xmit.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb);
  64. enum {
  65. MCS_HT20,
  66. MCS_HT20_SGI,
  67. MCS_HT40,
  68. MCS_HT40_SGI,
  69. };
  70. /*********************/
  71. /* Aggregation logic */
  72. /*********************/
  73. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  74. __acquires(&txq->axq_lock)
  75. {
  76. spin_lock_bh(&txq->axq_lock);
  77. }
  78. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  79. __releases(&txq->axq_lock)
  80. {
  81. spin_unlock_bh(&txq->axq_lock);
  82. }
  83. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  84. __releases(&txq->axq_lock)
  85. {
  86. struct sk_buff_head q;
  87. struct sk_buff *skb;
  88. __skb_queue_head_init(&q);
  89. skb_queue_splice_init(&txq->complete_q, &q);
  90. spin_unlock_bh(&txq->axq_lock);
  91. while ((skb = __skb_dequeue(&q)))
  92. ieee80211_tx_status(sc->hw, skb);
  93. }
  94. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. if (tid->paused)
  98. return;
  99. if (tid->sched)
  100. return;
  101. tid->sched = true;
  102. list_add_tail(&tid->list, &ac->tid_q);
  103. if (ac->sched)
  104. return;
  105. ac->sched = true;
  106. list_add_tail(&ac->list, &txq->axq_acq);
  107. }
  108. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  109. {
  110. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  111. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  112. sizeof(tx_info->rate_driver_data));
  113. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  114. }
  115. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  116. {
  117. if (!tid->an->sta)
  118. return;
  119. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  120. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  121. }
  122. static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
  123. struct ath_buf *bf)
  124. {
  125. ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
  126. ARRAY_SIZE(bf->rates));
  127. }
  128. static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
  129. struct sk_buff *skb)
  130. {
  131. int q;
  132. q = skb_get_queue_mapping(skb);
  133. if (txq == sc->tx.uapsdq)
  134. txq = sc->tx.txq_map[q];
  135. if (txq != sc->tx.txq_map[q])
  136. return;
  137. if (WARN_ON(--txq->pending_frames < 0))
  138. txq->pending_frames = 0;
  139. if (txq->stopped &&
  140. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  141. ieee80211_wake_queue(sc->hw, q);
  142. txq->stopped = false;
  143. }
  144. }
  145. static struct ath_atx_tid *
  146. ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
  147. {
  148. struct ieee80211_hdr *hdr;
  149. u8 tidno = 0;
  150. hdr = (struct ieee80211_hdr *) skb->data;
  151. if (ieee80211_is_data_qos(hdr->frame_control))
  152. tidno = ieee80211_get_qos_ctl(hdr)[0];
  153. tidno &= IEEE80211_QOS_CTL_TID_MASK;
  154. return ATH_AN_2_TID(an, tidno);
  155. }
  156. static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
  157. {
  158. return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
  159. }
  160. static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
  161. {
  162. struct sk_buff *skb;
  163. skb = __skb_dequeue(&tid->retry_q);
  164. if (!skb)
  165. skb = __skb_dequeue(&tid->buf_q);
  166. return skb;
  167. }
  168. /*
  169. * ath_tx_tid_change_state:
  170. * - clears a-mpdu flag of previous session
  171. * - force sequence number allocation to fix next BlockAck Window
  172. */
  173. static void
  174. ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
  175. {
  176. struct ath_txq *txq = tid->ac->txq;
  177. struct ieee80211_tx_info *tx_info;
  178. struct sk_buff *skb, *tskb;
  179. struct ath_buf *bf;
  180. struct ath_frame_info *fi;
  181. skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
  182. fi = get_frame_info(skb);
  183. bf = fi->bf;
  184. tx_info = IEEE80211_SKB_CB(skb);
  185. tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
  186. if (bf)
  187. continue;
  188. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  189. if (!bf) {
  190. __skb_unlink(skb, &tid->buf_q);
  191. ath_txq_skb_done(sc, txq, skb);
  192. ieee80211_free_txskb(sc->hw, skb);
  193. continue;
  194. }
  195. }
  196. }
  197. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  198. {
  199. struct ath_txq *txq = tid->ac->txq;
  200. struct sk_buff *skb;
  201. struct ath_buf *bf;
  202. struct list_head bf_head;
  203. struct ath_tx_status ts;
  204. struct ath_frame_info *fi;
  205. bool sendbar = false;
  206. INIT_LIST_HEAD(&bf_head);
  207. memset(&ts, 0, sizeof(ts));
  208. while ((skb = __skb_dequeue(&tid->retry_q))) {
  209. fi = get_frame_info(skb);
  210. bf = fi->bf;
  211. if (!bf) {
  212. ath_txq_skb_done(sc, txq, skb);
  213. ieee80211_free_txskb(sc->hw, skb);
  214. continue;
  215. }
  216. if (fi->baw_tracked) {
  217. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  218. sendbar = true;
  219. }
  220. list_add_tail(&bf->list, &bf_head);
  221. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  222. }
  223. if (sendbar) {
  224. ath_txq_unlock(sc, txq);
  225. ath_send_bar(tid, tid->seq_start);
  226. ath_txq_lock(sc, txq);
  227. }
  228. }
  229. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  230. int seqno)
  231. {
  232. int index, cindex;
  233. index = ATH_BA_INDEX(tid->seq_start, seqno);
  234. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  235. __clear_bit(cindex, tid->tx_buf);
  236. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  237. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  238. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  239. if (tid->bar_index >= 0)
  240. tid->bar_index--;
  241. }
  242. }
  243. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  244. struct ath_buf *bf)
  245. {
  246. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  247. u16 seqno = bf->bf_state.seqno;
  248. int index, cindex;
  249. index = ATH_BA_INDEX(tid->seq_start, seqno);
  250. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  251. __set_bit(cindex, tid->tx_buf);
  252. fi->baw_tracked = 1;
  253. if (index >= ((tid->baw_tail - tid->baw_head) &
  254. (ATH_TID_MAX_BUFS - 1))) {
  255. tid->baw_tail = cindex;
  256. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  257. }
  258. }
  259. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  260. struct ath_atx_tid *tid)
  261. {
  262. struct sk_buff *skb;
  263. struct ath_buf *bf;
  264. struct list_head bf_head;
  265. struct ath_tx_status ts;
  266. struct ath_frame_info *fi;
  267. memset(&ts, 0, sizeof(ts));
  268. INIT_LIST_HEAD(&bf_head);
  269. while ((skb = ath_tid_dequeue(tid))) {
  270. fi = get_frame_info(skb);
  271. bf = fi->bf;
  272. if (!bf) {
  273. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  274. continue;
  275. }
  276. list_add_tail(&bf->list, &bf_head);
  277. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  278. }
  279. }
  280. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  281. struct sk_buff *skb, int count)
  282. {
  283. struct ath_frame_info *fi = get_frame_info(skb);
  284. struct ath_buf *bf = fi->bf;
  285. struct ieee80211_hdr *hdr;
  286. int prev = fi->retries;
  287. TX_STAT_INC(txq->axq_qnum, a_retries);
  288. fi->retries += count;
  289. if (prev > 0)
  290. return;
  291. hdr = (struct ieee80211_hdr *)skb->data;
  292. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  293. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  294. sizeof(*hdr), DMA_TO_DEVICE);
  295. }
  296. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  297. {
  298. struct ath_buf *bf = NULL;
  299. spin_lock_bh(&sc->tx.txbuflock);
  300. if (unlikely(list_empty(&sc->tx.txbuf))) {
  301. spin_unlock_bh(&sc->tx.txbuflock);
  302. return NULL;
  303. }
  304. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  305. list_del(&bf->list);
  306. spin_unlock_bh(&sc->tx.txbuflock);
  307. return bf;
  308. }
  309. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  310. {
  311. spin_lock_bh(&sc->tx.txbuflock);
  312. list_add_tail(&bf->list, &sc->tx.txbuf);
  313. spin_unlock_bh(&sc->tx.txbuflock);
  314. }
  315. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  316. {
  317. struct ath_buf *tbf;
  318. tbf = ath_tx_get_buffer(sc);
  319. if (WARN_ON(!tbf))
  320. return NULL;
  321. ATH_TXBUF_RESET(tbf);
  322. tbf->bf_mpdu = bf->bf_mpdu;
  323. tbf->bf_buf_addr = bf->bf_buf_addr;
  324. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  325. tbf->bf_state = bf->bf_state;
  326. tbf->bf_state.stale = false;
  327. return tbf;
  328. }
  329. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  330. struct ath_tx_status *ts, int txok,
  331. int *nframes, int *nbad)
  332. {
  333. struct ath_frame_info *fi;
  334. u16 seq_st = 0;
  335. u32 ba[WME_BA_BMP_SIZE >> 5];
  336. int ba_index;
  337. int isaggr = 0;
  338. *nbad = 0;
  339. *nframes = 0;
  340. isaggr = bf_isaggr(bf);
  341. if (isaggr) {
  342. seq_st = ts->ts_seqnum;
  343. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  344. }
  345. while (bf) {
  346. fi = get_frame_info(bf->bf_mpdu);
  347. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  348. (*nframes)++;
  349. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  350. (*nbad)++;
  351. bf = bf->bf_next;
  352. }
  353. }
  354. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  355. struct ath_buf *bf, struct list_head *bf_q,
  356. struct ath_tx_status *ts, int txok)
  357. {
  358. struct ath_node *an = NULL;
  359. struct sk_buff *skb;
  360. struct ieee80211_sta *sta;
  361. struct ieee80211_hw *hw = sc->hw;
  362. struct ieee80211_hdr *hdr;
  363. struct ieee80211_tx_info *tx_info;
  364. struct ath_atx_tid *tid = NULL;
  365. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  366. struct list_head bf_head;
  367. struct sk_buff_head bf_pending;
  368. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  369. u32 ba[WME_BA_BMP_SIZE >> 5];
  370. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  371. bool rc_update = true, isba;
  372. struct ieee80211_tx_rate rates[4];
  373. struct ath_frame_info *fi;
  374. int nframes;
  375. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  376. int i, retries;
  377. int bar_index = -1;
  378. skb = bf->bf_mpdu;
  379. hdr = (struct ieee80211_hdr *)skb->data;
  380. tx_info = IEEE80211_SKB_CB(skb);
  381. memcpy(rates, bf->rates, sizeof(rates));
  382. retries = ts->ts_longretry + 1;
  383. for (i = 0; i < ts->ts_rateindex; i++)
  384. retries += rates[i].count;
  385. rcu_read_lock();
  386. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  387. if (!sta) {
  388. rcu_read_unlock();
  389. INIT_LIST_HEAD(&bf_head);
  390. while (bf) {
  391. bf_next = bf->bf_next;
  392. if (!bf->bf_state.stale || bf_next != NULL)
  393. list_move_tail(&bf->list, &bf_head);
  394. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  395. bf = bf_next;
  396. }
  397. return;
  398. }
  399. an = (struct ath_node *)sta->drv_priv;
  400. tid = ath_get_skb_tid(sc, an, skb);
  401. seq_first = tid->seq_start;
  402. isba = ts->ts_flags & ATH9K_TX_BA;
  403. /*
  404. * The hardware occasionally sends a tx status for the wrong TID.
