5869. set_domain_attribute(sd, attr);
  5870. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5871. sd->parent = parent;
  5872. if (parent)
  5873. parent->child = sd;
  5874. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5875. #endif
  5876. return sd;
  5877. }
  5878. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5879. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5880. struct sched_domain *parent, int i)
  5881. {
  5882. struct sched_domain *sd;
  5883. sd = &per_cpu(phys_domains, i).sd;
  5884. SD_INIT(sd, CPU);
  5885. set_domain_attribute(sd, attr);
  5886. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5887. sd->parent = parent;
  5888. if (parent)
  5889. parent->child = sd;
  5890. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5891. return sd;
  5892. }
  5893. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5894. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5895. struct sched_domain *parent, int i)
  5896. {
  5897. struct sched_domain *sd = parent;
  5898. #ifdef CONFIG_SCHED_MC
  5899. sd = &per_cpu(core_domains, i).sd;
  5900. SD_INIT(sd, MC);
  5901. set_domain_attribute(sd, attr);
  5902. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5903. sd->parent = parent;
  5904. parent->child = sd;
  5905. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5906. #endif
  5907. return sd;
  5908. }
  5909. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5910. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5911. struct sched_domain *parent, int i)
  5912. {
  5913. struct sched_domain *sd = parent;
  5914. #ifdef CONFIG_SCHED_SMT
  5915. sd = &per_cpu(cpu_domains, i).sd;
  5916. SD_INIT(sd, SIBLING);
  5917. set_domain_attribute(sd, attr);
  5918. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5919. sd->parent = parent;
  5920. parent->child = sd;
  5921. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5922. #endif
  5923. return sd;
  5924. }
  5925. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5926. const struct cpumask *cpu_map, int cpu)
  5927. {
  5928. switch (l) {
  5929. #ifdef CONFIG_SCHED_SMT
  5930. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  5931. cpumask_and(d->this_sibling_map, cpu_map,
  5932. topology_thread_cpumask(cpu));
  5933. if (cpu == cpumask_first(d->this_sibling_map))
  5934. init_sched_build_groups(d->this_sibling_map, cpu_map,
  5935. &cpu_to_cpu_group,
  5936. d->send_covered, d->tmpmask);
  5937. break;
  5938. #endif
  5939. #ifdef CONFIG_SCHED_MC
  5940. case SD_LV_MC: /* set up multi-core groups */
  5941. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  5942. if (cpu == cpumask_first(d->this_core_map))
  5943. init_sched_build_groups(d->this_core_map, cpu_map,
  5944. &cpu_to_core_group,
  5945. d->send_covered, d->tmpmask);
  5946. break;
  5947. #endif
  5948. case SD_LV_CPU: /* set up physical groups */
  5949. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  5950. if (!cpumask_empty(d->nodemask))
  5951. init_sched_build_groups(d->nodemask, cpu_map,
  5952. &cpu_to_phys_group,
  5953. d->send_covered, d->tmpmask);
  5954. break;
  5955. #ifdef CONFIG_NUMA
  5956. case SD_LV_ALLNODES:
  5957. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  5958. d->send_covered, d->tmpmask);
  5959. break;
  5960. #endif
  5961. default:
  5962. break;
  5963. }
  5964. }
  5965. /*
  5966. * Build sched domains for a given set of cpus and attach the sched domains
  5967. * to the individual cpus
  5968. */
  5969. static int __build_sched_domains(const struct cpumask *cpu_map,
  5970. struct sched_domain_attr *attr)
  5971. {
  5972. enum s_alloc alloc_state = sa_none;
  5973. struct s_data d;
  5974. struct sched_domain *sd;
  5975. int i;
  5976. #ifdef CONFIG_NUMA
  5977. d.sd_allnodes = 0;
  5978. #endif
  5979. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5980. if (alloc_state != sa_rootdomain)
  5981. goto error;
  5982. alloc_state = sa_sched_groups;
  5983. /*
  5984. * Set up domains for cpus specified by the cpu_map.
  5985. */
  5986. for_each_cpu(i, cpu_map) {
  5987. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  5988. cpu_map);
  5989. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  5990. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  5991. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  5992. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  5993. }
  5994. for_each_cpu(i, cpu_map) {
  5995. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  5996. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  5997. }
  5998. /* Set up physical groups */
  5999. for (i = 0; i < nr_node_ids; i++)
  6000. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6001. #ifdef CONFIG_NUMA
  6002. /* Set up node groups */
  6003. if (d.sd_allnodes)
  6004. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6005. for (i = 0; i < nr_node_ids; i++)
  6006. if (build_numa_sched_groups(&d, cpu_map, i))
  6007. goto error;
  6008. #endif
  6009. /* Calculate CPU power for physical packages and nodes */
  6010. #ifdef CONFIG_SCHED_SMT
  6011. for_each_cpu(i, cpu_map) {
  6012. sd = &per_cpu(cpu_domains, i).sd;
  6013. init_sched_groups_power(i, sd);
  6014. }
  6015. #endif
  6016. #ifdef CONFIG_SCHED_MC
  6017. for_each_cpu(i, cpu_map) {
  6018. sd = &per_cpu(core_domains, i).sd;
  6019. init_sched_groups_power(i, sd);
  6020. }
  6021. #endif
  6022. for_each_cpu(i, cpu_map) {
  6023. sd = &per_cpu(phys_domains, i).sd;
  6024. init_sched_groups_power(i, sd);
  6025. }
  6026. #ifdef CONFIG_NUMA
  6027. for (i = 0; i < nr_node_ids; i++)
  6028. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6029. if (d.sd_allnodes) {
  6030. struct sched_group *sg;
  6031. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6032. d.tmpmask);
  6033. init_numa_sched_groups_power(sg);
  6034. }
  6035. #endif
  6036. /* Attach the domains */
  6037. for_each_cpu(i, cpu_map) {
  6038. #ifdef CONFIG_SCHED_SMT
  6039. sd = &per_cpu(cpu_domains, i).sd;
  6040. #elif defined(CONFIG_SCHED_MC)
  6041. sd = &per_cpu(core_domains, i).sd;
  6042. #else
  6043. sd = &per_cpu(phys_domains, i).sd;
  6044. #endif
  6045. cpu_attach_domain(sd, d.rd, i);
  6046. }
  6047. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6048. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6049. return 0;
  6050. error:
  6051. __free_domain_allocs(&d, alloc_state, cpu_map);
  6052. return -ENOMEM;
  6053. }
  6054. static int build_sched_domains(const struct cpumask *cpu_map)
  6055. {
  6056. return __build_sched_domains(cpu_map, NULL);
  6057. }
  6058. static cpumask_var_t *doms_cur; /* current sched domains */
  6059. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6060. static struct sched_domain_attr *dattr_cur;
  6061. /* attribues of custom domains in 'doms_cur' */
  6062. /*
  6063. * Special case: If a kmalloc of a doms_cur partition (array of
  6064. * cpumask) fails, then fallback to a single sched domain,
  6065. * as determined by the single cpumask fallback_doms.
  6066. */
  6067. static cpumask_var_t fallback_doms;
  6068. /*
  6069. * arch_update_cpu_topology lets virtualized architectures update the
  6070. * cpu core maps. It is supposed to return 1 if the topology changed
  6071. * or 0 if it stayed the same.
  6072. */
  6073. int __attribute__((weak)) arch_update_cpu_topology(void)
  6074. {
  6075. return 0;
  6076. }
  6077. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6078. {
  6079. int i;
  6080. cpumask_var_t *doms;
  6081. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6082. if (!doms)
  6083. return NULL;
  6084. for (i = 0; i < ndoms; i++) {
  6085. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6086. free_sched_domains(doms, i);
  6087. return NULL;
  6088. }
  6089. }
  6090. return doms;
  6091. }
  6092. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6093. {
  6094. unsigned int i;
  6095. for (i = 0; i < ndoms; i++)
  6096. free_cpumask_var(doms[i]);
  6097. kfree(doms);
  6098. }
  6099. /*
  6100. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6101. * For now this just excludes isolated cpus, but could be used to
  6102. * exclude other special cases in the future.
