t4_hw.c 119 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/init.h>
  35. #include <linux/delay.h>
  36. #include "cxgb4.h"
  37. #include "t4_regs.h"
  38. #include "t4fw_api.h"
  39. /**
  40. * t4_wait_op_done_val - wait until an operation is completed
  41. * @adapter: the adapter performing the operation
  42. * @reg: the register to check for completion
  43. * @mask: a single-bit field within @reg that indicates completion
  44. * @polarity: the value of the field when the operation is completed
  45. * @attempts: number of check iterations
  46. * @delay: delay in usecs between iterations
  47. * @valp: where to store the value of the register at completion time
  48. *
  49. * Wait until an operation is completed by checking a bit in a register
  50. * up to @attempts times. If @valp is not NULL the value of the register
  51. * at the time it indicated completion is stored there. Returns 0 if the
  52. * operation completes and -EAGAIN otherwise.
  53. */
  54. static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  55. int polarity, int attempts, int delay, u32 *valp)
  56. {
  57. while (1) {
  58. u32 val = t4_read_reg(adapter, reg);
  59. if (!!(val & mask) == polarity) {
  60. if (valp)
  61. *valp = val;
  62. return 0;
  63. }
  64. if (--attempts == 0)
  65. return -EAGAIN;
  66. if (delay)
  67. udelay(delay);
  68. }
  69. }
  70. static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  71. int polarity, int attempts, int delay)
  72. {
  73. return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  74. delay, NULL);
  75. }
  76. /**
  77. * t4_set_reg_field - set a register field to a value
  78. * @adapter: the adapter to program
  79. * @addr: the register address
  80. * @mask: specifies the portion of the register to modify
  81. * @val: the new value for the register field
  82. *
  83. * Sets a register field specified by the supplied mask to the
  84. * given value.
  85. */
  86. void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  87. u32 val)
  88. {
  89. u32 v = t4_read_reg(adapter, addr) & ~mask;
  90. t4_write_reg(adapter, addr, v | val);
  91. (void) t4_read_reg(adapter, addr); /* flush */
  92. }
  93. /**
  94. * t4_read_indirect - read indirectly addressed registers
  95. * @adap: the adapter
  96. * @addr_reg: register holding the indirect address
  97. * @data_reg: register holding the value of the indirect register
  98. * @vals: where the read register values are stored
  99. * @nregs: how many indirect registers to read
  100. * @start_idx: index of first indirect register to read
  101. *
  102. * Reads registers that are accessed indirectly through an address/data
  103. * register pair.
  104. */
  105. void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
  106. unsigned int data_reg, u32 *vals,
  107. unsigned int nregs, unsigned int start_idx)
  108. {
  109. while (nregs--) {
  110. t4_write_reg(adap, addr_reg, start_idx);
  111. *vals++ = t4_read_reg(adap, data_reg);
  112. start_idx++;
  113. }
  114. }
  115. /**
  116. * t4_write_indirect - write indirectly addressed registers
  117. * @adap: the adapter
  118. * @addr_reg: register holding the indirect addresses
  119. * @data_reg: register holding the value for the indirect registers
  120. * @vals: values to write
  121. * @nregs: how many indirect registers to write
  122. * @start_idx: address of first indirect register to write
  123. *
  124. * Writes a sequential block of registers that are accessed indirectly
  125. * through an address/data register pair.
  126. */
  127. void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
  128. unsigned int data_reg, const u32 *vals,
  129. unsigned int nregs, unsigned int start_idx)
  130. {
  131. while (nregs--) {
  132. t4_write_reg(adap, addr_reg, start_idx++);
  133. t4_write_reg(adap, data_reg, *vals++);
  134. }
  135. }
  136. /*
  137. * Get the reply to a mailbox command and store it in @rpl in big-endian order.
  138. */
  139. static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
  140. u32 mbox_addr)
  141. {
  142. for ( ; nflit; nflit--, mbox_addr += 8)
  143. *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
  144. }
  145. /*
  146. * Handle a FW assertion reported in a mailbox.
  147. */
  148. static void fw_asrt(struct adapter *adap, u32 mbox_addr)
  149. {
  150. struct fw_debug_cmd asrt;
  151. get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
  152. dev_alert(adap->pdev_dev,
  153. "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
  154. asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
  155. ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
  156. }
  157. static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
  158. {
  159. dev_err(adap->pdev_dev,
  160. "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
  161. (unsigned long long)t4_read_reg64(adap, data_reg),
  162. (unsigned long long)t4_read_reg64(adap, data_reg + 8),
  163. (unsigned long long)t4_read_reg64(adap, data_reg + 16),
  164. (unsigned long long)t4_read_reg64(adap, data_reg + 24),
  165. (unsigned long long)t4_read_reg64(adap, data_reg + 32),
  166. (unsigned long long)t4_read_reg64(adap, data_reg + 40),
  167. (unsigned long long)t4_read_reg64(adap, data_reg + 48),
  168. (unsigned long long)t4_read_reg64(adap, data_reg + 56));
  169. }
  170. /**
  171. * t4_wr_mbox_meat - send a command to FW through the given mailbox
  172. * @adap: the adapter
  173. * @mbox: index of the mailbox to use
  174. * @cmd: the command to write
  175. * @size: command length in bytes
  176. * @rpl: where to optionally store the reply
  177. * @sleep_ok: if true we may sleep while awaiting command completion
  178. *
  179. * Sends the given command to FW through the selected mailbox and waits
  180. * for the FW to execute the command. If @rpl is not %NULL it is used to
  181. * store the FW's reply to the command. The command and its optional
  182. * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
  183. * to respond. @sleep_ok determines whether we may sleep while awaiting
  184. * the response. If sleeping is allowed we use progressive backoff
  185. * otherwise we spin.
  186. *
  187. * The return value is 0 on success or a negative errno on failure. A
  188. * failure can happen either because we are not able to execute the
  189. * command or FW executes it but signals an error. In the latter case
  190. * the return value is the error code indicated by FW (negated).
  191. */
  192. int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
  193. void *rpl, bool sleep_ok)
  194. {
  195. static const int delay[] = {
  196. 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
  197. };
  198. u32 v;
  199. u64 res;
  200. int i, ms, delay_idx;
  201. const __be64 *p = cmd;
  202. u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
  203. u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
  204. if ((size & 15) || size > MBOX_LEN)
  205. return -EINVAL;
  206. /*
  207. * If the device is off-line, as in EEH, commands will time out.
  208. * Fail them early so we don't waste time waiting.
  209. */
  210. if (adap->pdev->error_state != pci_channel_io_normal)
  211. return -EIO;
  212. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  213. for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
  214. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  215. if (v != MBOX_OWNER_DRV)
  216. return v ? -EBUSY : -ETIMEDOUT;
  217. for (i = 0; i < size; i += 8)
  218. t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
  219. t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
  220. t4_read_reg(adap, ctl_reg); /* flush write */
  221. delay_idx = 0;
  222. ms = delay[0];
  223. for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
  224. if (sleep_ok) {
  225. ms = delay[delay_idx]; /* last element may repeat */
  226. if (delay_idx < ARRAY_SIZE(delay) - 1)
  227. delay_idx++;
  228. msleep(ms);
  229. } else
  230. mdelay(ms);
  231. v = t4_read_reg(adap, ctl_reg);
  232. if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
  233. if (!(v & MBMSGVALID)) {
  234. t4_write_reg(adap, ctl_reg, 0);
  235. continue;
  236. }
  237. res = t4_read_reg64(adap, data_reg);
  238. if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
  239. fw_asrt(adap, data_reg);
  240. res = FW_CMD_RETVAL(EIO);
  241. } else if (rpl)
  242. get_mbox_rpl(adap, rpl, size / 8, data_reg);
  243. if (FW_CMD_RETVAL_GET((int)res))
  244. dump_mbox(adap, mbox, data_reg);
  245. t4_write_reg(adap, ctl_reg, 0);
  246. return -FW_CMD_RETVAL_GET((int)res);
  247. }
  248. }
  249. dump_mbox(adap, mbox, data_reg);
  250. dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
  251. *(const u8 *)cmd, mbox);
  252. return -ETIMEDOUT;
  253. }
  254. /**
  255. * t4_mc_read - read from MC through backdoor accesses
  256. * @adap: the adapter
  257. * @addr: address of first byte requested
  258. * @idx: which MC to access
  259. * @data: 64 bytes of data containing the requested address
  260. * @ecc: where to store the corresponding 64-bit ECC word
  261. *
  262. * Read 64 bytes of data from MC starting at a 64-byte-aligned address
  263. * that covers the requested address @addr. If @parity is not %NULL it
  264. * is assigned the 64-bit ECC word for the read data.
  265. */
  266. int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  267. {
  268. int i;
  269. u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len;
  270. u32 mc_bist_status_rdata, mc_bist_data_pattern;
  271. if (is_t4(adap->params.chip)) {
  272. mc_bist_cmd = MC_BIST_CMD;
  273. mc_bist_cmd_addr = MC_BIST_CMD_ADDR;
  274. mc_bist_cmd_len = MC_BIST_CMD_LEN;
  275. mc_bist_status_rdata = MC_BIST_STATUS_RDATA;
  276. mc_bist_data_pattern = MC_BIST_DATA_PATTERN;
  277. } else {
  278. mc_bist_cmd = MC_REG(MC_P_BIST_CMD, idx);
  279. mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR, idx);
  280. mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN, idx);
  281. mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA, idx);
  282. mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN, idx);
  283. }
  284. if (t4_read_reg(adap, mc_bist_cmd) & START_BIST)
  285. return -EBUSY;
  286. t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU);
  287. t4_write_reg(adap, mc_bist_cmd_len, 64);
  288. t4_write_reg(adap, mc_bist_data_pattern, 0xc);
  289. t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE(1) | START_BIST |
  290. BIST_CMD_GAP(1));
  291. i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST, 0, 10, 1);
  292. if (i)
  293. return i;
  294. #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
  295. for (i = 15; i >= 0; i--)
  296. *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
  297. if (ecc)
  298. *ecc = t4_read_reg64(adap, MC_DATA(16));
  299. #undef MC_DATA
  300. return 0;
  301. }
  302. /**
  303. * t4_edc_read - read from EDC through backdoor accesses
  304. * @adap: the adapter
  305. * @idx: which EDC to access
  306. * @addr: address of first byte requested
  307. * @data: 64 bytes of data containing the requested address
  308. * @ecc: where to store the corresponding 64-bit ECC word
  309. *
  310. * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
  311. * that covers the requested address @addr. If @parity is not %NULL it
  312. * is assigned the 64-bit ECC word for the read data.
  313. */
  314. int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  315. {
  316. int i;
  317. u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len;
  318. u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata;
  319. if (is_t4(adap->params.chip)) {
  320. edc_bist_cmd = EDC_REG(EDC_BIST_CMD, idx);
  321. edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR, idx);
  322. edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN, idx);
  323. edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN,
  324. idx);
  325. edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA,
  326. idx);
  327. } else {
  328. edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD, idx);
  329. edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR, idx);
  330. edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN, idx);
  331. edc_bist_cmd_data_pattern =
  332. EDC_REG_T5(EDC_H_BIST_DATA_PATTERN, idx);
  333. edc_bist_status_rdata =
  334. EDC_REG_T5(EDC_H_BIST_STATUS_RDATA, idx);
  335. }
  336. if (t4_read_reg(adap, edc_bist_cmd) & START_BIST)
  337. return -EBUSY;
  338. t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU);
  339. t4_write_reg(adap, edc_bist_cmd_len, 64);
  340. t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
  341. t4_write_reg(adap, edc_bist_cmd,
  342. BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
  343. i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST, 0, 10, 1);
  344. if (i)
  345. return i;
  346. #define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
  347. for (i = 15; i >= 0; i--)
  348. *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
  349. if (ecc)
  350. *ecc = t4_read_reg64(adap, EDC_DATA(16));
  351. #undef EDC_DATA
  352. return 0;
  353. }
  354. /*
  355. * t4_mem_win_rw - read/write memory through PCIE memory window
  356. * @adap: the adapter
  357. * @addr: address of first byte requested
  358. * @data: MEMWIN0_APERTURE bytes of data containing the requested address
  359. * @dir: direction of transfer 1 => read, 0 => write
  360. *
  361. * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
  362. * MEMWIN0_APERTURE-byte-aligned address that covers the requested
  363. * address @addr.
  364. */
  365. static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir)
  366. {
  367. int i;
  368. u32 win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn);
  369. /*
  370. * Setup offset into PCIE memory window. Address must be a
  371. * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to
  372. * ensure that changes propagate before we attempt to use the new
  373. * values.)
  374. */
  375. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
  376. (addr & ~(MEMWIN0_APERTURE - 1)) | win_pf);
  377. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  378. /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
  379. for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) {
  380. if (dir)
  381. *data++ = (__force __be32) t4_read_reg(adap,
  382. (MEMWIN0_BASE + i));
  383. else
  384. t4_write_reg(adap, (MEMWIN0_BASE + i),
  385. (__force u32) *data++);
  386. }
  387. return 0;
  388. }
  389. /**
  390. * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
  391. * @adap: the adapter
  392. * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
  393. * @addr: address within indicated memory type
  394. * @len: amount of memory to transfer
  395. * @buf: host memory buffer
  396. * @dir: direction of transfer 1 => read, 0 => write
  397. *
  398. * Reads/writes an [almost] arbitrary memory region in the firmware: the
  399. * firmware memory address, length and host buffer must be aligned on
  400. * 32-bit boudaries. The memory is transferred as a raw byte sequence
  401. * from/to the firmware's memory. If this memory contains data
  402. * structures which contain multi-byte integers, it's the callers
  403. * responsibility to perform appropriate byte order conversions.
  404. */
  405. static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len,
  406. __be32 *buf, int dir)
  407. {
  408. u32 pos, start, end, offset, memoffset;
  409. u32 edc_size, mc_size;
  410. int ret = 0;
  411. __be32 *data;
  412. /*
  413. * Argument sanity checks ...
  414. */
  415. if ((addr & 0x3) || (len & 0x3))
  416. return -EINVAL;
  417. data = vmalloc(MEMWIN0_APERTURE);
  418. if (!data)
  419. return -ENOMEM;
  420. /* Offset into the region of memory which is being accessed
  421. * MEM_EDC0 = 0
  422. * MEM_EDC1 = 1
  423. * MEM_MC = 2 -- T4
  424. * MEM_MC0 = 2 -- For T5
  425. * MEM_MC1 = 3 -- For T5
  426. */
  427. edc_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR));
  428. if (mtype != MEM_MC1)
  429. memoffset = (mtype * (edc_size * 1024 * 1024));
  430. else {
  431. mc_size = EXT_MEM_SIZE_GET(t4_read_reg(adap,
  432. MA_EXT_MEMORY_BAR));
  433. memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
  434. }
  435. /* Determine the PCIE_MEM_ACCESS_OFFSET */
  436. addr = addr + memoffset;
  437. /*
  438. * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes
  439. * at a time so we need to round down the start and round up the end.
  440. * We'll start copying out of the first line at (addr - start) a word
  441. * at a time.
  442. */
  443. start = addr & ~(MEMWIN0_APERTURE-1);
  444. end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1);
  445. offset = (addr - start)/sizeof(__be32);
  446. for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) {
  447. /*
  448. * If we're writing, copy the data from the caller's memory
  449. * buffer
  450. */
  451. if (!dir) {
  452. /*
  453. * If we're doing a partial write, then we need to do
  454. * a read-modify-write ...
