sched.c 248 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  118. /*
  119. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  120. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  121. */
  122. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  123. {
  124. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  125. }
  126. /*
  127. * Each time a sched group cpu_power is changed,
  128. * we must compute its reciprocal value
  129. */
  130. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  131. {
  132. sg->__cpu_power += val;
  133. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  134. }
  135. #endif
  136. static inline int rt_policy(int policy)
  137. {
  138. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  139. return 1;
  140. return 0;
  141. }
  142. static inline int task_has_rt_policy(struct task_struct *p)
  143. {
  144. return rt_policy(p->policy);
  145. }
  146. /*
  147. * This is the priority-queue data structure of the RT scheduling class:
  148. */
  149. struct rt_prio_array {
  150. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  151. struct list_head queue[MAX_RT_PRIO];
  152. };
  153. struct rt_bandwidth {
  154. /* nests inside the rq lock: */
  155. spinlock_t rt_runtime_lock;
  156. ktime_t rt_period;
  157. u64 rt_runtime;
  158. struct hrtimer rt_period_timer;
  159. };
  160. static struct rt_bandwidth def_rt_bandwidth;
  161. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  162. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  163. {
  164. struct rt_bandwidth *rt_b =
  165. container_of(timer, struct rt_bandwidth, rt_period_timer);
  166. ktime_t now;
  167. int overrun;
  168. int idle = 0;
  169. for (;;) {
  170. now = hrtimer_cb_get_time(timer);
  171. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  172. if (!overrun)
  173. break;
  174. idle = do_sched_rt_period_timer(rt_b, overrun);
  175. }
  176. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  177. }
  178. static
  179. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  180. {
  181. rt_b->rt_period = ns_to_ktime(period);
  182. rt_b->rt_runtime = runtime;
  183. spin_lock_init(&rt_b->rt_runtime_lock);
  184. hrtimer_init(&rt_b->rt_period_timer,
  185. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  186. rt_b->rt_period_timer.function = sched_rt_period_timer;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_USER_SCHED
  231. uid_t uid;
  232. #endif
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* schedulable entities of this group on each cpu */
  235. struct sched_entity **se;
  236. /* runqueue "owned" by this group on each cpu */
  237. struct cfs_rq **cfs_rq;
  238. unsigned long shares;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. struct sched_rt_entity **rt_se;
  242. struct rt_rq **rt_rq;
  243. struct rt_bandwidth rt_bandwidth;
  244. #endif
  245. struct rcu_head rcu;
  246. struct list_head list;
  247. struct task_group *parent;
  248. struct list_head siblings;
  249. struct list_head children;
  250. };
  251. #ifdef CONFIG_USER_SCHED
  252. /* Helper function to pass uid information to create_sched_user() */
  253. void set_tg_uid(struct user_struct *user)
  254. {
  255. user->tg->uid = user->uid;
  256. }
  257. /*
  258. * Root task group.
  259. * Every UID task group (including init_task_group aka UID-0) will
  260. * be a child to this group.
  261. */
  262. struct task_group root_task_group;
  263. #ifdef CONFIG_FAIR_GROUP_SCHED
  264. /* Default task group's sched entity on each cpu */
  265. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  266. /* Default task group's cfs_rq on each cpu */
  267. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  268. #endif /* CONFIG_FAIR_GROUP_SCHED */
  269. #ifdef CONFIG_RT_GROUP_SCHED
  270. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  271. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  272. #endif /* CONFIG_RT_GROUP_SCHED */
  273. #else /* !CONFIG_USER_SCHED */
  274. #define root_task_group init_task_group
  275. #endif /* CONFIG_USER_SCHED */
  276. /* task_group_lock serializes add/remove of task groups and also changes to
  277. * a task group's cpu shares.
  278. */
  279. static DEFINE_SPINLOCK(task_group_lock);
  280. #ifdef CONFIG_SMP
  281. static int root_task_group_empty(void)
  282. {
  283. return list_empty(&root_task_group.children);
  284. }
  285. #endif
  286. #ifdef CONFIG_FAIR_GROUP_SCHED
  287. #ifdef CONFIG_USER_SCHED
  288. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  289. #else /* !CONFIG_USER_SCHED */
  290. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  291. #endif /* CONFIG_USER_SCHED */
  292. /*
  293. * A weight of 0 or 1 can cause arithmetics problems.
  294. * A weight of a cfs_rq is the sum of weights of which entities
  295. * are queued on this cfs_rq, so a weight of a entity should not be
  296. * too large, so as the shares value of a task group.
  297. * (The default weight is 1024 - so there's no practical
  298. * limitation from this.)
  299. */
  300. #define MIN_SHARES 2
  301. #define MAX_SHARES (1UL << 18)
  302. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  303. #endif
  304. /* Default task group.
  305. * Every task in system belong to this group at bootup.
  306. */
  307. struct task_group init_task_group;
  308. /* return group to which a task belongs */
  309. static inline struct task_group *task_group(struct task_struct *p)
  310. {
  311. struct task_group *tg;
  312. #ifdef CONFIG_USER_SCHED
  313. rcu_read_lock();
  314. tg = __task_cred(p)->user->tg;
  315. rcu_read_unlock();
  316. #elif defined(CONFIG_CGROUP_SCHED)
  317. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  318. struct task_group, css);
  319. #else
  320. tg = &init_task_group;
  321. #endif
  322. return tg;
  323. }
  324. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  325. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  326. {
  327. #ifdef CONFIG_FAIR_GROUP_SCHED
  328. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  329. p->se.parent = task_group(p)->se[cpu];
  330. #endif
  331. #ifdef CONFIG_RT_GROUP_SCHED
  332. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  333. p->rt.parent = task_group(p)->rt_se[cpu];
  334. #endif
  335. }
  336. #else
  337. #ifdef CONFIG_SMP
  338. static int root_task_group_empty(void)
  339. {
  340. return 1;
  341. }
  342. #endif
  343. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  344. static inline struct task_group *task_group(struct task_struct *p)
  345. {
  346. return NULL;
  347. }
  348. #endif /* CONFIG_GROUP_SCHED */
  349. /* CFS-related fields in a runqueue */
  350. struct cfs_rq {
  351. struct load_weight load;
  352. unsigned long nr_running;
  353. u64 exec_clock;
  354. u64 min_vruntime;
  355. struct rb_root tasks_timeline;
  356. struct rb_node *rb_leftmost;
  357. struct list_head tasks;
  358. struct list_head *balance_iterator;
  359. /*
  360. * 'curr' points to currently running entity on this cfs_rq.
  361. * It is set to NULL otherwise (i.e when none are currently running).
  362. */
  363. struct sched_entity *curr, *next, *last;
  364. unsigned int nr_spread_over;
  365. #ifdef CONFIG_FAIR_GROUP_SCHED
  366. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  367. /*
  368. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  369. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  370. * (like users, containers etc.)
  371. *
  372. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  373. * list is used during load balance.
  374. */
  375. struct list_head leaf_cfs_rq_list;
  376. struct task_group *tg; /* group that "owns" this runqueue */
  377. #ifdef CONFIG_SMP
  378. /*
  379. * the part of load.weight contributed by tasks
  380. */
  381. unsigned long task_weight;
  382. /*
  383. * h_load = weight * f(tg)
  384. *
  385. * Where f(tg) is the recursive weight fraction assigned to
  386. * this group.
  387. */
  388. unsigned long h_load;
  389. /*
  390. * this cpu's part of tg->shares
  391. */
  392. unsigned long shares;
  393. /*
  394. * load.weight at the time we set shares
  395. */
  396. unsigned long rq_weight;
  397. #endif
  398. #endif
  399. };
  400. /* Real-Time classes' related field in a runqueue: */
  401. struct rt_rq {
  402. struct rt_prio_array active;
  403. unsigned long rt_nr_running;
  404. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  405. struct {
  406. int curr; /* highest queued rt task prio */
  407. #ifdef CONFIG_SMP
  408. int next; /* next highest */
  409. #endif
  410. } highest_prio;
  411. #endif
  412. #ifdef CONFIG_SMP
  413. unsigned long rt_nr_migratory;
  414. int overloaded;
  415. struct plist_head pushable_tasks;
  416. #endif
  417. int rt_throttled;
  418. u64 rt_time;
  419. u64 rt_runtime;
  420. /* Nests inside the rq lock: */
  421. spinlock_t rt_runtime_lock;
  422. #ifdef CONFIG_RT_GROUP_SCHED
  423. unsigned long rt_nr_boosted;
  424. struct rq *rq;
  425. struct list_head leaf_rt_rq_list;
  426. struct task_group *tg;
  427. struct sched_rt_entity *rt_se;
  428. #endif
  429. };
  430. #ifdef CONFIG_SMP
  431. /*
  432. * We add the notion of a root-domain which will be used to define per-domain
  433. * variables. Each exclusive cpuset essentially defines an island domain by
  434. * fully partitioning the member cpus from any other cpuset. Whenever a new
  435. * exclusive cpuset is created, we also create and attach a new root-domain
  436. * object.
  437. *
  438. */
  439. struct root_domain {
  440. atomic_t refcount;
  441. cpumask_var_t span;
  442. cpumask_var_t online;
  443. /*
  444. * The "RT overload" flag: it gets set if a CPU has more than
  445. * one runnable RT task.
  446. */
  447. cpumask_var_t rto_mask;
  448. atomic_t rto_count;
  449. #ifdef CONFIG_SMP
  450. struct cpupri cpupri;
  451. #endif
  452. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  453. /*
  454. * Preferred wake up cpu nominated by sched_mc balance that will be
  455. * used when most cpus are idle in the system indicating overall very
  456. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  457. */
  458. unsigned int sched_mc_preferred_wakeup_cpu;
  459. #endif
  460. };
  461. /*
  462. * By default the system creates a single root-domain with all cpus as
  463. * members (mimicking the global state we have today).
  464. */
  465. static struct root_domain def_root_domain;
  466. #endif
  467. /*
  468. * This is the main, per-CPU runqueue data structure.
  469. *
  470. * Locking rule: those places that want to lock multiple runqueues
  471. * (such as the load balancing or the thread migration code), lock
  472. * acquire operations must be ordered by ascending &runqueue.
  473. */
  474. struct rq {
  475. /* runqueue lock: */
  476. spinlock_t lock;
  477. /*
  478. * nr_running and cpu_load should be in the same cacheline because
  479. * remote CPUs use both these fields when doing load calculation.
  480. */
  481. unsigned long nr_running;
  482. #define CPU_LOAD_IDX_MAX 5
  483. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  484. #ifdef CONFIG_NO_HZ
  485. unsigned long last_tick_seen;
  486. unsigned char in_nohz_recently;
  487. #endif
  488. /* capture load from *all* tasks on this cpu: */
  489. struct load_weight load;
  490. unsigned long nr_load_updates;
  491. u64 nr_switches;
  492. u64 nr_migrations_in;
  493. struct cfs_rq cfs;
  494. struct rt_rq rt;
  495. #ifdef CONFIG_FAIR_GROUP_SCHED
  496. /* list of leaf cfs_rq on this cpu: */
  497. struct list_head leaf_cfs_rq_list;
  498. #endif
  499. #ifdef CONFIG_RT_GROUP_SCHED
  500. struct list_head leaf_rt_rq_list;
  501. #endif
  502. /*
  503. * This is part of a global counter where only the total sum
  504. * over all CPUs matters. A task can increase this counter on
  505. * one CPU and if it got migrated afterwards it may decrease
  506. * it on another CPU. Always updated under the runqueue lock:
  507. */
  508. unsigned long nr_uninterruptible;
  509. struct task_struct *curr, *idle;
  510. unsigned long next_balance;
  511. struct mm_struct *prev_mm;
  512. u64 clock;
  513. atomic_t nr_iowait;
  514. #ifdef CONFIG_SMP
  515. struct root_domain *rd;
  516. struct sched_domain *sd;
  517. unsigned char idle_at_tick;
  518. /* For active balancing */
  519. int active_balance;
  520. int push_cpu;
  521. /* cpu of this runqueue: */
  522. int cpu;
  523. int online;
  524. unsigned long avg_load_per_task;
  525. struct task_struct *migration_thread;
  526. struct list_head migration_queue;
  527. #endif
  528. #ifdef CONFIG_SCHED_HRTICK
  529. #ifdef CONFIG_SMP
  530. int hrtick_csd_pending;
  531. struct call_single_data hrtick_csd;
  532. #endif
  533. struct hrtimer hrtick_timer;
  534. #endif
  535. #ifdef CONFIG_SCHEDSTATS
  536. /* latency stats */
  537. struct sched_info rq_sched_info;
  538. unsigned long long rq_cpu_time;
  539. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  540. /* sys_sched_yield() stats */
  541. unsigned int yld_count;
  542. /* schedule() stats */
  543. unsigned int sched_switch;
  544. unsigned int sched_count;
  545. unsigned int sched_goidle;
  546. /* try_to_wake_up() stats */
  547. unsigned int ttwu_count;
  548. unsigned int ttwu_local;
  549. /* BKL stats */
  550. unsigned int bkl_count;
  551. #endif
  552. };
  553. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  554. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  555. {
  556. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  557. }
  558. static inline int cpu_of(struct rq *rq)
  559. {
  560. #ifdef CONFIG_SMP
  561. return rq->cpu;
  562. #else
  563. return 0;
  564. #endif
  565. }
  566. /*
  567. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  568. * See detach_destroy_domains: synchronize_sched for details.
  569. *
  570. * The domain tree of any CPU may only be accessed from within
  571. * preempt-disabled sections.
  572. */
  573. #define for_each_domain(cpu, __sd) \
  574. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  575. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  576. #define this_rq() (&__get_cpu_var(runqueues))
  577. #define task_rq(p) cpu_rq(task_cpu(p))
  578. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  579. inline void update_rq_clock(struct rq *rq)
  580. {
  581. rq->clock = sched_clock_cpu(cpu_of(rq));
  582. }
  583. /*
  584. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  585. */
  586. #ifdef CONFIG_SCHED_DEBUG
  587. # define const_debug __read_mostly
  588. #else
  589. # define const_debug static const
  590. #endif
  591. /**
  592. * runqueue_is_locked
  593. *
  594. * Returns true if the current cpu runqueue is locked.
  595. * This interface allows printk to be called with the runqueue lock
  596. * held and know whether or not it is OK to wake up the klogd.
  597. */
  598. int runqueue_is_locked(void)
  599. {
  600. int cpu = get_cpu();
  601. struct rq *rq = cpu_rq(cpu);
  602. int ret;
  603. ret = spin_is_locked(&rq->lock);
  604. put_cpu();
  605. return ret;
  606. }
  607. /*
  608. * Debugging: various feature bits
  609. */
  610. #define SCHED_FEAT(name, enabled) \
  611. __SCHED_FEAT_##name ,
  612. enum {
  613. #include "sched_features.h"
  614. };
  615. #undef SCHED_FEAT
  616. #define SCHED_FEAT(name, enabled) \
  617. (1UL << __SCHED_FEAT_##name) * enabled |
  618. const_debug unsigned int sysctl_sched_features =
  619. #include "sched_features.h"
  620. 0;
  621. #undef SCHED_FEAT
  622. #ifdef CONFIG_SCHED_DEBUG
  623. #define SCHED_FEAT(name, enabled) \
  624. #name ,
  625. static __read_mostly char *sched_feat_names[] = {
  626. #include "sched_features.h"
  627. NULL
  628. };
  629. #undef SCHED_FEAT
  630. static int sched_feat_show(struct seq_file *m, void *v)
  631. {
  632. int i;
  633. for (i = 0; sched_feat_names[i]; i++) {
  634. if (!(sysctl_sched_features & (1UL << i)))
  635. seq_puts(m, "NO_");
  636. seq_printf(m, "%s ", sched_feat_names[i]);
  637. }
  638. seq_puts(m, "\n");
  639. return 0;
  640. }
  641. static ssize_t
  642. sched_feat_write(struct file *filp, const char __user *ubuf,
  643. size_t cnt, loff_t *ppos)
  644. {
  645. char buf[64];
  646. char *cmp = buf;
  647. int neg = 0;
  648. int i;
  649. if (cnt > 63)
  650. cnt = 63;
  651. if (copy_from_user(&buf, ubuf, cnt))
  652. return -EFAULT;
  653. buf[cnt] = 0;
  654. if (strncmp(buf, "NO_", 3) == 0) {
  655. neg = 1;
  656. cmp += 3;
  657. }
  658. for (i = 0; sched_feat_names[i]; i++) {
  659. int len = strlen(sched_feat_names[i]);
  660. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  661. if (neg)
  662. sysctl_sched_features &= ~(1UL << i);
  663. else
  664. sysctl_sched_features |= (1UL << i);
  665. break;
  666. }
  667. }
  668. if (!sched_feat_names[i])
  669. return -EINVAL;
  670. filp->f_pos += cnt;
  671. return cnt;
  672. }
  673. static int sched_feat_open(struct inode *inode, struct file *filp)
  674. {
  675. return single_open(filp, sched_feat_show, NULL);
  676. }
  677. static struct file_operations sched_feat_fops = {
  678. .open = sched_feat_open,
  679. .write = sched_feat_write,
  680. .read = seq_read,
  681. .llseek = seq_lseek,
  682. .release = single_release,
  683. };
  684. static __init int sched_init_debug(void)
  685. {
  686. debugfs_create_file("sched_features", 0644, NULL, NULL,
  687. &sched_feat_fops);
  688. return 0;
  689. }
  690. late_initcall(sched_init_debug);
  691. #endif
  692. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  693. /*
  694. * Number of tasks to iterate in a single balance run.