  6103. */
  6104. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6105. {
  6106. int err;
  6107. arch_update_cpu_topology();
  6108. ndoms_cur = 1;
  6109. doms_cur = alloc_sched_domains(ndoms_cur);
  6110. if (!doms_cur)
  6111. doms_cur = &fallback_doms;
  6112. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6113. dattr_cur = NULL;
  6114. err = build_sched_domains(doms_cur[0]);
  6115. register_sched_domain_sysctl();
  6116. return err;
  6117. }
  6118. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6119. struct cpumask *tmpmask)
  6120. {
  6121. free_sched_groups(cpu_map, tmpmask);
  6122. }
  6123. /*
  6124. * Detach sched domains from a group of cpus specified in cpu_map
  6125. * These cpus will now be attached to the NULL domain
  6126. */
  6127. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6128. {
  6129. /* Save because hotplug lock held. */
  6130. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6131. int i;
  6132. for_each_cpu(i, cpu_map)
  6133. cpu_attach_domain(NULL, &def_root_domain, i);
  6134. synchronize_sched();
  6135. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6136. }
  6137. /* handle null as "default" */
  6138. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6139. struct sched_domain_attr *new, int idx_new)
  6140. {
  6141. struct sched_domain_attr tmp;
  6142. /* fast path */
  6143. if (!new && !cur)
  6144. return 1;
  6145. tmp = SD_ATTR_INIT;
  6146. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6147. new ? (new + idx_new) : &tmp,
  6148. sizeof(struct sched_domain_attr));
  6149. }
  6150. /*
  6151. * Partition sched domains as specified by the 'ndoms_new'
  6152. * cpumasks in the array doms_new[] of cpumasks. This compares
  6153. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6154. * It destroys each deleted domain and builds each new domain.
  6155. *
  6156. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6157. * The masks don't intersect (don't overlap.) We should setup one
  6158. * sched domain for each mask. CPUs not in any of the cpumasks will
  6159. * not be load balanced. If the same cpumask appears both in the
  6160. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6161. * it as it is.
  6162. *
  6163. * The passed in 'doms_new' should be allocated using
  6164. * alloc_sched_domains. This routine takes ownership of it and will
  6165. * free_sched_domains it when done with it. If the caller failed the
  6166. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6167. * and partition_sched_domains() will fallback to the single partition
  6168. * 'fallback_doms', it also forces the domains to be rebuilt.
  6169. *
  6170. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6171. * ndoms_new == 0 is a special case for destroying existing domains,
  6172. * and it will not create the default domain.
  6173. *
  6174. * Call with hotplug lock held
  6175. */
  6176. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6177. struct sched_domain_attr *dattr_new)
  6178. {
  6179. int i, j, n;
  6180. int new_topology;
  6181. mutex_lock(&sched_domains_mutex);
  6182. /* always unregister in case we don't destroy any domains */
  6183. unregister_sched_domain_sysctl();
  6184. /* Let architecture update cpu core mappings. */
  6185. new_topology = arch_update_cpu_topology();
  6186. n = doms_new ? ndoms_new : 0;
  6187. /* Destroy deleted domains */
  6188. for (i = 0; i < ndoms_cur; i++) {
  6189. for (j = 0; j < n && !new_topology; j++) {
  6190. if (cpumask_equal(doms_cur[i], doms_new[j])
  6191. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6192. goto match1;
  6193. }
  6194. /* no match - a current sched domain not in new doms_new[] */
  6195. detach_destroy_domains(doms_cur[i]);
  6196. match1:
  6197. ;
  6198. }
  6199. if (doms_new == NULL) {
  6200. ndoms_cur = 0;
  6201. doms_new = &fallback_doms;
  6202. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6203. WARN_ON_ONCE(dattr_new);
  6204. }
  6205. /* Build new domains */
  6206. for (i = 0; i < ndoms_new; i++) {
  6207. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6208. if (cpumask_equal(doms_new[i], doms_cur[j])
  6209. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6210. goto match2;
  6211. }
  6212. /* no match - add a new doms_new */
  6213. __build_sched_domains(doms_new[i],
  6214. dattr_new ? dattr_new + i : NULL);
  6215. match2:
  6216. ;
  6217. }
  6218. /* Remember the new sched domains */
  6219. if (doms_cur != &fallback_doms)
  6220. free_sched_domains(doms_cur, ndoms_cur);
  6221. kfree(dattr_cur); /* kfree(NULL) is safe */
  6222. doms_cur = doms_new;
  6223. dattr_cur = dattr_new;
  6224. ndoms_cur = ndoms_new;
  6225. register_sched_domain_sysctl();
  6226. mutex_unlock(&sched_domains_mutex);
  6227. }
  6228. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6229. static void arch_reinit_sched_domains(void)
  6230. {
  6231. get_online_cpus();
  6232. /* Destroy domains first to force the rebuild */
  6233. partition_sched_domains(0, NULL, NULL);
  6234. rebuild_sched_domains();
  6235. put_online_cpus();
  6236. }
  6237. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6238. {
  6239. unsigned int level = 0;
  6240. if (sscanf(buf, "%u", &level) != 1)
  6241. return -EINVAL;
  6242. /*
  6243. * level is always be positive so don't check for
  6244. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6245. * What happens on 0 or 1 byte write,
  6246. * need to check for count as well?
  6247. */
  6248. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6249. return -EINVAL;
  6250. if (smt)
  6251. sched_smt_power_savings = level;
  6252. else
  6253. sched_mc_power_savings = level;
  6254. arch_reinit_sched_domains();
  6255. return count;
  6256. }
  6257. #ifdef CONFIG_SCHED_MC
  6258. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6259. char *page)
  6260. {
  6261. return sprintf(page, "%u\n", sched_mc_power_savings);
  6262. }
  6263. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6264. const char *buf, size_t count)
  6265. {
  6266. return sched_power_savings_store(buf, count, 0);
  6267. }
  6268. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6269. sched_mc_power_savings_show,
  6270. sched_mc_power_savings_store);
  6271. #endif
  6272. #ifdef CONFIG_SCHED_SMT
  6273. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6274. char *page)
  6275. {
  6276. return sprintf(page, "%u\n", sched_smt_power_savings);
  6277. }
  6278. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6279. const char *buf, size_t count)
  6280. {
  6281. return sched_power_savings_store(buf, count, 1);
  6282. }
  6283. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6284. sched_smt_power_savings_show,
  6285. sched_smt_power_savings_store);
  6286. #endif
  6287. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6288. {
  6289. int err = 0;
  6290. #ifdef CONFIG_SCHED_SMT
  6291. if (smt_capable())
  6292. err = sysfs_create_file(&cls->kset.kobj,
  6293. &attr_sched_smt_power_savings.attr);
  6294. #endif
  6295. #ifdef CONFIG_SCHED_MC
  6296. if (!err && mc_capable())
  6297. err = sysfs_create_file(&cls->kset.kobj,
  6298. &attr_sched_mc_power_savings.attr);
  6299. #endif
  6300. return err;
  6301. }
  6302. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6303. #ifndef CONFIG_CPUSETS
  6304. /*
  6305. * Add online and remove offline CPUs from the scheduler domains.
  6306. * When cpusets are enabled they take over this function.