  455. */
  456. if (offset || len < MEMWIN0_APERTURE) {
  457. ret = t4_mem_win_rw(adap, pos, data, 1);
  458. if (ret)
  459. break;
  460. }
  461. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  462. len > 0) {
  463. data[offset++] = *buf++;
  464. len -= sizeof(__be32);
  465. }
  466. }
  467. /*
  468. * Transfer a block of memory and bail if there's an error.
  469. */
  470. ret = t4_mem_win_rw(adap, pos, data, dir);
  471. if (ret)
  472. break;
  473. /*
  474. * If we're reading, copy the data into the caller's memory
  475. * buffer.
  476. */
  477. if (dir)
  478. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  479. len > 0) {
  480. *buf++ = data[offset++];
  481. len -= sizeof(__be32);
  482. }
  483. }
  484. vfree(data);
  485. return ret;
  486. }
  487. int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len,
  488. __be32 *buf)
  489. {
  490. return t4_memory_rw(adap, mtype, addr, len, buf, 0);
  491. }
  492. #define EEPROM_STAT_ADDR 0x7bfc
  493. #define VPD_BASE 0x400
  494. #define VPD_BASE_OLD 0
  495. #define VPD_LEN 1024
  496. /**
  497. * t4_seeprom_wp - enable/disable EEPROM write protection
  498. * @adapter: the adapter
  499. * @enable: whether to enable or disable write protection
  500. *
  501. * Enables or disables write protection on the serial EEPROM.
  502. */
  503. int t4_seeprom_wp(struct adapter *adapter, bool enable)
  504. {
  505. unsigned int v = enable ? 0xc : 0;
  506. int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
  507. return ret < 0 ? ret : 0;
  508. }
  509. /**
  510. * get_vpd_params - read VPD parameters from VPD EEPROM
  511. * @adapter: adapter to read
  512. * @p: where to store the parameters
  513. *
  514. * Reads card parameters stored in VPD EEPROM.
  515. */
  516. int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  517. {
  518. u32 cclk_param, cclk_val;
  519. int i, ret, addr;
  520. int ec, sn;
  521. u8 *vpd, csum;
  522. unsigned int vpdr_len, kw_offset, id_len;
  523. vpd = vmalloc(VPD_LEN);
  524. if (!vpd)
  525. return -ENOMEM;
  526. ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
  527. if (ret < 0)
  528. goto out;
  529. addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
  530. ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
  531. if (ret < 0)
  532. goto out;
  533. if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
  534. dev_err(adapter->pdev_dev, "missing VPD ID string\n");
  535. ret = -EINVAL;
  536. goto out;
  537. }
  538. id_len = pci_vpd_lrdt_size(vpd);
  539. if (id_len > ID_LEN)
  540. id_len = ID_LEN;
  541. i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  542. if (i < 0) {
  543. dev_err(adapter->pdev_dev, "missing VPD-R section\n");
  544. ret = -EINVAL;
  545. goto out;
  546. }
  547. vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
  548. kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
  549. if (vpdr_len + kw_offset > VPD_LEN) {
  550. dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
  551. ret = -EINVAL;
  552. goto out;
  553. }
  554. #define FIND_VPD_KW(var, name) do { \
  555. var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
  556. if (var < 0) { \
  557. dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
  558. ret = -EINVAL; \
  559. goto out; \
  560. } \
  561. var += PCI_VPD_INFO_FLD_HDR_SIZE; \
  562. } while (0)
  563. FIND_VPD_KW(i, "RV");
  564. for (csum = 0; i >= 0; i--)
  565. csum += vpd[i];
  566. if (csum) {
  567. dev_err(adapter->pdev_dev,
  568. "corrupted VPD EEPROM, actual csum %u\n", csum);
  569. ret = -EINVAL;
  570. goto out;
  571. }
  572. FIND_VPD_KW(ec, "EC");
  573. FIND_VPD_KW(sn, "SN");
  574. #undef FIND_VPD_KW
  575. memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
  576. strim(p->id);
  577. memcpy(p->ec, vpd + ec, EC_LEN);
  578. strim(p->ec);
  579. i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
  580. memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
  581. strim(p->sn);
  582. /*
  583. * Ask firmware for the Core Clock since it knows how to translate the
  584. * Reference Clock ('V2') VPD field into a Core Clock value ...
  585. */
  586. cclk_param = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
  587. FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
  588. ret = t4_query_params(adapter, adapter->mbox, 0, 0,
  589. 1, &cclk_param, &cclk_val);
  590. out:
  591. vfree(vpd);
  592. if (ret)
  593. return ret;
  594. p->cclk = cclk_val;
  595. return 0;
  596. }
  597. /* serial flash and firmware constants */
  598. enum {
  599. SF_ATTEMPTS = 10, /* max retries for SF operations */
  600. /* flash command opcodes */
  601. SF_PROG_PAGE = 2, /* program page */
  602. SF_WR_DISABLE = 4, /* disable writes */
  603. SF_RD_STATUS = 5, /* read status register */
  604. SF_WR_ENABLE = 6, /* enable writes */
  605. SF_RD_DATA_FAST = 0xb, /* read flash */
  606. SF_RD_ID = 0x9f, /* read ID */
  607. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  608. FW_MAX_SIZE = 512 * 1024,
  609. };
  610. /**
  611. * sf1_read - read data from the serial flash
  612. * @adapter: the adapter
  613. * @byte_cnt: number of bytes to read
  614. * @cont: whether another operation will be chained
  615. * @lock: whether to lock SF for PL access only
  616. * @valp: where to store the read data
  617. *
  618. * Reads up to 4 bytes of data from the serial flash. The location of
  619. * the read needs to be specified prior to calling this by issuing the
  620. * appropriate commands to the serial flash.
  621. */
  622. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  623. int lock, u32 *valp)
  624. {
  625. int ret;
  626. if (!byte_cnt || byte_cnt > 4)
  627. return -EINVAL;
  628. if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
  629. return -EBUSY;
  630. cont = cont ? SF_CONT : 0;
  631. lock = lock ? SF_LOCK : 0;
  632. t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
  633. ret = t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
  634. if (!ret)
  635. *valp = t4_read_reg(adapter, SF_DATA);
  636. return ret;
  637. }
  638. /**
  639. * sf1_write - write data to the serial flash
  640. * @adapter: the adapter
  641. * @byte_cnt: number of bytes to write
  642. * @cont: whether another operation will be chained
  643. * @lock: whether to lock SF for PL access only
  644. * @val: value to write
  645. *
  646. * Writes up to 4 bytes of data to the serial flash. The location of
  647. * the write needs to be specified prior to calling this by issuing the
  648. * appropriate commands to the serial flash.
  649. */
  650. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  651. int lock, u32 val)
  652. {
  653. if (!byte_cnt || byte_cnt > 4)
  654. return -EINVAL;
  655. if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
  656. return -EBUSY;
  657. cont = cont ? SF_CONT : 0;
  658. lock = lock ? SF_LOCK : 0;
  659. t4_write_reg(adapter, SF_DATA, val);
  660. t4_write_reg(adapter, SF_OP, lock |
  661. cont | BYTECNT(byte_cnt - 1) | OP_WR);
  662. return t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
  663. }
  664. /**
  665. * flash_wait_op - wait for a flash operation to complete
  666. * @adapter: the adapter
  667. * @attempts: max number of polls of the status register
  668. * @delay: delay between polls in ms
  669. *
  670. * Wait for a flash operation to complete by polling the status register.
  671. */
  672. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  673. {
  674. int ret;
  675. u32 status;
  676. while (1) {
  677. if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
  678. (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
  679. return ret;
  680. if (!(status & 1))
  681. return 0;
  682. if (--attempts == 0)
  683. return -EAGAIN;
  684. if (delay)
  685. msleep(delay);
  686. }
  687. }
  688. /**
  689. * t4_read_flash - read words from serial flash
  690. * @adapter: the adapter
  691. * @addr: the start address for the read
  692. * @nwords: how many 32-bit words to read
  693. * @data: where to store the read data
  694. * @byte_oriented: whether to store data as bytes or as words
  695. *
  696. * Read the specified number of 32-bit words from the serial flash.
  697. * If @byte_oriented is set the read data is stored as a byte array
  698. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  699. * natural endianess.
  700. */
  701. static int t4_read_flash(struct adapter *adapter, unsigned int addr,
  702. unsigned int nwords, u32 *data, int byte_oriented)
  703. {
  704. int ret;
  705. if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
  706. return -EINVAL;
  707. addr = swab32(addr) | SF_RD_DATA_FAST;
  708. if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
  709. (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
  710. return ret;
  711. for ( ; nwords; nwords--, data++) {
  712. ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
  713. if (nwords == 1)
  714. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  715. if (ret)
  716. return ret;
  717. if (byte_oriented)
  718. *data = (__force __u32) (htonl(*data));
  719. }
  720. return 0;
  721. }
  722. /**
  723. * t4_write_flash - write up to a page of data to the serial flash
  724. * @adapter: the adapter
  725. * @addr: the start address to write
  726. * @n: length of data to write in bytes
  727. * @data: the data to write
  728. *
  729. * Writes up to a page of data (256 bytes) to the serial flash starting
  730. * at the given address. All the data must be written to the same page.
  731. */
  732. static int t4_write_flash(struct adapter *adapter, unsigned int addr,
  733. unsigned int n, const u8 *data)
  734. {
  735. int ret;
  736. u32 buf[64];
  737. unsigned int i, c, left, val, offset = addr & 0xff;
  738. if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
  739. return -EINVAL;
  740. val = swab32(addr) | SF_PROG_PAGE;
  741. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  742. (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
  743. goto unlock;
  744. for (left = n; left; left -= c) {
  745. c = min(left, 4U);
  746. for (val = 0, i = 0; i < c; ++i)
  747. val = (val << 8) + *data++;
  748. ret = sf1_write(adapter, c, c != left, 1, val);
  749. if (ret)
  750. goto unlock;
  751. }
  752. ret = flash_wait_op(adapter, 8, 1);
  753. if (ret)
  754. goto unlock;
  755. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  756. /* Read the page to verify the write succeeded */
  757. ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  758. if (ret)
  759. return ret;
  760. if (memcmp(data - n, (u8 *)buf + offset, n)) {
  761. dev_err(adapter->pdev_dev,
  762. "failed to correctly write the flash page at %#x\n",
  763. addr);
  764. return -EIO;
  765. }
  766. return 0;
  767. unlock:
  768. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  769. return ret;
  770. }
  771. /**
  772. * t4_get_fw_version - read the firmware version
  773. * @adapter: the adapter
  774. * @vers: where to place the version
  775. *
  776. * Reads the FW version from flash.
  777. */
  778. int t4_get_fw_version(struct adapter *adapter, u32 *vers)
  779. {
  780. return t4_read_flash(adapter, FLASH_FW_START +
  781. offsetof(struct fw_hdr, fw_ver), 1,
  782. vers, 0);
  783. }
  784. /**
  785. * t4_get_tp_version - read the TP microcode version
  786. * @adapter: the adapter
  787. * @vers: where to place the version
  788. *
  789. * Reads the TP microcode version from flash.
  790. */
  791. int t4_get_tp_version(struct adapter *adapter, u32 *vers)
  792. {
  793. return t4_read_flash(adapter, FLASH_FW_START +
  794. offsetof(struct fw_hdr, tp_microcode_ver),
  795. 1, vers, 0);
  796. }
  797. /* Is the given firmware API compatible with the one the driver was compiled
  798. * with?
  799. */
  800. static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
  801. {
  802. /* short circuit if it's the exact same firmware version */
  803. if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
  804. return 1;
  805. #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
  806. if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
  807. SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
  808. return 1;
  809. #undef SAME_INTF
  810. return 0;
  811. }
  812. /* The firmware in the filesystem is usable, but should it be installed?
  813. * This routine explains itself in detail if it indicates the filesystem
  814. * firmware should be installed.
  815. */
  816. static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
  817. int k, int c)
  818. {
  819. const char *reason;
  820. if (!card_fw_usable) {
  821. reason = "incompatible or unusable";
  822. goto install;
  823. }
  824. if (k > c) {
  825. reason = "older than the version supported with this driver";
  826. goto install;
  827. }
  828. return 0;
  829. install:
  830. dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
  831. "installing firmware %u.%u.%u.%u on card.\n",
  832. FW_HDR_FW_VER_MAJOR_GET(c), FW_HDR_FW_VER_MINOR_GET(c),
  833. FW_HDR_FW_VER_MICRO_GET(c), FW_HDR_FW_VER_BUILD_GET(c), reason,
  834. FW_HDR_FW_VER_MAJOR_GET(k), FW_HDR_FW_VER_MINOR_GET(k),
  835. FW_HDR_FW_VER_MICRO_GET(k), FW_HDR_FW_VER_BUILD_GET(k));
  836. return 1;
  837. }
  838. int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
  839. const u8 *fw_data, unsigned int fw_size,
  840. struct fw_hdr *card_fw, enum dev_state state,
  841. int *reset)
  842. {
  843. int ret, card_fw_usable, fs_fw_usable;
  844. const struct fw_hdr *fs_fw;
  845. const struct fw_hdr *drv_fw;
  846. drv_fw = &fw_info->fw_hdr;
  847. /* Read the header of the firmware on the card */
  848. ret = -t4_read_flash(adap, FLASH_FW_START,
  849. sizeof(*card_fw) / sizeof(uint32_t),
  850. (uint32_t *)card_fw, 1);
  851. if (ret == 0) {
  852. card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
  853. } else {
  854. dev_err(adap->pdev_dev,
  855. "Unable to read card's firmware header: %d\n", ret);
  856. card_fw_usable = 0;
  857. }
  858. if (fw_data != NULL) {
  859. fs_fw = (const void *)fw_data;
  860. fs_fw_usable = fw_compatible(drv_fw, fs_fw);
  861. } else {
  862. fs_fw = NULL;
  863. fs_fw_usable = 0;
  864. }
  865. if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
  866. (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
  867. /* Common case: the firmware on the card is an exact match and
  868. * the filesystem one is an exact match too, or the filesystem
  869. * one is absent/incompatible.
  870. */
  871. } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
  872. should_install_fs_fw(adap, card_fw_usable,
  873. be32_to_cpu(fs_fw->fw_ver),
  874. be32_to_cpu(card_fw->fw_ver))) {
  875. ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
  876. fw_size, 0);
  877. if (ret != 0) {
  878. dev_err(adap->pdev_dev,
  879. "failed to install firmware: %d\n", ret);
  880. goto bye;
  881. }
  882. /* Installed successfully, update the cached header too. */
  883. memcpy(card_fw, fs_fw, sizeof(*card_fw));
  884. card_fw_usable = 1;
  885. *reset = 0; /* already reset as part of load_fw */
  886. }
  887. if (!card_fw_usable) {
  888. uint32_t d, c, k;
  889. d = be32_to_cpu(drv_fw->fw_ver);
  890. c = be32_to_cpu(card_fw->fw_ver);
  891. k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
  892. dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
  893. "chip state %d, "
  894. "driver compiled with %d.%d.%d.%d, "
  895. "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
  896. state,
  897. FW_HDR_FW_VER_MAJOR_GET(d), FW_HDR_FW_VER_MINOR_GET(d),
  898. FW_HDR_FW_VER_MICRO_GET(d), FW_HDR_FW_VER_BUILD_GET(d),
  899. FW_HDR_FW_VER_MAJOR_GET(c), FW_HDR_FW_VER_MINOR_GET(c),
  900. FW_HDR_FW_VER_MICRO_GET(c), FW_HDR_FW_VER_BUILD_GET(c),
  901. FW_HDR_FW_VER_MAJOR_GET(k), FW_HDR_FW_VER_MINOR_GET(k),
  902. FW_HDR_FW_VER_MICRO_GET(k), FW_HDR_FW_VER_BUILD_GET(k));
  903. ret = EINVAL;
  904. goto bye;
  905. }
  906. /* We're using whatever's on the card and it's known to be good. */
  907. adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
  908. adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
  909. bye:
  910. return ret;
  911. }
  912. /**
  913. * t4_flash_erase_sectors - erase a range of flash sectors
  914. * @adapter: the adapter
  915. * @start: the first sector to erase
  916. * @end: the last sector to erase
  917. *
  918. * Erases the sectors in the given inclusive range.