  405. * In this case, the BA status cannot be considered valid and all
  406. * subframes need to be retransmitted
  407. *
  408. * Only BlockAcks have a TID and therefore normal Acks cannot be
  409. * checked
  410. */
  411. if (isba && tid->tidno != ts->tid)
  412. txok = false;
  413. isaggr = bf_isaggr(bf);
  414. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  415. if (isaggr && txok) {
  416. if (ts->ts_flags & ATH9K_TX_BA) {
  417. seq_st = ts->ts_seqnum;
  418. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  419. } else {
  420. /*
  421. * AR5416 can become deaf/mute when BA
  422. * issue happens. Chip needs to be reset.
  423. * But AP code may have sychronization issues
  424. * when perform internal reset in this routine.
  425. * Only enable reset in STA mode for now.
  426. */
  427. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  428. needreset = 1;
  429. }
  430. }
  431. __skb_queue_head_init(&bf_pending);
  432. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  433. while (bf) {
  434. u16 seqno = bf->bf_state.seqno;
  435. txfail = txpending = sendbar = 0;
  436. bf_next = bf->bf_next;
  437. skb = bf->bf_mpdu;
  438. tx_info = IEEE80211_SKB_CB(skb);
  439. fi = get_frame_info(skb);
  440. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
  441. !tid->active) {
  442. /*
  443. * Outside of the current BlockAck window,
  444. * maybe part of a previous session
  445. */
  446. txfail = 1;
  447. } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  448. /* transmit completion, subframe is
  449. * acked by block ack */
  450. acked_cnt++;
  451. } else if (!isaggr && txok) {
  452. /* transmit completion */
  453. acked_cnt++;
  454. } else if (flush) {
  455. txpending = 1;
  456. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  457. if (txok || !an->sleeping)
  458. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  459. retries);
  460. txpending = 1;
  461. } else {
  462. txfail = 1;
  463. txfail_cnt++;
  464. bar_index = max_t(int, bar_index,
  465. ATH_BA_INDEX(seq_first, seqno));
  466. }
  467. /*
  468. * Make sure the last desc is reclaimed if it
  469. * not a holding desc.
  470. */
  471. INIT_LIST_HEAD(&bf_head);
  472. if (bf_next != NULL || !bf_last->bf_state.stale)
  473. list_move_tail(&bf->list, &bf_head);
  474. if (!txpending) {
  475. /*
  476. * complete the acked-ones/xretried ones; update
  477. * block-ack window
  478. */
  479. ath_tx_update_baw(sc, tid, seqno);
  480. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  481. memcpy(tx_info->control.rates, rates, sizeof(rates));
  482. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  483. rc_update = false;
  484. }
  485. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  486. !txfail);
  487. } else {
  488. if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
  489. tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
  490. ieee80211_sta_eosp(sta);
  491. }
  492. /* retry the un-acked ones */
  493. if (bf->bf_next == NULL && bf_last->bf_state.stale) {
  494. struct ath_buf *tbf;
  495. tbf = ath_clone_txbuf(sc, bf_last);
  496. /*
  497. * Update tx baw and complete the
  498. * frame with failed status if we
  499. * run out of tx buf.
  500. */
  501. if (!tbf) {
  502. ath_tx_update_baw(sc, tid, seqno);
  503. ath_tx_complete_buf(sc, bf, txq,
  504. &bf_head, ts, 0);
  505. bar_index = max_t(int, bar_index,
  506. ATH_BA_INDEX(seq_first, seqno));
  507. break;
  508. }
  509. fi->bf = tbf;
  510. }
  511. /*
  512. * Put this buffer to the temporary pending
  513. * queue to retain ordering
  514. */
  515. __skb_queue_tail(&bf_pending, skb);
  516. }
  517. bf = bf_next;
  518. }
  519. /* prepend un-acked frames to the beginning of the pending frame queue */
  520. if (!skb_queue_empty(&bf_pending)) {
  521. if (an->sleeping)
  522. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  523. skb_queue_splice_tail(&bf_pending, &tid->retry_q);
  524. if (!an->sleeping) {
  525. ath_tx_queue_tid(txq, tid);
  526. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  527. tid->ac->clear_ps_filter = true;
  528. }
  529. }
  530. if (bar_index >= 0) {
  531. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  532. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  533. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  534. ath_txq_unlock(sc, txq);
  535. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  536. ath_txq_lock(sc, txq);
  537. }
  538. rcu_read_unlock();
  539. if (needreset)
  540. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  541. }
  542. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  543. {
  544. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  545. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  546. }
  547. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  548. struct ath_tx_status *ts, struct ath_buf *bf,
  549. struct list_head *bf_head)
  550. {
  551. struct ieee80211_tx_info *info;
  552. bool txok, flush;
  553. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  554. flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  555. txq->axq_tx_inprogress = false;
  556. txq->axq_depth--;
  557. if (bf_is_ampdu_not_probing(bf))
  558. txq->axq_ampdu_depth--;
  559. if (!bf_isampdu(bf)) {
  560. if (!flush) {
  561. info = IEEE80211_SKB_CB(bf->bf_mpdu);
  562. memcpy(info->control.rates, bf->rates,
  563. sizeof(info->control.rates));
  564. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  565. }
  566. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  567. } else
  568. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
  569. if (!flush)
  570. ath_txq_schedule(sc, txq);
  571. }
  572. static bool ath_lookup_legacy(struct ath_buf *bf)
  573. {
  574. struct sk_buff *skb;
  575. struct ieee80211_tx_info *tx_info;
  576. struct ieee80211_tx_rate *rates;
  577. int i;
  578. skb = bf->bf_mpdu;
  579. tx_info = IEEE80211_SKB_CB(skb);
  580. rates = tx_info->control.rates;
  581. for (i = 0; i < 4; i++) {
  582. if (!rates[i].count || rates[i].idx < 0)
  583. break;
  584. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  585. return true;
  586. }
  587. return false;
  588. }
  589. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  590. struct ath_atx_tid *tid)
  591. {
  592. struct sk_buff *skb;
  593. struct ieee80211_tx_info *tx_info;
  594. struct ieee80211_tx_rate *rates;
  595. u32 max_4ms_framelen, frmlen;
  596. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  597. int q = tid->ac->txq->mac80211_qnum;
  598. int i;
  599. skb = bf->bf_mpdu;
  600. tx_info = IEEE80211_SKB_CB(skb);
  601. rates = bf->rates;
  602. /*
  603. * Find the lowest frame length among the rate series that will have a
  604. * 4ms (or TXOP limited) transmit duration.
  605. */
  606. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  607. for (i = 0; i < 4; i++) {
  608. int modeidx;
  609. if (!rates[i].count)
  610. continue;
  611. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  612. legacy = 1;
  613. break;
  614. }
  615. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  616. modeidx = MCS_HT40;
  617. else
  618. modeidx = MCS_HT20;
  619. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  620. modeidx++;
  621. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  622. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  623. }
  624. /*
  625. * limit aggregate size by the minimum rate if rate selected is
  626. * not a probe rate, if rate selected is a probe rate then
  627. * avoid aggregation of this packet.
  628. */
  629. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  630. return 0;
  631. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  632. /*
  633. * Override the default aggregation limit for BTCOEX.
  634. */
  635. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  636. if (bt_aggr_limit)
  637. aggr_limit = bt_aggr_limit;
  638. /*
  639. * h/w can accept aggregates up to 16 bit lengths (65535).
  640. * The IE, however can hold up to 65536, which shows up here
  641. * as zero. Ignore 65536 since we are constrained by hw.
  642. */
  643. if (tid->an->maxampdu)
  644. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  645. return aggr_limit;
  646. }
  647. /*
  648. * Returns the number of delimiters to be added to
  649. * meet the minimum required mpdudensity.