  6307. */
  6308. static int update_sched_domains(struct notifier_block *nfb,
  6309. unsigned long action, void *hcpu)
  6310. {
  6311. switch (action) {
  6312. case CPU_ONLINE:
  6313. case CPU_ONLINE_FROZEN:
  6314. case CPU_DOWN_PREPARE:
  6315. case CPU_DOWN_PREPARE_FROZEN:
  6316. case CPU_DOWN_FAILED:
  6317. case CPU_DOWN_FAILED_FROZEN:
  6318. partition_sched_domains(1, NULL, NULL);
  6319. return NOTIFY_OK;
  6320. default:
  6321. return NOTIFY_DONE;
  6322. }
  6323. }
  6324. #endif
  6325. static int update_runtime(struct notifier_block *nfb,
  6326. unsigned long action, void *hcpu)
  6327. {
  6328. int cpu = (int)(long)hcpu;
  6329. switch (action) {
  6330. case CPU_DOWN_PREPARE:
  6331. case CPU_DOWN_PREPARE_FROZEN:
  6332. disable_runtime(cpu_rq(cpu));
  6333. return NOTIFY_OK;
  6334. case CPU_DOWN_FAILED:
  6335. case CPU_DOWN_FAILED_FROZEN:
  6336. case CPU_ONLINE:
  6337. case CPU_ONLINE_FROZEN:
  6338. enable_runtime(cpu_rq(cpu));
  6339. return NOTIFY_OK;
  6340. default:
  6341. return NOTIFY_DONE;
  6342. }
  6343. }
  6344. void __init sched_init_smp(void)
  6345. {
  6346. cpumask_var_t non_isolated_cpus;
  6347. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6348. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6349. #if defined(CONFIG_NUMA)
  6350. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6351. GFP_KERNEL);
  6352. BUG_ON(sched_group_nodes_bycpu == NULL);
  6353. #endif
  6354. get_online_cpus();
  6355. mutex_lock(&sched_domains_mutex);
  6356. arch_init_sched_domains(cpu_active_mask);
  6357. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6358. if (cpumask_empty(non_isolated_cpus))
  6359. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6360. mutex_unlock(&sched_domains_mutex);
  6361. put_online_cpus();
  6362. #ifndef CONFIG_CPUSETS
  6363. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6364. hotcpu_notifier(update_sched_domains, 0);
  6365. #endif
  6366. /* RT runtime code needs to handle some hotplug events */
  6367. hotcpu_notifier(update_runtime, 0);
  6368. init_hrtick();
  6369. /* Move init over to a non-isolated CPU */
  6370. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6371. BUG();
  6372. sched_init_granularity();
  6373. free_cpumask_var(non_isolated_cpus);
  6374. init_sched_rt_class();
  6375. }
  6376. #else
  6377. void __init sched_init_smp(void)
  6378. {
  6379. sched_init_granularity();
  6380. }
  6381. #endif /* CONFIG_SMP */
  6382. const_debug unsigned int sysctl_timer_migration = 1;
  6383. int in_sched_functions(unsigned long addr)
  6384. {
  6385. return in_lock_functions(addr) ||
  6386. (addr >= (unsigned long)__sched_text_start
  6387. && addr < (unsigned long)__sched_text_end);
  6388. }
  6389. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6390. {
  6391. cfs_rq->tasks_timeline = RB_ROOT;
  6392. INIT_LIST_HEAD(&cfs_rq->tasks);
  6393. #ifdef CONFIG_FAIR_GROUP_SCHED
  6394. cfs_rq->rq = rq;
  6395. #endif
  6396. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6397. }
  6398. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6399. {
  6400. struct rt_prio_array *array;
  6401. int i;
  6402. array = &rt_rq->active;
  6403. for (i = 0; i < MAX_RT_PRIO; i++) {
  6404. INIT_LIST_HEAD(array->queue + i);
  6405. __clear_bit(i, array->bitmap);
  6406. }
  6407. /* delimiter for bitsearch: */
  6408. __set_bit(MAX_RT_PRIO, array->bitmap);
  6409. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6410. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6411. #ifdef CONFIG_SMP
  6412. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6413. #endif
  6414. #endif
  6415. #ifdef CONFIG_SMP
  6416. rt_rq->rt_nr_migratory = 0;
  6417. rt_rq->overloaded = 0;
  6418. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6419. #endif
  6420. rt_rq->rt_time = 0;
  6421. rt_rq->rt_throttled = 0;
  6422. rt_rq->rt_runtime = 0;
  6423. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6424. #ifdef CONFIG_RT_GROUP_SCHED
  6425. rt_rq->rt_nr_boosted = 0;
  6426. rt_rq->rq = rq;
  6427. #endif
  6428. }
  6429. #ifdef CONFIG_FAIR_GROUP_SCHED
  6430. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6431. struct sched_entity *se, int cpu, int add,
  6432. struct sched_entity *parent)
  6433. {
  6434. struct rq *rq = cpu_rq(cpu);
  6435. tg->cfs_rq[cpu] = cfs_rq;
  6436. init_cfs_rq(cfs_rq, rq);
  6437. cfs_rq->tg = tg;
  6438. if (add)
  6439. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6440. tg->se[cpu] = se;
  6441. /* se could be NULL for init_task_group */
  6442. if (!se)
  6443. return;
  6444. if (!parent)
  6445. se->cfs_rq = &rq->cfs;
  6446. else
  6447. se->cfs_rq = parent->my_q;
  6448. se->my_q = cfs_rq;
  6449. se->load.weight = tg->shares;
  6450. se->load.inv_weight = 0;
  6451. se->parent = parent;
  6452. }
  6453. #endif
  6454. #ifdef CONFIG_RT_GROUP_SCHED
  6455. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6456. struct sched_rt_entity *rt_se, int cpu, int add,
  6457. struct sched_rt_entity *parent)
  6458. {
  6459. struct rq *rq = cpu_rq(cpu);
  6460. tg->rt_rq[cpu] = rt_rq;
  6461. init_rt_rq(rt_rq, rq);
  6462. rt_rq->tg = tg;
  6463. rt_rq->rt_se = rt_se;
  6464. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6465. if (add)
  6466. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6467. tg->rt_se[cpu] = rt_se;
  6468. if (!rt_se)
  6469. return;
  6470. if (!parent)
  6471. rt_se->rt_rq = &rq->rt;
  6472. else
  6473. rt_se->rt_rq = parent->my_q;
  6474. rt_se->my_q = rt_rq;
  6475. rt_se->parent = parent;
  6476. INIT_LIST_HEAD(&rt_se->run_list);
  6477. }
  6478. #endif
  6479. void __init sched_init(void)
  6480. {
  6481. int i, j;
  6482. unsigned long alloc_size = 0, ptr;
  6483. #ifdef CONFIG_FAIR_GROUP_SCHED
  6484. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6485. #endif
  6486. #ifdef CONFIG_RT_GROUP_SCHED
  6487. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6488. #endif
  6489. #ifdef CONFIG_CPUMASK_OFFSTACK
  6490. alloc_size += num_possible_cpus() * cpumask_size();
  6491. #endif
  6492. if (alloc_size) {
  6493. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6494. #ifdef CONFIG_FAIR_GROUP_SCHED
  6495. init_task_group.se = (struct sched_entity **)ptr;
  6496. ptr += nr_cpu_ids * sizeof(void **);
  6497. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6498. ptr += nr_cpu_ids * sizeof(void **);
  6499. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6500. #ifdef CONFIG_RT_GROUP_SCHED
  6501. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6502. ptr += nr_cpu_ids * sizeof(void **);
  6503. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6504. ptr += nr_cpu_ids * sizeof(void **);
  6505. #endif /* CONFIG_RT_GROUP_SCHED */
  6506. #ifdef CONFIG_CPUMASK_OFFSTACK
  6507. for_each_possible_cpu(i) {
  6508. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6509. ptr += cpumask_size();
  6510. }
  6511. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6512. }
  6513. #ifdef CONFIG_SMP
  6514. init_defrootdomain();
  6515. #endif
  6516. init_rt_bandwidth(&def_rt_bandwidth,
  6517. global_rt_period(), global_rt_runtime());
  6518. #ifdef CONFIG_RT_GROUP_SCHED
  6519. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6520. global_rt_period(), global_rt_runtime());
  6521. #endif /* CONFIG_RT_GROUP_SCHED */
  6522. #ifdef CONFIG_CGROUP_SCHED
  6523. list_add(&init_task_group.list, &task_groups);
  6524. INIT_LIST_HEAD(&init_task_group.children);
  6525. #endif /* CONFIG_CGROUP_SCHED */
  6526. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6527. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6528. __alignof__(unsigned long));
  6529. #endif
  6530. for_each_possible_cpu(i) {
  6531. struct rq *rq;
  6532. rq = cpu_rq(i);
  6533. raw_spin_lock_init(&rq->lock);
  6534. rq->nr_running = 0;
  6535. rq->calc_load_active = 0;
  6536. rq->calc_load_update = jiffies + LOAD_FREQ;
  6537. init_cfs_rq(&rq->cfs, rq);
  6538. init_rt_rq(&rq->rt, rq);
  6539. #ifdef CONFIG_FAIR_GROUP_SCHED
  6540. init_task_group.shares = init_task_group_load;
  6541. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6542. #ifdef CONFIG_CGROUP_SCHED
  6543. /*
  6544. * How much cpu bandwidth does init_task_group get?