  919. */
  920. static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
  921. {
  922. int ret = 0;
  923. while (start <= end) {
  924. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  925. (ret = sf1_write(adapter, 4, 0, 1,
  926. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  927. (ret = flash_wait_op(adapter, 14, 500)) != 0) {
  928. dev_err(adapter->pdev_dev,
  929. "erase of flash sector %d failed, error %d\n",
  930. start, ret);
  931. break;
  932. }
  933. start++;
  934. }
  935. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  936. return ret;
  937. }
  938. /**
  939. * t4_flash_cfg_addr - return the address of the flash configuration file
  940. * @adapter: the adapter
  941. *
  942. * Return the address within the flash where the Firmware Configuration
  943. * File is stored.
  944. */
  945. unsigned int t4_flash_cfg_addr(struct adapter *adapter)
  946. {
  947. if (adapter->params.sf_size == 0x100000)
  948. return FLASH_FPGA_CFG_START;
  949. else
  950. return FLASH_CFG_START;
  951. }
  952. /**
  953. * t4_load_cfg - download config file
  954. * @adap: the adapter
  955. * @cfg_data: the cfg text file to write
  956. * @size: text file size
  957. *
  958. * Write the supplied config text file to the card's serial flash.
  959. */
  960. int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
  961. {
  962. int ret, i, n;
  963. unsigned int addr;
  964. unsigned int flash_cfg_start_sec;
  965. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  966. addr = t4_flash_cfg_addr(adap);
  967. flash_cfg_start_sec = addr / SF_SEC_SIZE;
  968. if (size > FLASH_CFG_MAX_SIZE) {
  969. dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
  970. FLASH_CFG_MAX_SIZE);
  971. return -EFBIG;
  972. }
  973. i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */
  974. sf_sec_size);
  975. ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
  976. flash_cfg_start_sec + i - 1);
  977. /*
  978. * If size == 0 then we're simply erasing the FLASH sectors associated
  979. * with the on-adapter Firmware Configuration File.
  980. */
  981. if (ret || size == 0)
  982. goto out;
  983. /* this will write to the flash up to SF_PAGE_SIZE at a time */
  984. for (i = 0; i < size; i += SF_PAGE_SIZE) {
  985. if ((size - i) < SF_PAGE_SIZE)
  986. n = size - i;
  987. else
  988. n = SF_PAGE_SIZE;
  989. ret = t4_write_flash(adap, addr, n, cfg_data);
  990. if (ret)
  991. goto out;
  992. addr += SF_PAGE_SIZE;
  993. cfg_data += SF_PAGE_SIZE;
  994. }
  995. out:
  996. if (ret)
  997. dev_err(adap->pdev_dev, "config file %s failed %d\n",
  998. (size == 0 ? "clear" : "download"), ret);
  999. return ret;
  1000. }
  1001. /**
  1002. * t4_load_fw - download firmware
  1003. * @adap: the adapter
  1004. * @fw_data: the firmware image to write
  1005. * @size: image size
  1006. *
  1007. * Write the supplied firmware image to the card's serial flash.
  1008. */
  1009. int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
  1010. {
  1011. u32 csum;
  1012. int ret, addr;
  1013. unsigned int i;
  1014. u8 first_page[SF_PAGE_SIZE];
  1015. const __be32 *p = (const __be32 *)fw_data;
  1016. const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
  1017. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  1018. unsigned int fw_img_start = adap->params.sf_fw_start;
  1019. unsigned int fw_start_sec = fw_img_start / sf_sec_size;
  1020. if (!size) {
  1021. dev_err(adap->pdev_dev, "FW image has no data\n");
  1022. return -EINVAL;
  1023. }
  1024. if (size & 511) {
  1025. dev_err(adap->pdev_dev,
  1026. "FW image size not multiple of 512 bytes\n");
  1027. return -EINVAL;
  1028. }
  1029. if (ntohs(hdr->len512) * 512 != size) {
  1030. dev_err(adap->pdev_dev,
  1031. "FW image size differs from size in FW header\n");
  1032. return -EINVAL;
  1033. }
  1034. if (size > FW_MAX_SIZE) {
  1035. dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
  1036. FW_MAX_SIZE);
  1037. return -EFBIG;
  1038. }
  1039. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  1040. csum += ntohl(p[i]);
  1041. if (csum != 0xffffffff) {
  1042. dev_err(adap->pdev_dev,
  1043. "corrupted firmware image, checksum %#x\n", csum);
  1044. return -EINVAL;
  1045. }
  1046. i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
  1047. ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
  1048. if (ret)
  1049. goto out;
  1050. /*
  1051. * We write the correct version at the end so the driver can see a bad
  1052. * version if the FW write fails. Start by writing a copy of the
  1053. * first page with a bad version.
  1054. */
  1055. memcpy(first_page, fw_data, SF_PAGE_SIZE);
  1056. ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
  1057. ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
  1058. if (ret)
  1059. goto out;
  1060. addr = fw_img_start;
  1061. for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
  1062. addr += SF_PAGE_SIZE;
  1063. fw_data += SF_PAGE_SIZE;
  1064. ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
  1065. if (ret)
  1066. goto out;
  1067. }
  1068. ret = t4_write_flash(adap,
  1069. fw_img_start + offsetof(struct fw_hdr, fw_ver),
  1070. sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
  1071. out:
  1072. if (ret)
  1073. dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
  1074. ret);
  1075. return ret;
  1076. }
  1077. #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
  1078. FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
  1079. /**
  1080. * t4_link_start - apply link configuration to MAC/PHY
  1081. * @phy: the PHY to setup
  1082. * @mac: the MAC to setup
  1083. * @lc: the requested link configuration
  1084. *
  1085. * Set up a port's MAC and PHY according to a desired link configuration.
  1086. * - If the PHY can auto-negotiate first decide what to advertise, then
  1087. * enable/disable auto-negotiation as desired, and reset.
  1088. * - If the PHY does not auto-negotiate just reset it.
  1089. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1090. * otherwise do it later based on the outcome of auto-negotiation.
  1091. */
  1092. int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
  1093. struct link_config *lc)
  1094. {
  1095. struct fw_port_cmd c;
  1096. unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
  1097. lc->link_ok = 0;
  1098. if (lc->requested_fc & PAUSE_RX)
  1099. fc |= FW_PORT_CAP_FC_RX;
  1100. if (lc->requested_fc & PAUSE_TX)
  1101. fc |= FW_PORT_CAP_FC_TX;
  1102. memset(&c, 0, sizeof(c));
  1103. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  1104. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  1105. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  1106. FW_LEN16(c));
  1107. if (!(lc->supported & FW_PORT_CAP_ANEG)) {
  1108. c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
  1109. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1110. } else if (lc->autoneg == AUTONEG_DISABLE) {
  1111. c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
  1112. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1113. } else
  1114. c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
  1115. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1116. }
  1117. /**
  1118. * t4_restart_aneg - restart autonegotiation
  1119. * @adap: the adapter
  1120. * @mbox: mbox to use for the FW command
  1121. * @port: the port id
  1122. *
  1123. * Restarts autonegotiation for the selected port.
  1124. */
  1125. int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
  1126. {
  1127. struct fw_port_cmd c;
  1128. memset(&c, 0, sizeof(c));
  1129. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  1130. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  1131. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  1132. FW_LEN16(c));
  1133. c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
  1134. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1135. }
  1136. typedef void (*int_handler_t)(struct adapter *adap);
  1137. struct intr_info {
  1138. unsigned int mask; /* bits to check in interrupt status */
  1139. const char *msg; /* message to print or NULL */
  1140. short stat_idx; /* stat counter to increment or -1 */
  1141. unsigned short fatal; /* whether the condition reported is fatal */
  1142. int_handler_t int_handler; /* platform-specific int handler */
  1143. };
  1144. /**
  1145. * t4_handle_intr_status - table driven interrupt handler
  1146. * @adapter: the adapter that generated the interrupt
  1147. * @reg: the interrupt status register to process
  1148. * @acts: table of interrupt actions
  1149. *
  1150. * A table driven interrupt handler that applies a set of masks to an
  1151. * interrupt status word and performs the corresponding actions if the
  1152. * interrupts described by the mask have occurred. The actions include
  1153. * optionally emitting a warning or alert message. The table is terminated
  1154. * by an entry specifying mask 0. Returns the number of fatal interrupt
  1155. * conditions.
  1156. */
  1157. static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1158. const struct intr_info *acts)
  1159. {
  1160. int fatal = 0;
  1161. unsigned int mask = 0;
  1162. unsigned int status = t4_read_reg(adapter, reg);
  1163. for ( ; acts->mask; ++acts) {
  1164. if (!(status & acts->mask))
  1165. continue;
  1166. if (acts->fatal) {
  1167. fatal++;
  1168. dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1169. status & acts->mask);
  1170. } else if (acts->msg && printk_ratelimit())
  1171. dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1172. status & acts->mask);
  1173. if (acts->int_handler)
  1174. acts->int_handler(adapter);
  1175. mask |= acts->mask;
  1176. }
  1177. status &= mask;
  1178. if (status) /* clear processed interrupts */
  1179. t4_write_reg(adapter, reg, status);
  1180. return fatal;
  1181. }
  1182. /*
  1183. * Interrupt handler for the PCIE module.
  1184. */
  1185. static void pcie_intr_handler(struct adapter *adapter)
  1186. {
  1187. static const struct intr_info sysbus_intr_info[] = {
  1188. { RNPP, "RXNP array parity error", -1, 1 },
  1189. { RPCP, "RXPC array parity error", -1, 1 },
  1190. { RCIP, "RXCIF array parity error", -1, 1 },
  1191. { RCCP, "Rx completions control array parity error", -1, 1 },
  1192. { RFTP, "RXFT array parity error", -1, 1 },
  1193. { 0 }
  1194. };
  1195. static const struct intr_info pcie_port_intr_info[] = {
  1196. { TPCP, "TXPC array parity error", -1, 1 },
  1197. { TNPP, "TXNP array parity error", -1, 1 },
  1198. { TFTP, "TXFT array parity error", -1, 1 },
  1199. { TCAP, "TXCA array parity error", -1, 1 },
  1200. { TCIP, "TXCIF array parity error", -1, 1 },
  1201. { RCAP, "RXCA array parity error", -1, 1 },
  1202. { OTDD, "outbound request TLP discarded", -1, 1 },
  1203. { RDPE, "Rx data parity error", -1, 1 },
  1204. { TDUE, "Tx uncorrectable data error", -1, 1 },
  1205. { 0 }
  1206. };
  1207. static const struct intr_info pcie_intr_info[] = {
  1208. { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
  1209. { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
  1210. { MSIDATAPERR, "MSI data parity error", -1, 1 },
  1211. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  1212. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  1213. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  1214. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  1215. { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
  1216. { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
  1217. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  1218. { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
  1219. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  1220. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  1221. { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
  1222. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  1223. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  1224. { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
  1225. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  1226. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  1227. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  1228. { FIDPERR, "PCI FID parity error", -1, 1 },
  1229. { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
  1230. { MATAGPERR, "PCI MA tag parity error", -1, 1 },
  1231. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  1232. { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
  1233. { RXWRPERR, "PCI Rx write parity error", -1, 1 },
  1234. { RPLPERR, "PCI replay buffer parity error", -1, 1 },
  1235. { PCIESINT, "PCI core secondary fault", -1, 1 },
  1236. { PCIEPINT, "PCI core primary fault", -1, 1 },
  1237. { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
  1238. { 0 }
  1239. };
  1240. static struct intr_info t5_pcie_intr_info[] = {
  1241. { MSTGRPPERR, "Master Response Read Queue parity error",
  1242. -1, 1 },
  1243. { MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
  1244. { MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
  1245. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  1246. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  1247. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  1248. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  1249. { PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
  1250. -1, 1 },
  1251. { PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
  1252. -1, 1 },
  1253. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  1254. { MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
  1255. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  1256. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  1257. { DREQWRPERR, "PCI DMA channel write request parity error",
  1258. -1, 1 },
  1259. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  1260. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  1261. { HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
  1262. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  1263. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  1264. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  1265. { FIDPERR, "PCI FID parity error", -1, 1 },
  1266. { VFIDPERR, "PCI INTx clear parity error", -1, 1 },
  1267. { MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
  1268. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  1269. { IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
  1270. -1, 1 },
  1271. { IPRXDATAGRPPERR, "PCI IP Rx data group parity error", -1, 1 },
  1272. { RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
  1273. { IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
  1274. { TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
  1275. { READRSPERR, "Outbound read error", -1, 0 },
  1276. { 0 }
  1277. };
  1278. int fat;
  1279. fat = t4_handle_intr_status(adapter,
  1280. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  1281. sysbus_intr_info) +
  1282. t4_handle_intr_status(adapter,
  1283. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  1284. pcie_port_intr_info) +
  1285. t4_handle_intr_status(adapter, PCIE_INT_CAUSE,
  1286. is_t4(adapter->params.chip) ?
  1287. pcie_intr_info : t5_pcie_intr_info);
  1288. if (fat)
  1289. t4_fatal_err(adapter);
  1290. }
  1291. /*
  1292. * TP interrupt handler.
  1293. */
  1294. static void tp_intr_handler(struct adapter *adapter)
  1295. {
  1296. static const struct intr_info tp_intr_info[] = {
  1297. { 0x3fffffff, "TP parity error", -1, 1 },
  1298. { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
  1299. { 0 }
  1300. };
  1301. if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
  1302. t4_fatal_err(adapter);
  1303. }
  1304. /*
  1305. * SGE interrupt handler.
  1306. */
  1307. static void sge_intr_handler(struct adapter *adapter)
  1308. {
  1309. u64 v;
  1310. static const struct intr_info sge_intr_info[] = {
  1311. { ERR_CPL_EXCEED_IQE_SIZE,
  1312. "SGE received CPL exceeding IQE size", -1, 1 },
  1313. { ERR_INVALID_CIDX_INC,
  1314. "SGE GTS CIDX increment too large", -1, 0 },
  1315. { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
  1316. { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
  1317. { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
  1318. { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
  1319. { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
  1320. "SGE IQID > 1023 received CPL for FL", -1, 0 },
  1321. { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
  1322. 0 },
  1323. { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
  1324. 0 },
  1325. { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
  1326. 0 },
  1327. { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
  1328. 0 },
  1329. { ERR_ING_CTXT_PRIO,
  1330. "SGE too many priority ingress contexts", -1, 0 },
  1331. { ERR_EGR_CTXT_PRIO,
  1332. "SGE too many priority egress contexts", -1, 0 },
  1333. { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
  1334. { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
  1335. { 0 }
  1336. };
  1337. v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
  1338. ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
  1339. if (v) {
  1340. dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
  1341. (unsigned long long)v);
  1342. t4_write_reg(adapter, SGE_INT_CAUSE1, v);
  1343. t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
  1344. }
  1345. if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
  1346. v != 0)
  1347. t4_fatal_err(adapter);
  1348. }
  1349. /*
  1350. * CIM interrupt handler.