  650. */
  651. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  652. struct ath_buf *bf, u16 frmlen,
  653. bool first_subfrm)
  654. {
  655. #define FIRST_DESC_NDELIMS 60
  656. u32 nsymbits, nsymbols;
  657. u16 minlen;
  658. u8 flags, rix;
  659. int width, streams, half_gi, ndelim, mindelim;
  660. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  661. /* Select standard number of delimiters based on frame length alone */
  662. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  663. /*
  664. * If encryption enabled, hardware requires some more padding between
  665. * subframes.
  666. * TODO - this could be improved to be dependent on the rate.
  667. * The hardware can keep up at lower rates, but not higher rates
  668. */
  669. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  670. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  671. ndelim += ATH_AGGR_ENCRYPTDELIM;
  672. /*
  673. * Add delimiter when using RTS/CTS with aggregation
  674. * and non enterprise AR9003 card
  675. */
  676. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  677. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  678. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  679. /*
  680. * Convert desired mpdu density from microeconds to bytes based
  681. * on highest rate in rate series (i.e. first rate) to determine
  682. * required minimum length for subframe. Take into account
  683. * whether high rate is 20 or 40Mhz and half or full GI.
  684. *
  685. * If there is no mpdu density restriction, no further calculation
  686. * is needed.
  687. */
  688. if (tid->an->mpdudensity == 0)
  689. return ndelim;
  690. rix = bf->rates[0].idx;
  691. flags = bf->rates[0].flags;
  692. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  693. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  694. if (half_gi)
  695. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  696. else
  697. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  698. if (nsymbols == 0)
  699. nsymbols = 1;
  700. streams = HT_RC_2_STREAMS(rix);
  701. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  702. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  703. if (frmlen < minlen) {
  704. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  705. ndelim = max(mindelim, ndelim);
  706. }
  707. return ndelim;
  708. }
  709. static struct ath_buf *
  710. ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
  711. struct ath_atx_tid *tid, struct sk_buff_head **q)
  712. {
  713. struct ieee80211_tx_info *tx_info;
  714. struct ath_frame_info *fi;
  715. struct sk_buff *skb;
  716. struct ath_buf *bf;
  717. u16 seqno;
  718. while (1) {
  719. *q = &tid->retry_q;
  720. if (skb_queue_empty(*q))
  721. *q = &tid->buf_q;
  722. skb = skb_peek(*q);
  723. if (!skb)
  724. break;
  725. fi = get_frame_info(skb);
  726. bf = fi->bf;
  727. if (!fi->bf)
  728. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  729. else
  730. bf->bf_state.stale = false;
  731. if (!bf) {
  732. __skb_unlink(skb, *q);
  733. ath_txq_skb_done(sc, txq, skb);
  734. ieee80211_free_txskb(sc->hw, skb);
  735. continue;
  736. }
  737. bf->bf_next = NULL;
  738. bf->bf_lastbf = bf;
  739. tx_info = IEEE80211_SKB_CB(skb);
  740. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  741. if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
  742. bf->bf_state.bf_type = 0;
  743. return bf;
  744. }
  745. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  746. seqno = bf->bf_state.seqno;
  747. /* do not step over block-ack window */
  748. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
  749. break;
  750. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  751. struct ath_tx_status ts = {};
  752. struct list_head bf_head;
  753. INIT_LIST_HEAD(&bf_head);
  754. list_add(&bf->list, &bf_head);
  755. __skb_unlink(skb, *q);
  756. ath_tx_update_baw(sc, tid, seqno);
  757. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  758. continue;
  759. }
  760. return bf;
  761. }
  762. return NULL;
  763. }
  764. static bool
  765. ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
  766. struct ath_atx_tid *tid, struct list_head *bf_q,
  767. struct ath_buf *bf_first, struct sk_buff_head *tid_q,
  768. int *aggr_len)
  769. {
  770. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  771. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  772. int nframes = 0, ndelim;
  773. u16 aggr_limit = 0, al = 0, bpad = 0,
  774. al_delta, h_baw = tid->baw_size / 2;
  775. struct ieee80211_tx_info *tx_info;
  776. struct ath_frame_info *fi;
  777. struct sk_buff *skb;
  778. bool closed = false;
  779. bf = bf_first;
  780. aggr_limit = ath_lookup_rate(sc, bf, tid);
  781. do {
  782. skb = bf->bf_mpdu;
  783. fi = get_frame_info(skb);
  784. /* do not exceed aggregation limit */
  785. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  786. if (nframes) {
  787. if (aggr_limit < al + bpad + al_delta ||
  788. ath_lookup_legacy(bf) || nframes >= h_baw)
  789. break;
  790. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  791. if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
  792. !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
  793. break;
  794. }
  795. /* add padding for previous frame to aggregation length */
  796. al += bpad + al_delta;
  797. /*
  798. * Get the delimiters needed to meet the MPDU
  799. * density for this node.
  800. */
  801. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  802. !nframes);
  803. bpad = PADBYTES(al_delta) + (ndelim << 2);
  804. nframes++;
  805. bf->bf_next = NULL;
  806. /* link buffers of this frame to the aggregate */
  807. if (!fi->baw_tracked)
  808. ath_tx_addto_baw(sc, tid, bf);
  809. bf->bf_state.ndelim = ndelim;
  810. __skb_unlink(skb, tid_q);
  811. list_add_tail(&bf->list, bf_q);
  812. if (bf_prev)
  813. bf_prev->bf_next = bf;
  814. bf_prev = bf;
  815. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  816. if (!bf) {
  817. closed = true;
  818. break;
  819. }
  820. } while (ath_tid_has_buffered(tid));
  821. bf = bf_first;
  822. bf->bf_lastbf = bf_prev;
  823. if (bf == bf_prev) {
  824. al = get_frame_info(bf->bf_mpdu)->framelen;
  825. bf->bf_state.bf_type = BUF_AMPDU;
  826. } else {
  827. TX_STAT_INC(txq->axq_qnum, a_aggr);
  828. }
  829. *aggr_len = al;
  830. return closed;
  831. #undef PADBYTES
  832. }
  833. /*
  834. * rix - rate index
  835. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  836. * width - 0 for 20 MHz, 1 for 40 MHz
  837. * half_gi - to use 4us v/s 3.6 us for symbol time
  838. */
  839. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  840. int width, int half_gi, bool shortPreamble)
  841. {
  842. u32 nbits, nsymbits, duration, nsymbols;
  843. int streams;
  844. /* find number of symbols: PLCP + data */
  845. streams = HT_RC_2_STREAMS(rix);
  846. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  847. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  848. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  849. if (!half_gi)
  850. duration = SYMBOL_TIME(nsymbols);
  851. else
  852. duration = SYMBOL_TIME_HALFGI(nsymbols);
  853. /* addup duration for legacy/ht training and signal fields */
  854. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  855. return duration;
  856. }
  857. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  858. {
  859. int streams = HT_RC_2_STREAMS(mcs);
  860. int symbols, bits;
  861. int bytes = 0;
  862. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  863. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  864. bits -= OFDM_PLCP_BITS;
  865. bytes = bits / 8;
  866. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  867. if (bytes > 65532)
  868. bytes = 65532;
  869. return bytes;
  870. }
  871. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  872. {
  873. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  874. int mcs;
  875. /* 4ms is the default (and maximum) duration */
  876. if (!txop || txop > 4096)
  877. txop = 4096;
  878. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  879. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  880. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  881. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  882. for (mcs = 0; mcs < 32; mcs++) {
  883. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  884. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  885. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  886. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  887. }
  888. }
  889. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  890. struct ath_tx_info *info, int len, bool rts)
  891. {
  892. struct ath_hw *ah = sc->sc_ah;
  893. struct sk_buff *skb;
  894. struct ieee80211_tx_info *tx_info;
  895. struct ieee80211_tx_rate *rates;
  896. const struct ieee80211_rate *rate;
  897. struct ieee80211_hdr *hdr;
  898. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  899. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  900. int i;
  901. u8 rix = 0;
  902. skb = bf->bf_mpdu;
  903. tx_info = IEEE80211_SKB_CB(skb);
  904. rates = bf->rates;
  905. hdr = (struct ieee80211_hdr *)skb->data;
  906. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  907. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  908. info->rtscts_rate = fi->rtscts_rate;
  909. for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
  910. bool is_40, is_sgi, is_sp;
  911. int phy;
  912. if (!rates[i].count || (rates[i].idx < 0))
  913. continue;
  914. rix = rates[i].idx;
  915. info->rates[i].Tries = rates[i].count;
  916. /*
  917. * Handle RTS threshold for unaggregated HT frames.