  695. * Limited because this is done with IRQs disabled.
  696. */
  697. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  698. /*
  699. * ratelimit for updating the group shares.
  700. * default: 0.25ms
  701. */
  702. unsigned int sysctl_sched_shares_ratelimit = 250000;
  703. /*
  704. * Inject some fuzzyness into changing the per-cpu group shares
  705. * this avoids remote rq-locks at the expense of fairness.
  706. * default: 4
  707. */
  708. unsigned int sysctl_sched_shares_thresh = 4;
  709. /*
  710. * period over which we measure -rt task cpu usage in us.
  711. * default: 1s
  712. */
  713. unsigned int sysctl_sched_rt_period = 1000000;
  714. static __read_mostly int scheduler_running;
  715. /*
  716. * part of the period that we allow rt tasks to run in us.
  717. * default: 0.95s
  718. */
  719. int sysctl_sched_rt_runtime = 950000;
  720. static inline u64 global_rt_period(void)
  721. {
  722. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  723. }
  724. static inline u64 global_rt_runtime(void)
  725. {
  726. if (sysctl_sched_rt_runtime < 0)
  727. return RUNTIME_INF;
  728. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  729. }
  730. #ifndef prepare_arch_switch
  731. # define prepare_arch_switch(next) do { } while (0)
  732. #endif
  733. #ifndef finish_arch_switch
  734. # define finish_arch_switch(prev) do { } while (0)
  735. #endif
  736. static inline int task_current(struct rq *rq, struct task_struct *p)
  737. {
  738. return rq->curr == p;
  739. }
  740. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  741. static inline int task_running(struct rq *rq, struct task_struct *p)
  742. {
  743. return task_current(rq, p);
  744. }
  745. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  746. {
  747. }
  748. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  749. {
  750. #ifdef CONFIG_DEBUG_SPINLOCK
  751. /* this is a valid case when another task releases the spinlock */
  752. rq->lock.owner = current;
  753. #endif
  754. /*
  755. * If we are tracking spinlock dependencies then we have to
  756. * fix up the runqueue lock - which gets 'carried over' from
  757. * prev into current:
  758. */
  759. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  760. spin_unlock_irq(&rq->lock);
  761. }
  762. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  763. static inline int task_running(struct rq *rq, struct task_struct *p)
  764. {
  765. #ifdef CONFIG_SMP
  766. return p->oncpu;
  767. #else
  768. return task_current(rq, p);
  769. #endif
  770. }
  771. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  772. {
  773. #ifdef CONFIG_SMP
  774. /*
  775. * We can optimise this out completely for !SMP, because the
  776. * SMP rebalancing from interrupt is the only thing that cares
  777. * here.
  778. */
  779. next->oncpu = 1;
  780. #endif
  781. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  782. spin_unlock_irq(&rq->lock);
  783. #else
  784. spin_unlock(&rq->lock);
  785. #endif
  786. }
  787. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  788. {
  789. #ifdef CONFIG_SMP
  790. /*
  791. * After ->oncpu is cleared, the task can be moved to a different CPU.
  792. * We must ensure this doesn't happen until the switch is completely
  793. * finished.
  794. */
  795. smp_wmb();
  796. prev->oncpu = 0;
  797. #endif
  798. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  799. local_irq_enable();
  800. #endif
  801. }
  802. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  803. /*
  804. * __task_rq_lock - lock the runqueue a given task resides on.
  805. * Must be called interrupts disabled.
  806. */
  807. static inline struct rq *__task_rq_lock(struct task_struct *p)
  808. __acquires(rq->lock)
  809. {
  810. for (;;) {
  811. struct rq *rq = task_rq(p);
  812. spin_lock(&rq->lock);
  813. if (likely(rq == task_rq(p)))
  814. return rq;
  815. spin_unlock(&rq->lock);
  816. }
  817. }
  818. /*
  819. * task_rq_lock - lock the runqueue a given task resides on and disable
  820. * interrupts. Note the ordering: we can safely lookup the task_rq without
  821. * explicitly disabling preemption.
  822. */
  823. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  824. __acquires(rq->lock)
  825. {
  826. struct rq *rq;
  827. for (;;) {
  828. local_irq_save(*flags);
  829. rq = task_rq(p);
  830. spin_lock(&rq->lock);
  831. if (likely(rq == task_rq(p)))
  832. return rq;
  833. spin_unlock_irqrestore(&rq->lock, *flags);
  834. }
  835. }
  836. void curr_rq_lock_irq_save(unsigned long *flags)
  837. __acquires(rq->lock)
  838. {
  839. struct rq *rq;
  840. local_irq_save(*flags);
  841. rq = cpu_rq(smp_processor_id());
  842. spin_lock(&rq->lock);
  843. }
  844. void curr_rq_unlock_irq_restore(unsigned long *flags)
  845. __releases(rq->lock)
  846. {
  847. struct rq *rq;
  848. rq = cpu_rq(smp_processor_id());
  849. spin_unlock(&rq->lock);
  850. local_irq_restore(*flags);
  851. }
  852. void task_rq_unlock_wait(struct task_struct *p)
  853. {
  854. struct rq *rq = task_rq(p);
  855. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  856. spin_unlock_wait(&rq->lock);
  857. }
  858. static void __task_rq_unlock(struct rq *rq)
  859. __releases(rq->lock)
  860. {
  861. spin_unlock(&rq->lock);
  862. }
  863. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  864. __releases(rq->lock)
  865. {
  866. spin_unlock_irqrestore(&rq->lock, *flags);
  867. }
  868. /*
  869. * this_rq_lock - lock this runqueue and disable interrupts.
  870. */
  871. static struct rq *this_rq_lock(void)
  872. __acquires(rq->lock)
  873. {
  874. struct rq *rq;
  875. local_irq_disable();
  876. rq = this_rq();
  877. spin_lock(&rq->lock);
  878. return rq;
  879. }
  880. #ifdef CONFIG_SCHED_HRTICK
  881. /*
  882. * Use HR-timers to deliver accurate preemption points.
  883. *
  884. * Its all a bit involved since we cannot program an hrt while holding the
  885. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  886. * reschedule event.
  887. *
  888. * When we get rescheduled we reprogram the hrtick_timer outside of the
  889. * rq->lock.
  890. */
  891. /*
  892. * Use hrtick when:
  893. * - enabled by features
  894. * - hrtimer is actually high res
  895. */
  896. static inline int hrtick_enabled(struct rq *rq)
  897. {
  898. if (!sched_feat(HRTICK))
  899. return 0;
  900. if (!cpu_active(cpu_of(rq)))
  901. return 0;
  902. return hrtimer_is_hres_active(&rq->hrtick_timer);
  903. }
  904. static void hrtick_clear(struct rq *rq)
  905. {
  906. if (hrtimer_active(&rq->hrtick_timer))
  907. hrtimer_cancel(&rq->hrtick_timer);
  908. }
  909. /*
  910. * High-resolution timer tick.
  911. * Runs from hardirq context with interrupts disabled.
  912. */
  913. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  914. {
  915. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  916. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  917. spin_lock(&rq->lock);
  918. update_rq_clock(rq);
  919. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  920. spin_unlock(&rq->lock);
  921. return HRTIMER_NORESTART;
  922. }
  923. #ifdef CONFIG_SMP
  924. /*
  925. * called from hardirq (IPI) context
  926. */
  927. static void __hrtick_start(void *arg)
  928. {
  929. struct rq *rq = arg;
  930. spin_lock(&rq->lock);
  931. hrtimer_restart(&rq->hrtick_timer);
  932. rq->hrtick_csd_pending = 0;
  933. spin_unlock(&rq->lock);
  934. }
  935. /*
  936. * Called to set the hrtick timer state.
  937. *
  938. * called with rq->lock held and irqs disabled
  939. */
  940. static void hrtick_start(struct rq *rq, u64 delay)
  941. {
  942. struct hrtimer *timer = &rq->hrtick_timer;
  943. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  944. hrtimer_set_expires(timer, time);
  945. if (rq == this_rq()) {
  946. hrtimer_restart(timer);
  947. } else if (!rq->hrtick_csd_pending) {
  948. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  949. rq->hrtick_csd_pending = 1;
  950. }
  951. }
  952. static int
  953. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  954. {
  955. int cpu = (int)(long)hcpu;
  956. switch (action) {
  957. case CPU_UP_CANCELED:
  958. case CPU_UP_CANCELED_FROZEN:
  959. case CPU_DOWN_PREPARE:
  960. case CPU_DOWN_PREPARE_FROZEN:
  961. case CPU_DEAD:
  962. case CPU_DEAD_FROZEN:
  963. hrtick_clear(cpu_rq(cpu));
  964. return NOTIFY_OK;
  965. }
  966. return NOTIFY_DONE;
  967. }
  968. static __init void init_hrtick(void)
  969. {
  970. hotcpu_notifier(hotplug_hrtick, 0);
  971. }
  972. #else
  973. /*
  974. * Called to set the hrtick timer state.
  975. *
  976. * called with rq->lock held and irqs disabled
  977. */
  978. static void hrtick_start(struct rq *rq, u64 delay)
  979. {
  980. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  981. }
  982. static inline void init_hrtick(void)
  983. {
  984. }
  985. #endif /* CONFIG_SMP */
  986. static void init_rq_hrtick(struct rq *rq)
  987. {
  988. #ifdef CONFIG_SMP
  989. rq->hrtick_csd_pending = 0;
  990. rq->hrtick_csd.flags = 0;
  991. rq->hrtick_csd.func = __hrtick_start;
  992. rq->hrtick_csd.info = rq;
  993. #endif
  994. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  995. rq->hrtick_timer.function = hrtick;
  996. }
  997. #else /* CONFIG_SCHED_HRTICK */
  998. static inline void hrtick_clear(struct rq *rq)
  999. {
  1000. }
  1001. static inline void init_rq_hrtick(struct rq *rq)
  1002. {
  1003. }
  1004. static inline void init_hrtick(void)
  1005. {
  1006. }
  1007. #endif /* CONFIG_SCHED_HRTICK */
  1008. /*
  1009. * resched_task - mark a task 'to be rescheduled now'.
  1010. *
  1011. * On UP this means the setting of the need_resched flag, on SMP it
  1012. * might also involve a cross-CPU call to trigger the scheduler on
  1013. * the target CPU.
  1014. */
  1015. #ifdef CONFIG_SMP
  1016. #ifndef tsk_is_polling
  1017. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1018. #endif
  1019. static void resched_task(struct task_struct *p)
  1020. {
  1021. int cpu;
  1022. assert_spin_locked(&task_rq(p)->lock);
  1023. if (test_tsk_need_resched(p))
  1024. return;
  1025. set_tsk_need_resched(p);
  1026. cpu = task_cpu(p);
  1027. if (cpu == smp_processor_id())
  1028. return;
  1029. /* NEED_RESCHED must be visible before we test polling */
  1030. smp_mb();
  1031. if (!tsk_is_polling(p))
  1032. smp_send_reschedule(cpu);
  1033. }
  1034. static void resched_cpu(int cpu)
  1035. {
  1036. struct rq *rq = cpu_rq(cpu);
  1037. unsigned long flags;
  1038. if (!spin_trylock_irqsave(&rq->lock, flags))
  1039. return;
  1040. resched_task(cpu_curr(cpu));
  1041. spin_unlock_irqrestore(&rq->lock, flags);
  1042. }
  1043. #ifdef CONFIG_NO_HZ
  1044. /*
  1045. * When add_timer_on() enqueues a timer into the timer wheel of an
  1046. * idle CPU then this timer might expire before the next timer event
  1047. * which is scheduled to wake up that CPU. In case of a completely
  1048. * idle system the next event might even be infinite time into the
  1049. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1050. * leaves the inner idle loop so the newly added timer is taken into
  1051. * account when the CPU goes back to idle and evaluates the timer
  1052. * wheel for the next timer event.
  1053. */
  1054. void wake_up_idle_cpu(int cpu)
  1055. {
  1056. struct rq *rq = cpu_rq(cpu);
  1057. if (cpu == smp_processor_id())
  1058. return;
  1059. /*
  1060. * This is safe, as this function is called with the timer
  1061. * wheel base lock of (cpu) held. When the CPU is on the way
  1062. * to idle and has not yet set rq->curr to idle then it will
  1063. * be serialized on the timer wheel base lock and take the new
  1064. * timer into account automatically.
  1065. */
  1066. if (rq->curr != rq->idle)
  1067. return;
  1068. /*
  1069. * We can set TIF_RESCHED on the idle task of the other CPU
  1070. * lockless. The worst case is that the other CPU runs the
  1071. * idle task through an additional NOOP schedule()
  1072. */
  1073. set_tsk_need_resched(rq->idle);
  1074. /* NEED_RESCHED must be visible before we test polling */
  1075. smp_mb();
  1076. if (!tsk_is_polling(rq->idle))
  1077. smp_send_reschedule(cpu);
  1078. }
  1079. #endif /* CONFIG_NO_HZ */
  1080. #else /* !CONFIG_SMP */
  1081. static void resched_task(struct task_struct *p)
  1082. {
  1083. assert_spin_locked(&task_rq(p)->lock);
  1084. set_tsk_need_resched(p);
  1085. }
  1086. #endif /* CONFIG_SMP */
  1087. #if BITS_PER_LONG == 32
  1088. # define WMULT_CONST (~0UL)
  1089. #else
  1090. # define WMULT_CONST (1UL << 32)
  1091. #endif
  1092. #define WMULT_SHIFT 32
  1093. /*
  1094. * Shift right and round:
  1095. */
  1096. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1097. /*
  1098. * delta *= weight / lw
  1099. */
  1100. static unsigned long
  1101. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1102. struct load_weight *lw)
  1103. {
  1104. u64 tmp;
  1105. if (!lw->inv_weight) {
  1106. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1107. lw->inv_weight = 1;
  1108. else
  1109. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1110. / (lw->weight+1);
  1111. }
  1112. tmp = (u64)delta_exec * weight;
  1113. /*
  1114. * Check whether we'd overflow the 64-bit multiplication:
  1115. */
  1116. if (unlikely(tmp > WMULT_CONST))
  1117. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1118. WMULT_SHIFT/2);
  1119. else
  1120. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1121. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1122. }
  1123. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1124. {
  1125. lw->weight += inc;
  1126. lw->inv_weight = 0;
  1127. }
  1128. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1129. {
  1130. lw->weight -= dec;
  1131. lw->inv_weight = 0;
  1132. }
  1133. /*
  1134. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1135. * of tasks with abnormal "nice" values across CPUs the contribution that
  1136. * each task makes to its run queue's load is weighted according to its
  1137. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1138. * scaled version of the new time slice allocation that they receive on time
  1139. * slice expiry etc.