  1351. */
  1352. static void cim_intr_handler(struct adapter *adapter)
  1353. {
  1354. static const struct intr_info cim_intr_info[] = {
  1355. { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
  1356. { OBQPARERR, "CIM OBQ parity error", -1, 1 },
  1357. { IBQPARERR, "CIM IBQ parity error", -1, 1 },
  1358. { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
  1359. { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
  1360. { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
  1361. { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
  1362. { 0 }
  1363. };
  1364. static const struct intr_info cim_upintr_info[] = {
  1365. { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
  1366. { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
  1367. { ILLWRINT, "CIM illegal write", -1, 1 },
  1368. { ILLRDINT, "CIM illegal read", -1, 1 },
  1369. { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
  1370. { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
  1371. { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
  1372. { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
  1373. { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
  1374. { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
  1375. { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
  1376. { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
  1377. { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
  1378. { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
  1379. { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
  1380. { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
  1381. { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
  1382. { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
  1383. { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
  1384. { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
  1385. { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
  1386. { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
  1387. { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
  1388. { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
  1389. { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
  1390. { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
  1391. { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
  1392. { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
  1393. { 0 }
  1394. };
  1395. int fat;
  1396. fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
  1397. cim_intr_info) +
  1398. t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
  1399. cim_upintr_info);
  1400. if (fat)
  1401. t4_fatal_err(adapter);
  1402. }
  1403. /*
  1404. * ULP RX interrupt handler.
  1405. */
  1406. static void ulprx_intr_handler(struct adapter *adapter)
  1407. {
  1408. static const struct intr_info ulprx_intr_info[] = {
  1409. { 0x1800000, "ULPRX context error", -1, 1 },
  1410. { 0x7fffff, "ULPRX parity error", -1, 1 },
  1411. { 0 }
  1412. };
  1413. if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
  1414. t4_fatal_err(adapter);
  1415. }
  1416. /*
  1417. * ULP TX interrupt handler.
  1418. */
  1419. static void ulptx_intr_handler(struct adapter *adapter)
  1420. {
  1421. static const struct intr_info ulptx_intr_info[] = {
  1422. { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
  1423. 0 },
  1424. { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
  1425. 0 },
  1426. { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
  1427. 0 },
  1428. { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
  1429. 0 },
  1430. { 0xfffffff, "ULPTX parity error", -1, 1 },
  1431. { 0 }
  1432. };
  1433. if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
  1434. t4_fatal_err(adapter);
  1435. }
  1436. /*
  1437. * PM TX interrupt handler.
  1438. */
  1439. static void pmtx_intr_handler(struct adapter *adapter)
  1440. {
  1441. static const struct intr_info pmtx_intr_info[] = {
  1442. { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
  1443. { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
  1444. { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
  1445. { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
  1446. { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
  1447. { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
  1448. { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
  1449. { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
  1450. { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
  1451. { 0 }
  1452. };
  1453. if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
  1454. t4_fatal_err(adapter);
  1455. }
  1456. /*
  1457. * PM RX interrupt handler.
  1458. */
  1459. static void pmrx_intr_handler(struct adapter *adapter)
  1460. {
  1461. static const struct intr_info pmrx_intr_info[] = {
  1462. { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
  1463. { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
  1464. { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
  1465. { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
  1466. { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
  1467. { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
  1468. { 0 }
  1469. };
  1470. if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
  1471. t4_fatal_err(adapter);
  1472. }
  1473. /*
  1474. * CPL switch interrupt handler.
  1475. */
  1476. static void cplsw_intr_handler(struct adapter *adapter)
  1477. {
  1478. static const struct intr_info cplsw_intr_info[] = {
  1479. { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
  1480. { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
  1481. { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
  1482. { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
  1483. { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
  1484. { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
  1485. { 0 }
  1486. };
  1487. if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
  1488. t4_fatal_err(adapter);
  1489. }
  1490. /*
  1491. * LE interrupt handler.
  1492. */
  1493. static void le_intr_handler(struct adapter *adap)
  1494. {
  1495. static const struct intr_info le_intr_info[] = {
  1496. { LIPMISS, "LE LIP miss", -1, 0 },
  1497. { LIP0, "LE 0 LIP error", -1, 0 },
  1498. { PARITYERR, "LE parity error", -1, 1 },
  1499. { UNKNOWNCMD, "LE unknown command", -1, 1 },
  1500. { REQQPARERR, "LE request queue parity error", -1, 1 },
  1501. { 0 }
  1502. };
  1503. if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
  1504. t4_fatal_err(adap);
  1505. }
  1506. /*
  1507. * MPS interrupt handler.
  1508. */
  1509. static void mps_intr_handler(struct adapter *adapter)
  1510. {
  1511. static const struct intr_info mps_rx_intr_info[] = {
  1512. { 0xffffff, "MPS Rx parity error", -1, 1 },
  1513. { 0 }
  1514. };
  1515. static const struct intr_info mps_tx_intr_info[] = {
  1516. { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
  1517. { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
  1518. { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
  1519. { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
  1520. { BUBBLE, "MPS Tx underflow", -1, 1 },
  1521. { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
  1522. { FRMERR, "MPS Tx framing error", -1, 1 },
  1523. { 0 }
  1524. };
  1525. static const struct intr_info mps_trc_intr_info[] = {
  1526. { FILTMEM, "MPS TRC filter parity error", -1, 1 },
  1527. { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
  1528. { MISCPERR, "MPS TRC misc parity error", -1, 1 },
  1529. { 0 }
  1530. };
  1531. static const struct intr_info mps_stat_sram_intr_info[] = {
  1532. { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
  1533. { 0 }
  1534. };
  1535. static const struct intr_info mps_stat_tx_intr_info[] = {
  1536. { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
  1537. { 0 }
  1538. };
  1539. static const struct intr_info mps_stat_rx_intr_info[] = {
  1540. { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
  1541. { 0 }
  1542. };
  1543. static const struct intr_info mps_cls_intr_info[] = {
  1544. { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
  1545. { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
  1546. { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
  1547. { 0 }
  1548. };
  1549. int fat;
  1550. fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
  1551. mps_rx_intr_info) +
  1552. t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
  1553. mps_tx_intr_info) +
  1554. t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
  1555. mps_trc_intr_info) +
  1556. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
  1557. mps_stat_sram_intr_info) +
  1558. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
  1559. mps_stat_tx_intr_info) +
  1560. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
  1561. mps_stat_rx_intr_info) +
  1562. t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
  1563. mps_cls_intr_info);
  1564. t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
  1565. RXINT | TXINT | STATINT);
  1566. t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
  1567. if (fat)
  1568. t4_fatal_err(adapter);
  1569. }
  1570. #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
  1571. /*
  1572. * EDC/MC interrupt handler.
  1573. */
  1574. static void mem_intr_handler(struct adapter *adapter, int idx)
  1575. {
  1576. static const char name[3][5] = { "EDC0", "EDC1", "MC" };
  1577. unsigned int addr, cnt_addr, v;
  1578. if (idx <= MEM_EDC1) {
  1579. addr = EDC_REG(EDC_INT_CAUSE, idx);
  1580. cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
  1581. } else {
  1582. addr = MC_INT_CAUSE;
  1583. cnt_addr = MC_ECC_STATUS;
  1584. }
  1585. v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
  1586. if (v & PERR_INT_CAUSE)
  1587. dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
  1588. name[idx]);
  1589. if (v & ECC_CE_INT_CAUSE) {
  1590. u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
  1591. t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
  1592. if (printk_ratelimit())
  1593. dev_warn(adapter->pdev_dev,
  1594. "%u %s correctable ECC data error%s\n",
  1595. cnt, name[idx], cnt > 1 ? "s" : "");
  1596. }
  1597. if (v & ECC_UE_INT_CAUSE)
  1598. dev_alert(adapter->pdev_dev,
  1599. "%s uncorrectable ECC data error\n", name[idx]);
  1600. t4_write_reg(adapter, addr, v);
  1601. if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
  1602. t4_fatal_err(adapter);
  1603. }
  1604. /*
  1605. * MA interrupt handler.
  1606. */
  1607. static void ma_intr_handler(struct adapter *adap)
  1608. {
  1609. u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
  1610. if (status & MEM_PERR_INT_CAUSE)
  1611. dev_alert(adap->pdev_dev,
  1612. "MA parity error, parity status %#x\n",
  1613. t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
  1614. if (status & MEM_WRAP_INT_CAUSE) {
  1615. v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
  1616. dev_alert(adap->pdev_dev, "MA address wrap-around error by "
  1617. "client %u to address %#x\n",
  1618. MEM_WRAP_CLIENT_NUM_GET(v),
  1619. MEM_WRAP_ADDRESS_GET(v) << 4);
  1620. }
  1621. t4_write_reg(adap, MA_INT_CAUSE, status);
  1622. t4_fatal_err(adap);
  1623. }
  1624. /*
  1625. * SMB interrupt handler.
  1626. */
  1627. static void smb_intr_handler(struct adapter *adap)
  1628. {
  1629. static const struct intr_info smb_intr_info[] = {
  1630. { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
  1631. { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
  1632. { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
  1633. { 0 }
  1634. };
  1635. if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
  1636. t4_fatal_err(adap);
  1637. }
  1638. /*
  1639. * NC-SI interrupt handler.
  1640. */
  1641. static void ncsi_intr_handler(struct adapter *adap)
  1642. {
  1643. static const struct intr_info ncsi_intr_info[] = {
  1644. { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
  1645. { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
  1646. { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
  1647. { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
  1648. { 0 }
  1649. };
  1650. if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
  1651. t4_fatal_err(adap);
  1652. }
  1653. /*
  1654. * XGMAC interrupt handler.
  1655. */
  1656. static void xgmac_intr_handler(struct adapter *adap, int port)
  1657. {
  1658. u32 v, int_cause_reg;
  1659. if (is_t4(adap->params.chip))
  1660. int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE);
  1661. else
  1662. int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE);
  1663. v = t4_read_reg(adap, int_cause_reg);
  1664. v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
  1665. if (!v)
  1666. return;
  1667. if (v & TXFIFO_PRTY_ERR)
  1668. dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
  1669. port);
  1670. if (v & RXFIFO_PRTY_ERR)
  1671. dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
  1672. port);
  1673. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
  1674. t4_fatal_err(adap);
  1675. }
  1676. /*
  1677. * PL interrupt handler.
  1678. */
  1679. static void pl_intr_handler(struct adapter *adap)
  1680. {
  1681. static const struct intr_info pl_intr_info[] = {
  1682. { FATALPERR, "T4 fatal parity error", -1, 1 },
  1683. { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
  1684. { 0 }
  1685. };
  1686. if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
  1687. t4_fatal_err(adap);
  1688. }
  1689. #define PF_INTR_MASK (PFSW)
  1690. #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
  1691. EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
  1692. CPL_SWITCH | SGE | ULP_TX)
  1693. /**
  1694. * t4_slow_intr_handler - control path interrupt handler
  1695. * @adapter: the adapter
  1696. *
  1697. * T4 interrupt handler for non-data global interrupt events, e.g., errors.
  1698. * The designation 'slow' is because it involves register reads, while
  1699. * data interrupts typically don't involve any MMIOs.
  1700. */
  1701. int t4_slow_intr_handler(struct adapter *adapter)
  1702. {
  1703. u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
  1704. if (!(cause & GLBL_INTR_MASK))
  1705. return 0;
  1706. if (cause & CIM)
  1707. cim_intr_handler(adapter);
  1708. if (cause & MPS)
  1709. mps_intr_handler(adapter);
  1710. if (cause & NCSI)
  1711. ncsi_intr_handler(adapter);
  1712. if (cause & PL)
  1713. pl_intr_handler(adapter);
  1714. if (cause & SMB)
  1715. smb_intr_handler(adapter);
  1716. if (cause & XGMAC0)
  1717. xgmac_intr_handler(adapter, 0);
  1718. if (cause & XGMAC1)
  1719. xgmac_intr_handler(adapter, 1);
  1720. if (cause & XGMAC_KR0)
  1721. xgmac_intr_handler(adapter, 2);
  1722. if (cause & XGMAC_KR1)
  1723. xgmac_intr_handler(adapter, 3);
  1724. if (cause & PCIE)
  1725. pcie_intr_handler(adapter);
  1726. if (cause & MC)
  1727. mem_intr_handler(adapter, MEM_MC);
  1728. if (cause & EDC0)
  1729. mem_intr_handler(adapter, MEM_EDC0);
  1730. if (cause & EDC1)
  1731. mem_intr_handler(adapter, MEM_EDC1);
  1732. if (cause & LE)
  1733. le_intr_handler(adapter);
  1734. if (cause & TP)
  1735. tp_intr_handler(adapter);
  1736. if (cause & MA)
  1737. ma_intr_handler(adapter);
  1738. if (cause & PM_TX)
  1739. pmtx_intr_handler(adapter);
  1740. if (cause & PM_RX)
  1741. pmrx_intr_handler(adapter);
  1742. if (cause & ULP_RX)
  1743. ulprx_intr_handler(adapter);
  1744. if (cause & CPL_SWITCH)
  1745. cplsw_intr_handler(adapter);
  1746. if (cause & SGE)
  1747. sge_intr_handler(adapter);
  1748. if (cause & ULP_TX)
  1749. ulptx_intr_handler(adapter);
  1750. /* Clear the interrupts just processed for which we are the master. */
  1751. t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
  1752. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1753. return 1;
  1754. }
  1755. /**
  1756. * t4_intr_enable - enable interrupts
  1757. * @adapter: the adapter whose interrupts should be enabled
  1758. *
  1759. * Enable PF-specific interrupts for the calling function and the top-level
  1760. * interrupt concentrator for global interrupts. Interrupts are already
  1761. * enabled at each module, here we just enable the roots of the interrupt
  1762. * hierarchies.
  1763. *
  1764. * Note: this function should be called only when the driver manages
  1765. * non PF-specific interrupts from the various HW modules. Only one PCI
  1766. * function at a time should be doing this.
  1767. */
  1768. void t4_intr_enable(struct adapter *adapter)
  1769. {
  1770. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1771. t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
  1772. ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
  1773. ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
  1774. ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
  1775. ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
  1776. ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
  1777. ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
  1778. DBFIFO_HP_INT | DBFIFO_LP_INT |
  1779. EGRESS_SIZE_ERR);
  1780. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
  1781. t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
  1782. }
  1783. /**
  1784. * t4_intr_disable - disable interrupts
  1785. * @adapter: the adapter whose interrupts should be disabled
  1786. *
  1787. * Disable interrupts. We only disable the top-level interrupt
  1788. * concentrators. The caller must be a PCI function managing global
  1789. * interrupts.
  1790. */
  1791. void t4_intr_disable(struct adapter *adapter)
  1792. {
  1793. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1794. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
  1795. t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
  1796. }
  1797. /**
  1798. * hash_mac_addr - return the hash value of a MAC address
  1799. * @addr: the 48-bit Ethernet MAC address
  1800. *
  1801. * Hashes a MAC address according to the hash function used by HW inexact
  1802. * (hash) address matching.