  918. */
  919. if (bf_isampdu(bf) && !bf_isaggr(bf) &&
  920. (rates[i].flags & IEEE80211_TX_RC_MCS) &&
  921. unlikely(rts_thresh != (u32) -1)) {
  922. if (!rts_thresh || (len > rts_thresh))
  923. rts = true;
  924. }
  925. if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  926. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  927. info->flags |= ATH9K_TXDESC_RTSENA;
  928. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  929. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  930. info->flags |= ATH9K_TXDESC_CTSENA;
  931. }
  932. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  933. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  934. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  935. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  936. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  937. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  938. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  939. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  940. /* MCS rates */
  941. info->rates[i].Rate = rix | 0x80;
  942. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  943. ah->txchainmask, info->rates[i].Rate);
  944. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  945. is_40, is_sgi, is_sp);
  946. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  947. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  948. continue;
  949. }
  950. /* legacy rates */
  951. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  952. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  953. !(rate->flags & IEEE80211_RATE_ERP_G))
  954. phy = WLAN_RC_PHY_CCK;
  955. else
  956. phy = WLAN_RC_PHY_OFDM;
  957. info->rates[i].Rate = rate->hw_value;
  958. if (rate->hw_value_short) {
  959. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  960. info->rates[i].Rate |= rate->hw_value_short;
  961. } else {
  962. is_sp = false;
  963. }
  964. if (bf->bf_state.bfs_paprd)
  965. info->rates[i].ChSel = ah->txchainmask;
  966. else
  967. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  968. ah->txchainmask, info->rates[i].Rate);
  969. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  970. phy, rate->bitrate * 100, len, rix, is_sp);
  971. }
  972. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  973. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  974. info->flags &= ~ATH9K_TXDESC_RTSENA;
  975. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  976. if (info->flags & ATH9K_TXDESC_RTSENA)
  977. info->flags &= ~ATH9K_TXDESC_CTSENA;
  978. }
  979. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  980. {
  981. struct ieee80211_hdr *hdr;
  982. enum ath9k_pkt_type htype;
  983. __le16 fc;
  984. hdr = (struct ieee80211_hdr *)skb->data;
  985. fc = hdr->frame_control;
  986. if (ieee80211_is_beacon(fc))
  987. htype = ATH9K_PKT_TYPE_BEACON;
  988. else if (ieee80211_is_probe_resp(fc))
  989. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  990. else if (ieee80211_is_atim(fc))
  991. htype = ATH9K_PKT_TYPE_ATIM;
  992. else if (ieee80211_is_pspoll(fc))
  993. htype = ATH9K_PKT_TYPE_PSPOLL;
  994. else
  995. htype = ATH9K_PKT_TYPE_NORMAL;
  996. return htype;
  997. }
  998. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  999. struct ath_txq *txq, int len)
  1000. {
  1001. struct ath_hw *ah = sc->sc_ah;
  1002. struct ath_buf *bf_first = NULL;
  1003. struct ath_tx_info info;
  1004. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  1005. bool rts = false;
  1006. memset(&info, 0, sizeof(info));
  1007. info.is_first = true;
  1008. info.is_last = true;
  1009. info.txpower = MAX_RATE_POWER;
  1010. info.qcu = txq->axq_qnum;
  1011. while (bf) {
  1012. struct sk_buff *skb = bf->bf_mpdu;
  1013. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1014. struct ath_frame_info *fi = get_frame_info(skb);
  1015. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  1016. info.type = get_hw_packet_type(skb);
  1017. if (bf->bf_next)
  1018. info.link = bf->bf_next->bf_daddr;
  1019. else
  1020. info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
  1021. if (!bf_first) {
  1022. bf_first = bf;
  1023. if (!sc->tx99_state)
  1024. info.flags = ATH9K_TXDESC_INTREQ;
  1025. if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
  1026. txq == sc->tx.uapsdq)
  1027. info.flags |= ATH9K_TXDESC_CLRDMASK;
  1028. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1029. info.flags |= ATH9K_TXDESC_NOACK;
  1030. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1031. info.flags |= ATH9K_TXDESC_LDPC;
  1032. if (bf->bf_state.bfs_paprd)
  1033. info.flags |= (u32) bf->bf_state.bfs_paprd <<
  1034. ATH9K_TXDESC_PAPRD_S;
  1035. /*
  1036. * mac80211 doesn't handle RTS threshold for HT because
  1037. * the decision has to be taken based on AMPDU length
  1038. * and aggregation is done entirely inside ath9k.
  1039. * Set the RTS/CTS flag for the first subframe based
  1040. * on the threshold.
  1041. */
  1042. if (aggr && (bf == bf_first) &&
  1043. unlikely(rts_thresh != (u32) -1)) {
  1044. /*
  1045. * "len" is the size of the entire AMPDU.
  1046. */
  1047. if (!rts_thresh || (len > rts_thresh))
  1048. rts = true;
  1049. }
  1050. if (!aggr)
  1051. len = fi->framelen;
  1052. ath_buf_set_rate(sc, bf, &info, len, rts);
  1053. }
  1054. info.buf_addr[0] = bf->bf_buf_addr;
  1055. info.buf_len[0] = skb->len;
  1056. info.pkt_len = fi->framelen;
  1057. info.keyix = fi->keyix;
  1058. info.keytype = fi->keytype;
  1059. if (aggr) {
  1060. if (bf == bf_first)
  1061. info.aggr = AGGR_BUF_FIRST;
  1062. else if (bf == bf_first->bf_lastbf)
  1063. info.aggr = AGGR_BUF_LAST;
  1064. else
  1065. info.aggr = AGGR_BUF_MIDDLE;
  1066. info.ndelim = bf->bf_state.ndelim;
  1067. info.aggr_len = len;
  1068. }
  1069. if (bf == bf_first->bf_lastbf)
  1070. bf_first = NULL;
  1071. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  1072. bf = bf->bf_next;
  1073. }
  1074. }
  1075. static void
  1076. ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
  1077. struct ath_atx_tid *tid, struct list_head *bf_q,
  1078. struct ath_buf *bf_first, struct sk_buff_head *tid_q)
  1079. {
  1080. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  1081. struct sk_buff *skb;
  1082. int nframes = 0;
  1083. do {
  1084. struct ieee80211_tx_info *tx_info;
  1085. skb = bf->bf_mpdu;
  1086. nframes++;
  1087. __skb_unlink(skb, tid_q);
  1088. list_add_tail(&bf->list, bf_q);
  1089. if (bf_prev)
  1090. bf_prev->bf_next = bf;
  1091. bf_prev = bf;
  1092. if (nframes >= 2)
  1093. break;
  1094. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1095. if (!bf)
  1096. break;
  1097. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1098. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
  1099. break;
  1100. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1101. } while (1);
  1102. }
  1103. static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  1104. struct ath_atx_tid *tid, bool *stop)
  1105. {
  1106. struct ath_buf *bf;
  1107. struct ieee80211_tx_info *tx_info;
  1108. struct sk_buff_head *tid_q;
  1109. struct list_head bf_q;
  1110. int aggr_len = 0;
  1111. bool aggr, last = true;
  1112. if (!ath_tid_has_buffered(tid))
  1113. return false;
  1114. INIT_LIST_HEAD(&bf_q);
  1115. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1116. if (!bf)
  1117. return false;
  1118. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1119. aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
  1120. if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
  1121. (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
  1122. *stop = true;
  1123. return false;
  1124. }
  1125. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1126. if (aggr)
  1127. last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
  1128. tid_q, &aggr_len);
  1129. else
  1130. ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
  1131. if (list_empty(&bf_q))
  1132. return false;
  1133. if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
  1134. tid->ac->clear_ps_filter = false;
  1135. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1136. }
  1137. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  1138. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1139. return true;
  1140. }
  1141. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  1142. u16 tid, u16 *ssn)
  1143. {
  1144. struct ath_atx_tid *txtid;
  1145. struct ath_txq *txq;
  1146. struct ath_node *an;
  1147. u8 density;
  1148. an = (struct ath_node *)sta->drv_priv;
  1149. txtid = ATH_AN_2_TID(an, tid);
  1150. txq = txtid->ac->txq;
  1151. ath_txq_lock(sc, txq);
  1152. /* update ampdu factor/density, they may have changed. This may happen
  1153. * in HT IBSS when a beacon with HT-info is received after the station
  1154. * has already been added.