  1140. */
  1141. #define WEIGHT_IDLEPRIO 3
  1142. #define WMULT_IDLEPRIO 1431655765
  1143. /*
  1144. * Nice levels are multiplicative, with a gentle 10% change for every
  1145. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1146. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1147. * that remained on nice 0.
  1148. *
  1149. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1150. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1151. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1152. * If a task goes up by ~10% and another task goes down by ~10% then
  1153. * the relative distance between them is ~25%.)
  1154. */
  1155. static const int prio_to_weight[40] = {
  1156. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1157. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1158. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1159. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1160. /* 0 */ 1024, 820, 655, 526, 423,
  1161. /* 5 */ 335, 272, 215, 172, 137,
  1162. /* 10 */ 110, 87, 70, 56, 45,
  1163. /* 15 */ 36, 29, 23, 18, 15,
  1164. };
  1165. /*
  1166. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1167. *
  1168. * In cases where the weight does not change often, we can use the
  1169. * precalculated inverse to speed up arithmetics by turning divisions
  1170. * into multiplications:
  1171. */
  1172. static const u32 prio_to_wmult[40] = {
  1173. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1174. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1175. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1176. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1177. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1178. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1179. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1180. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1181. };
  1182. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1183. /*
  1184. * runqueue iterator, to support SMP load-balancing between different
  1185. * scheduling classes, without having to expose their internal data
  1186. * structures to the load-balancing proper:
  1187. */
  1188. struct rq_iterator {
  1189. void *arg;
  1190. struct task_struct *(*start)(void *);
  1191. struct task_struct *(*next)(void *);
  1192. };
  1193. #ifdef CONFIG_SMP
  1194. static unsigned long
  1195. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1196. unsigned long max_load_move, struct sched_domain *sd,
  1197. enum cpu_idle_type idle, int *all_pinned,
  1198. int *this_best_prio, struct rq_iterator *iterator);
  1199. static int
  1200. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1201. struct sched_domain *sd, enum cpu_idle_type idle,
  1202. struct rq_iterator *iterator);
  1203. #endif
  1204. #ifdef CONFIG_CGROUP_CPUACCT
  1205. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1206. #else
  1207. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1208. #endif
  1209. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1210. {
  1211. update_load_add(&rq->load, load);
  1212. }
  1213. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1214. {
  1215. update_load_sub(&rq->load, load);
  1216. }
  1217. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1218. typedef int (*tg_visitor)(struct task_group *, void *);
  1219. /*
  1220. * Iterate the full tree, calling @down when first entering a node and @up when
  1221. * leaving it for the final time.
  1222. */
  1223. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1224. {
  1225. struct task_group *parent, *child;
  1226. int ret;
  1227. rcu_read_lock();
  1228. parent = &root_task_group;
  1229. down:
  1230. ret = (*down)(parent, data);
  1231. if (ret)
  1232. goto out_unlock;
  1233. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1234. parent = child;
  1235. goto down;
  1236. up:
  1237. continue;
  1238. }
  1239. ret = (*up)(parent, data);
  1240. if (ret)
  1241. goto out_unlock;
  1242. child = parent;
  1243. parent = parent->parent;
  1244. if (parent)
  1245. goto up;
  1246. out_unlock:
  1247. rcu_read_unlock();
  1248. return ret;
  1249. }
  1250. static int tg_nop(struct task_group *tg, void *data)
  1251. {
  1252. return 0;
  1253. }
  1254. #endif
  1255. #ifdef CONFIG_SMP
  1256. static unsigned long source_load(int cpu, int type);
  1257. static unsigned long target_load(int cpu, int type);
  1258. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1259. static unsigned long cpu_avg_load_per_task(int cpu)
  1260. {
  1261. struct rq *rq = cpu_rq(cpu);
  1262. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1263. if (nr_running)
  1264. rq->avg_load_per_task = rq->load.weight / nr_running;
  1265. else
  1266. rq->avg_load_per_task = 0;
  1267. return rq->avg_load_per_task;
  1268. }
  1269. #ifdef CONFIG_FAIR_GROUP_SCHED
  1270. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1271. /*
  1272. * Calculate and set the cpu's group shares.
  1273. */
  1274. static void
  1275. update_group_shares_cpu(struct task_group *tg, int cpu,
  1276. unsigned long sd_shares, unsigned long sd_rq_weight)
  1277. {
  1278. unsigned long shares;
  1279. unsigned long rq_weight;
  1280. if (!tg->se[cpu])
  1281. return;
  1282. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1283. /*
  1284. * \Sum shares * rq_weight
  1285. * shares = -----------------------
  1286. * \Sum rq_weight
  1287. *
  1288. */
  1289. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1290. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1291. if (abs(shares - tg->se[cpu]->load.weight) >
  1292. sysctl_sched_shares_thresh) {
  1293. struct rq *rq = cpu_rq(cpu);
  1294. unsigned long flags;
  1295. spin_lock_irqsave(&rq->lock, flags);
  1296. tg->cfs_rq[cpu]->shares = shares;
  1297. __set_se_shares(tg->se[cpu], shares);
  1298. spin_unlock_irqrestore(&rq->lock, flags);
  1299. }
  1300. }
  1301. /*
  1302. * Re-compute the task group their per cpu shares over the given domain.
  1303. * This needs to be done in a bottom-up fashion because the rq weight of a
  1304. * parent group depends on the shares of its child groups.
  1305. */
  1306. static int tg_shares_up(struct task_group *tg, void *data)
  1307. {
  1308. unsigned long weight, rq_weight = 0;
  1309. unsigned long shares = 0;
  1310. struct sched_domain *sd = data;
  1311. int i;
  1312. for_each_cpu(i, sched_domain_span(sd)) {
  1313. /*
  1314. * If there are currently no tasks on the cpu pretend there
  1315. * is one of average load so that when a new task gets to
  1316. * run here it will not get delayed by group starvation.
  1317. */
  1318. weight = tg->cfs_rq[i]->load.weight;
  1319. if (!weight)
  1320. weight = NICE_0_LOAD;
  1321. tg->cfs_rq[i]->rq_weight = weight;
  1322. rq_weight += weight;
  1323. shares += tg->cfs_rq[i]->shares;
  1324. }
  1325. if ((!shares && rq_weight) || shares > tg->shares)
  1326. shares = tg->shares;
  1327. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1328. shares = tg->shares;
  1329. for_each_cpu(i, sched_domain_span(sd))
  1330. update_group_shares_cpu(tg, i, shares, rq_weight);
  1331. return 0;
  1332. }
  1333. /*
  1334. * Compute the cpu's hierarchical load factor for each task group.
  1335. * This needs to be done in a top-down fashion because the load of a child
  1336. * group is a fraction of its parents load.
  1337. */
  1338. static int tg_load_down(struct task_group *tg, void *data)
  1339. {
  1340. unsigned long load;
  1341. long cpu = (long)data;
  1342. if (!tg->parent) {
  1343. load = cpu_rq(cpu)->load.weight;
  1344. } else {
  1345. load = tg->parent->cfs_rq[cpu]->h_load;
  1346. load *= tg->cfs_rq[cpu]->shares;
  1347. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1348. }
  1349. tg->cfs_rq[cpu]->h_load = load;
  1350. return 0;
  1351. }
  1352. static void update_shares(struct sched_domain *sd)
  1353. {
  1354. u64 now = cpu_clock(raw_smp_processor_id());
  1355. s64 elapsed = now - sd->last_update;
  1356. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1357. sd->last_update = now;
  1358. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1359. }
  1360. }
  1361. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1362. {
  1363. spin_unlock(&rq->lock);
  1364. update_shares(sd);
  1365. spin_lock(&rq->lock);
  1366. }
  1367. static void update_h_load(long cpu)
  1368. {
  1369. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1370. }
  1371. #else
  1372. static inline void update_shares(struct sched_domain *sd)
  1373. {
  1374. }
  1375. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1376. {
  1377. }
  1378. #endif
  1379. #ifdef CONFIG_PREEMPT
  1380. /*
  1381. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1382. * way at the expense of forcing extra atomic operations in all
  1383. * invocations. This assures that the double_lock is acquired using the
  1384. * same underlying policy as the spinlock_t on this architecture, which
  1385. * reduces latency compared to the unfair variant below. However, it
  1386. * also adds more overhead and therefore may reduce throughput.
  1387. */
  1388. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1389. __releases(this_rq->lock)
  1390. __acquires(busiest->lock)
  1391. __acquires(this_rq->lock)
  1392. {
  1393. spin_unlock(&this_rq->lock);
  1394. double_rq_lock(this_rq, busiest);
  1395. return 1;
  1396. }
  1397. #else
  1398. /*
  1399. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1400. * latency by eliminating extra atomic operations when the locks are
  1401. * already in proper order on entry. This favors lower cpu-ids and will
  1402. * grant the double lock to lower cpus over higher ids under contention,
  1403. * regardless of entry order into the function.
  1404. */
  1405. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1406. __releases(this_rq->lock)
  1407. __acquires(busiest->lock)
  1408. __acquires(this_rq->lock)
  1409. {
  1410. int ret = 0;
  1411. if (unlikely(!spin_trylock(&busiest->lock))) {
  1412. if (busiest < this_rq) {
  1413. spin_unlock(&this_rq->lock);
  1414. spin_lock(&busiest->lock);
  1415. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1416. ret = 1;
  1417. } else
  1418. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1419. }
  1420. return ret;
  1421. }
  1422. #endif /* CONFIG_PREEMPT */
  1423. /*
  1424. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1425. */
  1426. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1427. {
  1428. if (unlikely(!irqs_disabled())) {
  1429. /* printk() doesn't work good under rq->lock */
  1430. spin_unlock(&this_rq->lock);
  1431. BUG_ON(1);
  1432. }
  1433. return _double_lock_balance(this_rq, busiest);
  1434. }
  1435. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1436. __releases(busiest->lock)
  1437. {
  1438. spin_unlock(&busiest->lock);
  1439. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1440. }
  1441. #endif
  1442. #ifdef CONFIG_FAIR_GROUP_SCHED
  1443. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1444. {
  1445. #ifdef CONFIG_SMP
  1446. cfs_rq->shares = shares;
  1447. #endif
  1448. }
  1449. #endif
  1450. #include "sched_stats.h"
  1451. #include "sched_idletask.c"
  1452. #include "sched_fair.c"
  1453. #include "sched_rt.c"
  1454. #ifdef CONFIG_SCHED_DEBUG
  1455. # include "sched_debug.c"
  1456. #endif
  1457. #define sched_class_highest (&rt_sched_class)
  1458. #define for_each_class(class) \
  1459. for (class = sched_class_highest; class; class = class->next)
  1460. static void inc_nr_running(struct rq *rq)
  1461. {
  1462. rq->nr_running++;
  1463. }
  1464. static void dec_nr_running(struct rq *rq)
  1465. {
  1466. rq->nr_running--;
  1467. }
  1468. static void set_load_weight(struct task_struct *p)
  1469. {
  1470. if (task_has_rt_policy(p)) {
  1471. p->se.load.weight = prio_to_weight[0] * 2;
  1472. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1473. return;
  1474. }
  1475. /*
  1476. * SCHED_IDLE tasks get minimal weight:
  1477. */
  1478. if (p->policy == SCHED_IDLE) {
  1479. p->se.load.weight = WEIGHT_IDLEPRIO;
  1480. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1481. return;
  1482. }
  1483. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1484. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1485. }
  1486. static void update_avg(u64 *avg, u64 sample)
  1487. {
  1488. s64 diff = sample - *avg;
  1489. *avg += diff >> 3;
  1490. }
  1491. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1492. {
  1493. if (wakeup)
  1494. p->se.start_runtime = p->se.sum_exec_runtime;
  1495. sched_info_queued(p);
  1496. p->sched_class->enqueue_task(rq, p, wakeup);
  1497. p->se.on_rq = 1;
  1498. }
  1499. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1500. {
  1501. if (sleep) {
  1502. if (p->se.last_wakeup) {
  1503. update_avg(&p->se.avg_overlap,
  1504. p->se.sum_exec_runtime - p->se.last_wakeup);
  1505. p->se.last_wakeup = 0;
  1506. } else {
  1507. update_avg(&p->se.avg_wakeup,
  1508. sysctl_sched_wakeup_granularity);
  1509. }
  1510. }
  1511. sched_info_dequeued(p);
  1512. p->sched_class->dequeue_task(rq, p, sleep);
  1513. p->se.on_rq = 0;
  1514. }
  1515. /*
  1516. * __normal_prio - return the priority that is based on the static prio
  1517. */
  1518. static inline int __normal_prio(struct task_struct *p)
  1519. {
  1520. return p->static_prio;
  1521. }
  1522. /*
  1523. * Calculate the expected normal priority: i.e. priority
  1524. * without taking RT-inheritance into account. Might be
  1525. * boosted by interactivity modifiers. Changes upon fork,
  1526. * setprio syscalls, and whenever the interactivity
  1527. * estimator recalculates.
  1528. */
  1529. static inline int normal_prio(struct task_struct *p)
  1530. {
  1531. int prio;
  1532. if (task_has_rt_policy(p))
  1533. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1534. else
  1535. prio = __normal_prio(p);
  1536. return prio;
  1537. }
  1538. /*
  1539. * Calculate the current priority, i.e. the priority
  1540. * taken into account by the scheduler. This value might
  1541. * be boosted by RT tasks, or might be boosted by
  1542. * interactivity modifiers. Will be RT if the task got
  1543. * RT-boosted. If not then it returns p->normal_prio.
  1544. */
  1545. static int effective_prio(struct task_struct *p)
  1546. {
  1547. p->normal_prio = normal_prio(p);
  1548. /*
  1549. * If we are RT tasks or we were boosted to RT priority,
  1550. * keep the priority unchanged. Otherwise, update priority
  1551. * to the normal priority:
  1552. */
  1553. if (!rt_prio(p->prio))
  1554. return p->normal_prio;
  1555. return p->prio;
  1556. }
  1557. /*
  1558. * activate_task - move a task to the runqueue.
  1559. */
  1560. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1561. {
  1562. if (task_contributes_to_load(p))
  1563. rq->nr_uninterruptible--;
  1564. enqueue_task(rq, p, wakeup);
  1565. inc_nr_running(rq);
  1566. }
  1567. /*
  1568. * deactivate_task - remove a task from the runqueue.
  1569. */
  1570. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1571. {
  1572. if (task_contributes_to_load(p))
  1573. rq->nr_uninterruptible++;
  1574. dequeue_task(rq, p, sleep);
  1575. dec_nr_running(rq);
  1576. }
  1577. /**
  1578. * task_curr - is this task currently executing on a CPU?
  1579. * @p: the task in question.
  1580. */
  1581. inline int task_curr(const struct task_struct *p)
  1582. {
  1583. return cpu_curr(task_cpu(p)) == p;
  1584. }
  1585. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1586. {
  1587. set_task_rq(p, cpu);
  1588. #ifdef CONFIG_SMP
  1589. /*
  1590. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1591. * successfuly executed on another CPU. We must ensure that updates of
  1592. * per-task data have been completed by this moment.