  1803. */
  1804. static int hash_mac_addr(const u8 *addr)
  1805. {
  1806. u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
  1807. u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
  1808. a ^= b;
  1809. a ^= (a >> 12);
  1810. a ^= (a >> 6);
  1811. return a & 0x3f;
  1812. }
  1813. /**
  1814. * t4_config_rss_range - configure a portion of the RSS mapping table
  1815. * @adapter: the adapter
  1816. * @mbox: mbox to use for the FW command
  1817. * @viid: virtual interface whose RSS subtable is to be written
  1818. * @start: start entry in the table to write
  1819. * @n: how many table entries to write
  1820. * @rspq: values for the response queue lookup table
  1821. * @nrspq: number of values in @rspq
  1822. *
  1823. * Programs the selected part of the VI's RSS mapping table with the
  1824. * provided values. If @nrspq < @n the supplied values are used repeatedly
  1825. * until the full table range is populated.
  1826. *
  1827. * The caller must ensure the values in @rspq are in the range allowed for
  1828. * @viid.
  1829. */
  1830. int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
  1831. int start, int n, const u16 *rspq, unsigned int nrspq)
  1832. {
  1833. int ret;
  1834. const u16 *rsp = rspq;
  1835. const u16 *rsp_end = rspq + nrspq;
  1836. struct fw_rss_ind_tbl_cmd cmd;
  1837. memset(&cmd, 0, sizeof(cmd));
  1838. cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
  1839. FW_CMD_REQUEST | FW_CMD_WRITE |
  1840. FW_RSS_IND_TBL_CMD_VIID(viid));
  1841. cmd.retval_len16 = htonl(FW_LEN16(cmd));
  1842. /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
  1843. while (n > 0) {
  1844. int nq = min(n, 32);
  1845. __be32 *qp = &cmd.iq0_to_iq2;
  1846. cmd.niqid = htons(nq);
  1847. cmd.startidx = htons(start);
  1848. start += nq;
  1849. n -= nq;
  1850. while (nq > 0) {
  1851. unsigned int v;
  1852. v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
  1853. if (++rsp >= rsp_end)
  1854. rsp = rspq;
  1855. v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
  1856. if (++rsp >= rsp_end)
  1857. rsp = rspq;
  1858. v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
  1859. if (++rsp >= rsp_end)
  1860. rsp = rspq;
  1861. *qp++ = htonl(v);
  1862. nq -= 3;
  1863. }
  1864. ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
  1865. if (ret)
  1866. return ret;
  1867. }
  1868. return 0;
  1869. }
  1870. /**
  1871. * t4_config_glbl_rss - configure the global RSS mode
  1872. * @adapter: the adapter
  1873. * @mbox: mbox to use for the FW command
  1874. * @mode: global RSS mode
  1875. * @flags: mode-specific flags
  1876. *
  1877. * Sets the global RSS mode.
  1878. */
  1879. int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
  1880. unsigned int flags)
  1881. {
  1882. struct fw_rss_glb_config_cmd c;
  1883. memset(&c, 0, sizeof(c));
  1884. c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
  1885. FW_CMD_REQUEST | FW_CMD_WRITE);
  1886. c.retval_len16 = htonl(FW_LEN16(c));
  1887. if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
  1888. c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1889. } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
  1890. c.u.basicvirtual.mode_pkd =
  1891. htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1892. c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
  1893. } else
  1894. return -EINVAL;
  1895. return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
  1896. }
  1897. /**
  1898. * t4_tp_get_tcp_stats - read TP's TCP MIB counters
  1899. * @adap: the adapter
  1900. * @v4: holds the TCP/IP counter values
  1901. * @v6: holds the TCP/IPv6 counter values
  1902. *
  1903. * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
  1904. * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
  1905. */
  1906. void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
  1907. struct tp_tcp_stats *v6)
  1908. {
  1909. u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
  1910. #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
  1911. #define STAT(x) val[STAT_IDX(x)]
  1912. #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
  1913. if (v4) {
  1914. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1915. ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
  1916. v4->tcpOutRsts = STAT(OUT_RST);
  1917. v4->tcpInSegs = STAT64(IN_SEG);
  1918. v4->tcpOutSegs = STAT64(OUT_SEG);
  1919. v4->tcpRetransSegs = STAT64(RXT_SEG);
  1920. }
  1921. if (v6) {
  1922. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1923. ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
  1924. v6->tcpOutRsts = STAT(OUT_RST);
  1925. v6->tcpInSegs = STAT64(IN_SEG);
  1926. v6->tcpOutSegs = STAT64(OUT_SEG);
  1927. v6->tcpRetransSegs = STAT64(RXT_SEG);
  1928. }
  1929. #undef STAT64
  1930. #undef STAT
  1931. #undef STAT_IDX
  1932. }
  1933. /**
  1934. * t4_read_mtu_tbl - returns the values in the HW path MTU table
  1935. * @adap: the adapter
  1936. * @mtus: where to store the MTU values
  1937. * @mtu_log: where to store the MTU base-2 log (may be %NULL)
  1938. *
  1939. * Reads the HW path MTU table.
  1940. */
  1941. void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
  1942. {
  1943. u32 v;
  1944. int i;
  1945. for (i = 0; i < NMTUS; ++i) {
  1946. t4_write_reg(adap, TP_MTU_TABLE,
  1947. MTUINDEX(0xff) | MTUVALUE(i));
  1948. v = t4_read_reg(adap, TP_MTU_TABLE);
  1949. mtus[i] = MTUVALUE_GET(v);
  1950. if (mtu_log)
  1951. mtu_log[i] = MTUWIDTH_GET(v);
  1952. }
  1953. }
  1954. /**
  1955. * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
  1956. * @adap: the adapter
  1957. * @addr: the indirect TP register address
  1958. * @mask: specifies the field within the register to modify
  1959. * @val: new value for the field
  1960. *
  1961. * Sets a field of an indirect TP register to the given value.
  1962. */
  1963. void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
  1964. unsigned int mask, unsigned int val)
  1965. {
  1966. t4_write_reg(adap, TP_PIO_ADDR, addr);
  1967. val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask;
  1968. t4_write_reg(adap, TP_PIO_DATA, val);
  1969. }
  1970. /**
  1971. * init_cong_ctrl - initialize congestion control parameters
  1972. * @a: the alpha values for congestion control
  1973. * @b: the beta values for congestion control
  1974. *
  1975. * Initialize the congestion control parameters.
  1976. */
  1977. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  1978. {
  1979. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  1980. a[9] = 2;
  1981. a[10] = 3;
  1982. a[11] = 4;
  1983. a[12] = 5;
  1984. a[13] = 6;
  1985. a[14] = 7;
  1986. a[15] = 8;
  1987. a[16] = 9;
  1988. a[17] = 10;
  1989. a[18] = 14;
  1990. a[19] = 17;
  1991. a[20] = 21;
  1992. a[21] = 25;
  1993. a[22] = 30;
  1994. a[23] = 35;
  1995. a[24] = 45;
  1996. a[25] = 60;
  1997. a[26] = 80;
  1998. a[27] = 100;
  1999. a[28] = 200;
  2000. a[29] = 300;
  2001. a[30] = 400;
  2002. a[31] = 500;
  2003. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2004. b[9] = b[10] = 1;
  2005. b[11] = b[12] = 2;
  2006. b[13] = b[14] = b[15] = b[16] = 3;
  2007. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2008. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2009. b[28] = b[29] = 6;
  2010. b[30] = b[31] = 7;
  2011. }
  2012. /* The minimum additive increment value for the congestion control table */
  2013. #define CC_MIN_INCR 2U
  2014. /**
  2015. * t4_load_mtus - write the MTU and congestion control HW tables
  2016. * @adap: the adapter
  2017. * @mtus: the values for the MTU table
  2018. * @alpha: the values for the congestion control alpha parameter
  2019. * @beta: the values for the congestion control beta parameter
  2020. *
  2021. * Write the HW MTU table with the supplied MTUs and the high-speed
  2022. * congestion control table with the supplied alpha, beta, and MTUs.
  2023. * We write the two tables together because the additive increments
  2024. * depend on the MTUs.
  2025. */
  2026. void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
  2027. const unsigned short *alpha, const unsigned short *beta)
  2028. {
  2029. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2030. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2031. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2032. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2033. };
  2034. unsigned int i, w;
  2035. for (i = 0; i < NMTUS; ++i) {
  2036. unsigned int mtu = mtus[i];
  2037. unsigned int log2 = fls(mtu);
  2038. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2039. log2--;
  2040. t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
  2041. MTUWIDTH(log2) | MTUVALUE(mtu));
  2042. for (w = 0; w < NCCTRL_WIN; ++w) {
  2043. unsigned int inc;
  2044. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2045. CC_MIN_INCR);
  2046. t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
  2047. (w << 16) | (beta[w] << 13) | inc);
  2048. }
  2049. }
  2050. }
  2051. /**
  2052. * get_mps_bg_map - return the buffer groups associated with a port
  2053. * @adap: the adapter
  2054. * @idx: the port index
  2055. *
  2056. * Returns a bitmap indicating which MPS buffer groups are associated
  2057. * with the given port. Bit i is set if buffer group i is used by the
  2058. * port.
  2059. */
  2060. static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
  2061. {
  2062. u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
  2063. if (n == 0)
  2064. return idx == 0 ? 0xf : 0;
  2065. if (n == 1)
  2066. return idx < 2 ? (3 << (2 * idx)) : 0;
  2067. return 1 << idx;
  2068. }
  2069. /**
  2070. * t4_get_port_stats - collect port statistics
  2071. * @adap: the adapter
  2072. * @idx: the port index
  2073. * @p: the stats structure to fill
  2074. *
  2075. * Collect statistics related to the given port from HW.
  2076. */
  2077. void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
  2078. {
  2079. u32 bgmap = get_mps_bg_map(adap, idx);
  2080. #define GET_STAT(name) \
  2081. t4_read_reg64(adap, \
  2082. (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
  2083. T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
  2084. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  2085. p->tx_octets = GET_STAT(TX_PORT_BYTES);
  2086. p->tx_frames = GET_STAT(TX_PORT_FRAMES);
  2087. p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
  2088. p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
  2089. p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
  2090. p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
  2091. p->tx_frames_64 = GET_STAT(TX_PORT_64B);
  2092. p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
  2093. p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
  2094. p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
  2095. p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
  2096. p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
  2097. p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
  2098. p->tx_drop = GET_STAT(TX_PORT_DROP);
  2099. p->tx_pause = GET_STAT(TX_PORT_PAUSE);
  2100. p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
  2101. p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
  2102. p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
  2103. p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
  2104. p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
  2105. p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
  2106. p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
  2107. p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
  2108. p->rx_octets = GET_STAT(RX_PORT_BYTES);
  2109. p->rx_frames = GET_STAT(RX_PORT_FRAMES);
  2110. p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
  2111. p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
  2112. p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
  2113. p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
  2114. p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
  2115. p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
  2116. p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
  2117. p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
  2118. p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
  2119. p->rx_frames_64 = GET_STAT(RX_PORT_64B);
  2120. p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
  2121. p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
  2122. p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
  2123. p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
  2124. p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
  2125. p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
  2126. p->rx_pause = GET_STAT(RX_PORT_PAUSE);
  2127. p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
  2128. p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
  2129. p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
  2130. p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
  2131. p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
  2132. p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
  2133. p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
  2134. p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
  2135. p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
  2136. p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
  2137. p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
  2138. p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
  2139. p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
  2140. p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
  2141. p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
  2142. p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
  2143. #undef GET_STAT
  2144. #undef GET_STAT_COM
  2145. }
  2146. /**
  2147. * t4_wol_magic_enable - enable/disable magic packet WoL
  2148. * @adap: the adapter
  2149. * @port: the physical port index
  2150. * @addr: MAC address expected in magic packets, %NULL to disable
  2151. *
  2152. * Enables/disables magic packet wake-on-LAN for the selected port.
  2153. */
  2154. void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
  2155. const u8 *addr)
  2156. {
  2157. u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
  2158. if (is_t4(adap->params.chip)) {
  2159. mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO);
  2160. mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI);
  2161. port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
  2162. } else {
  2163. mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO);
  2164. mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI);
  2165. port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
  2166. }
  2167. if (addr) {
  2168. t4_write_reg(adap, mag_id_reg_l,
  2169. (addr[2] << 24) | (addr[3] << 16) |
  2170. (addr[4] << 8) | addr[5]);
  2171. t4_write_reg(adap, mag_id_reg_h,
  2172. (addr[0] << 8) | addr[1]);
  2173. }
  2174. t4_set_reg_field(adap, port_cfg_reg, MAGICEN,
  2175. addr ? MAGICEN : 0);
  2176. }
  2177. /**
  2178. * t4_wol_pat_enable - enable/disable pattern-based WoL
  2179. * @adap: the adapter
  2180. * @port: the physical port index
  2181. * @map: bitmap of which HW pattern filters to set
  2182. * @mask0: byte mask for bytes 0-63 of a packet
  2183. * @mask1: byte mask for bytes 64-127 of a packet
  2184. * @crc: Ethernet CRC for selected bytes
  2185. * @enable: enable/disable switch
  2186. *
  2187. * Sets the pattern filters indicated in @map to mask out the bytes
  2188. * specified in @mask0/@mask1 in received packets and compare the CRC of
  2189. * the resulting packet against @crc. If @enable is %true pattern-based
  2190. * WoL is enabled, otherwise disabled.
  2191. */
  2192. int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
  2193. u64 mask0, u64 mask1, unsigned int crc, bool enable)
  2194. {
  2195. int i;
  2196. u32 port_cfg_reg;
  2197. if (is_t4(adap->params.chip))
  2198. port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
  2199. else
  2200. port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
  2201. if (!enable) {
  2202. t4_set_reg_field(adap, port_cfg_reg, PATEN, 0);
  2203. return 0;
  2204. }
  2205. if (map > 0xff)
  2206. return -EINVAL;
  2207. #define EPIO_REG(name) \
  2208. (is_t4(adap->params.chip) ? PORT_REG(port, XGMAC_PORT_EPIO_##name) : \
  2209. T5_PORT_REG(port, MAC_PORT_EPIO_##name))
  2210. t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
  2211. t4_write_reg(adap, EPIO_REG(DATA2), mask1);
  2212. t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
  2213. for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
  2214. if (!(map & 1))
  2215. continue;
  2216. /* write byte masks */
  2217. t4_write_reg(adap, EPIO_REG(DATA0), mask0);
  2218. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
  2219. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2220. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
  2221. return -ETIMEDOUT;
  2222. /* write CRC */
  2223. t4_write_reg(adap, EPIO_REG(DATA0), crc);
  2224. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
  2225. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2226. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
  2227. return -ETIMEDOUT;
  2228. }
  2229. #undef EPIO_REG
  2230. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
  2231. return 0;
  2232. }
  2233. /* t4_mk_filtdelwr - create a delete filter WR
  2234. * @ftid: the filter ID
  2235. * @wr: the filter work request to populate
  2236. * @qid: ingress queue to receive the delete notification
  2237. *
  2238. * Creates a filter work request to delete the supplied filter. If @qid is
  2239. * negative the delete notification is suppressed.
  2240. */
  2241. void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
  2242. {
  2243. memset(wr, 0, sizeof(*wr));
  2244. wr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
  2245. wr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*wr) / 16));
  2246. wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
  2247. V_FW_FILTER_WR_NOREPLY(qid < 0));
  2248. wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
  2249. if (qid >= 0)
  2250. wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
  2251. }
  2252. #define INIT_CMD(var, cmd, rd_wr) do { \
  2253. (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
  2254. FW_CMD_REQUEST | FW_CMD_##rd_wr); \
  2255. (var).retval_len16 = htonl(FW_LEN16(var)); \
  2256. } while (0)
  2257. int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
  2258. u32 addr, u32 val)
  2259. {
  2260. struct fw_ldst_cmd c;
  2261. memset(&c, 0, sizeof(c));
  2262. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2263. FW_CMD_WRITE |
  2264. FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
  2265. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2266. c.u.addrval.addr = htonl(addr);
  2267. c.u.addrval.val = htonl(val);
  2268. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2269. }
  2270. /**
  2271. * t4_mem_win_read_len - read memory through PCIE memory window
  2272. * @adap: the adapter
  2273. * @addr: address of first byte requested aligned on 32b.