  1155. */
  1156. if (sta->ht_cap.ht_supported) {
  1157. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  1158. sta->ht_cap.ampdu_factor);
  1159. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  1160. an->mpdudensity = density;
  1161. }
  1162. /* force sequence number allocation for pending frames */
  1163. ath_tx_tid_change_state(sc, txtid);
  1164. txtid->active = true;
  1165. txtid->paused = true;
  1166. *ssn = txtid->seq_start = txtid->seq_next;
  1167. txtid->bar_index = -1;
  1168. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  1169. txtid->baw_head = txtid->baw_tail = 0;
  1170. ath_txq_unlock_complete(sc, txq);
  1171. return 0;
  1172. }
  1173. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1174. {
  1175. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1176. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1177. struct ath_txq *txq = txtid->ac->txq;
  1178. ath_txq_lock(sc, txq);
  1179. txtid->active = false;
  1180. txtid->paused = false;
  1181. ath_tx_flush_tid(sc, txtid);
  1182. ath_tx_tid_change_state(sc, txtid);
  1183. ath_txq_unlock_complete(sc, txq);
  1184. }
  1185. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1186. struct ath_node *an)
  1187. {
  1188. struct ath_atx_tid *tid;
  1189. struct ath_atx_ac *ac;
  1190. struct ath_txq *txq;
  1191. bool buffered;
  1192. int tidno;
  1193. for (tidno = 0, tid = &an->tid[tidno];
  1194. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1195. if (!tid->sched)
  1196. continue;
  1197. ac = tid->ac;
  1198. txq = ac->txq;
  1199. ath_txq_lock(sc, txq);
  1200. buffered = ath_tid_has_buffered(tid);
  1201. tid->sched = false;
  1202. list_del(&tid->list);
  1203. if (ac->sched) {
  1204. ac->sched = false;
  1205. list_del(&ac->list);
  1206. }
  1207. ath_txq_unlock(sc, txq);
  1208. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1209. }
  1210. }
  1211. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1212. {
  1213. struct ath_atx_tid *tid;
  1214. struct ath_atx_ac *ac;
  1215. struct ath_txq *txq;
  1216. int tidno;
  1217. for (tidno = 0, tid = &an->tid[tidno];
  1218. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1219. ac = tid->ac;
  1220. txq = ac->txq;
  1221. ath_txq_lock(sc, txq);
  1222. ac->clear_ps_filter = true;
  1223. if (!tid->paused && ath_tid_has_buffered(tid)) {
  1224. ath_tx_queue_tid(txq, tid);
  1225. ath_txq_schedule(sc, txq);
  1226. }
  1227. ath_txq_unlock_complete(sc, txq);
  1228. }
  1229. }
  1230. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
  1231. u16 tidno)
  1232. {
  1233. struct ath_atx_tid *tid;
  1234. struct ath_node *an;
  1235. struct ath_txq *txq;
  1236. an = (struct ath_node *)sta->drv_priv;
  1237. tid = ATH_AN_2_TID(an, tidno);
  1238. txq = tid->ac->txq;
  1239. ath_txq_lock(sc, txq);
  1240. tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1241. tid->paused = false;
  1242. if (ath_tid_has_buffered(tid)) {
  1243. ath_tx_queue_tid(txq, tid);
  1244. ath_txq_schedule(sc, txq);
  1245. }
  1246. ath_txq_unlock_complete(sc, txq);
  1247. }
  1248. void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
  1249. struct ieee80211_sta *sta,
  1250. u16 tids, int nframes,
  1251. enum ieee80211_frame_release_type reason,
  1252. bool more_data)
  1253. {
  1254. struct ath_softc *sc = hw->priv;
  1255. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1256. struct ath_txq *txq = sc->tx.uapsdq;
  1257. struct ieee80211_tx_info *info;
  1258. struct list_head bf_q;
  1259. struct ath_buf *bf_tail = NULL, *bf;
  1260. struct sk_buff_head *tid_q;
  1261. int sent = 0;
  1262. int i;
  1263. INIT_LIST_HEAD(&bf_q);
  1264. for (i = 0; tids && nframes; i++, tids >>= 1) {
  1265. struct ath_atx_tid *tid;
  1266. if (!(tids & 1))
  1267. continue;
  1268. tid = ATH_AN_2_TID(an, i);
  1269. if (tid->paused)
  1270. continue;
  1271. ath_txq_lock(sc, tid->ac->txq);
  1272. while (nframes > 0) {
  1273. bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
  1274. if (!bf)
  1275. break;
  1276. __skb_unlink(bf->bf_mpdu, tid_q);
  1277. list_add_tail(&bf->list, &bf_q);
  1278. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1279. if (bf_isampdu(bf)) {
  1280. ath_tx_addto_baw(sc, tid, bf);
  1281. bf->bf_state.bf_type &= ~BUF_AGGR;
  1282. }
  1283. if (bf_tail)
  1284. bf_tail->bf_next = bf;
  1285. bf_tail = bf;
  1286. nframes--;
  1287. sent++;
  1288. TX_STAT_INC(txq->axq_qnum, a_queued_hw);
  1289. if (an->sta && !ath_tid_has_buffered(tid))
  1290. ieee80211_sta_set_buffered(an->sta, i, false);
  1291. }
  1292. ath_txq_unlock_complete(sc, tid->ac->txq);
  1293. }
  1294. if (list_empty(&bf_q))
  1295. return;
  1296. info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
  1297. info->flags |= IEEE80211_TX_STATUS_EOSP;
  1298. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1299. ath_txq_lock(sc, txq);
  1300. ath_tx_fill_desc(sc, bf, txq, 0);
  1301. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1302. ath_txq_unlock(sc, txq);
  1303. }
  1304. /********************/
  1305. /* Queue Management */
  1306. /********************/
  1307. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1308. {
  1309. struct ath_hw *ah = sc->sc_ah;
  1310. struct ath9k_tx_queue_info qi;
  1311. static const int subtype_txq_to_hwq[] = {
  1312. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1313. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1314. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1315. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1316. };
  1317. int axq_qnum, i;
  1318. memset(&qi, 0, sizeof(qi));
  1319. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1320. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1321. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1322. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1323. qi.tqi_physCompBuf = 0;
  1324. /*
  1325. * Enable interrupts only for EOL and DESC conditions.
  1326. * We mark tx descriptors to receive a DESC interrupt
  1327. * when a tx queue gets deep; otherwise waiting for the
  1328. * EOL to reap descriptors. Note that this is done to
  1329. * reduce interrupt load and this only defers reaping
  1330. * descriptors, never transmitting frames. Aside from
  1331. * reducing interrupts this also permits more concurrency.
  1332. * The only potential downside is if the tx queue backs
  1333. * up in which case the top half of the kernel may backup
  1334. * due to a lack of tx descriptors.
  1335. *
  1336. * The UAPSD queue is an exception, since we take a desc-
  1337. * based intr on the EOSP frames.
  1338. */
  1339. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1340. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1341. } else {
  1342. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1343. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1344. else
  1345. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1346. TXQ_FLAG_TXDESCINT_ENABLE;
  1347. }
  1348. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1349. if (axq_qnum == -1) {
  1350. /*
  1351. * NB: don't print a message, this happens
  1352. * normally on parts with too few tx queues
  1353. */
  1354. return NULL;
  1355. }
  1356. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1357. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1358. txq->axq_qnum = axq_qnum;
  1359. txq->mac80211_qnum = -1;
  1360. txq->axq_link = NULL;
  1361. __skb_queue_head_init(&txq->complete_q);
  1362. INIT_LIST_HEAD(&txq->axq_q);
  1363. INIT_LIST_HEAD(&txq->axq_acq);
  1364. spin_lock_init(&txq->axq_lock);
  1365. txq->axq_depth = 0;
  1366. txq->axq_ampdu_depth = 0;
  1367. txq->axq_tx_inprogress = false;
  1368. sc->tx.txqsetup |= 1<<axq_qnum;
  1369. txq->txq_headidx = txq->txq_tailidx = 0;
  1370. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1371. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1372. }
  1373. return &sc->tx.txq[axq_qnum];
  1374. }
  1375. int ath_txq_update(struct ath_softc *sc, int qnum,
  1376. struct ath9k_tx_queue_info *qinfo)
  1377. {
  1378. struct ath_hw *ah = sc->sc_ah;
  1379. int error = 0;
  1380. struct ath9k_tx_queue_info qi;
  1381. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1382. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1383. qi.tqi_aifs = qinfo->tqi_aifs;
  1384. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1385. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1386. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1387. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1388. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1389. ath_err(ath9k_hw_common(sc->sc_ah),
  1390. "Unable to update hardware queue %u!\n", qnum);
  1391. error = -EIO;
  1392. } else {
  1393. ath9k_hw_resettxqueue(ah, qnum);
  1394. }
  1395. return error;
  1396. }
  1397. int ath_cabq_update(struct ath_softc *sc)
  1398. {
  1399. struct ath9k_tx_queue_info qi;
  1400. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1401. int qnum = sc->beacon.cabq->axq_qnum;
  1402. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1403. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1404. ATH_CABQ_READY_TIME) / 100;
  1405. ath_txq_update(sc, qnum, &qi);
  1406. return 0;
  1407. }
  1408. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1409. struct list_head *list)
  1410. {
  1411. struct ath_buf *bf, *lastbf;
  1412. struct list_head bf_head;
  1413. struct ath_tx_status ts;
  1414. memset(&ts, 0, sizeof(ts));
  1415. ts.ts_status = ATH9K_TX_FLUSH;
  1416. INIT_LIST_HEAD(&bf_head);
  1417. while (!list_empty(list)) {
  1418. bf = list_first_entry(list, struct ath_buf, list);
  1419. if (bf->bf_state.stale) {
  1420. list_del(&bf->list);
  1421. ath_tx_return_buffer(sc, bf);
  1422. continue;
  1423. }
  1424. lastbf = bf->bf_lastbf;
  1425. list_cut_position(&bf_head, list, &lastbf->list);
  1426. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1427. }
  1428. }
  1429. /*
  1430. * Drain a given TX queue (could be Beacon or Data)
  1431. *
  1432. * This assumes output has been stopped and
  1433. * we do not need to block ath_tx_tasklet.
  1434. */
  1435. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
  1436. {
  1437. ath_txq_lock(sc, txq);
  1438. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1439. int idx = txq->txq_tailidx;
  1440. while (!list_empty(&txq->txq_fifo[idx])) {
  1441. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
  1442. INCR(idx, ATH_TXFIFO_DEPTH);
  1443. }
  1444. txq->txq_tailidx = idx;
  1445. }
  1446. txq->axq_link = NULL;
  1447. txq->axq_tx_inprogress = false;
  1448. ath_drain_txq_list(sc, txq, &txq->axq_q);
  1449. ath_txq_unlock_complete(sc, txq);
  1450. }
  1451. bool ath_drain_all_txq(struct ath_softc *sc)
  1452. {
  1453. struct ath_hw *ah = sc->sc_ah;
  1454. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1455. struct ath_txq *txq;
  1456. int i;
  1457. u32 npend = 0;
  1458. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1459. return true;
  1460. ath9k_hw_abort_tx_dma(ah);
  1461. /* Check if any queue remains active */
  1462. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1463. if (!ATH_TXQ_SETUP(sc, i))
  1464. continue;
  1465. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1466. npend |= BIT(i);
  1467. }
  1468. if (npend)
  1469. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1470. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1471. if (!ATH_TXQ_SETUP(sc, i))
  1472. continue;
  1473. /*
  1474. * The caller will resume queues with ieee80211_wake_queues.
  1475. * Mark the queue as not stopped to prevent ath_tx_complete
  1476. * from waking the queue too early.
  1477. */
  1478. txq = &sc->tx.txq[i];
  1479. txq->stopped = false;
  1480. ath_draintxq(sc, txq);
  1481. }
  1482. return !npend;
  1483. }
  1484. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1485. {
  1486. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1487. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1488. }
  1489. /* For each axq_acq entry, for each tid, try to schedule packets
  1490. * for transmit until ampdu_depth has reached min Q depth.