  6545. *
  6546. * In case of task-groups formed thr' the cgroup filesystem, it
  6547. * gets 100% of the cpu resources in the system. This overall
  6548. * system cpu resource is divided among the tasks of
  6549. * init_task_group and its child task-groups in a fair manner,
  6550. * based on each entity's (task or task-group's) weight
  6551. * (se->load.weight).
  6552. *
  6553. * In other words, if init_task_group has 10 tasks of weight
  6554. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6555. * then A0's share of the cpu resource is:
  6556. *
  6557. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6558. *
  6559. * We achieve this by letting init_task_group's tasks sit
  6560. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6561. */
  6562. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6563. #endif
  6564. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6565. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6566. #ifdef CONFIG_RT_GROUP_SCHED
  6567. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6568. #ifdef CONFIG_CGROUP_SCHED
  6569. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6570. #endif
  6571. #endif
  6572. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6573. rq->cpu_load[j] = 0;
  6574. #ifdef CONFIG_SMP
  6575. rq->sd = NULL;
  6576. rq->rd = NULL;
  6577. rq->post_schedule = 0;
  6578. rq->active_balance = 0;
  6579. rq->next_balance = jiffies;
  6580. rq->push_cpu = 0;
  6581. rq->cpu = i;
  6582. rq->online = 0;
  6583. rq->migration_thread = NULL;
  6584. rq->idle_stamp = 0;
  6585. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6586. INIT_LIST_HEAD(&rq->migration_queue);
  6587. rq_attach_root(rq, &def_root_domain);
  6588. #endif
  6589. init_rq_hrtick(rq);
  6590. atomic_set(&rq->nr_iowait, 0);
  6591. }
  6592. set_load_weight(&init_task);
  6593. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6594. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6595. #endif
  6596. #ifdef CONFIG_SMP
  6597. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6598. #endif
  6599. #ifdef CONFIG_RT_MUTEXES
  6600. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6601. #endif
  6602. /*
  6603. * The boot idle thread does lazy MMU switching as well:
  6604. */
  6605. atomic_inc(&init_mm.mm_count);
  6606. enter_lazy_tlb(&init_mm, current);
  6607. /*
  6608. * Make us the idle thread. Technically, schedule() should not be
  6609. * called from this thread, however somewhere below it might be,
  6610. * but because we are the idle thread, we just pick up running again
  6611. * when this runqueue becomes "idle".
  6612. */
  6613. init_idle(current, smp_processor_id());
  6614. calc_load_update = jiffies + LOAD_FREQ;
  6615. /*
  6616. * During early bootup we pretend to be a normal task:
  6617. */
  6618. current->sched_class = &fair_sched_class;
  6619. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6620. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6621. #ifdef CONFIG_SMP
  6622. #ifdef CONFIG_NO_HZ
  6623. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  6624. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  6625. #endif
  6626. /* May be allocated at isolcpus cmdline parse time */
  6627. if (cpu_isolated_map == NULL)
  6628. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6629. #endif /* SMP */
  6630. perf_event_init();
  6631. scheduler_running = 1;
  6632. }
  6633. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6634. static inline int preempt_count_equals(int preempt_offset)
  6635. {
  6636. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6637. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6638. }
  6639. void __might_sleep(const char *file, int line, int preempt_offset)
  6640. {
  6641. #ifdef in_atomic
  6642. static unsigned long prev_jiffy; /* ratelimiting */
  6643. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6644. system_state != SYSTEM_RUNNING || oops_in_progress)
  6645. return;
  6646. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6647. return;
  6648. prev_jiffy = jiffies;
  6649. printk(KERN_ERR
  6650. "BUG: sleeping function called from invalid context at %s:%d\n",
  6651. file, line);
  6652. printk(KERN_ERR
  6653. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6654. in_atomic(), irqs_disabled(),
  6655. current->pid, current->comm);
  6656. debug_show_held_locks(current);
  6657. if (irqs_disabled())
  6658. print_irqtrace_events(current);
  6659. dump_stack();
  6660. #endif
  6661. }
  6662. EXPORT_SYMBOL(__might_sleep);
  6663. #endif
  6664. #ifdef CONFIG_MAGIC_SYSRQ
  6665. static void normalize_task(struct rq *rq, struct task_struct *p)
  6666. {
  6667. int on_rq;
  6668. update_rq_clock(rq);
  6669. on_rq = p->se.on_rq;
  6670. if (on_rq)
  6671. deactivate_task(rq, p, 0);
  6672. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6673. if (on_rq) {
  6674. activate_task(rq, p, 0);
  6675. resched_task(rq->curr);
  6676. }
  6677. }
  6678. void normalize_rt_tasks(void)
  6679. {
  6680. struct task_struct *g, *p;
  6681. unsigned long flags;
  6682. struct rq *rq;
  6683. read_lock_irqsave(&tasklist_lock, flags);
  6684. do_each_thread(g, p) {
  6685. /*
  6686. * Only normalize user tasks:
  6687. */
  6688. if (!p->mm)
  6689. continue;
  6690. p->se.exec_start = 0;
  6691. #ifdef CONFIG_SCHEDSTATS
  6692. p->se.wait_start = 0;
  6693. p->se.sleep_start = 0;
  6694. p->se.block_start = 0;
  6695. #endif
  6696. if (!rt_task(p)) {
  6697. /*
  6698. * Renice negative nice level userspace
  6699. * tasks back to 0:
  6700. */
  6701. if (TASK_NICE(p) < 0 && p->mm)
  6702. set_user_nice(p, 0);
  6703. continue;
  6704. }
  6705. raw_spin_lock(&p->pi_lock);
  6706. rq = __task_rq_lock(p);
  6707. normalize_task(rq, p);
  6708. __task_rq_unlock(rq);
  6709. raw_spin_unlock(&p->pi_lock);
  6710. } while_each_thread(g, p);
  6711. read_unlock_irqrestore(&tasklist_lock, flags);
  6712. }
  6713. #endif /* CONFIG_MAGIC_SYSRQ */
  6714. #ifdef CONFIG_IA64
  6715. /*
  6716. * These functions are only useful for the IA64 MCA handling.
  6717. *
  6718. * They can only be called when the whole system has been
  6719. * stopped - every CPU needs to be quiescent, and no scheduling
  6720. * activity can take place. Using them for anything else would
  6721. * be a serious bug, and as a result, they aren't even visible
  6722. * under any other configuration.
  6723. */
  6724. /**
  6725. * curr_task - return the current task for a given cpu.
  6726. * @cpu: the processor in question.
  6727. *
  6728. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6729. */
  6730. struct task_struct *curr_task(int cpu)
  6731. {
  6732. return cpu_curr(cpu);
  6733. }
  6734. /**
  6735. * set_curr_task - set the current task for a given cpu.
  6736. * @cpu: the processor in question.
  6737. * @p: the task pointer to set.
  6738. *
  6739. * Description: This function must only be used when non-maskable interrupts
  6740. * are serviced on a separate stack. It allows the architecture to switch the
  6741. * notion of the current task on a cpu in a non-blocking manner. This function
  6742. * must be called with all CPU's synchronized, and interrupts disabled, the
  6743. * and caller must save the original value of the current task (see
  6744. * curr_task() above) and restore that value before reenabling interrupts and
  6745. * re-starting the system.