  2274. * @data: len bytes to hold the data read
  2275. * @len: amount of data to read from window. Must be <=
  2276. * MEMWIN0_APERATURE after adjusting for 16B for T4 and
  2277. * 128B for T5 alignment requirements of the the memory window.
  2278. *
  2279. * Read len bytes of data from MC starting at @addr.
  2280. */
  2281. int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len)
  2282. {
  2283. int i, off;
  2284. u32 win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn);
  2285. /* Align on a 2KB boundary.
  2286. */
  2287. off = addr & MEMWIN0_APERTURE;
  2288. if ((addr & 3) || (len + off) > MEMWIN0_APERTURE)
  2289. return -EINVAL;
  2290. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
  2291. (addr & ~MEMWIN0_APERTURE) | win_pf);
  2292. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  2293. for (i = 0; i < len; i += 4)
  2294. *data++ = (__force __be32) t4_read_reg(adap,
  2295. (MEMWIN0_BASE + off + i));
  2296. return 0;
  2297. }
  2298. /**
  2299. * t4_mdio_rd - read a PHY register through MDIO
  2300. * @adap: the adapter
  2301. * @mbox: mailbox to use for the FW command
  2302. * @phy_addr: the PHY address
  2303. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2304. * @reg: the register to read
  2305. * @valp: where to store the value
  2306. *
  2307. * Issues a FW command through the given mailbox to read a PHY register.
  2308. */
  2309. int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2310. unsigned int mmd, unsigned int reg, u16 *valp)
  2311. {
  2312. int ret;
  2313. struct fw_ldst_cmd c;
  2314. memset(&c, 0, sizeof(c));
  2315. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2316. FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2317. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2318. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2319. FW_LDST_CMD_MMD(mmd));
  2320. c.u.mdio.raddr = htons(reg);
  2321. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2322. if (ret == 0)
  2323. *valp = ntohs(c.u.mdio.rval);
  2324. return ret;
  2325. }
  2326. /**
  2327. * t4_mdio_wr - write a PHY register through MDIO
  2328. * @adap: the adapter
  2329. * @mbox: mailbox to use for the FW command
  2330. * @phy_addr: the PHY address
  2331. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2332. * @reg: the register to write
  2333. * @valp: value to write
  2334. *
  2335. * Issues a FW command through the given mailbox to write a PHY register.
  2336. */
  2337. int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2338. unsigned int mmd, unsigned int reg, u16 val)
  2339. {
  2340. struct fw_ldst_cmd c;
  2341. memset(&c, 0, sizeof(c));
  2342. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2343. FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2344. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2345. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2346. FW_LDST_CMD_MMD(mmd));
  2347. c.u.mdio.raddr = htons(reg);
  2348. c.u.mdio.rval = htons(val);
  2349. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2350. }
  2351. /**
  2352. * t4_fw_hello - establish communication with FW
  2353. * @adap: the adapter
  2354. * @mbox: mailbox to use for the FW command
  2355. * @evt_mbox: mailbox to receive async FW events
  2356. * @master: specifies the caller's willingness to be the device master
  2357. * @state: returns the current device state (if non-NULL)
  2358. *
  2359. * Issues a command to establish communication with FW. Returns either
  2360. * an error (negative integer) or the mailbox of the Master PF.
  2361. */
  2362. int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
  2363. enum dev_master master, enum dev_state *state)
  2364. {
  2365. int ret;
  2366. struct fw_hello_cmd c;
  2367. u32 v;
  2368. unsigned int master_mbox;
  2369. int retries = FW_CMD_HELLO_RETRIES;
  2370. retry:
  2371. memset(&c, 0, sizeof(c));
  2372. INIT_CMD(c, HELLO, WRITE);
  2373. c.err_to_clearinit = htonl(
  2374. FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
  2375. FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
  2376. FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
  2377. FW_HELLO_CMD_MBMASTER_MASK) |
  2378. FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
  2379. FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os) |
  2380. FW_HELLO_CMD_CLEARINIT);
  2381. /*
  2382. * Issue the HELLO command to the firmware. If it's not successful
  2383. * but indicates that we got a "busy" or "timeout" condition, retry
  2384. * the HELLO until we exhaust our retry limit.
  2385. */
  2386. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2387. if (ret < 0) {
  2388. if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
  2389. goto retry;
  2390. return ret;
  2391. }
  2392. v = ntohl(c.err_to_clearinit);
  2393. master_mbox = FW_HELLO_CMD_MBMASTER_GET(v);
  2394. if (state) {
  2395. if (v & FW_HELLO_CMD_ERR)
  2396. *state = DEV_STATE_ERR;
  2397. else if (v & FW_HELLO_CMD_INIT)
  2398. *state = DEV_STATE_INIT;
  2399. else
  2400. *state = DEV_STATE_UNINIT;
  2401. }
  2402. /*
  2403. * If we're not the Master PF then we need to wait around for the
  2404. * Master PF Driver to finish setting up the adapter.
  2405. *
  2406. * Note that we also do this wait if we're a non-Master-capable PF and
  2407. * there is no current Master PF; a Master PF may show up momentarily
  2408. * and we wouldn't want to fail pointlessly. (This can happen when an
  2409. * OS loads lots of different drivers rapidly at the same time). In
  2410. * this case, the Master PF returned by the firmware will be
  2411. * FW_PCIE_FW_MASTER_MASK so the test below will work ...
  2412. */
  2413. if ((v & (FW_HELLO_CMD_ERR|FW_HELLO_CMD_INIT)) == 0 &&
  2414. master_mbox != mbox) {
  2415. int waiting = FW_CMD_HELLO_TIMEOUT;
  2416. /*
  2417. * Wait for the firmware to either indicate an error or
  2418. * initialized state. If we see either of these we bail out
  2419. * and report the issue to the caller. If we exhaust the
  2420. * "hello timeout" and we haven't exhausted our retries, try
  2421. * again. Otherwise bail with a timeout error.
  2422. */
  2423. for (;;) {
  2424. u32 pcie_fw;
  2425. msleep(50);
  2426. waiting -= 50;
  2427. /*
  2428. * If neither Error nor Initialialized are indicated
  2429. * by the firmware keep waiting till we exaust our
  2430. * timeout ... and then retry if we haven't exhausted
  2431. * our retries ...
  2432. */
  2433. pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
  2434. if (!(pcie_fw & (FW_PCIE_FW_ERR|FW_PCIE_FW_INIT))) {
  2435. if (waiting <= 0) {
  2436. if (retries-- > 0)
  2437. goto retry;
  2438. return -ETIMEDOUT;
  2439. }
  2440. continue;
  2441. }
  2442. /*
  2443. * We either have an Error or Initialized condition
  2444. * report errors preferentially.
  2445. */
  2446. if (state) {
  2447. if (pcie_fw & FW_PCIE_FW_ERR)
  2448. *state = DEV_STATE_ERR;
  2449. else if (pcie_fw & FW_PCIE_FW_INIT)
  2450. *state = DEV_STATE_INIT;
  2451. }
  2452. /*
  2453. * If we arrived before a Master PF was selected and
  2454. * there's not a valid Master PF, grab its identity
  2455. * for our caller.
  2456. */
  2457. if (master_mbox == FW_PCIE_FW_MASTER_MASK &&
  2458. (pcie_fw & FW_PCIE_FW_MASTER_VLD))
  2459. master_mbox = FW_PCIE_FW_MASTER_GET(pcie_fw);
  2460. break;
  2461. }
  2462. }
  2463. return master_mbox;
  2464. }
  2465. /**
  2466. * t4_fw_bye - end communication with FW
  2467. * @adap: the adapter
  2468. * @mbox: mailbox to use for the FW command
  2469. *
  2470. * Issues a command to terminate communication with FW.
  2471. */
  2472. int t4_fw_bye(struct adapter *adap, unsigned int mbox)
  2473. {
  2474. struct fw_bye_cmd c;
  2475. memset(&c, 0, sizeof(c));
  2476. INIT_CMD(c, BYE, WRITE);
  2477. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2478. }
  2479. /**
  2480. * t4_init_cmd - ask FW to initialize the device
  2481. * @adap: the adapter
  2482. * @mbox: mailbox to use for the FW command
  2483. *
  2484. * Issues a command to FW to partially initialize the device. This
  2485. * performs initialization that generally doesn't depend on user input.
  2486. */
  2487. int t4_early_init(struct adapter *adap, unsigned int mbox)
  2488. {
  2489. struct fw_initialize_cmd c;
  2490. memset(&c, 0, sizeof(c));
  2491. INIT_CMD(c, INITIALIZE, WRITE);
  2492. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2493. }
  2494. /**
  2495. * t4_fw_reset - issue a reset to FW
  2496. * @adap: the adapter
  2497. * @mbox: mailbox to use for the FW command
  2498. * @reset: specifies the type of reset to perform
  2499. *
  2500. * Issues a reset command of the specified type to FW.
  2501. */
  2502. int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
  2503. {
  2504. struct fw_reset_cmd c;
  2505. memset(&c, 0, sizeof(c));
  2506. INIT_CMD(c, RESET, WRITE);
  2507. c.val = htonl(reset);
  2508. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2509. }
  2510. /**
  2511. * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
  2512. * @adap: the adapter
  2513. * @mbox: mailbox to use for the FW RESET command (if desired)
  2514. * @force: force uP into RESET even if FW RESET command fails
  2515. *
  2516. * Issues a RESET command to firmware (if desired) with a HALT indication
  2517. * and then puts the microprocessor into RESET state. The RESET command
  2518. * will only be issued if a legitimate mailbox is provided (mbox <=
  2519. * FW_PCIE_FW_MASTER_MASK).
  2520. *
  2521. * This is generally used in order for the host to safely manipulate the
  2522. * adapter without fear of conflicting with whatever the firmware might
  2523. * be doing. The only way out of this state is to RESTART the firmware
  2524. * ...
  2525. */
  2526. int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
  2527. {
  2528. int ret = 0;
  2529. /*
  2530. * If a legitimate mailbox is provided, issue a RESET command
  2531. * with a HALT indication.
  2532. */
  2533. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2534. struct fw_reset_cmd c;
  2535. memset(&c, 0, sizeof(c));
  2536. INIT_CMD(c, RESET, WRITE);
  2537. c.val = htonl(PIORST | PIORSTMODE);
  2538. c.halt_pkd = htonl(FW_RESET_CMD_HALT(1U));
  2539. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2540. }
  2541. /*
  2542. * Normally we won't complete the operation if the firmware RESET
  2543. * command fails but if our caller insists we'll go ahead and put the
  2544. * uP into RESET. This can be useful if the firmware is hung or even
  2545. * missing ... We'll have to take the risk of putting the uP into
  2546. * RESET without the cooperation of firmware in that case.
  2547. *
  2548. * We also force the firmware's HALT flag to be on in case we bypassed
  2549. * the firmware RESET command above or we're dealing with old firmware
  2550. * which doesn't have the HALT capability. This will serve as a flag
  2551. * for the incoming firmware to know that it's coming out of a HALT
  2552. * rather than a RESET ... if it's new enough to understand that ...
  2553. */
  2554. if (ret == 0 || force) {
  2555. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST);
  2556. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT,
  2557. FW_PCIE_FW_HALT);
  2558. }
  2559. /*
  2560. * And we always return the result of the firmware RESET command
  2561. * even when we force the uP into RESET ...
  2562. */
  2563. return ret;
  2564. }
  2565. /**
  2566. * t4_fw_restart - restart the firmware by taking the uP out of RESET
  2567. * @adap: the adapter
  2568. * @reset: if we want to do a RESET to restart things
  2569. *
  2570. * Restart firmware previously halted by t4_fw_halt(). On successful
  2571. * return the previous PF Master remains as the new PF Master and there
  2572. * is no need to issue a new HELLO command, etc.
  2573. *
  2574. * We do this in two ways:
  2575. *
  2576. * 1. If we're dealing with newer firmware we'll simply want to take
  2577. * the chip's microprocessor out of RESET. This will cause the
  2578. * firmware to start up from its start vector. And then we'll loop
  2579. * until the firmware indicates it's started again (PCIE_FW.HALT
  2580. * reset to 0) or we timeout.
  2581. *
  2582. * 2. If we're dealing with older firmware then we'll need to RESET
  2583. * the chip since older firmware won't recognize the PCIE_FW.HALT
  2584. * flag and automatically RESET itself on startup.
  2585. */
  2586. int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
  2587. {
  2588. if (reset) {
  2589. /*
  2590. * Since we're directing the RESET instead of the firmware
  2591. * doing it automatically, we need to clear the PCIE_FW.HALT
  2592. * bit.
  2593. */
  2594. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 0);
  2595. /*
  2596. * If we've been given a valid mailbox, first try to get the
  2597. * firmware to do the RESET. If that works, great and we can
  2598. * return success. Otherwise, if we haven't been given a
  2599. * valid mailbox or the RESET command failed, fall back to
  2600. * hitting the chip with a hammer.
  2601. */
  2602. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2603. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2604. msleep(100);
  2605. if (t4_fw_reset(adap, mbox,
  2606. PIORST | PIORSTMODE) == 0)
  2607. return 0;
  2608. }
  2609. t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE);
  2610. msleep(2000);
  2611. } else {
  2612. int ms;
  2613. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2614. for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
  2615. if (!(t4_read_reg(adap, PCIE_FW) & FW_PCIE_FW_HALT))
  2616. return 0;
  2617. msleep(100);
  2618. ms += 100;
  2619. }
  2620. return -ETIMEDOUT;
  2621. }
  2622. return 0;
  2623. }
  2624. /**
  2625. * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
  2626. * @adap: the adapter
  2627. * @mbox: mailbox to use for the FW RESET command (if desired)
  2628. * @fw_data: the firmware image to write
  2629. * @size: image size
  2630. * @force: force upgrade even if firmware doesn't cooperate
  2631. *
  2632. * Perform all of the steps necessary for upgrading an adapter's
  2633. * firmware image. Normally this requires the cooperation of the
  2634. * existing firmware in order to halt all existing activities
  2635. * but if an invalid mailbox token is passed in we skip that step
  2636. * (though we'll still put the adapter microprocessor into RESET in
  2637. * that case).
  2638. *
  2639. * On successful return the new firmware will have been loaded and
  2640. * the adapter will have been fully RESET losing all previous setup
  2641. * state. On unsuccessful return the adapter may be completely hosed ...
  2642. * positive errno indicates that the adapter is ~probably~ intact, a
  2643. * negative errno indicates that things are looking bad ...
  2644. */
  2645. int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
  2646. const u8 *fw_data, unsigned int size, int force)
  2647. {
  2648. const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
  2649. int reset, ret;
  2650. ret = t4_fw_halt(adap, mbox, force);
  2651. if (ret < 0 && !force)
  2652. return ret;
  2653. ret = t4_load_fw(adap, fw_data, size);
  2654. if (ret < 0)
  2655. return ret;
  2656. /*
  2657. * Older versions of the firmware don't understand the new
  2658. * PCIE_FW.HALT flag and so won't know to perform a RESET when they
  2659. * restart. So for newly loaded older firmware we'll have to do the
  2660. * RESET for it so it starts up on a clean slate. We can tell if
  2661. * the newly loaded firmware will handle this right by checking
  2662. * its header flags to see if it advertises the capability.