  1593. */
  1594. smp_wmb();
  1595. task_thread_info(p)->cpu = cpu;
  1596. #endif
  1597. }
  1598. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1599. const struct sched_class *prev_class,
  1600. int oldprio, int running)
  1601. {
  1602. if (prev_class != p->sched_class) {
  1603. if (prev_class->switched_from)
  1604. prev_class->switched_from(rq, p, running);
  1605. p->sched_class->switched_to(rq, p, running);
  1606. } else
  1607. p->sched_class->prio_changed(rq, p, oldprio, running);
  1608. }
  1609. #ifdef CONFIG_SMP
  1610. /* Used instead of source_load when we know the type == 0 */
  1611. static unsigned long weighted_cpuload(const int cpu)
  1612. {
  1613. return cpu_rq(cpu)->load.weight;
  1614. }
  1615. /*
  1616. * Is this task likely cache-hot:
  1617. */
  1618. static int
  1619. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1620. {
  1621. s64 delta;
  1622. /*
  1623. * Buddy candidates are cache hot:
  1624. */
  1625. if (sched_feat(CACHE_HOT_BUDDY) &&
  1626. (&p->se == cfs_rq_of(&p->se)->next ||
  1627. &p->se == cfs_rq_of(&p->se)->last))
  1628. return 1;
  1629. if (p->sched_class != &fair_sched_class)
  1630. return 0;
  1631. if (sysctl_sched_migration_cost == -1)
  1632. return 1;
  1633. if (sysctl_sched_migration_cost == 0)
  1634. return 0;
  1635. delta = now - p->se.exec_start;
  1636. return delta < (s64)sysctl_sched_migration_cost;
  1637. }
  1638. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1639. {
  1640. int old_cpu = task_cpu(p);
  1641. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1642. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1643. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1644. u64 clock_offset;
  1645. clock_offset = old_rq->clock - new_rq->clock;
  1646. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1647. #ifdef CONFIG_SCHEDSTATS
  1648. if (p->se.wait_start)
  1649. p->se.wait_start -= clock_offset;
  1650. if (p->se.sleep_start)
  1651. p->se.sleep_start -= clock_offset;
  1652. if (p->se.block_start)
  1653. p->se.block_start -= clock_offset;
  1654. #endif
  1655. if (old_cpu != new_cpu) {
  1656. p->se.nr_migrations++;
  1657. new_rq->nr_migrations_in++;
  1658. #ifdef CONFIG_SCHEDSTATS
  1659. if (task_hot(p, old_rq->clock, NULL))
  1660. schedstat_inc(p, se.nr_forced2_migrations);
  1661. #endif
  1662. }
  1663. p->se.vruntime -= old_cfsrq->min_vruntime -
  1664. new_cfsrq->min_vruntime;
  1665. __set_task_cpu(p, new_cpu);
  1666. }
  1667. struct migration_req {
  1668. struct list_head list;
  1669. struct task_struct *task;
  1670. int dest_cpu;
  1671. struct completion done;
  1672. };
  1673. /*
  1674. * The task's runqueue lock must be held.
  1675. * Returns true if you have to wait for migration thread.
  1676. */
  1677. static int
  1678. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1679. {
  1680. struct rq *rq = task_rq(p);
  1681. /*
  1682. * If the task is not on a runqueue (and not running), then
  1683. * it is sufficient to simply update the task's cpu field.
  1684. */
  1685. if (!p->se.on_rq && !task_running(rq, p)) {
  1686. set_task_cpu(p, dest_cpu);
  1687. return 0;
  1688. }
  1689. init_completion(&req->done);
  1690. req->task = p;
  1691. req->dest_cpu = dest_cpu;
  1692. list_add(&req->list, &rq->migration_queue);
  1693. return 1;
  1694. }
  1695. /*
  1696. * wait_task_inactive - wait for a thread to unschedule.
  1697. *
  1698. * If @match_state is nonzero, it's the @p->state value just checked and
  1699. * not expected to change. If it changes, i.e. @p might have woken up,
  1700. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1701. * we return a positive number (its total switch count). If a second call
  1702. * a short while later returns the same number, the caller can be sure that
  1703. * @p has remained unscheduled the whole time.
  1704. *
  1705. * The caller must ensure that the task *will* unschedule sometime soon,
  1706. * else this function might spin for a *long* time. This function can't
  1707. * be called with interrupts off, or it may introduce deadlock with
  1708. * smp_call_function() if an IPI is sent by the same process we are
  1709. * waiting to become inactive.
  1710. */
  1711. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1712. {
  1713. unsigned long flags;
  1714. int running, on_rq;
  1715. unsigned long ncsw;
  1716. struct rq *rq;
  1717. for (;;) {
  1718. /*
  1719. * We do the initial early heuristics without holding
  1720. * any task-queue locks at all. We'll only try to get
  1721. * the runqueue lock when things look like they will
  1722. * work out!
  1723. */
  1724. rq = task_rq(p);
  1725. /*
  1726. * If the task is actively running on another CPU
  1727. * still, just relax and busy-wait without holding
  1728. * any locks.
  1729. *
  1730. * NOTE! Since we don't hold any locks, it's not
  1731. * even sure that "rq" stays as the right runqueue!
  1732. * But we don't care, since "task_running()" will
  1733. * return false if the runqueue has changed and p
  1734. * is actually now running somewhere else!
  1735. */
  1736. while (task_running(rq, p)) {
  1737. if (match_state && unlikely(p->state != match_state))
  1738. return 0;
  1739. cpu_relax();
  1740. }
  1741. /*
  1742. * Ok, time to look more closely! We need the rq
  1743. * lock now, to be *sure*. If we're wrong, we'll
  1744. * just go back and repeat.
  1745. */
  1746. rq = task_rq_lock(p, &flags);
  1747. trace_sched_wait_task(rq, p);
  1748. running = task_running(rq, p);
  1749. on_rq = p->se.on_rq;
  1750. ncsw = 0;
  1751. if (!match_state || p->state == match_state)
  1752. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1753. task_rq_unlock(rq, &flags);
  1754. /*
  1755. * If it changed from the expected state, bail out now.
  1756. */
  1757. if (unlikely(!ncsw))
  1758. break;
  1759. /*
  1760. * Was it really running after all now that we
  1761. * checked with the proper locks actually held?
  1762. *
  1763. * Oops. Go back and try again..
  1764. */
  1765. if (unlikely(running)) {
  1766. cpu_relax();
  1767. continue;
  1768. }
  1769. /*
  1770. * It's not enough that it's not actively running,
  1771. * it must be off the runqueue _entirely_, and not
  1772. * preempted!
  1773. *
  1774. * So if it was still runnable (but just not actively
  1775. * running right now), it's preempted, and we should
  1776. * yield - it could be a while.
  1777. */
  1778. if (unlikely(on_rq)) {
  1779. schedule_timeout_uninterruptible(1);
  1780. continue;
  1781. }
  1782. /*
  1783. * Ahh, all good. It wasn't running, and it wasn't
  1784. * runnable, which means that it will never become
  1785. * running in the future either. We're all done!
  1786. */
  1787. break;
  1788. }
  1789. return ncsw;
  1790. }
  1791. /***
  1792. * kick_process - kick a running thread to enter/exit the kernel
  1793. * @p: the to-be-kicked thread
  1794. *
  1795. * Cause a process which is running on another CPU to enter
  1796. * kernel-mode, without any delay. (to get signals handled.)
  1797. *
  1798. * NOTE: this function doesnt have to take the runqueue lock,
  1799. * because all it wants to ensure is that the remote task enters
  1800. * the kernel. If the IPI races and the task has been migrated
  1801. * to another CPU then no harm is done and the purpose has been
  1802. * achieved as well.
  1803. */
  1804. void kick_process(struct task_struct *p)
  1805. {
  1806. int cpu;
  1807. preempt_disable();
  1808. cpu = task_cpu(p);
  1809. if ((cpu != smp_processor_id()) && task_curr(p))
  1810. smp_send_reschedule(cpu);
  1811. preempt_enable();
  1812. }
  1813. /*
  1814. * Return a low guess at the load of a migration-source cpu weighted
  1815. * according to the scheduling class and "nice" value.
  1816. *
  1817. * We want to under-estimate the load of migration sources, to
  1818. * balance conservatively.
  1819. */
  1820. static unsigned long source_load(int cpu, int type)
  1821. {
  1822. struct rq *rq = cpu_rq(cpu);
  1823. unsigned long total = weighted_cpuload(cpu);
  1824. if (type == 0 || !sched_feat(LB_BIAS))
  1825. return total;
  1826. return min(rq->cpu_load[type-1], total);
  1827. }
  1828. /*
  1829. * Return a high guess at the load of a migration-target cpu weighted
  1830. * according to the scheduling class and "nice" value.
  1831. */
  1832. static unsigned long target_load(int cpu, int type)
  1833. {
  1834. struct rq *rq = cpu_rq(cpu);
  1835. unsigned long total = weighted_cpuload(cpu);
  1836. if (type == 0 || !sched_feat(LB_BIAS))
  1837. return total;
  1838. return max(rq->cpu_load[type-1], total);
  1839. }
  1840. /*
  1841. * find_idlest_group finds and returns the least busy CPU group within the
  1842. * domain.
  1843. */
  1844. static struct sched_group *
  1845. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1846. {
  1847. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1848. unsigned long min_load = ULONG_MAX, this_load = 0;
  1849. int load_idx = sd->forkexec_idx;
  1850. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1851. do {
  1852. unsigned long load, avg_load;
  1853. int local_group;
  1854. int i;
  1855. /* Skip over this group if it has no CPUs allowed */
  1856. if (!cpumask_intersects(sched_group_cpus(group),
  1857. &p->cpus_allowed))
  1858. continue;
  1859. local_group = cpumask_test_cpu(this_cpu,
  1860. sched_group_cpus(group));
  1861. /* Tally up the load of all CPUs in the group */
  1862. avg_load = 0;
  1863. for_each_cpu(i, sched_group_cpus(group)) {
  1864. /* Bias balancing toward cpus of our domain */
  1865. if (local_group)
  1866. load = source_load(i, load_idx);
  1867. else
  1868. load = target_load(i, load_idx);
  1869. avg_load += load;
  1870. }
  1871. /* Adjust by relative CPU power of the group */
  1872. avg_load = sg_div_cpu_power(group,
  1873. avg_load * SCHED_LOAD_SCALE);
  1874. if (local_group) {
  1875. this_load = avg_load;
  1876. this = group;
  1877. } else if (avg_load < min_load) {
  1878. min_load = avg_load;
  1879. idlest = group;
  1880. }
  1881. } while (group = group->next, group != sd->groups);
  1882. if (!idlest || 100*this_load < imbalance*min_load)
  1883. return NULL;
  1884. return idlest;
  1885. }
  1886. /*
  1887. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1888. */
  1889. static int
  1890. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1891. {
  1892. unsigned long load, min_load = ULONG_MAX;
  1893. int idlest = -1;
  1894. int i;
  1895. /* Traverse only the allowed CPUs */
  1896. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1897. load = weighted_cpuload(i);
  1898. if (load < min_load || (load == min_load && i == this_cpu)) {
  1899. min_load = load;
  1900. idlest = i;
  1901. }
  1902. }
  1903. return idlest;
  1904. }
  1905. /*
  1906. * sched_balance_self: balance the current task (running on cpu) in domains
  1907. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1908. * SD_BALANCE_EXEC.
  1909. *
  1910. * Balance, ie. select the least loaded group.
  1911. *
  1912. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1913. *
  1914. * preempt must be disabled.
  1915. */
  1916. static int sched_balance_self(int cpu, int flag)
  1917. {
  1918. struct task_struct *t = current;
  1919. struct sched_domain *tmp, *sd = NULL;
  1920. for_each_domain(cpu, tmp) {
  1921. /*
  1922. * If power savings logic is enabled for a domain, stop there.
  1923. */
  1924. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1925. break;
  1926. if (tmp->flags & flag)
  1927. sd = tmp;
  1928. }
  1929. if (sd)
  1930. update_shares(sd);
  1931. while (sd) {
  1932. struct sched_group *group;
  1933. int new_cpu, weight;
  1934. if (!(sd->flags & flag)) {
  1935. sd = sd->child;
  1936. continue;
  1937. }
  1938. group = find_idlest_group(sd, t, cpu);
  1939. if (!group) {
  1940. sd = sd->child;
  1941. continue;
  1942. }
  1943. new_cpu = find_idlest_cpu(group, t, cpu);
  1944. if (new_cpu == -1 || new_cpu == cpu) {
  1945. /* Now try balancing at a lower domain level of cpu */
  1946. sd = sd->child;
  1947. continue;
  1948. }
  1949. /* Now try balancing at a lower domain level of new_cpu */
  1950. cpu = new_cpu;
  1951. weight = cpumask_weight(sched_domain_span(sd));
  1952. sd = NULL;
  1953. for_each_domain(cpu, tmp) {
  1954. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1955. break;
  1956. if (tmp->flags & flag)
  1957. sd = tmp;
  1958. }
  1959. /* while loop will break here if sd == NULL */
  1960. }
  1961. return cpu;
  1962. }
  1963. #endif /* CONFIG_SMP */
  1964. /**
  1965. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1966. * @p: the task to evaluate
  1967. * @func: the function to be called
  1968. * @info: the function call argument
  1969. *
  1970. * Calls the function @func when the task is currently running. This might
  1971. * be on the current CPU, which just calls the function directly
  1972. */
  1973. void task_oncpu_function_call(struct task_struct *p,
  1974. void (*func) (void *info), void *info)
  1975. {
  1976. int cpu;
  1977. preempt_disable();
  1978. cpu = task_cpu(p);
  1979. if (task_curr(p))
  1980. smp_call_function_single(cpu, func, info, 1);
  1981. preempt_enable();
  1982. }
  1983. /***
  1984. * try_to_wake_up - wake up a thread
  1985. * @p: the to-be-woken-up thread
  1986. * @state: the mask of task states that can be woken
  1987. * @sync: do a synchronous wakeup?
  1988. *
  1989. * Put it on the run-queue if it's not already there. The "current"
  1990. * thread is always on the run-queue (except when the actual
  1991. * re-schedule is in progress), and as such you're allowed to do
  1992. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1993. * runnable without the overhead of this.
  1994. *
  1995. * returns failure only if the task is already active.
  1996. */
  1997. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1998. {
  1999. int cpu, orig_cpu, this_cpu, success = 0;
  2000. unsigned long flags;
  2001. long old_state;
  2002. struct rq *rq;
  2003. if (!sched_feat(SYNC_WAKEUPS))
  2004. sync = 0;
  2005. #ifdef CONFIG_SMP
  2006. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2007. struct sched_domain *sd;
  2008. this_cpu = raw_smp_processor_id();
  2009. cpu = task_cpu(p);
  2010. for_each_domain(this_cpu, sd) {
  2011. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2012. update_shares(sd);
  2013. break;
  2014. }
  2015. }
  2016. }
  2017. #endif
  2018. smp_wmb();
  2019. rq = task_rq_lock(p, &flags);
  2020. update_rq_clock(rq);
  2021. old_state = p->state;
  2022. if (!(old_state & state))
  2023. goto out;
  2024. if (p->se.on_rq)
  2025. goto out_running;
  2026. cpu = task_cpu(p);
  2027. orig_cpu = cpu;
  2028. this_cpu = smp_processor_id();
  2029. #ifdef CONFIG_SMP
  2030. if (unlikely(task_running(rq, p)))
  2031. goto out_activate;
  2032. cpu = p->sched_class->select_task_rq(p, sync);
  2033. if (cpu != orig_cpu) {
  2034. set_task_cpu(p, cpu);
  2035. task_rq_unlock(rq, &flags);
  2036. /* might preempt at this point */
  2037. rq = task_rq_lock(p, &flags);
  2038. old_state = p->state;
  2039. if (!(old_state & state))
  2040. goto out;
  2041. if (p->se.on_rq)
  2042. goto out_running;
  2043. this_cpu = smp_processor_id();
  2044. cpu = task_cpu(p);
  2045. }
  2046. #ifdef CONFIG_SCHEDSTATS
  2047. schedstat_inc(rq, ttwu_count);
  2048. if (cpu == this_cpu)
  2049. schedstat_inc(rq, ttwu_local);
  2050. else {
  2051. struct sched_domain *sd;
  2052. for_each_domain(this_cpu, sd) {
  2053. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2054. schedstat_inc(sd, ttwu_wake_remote);
  2055. break;
  2056. }
  2057. }
  2058. }
  2059. #endif /* CONFIG_SCHEDSTATS */
  2060. out_activate:
  2061. #endif /* CONFIG_SMP */
  2062. schedstat_inc(p, se.nr_wakeups);
  2063. if (sync)
  2064. schedstat_inc(p, se.nr_wakeups_sync);
  2065. if (orig_cpu != cpu)
  2066. schedstat_inc(p, se.nr_wakeups_migrate);
  2067. if (cpu == this_cpu)
  2068. schedstat_inc(p, se.nr_wakeups_local);
  2069. else
  2070. schedstat_inc(p, se.nr_wakeups_remote);
  2071. activate_task(rq, p, 1);
  2072. success = 1;
  2073. /*
  2074. * Only attribute actual wakeups done by this task.