  1491. */
  1492. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1493. {
  1494. struct ath_atx_ac *ac, *last_ac;
  1495. struct ath_atx_tid *tid, *last_tid;
  1496. bool sent = false;
  1497. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1498. list_empty(&txq->axq_acq))
  1499. return;
  1500. rcu_read_lock();
  1501. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1502. while (!list_empty(&txq->axq_acq)) {
  1503. bool stop = false;
  1504. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1505. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1506. list_del(&ac->list);
  1507. ac->sched = false;
  1508. while (!list_empty(&ac->tid_q)) {
  1509. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1510. list);
  1511. list_del(&tid->list);
  1512. tid->sched = false;
  1513. if (tid->paused)
  1514. continue;
  1515. if (ath_tx_sched_aggr(sc, txq, tid, &stop))
  1516. sent = true;
  1517. /*
  1518. * add tid to round-robin queue if more frames
  1519. * are pending for the tid
  1520. */
  1521. if (ath_tid_has_buffered(tid))
  1522. ath_tx_queue_tid(txq, tid);
  1523. if (stop || tid == last_tid)
  1524. break;
  1525. }
  1526. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1527. ac->sched = true;
  1528. list_add_tail(&ac->list, &txq->axq_acq);
  1529. }
  1530. if (stop)
  1531. break;
  1532. if (ac == last_ac) {
  1533. if (!sent)
  1534. break;
  1535. sent = false;
  1536. last_ac = list_entry(txq->axq_acq.prev,
  1537. struct ath_atx_ac, list);
  1538. }
  1539. }
  1540. rcu_read_unlock();
  1541. }
  1542. /***********/
  1543. /* TX, DMA */
  1544. /***********/
  1545. /*
  1546. * Insert a chain of ath_buf (descriptors) on a txq and
  1547. * assume the descriptors are already chained together by caller.
  1548. */
  1549. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1550. struct list_head *head, bool internal)
  1551. {
  1552. struct ath_hw *ah = sc->sc_ah;
  1553. struct ath_common *common = ath9k_hw_common(ah);
  1554. struct ath_buf *bf, *bf_last;
  1555. bool puttxbuf = false;
  1556. bool edma;
  1557. /*
  1558. * Insert the frame on the outbound list and
  1559. * pass it on to the hardware.
  1560. */
  1561. if (list_empty(head))
  1562. return;
  1563. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1564. bf = list_first_entry(head, struct ath_buf, list);
  1565. bf_last = list_entry(head->prev, struct ath_buf, list);
  1566. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1567. txq->axq_qnum, txq->axq_depth);
  1568. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1569. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1570. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1571. puttxbuf = true;
  1572. } else {
  1573. list_splice_tail_init(head, &txq->axq_q);
  1574. if (txq->axq_link) {
  1575. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1576. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1577. txq->axq_qnum, txq->axq_link,
  1578. ito64(bf->bf_daddr), bf->bf_desc);
  1579. } else if (!edma)
  1580. puttxbuf = true;
  1581. txq->axq_link = bf_last->bf_desc;
  1582. }
  1583. if (puttxbuf) {
  1584. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1585. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1586. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1587. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1588. }
  1589. if (!edma || sc->tx99_state) {
  1590. TX_STAT_INC(txq->axq_qnum, txstart);
  1591. ath9k_hw_txstart(ah, txq->axq_qnum);
  1592. }
  1593. if (!internal) {
  1594. while (bf) {
  1595. txq->axq_depth++;
  1596. if (bf_is_ampdu_not_probing(bf))
  1597. txq->axq_ampdu_depth++;
  1598. bf_last = bf->bf_lastbf;
  1599. bf = bf_last->bf_next;
  1600. bf_last->bf_next = NULL;
  1601. }
  1602. }
  1603. }
  1604. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1605. struct ath_atx_tid *tid, struct sk_buff *skb)
  1606. {
  1607. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1608. struct ath_frame_info *fi = get_frame_info(skb);
  1609. struct list_head bf_head;
  1610. struct ath_buf *bf = fi->bf;
  1611. INIT_LIST_HEAD(&bf_head);
  1612. list_add_tail(&bf->list, &bf_head);
  1613. bf->bf_state.bf_type = 0;
  1614. if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
  1615. bf->bf_state.bf_type = BUF_AMPDU;
  1616. ath_tx_addto_baw(sc, tid, bf);
  1617. }
  1618. bf->bf_next = NULL;
  1619. bf->bf_lastbf = bf;
  1620. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1621. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1622. TX_STAT_INC(txq->axq_qnum, queued);
  1623. }
  1624. static void setup_frame_info(struct ieee80211_hw *hw,
  1625. struct ieee80211_sta *sta,
  1626. struct sk_buff *skb,
  1627. int framelen)
  1628. {
  1629. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1630. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1631. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1632. const struct ieee80211_rate *rate;
  1633. struct ath_frame_info *fi = get_frame_info(skb);
  1634. struct ath_node *an = NULL;
  1635. enum ath9k_key_type keytype;
  1636. bool short_preamble = false;
  1637. /*
  1638. * We check if Short Preamble is needed for the CTS rate by
  1639. * checking the BSS's global flag.
  1640. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1641. */
  1642. if (tx_info->control.vif &&
  1643. tx_info->control.vif->bss_conf.use_short_preamble)
  1644. short_preamble = true;
  1645. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1646. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1647. if (sta)
  1648. an = (struct ath_node *) sta->drv_priv;
  1649. memset(fi, 0, sizeof(*fi));
  1650. if (hw_key)
  1651. fi->keyix = hw_key->hw_key_idx;
  1652. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1653. fi->keyix = an->ps_key;
  1654. else
  1655. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1656. fi->keytype = keytype;
  1657. fi->framelen = framelen;
  1658. if (!rate)
  1659. return;
  1660. fi->rtscts_rate = rate->hw_value;
  1661. if (short_preamble)
  1662. fi->rtscts_rate |= rate->hw_value_short;
  1663. }
  1664. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1665. {
  1666. struct ath_hw *ah = sc->sc_ah;
  1667. struct ath9k_channel *curchan = ah->curchan;
  1668. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
  1669. (chainmask == 0x7) && (rate < 0x90))
  1670. return 0x3;
  1671. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1672. IS_CCK_RATE(rate))
  1673. return 0x2;
  1674. else
  1675. return chainmask;
  1676. }
  1677. /*
  1678. * Assign a descriptor (and sequence number if necessary,
  1679. * and map buffer for DMA. Frees skb on error
  1680. */
  1681. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1682. struct ath_txq *txq,
  1683. struct ath_atx_tid *tid,
  1684. struct sk_buff *skb)
  1685. {
  1686. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1687. struct ath_frame_info *fi = get_frame_info(skb);
  1688. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1689. struct ath_buf *bf;
  1690. int fragno;
  1691. u16 seqno;
  1692. bf = ath_tx_get_buffer(sc);
  1693. if (!bf) {
  1694. ath_dbg(common, XMIT, "TX buffers are full\n");
  1695. return NULL;
  1696. }
  1697. ATH_TXBUF_RESET(bf);
  1698. if (tid) {
  1699. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1700. seqno = tid->seq_next;
  1701. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1702. if (fragno)
  1703. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1704. if (!ieee80211_has_morefrags(hdr->frame_control))
  1705. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1706. bf->bf_state.seqno = seqno;
  1707. }
  1708. bf->bf_mpdu = skb;
  1709. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1710. skb->len, DMA_TO_DEVICE);
  1711. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1712. bf->bf_mpdu = NULL;
  1713. bf->bf_buf_addr = 0;
  1714. ath_err(ath9k_hw_common(sc->sc_ah),
  1715. "dma_mapping_error() on TX\n");
  1716. ath_tx_return_buffer(sc, bf);
  1717. return NULL;
  1718. }
  1719. fi->bf = bf;
  1720. return bf;
  1721. }
  1722. static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
  1723. struct ath_tx_control *txctl)
  1724. {
  1725. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1726. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1727. struct ieee80211_sta *sta = txctl->sta;
  1728. struct ieee80211_vif *vif = info->control.vif;
  1729. struct ath_vif *avp;
  1730. struct ath_softc *sc = hw->priv;
  1731. int frmlen = skb->len + FCS_LEN;
  1732. int padpos, padsize;
  1733. /* NOTE: sta can be NULL according to net/mac80211.h */
  1734. if (sta)
  1735. txctl->an = (struct ath_node *)sta->drv_priv;
  1736. else if (vif && ieee80211_is_data(hdr->frame_control)) {
  1737. avp = (void *)vif->drv_priv;
  1738. txctl->an = &avp->mcast_node;
  1739. }
  1740. if (info->control.hw_key)
  1741. frmlen += info->control.hw_key->icv_len;
  1742. /*
  1743. * As a temporary workaround, assign seq# here; this will likely need
  1744. * to be cleaned up to work better with Beacon transmission and virtual
  1745. * BSSes.