  6746. *
  6747. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6748. */
  6749. void set_curr_task(int cpu, struct task_struct *p)
  6750. {
  6751. cpu_curr(cpu) = p;
  6752. }
  6753. #endif
  6754. #ifdef CONFIG_FAIR_GROUP_SCHED
  6755. static void free_fair_sched_group(struct task_group *tg)
  6756. {
  6757. int i;
  6758. for_each_possible_cpu(i) {
  6759. if (tg->cfs_rq)
  6760. kfree(tg->cfs_rq[i]);
  6761. if (tg->se)
  6762. kfree(tg->se[i]);
  6763. }
  6764. kfree(tg->cfs_rq);
  6765. kfree(tg->se);
  6766. }
  6767. static
  6768. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6769. {
  6770. struct cfs_rq *cfs_rq;
  6771. struct sched_entity *se;
  6772. struct rq *rq;
  6773. int i;
  6774. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6775. if (!tg->cfs_rq)
  6776. goto err;
  6777. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6778. if (!tg->se)
  6779. goto err;
  6780. tg->shares = NICE_0_LOAD;
  6781. for_each_possible_cpu(i) {
  6782. rq = cpu_rq(i);
  6783. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6784. GFP_KERNEL, cpu_to_node(i));
  6785. if (!cfs_rq)
  6786. goto err;
  6787. se = kzalloc_node(sizeof(struct sched_entity),
  6788. GFP_KERNEL, cpu_to_node(i));
  6789. if (!se)
  6790. goto err_free_rq;
  6791. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6792. }
  6793. return 1;
  6794. err_free_rq:
  6795. kfree(cfs_rq);
  6796. err:
  6797. return 0;
  6798. }
  6799. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6800. {
  6801. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6802. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6803. }
  6804. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6805. {
  6806. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6807. }
  6808. #else /* !CONFG_FAIR_GROUP_SCHED */
  6809. static inline void free_fair_sched_group(struct task_group *tg)
  6810. {
  6811. }
  6812. static inline
  6813. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6814. {
  6815. return 1;
  6816. }
  6817. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6818. {
  6819. }
  6820. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6821. {
  6822. }
  6823. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6824. #ifdef CONFIG_RT_GROUP_SCHED
  6825. static void free_rt_sched_group(struct task_group *tg)
  6826. {
  6827. int i;
  6828. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6829. for_each_possible_cpu(i) {
  6830. if (tg->rt_rq)
  6831. kfree(tg->rt_rq[i]);
  6832. if (tg->rt_se)
  6833. kfree(tg->rt_se[i]);
  6834. }
  6835. kfree(tg->rt_rq);
  6836. kfree(tg->rt_se);
  6837. }
  6838. static
  6839. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6840. {
  6841. struct rt_rq *rt_rq;
  6842. struct sched_rt_entity *rt_se;
  6843. struct rq *rq;
  6844. int i;
  6845. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6846. if (!tg->rt_rq)
  6847. goto err;
  6848. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6849. if (!tg->rt_se)
  6850. goto err;
  6851. init_rt_bandwidth(&tg->rt_bandwidth,
  6852. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6853. for_each_possible_cpu(i) {
  6854. rq = cpu_rq(i);
  6855. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6856. GFP_KERNEL, cpu_to_node(i));
  6857. if (!rt_rq)
  6858. goto err;
  6859. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6860. GFP_KERNEL, cpu_to_node(i));
  6861. if (!rt_se)
  6862. goto err_free_rq;
  6863. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6864. }
  6865. return 1;
  6866. err_free_rq:
  6867. kfree(rt_rq);
  6868. err:
  6869. return 0;
  6870. }
  6871. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6872. {
  6873. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6874. &cpu_rq(cpu)->leaf_rt_rq_list);
  6875. }
  6876. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6877. {
  6878. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6879. }
  6880. #else /* !CONFIG_RT_GROUP_SCHED */
  6881. static inline void free_rt_sched_group(struct task_group *tg)
  6882. {
  6883. }
  6884. static inline
  6885. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6886. {
  6887. return 1;
  6888. }
  6889. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6890. {
  6891. }
  6892. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6893. {
  6894. }
  6895. #endif /* CONFIG_RT_GROUP_SCHED */
  6896. #ifdef CONFIG_CGROUP_SCHED
  6897. static void free_sched_group(struct task_group *tg)
  6898. {
  6899. free_fair_sched_group(tg);
  6900. free_rt_sched_group(tg);
  6901. kfree(tg);
  6902. }
  6903. /* allocate runqueue etc for a new task group */
  6904. struct task_group *sched_create_group(struct task_group *parent)
  6905. {
  6906. struct task_group *tg;
  6907. unsigned long flags;
  6908. int i;
  6909. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6910. if (!tg)
  6911. return ERR_PTR(-ENOMEM);
  6912. if (!alloc_fair_sched_group(tg, parent))
  6913. goto err;
  6914. if (!alloc_rt_sched_group(tg, parent))
  6915. goto err;
  6916. spin_lock_irqsave(&task_group_lock, flags);
  6917. for_each_possible_cpu(i) {
  6918. register_fair_sched_group(tg, i);
  6919. register_rt_sched_group(tg, i);
  6920. }
  6921. list_add_rcu(&tg->list, &task_groups);
  6922. WARN_ON(!parent); /* root should already exist */
  6923. tg->parent = parent;
  6924. INIT_LIST_HEAD(&tg->children);
  6925. list_add_rcu(&tg->siblings, &parent->children);
  6926. spin_unlock_irqrestore(&task_group_lock, flags);
  6927. return tg;
  6928. err:
  6929. free_sched_group(tg);
  6930. return ERR_PTR(-ENOMEM);
  6931. }
  6932. /* rcu callback to free various structures associated with a task group */
  6933. static void free_sched_group_rcu(struct rcu_head *rhp)
  6934. {
  6935. /* now it should be safe to free those cfs_rqs */
  6936. free_sched_group(container_of(rhp, struct task_group, rcu));
  6937. }
  6938. /* Destroy runqueue etc associated with a task group */
  6939. void sched_destroy_group(struct task_group *tg)
  6940. {
  6941. unsigned long flags;
  6942. int i;
  6943. spin_lock_irqsave(&task_group_lock, flags);
  6944. for_each_possible_cpu(i) {
  6945. unregister_fair_sched_group(tg, i);
  6946. unregister_rt_sched_group(tg, i);
  6947. }
  6948. list_del_rcu(&tg->list);
  6949. list_del_rcu(&tg->siblings);
  6950. spin_unlock_irqrestore(&task_group_lock, flags);
  6951. /* wait for possible concurrent references to cfs_rqs complete */
  6952. call_rcu(&tg->rcu, free_sched_group_rcu);
  6953. }
  6954. /* change task's runqueue when it moves between groups.
  6955. * The caller of this function should have put the task in its new group
  6956. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6957. * reflect its new group.
  6958. */
  6959. void sched_move_task(struct task_struct *tsk)
  6960. {
  6961. int on_rq, running;
  6962. unsigned long flags;
  6963. struct rq *rq;
  6964. rq = task_rq_lock(tsk, &flags);
  6965. update_rq_clock(rq);
  6966. running = task_current(rq, tsk);
  6967. on_rq = tsk->se.on_rq;
  6968. if (on_rq)
  6969. dequeue_task(rq, tsk, 0);
  6970. if (unlikely(running))
  6971. tsk->sched_class->put_prev_task(rq, tsk);
  6972. set_task_rq(tsk, task_cpu(tsk));
  6973. #ifdef CONFIG_FAIR_GROUP_SCHED
  6974. if (tsk->sched_class->moved_group)
  6975. tsk->sched_class->moved_group(tsk, on_rq);
  6976. #endif
  6977. if (unlikely(running))
  6978. tsk->sched_class->set_curr_task(rq);
  6979. if (on_rq)
  6980. enqueue_task(rq, tsk, 0, false);
  6981. task_rq_unlock(rq, &flags);
  6982. }
  6983. #endif /* CONFIG_CGROUP_SCHED */
  6984. #ifdef CONFIG_FAIR_GROUP_SCHED
  6985. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  6986. {
  6987. struct cfs_rq *cfs_rq = se->cfs_rq;
  6988. int on_rq;
  6989. on_rq = se->on_rq;
  6990. if (on_rq)
  6991. dequeue_entity(cfs_rq, se, 0);
  6992. se->load.weight = shares;
  6993. se->load.inv_weight = 0;
  6994. if (on_rq)
  6995. enqueue_entity(cfs_rq, se, 0);
  6996. }
  6997. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6998. {
  6999. struct cfs_rq *cfs_rq = se->cfs_rq;
  7000. struct rq *rq = cfs_rq->rq;
  7001. unsigned long flags;
  7002. raw_spin_lock_irqsave(&rq->lock, flags);
  7003. __set_se_shares(se, shares);
  7004. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7005. }
  7006. static DEFINE_MUTEX(shares_mutex);
  7007. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7008. {
  7009. int i;
  7010. unsigned long flags;
  7011. /*
  7012. * We can't change the weight of the root cgroup.