  2075. */
  2076. if (!in_interrupt()) {
  2077. struct sched_entity *se = &current->se;
  2078. u64 sample = se->sum_exec_runtime;
  2079. if (se->last_wakeup)
  2080. sample -= se->last_wakeup;
  2081. else
  2082. sample -= se->start_runtime;
  2083. update_avg(&se->avg_wakeup, sample);
  2084. se->last_wakeup = se->sum_exec_runtime;
  2085. }
  2086. out_running:
  2087. trace_sched_wakeup(rq, p, success);
  2088. check_preempt_curr(rq, p, sync);
  2089. p->state = TASK_RUNNING;
  2090. #ifdef CONFIG_SMP
  2091. if (p->sched_class->task_wake_up)
  2092. p->sched_class->task_wake_up(rq, p);
  2093. #endif
  2094. out:
  2095. task_rq_unlock(rq, &flags);
  2096. return success;
  2097. }
  2098. int wake_up_process(struct task_struct *p)
  2099. {
  2100. return try_to_wake_up(p, TASK_ALL, 0);
  2101. }
  2102. EXPORT_SYMBOL(wake_up_process);
  2103. int wake_up_state(struct task_struct *p, unsigned int state)
  2104. {
  2105. return try_to_wake_up(p, state, 0);
  2106. }
  2107. /*
  2108. * Perform scheduler related setup for a newly forked process p.
  2109. * p is forked by current.
  2110. *
  2111. * __sched_fork() is basic setup used by init_idle() too:
  2112. */
  2113. static void __sched_fork(struct task_struct *p)
  2114. {
  2115. p->se.exec_start = 0;
  2116. p->se.sum_exec_runtime = 0;
  2117. p->se.prev_sum_exec_runtime = 0;
  2118. p->se.nr_migrations = 0;
  2119. p->se.last_wakeup = 0;
  2120. p->se.avg_overlap = 0;
  2121. p->se.start_runtime = 0;
  2122. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2123. #ifdef CONFIG_SCHEDSTATS
  2124. p->se.wait_start = 0;
  2125. p->se.sum_sleep_runtime = 0;
  2126. p->se.sleep_start = 0;
  2127. p->se.block_start = 0;
  2128. p->se.sleep_max = 0;
  2129. p->se.block_max = 0;
  2130. p->se.exec_max = 0;
  2131. p->se.slice_max = 0;
  2132. p->se.wait_max = 0;
  2133. #endif
  2134. INIT_LIST_HEAD(&p->rt.run_list);
  2135. p->se.on_rq = 0;
  2136. INIT_LIST_HEAD(&p->se.group_node);
  2137. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2138. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2139. #endif
  2140. /*
  2141. * We mark the process as running here, but have not actually
  2142. * inserted it onto the runqueue yet. This guarantees that
  2143. * nobody will actually run it, and a signal or other external
  2144. * event cannot wake it up and insert it on the runqueue either.
  2145. */
  2146. p->state = TASK_RUNNING;
  2147. }
  2148. /*
  2149. * fork()/clone()-time setup:
  2150. */
  2151. void sched_fork(struct task_struct *p, int clone_flags)
  2152. {
  2153. int cpu = get_cpu();
  2154. __sched_fork(p);
  2155. #ifdef CONFIG_SMP
  2156. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2157. #endif
  2158. set_task_cpu(p, cpu);
  2159. /*
  2160. * Make sure we do not leak PI boosting priority to the child:
  2161. */
  2162. p->prio = current->normal_prio;
  2163. if (!rt_prio(p->prio))
  2164. p->sched_class = &fair_sched_class;
  2165. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2166. if (likely(sched_info_on()))
  2167. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2168. #endif
  2169. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2170. p->oncpu = 0;
  2171. #endif
  2172. #ifdef CONFIG_PREEMPT
  2173. /* Want to start with kernel preemption disabled. */
  2174. task_thread_info(p)->preempt_count = 1;
  2175. #endif
  2176. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2177. put_cpu();
  2178. }
  2179. /*
  2180. * wake_up_new_task - wake up a newly created task for the first time.
  2181. *
  2182. * This function will do some initial scheduler statistics housekeeping
  2183. * that must be done for every newly created context, then puts the task
  2184. * on the runqueue and wakes it.
  2185. */
  2186. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2187. {
  2188. unsigned long flags;
  2189. struct rq *rq;
  2190. rq = task_rq_lock(p, &flags);
  2191. BUG_ON(p->state != TASK_RUNNING);
  2192. update_rq_clock(rq);
  2193. p->prio = effective_prio(p);
  2194. if (!p->sched_class->task_new || !current->se.on_rq) {
  2195. activate_task(rq, p, 0);
  2196. } else {
  2197. /*
  2198. * Let the scheduling class do new task startup
  2199. * management (if any):
  2200. */
  2201. p->sched_class->task_new(rq, p);
  2202. inc_nr_running(rq);
  2203. }
  2204. trace_sched_wakeup_new(rq, p, 1);
  2205. check_preempt_curr(rq, p, 0);
  2206. #ifdef CONFIG_SMP
  2207. if (p->sched_class->task_wake_up)
  2208. p->sched_class->task_wake_up(rq, p);
  2209. #endif
  2210. task_rq_unlock(rq, &flags);
  2211. }
  2212. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2213. /**
  2214. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2215. * @notifier: notifier struct to register
  2216. */
  2217. void preempt_notifier_register(struct preempt_notifier *notifier)
  2218. {
  2219. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2220. }
  2221. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2222. /**
  2223. * preempt_notifier_unregister - no longer interested in preemption notifications
  2224. * @notifier: notifier struct to unregister
  2225. *
  2226. * This is safe to call from within a preemption notifier.
  2227. */
  2228. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2229. {
  2230. hlist_del(&notifier->link);
  2231. }
  2232. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2233. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2234. {
  2235. struct preempt_notifier *notifier;
  2236. struct hlist_node *node;
  2237. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2238. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2239. }
  2240. static void
  2241. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2242. struct task_struct *next)
  2243. {
  2244. struct preempt_notifier *notifier;
  2245. struct hlist_node *node;
  2246. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2247. notifier->ops->sched_out(notifier, next);
  2248. }
  2249. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2250. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2251. {
  2252. }
  2253. static void
  2254. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2255. struct task_struct *next)
  2256. {
  2257. }
  2258. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2259. /**
  2260. * prepare_task_switch - prepare to switch tasks
  2261. * @rq: the runqueue preparing to switch
  2262. * @prev: the current task that is being switched out
  2263. * @next: the task we are going to switch to.
  2264. *
  2265. * This is called with the rq lock held and interrupts off. It must
  2266. * be paired with a subsequent finish_task_switch after the context
  2267. * switch.
  2268. *
  2269. * prepare_task_switch sets up locking and calls architecture specific
  2270. * hooks.
  2271. */
  2272. static inline void
  2273. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2274. struct task_struct *next)
  2275. {
  2276. fire_sched_out_preempt_notifiers(prev, next);
  2277. prepare_lock_switch(rq, next);
  2278. prepare_arch_switch(next);
  2279. }
  2280. /**
  2281. * finish_task_switch - clean up after a task-switch
  2282. * @rq: runqueue associated with task-switch
  2283. * @prev: the thread we just switched away from.
  2284. *
  2285. * finish_task_switch must be called after the context switch, paired
  2286. * with a prepare_task_switch call before the context switch.
  2287. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2288. * and do any other architecture-specific cleanup actions.
  2289. *
  2290. * Note that we may have delayed dropping an mm in context_switch(). If
  2291. * so, we finish that here outside of the runqueue lock. (Doing it
  2292. * with the lock held can cause deadlocks; see schedule() for
  2293. * details.)
  2294. */
  2295. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2296. __releases(rq->lock)
  2297. {
  2298. struct mm_struct *mm = rq->prev_mm;
  2299. long prev_state;
  2300. #ifdef CONFIG_SMP
  2301. int post_schedule = 0;
  2302. if (current->sched_class->needs_post_schedule)
  2303. post_schedule = current->sched_class->needs_post_schedule(rq);
  2304. #endif
  2305. rq->prev_mm = NULL;
  2306. /*
  2307. * A task struct has one reference for the use as "current".
  2308. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2309. * schedule one last time. The schedule call will never return, and
  2310. * the scheduled task must drop that reference.
  2311. * The test for TASK_DEAD must occur while the runqueue locks are
  2312. * still held, otherwise prev could be scheduled on another cpu, die
  2313. * there before we look at prev->state, and then the reference would
  2314. * be dropped twice.
  2315. * Manfred Spraul <manfred@colorfullife.com>
  2316. */
  2317. prev_state = prev->state;
  2318. finish_arch_switch(prev);
  2319. perf_counter_task_sched_in(current, cpu_of(rq));
  2320. finish_lock_switch(rq, prev);
  2321. #ifdef CONFIG_SMP
  2322. if (post_schedule)
  2323. current->sched_class->post_schedule(rq);
  2324. #endif
  2325. fire_sched_in_preempt_notifiers(current);
  2326. if (mm)
  2327. mmdrop(mm);
  2328. if (unlikely(prev_state == TASK_DEAD)) {
  2329. /*
  2330. * Remove function-return probe instances associated with this
  2331. * task and put them back on the free list.
  2332. */
  2333. kprobe_flush_task(prev);
  2334. put_task_struct(prev);
  2335. }
  2336. }
  2337. /**
  2338. * schedule_tail - first thing a freshly forked thread must call.
  2339. * @prev: the thread we just switched away from.
  2340. */
  2341. asmlinkage void schedule_tail(struct task_struct *prev)
  2342. __releases(rq->lock)
  2343. {
  2344. struct rq *rq = this_rq();
  2345. finish_task_switch(rq, prev);
  2346. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2347. /* In this case, finish_task_switch does not reenable preemption */
  2348. preempt_enable();
  2349. #endif
  2350. if (current->set_child_tid)
  2351. put_user(task_pid_vnr(current), current->set_child_tid);
  2352. }
  2353. /*
  2354. * context_switch - switch to the new MM and the new
  2355. * thread's register state.
  2356. */
  2357. static inline void
  2358. context_switch(struct rq *rq, struct task_struct *prev,
  2359. struct task_struct *next)
  2360. {
  2361. struct mm_struct *mm, *oldmm;
  2362. prepare_task_switch(rq, prev, next);
  2363. trace_sched_switch(rq, prev, next);
  2364. mm = next->mm;
  2365. oldmm = prev->active_mm;
  2366. /*
  2367. * For paravirt, this is coupled with an exit in switch_to to
  2368. * combine the page table reload and the switch backend into
  2369. * one hypercall.
  2370. */
  2371. arch_enter_lazy_cpu_mode();
  2372. if (unlikely(!mm)) {
  2373. next->active_mm = oldmm;
  2374. atomic_inc(&oldmm->mm_count);
  2375. enter_lazy_tlb(oldmm, next);
  2376. } else
  2377. switch_mm(oldmm, mm, next);
  2378. if (unlikely(!prev->mm)) {
  2379. prev->active_mm = NULL;
  2380. rq->prev_mm = oldmm;
  2381. }
  2382. /*
  2383. * Since the runqueue lock will be released by the next
  2384. * task (which is an invalid locking op but in the case
  2385. * of the scheduler it's an obvious special-case), so we
  2386. * do an early lockdep release here:
  2387. */
  2388. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2389. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2390. #endif
  2391. /* Here we just switch the register state and the stack. */
  2392. switch_to(prev, next, prev);
  2393. barrier();
  2394. /*
  2395. * this_rq must be evaluated again because prev may have moved
  2396. * CPUs since it called schedule(), thus the 'rq' on its stack
  2397. * frame will be invalid.
  2398. */
  2399. finish_task_switch(this_rq(), prev);
  2400. }
  2401. /*
  2402. * nr_running, nr_uninterruptible and nr_context_switches:
  2403. *
  2404. * externally visible scheduler statistics: current number of runnable
  2405. * threads, current number of uninterruptible-sleeping threads, total
  2406. * number of context switches performed since bootup.
  2407. */
  2408. unsigned long nr_running(void)
  2409. {
  2410. unsigned long i, sum = 0;
  2411. for_each_online_cpu(i)
  2412. sum += cpu_rq(i)->nr_running;
  2413. return sum;
  2414. }
  2415. unsigned long nr_uninterruptible(void)
  2416. {
  2417. unsigned long i, sum = 0;
  2418. for_each_possible_cpu(i)
  2419. sum += cpu_rq(i)->nr_uninterruptible;
  2420. /*
  2421. * Since we read the counters lockless, it might be slightly
  2422. * inaccurate. Do not allow it to go below zero though:
  2423. */
  2424. if (unlikely((long)sum < 0))
  2425. sum = 0;
  2426. return sum;
  2427. }
  2428. unsigned long long nr_context_switches(void)
  2429. {
  2430. int i;
  2431. unsigned long long sum = 0;
  2432. for_each_possible_cpu(i)
  2433. sum += cpu_rq(i)->nr_switches;
  2434. return sum;
  2435. }
  2436. unsigned long nr_iowait(void)
  2437. {
  2438. unsigned long i, sum = 0;
  2439. for_each_possible_cpu(i)
  2440. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2441. return sum;
  2442. }
  2443. unsigned long nr_active(void)
  2444. {
  2445. unsigned long i, running = 0, uninterruptible = 0;
  2446. for_each_online_cpu(i) {
  2447. running += cpu_rq(i)->nr_running;
  2448. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2449. }
  2450. if (unlikely((long)uninterruptible < 0))
  2451. uninterruptible = 0;
  2452. return running + uninterruptible;
  2453. }
  2454. /*
  2455. * Externally visible per-cpu scheduler statistics:
  2456. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2457. */
  2458. u64 cpu_nr_migrations(int cpu)
  2459. {
  2460. return cpu_rq(cpu)->nr_migrations_in;
  2461. }
  2462. /*
  2463. * Update rq->cpu_load[] statistics. This function is usually called every
  2464. * scheduler tick (TICK_NSEC).
  2465. */
  2466. static void update_cpu_load(struct rq *this_rq)
  2467. {
  2468. unsigned long this_load = this_rq->load.weight;
  2469. int i, scale;
  2470. this_rq->nr_load_updates++;
  2471. /* Update our load: */
  2472. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2473. unsigned long old_load, new_load;
  2474. /* scale is effectively 1 << i now, and >> i divides by scale */
  2475. old_load = this_rq->cpu_load[i];
  2476. new_load = this_load;
  2477. /*
  2478. * Round up the averaging division if load is increasing. This
  2479. * prevents us from getting stuck on 9 if the load is 10, for
  2480. * example.
  2481. */
  2482. if (new_load > old_load)
  2483. new_load += scale-1;
  2484. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2485. }
  2486. }
  2487. #ifdef CONFIG_SMP
  2488. /*
  2489. * double_rq_lock - safely lock two runqueues
  2490. *
  2491. * Note this does not disable interrupts like task_rq_lock,
  2492. * you need to do so manually before calling.
  2493. */
  2494. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2495. __acquires(rq1->lock)
  2496. __acquires(rq2->lock)
  2497. {
  2498. BUG_ON(!irqs_disabled());
  2499. if (rq1 == rq2) {
  2500. spin_lock(&rq1->lock);
  2501. __acquire(rq2->lock); /* Fake it out ;) */
  2502. } else {
  2503. if (rq1 < rq2) {
  2504. spin_lock(&rq1->lock);
  2505. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2506. } else {
  2507. spin_lock(&rq2->lock);
  2508. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2509. }
  2510. }
  2511. update_rq_clock(rq1);
  2512. update_rq_clock(rq2);
  2513. }
  2514. /*
  2515. * double_rq_unlock - safely unlock two runqueues
  2516. *
  2517. * Note this does not restore interrupts like task_rq_unlock,
  2518. * you need to do so manually after calling.