  1746. */
  1747. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1748. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1749. sc->tx.seq_no += 0x10;
  1750. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1751. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1752. }
  1753. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1754. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1755. !ieee80211_is_data(hdr->frame_control))
  1756. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1757. /* Add the padding after the header if this is not already done */
  1758. padpos = ieee80211_hdrlen(hdr->frame_control);
  1759. padsize = padpos & 3;
  1760. if (padsize && skb->len > padpos) {
  1761. if (skb_headroom(skb) < padsize)
  1762. return -ENOMEM;
  1763. skb_push(skb, padsize);
  1764. memmove(skb->data, skb->data + padsize, padpos);
  1765. }
  1766. setup_frame_info(hw, sta, skb, frmlen);
  1767. return 0;
  1768. }
  1769. /* Upon failure caller should free skb */
  1770. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1771. struct ath_tx_control *txctl)
  1772. {
  1773. struct ieee80211_hdr *hdr;
  1774. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1775. struct ieee80211_sta *sta = txctl->sta;
  1776. struct ieee80211_vif *vif = info->control.vif;
  1777. struct ath_softc *sc = hw->priv;
  1778. struct ath_txq *txq = txctl->txq;
  1779. struct ath_atx_tid *tid = NULL;
  1780. struct ath_buf *bf;
  1781. int q;
  1782. int ret;
  1783. ret = ath_tx_prepare(hw, skb, txctl);
  1784. if (ret)
  1785. return ret;
  1786. hdr = (struct ieee80211_hdr *) skb->data;
  1787. /*
  1788. * At this point, the vif, hw_key and sta pointers in the tx control
  1789. * info are no longer valid (overwritten by the ath_frame_info data.
  1790. */
  1791. q = skb_get_queue_mapping(skb);
  1792. ath_txq_lock(sc, txq);
  1793. if (txq == sc->tx.txq_map[q] &&
  1794. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1795. !txq->stopped) {
  1796. ieee80211_stop_queue(sc->hw, q);
  1797. txq->stopped = true;
  1798. }
  1799. if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
  1800. ath_txq_unlock(sc, txq);
  1801. txq = sc->tx.uapsdq;
  1802. ath_txq_lock(sc, txq);
  1803. } else if (txctl->an &&
  1804. ieee80211_is_data_present(hdr->frame_control)) {
  1805. tid = ath_get_skb_tid(sc, txctl->an, skb);
  1806. WARN_ON(tid->ac->txq != txctl->txq);
  1807. if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  1808. tid->ac->clear_ps_filter = true;
  1809. /*
  1810. * Add this frame to software queue for scheduling later
  1811. * for aggregation.
  1812. */
  1813. TX_STAT_INC(txq->axq_qnum, a_queued_sw);
  1814. __skb_queue_tail(&tid->buf_q, skb);
  1815. if (!txctl->an->sleeping)
  1816. ath_tx_queue_tid(txq, tid);
  1817. ath_txq_schedule(sc, txq);
  1818. goto out;
  1819. }
  1820. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1821. if (!bf) {
  1822. ath_txq_skb_done(sc, txq, skb);
  1823. if (txctl->paprd)
  1824. dev_kfree_skb_any(skb);
  1825. else
  1826. ieee80211_free_txskb(sc->hw, skb);
  1827. goto out;
  1828. }
  1829. bf->bf_state.bfs_paprd = txctl->paprd;
  1830. if (txctl->paprd)
  1831. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1832. ath_set_rates(vif, sta, bf);
  1833. ath_tx_send_normal(sc, txq, tid, skb);
  1834. out:
  1835. ath_txq_unlock(sc, txq);
  1836. return 0;
  1837. }
  1838. void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
  1839. struct sk_buff *skb)
  1840. {
  1841. struct ath_softc *sc = hw->priv;
  1842. struct ath_tx_control txctl = {
  1843. .txq = sc->beacon.cabq
  1844. };
  1845. struct ath_tx_info info = {};
  1846. struct ieee80211_hdr *hdr;
  1847. struct ath_buf *bf_tail = NULL;
  1848. struct ath_buf *bf;
  1849. LIST_HEAD(bf_q);
  1850. int duration = 0;
  1851. int max_duration;
  1852. max_duration =
  1853. sc->cur_beacon_conf.beacon_interval * 1000 *
  1854. sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
  1855. do {
  1856. struct ath_frame_info *fi = get_frame_info(skb);
  1857. if (ath_tx_prepare(hw, skb, &txctl))
  1858. break;
  1859. bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
  1860. if (!bf)
  1861. break;
  1862. bf->bf_lastbf = bf;
  1863. ath_set_rates(vif, NULL, bf);
  1864. ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
  1865. duration += info.rates[0].PktDuration;
  1866. if (bf_tail)
  1867. bf_tail->bf_next = bf;
  1868. list_add_tail(&bf->list, &bf_q);
  1869. bf_tail = bf;
  1870. skb = NULL;
  1871. if (duration > max_duration)
  1872. break;
  1873. skb = ieee80211_get_buffered_bc(hw, vif);
  1874. } while(skb);
  1875. if (skb)
  1876. ieee80211_free_txskb(hw, skb);
  1877. if (list_empty(&bf_q))
  1878. return;
  1879. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1880. hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
  1881. if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
  1882. hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
  1883. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  1884. sizeof(*hdr), DMA_TO_DEVICE);
  1885. }
  1886. ath_txq_lock(sc, txctl.txq);
  1887. ath_tx_fill_desc(sc, bf, txctl.txq, 0);
  1888. ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
  1889. TX_STAT_INC(txctl.txq->axq_qnum, queued);
  1890. ath_txq_unlock(sc, txctl.txq);
  1891. }
  1892. /*****************/
  1893. /* TX Completion */
  1894. /*****************/
  1895. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1896. int tx_flags, struct ath_txq *txq)
  1897. {
  1898. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1899. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1900. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1901. int padpos, padsize;
  1902. unsigned long flags;
  1903. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1904. if (sc->sc_ah->caldata)
  1905. set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
  1906. if (!(tx_flags & ATH_TX_ERROR))
  1907. /* Frame was ACKed */
  1908. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1909. padpos = ieee80211_hdrlen(hdr->frame_control);
  1910. padsize = padpos & 3;
  1911. if (padsize && skb->len>padpos+padsize) {
  1912. /*
  1913. * Remove MAC header padding before giving the frame back to
  1914. * mac80211.
  1915. */
  1916. memmove(skb->data + padsize, skb->data, padpos);
  1917. skb_pull(skb, padsize);
  1918. }
  1919. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1920. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1921. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1922. ath_dbg(common, PS,
  1923. "Going back to sleep after having received TX status (0x%lx)\n",
  1924. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1925. PS_WAIT_FOR_CAB |
  1926. PS_WAIT_FOR_PSPOLL_DATA |
  1927. PS_WAIT_FOR_TX_ACK));
  1928. }
  1929. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1930. __skb_queue_tail(&txq->complete_q, skb);
  1931. ath_txq_skb_done(sc, txq, skb);
  1932. }
  1933. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1934. struct ath_txq *txq, struct list_head *bf_q,
  1935. struct ath_tx_status *ts, int txok)
  1936. {
  1937. struct sk_buff *skb = bf->bf_mpdu;
  1938. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1939. unsigned long flags;
  1940. int tx_flags = 0;
  1941. if (!txok)
  1942. tx_flags |= ATH_TX_ERROR;
  1943. if (ts->ts_status & ATH9K_TXERR_FILT)
  1944. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1945. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1946. bf->bf_buf_addr = 0;
  1947. if (sc->tx99_state)
  1948. goto skip_tx_complete;
  1949. if (bf->bf_state.bfs_paprd) {
  1950. if (time_after(jiffies,
  1951. bf->bf_state.bfs_paprd_timestamp +
  1952. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1953. dev_kfree_skb_any(skb);
  1954. else
  1955. complete(&sc->paprd_complete);
  1956. } else {
  1957. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1958. ath_tx_complete(sc, skb, tx_flags, txq);
  1959. }
  1960. skip_tx_complete:
  1961. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1962. * accidentally reference it later.
  1963. */
  1964. bf->bf_mpdu = NULL;
  1965. /*
  1966. * Return the list of ath_buf of this mpdu to free queue
  1967. */
  1968. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1969. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1970. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1971. }
  1972. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1973. struct ath_tx_status *ts, int nframes, int nbad,
  1974. int txok)
  1975. {
  1976. struct sk_buff *skb = bf->bf_mpdu;
  1977. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1978. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1979. struct ieee80211_hw *hw = sc->hw;
  1980. struct ath_hw *ah = sc->sc_ah;
  1981. u8 i, tx_rateindex;
  1982. if (txok)
  1983. tx_info->status.ack_signal = ts->ts_rssi;
  1984. tx_rateindex = ts->ts_rateindex;
  1985. WARN_ON(tx_rateindex >= hw->max_rates);
  1986. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1987. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1988. BUG_ON(nbad > nframes);
  1989. }
  1990. tx_info->status.ampdu_len = nframes;
  1991. tx_info->status.ampdu_ack_len = nframes - nbad;
  1992. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1993. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1994. /*
  1995. * If an underrun error is seen assume it as an excessive
  1996. * retry only if max frame trigger level has been reached
  1997. * (2 KB for single stream, and 4 KB for dual stream).
  1998. * Adjust the long retry as if the frame was tried
  1999. * hw->max_rate_tries times to affect how rate control updates
  2000. * PER for the failed rate.
  2001. * In case of congestion on the bus penalizing this type of
  2002. * underruns should help hardware actually transmit new frames
  2003. * successfully by eventually preferring slower rates.
  2004. * This itself should also alleviate congestion on the bus.