  7013. */
  7014. if (!tg->se[0])
  7015. return -EINVAL;
  7016. if (shares < MIN_SHARES)
  7017. shares = MIN_SHARES;
  7018. else if (shares > MAX_SHARES)
  7019. shares = MAX_SHARES;
  7020. mutex_lock(&shares_mutex);
  7021. if (tg->shares == shares)
  7022. goto done;
  7023. spin_lock_irqsave(&task_group_lock, flags);
  7024. for_each_possible_cpu(i)
  7025. unregister_fair_sched_group(tg, i);
  7026. list_del_rcu(&tg->siblings);
  7027. spin_unlock_irqrestore(&task_group_lock, flags);
  7028. /* wait for any ongoing reference to this group to finish */
  7029. synchronize_sched();
  7030. /*
  7031. * Now we are free to modify the group's share on each cpu
  7032. * w/o tripping rebalance_share or load_balance_fair.
  7033. */
  7034. tg->shares = shares;
  7035. for_each_possible_cpu(i) {
  7036. /*
  7037. * force a rebalance
  7038. */
  7039. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7040. set_se_shares(tg->se[i], shares);
  7041. }
  7042. /*
  7043. * Enable load balance activity on this group, by inserting it back on
  7044. * each cpu's rq->leaf_cfs_rq_list.
  7045. */
  7046. spin_lock_irqsave(&task_group_lock, flags);
  7047. for_each_possible_cpu(i)
  7048. register_fair_sched_group(tg, i);
  7049. list_add_rcu(&tg->siblings, &tg->parent->children);
  7050. spin_unlock_irqrestore(&task_group_lock, flags);
  7051. done:
  7052. mutex_unlock(&shares_mutex);
  7053. return 0;
  7054. }
  7055. unsigned long sched_group_shares(struct task_group *tg)
  7056. {
  7057. return tg->shares;
  7058. }
  7059. #endif
  7060. #ifdef CONFIG_RT_GROUP_SCHED
  7061. /*
  7062. * Ensure that the real time constraints are schedulable.
  7063. */
  7064. static DEFINE_MUTEX(rt_constraints_mutex);
  7065. static unsigned long to_ratio(u64 period, u64 runtime)
  7066. {
  7067. if (runtime == RUNTIME_INF)
  7068. return 1ULL << 20;
  7069. return div64_u64(runtime << 20, period);
  7070. }
  7071. /* Must be called with tasklist_lock held */
  7072. static inline int tg_has_rt_tasks(struct task_group *tg)
  7073. {
  7074. struct task_struct *g, *p;
  7075. do_each_thread(g, p) {
  7076. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7077. return 1;
  7078. } while_each_thread(g, p);
  7079. return 0;
  7080. }
  7081. struct rt_schedulable_data {
  7082. struct task_group *tg;
  7083. u64 rt_period;
  7084. u64 rt_runtime;
  7085. };
  7086. static int tg_schedulable(struct task_group *tg, void *data)
  7087. {
  7088. struct rt_schedulable_data *d = data;
  7089. struct task_group *child;
  7090. unsigned long total, sum = 0;
  7091. u64 period, runtime;
  7092. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7093. runtime = tg->rt_bandwidth.rt_runtime;
  7094. if (tg == d->tg) {
  7095. period = d->rt_period;
  7096. runtime = d->rt_runtime;
  7097. }
  7098. /*
  7099. * Cannot have more runtime than the period.
  7100. */
  7101. if (runtime > period && runtime != RUNTIME_INF)
  7102. return -EINVAL;
  7103. /*
  7104. * Ensure we don't starve existing RT tasks.
  7105. */
  7106. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7107. return -EBUSY;
  7108. total = to_ratio(period, runtime);
  7109. /*
  7110. * Nobody can have more than the global setting allows.
  7111. */
  7112. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7113. return -EINVAL;
  7114. /*
  7115. * The sum of our children's runtime should not exceed our own.
  7116. */
  7117. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7118. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7119. runtime = child->rt_bandwidth.rt_runtime;
  7120. if (child == d->tg) {
  7121. period = d->rt_period;
  7122. runtime = d->rt_runtime;
  7123. }
  7124. sum += to_ratio(period, runtime);
  7125. }
  7126. if (sum > total)
  7127. return -EINVAL;
  7128. return 0;
  7129. }
  7130. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7131. {
  7132. struct rt_schedulable_data data = {
  7133. .tg = tg,
  7134. .rt_period = period,
  7135. .rt_runtime = runtime,
  7136. };
  7137. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7138. }
  7139. static int tg_set_bandwidth(struct task_group *tg,
  7140. u64 rt_period, u64 rt_runtime)
  7141. {
  7142. int i, err = 0;
  7143. mutex_lock(&rt_constraints_mutex);
  7144. read_lock(&tasklist_lock);
  7145. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7146. if (err)
  7147. goto unlock;
  7148. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7149. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7150. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7151. for_each_possible_cpu(i) {
  7152. struct rt_rq *rt_rq = tg->rt_rq[i];
  7153. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7154. rt_rq->rt_runtime = rt_runtime;
  7155. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7156. }
  7157. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7158. unlock:
  7159. read_unlock(&tasklist_lock);
  7160. mutex_unlock(&rt_constraints_mutex);
  7161. return err;
  7162. }
  7163. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7164. {
  7165. u64 rt_runtime, rt_period;
  7166. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7167. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7168. if (rt_runtime_us < 0)
  7169. rt_runtime = RUNTIME_INF;
  7170. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7171. }
  7172. long sched_group_rt_runtime(struct task_group *tg)
  7173. {
  7174. u64 rt_runtime_us;
  7175. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7176. return -1;
  7177. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7178. do_div(rt_runtime_us, NSEC_PER_USEC);
  7179. return rt_runtime_us;
  7180. }
  7181. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7182. {
  7183. u64 rt_runtime, rt_period;
  7184. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7185. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7186. if (rt_period == 0)
  7187. return -EINVAL;
  7188. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7189. }
  7190. long sched_group_rt_period(struct task_group *tg)
  7191. {
  7192. u64 rt_period_us;
  7193. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7194. do_div(rt_period_us, NSEC_PER_USEC);
  7195. return rt_period_us;
  7196. }
  7197. static int sched_rt_global_constraints(void)
  7198. {
  7199. u64 runtime, period;
  7200. int ret = 0;
  7201. if (sysctl_sched_rt_period <= 0)
  7202. return -EINVAL;
  7203. runtime = global_rt_runtime();
  7204. period = global_rt_period();
  7205. /*
  7206. * Sanity check on the sysctl variables.
  7207. */
  7208. if (runtime > period && runtime != RUNTIME_INF)
  7209. return -EINVAL;
  7210. mutex_lock(&rt_constraints_mutex);
  7211. read_lock(&tasklist_lock);
  7212. ret = __rt_schedulable(NULL, 0, 0);
  7213. read_unlock(&tasklist_lock);
  7214. mutex_unlock(&rt_constraints_mutex);
  7215. return ret;
  7216. }
  7217. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7218. {
  7219. /* Don't accept realtime tasks when there is no way for them to run */
  7220. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7221. return 0;
  7222. return 1;
  7223. }
  7224. #else /* !CONFIG_RT_GROUP_SCHED */
  7225. static int sched_rt_global_constraints(void)
  7226. {
  7227. unsigned long flags;
  7228. int i;
  7229. if (sysctl_sched_rt_period <= 0)
  7230. return -EINVAL;
  7231. /*
  7232. * There's always some RT tasks in the root group
  7233. * -- migration, kstopmachine etc..
