ht.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440
  1. /*
  2. * HT handling
  3. *
  4. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  5. * Copyright 2002-2005, Instant802 Networks, Inc.
  6. * Copyright 2005-2006, Devicescape Software, Inc.
  7. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  8. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  9. * Copyright 2007-2010, Intel Corporation
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License version 2 as
  13. * published by the Free Software Foundation.
  14. */
  15. #include <linux/ieee80211.h>
  16. #include <linux/export.h>
  17. #include <net/mac80211.h>
  18. #include "ieee80211_i.h"
  19. #include "rate.h"
  20. static void __check_htcap_disable(struct ieee80211_sub_if_data *sdata,
  21. struct ieee80211_sta_ht_cap *ht_cap,
  22. u16 flag)
  23. {
  24. __le16 le_flag = cpu_to_le16(flag);
  25. if (sdata->u.mgd.ht_capa_mask.cap_info & le_flag) {
  26. if (!(sdata->u.mgd.ht_capa.cap_info & le_flag))
  27. ht_cap->cap &= ~flag;
  28. }
  29. }
  30. void ieee80211_apply_htcap_overrides(struct ieee80211_sub_if_data *sdata,
  31. struct ieee80211_sta_ht_cap *ht_cap)
  32. {
  33. u8 *scaps = (u8 *)(&sdata->u.mgd.ht_capa.mcs.rx_mask);
  34. u8 *smask = (u8 *)(&sdata->u.mgd.ht_capa_mask.mcs.rx_mask);
  35. int i;
  36. if (!ht_cap->ht_supported)
  37. return;
  38. if (sdata->vif.type != NL80211_IFTYPE_STATION) {
  39. /* AP interfaces call this code when adding new stations,
  40. * so just silently ignore non station interfaces.
  41. */
  42. return;
  43. }
  44. /* NOTE: If you add more over-rides here, update register_hw
  45. * ht_capa_mod_msk logic in main.c as well.
  46. * And, if this method can ever change ht_cap.ht_supported, fix
  47. * the check in ieee80211_add_ht_ie.
  48. */
  49. /* check for HT over-rides, MCS rates first. */
  50. for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) {
  51. u8 m = smask[i];
  52. ht_cap->mcs.rx_mask[i] &= ~m; /* turn off all masked bits */
  53. /* Add back rates that are supported */
  54. ht_cap->mcs.rx_mask[i] |= (m & scaps[i]);
  55. }
  56. /* Force removal of HT-40 capabilities? */
  57. __check_htcap_disable(sdata, ht_cap, IEEE80211_HT_CAP_SUP_WIDTH_20_40);
  58. __check_htcap_disable(sdata, ht_cap, IEEE80211_HT_CAP_SGI_40);
  59. /* Allow user to disable SGI-20 (SGI-40 is handled above) */
  60. __check_htcap_disable(sdata, ht_cap, IEEE80211_HT_CAP_SGI_20);
  61. /* Allow user to disable the max-AMSDU bit. */
  62. __check_htcap_disable(sdata, ht_cap, IEEE80211_HT_CAP_MAX_AMSDU);
  63. /* Allow user to decrease AMPDU factor */
  64. if (sdata->u.mgd.ht_capa_mask.ampdu_params_info &
  65. IEEE80211_HT_AMPDU_PARM_FACTOR) {
  66. u8 n = sdata->u.mgd.ht_capa.ampdu_params_info
  67. & IEEE80211_HT_AMPDU_PARM_FACTOR;
  68. if (n < ht_cap->ampdu_factor)
  69. ht_cap->ampdu_factor = n;
  70. }
  71. /* Allow the user to increase AMPDU density. */
  72. if (sdata->u.mgd.ht_capa_mask.ampdu_params_info &
  73. IEEE80211_HT_AMPDU_PARM_DENSITY) {
  74. u8 n = (sdata->u.mgd.ht_capa.ampdu_params_info &
  75. IEEE80211_HT_AMPDU_PARM_DENSITY)
  76. >> IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT;
  77. if (n > ht_cap->ampdu_density)
  78. ht_cap->ampdu_density = n;
  79. }
  80. }
  81. bool ieee80211_ht_cap_ie_to_sta_ht_cap(struct ieee80211_sub_if_data *sdata,
  82. struct ieee80211_supported_band *sband,
  83. const struct ieee80211_ht_cap *ht_cap_ie,
  84. struct sta_info *sta)
  85. {
  86. struct ieee80211_sta_ht_cap ht_cap;
  87. u8 ampdu_info, tx_mcs_set_cap;
  88. int i, max_tx_streams;
  89. bool changed;
  90. enum ieee80211_sta_rx_bandwidth bw;
  91. memset(&ht_cap, 0, sizeof(ht_cap));
  92. if (!ht_cap_ie || !sband->ht_cap.ht_supported)
  93. goto apply;
  94. ht_cap.ht_supported = true;
  95. /*
  96. * The bits listed in this expression should be
  97. * the same for the peer and us, if the station
  98. * advertises more then we can't use those thus
  99. * we mask them out.