  2663. */
  2664. reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
  2665. return t4_fw_restart(adap, mbox, reset);
  2666. }
  2667. /**
  2668. * t4_fw_config_file - setup an adapter via a Configuration File
  2669. * @adap: the adapter
  2670. * @mbox: mailbox to use for the FW command
  2671. * @mtype: the memory type where the Configuration File is located
  2672. * @maddr: the memory address where the Configuration File is located
  2673. * @finiver: return value for CF [fini] version
  2674. * @finicsum: return value for CF [fini] checksum
  2675. * @cfcsum: return value for CF computed checksum
  2676. *
  2677. * Issue a command to get the firmware to process the Configuration
  2678. * File located at the specified mtype/maddress. If the Configuration
  2679. * File is processed successfully and return value pointers are
  2680. * provided, the Configuration File "[fini] section version and
  2681. * checksum values will be returned along with the computed checksum.
  2682. * It's up to the caller to decide how it wants to respond to the
  2683. * checksums not matching but it recommended that a prominant warning
  2684. * be emitted in order to help people rapidly identify changed or
  2685. * corrupted Configuration Files.
  2686. *
  2687. * Also note that it's possible to modify things like "niccaps",
  2688. * "toecaps",etc. between processing the Configuration File and telling
  2689. * the firmware to use the new configuration. Callers which want to
  2690. * do this will need to "hand-roll" their own CAPS_CONFIGS commands for
  2691. * Configuration Files if they want to do this.
  2692. */
  2693. int t4_fw_config_file(struct adapter *adap, unsigned int mbox,
  2694. unsigned int mtype, unsigned int maddr,
  2695. u32 *finiver, u32 *finicsum, u32 *cfcsum)
  2696. {
  2697. struct fw_caps_config_cmd caps_cmd;
  2698. int ret;
  2699. /*
  2700. * Tell the firmware to process the indicated Configuration File.
  2701. * If there are no errors and the caller has provided return value
  2702. * pointers for the [fini] section version, checksum and computed
  2703. * checksum, pass those back to the caller.
  2704. */
  2705. memset(&caps_cmd, 0, sizeof(caps_cmd));
  2706. caps_cmd.op_to_write =
  2707. htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
  2708. FW_CMD_REQUEST |
  2709. FW_CMD_READ);
  2710. caps_cmd.cfvalid_to_len16 =
  2711. htonl(FW_CAPS_CONFIG_CMD_CFVALID |
  2712. FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
  2713. FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
  2714. FW_LEN16(caps_cmd));
  2715. ret = t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd);
  2716. if (ret < 0)
  2717. return ret;
  2718. if (finiver)
  2719. *finiver = ntohl(caps_cmd.finiver);
  2720. if (finicsum)
  2721. *finicsum = ntohl(caps_cmd.finicsum);
  2722. if (cfcsum)
  2723. *cfcsum = ntohl(caps_cmd.cfcsum);
  2724. /*
  2725. * And now tell the firmware to use the configuration we just loaded.
  2726. */
  2727. caps_cmd.op_to_write =
  2728. htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
  2729. FW_CMD_REQUEST |
  2730. FW_CMD_WRITE);
  2731. caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
  2732. return t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), NULL);
  2733. }
  2734. /**
  2735. * t4_fixup_host_params - fix up host-dependent parameters
  2736. * @adap: the adapter
  2737. * @page_size: the host's Base Page Size
  2738. * @cache_line_size: the host's Cache Line Size
  2739. *
  2740. * Various registers in T4 contain values which are dependent on the
  2741. * host's Base Page and Cache Line Sizes. This function will fix all of
  2742. * those registers with the appropriate values as passed in ...
  2743. */
  2744. int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
  2745. unsigned int cache_line_size)
  2746. {
  2747. unsigned int page_shift = fls(page_size) - 1;
  2748. unsigned int sge_hps = page_shift - 10;
  2749. unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
  2750. unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
  2751. unsigned int fl_align_log = fls(fl_align) - 1;
  2752. t4_write_reg(adap, SGE_HOST_PAGE_SIZE,
  2753. HOSTPAGESIZEPF0(sge_hps) |
  2754. HOSTPAGESIZEPF1(sge_hps) |
  2755. HOSTPAGESIZEPF2(sge_hps) |
  2756. HOSTPAGESIZEPF3(sge_hps) |
  2757. HOSTPAGESIZEPF4(sge_hps) |
  2758. HOSTPAGESIZEPF5(sge_hps) |
  2759. HOSTPAGESIZEPF6(sge_hps) |
  2760. HOSTPAGESIZEPF7(sge_hps));
  2761. t4_set_reg_field(adap, SGE_CONTROL,
  2762. INGPADBOUNDARY_MASK |
  2763. EGRSTATUSPAGESIZE_MASK,
  2764. INGPADBOUNDARY(fl_align_log - 5) |
  2765. EGRSTATUSPAGESIZE(stat_len != 64));
  2766. /*
  2767. * Adjust various SGE Free List Host Buffer Sizes.
  2768. *
  2769. * This is something of a crock since we're using fixed indices into
  2770. * the array which are also known by the sge.c code and the T4
  2771. * Firmware Configuration File. We need to come up with a much better
  2772. * approach to managing this array. For now, the first four entries
  2773. * are:
  2774. *
  2775. * 0: Host Page Size
  2776. * 1: 64KB
  2777. * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
  2778. * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
  2779. *
  2780. * For the single-MTU buffers in unpacked mode we need to include
  2781. * space for the SGE Control Packet Shift, 14 byte Ethernet header,
  2782. * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
  2783. * Padding boundry. All of these are accommodated in the Factory
  2784. * Default Firmware Configuration File but we need to adjust it for
  2785. * this host's cache line size.
  2786. */
  2787. t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size);
  2788. t4_write_reg(adap, SGE_FL_BUFFER_SIZE2,
  2789. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1)
  2790. & ~(fl_align-1));
  2791. t4_write_reg(adap, SGE_FL_BUFFER_SIZE3,
  2792. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1)
  2793. & ~(fl_align-1));
  2794. t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12));
  2795. return 0;
  2796. }
  2797. /**
  2798. * t4_fw_initialize - ask FW to initialize the device
  2799. * @adap: the adapter
  2800. * @mbox: mailbox to use for the FW command
  2801. *
  2802. * Issues a command to FW to partially initialize the device. This
  2803. * performs initialization that generally doesn't depend on user input.
  2804. */
  2805. int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
  2806. {
  2807. struct fw_initialize_cmd c;
  2808. memset(&c, 0, sizeof(c));
  2809. INIT_CMD(c, INITIALIZE, WRITE);
  2810. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2811. }
  2812. /**
  2813. * t4_query_params - query FW or device parameters
  2814. * @adap: the adapter
  2815. * @mbox: mailbox to use for the FW command
  2816. * @pf: the PF
  2817. * @vf: the VF
  2818. * @nparams: the number of parameters
  2819. * @params: the parameter names
  2820. * @val: the parameter values
  2821. *
  2822. * Reads the value of FW or device parameters. Up to 7 parameters can be
  2823. * queried at once.
  2824. */
  2825. int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2826. unsigned int vf, unsigned int nparams, const u32 *params,
  2827. u32 *val)
  2828. {
  2829. int i, ret;
  2830. struct fw_params_cmd c;
  2831. __be32 *p = &c.param[0].mnem;
  2832. if (nparams > 7)
  2833. return -EINVAL;
  2834. memset(&c, 0, sizeof(c));
  2835. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2836. FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
  2837. FW_PARAMS_CMD_VFN(vf));
  2838. c.retval_len16 = htonl(FW_LEN16(c));
  2839. for (i = 0; i < nparams; i++, p += 2)
  2840. *p = htonl(*params++);
  2841. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2842. if (ret == 0)
  2843. for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
  2844. *val++ = ntohl(*p);
  2845. return ret;
  2846. }
  2847. /**
  2848. * t4_set_params - sets FW or device parameters
  2849. * @adap: the adapter
  2850. * @mbox: mailbox to use for the FW command
  2851. * @pf: the PF
  2852. * @vf: the VF
  2853. * @nparams: the number of parameters
  2854. * @params: the parameter names
  2855. * @val: the parameter values
  2856. *
  2857. * Sets the value of FW or device parameters. Up to 7 parameters can be
  2858. * specified at once.
  2859. */
  2860. int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2861. unsigned int vf, unsigned int nparams, const u32 *params,
  2862. const u32 *val)
  2863. {
  2864. struct fw_params_cmd c;
  2865. __be32 *p = &c.param[0].mnem;
  2866. if (nparams > 7)
  2867. return -EINVAL;
  2868. memset(&c, 0, sizeof(c));
  2869. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2870. FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
  2871. FW_PARAMS_CMD_VFN(vf));
  2872. c.retval_len16 = htonl(FW_LEN16(c));
  2873. while (nparams--) {
  2874. *p++ = htonl(*params++);
  2875. *p++ = htonl(*val++);
  2876. }
  2877. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2878. }
  2879. /**
  2880. * t4_cfg_pfvf - configure PF/VF resource limits
  2881. * @adap: the adapter
  2882. * @mbox: mailbox to use for the FW command
  2883. * @pf: the PF being configured
  2884. * @vf: the VF being configured
  2885. * @txq: the max number of egress queues
  2886. * @txq_eth_ctrl: the max number of egress Ethernet or control queues
  2887. * @rxqi: the max number of interrupt-capable ingress queues
  2888. * @rxq: the max number of interruptless ingress queues
  2889. * @tc: the PCI traffic class
  2890. * @vi: the max number of virtual interfaces
  2891. * @cmask: the channel access rights mask for the PF/VF
  2892. * @pmask: the port access rights mask for the PF/VF
  2893. * @nexact: the maximum number of exact MPS filters
  2894. * @rcaps: read capabilities
  2895. * @wxcaps: write/execute capabilities
  2896. *
  2897. * Configures resource limits and capabilities for a physical or virtual
  2898. * function.
  2899. */
  2900. int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2901. unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
  2902. unsigned int rxqi, unsigned int rxq, unsigned int tc,
  2903. unsigned int vi, unsigned int cmask, unsigned int pmask,
  2904. unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
  2905. {
  2906. struct fw_pfvf_cmd c;
  2907. memset(&c, 0, sizeof(c));
  2908. c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
  2909. FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
  2910. FW_PFVF_CMD_VFN(vf));
  2911. c.retval_len16 = htonl(FW_LEN16(c));
  2912. c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
  2913. FW_PFVF_CMD_NIQ(rxq));
  2914. c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
  2915. FW_PFVF_CMD_PMASK(pmask) |
  2916. FW_PFVF_CMD_NEQ(txq));
  2917. c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
  2918. FW_PFVF_CMD_NEXACTF(nexact));
  2919. c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
  2920. FW_PFVF_CMD_WX_CAPS(wxcaps) |
  2921. FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
  2922. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2923. }
  2924. /**
  2925. * t4_alloc_vi - allocate a virtual interface
  2926. * @adap: the adapter
  2927. * @mbox: mailbox to use for the FW command
  2928. * @port: physical port associated with the VI
  2929. * @pf: the PF owning the VI
  2930. * @vf: the VF owning the VI
  2931. * @nmac: number of MAC addresses needed (1 to 5)
  2932. * @mac: the MAC addresses of the VI
  2933. * @rss_size: size of RSS table slice associated with this VI
  2934. *
  2935. * Allocates a virtual interface for the given physical port. If @mac is
  2936. * not %NULL it contains the MAC addresses of the VI as assigned by FW.
  2937. * @mac should be large enough to hold @nmac Ethernet addresses, they are
  2938. * stored consecutively so the space needed is @nmac * 6 bytes.
  2939. * Returns a negative error number or the non-negative VI id.
  2940. */
  2941. int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
  2942. unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
  2943. unsigned int *rss_size)
  2944. {
  2945. int ret;
  2946. struct fw_vi_cmd c;
  2947. memset(&c, 0, sizeof(c));
  2948. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  2949. FW_CMD_WRITE | FW_CMD_EXEC |
  2950. FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
  2951. c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
  2952. c.portid_pkd = FW_VI_CMD_PORTID(port);
  2953. c.nmac = nmac - 1;
  2954. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2955. if (ret)
  2956. return ret;
  2957. if (mac) {
  2958. memcpy(mac, c.mac, sizeof(c.mac));
  2959. switch (nmac) {
  2960. case 5:
  2961. memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
  2962. case 4:
  2963. memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
  2964. case 3:
  2965. memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
  2966. case 2:
  2967. memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
  2968. }
  2969. }
  2970. if (rss_size)
  2971. *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
  2972. return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
  2973. }
  2974. /**
  2975. * t4_set_rxmode - set Rx properties of a virtual interface
  2976. * @adap: the adapter
  2977. * @mbox: mailbox to use for the FW command
  2978. * @viid: the VI id
  2979. * @mtu: the new MTU or -1
  2980. * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
  2981. * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
  2982. * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
  2983. * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
  2984. * @sleep_ok: if true we may sleep while awaiting command completion
  2985. *
  2986. * Sets Rx properties of a virtual interface.
  2987. */
  2988. int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2989. int mtu, int promisc, int all_multi, int bcast, int vlanex,
  2990. bool sleep_ok)
  2991. {
  2992. struct fw_vi_rxmode_cmd c;
  2993. /* convert to FW values */
  2994. if (mtu < 0)
  2995. mtu = FW_RXMODE_MTU_NO_CHG;
  2996. if (promisc < 0)
  2997. promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
  2998. if (all_multi < 0)
  2999. all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
  3000. if (bcast < 0)
  3001. bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
  3002. if (vlanex < 0)
  3003. vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
  3004. memset(&c, 0, sizeof(c));
  3005. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
  3006. FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
  3007. c.retval_len16 = htonl(FW_LEN16(c));
  3008. c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
  3009. FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
  3010. FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
  3011. FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
  3012. FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
  3013. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  3014. }
  3015. /**
  3016. * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
  3017. * @adap: the adapter
  3018. * @mbox: mailbox to use for the FW command
  3019. * @viid: the VI id
  3020. * @free: if true any existing filters for this VI id are first removed
  3021. * @naddr: the number of MAC addresses to allocate filters for (up to 7)
  3022. * @addr: the MAC address(es)
  3023. * @idx: where to store the index of each allocated filter
  3024. * @hash: pointer to hash address filter bitmap
  3025. * @sleep_ok: call is allowed to sleep
  3026. *
  3027. * Allocates an exact-match filter for each of the supplied addresses and
  3028. * sets it to the corresponding address. If @idx is not %NULL it should
  3029. * have at least @naddr entries, each of which will be set to the index of
  3030. * the filter allocated for the corresponding MAC address. If a filter
  3031. * could not be allocated for an address its index is set to 0xffff.
  3032. * If @hash is not %NULL addresses that fail to allocate an exact filter
  3033. * are hashed and update the hash filter bitmap pointed at by @hash.
  3034. *
  3035. * Returns a negative error number or the number of filters allocated.
  3036. */
  3037. int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
  3038. unsigned int viid, bool free, unsigned int naddr,
  3039. const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
  3040. {
  3041. int i, ret;
  3042. struct fw_vi_mac_cmd c;
  3043. struct fw_vi_mac_exact *p;
  3044. unsigned int max_naddr = is_t4(adap->params.chip) ?