  7234. */
  7235. if (sysctl_sched_rt_runtime == 0)
  7236. return -EBUSY;
  7237. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7238. for_each_possible_cpu(i) {
  7239. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7240. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7241. rt_rq->rt_runtime = global_rt_runtime();
  7242. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7243. }
  7244. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7245. return 0;
  7246. }
  7247. #endif /* CONFIG_RT_GROUP_SCHED */
  7248. int sched_rt_handler(struct ctl_table *table, int write,
  7249. void __user *buffer, size_t *lenp,
  7250. loff_t *ppos)
  7251. {
  7252. int ret;
  7253. int old_period, old_runtime;
  7254. static DEFINE_MUTEX(mutex);
  7255. mutex_lock(&mutex);
  7256. old_period = sysctl_sched_rt_period;
  7257. old_runtime = sysctl_sched_rt_runtime;
  7258. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7259. if (!ret && write) {
  7260. ret = sched_rt_global_constraints();
  7261. if (ret) {
  7262. sysctl_sched_rt_period = old_period;
  7263. sysctl_sched_rt_runtime = old_runtime;
  7264. } else {
  7265. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7266. def_rt_bandwidth.rt_period =
  7267. ns_to_ktime(global_rt_period());
  7268. }
  7269. }
  7270. mutex_unlock(&mutex);
  7271. return ret;
  7272. }
  7273. #ifdef CONFIG_CGROUP_SCHED
  7274. /* return corresponding task_group object of a cgroup */
  7275. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7276. {
  7277. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7278. struct task_group, css);
  7279. }
  7280. static struct cgroup_subsys_state *
  7281. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7282. {
  7283. struct task_group *tg, *parent;
  7284. if (!cgrp->parent) {
  7285. /* This is early initialization for the top cgroup */
  7286. return &init_task_group.css;
  7287. }
  7288. parent = cgroup_tg(cgrp->parent);
  7289. tg = sched_create_group(parent);
  7290. if (IS_ERR(tg))
  7291. return ERR_PTR(-ENOMEM);
  7292. return &tg->css;
  7293. }
  7294. static void
  7295. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7296. {
  7297. struct task_group *tg = cgroup_tg(cgrp);
  7298. sched_destroy_group(tg);
  7299. }
  7300. static int
  7301. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7302. {
  7303. #ifdef CONFIG_RT_GROUP_SCHED
  7304. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7305. return -EINVAL;
  7306. #else
  7307. /* We don't support RT-tasks being in separate groups */
  7308. if (tsk->sched_class != &fair_sched_class)
  7309. return -EINVAL;
  7310. #endif
  7311. return 0;
  7312. }
  7313. static int
  7314. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7315. struct task_struct *tsk, bool threadgroup)
  7316. {
  7317. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7318. if (retval)
  7319. return retval;
  7320. if (threadgroup) {
  7321. struct task_struct *c;
  7322. rcu_read_lock();
  7323. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7324. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7325. if (retval) {
  7326. rcu_read_unlock();
  7327. return retval;
  7328. }
  7329. }
  7330. rcu_read_unlock();
  7331. }
  7332. return 0;
  7333. }
  7334. static void
  7335. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7336. struct cgroup *old_cont, struct task_struct *tsk,
  7337. bool threadgroup)
  7338. {
  7339. sched_move_task(tsk);
  7340. if (threadgroup) {
  7341. struct task_struct *c;
  7342. rcu_read_lock();
  7343. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7344. sched_move_task(c);
  7345. }
  7346. rcu_read_unlock();
  7347. }
  7348. }
  7349. #ifdef CONFIG_FAIR_GROUP_SCHED
  7350. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7351. u64 shareval)
  7352. {
  7353. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7354. }
  7355. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7356. {
  7357. struct task_group *tg = cgroup_tg(cgrp);
  7358. return (u64) tg->shares;
  7359. }
  7360. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7361. #ifdef CONFIG_RT_GROUP_SCHED
  7362. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7363. s64 val)
  7364. {
  7365. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7366. }
  7367. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7368. {
  7369. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7370. }
  7371. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7372. u64 rt_period_us)
  7373. {
  7374. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7375. }
  7376. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7377. {
  7378. return sched_group_rt_period(cgroup_tg(cgrp));
  7379. }
  7380. #endif /* CONFIG_RT_GROUP_SCHED */
  7381. static struct cftype cpu_files[] = {
  7382. #ifdef CONFIG_FAIR_GROUP_SCHED
  7383. {
  7384. .name = "shares",
  7385. .read_u64 = cpu_shares_read_u64,
  7386. .write_u64 = cpu_shares_write_u64,
  7387. },
  7388. #endif
  7389. #ifdef CONFIG_RT_GROUP_SCHED
  7390. {
  7391. .name = "rt_runtime_us",
  7392. .read_s64 = cpu_rt_runtime_read,
  7393. .write_s64 = cpu_rt_runtime_write,
  7394. },
  7395. {
  7396. .name = "rt_period_us",
  7397. .read_u64 = cpu_rt_period_read_uint,
  7398. .write_u64 = cpu_rt_period_write_uint,
  7399. },
  7400. #endif
  7401. };
  7402. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7403. {
  7404. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7405. }
  7406. struct cgroup_subsys cpu_cgroup_subsys = {
  7407. .name = "cpu",
  7408. .create = cpu_cgroup_create,
  7409. .destroy = cpu_cgroup_destroy,
  7410. .can_attach = cpu_cgroup_can_attach,
  7411. .attach = cpu_cgroup_attach,
  7412. .populate = cpu_cgroup_populate,
  7413. .subsys_id = cpu_cgroup_subsys_id,
  7414. .early_init = 1,
  7415. };
  7416. #endif /* CONFIG_CGROUP_SCHED */
  7417. #ifdef CONFIG_CGROUP_CPUACCT
  7418. /*
  7419. * CPU accounting code for task groups.
  7420. *
  7421. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7422. * (balbir@in.ibm.com).