  2519. */
  2520. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2521. __releases(rq1->lock)
  2522. __releases(rq2->lock)
  2523. {
  2524. spin_unlock(&rq1->lock);
  2525. if (rq1 != rq2)
  2526. spin_unlock(&rq2->lock);
  2527. else
  2528. __release(rq2->lock);
  2529. }
  2530. /*
  2531. * If dest_cpu is allowed for this process, migrate the task to it.
  2532. * This is accomplished by forcing the cpu_allowed mask to only
  2533. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2534. * the cpu_allowed mask is restored.
  2535. */
  2536. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2537. {
  2538. struct migration_req req;
  2539. unsigned long flags;
  2540. struct rq *rq;
  2541. rq = task_rq_lock(p, &flags);
  2542. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2543. || unlikely(!cpu_active(dest_cpu)))
  2544. goto out;
  2545. /* force the process onto the specified CPU */
  2546. if (migrate_task(p, dest_cpu, &req)) {
  2547. /* Need to wait for migration thread (might exit: take ref). */
  2548. struct task_struct *mt = rq->migration_thread;
  2549. get_task_struct(mt);
  2550. task_rq_unlock(rq, &flags);
  2551. wake_up_process(mt);
  2552. put_task_struct(mt);
  2553. wait_for_completion(&req.done);
  2554. return;
  2555. }
  2556. out:
  2557. task_rq_unlock(rq, &flags);
  2558. }
  2559. /*
  2560. * sched_exec - execve() is a valuable balancing opportunity, because at
  2561. * this point the task has the smallest effective memory and cache footprint.
  2562. */
  2563. void sched_exec(void)
  2564. {
  2565. int new_cpu, this_cpu = get_cpu();
  2566. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2567. put_cpu();
  2568. if (new_cpu != this_cpu)
  2569. sched_migrate_task(current, new_cpu);
  2570. }
  2571. /*
  2572. * pull_task - move a task from a remote runqueue to the local runqueue.
  2573. * Both runqueues must be locked.
  2574. */
  2575. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2576. struct rq *this_rq, int this_cpu)
  2577. {
  2578. deactivate_task(src_rq, p, 0);
  2579. set_task_cpu(p, this_cpu);
  2580. activate_task(this_rq, p, 0);
  2581. /*
  2582. * Note that idle threads have a prio of MAX_PRIO, for this test
  2583. * to be always true for them.
  2584. */
  2585. check_preempt_curr(this_rq, p, 0);
  2586. }
  2587. /*
  2588. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2589. */
  2590. static
  2591. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2592. struct sched_domain *sd, enum cpu_idle_type idle,
  2593. int *all_pinned)
  2594. {
  2595. int tsk_cache_hot = 0;
  2596. /*
  2597. * We do not migrate tasks that are:
  2598. * 1) running (obviously), or
  2599. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2600. * 3) are cache-hot on their current CPU.
  2601. */
  2602. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2603. schedstat_inc(p, se.nr_failed_migrations_affine);
  2604. return 0;
  2605. }
  2606. *all_pinned = 0;
  2607. if (task_running(rq, p)) {
  2608. schedstat_inc(p, se.nr_failed_migrations_running);
  2609. return 0;
  2610. }
  2611. /*
  2612. * Aggressive migration if:
  2613. * 1) task is cache cold, or
  2614. * 2) too many balance attempts have failed.
  2615. */
  2616. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2617. if (!tsk_cache_hot ||
  2618. sd->nr_balance_failed > sd->cache_nice_tries) {
  2619. #ifdef CONFIG_SCHEDSTATS
  2620. if (tsk_cache_hot) {
  2621. schedstat_inc(sd, lb_hot_gained[idle]);
  2622. schedstat_inc(p, se.nr_forced_migrations);
  2623. }
  2624. #endif
  2625. return 1;
  2626. }
  2627. if (tsk_cache_hot) {
  2628. schedstat_inc(p, se.nr_failed_migrations_hot);
  2629. return 0;
  2630. }
  2631. return 1;
  2632. }
  2633. static unsigned long
  2634. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2635. unsigned long max_load_move, struct sched_domain *sd,
  2636. enum cpu_idle_type idle, int *all_pinned,
  2637. int *this_best_prio, struct rq_iterator *iterator)
  2638. {
  2639. int loops = 0, pulled = 0, pinned = 0;
  2640. struct task_struct *p;
  2641. long rem_load_move = max_load_move;
  2642. if (max_load_move == 0)
  2643. goto out;
  2644. pinned = 1;
  2645. /*
  2646. * Start the load-balancing iterator:
  2647. */
  2648. p = iterator->start(iterator->arg);
  2649. next:
  2650. if (!p || loops++ > sysctl_sched_nr_migrate)
  2651. goto out;
  2652. if ((p->se.load.weight >> 1) > rem_load_move ||
  2653. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2654. p = iterator->next(iterator->arg);
  2655. goto next;
  2656. }
  2657. pull_task(busiest, p, this_rq, this_cpu);
  2658. pulled++;
  2659. rem_load_move -= p->se.load.weight;
  2660. #ifdef CONFIG_PREEMPT
  2661. /*
  2662. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2663. * will stop after the first task is pulled to minimize the critical
  2664. * section.
  2665. */
  2666. if (idle == CPU_NEWLY_IDLE)
  2667. goto out;
  2668. #endif
  2669. /*
  2670. * We only want to steal up to the prescribed amount of weighted load.
  2671. */
  2672. if (rem_load_move > 0) {
  2673. if (p->prio < *this_best_prio)
  2674. *this_best_prio = p->prio;
  2675. p = iterator->next(iterator->arg);
  2676. goto next;
  2677. }
  2678. out:
  2679. /*
  2680. * Right now, this is one of only two places pull_task() is called,
  2681. * so we can safely collect pull_task() stats here rather than
  2682. * inside pull_task().
  2683. */
  2684. schedstat_add(sd, lb_gained[idle], pulled);
  2685. if (all_pinned)
  2686. *all_pinned = pinned;
  2687. return max_load_move - rem_load_move;
  2688. }
  2689. /*
  2690. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2691. * this_rq, as part of a balancing operation within domain "sd".
  2692. * Returns 1 if successful and 0 otherwise.
  2693. *
  2694. * Called with both runqueues locked.
  2695. */
  2696. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2697. unsigned long max_load_move,
  2698. struct sched_domain *sd, enum cpu_idle_type idle,
  2699. int *all_pinned)
  2700. {
  2701. const struct sched_class *class = sched_class_highest;
  2702. unsigned long total_load_moved = 0;
  2703. int this_best_prio = this_rq->curr->prio;
  2704. do {
  2705. total_load_moved +=
  2706. class->load_balance(this_rq, this_cpu, busiest,
  2707. max_load_move - total_load_moved,
  2708. sd, idle, all_pinned, &this_best_prio);
  2709. class = class->next;
  2710. #ifdef CONFIG_PREEMPT
  2711. /*
  2712. * NEWIDLE balancing is a source of latency, so preemptible
  2713. * kernels will stop after the first task is pulled to minimize
  2714. * the critical section.
  2715. */
  2716. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2717. break;
  2718. #endif
  2719. } while (class && max_load_move > total_load_moved);
  2720. return total_load_moved > 0;
  2721. }
  2722. static int
  2723. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2724. struct sched_domain *sd, enum cpu_idle_type idle,
  2725. struct rq_iterator *iterator)
  2726. {
  2727. struct task_struct *p = iterator->start(iterator->arg);
  2728. int pinned = 0;
  2729. while (p) {
  2730. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2731. pull_task(busiest, p, this_rq, this_cpu);
  2732. /*
  2733. * Right now, this is only the second place pull_task()
  2734. * is called, so we can safely collect pull_task()
  2735. * stats here rather than inside pull_task().
  2736. */
  2737. schedstat_inc(sd, lb_gained[idle]);
  2738. return 1;
  2739. }
  2740. p = iterator->next(iterator->arg);
  2741. }
  2742. return 0;
  2743. }
  2744. /*
  2745. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2746. * part of active balancing operations within "domain".
  2747. * Returns 1 if successful and 0 otherwise.
  2748. *
  2749. * Called with both runqueues locked.
  2750. */
  2751. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2752. struct sched_domain *sd, enum cpu_idle_type idle)
  2753. {
  2754. const struct sched_class *class;
  2755. for (class = sched_class_highest; class; class = class->next)
  2756. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2757. return 1;
  2758. return 0;
  2759. }
  2760. /********** Helpers for find_busiest_group ************************/
  2761. /*
  2762. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2763. * during load balancing.
  2764. */
  2765. struct sd_lb_stats {
  2766. struct sched_group *busiest; /* Busiest group in this sd */
  2767. struct sched_group *this; /* Local group in this sd */
  2768. unsigned long total_load; /* Total load of all groups in sd */
  2769. unsigned long total_pwr; /* Total power of all groups in sd */
  2770. unsigned long avg_load; /* Average load across all groups in sd */
  2771. /** Statistics of this group */
  2772. unsigned long this_load;
  2773. unsigned long this_load_per_task;
  2774. unsigned long this_nr_running;
  2775. /* Statistics of the busiest group */
  2776. unsigned long max_load;
  2777. unsigned long busiest_load_per_task;
  2778. unsigned long busiest_nr_running;
  2779. int group_imb; /* Is there imbalance in this sd */
  2780. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2781. int power_savings_balance; /* Is powersave balance needed for this sd */
  2782. struct sched_group *group_min; /* Least loaded group in sd */
  2783. struct sched_group *group_leader; /* Group which relieves group_min */
  2784. unsigned long min_load_per_task; /* load_per_task in group_min */
  2785. unsigned long leader_nr_running; /* Nr running of group_leader */
  2786. unsigned long min_nr_running; /* Nr running of group_min */
  2787. #endif
  2788. };
  2789. /*
  2790. * sg_lb_stats - stats of a sched_group required for load_balancing
  2791. */
  2792. struct sg_lb_stats {
  2793. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2794. unsigned long group_load; /* Total load over the CPUs of the group */
  2795. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2796. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2797. unsigned long group_capacity;
  2798. int group_imb; /* Is there an imbalance in the group ? */
  2799. };
  2800. /**
  2801. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2802. * @group: The group whose first cpu is to be returned.
  2803. */
  2804. static inline unsigned int group_first_cpu(struct sched_group *group)
  2805. {
  2806. return cpumask_first(sched_group_cpus(group));
  2807. }
  2808. /**
  2809. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2810. * @sd: The sched_domain whose load_idx is to be obtained.
  2811. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2812. */
  2813. static inline int get_sd_load_idx(struct sched_domain *sd,
  2814. enum cpu_idle_type idle)
  2815. {
  2816. int load_idx;
  2817. switch (idle) {
  2818. case CPU_NOT_IDLE:
  2819. load_idx = sd->busy_idx;
  2820. break;
  2821. case CPU_NEWLY_IDLE:
  2822. load_idx = sd->newidle_idx;
  2823. break;
  2824. default:
  2825. load_idx = sd->idle_idx;
  2826. break;
  2827. }
  2828. return load_idx;
  2829. }
  2830. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2831. /**
  2832. * init_sd_power_savings_stats - Initialize power savings statistics for
  2833. * the given sched_domain, during load balancing.
  2834. *
  2835. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2836. * @sds: Variable containing the statistics for sd.
  2837. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2838. */
  2839. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2840. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2841. {
  2842. /*
  2843. * Busy processors will not participate in power savings
  2844. * balance.
  2845. */
  2846. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2847. sds->power_savings_balance = 0;
  2848. else {
  2849. sds->power_savings_balance = 1;
  2850. sds->min_nr_running = ULONG_MAX;
  2851. sds->leader_nr_running = 0;
  2852. }
  2853. }
  2854. /**
  2855. * update_sd_power_savings_stats - Update the power saving stats for a
  2856. * sched_domain while performing load balancing.
  2857. *
  2858. * @group: sched_group belonging to the sched_domain under consideration.
  2859. * @sds: Variable containing the statistics of the sched_domain
  2860. * @local_group: Does group contain the CPU for which we're performing
  2861. * load balancing ?
  2862. * @sgs: Variable containing the statistics of the group.
  2863. */
  2864. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2865. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2866. {
  2867. if (!sds->power_savings_balance)
  2868. return;
  2869. /*
  2870. * If the local group is idle or completely loaded
  2871. * no need to do power savings balance at this domain
  2872. */
  2873. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2874. !sds->this_nr_running))
  2875. sds->power_savings_balance = 0;
  2876. /*
  2877. * If a group is already running at full capacity or idle,
  2878. * don't include that group in power savings calculations
  2879. */
  2880. if (!sds->power_savings_balance ||
  2881. sgs->sum_nr_running >= sgs->group_capacity ||
  2882. !sgs->sum_nr_running)
  2883. return;
  2884. /*
  2885. * Calculate the group which has the least non-idle load.
  2886. * This is the group from where we need to pick up the load
  2887. * for saving power
  2888. */
  2889. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2890. (sgs->sum_nr_running == sds->min_nr_running &&
  2891. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2892. sds->group_min = group;
  2893. sds->min_nr_running = sgs->sum_nr_running;
  2894. sds->min_load_per_task = sgs->sum_weighted_load /
  2895. sgs->sum_nr_running;
  2896. }
  2897. /*
  2898. * Calculate the group which is almost near its
  2899. * capacity but still has some space to pick up some load
  2900. * from other group and save more power
  2901. */
  2902. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  2903. return;
  2904. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2905. (sgs->sum_nr_running == sds->leader_nr_running &&
  2906. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2907. sds->group_leader = group;
  2908. sds->leader_nr_running = sgs->sum_nr_running;
  2909. }
  2910. }
  2911. /**
  2912. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2913. * @sds: Variable containing the statistics of the sched_domain
  2914. * under consideration.
  2915. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2916. * @imbalance: Variable to store the imbalance.
  2917. *
  2918. * Description:
  2919. * Check if we have potential to perform some power-savings balance.
  2920. * If yes, set the busiest group to be the least loaded group in the
  2921. * sched_domain, so that it's CPUs can be put to idle.
  2922. *
  2923. * Returns 1 if there is potential to perform power-savings balance.
  2924. * Else returns 0.
  2925. */
  2926. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2927. int this_cpu, unsigned long *imbalance)
  2928. {
  2929. if (!sds->power_savings_balance)
  2930. return 0;
  2931. if (sds->this != sds->group_leader ||
  2932. sds->group_leader == sds->group_min)
  2933. return 0;
  2934. *imbalance = sds->min_load_per_task;
  2935. sds->busiest = sds->group_min;
  2936. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2937. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2938. group_first_cpu(sds->group_leader);
  2939. }
  2940. return 1;
  2941. }
  2942. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2943. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2944. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2945. {
  2946. return;
  2947. }
  2948. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2949. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2950. {
  2951. return;
  2952. }
  2953. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2954. int this_cpu, unsigned long *imbalance)
  2955. {
  2956. return 0;
  2957. }
  2958. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2959. /**
  2960. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2961. * @group: sched_group whose statistics are to be updated.
  2962. * @this_cpu: Cpu for which load balance is currently performed.
  2963. * @idle: Idle status of this_cpu
  2964. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2965. * @sd_idle: Idle status of the sched_domain containing group.
  2966. * @local_group: Does group contain this_cpu.
  2967. * @cpus: Set of cpus considered for load balancing.
  2968. * @balance: Should we balance.
  2969. * @sgs: variable to hold the statistics for this group.