  3045. NUM_MPS_CLS_SRAM_L_INSTANCES :
  3046. NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
  3047. if (naddr > 7)
  3048. return -EINVAL;
  3049. memset(&c, 0, sizeof(c));
  3050. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  3051. FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
  3052. FW_VI_MAC_CMD_VIID(viid));
  3053. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
  3054. FW_CMD_LEN16((naddr + 2) / 2));
  3055. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  3056. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  3057. FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
  3058. memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
  3059. }
  3060. ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
  3061. if (ret)
  3062. return ret;
  3063. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  3064. u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  3065. if (idx)
  3066. idx[i] = index >= max_naddr ? 0xffff : index;
  3067. if (index < max_naddr)
  3068. ret++;
  3069. else if (hash)
  3070. *hash |= (1ULL << hash_mac_addr(addr[i]));
  3071. }
  3072. return ret;
  3073. }
  3074. /**
  3075. * t4_change_mac - modifies the exact-match filter for a MAC address
  3076. * @adap: the adapter
  3077. * @mbox: mailbox to use for the FW command
  3078. * @viid: the VI id
  3079. * @idx: index of existing filter for old value of MAC address, or -1
  3080. * @addr: the new MAC address value
  3081. * @persist: whether a new MAC allocation should be persistent
  3082. * @add_smt: if true also add the address to the HW SMT
  3083. *
  3084. * Modifies an exact-match filter and sets it to the new MAC address.
  3085. * Note that in general it is not possible to modify the value of a given
  3086. * filter so the generic way to modify an address filter is to free the one
  3087. * being used by the old address value and allocate a new filter for the
  3088. * new address value. @idx can be -1 if the address is a new addition.
  3089. *
  3090. * Returns a negative error number or the index of the filter with the new
  3091. * MAC value.
  3092. */
  3093. int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3094. int idx, const u8 *addr, bool persist, bool add_smt)
  3095. {
  3096. int ret, mode;
  3097. struct fw_vi_mac_cmd c;
  3098. struct fw_vi_mac_exact *p = c.u.exact;
  3099. unsigned int max_mac_addr = is_t4(adap->params.chip) ?
  3100. NUM_MPS_CLS_SRAM_L_INSTANCES :
  3101. NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
  3102. if (idx < 0) /* new allocation */
  3103. idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
  3104. mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
  3105. memset(&c, 0, sizeof(c));
  3106. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  3107. FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
  3108. c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
  3109. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  3110. FW_VI_MAC_CMD_SMAC_RESULT(mode) |
  3111. FW_VI_MAC_CMD_IDX(idx));
  3112. memcpy(p->macaddr, addr, sizeof(p->macaddr));
  3113. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3114. if (ret == 0) {
  3115. ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  3116. if (ret >= max_mac_addr)
  3117. ret = -ENOMEM;
  3118. }
  3119. return ret;
  3120. }
  3121. /**
  3122. * t4_set_addr_hash - program the MAC inexact-match hash filter
  3123. * @adap: the adapter
  3124. * @mbox: mailbox to use for the FW command
  3125. * @viid: the VI id
  3126. * @ucast: whether the hash filter should also match unicast addresses
  3127. * @vec: the value to be written to the hash filter
  3128. * @sleep_ok: call is allowed to sleep
  3129. *
  3130. * Sets the 64-bit inexact-match hash filter for a virtual interface.
  3131. */
  3132. int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3133. bool ucast, u64 vec, bool sleep_ok)
  3134. {
  3135. struct fw_vi_mac_cmd c;
  3136. memset(&c, 0, sizeof(c));
  3137. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  3138. FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
  3139. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
  3140. FW_VI_MAC_CMD_HASHUNIEN(ucast) |
  3141. FW_CMD_LEN16(1));
  3142. c.u.hash.hashvec = cpu_to_be64(vec);
  3143. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  3144. }
  3145. /**
  3146. * t4_enable_vi - enable/disable a virtual interface
  3147. * @adap: the adapter
  3148. * @mbox: mailbox to use for the FW command
  3149. * @viid: the VI id
  3150. * @rx_en: 1=enable Rx, 0=disable Rx
  3151. * @tx_en: 1=enable Tx, 0=disable Tx
  3152. *
  3153. * Enables/disables a virtual interface.
  3154. */
  3155. int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3156. bool rx_en, bool tx_en)
  3157. {
  3158. struct fw_vi_enable_cmd c;
  3159. memset(&c, 0, sizeof(c));
  3160. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  3161. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  3162. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
  3163. FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
  3164. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3165. }
  3166. /**
  3167. * t4_identify_port - identify a VI's port by blinking its LED
  3168. * @adap: the adapter
  3169. * @mbox: mailbox to use for the FW command
  3170. * @viid: the VI id
  3171. * @nblinks: how many times to blink LED at 2.5 Hz
  3172. *
  3173. * Identifies a VI's port by blinking its LED.
  3174. */
  3175. int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3176. unsigned int nblinks)
  3177. {
  3178. struct fw_vi_enable_cmd c;
  3179. memset(&c, 0, sizeof(c));
  3180. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  3181. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  3182. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
  3183. c.blinkdur = htons(nblinks);
  3184. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3185. }
  3186. /**
  3187. * t4_iq_free - free an ingress queue and its FLs
  3188. * @adap: the adapter
  3189. * @mbox: mailbox to use for the FW command
  3190. * @pf: the PF owning the queues
  3191. * @vf: the VF owning the queues
  3192. * @iqtype: the ingress queue type
  3193. * @iqid: ingress queue id
  3194. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  3195. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  3196. *
  3197. * Frees an ingress queue and its associated FLs, if any.
  3198. */
  3199. int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3200. unsigned int vf, unsigned int iqtype, unsigned int iqid,
  3201. unsigned int fl0id, unsigned int fl1id)
  3202. {
  3203. struct fw_iq_cmd c;
  3204. memset(&c, 0, sizeof(c));
  3205. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  3206. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  3207. FW_IQ_CMD_VFN(vf));
  3208. c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
  3209. c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
  3210. c.iqid = htons(iqid);
  3211. c.fl0id = htons(fl0id);
  3212. c.fl1id = htons(fl1id);
  3213. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3214. }
  3215. /**
  3216. * t4_eth_eq_free - free an Ethernet egress queue
  3217. * @adap: the adapter
  3218. * @mbox: mailbox to use for the FW command
  3219. * @pf: the PF owning the queue
  3220. * @vf: the VF owning the queue
  3221. * @eqid: egress queue id
  3222. *
  3223. * Frees an Ethernet egress queue.
  3224. */
  3225. int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3226. unsigned int vf, unsigned int eqid)
  3227. {
  3228. struct fw_eq_eth_cmd c;
  3229. memset(&c, 0, sizeof(c));
  3230. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
  3231. FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
  3232. FW_EQ_ETH_CMD_VFN(vf));
  3233. c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
  3234. c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
  3235. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3236. }
  3237. /**
  3238. * t4_ctrl_eq_free - free a control egress queue
  3239. * @adap: the adapter
  3240. * @mbox: mailbox to use for the FW command
  3241. * @pf: the PF owning the queue
  3242. * @vf: the VF owning the queue
  3243. * @eqid: egress queue id
  3244. *
  3245. * Frees a control egress queue.
  3246. */
  3247. int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3248. unsigned int vf, unsigned int eqid)
  3249. {
  3250. struct fw_eq_ctrl_cmd c;
  3251. memset(&c, 0, sizeof(c));
  3252. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
  3253. FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
  3254. FW_EQ_CTRL_CMD_VFN(vf));
  3255. c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
  3256. c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
  3257. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3258. }
  3259. /**
  3260. * t4_ofld_eq_free - free an offload egress queue
  3261. * @adap: the adapter
  3262. * @mbox: mailbox to use for the FW command
  3263. * @pf: the PF owning the queue
  3264. * @vf: the VF owning the queue
  3265. * @eqid: egress queue id
  3266. *
  3267. * Frees a control egress queue.
  3268. */
  3269. int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3270. unsigned int vf, unsigned int eqid)
  3271. {
  3272. struct fw_eq_ofld_cmd c;
  3273. memset(&c, 0, sizeof(c));
  3274. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
  3275. FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
  3276. FW_EQ_OFLD_CMD_VFN(vf));
  3277. c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
  3278. c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
  3279. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3280. }
  3281. /**
  3282. * t4_handle_fw_rpl - process a FW reply message
  3283. * @adap: the adapter
  3284. * @rpl: start of the FW message
  3285. *
  3286. * Processes a FW message, such as link state change messages.
  3287. */
  3288. int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
  3289. {
  3290. u8 opcode = *(const u8 *)rpl;
  3291. if (opcode == FW_PORT_CMD) { /* link/module state change message */
  3292. int speed = 0, fc = 0;
  3293. const struct fw_port_cmd *p = (void *)rpl;
  3294. int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
  3295. int port = adap->chan_map[chan];
  3296. struct port_info *pi = adap2pinfo(adap, port);
  3297. struct link_config *lc = &pi->link_cfg;
  3298. u32 stat = ntohl(p->u.info.lstatus_to_modtype);
  3299. int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
  3300. u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
  3301. if (stat & FW_PORT_CMD_RXPAUSE)
  3302. fc |= PAUSE_RX;
  3303. if (stat & FW_PORT_CMD_TXPAUSE)
  3304. fc |= PAUSE_TX;
  3305. if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
  3306. speed = SPEED_100;
  3307. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
  3308. speed = SPEED_1000;
  3309. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
  3310. speed = SPEED_10000;
  3311. if (link_ok != lc->link_ok || speed != lc->speed ||
  3312. fc != lc->fc) { /* something changed */
  3313. lc->link_ok = link_ok;
  3314. lc->speed = speed;
  3315. lc->fc = fc;
  3316. t4_os_link_changed(adap, port, link_ok);
  3317. }
  3318. if (mod != pi->mod_type) {
  3319. pi->mod_type = mod;
  3320. t4_os_portmod_changed(adap, port);
  3321. }
  3322. }
  3323. return 0;
  3324. }
  3325. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3326. {
  3327. u16 val;
  3328. if (pci_is_pcie(adapter->pdev)) {
  3329. pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
  3330. p->speed = val & PCI_EXP_LNKSTA_CLS;
  3331. p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
  3332. }
  3333. }
  3334. /**
  3335. * init_link_config - initialize a link's SW state
  3336. * @lc: structure holding the link state
  3337. * @caps: link capabilities
  3338. *
  3339. * Initializes the SW state maintained for each link, including the link's
  3340. * capabilities and default speed/flow-control/autonegotiation settings.
  3341. */
  3342. static void init_link_config(struct link_config *lc, unsigned int caps)
  3343. {
  3344. lc->supported = caps;
  3345. lc->requested_speed = 0;
  3346. lc->speed = 0;
  3347. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3348. if (lc->supported & FW_PORT_CAP_ANEG) {
  3349. lc->advertising = lc->supported & ADVERT_MASK;
  3350. lc->autoneg = AUTONEG_ENABLE;
  3351. lc->requested_fc |= PAUSE_AUTONEG;
  3352. } else {
  3353. lc->advertising = 0;
  3354. lc->autoneg = AUTONEG_DISABLE;
  3355. }
  3356. }
  3357. int t4_wait_dev_ready(struct adapter *adap)
  3358. {
  3359. if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
  3360. return 0;
  3361. msleep(500);
  3362. return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
  3363. }
  3364. static int get_flash_params(struct adapter *adap)
  3365. {
  3366. int ret;
  3367. u32 info;
  3368. ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
  3369. if (!ret)
  3370. ret = sf1_read(adap, 3, 0, 1, &info);
  3371. t4_write_reg(adap, SF_OP, 0); /* unlock SF */
  3372. if (ret)
  3373. return ret;
  3374. if ((info & 0xff) != 0x20) /* not a Numonix flash */
  3375. return -EINVAL;
  3376. info >>= 16; /* log2 of size */
  3377. if (info >= 0x14 && info < 0x18)
  3378. adap->params.sf_nsec = 1 << (info - 16);
  3379. else if (info == 0x18)
  3380. adap->params.sf_nsec = 64;
  3381. else
  3382. return -EINVAL;
  3383. adap->params.sf_size = 1 << info;
  3384. adap->params.sf_fw_start =
  3385. t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
  3386. return 0;
  3387. }
  3388. /**
  3389. * t4_prep_adapter - prepare SW and HW for operation
  3390. * @adapter: the adapter
  3391. * @reset: if true perform a HW reset
  3392. *
  3393. * Initialize adapter SW state for the various HW modules, set initial
  3394. * values for some adapter tunables, take PHYs out of reset, and
  3395. * initialize the MDIO interface.
  3396. */
  3397. int t4_prep_adapter(struct adapter *adapter)
  3398. {
  3399. int ret, ver;
  3400. uint16_t device_id;
  3401. u32 pl_rev;
  3402. ret = t4_wait_dev_ready(adapter);
  3403. if (ret < 0)
  3404. return ret;
  3405. get_pci_mode(adapter, &adapter->params.pci);
  3406. pl_rev = G_REV(t4_read_reg(adapter, PL_REV));
  3407. ret = get_flash_params(adapter);
  3408. if (ret < 0) {
  3409. dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
  3410. return ret;
  3411. }
  3412. /* Retrieve adapter's device ID
  3413. */
  3414. pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
  3415. ver = device_id >> 12;
  3416. adapter->params.chip = 0;
  3417. switch (ver) {
  3418. case CHELSIO_T4:
  3419. adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
  3420. break;
  3421. case CHELSIO_T5:
  3422. adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
  3423. break;
  3424. default:
  3425. dev_err(adapter->pdev_dev, "Device %d is not supported\n",
  3426. device_id);
  3427. return -EINVAL;
  3428. }
  3429. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3430. /*
  3431. * Default port for debugging in case we can't reach FW.
  3432. */
  3433. adapter->params.nports = 1;
  3434. adapter->params.portvec = 1;
  3435. adapter->params.vpd.cclk = 50000;
  3436. return 0;
  3437. }
  3438. int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
  3439. {
  3440. u8 addr[6];
  3441. int ret, i, j = 0;
  3442. struct fw_port_cmd c;
  3443. struct fw_rss_vi_config_cmd rvc;
  3444. memset(&c, 0, sizeof(c));
  3445. memset(&rvc, 0, sizeof(rvc));
  3446. for_each_port(adap, i) {
  3447. unsigned int rss_size;
  3448. struct port_info *p = adap2pinfo(adap, i);
  3449. while ((adap->params.portvec & (1 << j)) == 0)
  3450. j++;
  3451. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
  3452. FW_CMD_REQUEST | FW_CMD_READ |
  3453. FW_PORT_CMD_PORTID(j));
  3454. c.action_to_len16 = htonl(
  3455. FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
  3456. FW_LEN16(c));
  3457. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3458. if (ret)
  3459. return ret;
  3460. ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
  3461. if (ret < 0)
  3462. return ret;
  3463. p->viid = ret;
  3464. p->tx_chan = j;
  3465. p->lport = j;
  3466. p->rss_size = rss_size;
  3467. memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
  3468. ret = ntohl(c.u.info.lstatus_to_modtype);
  3469. p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
  3470. FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
  3471. p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
  3472. p->mod_type = FW_PORT_MOD_TYPE_NA;
  3473. rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
  3474. FW_CMD_REQUEST | FW_CMD_READ |
  3475. FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
  3476. rvc.retval_len16 = htonl(FW_LEN16(rvc));
  3477. ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
  3478. if (ret)
  3479. return ret;
  3480. p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
  3481. init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
  3482. j++;
  3483. }
  3484. return 0;
  3485. }