  100. */
  101. ht_cap.cap = le16_to_cpu(ht_cap_ie->cap_info) &
  102. (sband->ht_cap.cap |
  103. ~(IEEE80211_HT_CAP_LDPC_CODING |
  104. IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  105. IEEE80211_HT_CAP_GRN_FLD |
  106. IEEE80211_HT_CAP_SGI_20 |
  107. IEEE80211_HT_CAP_SGI_40 |
  108. IEEE80211_HT_CAP_DSSSCCK40));
  109. /*
  110. * The STBC bits are asymmetric -- if we don't have
  111. * TX then mask out the peer's RX and vice versa.
  112. */
  113. if (!(sband->ht_cap.cap & IEEE80211_HT_CAP_TX_STBC))
  114. ht_cap.cap &= ~IEEE80211_HT_CAP_RX_STBC;
  115. if (!(sband->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC))
  116. ht_cap.cap &= ~IEEE80211_HT_CAP_TX_STBC;
  117. ampdu_info = ht_cap_ie->ampdu_params_info;
  118. ht_cap.ampdu_factor =
  119. ampdu_info & IEEE80211_HT_AMPDU_PARM_FACTOR;
  120. ht_cap.ampdu_density =
  121. (ampdu_info & IEEE80211_HT_AMPDU_PARM_DENSITY) >> 2;
  122. /* own MCS TX capabilities */
  123. tx_mcs_set_cap = sband->ht_cap.mcs.tx_params;
  124. /* Copy peer MCS TX capabilities, the driver might need them. */
  125. ht_cap.mcs.tx_params = ht_cap_ie->mcs.tx_params;
  126. /* can we TX with MCS rates? */
  127. if (!(tx_mcs_set_cap & IEEE80211_HT_MCS_TX_DEFINED))
  128. goto apply;
  129. /* Counting from 0, therefore +1 */
  130. if (tx_mcs_set_cap & IEEE80211_HT_MCS_TX_RX_DIFF)
  131. max_tx_streams =
  132. ((tx_mcs_set_cap & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
  133. >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
  134. else
  135. max_tx_streams = IEEE80211_HT_MCS_TX_MAX_STREAMS;
  136. /*
  137. * 802.11n-2009 20.3.5 / 20.6 says:
  138. * - indices 0 to 7 and 32 are single spatial stream
  139. * - 8 to 31 are multiple spatial streams using equal modulation
  140. * [8..15 for two streams, 16..23 for three and 24..31 for four]
  141. * - remainder are multiple spatial streams using unequal modulation
  142. */
  143. for (i = 0; i < max_tx_streams; i++)
  144. ht_cap.mcs.rx_mask[i] =
  145. sband->ht_cap.mcs.rx_mask[i] & ht_cap_ie->mcs.rx_mask[i];
  146. if (tx_mcs_set_cap & IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION)
  147. for (i = IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE;
  148. i < IEEE80211_HT_MCS_MASK_LEN; i++)
  149. ht_cap.mcs.rx_mask[i] =
  150. sband->ht_cap.mcs.rx_mask[i] &
  151. ht_cap_ie->mcs.rx_mask[i];
  152. /* handle MCS rate 32 too */
  153. if (sband->ht_cap.mcs.rx_mask[32/8] & ht_cap_ie->mcs.rx_mask[32/8] & 1)
  154. ht_cap.mcs.rx_mask[32/8] |= 1;
  155. apply:
  156. /*
  157. * If user has specified capability over-rides, take care
  158. * of that here.
  159. */
  160. ieee80211_apply_htcap_overrides(sdata, &ht_cap);
  161. changed = memcmp(&sta->sta.ht_cap, &ht_cap, sizeof(ht_cap));
  162. memcpy(&sta->sta.ht_cap, &ht_cap, sizeof(ht_cap));
  163. switch (sdata->vif.bss_conf.chandef.width) {
  164. default:
  165. WARN_ON_ONCE(1);
  166. /* fall through */
  167. case NL80211_CHAN_WIDTH_20_NOHT:
  168. case NL80211_CHAN_WIDTH_20:
  169. bw = IEEE80211_STA_RX_BW_20;
  170. break;
  171. case NL80211_CHAN_WIDTH_40:
  172. case NL80211_CHAN_WIDTH_80:
  173. case NL80211_CHAN_WIDTH_80P80:
  174. case NL80211_CHAN_WIDTH_160:
  175. bw = ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ?