  2970. */
  2971. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  2972. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2973. int local_group, const struct cpumask *cpus,
  2974. int *balance, struct sg_lb_stats *sgs)
  2975. {
  2976. unsigned long load, max_cpu_load, min_cpu_load;
  2977. int i;
  2978. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2979. unsigned long sum_avg_load_per_task;
  2980. unsigned long avg_load_per_task;
  2981. if (local_group)
  2982. balance_cpu = group_first_cpu(group);
  2983. /* Tally up the load of all CPUs in the group */
  2984. sum_avg_load_per_task = avg_load_per_task = 0;
  2985. max_cpu_load = 0;
  2986. min_cpu_load = ~0UL;
  2987. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2988. struct rq *rq = cpu_rq(i);
  2989. if (*sd_idle && rq->nr_running)
  2990. *sd_idle = 0;
  2991. /* Bias balancing toward cpus of our domain */
  2992. if (local_group) {
  2993. if (idle_cpu(i) && !first_idle_cpu) {
  2994. first_idle_cpu = 1;
  2995. balance_cpu = i;
  2996. }
  2997. load = target_load(i, load_idx);
  2998. } else {
  2999. load = source_load(i, load_idx);
  3000. if (load > max_cpu_load)
  3001. max_cpu_load = load;
  3002. if (min_cpu_load > load)
  3003. min_cpu_load = load;
  3004. }
  3005. sgs->group_load += load;
  3006. sgs->sum_nr_running += rq->nr_running;
  3007. sgs->sum_weighted_load += weighted_cpuload(i);
  3008. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3009. }
  3010. /*
  3011. * First idle cpu or the first cpu(busiest) in this sched group
  3012. * is eligible for doing load balancing at this and above
  3013. * domains. In the newly idle case, we will allow all the cpu's
  3014. * to do the newly idle load balance.
  3015. */
  3016. if (idle != CPU_NEWLY_IDLE && local_group &&
  3017. balance_cpu != this_cpu && balance) {
  3018. *balance = 0;
  3019. return;
  3020. }
  3021. /* Adjust by relative CPU power of the group */
  3022. sgs->avg_load = sg_div_cpu_power(group,
  3023. sgs->group_load * SCHED_LOAD_SCALE);
  3024. /*
  3025. * Consider the group unbalanced when the imbalance is larger
  3026. * than the average weight of two tasks.
  3027. *
  3028. * APZ: with cgroup the avg task weight can vary wildly and
  3029. * might not be a suitable number - should we keep a
  3030. * normalized nr_running number somewhere that negates
  3031. * the hierarchy?
  3032. */
  3033. avg_load_per_task = sg_div_cpu_power(group,
  3034. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3035. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3036. sgs->group_imb = 1;
  3037. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3038. }
  3039. /**
  3040. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3041. * @sd: sched_domain whose statistics are to be updated.
  3042. * @this_cpu: Cpu for which load balance is currently performed.
  3043. * @idle: Idle status of this_cpu
  3044. * @sd_idle: Idle status of the sched_domain containing group.
  3045. * @cpus: Set of cpus considered for load balancing.
  3046. * @balance: Should we balance.
  3047. * @sds: variable to hold the statistics for this sched_domain.
  3048. */
  3049. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3050. enum cpu_idle_type idle, int *sd_idle,
  3051. const struct cpumask *cpus, int *balance,
  3052. struct sd_lb_stats *sds)
  3053. {
  3054. struct sched_group *group = sd->groups;
  3055. struct sg_lb_stats sgs;
  3056. int load_idx;
  3057. init_sd_power_savings_stats(sd, sds, idle);
  3058. load_idx = get_sd_load_idx(sd, idle);
  3059. do {
  3060. int local_group;
  3061. local_group = cpumask_test_cpu(this_cpu,
  3062. sched_group_cpus(group));
  3063. memset(&sgs, 0, sizeof(sgs));
  3064. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3065. local_group, cpus, balance, &sgs);
  3066. if (local_group && balance && !(*balance))
  3067. return;
  3068. sds->total_load += sgs.group_load;
  3069. sds->total_pwr += group->__cpu_power;
  3070. if (local_group) {
  3071. sds->this_load = sgs.avg_load;
  3072. sds->this = group;
  3073. sds->this_nr_running = sgs.sum_nr_running;
  3074. sds->this_load_per_task = sgs.sum_weighted_load;
  3075. } else if (sgs.avg_load > sds->max_load &&
  3076. (sgs.sum_nr_running > sgs.group_capacity ||
  3077. sgs.group_imb)) {
  3078. sds->max_load = sgs.avg_load;
  3079. sds->busiest = group;
  3080. sds->busiest_nr_running = sgs.sum_nr_running;
  3081. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3082. sds->group_imb = sgs.group_imb;
  3083. }
  3084. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3085. group = group->next;
  3086. } while (group != sd->groups);
  3087. }
  3088. /**
  3089. * fix_small_imbalance - Calculate the minor imbalance that exists
  3090. * amongst the groups of a sched_domain, during
  3091. * load balancing.
  3092. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3093. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3094. * @imbalance: Variable to store the imbalance.
  3095. */
  3096. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3097. int this_cpu, unsigned long *imbalance)
  3098. {
  3099. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3100. unsigned int imbn = 2;
  3101. if (sds->this_nr_running) {
  3102. sds->this_load_per_task /= sds->this_nr_running;
  3103. if (sds->busiest_load_per_task >
  3104. sds->this_load_per_task)
  3105. imbn = 1;
  3106. } else
  3107. sds->this_load_per_task =
  3108. cpu_avg_load_per_task(this_cpu);
  3109. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3110. sds->busiest_load_per_task * imbn) {
  3111. *imbalance = sds->busiest_load_per_task;
  3112. return;
  3113. }
  3114. /*
  3115. * OK, we don't have enough imbalance to justify moving tasks,
  3116. * however we may be able to increase total CPU power used by
  3117. * moving them.
  3118. */
  3119. pwr_now += sds->busiest->__cpu_power *
  3120. min(sds->busiest_load_per_task, sds->max_load);
  3121. pwr_now += sds->this->__cpu_power *
  3122. min(sds->this_load_per_task, sds->this_load);
  3123. pwr_now /= SCHED_LOAD_SCALE;
  3124. /* Amount of load we'd subtract */
  3125. tmp = sg_div_cpu_power(sds->busiest,
  3126. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3127. if (sds->max_load > tmp)
  3128. pwr_move += sds->busiest->__cpu_power *
  3129. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3130. /* Amount of load we'd add */
  3131. if (sds->max_load * sds->busiest->__cpu_power <
  3132. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3133. tmp = sg_div_cpu_power(sds->this,
  3134. sds->max_load * sds->busiest->__cpu_power);
  3135. else
  3136. tmp = sg_div_cpu_power(sds->this,
  3137. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3138. pwr_move += sds->this->__cpu_power *
  3139. min(sds->this_load_per_task, sds->this_load + tmp);
  3140. pwr_move /= SCHED_LOAD_SCALE;
  3141. /* Move if we gain throughput */
  3142. if (pwr_move > pwr_now)
  3143. *imbalance = sds->busiest_load_per_task;
  3144. }
  3145. /**
  3146. * calculate_imbalance - Calculate the amount of imbalance present within the
  3147. * groups of a given sched_domain during load balance.
  3148. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3149. * @this_cpu: Cpu for which currently load balance is being performed.
  3150. * @imbalance: The variable to store the imbalance.
  3151. */
  3152. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3153. unsigned long *imbalance)
  3154. {
  3155. unsigned long max_pull;
  3156. /*
  3157. * In the presence of smp nice balancing, certain scenarios can have
  3158. * max load less than avg load(as we skip the groups at or below
  3159. * its cpu_power, while calculating max_load..)
  3160. */
  3161. if (sds->max_load < sds->avg_load) {
  3162. *imbalance = 0;
  3163. return fix_small_imbalance(sds, this_cpu, imbalance);
  3164. }
  3165. /* Don't want to pull so many tasks that a group would go idle */
  3166. max_pull = min(sds->max_load - sds->avg_load,
  3167. sds->max_load - sds->busiest_load_per_task);
  3168. /* How much load to actually move to equalise the imbalance */
  3169. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3170. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3171. / SCHED_LOAD_SCALE;
  3172. /*
  3173. * if *imbalance is less than the average load per runnable task
  3174. * there is no gaurantee that any tasks will be moved so we'll have
  3175. * a think about bumping its value to force at least one task to be
  3176. * moved
  3177. */
  3178. if (*imbalance < sds->busiest_load_per_task)
  3179. return fix_small_imbalance(sds, this_cpu, imbalance);
  3180. }
  3181. /******* find_busiest_group() helpers end here *********************/
  3182. /**
  3183. * find_busiest_group - Returns the busiest group within the sched_domain
  3184. * if there is an imbalance. If there isn't an imbalance, and
  3185. * the user has opted for power-savings, it returns a group whose
  3186. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3187. * such a group exists.
  3188. *
  3189. * Also calculates the amount of weighted load which should be moved
  3190. * to restore balance.
  3191. *
  3192. * @sd: The sched_domain whose busiest group is to be returned.
  3193. * @this_cpu: The cpu for which load balancing is currently being performed.
  3194. * @imbalance: Variable which stores amount of weighted load which should
  3195. * be moved to restore balance/put a group to idle.
  3196. * @idle: The idle status of this_cpu.
  3197. * @sd_idle: The idleness of sd
  3198. * @cpus: The set of CPUs under consideration for load-balancing.
  3199. * @balance: Pointer to a variable indicating if this_cpu
  3200. * is the appropriate cpu to perform load balancing at this_level.
  3201. *
  3202. * Returns: - the busiest group if imbalance exists.
  3203. * - If no imbalance and user has opted for power-savings balance,
  3204. * return the least loaded group whose CPUs can be
  3205. * put to idle by rebalancing its tasks onto our group.
  3206. */
  3207. static struct sched_group *
  3208. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3209. unsigned long *imbalance, enum cpu_idle_type idle,
  3210. int *sd_idle, const struct cpumask *cpus, int *balance)
  3211. {
  3212. struct sd_lb_stats sds;
  3213. memset(&sds, 0, sizeof(sds));
  3214. /*
  3215. * Compute the various statistics relavent for load balancing at
  3216. * this level.
  3217. */
  3218. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3219. balance, &sds);
  3220. /* Cases where imbalance does not exist from POV of this_cpu */
  3221. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3222. * at this level.
  3223. * 2) There is no busy sibling group to pull from.
  3224. * 3) This group is the busiest group.
  3225. * 4) This group is more busy than the avg busieness at this
  3226. * sched_domain.
  3227. * 5) The imbalance is within the specified limit.
  3228. * 6) Any rebalance would lead to ping-pong
  3229. */
  3230. if (balance && !(*balance))
  3231. goto ret;
  3232. if (!sds.busiest || sds.busiest_nr_running == 0)
  3233. goto out_balanced;
  3234. if (sds.this_load >= sds.max_load)
  3235. goto out_balanced;
  3236. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3237. if (sds.this_load >= sds.avg_load)
  3238. goto out_balanced;
  3239. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3240. goto out_balanced;
  3241. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3242. if (sds.group_imb)
  3243. sds.busiest_load_per_task =
  3244. min(sds.busiest_load_per_task, sds.avg_load);
  3245. /*
  3246. * We're trying to get all the cpus to the average_load, so we don't
  3247. * want to push ourselves above the average load, nor do we wish to
  3248. * reduce the max loaded cpu below the average load, as either of these
  3249. * actions would just result in more rebalancing later, and ping-pong
  3250. * tasks around. Thus we look for the minimum possible imbalance.
  3251. * Negative imbalances (*we* are more loaded than anyone else) will
  3252. * be counted as no imbalance for these purposes -- we can't fix that
  3253. * by pulling tasks to us. Be careful of negative numbers as they'll
  3254. * appear as very large values with unsigned longs.
  3255. */
  3256. if (sds.max_load <= sds.busiest_load_per_task)
  3257. goto out_balanced;
  3258. /* Looks like there is an imbalance. Compute it */
  3259. calculate_imbalance(&sds, this_cpu, imbalance);
  3260. return sds.busiest;
  3261. out_balanced:
  3262. /*
  3263. * There is no obvious imbalance. But check if we can do some balancing
  3264. * to save power.
  3265. */
  3266. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3267. return sds.busiest;
  3268. ret:
  3269. *imbalance = 0;
  3270. return NULL;
  3271. }
  3272. /*
  3273. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3274. */
  3275. static struct rq *
  3276. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3277. unsigned long imbalance, const struct cpumask *cpus)
  3278. {
  3279. struct rq *busiest = NULL, *rq;
  3280. unsigned long max_load = 0;
  3281. int i;
  3282. for_each_cpu(i, sched_group_cpus(group)) {
  3283. unsigned long wl;
  3284. if (!cpumask_test_cpu(i, cpus))
  3285. continue;
  3286. rq = cpu_rq(i);
  3287. wl = weighted_cpuload(i);
  3288. if (rq->nr_running == 1 && wl > imbalance)
  3289. continue;
  3290. if (wl > max_load) {
  3291. max_load = wl;
  3292. busiest = rq;
  3293. }
  3294. }
  3295. return busiest;
  3296. }
  3297. /*
  3298. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3299. * so long as it is large enough.
  3300. */
  3301. #define MAX_PINNED_INTERVAL 512
  3302. /* Working cpumask for load_balance and load_balance_newidle. */
  3303. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3304. /*
  3305. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3306. * tasks if there is an imbalance.
  3307. */
  3308. static int load_balance(int this_cpu, struct rq *this_rq,
  3309. struct sched_domain *sd, enum cpu_idle_type idle,
  3310. int *balance)
  3311. {
  3312. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3313. struct sched_group *group;
  3314. unsigned long imbalance;
  3315. struct rq *busiest;
  3316. unsigned long flags;
  3317. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3318. cpumask_setall(cpus);
  3319. /*
  3320. * When power savings policy is enabled for the parent domain, idle
  3321. * sibling can pick up load irrespective of busy siblings. In this case,
  3322. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3323. * portraying it as CPU_NOT_IDLE.
  3324. */
  3325. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3326. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3327. sd_idle = 1;
  3328. schedstat_inc(sd, lb_count[idle]);
  3329. redo:
  3330. update_shares(sd);
  3331. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3332. cpus, balance);
  3333. if (*balance == 0)
  3334. goto out_balanced;
  3335. if (!group) {
  3336. schedstat_inc(sd, lb_nobusyg[idle]);
  3337. goto out_balanced;
  3338. }
  3339. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3340. if (!busiest) {
  3341. schedstat_inc(sd, lb_nobusyq[idle]);
  3342. goto out_balanced;
  3343. }
  3344. BUG_ON(busiest == this_rq);
  3345. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3346. ld_moved = 0;
  3347. if (busiest->nr_running > 1) {
  3348. /*
  3349. * Attempt to move tasks. If find_busiest_group has found
  3350. * an imbalance but busiest->nr_running <= 1, the group is
  3351. * still unbalanced. ld_moved simply stays zero, so it is
  3352. * correctly treated as an imbalance.
  3353. */
  3354. local_irq_save(flags);
  3355. double_rq_lock(this_rq, busiest);
  3356. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3357. imbalance, sd, idle, &all_pinned);
  3358. double_rq_unlock(this_rq, busiest);
  3359. local_irq_restore(flags);
  3360. /*
  3361. * some other cpu did the load balance for us.
  3362. */
  3363. if (ld_moved && this_cpu != smp_processor_id())
  3364. resched_cpu(this_cpu);
  3365. /* All tasks on this runqueue were pinned by CPU affinity */
  3366. if (unlikely(all_pinned)) {
  3367. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3368. if (!cpumask_empty(cpus))
  3369. goto redo;
  3370. goto out_balanced;
  3371. }
  3372. }
  3373. if (!ld_moved) {
  3374. schedstat_inc(sd, lb_failed[idle]);
  3375. sd->nr_balance_failed++;
  3376. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3377. spin_lock_irqsave(&busiest->lock, flags);
  3378. /* don't kick the migration_thread, if the curr
  3379. * task on busiest cpu can't be moved to this_cpu
  3380. */
  3381. if (!cpumask_test_cpu(this_cpu,
  3382. &busiest->curr->cpus_allowed)) {
  3383. spin_unlock_irqrestore(&busiest->lock, flags);
  3384. all_pinned = 1;
  3385. goto out_one_pinned;
  3386. }
  3387. if (!busiest->active_balance) {
  3388. busiest->active_balance = 1;
  3389. busiest->push_cpu = this_cpu;
  3390. active_balance = 1;
  3391. }
  3392. spin_unlock_irqrestore(&busiest->lock, flags);
  3393. if (active_balance)
  3394. wake_up_process(busiest->migration_thread);
  3395. /*
  3396. * We've kicked active balancing, reset the failure
  3397. * counter.