  7423. */
  7424. /* track cpu usage of a group of tasks and its child groups */
  7425. struct cpuacct {
  7426. struct cgroup_subsys_state css;
  7427. /* cpuusage holds pointer to a u64-type object on every cpu */
  7428. u64 *cpuusage;
  7429. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7430. struct cpuacct *parent;
  7431. };
  7432. struct cgroup_subsys cpuacct_subsys;
  7433. /* return cpu accounting group corresponding to this container */
  7434. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7435. {
  7436. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7437. struct cpuacct, css);
  7438. }
  7439. /* return cpu accounting group to which this task belongs */
  7440. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7441. {
  7442. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7443. struct cpuacct, css);
  7444. }
  7445. /* create a new cpu accounting group */
  7446. static struct cgroup_subsys_state *cpuacct_create(
  7447. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7448. {
  7449. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7450. int i;
  7451. if (!ca)
  7452. goto out;
  7453. ca->cpuusage = alloc_percpu(u64);
  7454. if (!ca->cpuusage)
  7455. goto out_free_ca;
  7456. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7457. if (percpu_counter_init(&ca->cpustat[i], 0))
  7458. goto out_free_counters;
  7459. if (cgrp->parent)
  7460. ca->parent = cgroup_ca(cgrp->parent);
  7461. return &ca->css;
  7462. out_free_counters:
  7463. while (--i >= 0)
  7464. percpu_counter_destroy(&ca->cpustat[i]);
  7465. free_percpu(ca->cpuusage);
  7466. out_free_ca:
  7467. kfree(ca);
  7468. out:
  7469. return ERR_PTR(-ENOMEM);
  7470. }
  7471. /* destroy an existing cpu accounting group */
  7472. static void
  7473. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7474. {
  7475. struct cpuacct *ca = cgroup_ca(cgrp);
  7476. int i;
  7477. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7478. percpu_counter_destroy(&ca->cpustat[i]);
  7479. free_percpu(ca->cpuusage);
  7480. kfree(ca);
  7481. }
  7482. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7483. {
  7484. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7485. u64 data;
  7486. #ifndef CONFIG_64BIT
  7487. /*
  7488. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7489. */
  7490. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7491. data = *cpuusage;
  7492. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7493. #else
  7494. data = *cpuusage;
  7495. #endif
  7496. return data;
  7497. }
  7498. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7499. {
  7500. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7501. #ifndef CONFIG_64BIT
  7502. /*
  7503. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7504. */
  7505. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7506. *cpuusage = val;
  7507. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7508. #else
  7509. *cpuusage = val;
  7510. #endif
  7511. }
  7512. /* return total cpu usage (in nanoseconds) of a group */
  7513. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7514. {
  7515. struct cpuacct *ca = cgroup_ca(cgrp);
  7516. u64 totalcpuusage = 0;
  7517. int i;
  7518. for_each_present_cpu(i)
  7519. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7520. return totalcpuusage;
  7521. }
  7522. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7523. u64 reset)
  7524. {
  7525. struct cpuacct *ca = cgroup_ca(cgrp);
  7526. int err = 0;
  7527. int i;
  7528. if (reset) {
  7529. err = -EINVAL;
  7530. goto out;
  7531. }
  7532. for_each_present_cpu(i)
  7533. cpuacct_cpuusage_write(ca, i, 0);
  7534. out:
  7535. return err;
  7536. }
  7537. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7538. struct seq_file *m)
  7539. {
  7540. struct cpuacct *ca = cgroup_ca(cgroup);
  7541. u64 percpu;
  7542. int i;
  7543. for_each_present_cpu(i) {
  7544. percpu = cpuacct_cpuusage_read(ca, i);
  7545. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7546. }
  7547. seq_printf(m, "\n");
  7548. return 0;
  7549. }
  7550. static const char *cpuacct_stat_desc[] = {
  7551. [CPUACCT_STAT_USER] = "user",
  7552. [CPUACCT_STAT_SYSTEM] = "system",
  7553. };
  7554. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7555. struct cgroup_map_cb *cb)
  7556. {
  7557. struct cpuacct *ca = cgroup_ca(cgrp);
  7558. int i;
  7559. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7560. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7561. val = cputime64_to_clock_t(val);
  7562. cb->fill(cb, cpuacct_stat_desc[i], val);
  7563. }
  7564. return 0;
  7565. }
  7566. static struct cftype files[] = {
  7567. {
  7568. .name = "usage",
  7569. .read_u64 = cpuusage_read,
  7570. .write_u64 = cpuusage_write,
  7571. },
  7572. {
  7573. .name = "usage_percpu",
  7574. .read_seq_string = cpuacct_percpu_seq_read,
  7575. },
  7576. {
  7577. .name = "stat",
  7578. .read_map = cpuacct_stats_show,
  7579. },
  7580. };
  7581. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7582. {
  7583. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7584. }
  7585. /*
  7586. * charge this task's execution time to its accounting group.
  7587. *
  7588. * called with rq->lock held.
  7589. */
  7590. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7591. {
  7592. struct cpuacct *ca;
  7593. int cpu;
  7594. if (unlikely(!cpuacct_subsys.active))
  7595. return;
  7596. cpu = task_cpu(tsk);
  7597. rcu_read_lock();
  7598. ca = task_ca(tsk);
  7599. for (; ca; ca = ca->parent) {
  7600. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7601. *cpuusage += cputime;
  7602. }
  7603. rcu_read_unlock();
  7604. }
  7605. /*
  7606. * Charge the system/user time to the task's accounting group.
  7607. */
  7608. static void cpuacct_update_stats(struct task_struct *tsk,
  7609. enum cpuacct_stat_index idx, cputime_t val)
  7610. {
  7611. struct cpuacct *ca;
  7612. if (unlikely(!cpuacct_subsys.active))
  7613. return;
  7614. rcu_read_lock();
  7615. ca = task_ca(tsk);
  7616. do {
  7617. percpu_counter_add(&ca->cpustat[idx], val);
  7618. ca = ca->parent;
  7619. } while (ca);
  7620. rcu_read_unlock();
  7621. }
  7622. struct cgroup_subsys cpuacct_subsys = {
  7623. .name = "cpuacct",
  7624. .create = cpuacct_create,
  7625. .destroy = cpuacct_destroy,
  7626. .populate = cpuacct_populate,
  7627. .subsys_id = cpuacct_subsys_id,
  7628. };
  7629. #endif /* CONFIG_CGROUP_CPUACCT */
  7630. #ifndef CONFIG_SMP
  7631. int rcu_expedited_torture_stats(char *page)
  7632. {
  7633. return 0;
  7634. }
  7635. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  7636. void synchronize_sched_expedited(void)
  7637. {
  7638. }
  7639. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7640. #else /* #ifndef CONFIG_SMP */
  7641. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  7642. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  7643. #define RCU_EXPEDITED_STATE_POST -2
  7644. #define RCU_EXPEDITED_STATE_IDLE -1
  7645. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  7646. int rcu_expedited_torture_stats(char *page)
  7647. {
  7648. int cnt = 0;
  7649. int cpu;
  7650. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  7651. for_each_online_cpu(cpu) {
  7652. cnt += sprintf(&page[cnt], " %d:%d",
  7653. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  7654. }
  7655. cnt += sprintf(&page[cnt], "\n");
  7656. return cnt;
  7657. }
  7658. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  7659. static long synchronize_sched_expedited_count;
  7660. /*
  7661. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7662. * approach to force grace period to end quickly. This consumes
  7663. * significant time on all CPUs, and is thus not recommended for
  7664. * any sort of common-case code.
  7665. *
  7666. * Note that it is illegal to call this function while holding any
  7667. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7668. * observe this restriction will result in deadlock.
  7669. */
  7670. void synchronize_sched_expedited(void)
  7671. {
  7672. int cpu;
  7673. unsigned long flags;
  7674. bool need_full_sync = 0;
  7675. struct rq *rq;
  7676. struct migration_req *req;
  7677. long snap;
  7678. int trycount = 0;
  7679. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7680. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  7681. get_online_cpus();
  7682. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  7683. put_online_cpus();
  7684. if (trycount++ < 10)
  7685. udelay(trycount * num_online_cpus());
  7686. else {
  7687. synchronize_sched();
  7688. return;
  7689. }
  7690. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  7691. smp_mb(); /* ensure test happens before caller kfree */
  7692. return;
  7693. }
  7694. get_online_cpus();
  7695. }
  7696. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  7697. for_each_online_cpu(cpu) {
  7698. rq = cpu_rq(cpu);
  7699. req = &per_cpu(rcu_migration_req, cpu);
  7700. init_completion(&req->done);
  7701. req->task = NULL;
  7702. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  7703. raw_spin_lock_irqsave(&rq->lock, flags);
  7704. list_add(&req->list, &rq->migration_queue);
  7705. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7706. wake_up_process(rq->migration_thread);
  7707. }
  7708. for_each_online_cpu(cpu) {
  7709. rcu_expedited_state = cpu;
  7710. req = &per_cpu(rcu_migration_req, cpu);
  7711. rq = cpu_rq(cpu);
  7712. wait_for_completion(&req->done);
  7713. raw_spin_lock_irqsave(&rq->lock, flags);
  7714. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  7715. need_full_sync = 1;
  7716. req->dest_cpu = RCU_MIGRATION_IDLE;
  7717. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7718. }
  7719. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  7720. synchronize_sched_expedited_count++;
  7721. mutex_unlock(&rcu_sched_expedited_mutex);
  7722. put_online_cpus();
  7723. if (need_full_sync)
  7724. synchronize_sched();
  7725. }
  7726. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7727. #endif /* #else #ifndef CONFIG_SMP */