  176. IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20;
  177. break;
  178. }
  179. if (bw != sta->sta.bandwidth)
  180. changed = true;
  181. sta->sta.bandwidth = bw;
  182. sta->cur_max_bandwidth =
  183. ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ?
  184. IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20;
  185. return changed;
  186. }
  187. void ieee80211_sta_tear_down_BA_sessions(struct sta_info *sta,
  188. enum ieee80211_agg_stop_reason reason)
  189. {
  190. int i;
  191. cancel_work_sync(&sta->ampdu_mlme.work);
  192. for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
  193. __ieee80211_stop_tx_ba_session(sta, i, reason);
  194. __ieee80211_stop_rx_ba_session(sta, i, WLAN_BACK_RECIPIENT,
  195. WLAN_REASON_QSTA_LEAVE_QBSS,
  196. reason != AGG_STOP_DESTROY_STA &&
  197. reason != AGG_STOP_PEER_REQUEST);
  198. }
  199. }
  200. void ieee80211_ba_session_work(struct work_struct *work)
  201. {
  202. struct sta_info *sta =
  203. container_of(work, struct sta_info, ampdu_mlme.work);
  204. struct tid_ampdu_tx *tid_tx;
  205. int tid;
  206. /*
  207. * When this flag is set, new sessions should be
  208. * blocked, and existing sessions will be torn
  209. * down by the code that set the flag, so this
  210. * need not run.
  211. */
  212. if (test_sta_flag(sta, WLAN_STA_BLOCK_BA))
  213. return;
  214. mutex_lock(&sta->ampdu_mlme.mtx);
  215. for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
  216. if (test_and_clear_bit(tid, sta->ampdu_mlme.tid_rx_timer_expired))
  217. ___ieee80211_stop_rx_ba_session(
  218. sta, tid, WLAN_BACK_RECIPIENT,
  219. WLAN_REASON_QSTA_TIMEOUT, true);
  220. if (test_and_clear_bit(tid,
  221. sta->ampdu_mlme.tid_rx_stop_requested))
  222. ___ieee80211_stop_rx_ba_session(
  223. sta, tid, WLAN_BACK_RECIPIENT,
  224. WLAN_REASON_UNSPECIFIED, true);
  225. tid_tx = sta->ampdu_mlme.tid_start_tx[tid];
  226. if (tid_tx) {
  227. /*
  228. * Assign it over to the normal tid_tx array
  229. * where it "goes live".
  230. */
  231. spin_lock_bh(&sta->lock);
  232. sta->ampdu_mlme.tid_start_tx[tid] = NULL;
  233. /* could there be a race? */
  234. if (sta->ampdu_mlme.tid_tx[tid])
  235. kfree(tid_tx);
  236. else
  237. ieee80211_assign_tid_tx(sta, tid, tid_tx);
  238. spin_unlock_bh(&sta->lock);
  239. ieee80211_tx_ba_session_handle_start(sta, tid);
  240. continue;
  241. }
  242. tid_tx = rcu_dereference_protected_tid_tx(sta, tid);
  243. if (tid_tx && test_and_clear_bit(HT_AGG_STATE_WANT_STOP,
  244. &tid_tx->state))
  245. ___ieee80211_stop_tx_ba_session(sta, tid,
  246. AGG_STOP_LOCAL_REQUEST);
  247. }
  248. mutex_unlock(&sta->ampdu_mlme.mtx);
  249. }
  250. void ieee80211_send_delba(struct ieee80211_sub_if_data *sdata,
  251. const u8 *da, u16 tid,
  252. u16 initiator, u16 reason_code)
  253. {
  254. struct ieee80211_local *local = sdata->local;
  255. struct sk_buff *skb;
  256. struct ieee80211_mgmt *mgmt;
  257. u16 params;
  258. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom);
  259. if (!skb)
  260. return;
  261. skb_reserve(skb, local->hw.extra_tx_headroom);
  262. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  263. memset(mgmt, 0, 24);
  264. memcpy(mgmt->da, da, ETH_ALEN);
  265. memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
  266. if (sdata->vif.type == NL80211_IFTYPE_AP ||
  267. sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
  268. sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
  269. memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
  270. else if (sdata->vif.type == NL80211_IFTYPE_STATION)
  271. memcpy(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN);
  272. else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
  273. memcpy(mgmt->bssid, sdata->u.ibss.bssid, ETH_ALEN);
  274. mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
  275. IEEE80211_STYPE_ACTION);