  2005. */
  2006. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  2007. ATH9K_TX_DELIM_UNDERRUN)) &&
  2008. ieee80211_is_data(hdr->frame_control) &&
  2009. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  2010. tx_info->status.rates[tx_rateindex].count =
  2011. hw->max_rate_tries;
  2012. }
  2013. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  2014. tx_info->status.rates[i].count = 0;
  2015. tx_info->status.rates[i].idx = -1;
  2016. }
  2017. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  2018. }
  2019. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  2020. {
  2021. struct ath_hw *ah = sc->sc_ah;
  2022. struct ath_common *common = ath9k_hw_common(ah);
  2023. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  2024. struct list_head bf_head;
  2025. struct ath_desc *ds;
  2026. struct ath_tx_status ts;
  2027. int status;
  2028. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  2029. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  2030. txq->axq_link);
  2031. ath_txq_lock(sc, txq);
  2032. for (;;) {
  2033. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  2034. break;
  2035. if (list_empty(&txq->axq_q)) {
  2036. txq->axq_link = NULL;
  2037. ath_txq_schedule(sc, txq);
  2038. break;
  2039. }
  2040. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  2041. /*
  2042. * There is a race condition that a BH gets scheduled
  2043. * after sw writes TxE and before hw re-load the last
  2044. * descriptor to get the newly chained one.
  2045. * Software must keep the last DONE descriptor as a
  2046. * holding descriptor - software does so by marking
  2047. * it with the STALE flag.
  2048. */
  2049. bf_held = NULL;
  2050. if (bf->bf_state.stale) {
  2051. bf_held = bf;
  2052. if (list_is_last(&bf_held->list, &txq->axq_q))
  2053. break;
  2054. bf = list_entry(bf_held->list.next, struct ath_buf,
  2055. list);
  2056. }
  2057. lastbf = bf->bf_lastbf;
  2058. ds = lastbf->bf_desc;
  2059. memset(&ts, 0, sizeof(ts));
  2060. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  2061. if (status == -EINPROGRESS)
  2062. break;
  2063. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2064. /*
  2065. * Remove ath_buf's of the same transmit unit from txq,
  2066. * however leave the last descriptor back as the holding
  2067. * descriptor for hw.
  2068. */
  2069. lastbf->bf_state.stale = true;
  2070. INIT_LIST_HEAD(&bf_head);
  2071. if (!list_is_singular(&lastbf->list))
  2072. list_cut_position(&bf_head,
  2073. &txq->axq_q, lastbf->list.prev);
  2074. if (bf_held) {
  2075. list_del(&bf_held->list);
  2076. ath_tx_return_buffer(sc, bf_held);
  2077. }
  2078. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2079. }
  2080. ath_txq_unlock_complete(sc, txq);
  2081. }
  2082. void ath_tx_tasklet(struct ath_softc *sc)
  2083. {
  2084. struct ath_hw *ah = sc->sc_ah;
  2085. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  2086. int i;
  2087. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  2088. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  2089. ath_tx_processq(sc, &sc->tx.txq[i]);
  2090. }
  2091. }
  2092. void ath_tx_edma_tasklet(struct ath_softc *sc)
  2093. {
  2094. struct ath_tx_status ts;
  2095. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2096. struct ath_hw *ah = sc->sc_ah;
  2097. struct ath_txq *txq;
  2098. struct ath_buf *bf, *lastbf;
  2099. struct list_head bf_head;
  2100. struct list_head *fifo_list;
  2101. int status;
  2102. for (;;) {
  2103. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  2104. break;
  2105. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  2106. if (status == -EINPROGRESS)
  2107. break;
  2108. if (status == -EIO) {
  2109. ath_dbg(common, XMIT, "Error processing tx status\n");
  2110. break;
  2111. }
  2112. /* Process beacon completions separately */
  2113. if (ts.qid == sc->beacon.beaconq) {
  2114. sc->beacon.tx_processed = true;
  2115. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  2116. ath9k_csa_is_finished(sc);
  2117. continue;
  2118. }
  2119. txq = &sc->tx.txq[ts.qid];
  2120. ath_txq_lock(sc, txq);
  2121. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2122. fifo_list = &txq->txq_fifo[txq->txq_tailidx];
  2123. if (list_empty(fifo_list)) {
  2124. ath_txq_unlock(sc, txq);
  2125. return;
  2126. }
  2127. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2128. if (bf->bf_state.stale) {
  2129. list_del(&bf->list);
  2130. ath_tx_return_buffer(sc, bf);
  2131. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2132. }
  2133. lastbf = bf->bf_lastbf;
  2134. INIT_LIST_HEAD(&bf_head);
  2135. if (list_is_last(&lastbf->list, fifo_list)) {
  2136. list_splice_tail_init(fifo_list, &bf_head);
  2137. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  2138. if (!list_empty(&txq->axq_q)) {
  2139. struct list_head bf_q;
  2140. INIT_LIST_HEAD(&bf_q);
  2141. txq->axq_link = NULL;
  2142. list_splice_tail_init(&txq->axq_q, &bf_q);
  2143. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  2144. }
  2145. } else {
  2146. lastbf->bf_state.stale = true;
  2147. if (bf != lastbf)
  2148. list_cut_position(&bf_head, fifo_list,
  2149. lastbf->list.prev);
  2150. }
  2151. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2152. ath_txq_unlock_complete(sc, txq);
  2153. }
  2154. }
  2155. /*****************/
  2156. /* Init, Cleanup */
  2157. /*****************/
  2158. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  2159. {
  2160. struct ath_descdma *dd = &sc->txsdma;
  2161. u8 txs_len = sc->sc_ah->caps.txs_len;
  2162. dd->dd_desc_len = size * txs_len;
  2163. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  2164. &dd->dd_desc_paddr, GFP_KERNEL);
  2165. if (!dd->dd_desc)
  2166. return -ENOMEM;
  2167. return 0;
  2168. }
  2169. static int ath_tx_edma_init(struct ath_softc *sc)
  2170. {
  2171. int err;
  2172. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  2173. if (!err)
  2174. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  2175. sc->txsdma.dd_desc_paddr,
  2176. ATH_TXSTATUS_RING_SIZE);
  2177. return err;
  2178. }
  2179. int ath_tx_init(struct ath_softc *sc, int nbufs)
  2180. {
  2181. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2182. int error = 0;
  2183. spin_lock_init(&sc->tx.txbuflock);
  2184. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  2185. "tx", nbufs, 1, 1);
  2186. if (error != 0) {
  2187. ath_err(common,
  2188. "Failed to allocate tx descriptors: %d\n", error);
  2189. return error;
  2190. }
  2191. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  2192. "beacon", ATH_BCBUF, 1, 1);
  2193. if (error != 0) {
  2194. ath_err(common,
  2195. "Failed to allocate beacon descriptors: %d\n", error);
  2196. return error;
  2197. }
  2198. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  2199. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  2200. error = ath_tx_edma_init(sc);
  2201. return error;
  2202. }
  2203. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  2204. {
  2205. struct ath_atx_tid *tid;
  2206. struct ath_atx_ac *ac;
  2207. int tidno, acno;
  2208. for (tidno = 0, tid = &an->tid[tidno];
  2209. tidno < IEEE80211_NUM_TIDS;
  2210. tidno++, tid++) {
  2211. tid->an = an;
  2212. tid->tidno = tidno;
  2213. tid->seq_start = tid->seq_next = 0;
  2214. tid->baw_size = WME_MAX_BA;
  2215. tid->baw_head = tid->baw_tail = 0;
  2216. tid->sched = false;
  2217. tid->paused = false;
  2218. tid->active = false;
  2219. __skb_queue_head_init(&tid->buf_q);
  2220. __skb_queue_head_init(&tid->retry_q);
  2221. acno = TID_TO_WME_AC(tidno);
  2222. tid->ac = &an->ac[acno];
  2223. }
  2224. for (acno = 0, ac = &an->ac[acno];
  2225. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  2226. ac->sched = false;
  2227. ac->clear_ps_filter = true;
  2228. ac->txq = sc->tx.txq_map[acno];
  2229. INIT_LIST_HEAD(&ac->tid_q);
  2230. }
  2231. }
  2232. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2233. {
  2234. struct ath_atx_ac *ac;
  2235. struct ath_atx_tid *tid;
  2236. struct ath_txq *txq;
  2237. int tidno;
  2238. for (tidno = 0, tid = &an->tid[tidno];
  2239. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  2240. ac = tid->ac;
  2241. txq = ac->txq;
  2242. ath_txq_lock(sc, txq);
  2243. if (tid->sched) {
  2244. list_del(&tid->list);
  2245. tid->sched = false;
  2246. }
  2247. if (ac->sched) {
  2248. list_del(&ac->list);
  2249. tid->ac->sched = false;
  2250. }
  2251. ath_tid_drain(sc, txq, tid);
  2252. tid->active = false;
  2253. ath_txq_unlock(sc, txq);
  2254. }
  2255. }
  2256. int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
  2257. struct ath_tx_control *txctl)
  2258. {
  2259. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  2260. struct ath_frame_info *fi = get_frame_info(skb);
  2261. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2262. struct ath_buf *bf;
  2263. int padpos, padsize;
  2264. padpos = ieee80211_hdrlen(hdr->frame_control);
  2265. padsize = padpos & 3;
  2266. if (padsize && skb->len > padpos) {
  2267. if (skb_headroom(skb) < padsize) {
  2268. ath_dbg(common, XMIT,
  2269. "tx99 padding failed\n");
  2270. return -EINVAL;
  2271. }
  2272. skb_push(skb, padsize);
  2273. memmove(skb->data, skb->data + padsize, padpos);
  2274. }
  2275. fi->keyix = ATH9K_TXKEYIX_INVALID;
  2276. fi->framelen = skb->len + FCS_LEN;
  2277. fi->keytype = ATH9K_KEY_TYPE_CLEAR;
  2278. bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
  2279. if (!bf) {
  2280. ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
  2281. return -EINVAL;
  2282. }
  2283. ath_set_rates(sc->tx99_vif, NULL, bf);
  2284. ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
  2285. ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
  2286. ath_tx_send_normal(sc, txctl->txq, NULL, skb);
  2287. return 0;
  2288. }