  276. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  277. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  278. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  279. params = (u16)(initiator << 11); /* bit 11 initiator */
  280. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  281. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  282. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  283. ieee80211_tx_skb_tid(sdata, skb, tid);
  284. }
  285. void ieee80211_process_delba(struct ieee80211_sub_if_data *sdata,
  286. struct sta_info *sta,
  287. struct ieee80211_mgmt *mgmt, size_t len)
  288. {
  289. u16 tid, params;
  290. u16 initiator;
  291. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  292. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  293. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  294. ht_dbg_ratelimited(sdata, "delba from %pM (%s) tid %d reason code %d\n",
  295. mgmt->sa, initiator ? "initiator" : "recipient",
  296. tid,
  297. le16_to_cpu(mgmt->u.action.u.delba.reason_code));
  298. if (initiator == WLAN_BACK_INITIATOR)
  299. __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_INITIATOR, 0,
  300. true);
  301. else
  302. __ieee80211_stop_tx_ba_session(sta, tid, AGG_STOP_PEER_REQUEST);
  303. }
  304. int ieee80211_send_smps_action(struct ieee80211_sub_if_data *sdata,
  305. enum ieee80211_smps_mode smps, const u8 *da,
  306. const u8 *bssid)
  307. {
  308. struct ieee80211_local *local = sdata->local;
  309. struct sk_buff *skb;
  310. struct ieee80211_mgmt *action_frame;
  311. /* 27 = header + category + action + smps mode */
  312. skb = dev_alloc_skb(27 + local->hw.extra_tx_headroom);
  313. if (!skb)
  314. return -ENOMEM;
  315. skb_reserve(skb, local->hw.extra_tx_headroom);
  316. action_frame = (void *)skb_put(skb, 27);
  317. memcpy(action_frame->da, da, ETH_ALEN);
  318. memcpy(action_frame->sa, sdata->dev->dev_addr, ETH_ALEN);
  319. memcpy(action_frame->bssid, bssid, ETH_ALEN);
  320. action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
  321. IEEE80211_STYPE_ACTION);
  322. action_frame->u.action.category = WLAN_CATEGORY_HT;
  323. action_frame->u.action.u.ht_smps.action = WLAN_HT_ACTION_SMPS;
  324. switch (smps) {
  325. case IEEE80211_SMPS_AUTOMATIC:
  326. case IEEE80211_SMPS_NUM_MODES:
  327. WARN_ON(1);
  328. case IEEE80211_SMPS_OFF:
  329. action_frame->u.action.u.ht_smps.smps_control =
  330. WLAN_HT_SMPS_CONTROL_DISABLED;
  331. break;
  332. case IEEE80211_SMPS_STATIC:
  333. action_frame->u.action.u.ht_smps.smps_control =
  334. WLAN_HT_SMPS_CONTROL_STATIC;
  335. break;
  336. case IEEE80211_SMPS_DYNAMIC:
  337. action_frame->u.action.u.ht_smps.smps_control =
  338. WLAN_HT_SMPS_CONTROL_DYNAMIC;
  339. break;
  340. }
  341. /* we'll do more on status of this frame */
  342. IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
  343. ieee80211_tx_skb(sdata, skb);
  344. return 0;
  345. }
  346. void ieee80211_request_smps_work(struct work_struct *work)
  347. {
  348. struct ieee80211_sub_if_data *sdata =
  349. container_of(work, struct ieee80211_sub_if_data,
  350. u.mgd.request_smps_work);
  351. mutex_lock(&sdata->u.mgd.mtx);
  352. __ieee80211_request_smps(sdata, sdata->u.mgd.driver_smps_mode);
  353. mutex_unlock(&sdata->u.mgd.mtx);
  354. }
  355. void ieee80211_request_smps(struct ieee80211_vif *vif,
  356. enum ieee80211_smps_mode smps_mode)
  357. {
  358. struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
  359. if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
  360. return;
  361. if (WARN_ON(smps_mode == IEEE80211_SMPS_OFF))
  362. smps_mode = IEEE80211_SMPS_AUTOMATIC;
  363. if (sdata->u.mgd.driver_smps_mode == smps_mode)
  364. return;
  365. sdata->u.mgd.driver_smps_mode = smps_mode;
  366. ieee80211_queue_work(&sdata->local->hw,
  367. &sdata->u.mgd.request_smps_work);
  368. }
  369. /* this might change ... don't want non-open drivers using it */
  370. EXPORT_SYMBOL_GPL(ieee80211_request_smps);