  3398. */
  3399. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3400. }
  3401. } else
  3402. sd->nr_balance_failed = 0;
  3403. if (likely(!active_balance)) {
  3404. /* We were unbalanced, so reset the balancing interval */
  3405. sd->balance_interval = sd->min_interval;
  3406. } else {
  3407. /*
  3408. * If we've begun active balancing, start to back off. This
  3409. * case may not be covered by the all_pinned logic if there
  3410. * is only 1 task on the busy runqueue (because we don't call
  3411. * move_tasks).
  3412. */
  3413. if (sd->balance_interval < sd->max_interval)
  3414. sd->balance_interval *= 2;
  3415. }
  3416. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3417. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3418. ld_moved = -1;
  3419. goto out;
  3420. out_balanced:
  3421. schedstat_inc(sd, lb_balanced[idle]);
  3422. sd->nr_balance_failed = 0;
  3423. out_one_pinned:
  3424. /* tune up the balancing interval */
  3425. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3426. (sd->balance_interval < sd->max_interval))
  3427. sd->balance_interval *= 2;
  3428. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3429. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3430. ld_moved = -1;
  3431. else
  3432. ld_moved = 0;
  3433. out:
  3434. if (ld_moved)
  3435. update_shares(sd);
  3436. return ld_moved;
  3437. }
  3438. /*
  3439. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3440. * tasks if there is an imbalance.
  3441. *
  3442. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3443. * this_rq is locked.
  3444. */
  3445. static int
  3446. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3447. {
  3448. struct sched_group *group;
  3449. struct rq *busiest = NULL;
  3450. unsigned long imbalance;
  3451. int ld_moved = 0;
  3452. int sd_idle = 0;
  3453. int all_pinned = 0;
  3454. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3455. cpumask_setall(cpus);
  3456. /*
  3457. * When power savings policy is enabled for the parent domain, idle
  3458. * sibling can pick up load irrespective of busy siblings. In this case,
  3459. * let the state of idle sibling percolate up as IDLE, instead of
  3460. * portraying it as CPU_NOT_IDLE.
  3461. */
  3462. if (sd->flags & SD_SHARE_CPUPOWER &&
  3463. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3464. sd_idle = 1;
  3465. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3466. redo:
  3467. update_shares_locked(this_rq, sd);
  3468. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3469. &sd_idle, cpus, NULL);
  3470. if (!group) {
  3471. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3472. goto out_balanced;
  3473. }
  3474. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3475. if (!busiest) {
  3476. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3477. goto out_balanced;
  3478. }
  3479. BUG_ON(busiest == this_rq);
  3480. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3481. ld_moved = 0;
  3482. if (busiest->nr_running > 1) {
  3483. /* Attempt to move tasks */
  3484. double_lock_balance(this_rq, busiest);
  3485. /* this_rq->clock is already updated */
  3486. update_rq_clock(busiest);
  3487. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3488. imbalance, sd, CPU_NEWLY_IDLE,
  3489. &all_pinned);
  3490. double_unlock_balance(this_rq, busiest);
  3491. if (unlikely(all_pinned)) {
  3492. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3493. if (!cpumask_empty(cpus))
  3494. goto redo;
  3495. }
  3496. }
  3497. if (!ld_moved) {
  3498. int active_balance = 0;
  3499. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3500. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3501. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3502. return -1;
  3503. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3504. return -1;
  3505. if (sd->nr_balance_failed++ < 2)
  3506. return -1;
  3507. /*
  3508. * The only task running in a non-idle cpu can be moved to this
  3509. * cpu in an attempt to completely freeup the other CPU
  3510. * package. The same method used to move task in load_balance()
  3511. * have been extended for load_balance_newidle() to speedup
  3512. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3513. *
  3514. * The package power saving logic comes from
  3515. * find_busiest_group(). If there are no imbalance, then
  3516. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3517. * f_b_g() will select a group from which a running task may be
  3518. * pulled to this cpu in order to make the other package idle.
  3519. * If there is no opportunity to make a package idle and if
  3520. * there are no imbalance, then f_b_g() will return NULL and no
  3521. * action will be taken in load_balance_newidle().
  3522. *
  3523. * Under normal task pull operation due to imbalance, there
  3524. * will be more than one task in the source run queue and
  3525. * move_tasks() will succeed. ld_moved will be true and this
  3526. * active balance code will not be triggered.
  3527. */
  3528. /* Lock busiest in correct order while this_rq is held */
  3529. double_lock_balance(this_rq, busiest);
  3530. /*
  3531. * don't kick the migration_thread, if the curr
  3532. * task on busiest cpu can't be moved to this_cpu
  3533. */
  3534. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3535. double_unlock_balance(this_rq, busiest);
  3536. all_pinned = 1;
  3537. return ld_moved;
  3538. }
  3539. if (!busiest->active_balance) {
  3540. busiest->active_balance = 1;
  3541. busiest->push_cpu = this_cpu;
  3542. active_balance = 1;
  3543. }
  3544. double_unlock_balance(this_rq, busiest);
  3545. /*
  3546. * Should not call ttwu while holding a rq->lock
  3547. */
  3548. spin_unlock(&this_rq->lock);
  3549. if (active_balance)
  3550. wake_up_process(busiest->migration_thread);
  3551. spin_lock(&this_rq->lock);
  3552. } else
  3553. sd->nr_balance_failed = 0;
  3554. update_shares_locked(this_rq, sd);
  3555. return ld_moved;
  3556. out_balanced:
  3557. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3558. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3559. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3560. return -1;
  3561. sd->nr_balance_failed = 0;
  3562. return 0;
  3563. }
  3564. /*
  3565. * idle_balance is called by schedule() if this_cpu is about to become
  3566. * idle. Attempts to pull tasks from other CPUs.
  3567. */
  3568. static void idle_balance(int this_cpu, struct rq *this_rq)
  3569. {
  3570. struct sched_domain *sd;
  3571. int pulled_task = 0;
  3572. unsigned long next_balance = jiffies + HZ;
  3573. for_each_domain(this_cpu, sd) {
  3574. unsigned long interval;
  3575. if (!(sd->flags & SD_LOAD_BALANCE))
  3576. continue;
  3577. if (sd->flags & SD_BALANCE_NEWIDLE)
  3578. /* If we've pulled tasks over stop searching: */
  3579. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3580. sd);
  3581. interval = msecs_to_jiffies(sd->balance_interval);
  3582. if (time_after(next_balance, sd->last_balance + interval))
  3583. next_balance = sd->last_balance + interval;
  3584. if (pulled_task)
  3585. break;
  3586. }
  3587. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3588. /*
  3589. * We are going idle. next_balance may be set based on
  3590. * a busy processor. So reset next_balance.
  3591. */
  3592. this_rq->next_balance = next_balance;
  3593. }
  3594. }
  3595. /*
  3596. * active_load_balance is run by migration threads. It pushes running tasks
  3597. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3598. * running on each physical CPU where possible, and avoids physical /
  3599. * logical imbalances.
  3600. *
  3601. * Called with busiest_rq locked.
  3602. */
  3603. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3604. {
  3605. int target_cpu = busiest_rq->push_cpu;
  3606. struct sched_domain *sd;
  3607. struct rq *target_rq;
  3608. /* Is there any task to move? */
  3609. if (busiest_rq->nr_running <= 1)
  3610. return;
  3611. target_rq = cpu_rq(target_cpu);
  3612. /*
  3613. * This condition is "impossible", if it occurs
  3614. * we need to fix it. Originally reported by
  3615. * Bjorn Helgaas on a 128-cpu setup.
  3616. */
  3617. BUG_ON(busiest_rq == target_rq);
  3618. /* move a task from busiest_rq to target_rq */
  3619. double_lock_balance(busiest_rq, target_rq);
  3620. update_rq_clock(busiest_rq);
  3621. update_rq_clock(target_rq);
  3622. /* Search for an sd spanning us and the target CPU. */
  3623. for_each_domain(target_cpu, sd) {
  3624. if ((sd->flags & SD_LOAD_BALANCE) &&
  3625. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3626. break;
  3627. }
  3628. if (likely(sd)) {
  3629. schedstat_inc(sd, alb_count);
  3630. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3631. sd, CPU_IDLE))
  3632. schedstat_inc(sd, alb_pushed);
  3633. else
  3634. schedstat_inc(sd, alb_failed);
  3635. }
  3636. double_unlock_balance(busiest_rq, target_rq);
  3637. }
  3638. #ifdef CONFIG_NO_HZ
  3639. static struct {
  3640. atomic_t load_balancer;
  3641. cpumask_var_t cpu_mask;
  3642. } nohz ____cacheline_aligned = {
  3643. .load_balancer = ATOMIC_INIT(-1),
  3644. };
  3645. /*
  3646. * This routine will try to nominate the ilb (idle load balancing)
  3647. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3648. * load balancing on behalf of all those cpus. If all the cpus in the system
  3649. * go into this tickless mode, then there will be no ilb owner (as there is
  3650. * no need for one) and all the cpus will sleep till the next wakeup event
  3651. * arrives...
  3652. *
  3653. * For the ilb owner, tick is not stopped. And this tick will be used
  3654. * for idle load balancing. ilb owner will still be part of
  3655. * nohz.cpu_mask..
  3656. *
  3657. * While stopping the tick, this cpu will become the ilb owner if there
  3658. * is no other owner. And will be the owner till that cpu becomes busy
  3659. * or if all cpus in the system stop their ticks at which point
  3660. * there is no need for ilb owner.
  3661. *
  3662. * When the ilb owner becomes busy, it nominates another owner, during the
  3663. * next busy scheduler_tick()
  3664. */
  3665. int select_nohz_load_balancer(int stop_tick)
  3666. {
  3667. int cpu = smp_processor_id();
  3668. if (stop_tick) {
  3669. cpu_rq(cpu)->in_nohz_recently = 1;
  3670. if (!cpu_active(cpu)) {
  3671. if (atomic_read(&nohz.load_balancer) != cpu)
  3672. return 0;
  3673. /*
  3674. * If we are going offline and still the leader,
  3675. * give up!
  3676. */
  3677. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3678. BUG();
  3679. return 0;
  3680. }
  3681. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3682. /* time for ilb owner also to sleep */
  3683. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3684. if (atomic_read(&nohz.load_balancer) == cpu)
  3685. atomic_set(&nohz.load_balancer, -1);
  3686. return 0;
  3687. }
  3688. if (atomic_read(&nohz.load_balancer) == -1) {
  3689. /* make me the ilb owner */
  3690. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3691. return 1;
  3692. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3693. return 1;
  3694. } else {
  3695. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3696. return 0;
  3697. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3698. if (atomic_read(&nohz.load_balancer) == cpu)
  3699. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3700. BUG();
  3701. }
  3702. return 0;
  3703. }
  3704. #endif
  3705. static DEFINE_SPINLOCK(balancing);
  3706. /*
  3707. * It checks each scheduling domain to see if it is due to be balanced,
  3708. * and initiates a balancing operation if so.
  3709. *
  3710. * Balancing parameters are set up in arch_init_sched_domains.
  3711. */
  3712. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3713. {
  3714. int balance = 1;
  3715. struct rq *rq = cpu_rq(cpu);
  3716. unsigned long interval;
  3717. struct sched_domain *sd;
  3718. /* Earliest time when we have to do rebalance again */
  3719. unsigned long next_balance = jiffies + 60*HZ;
  3720. int update_next_balance = 0;
  3721. int need_serialize;
  3722. for_each_domain(cpu, sd) {
  3723. if (!(sd->flags & SD_LOAD_BALANCE))
  3724. continue;
  3725. interval = sd->balance_interval;
  3726. if (idle != CPU_IDLE)
  3727. interval *= sd->busy_factor;
  3728. /* scale ms to jiffies */
  3729. interval = msecs_to_jiffies(interval);
  3730. if (unlikely(!interval))
  3731. interval = 1;
  3732. if (interval > HZ*NR_CPUS/10)
  3733. interval = HZ*NR_CPUS/10;
  3734. need_serialize = sd->flags & SD_SERIALIZE;
  3735. if (need_serialize) {
  3736. if (!spin_trylock(&balancing))
  3737. goto out;
  3738. }
  3739. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3740. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3741. /*
  3742. * We've pulled tasks over so either we're no
  3743. * longer idle, or one of our SMT siblings is
  3744. * not idle.
  3745. */
  3746. idle = CPU_NOT_IDLE;
  3747. }
  3748. sd->last_balance = jiffies;
  3749. }
  3750. if (need_serialize)
  3751. spin_unlock(&balancing);
  3752. out:
  3753. if (time_after(next_balance, sd->last_balance + interval)) {
  3754. next_balance = sd->last_balance + interval;
  3755. update_next_balance = 1;
  3756. }
  3757. /*
  3758. * Stop the load balance at this level. There is another
  3759. * CPU in our sched group which is doing load balancing more
  3760. * actively.
  3761. */
  3762. if (!balance)
  3763. break;
  3764. }
  3765. /*
  3766. * next_balance will be updated only when there is a need.
  3767. * When the cpu is attached to null domain for ex, it will not be
  3768. * updated.
  3769. */
  3770. if (likely(update_next_balance))
  3771. rq->next_balance = next_balance;
  3772. }
  3773. /*
  3774. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3775. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3776. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3777. */
  3778. static void run_rebalance_domains(struct softirq_action *h)
  3779. {
  3780. int this_cpu = smp_processor_id();
  3781. struct rq *this_rq = cpu_rq(this_cpu);
  3782. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3783. CPU_IDLE : CPU_NOT_IDLE;
  3784. rebalance_domains(this_cpu, idle);
  3785. #ifdef CONFIG_NO_HZ
  3786. /*
  3787. * If this cpu is the owner for idle load balancing, then do the
  3788. * balancing on behalf of the other idle cpus whose ticks are
  3789. * stopped.
  3790. */
  3791. if (this_rq->idle_at_tick &&
  3792. atomic_read(&nohz.load_balancer) == this_cpu) {
  3793. struct rq *rq;
  3794. int balance_cpu;
  3795. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3796. if (balance_cpu == this_cpu)
  3797. continue;
  3798. /*
  3799. * If this cpu gets work to do, stop the load balancing
  3800. * work being done for other cpus. Next load
  3801. * balancing owner will pick it up.
  3802. */
  3803. if (need_resched())
  3804. break;
  3805. rebalance_domains(balance_cpu, CPU_IDLE);
  3806. rq = cpu_rq(balance_cpu);
  3807. if (time_after(this_rq->next_balance, rq->next_balance))
  3808. this_rq->next_balance = rq->next_balance;
  3809. }
  3810. }
  3811. #endif
  3812. }
  3813. static inline int on_null_domain(int cpu)
  3814. {
  3815. return !rcu_dereference(cpu_rq(cpu)->sd);
  3816. }
  3817. /*
  3818. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3819. *
  3820. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3821. * idle load balancing owner or decide to stop the periodic load balancing,
  3822. * if the whole system is idle.
  3823. */
  3824. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3825. {
  3826. #ifdef CONFIG_NO_HZ
  3827. /*
  3828. * If we were in the nohz mode recently and busy at the current
  3829. * scheduler tick, then check if we need to nominate new idle
  3830. * load balancer.
  3831. */
  3832. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3833. rq->in_nohz_recently = 0;
  3834. if (atomic_read(&nohz.load_balancer) == cpu) {
  3835. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3836. atomic_set(&nohz.load_balancer, -1);
  3837. }
  3838. if (atomic_read(&nohz.load_balancer) == -1) {
  3839. /*
  3840. * simple selection for now: Nominate the
  3841. * first cpu in the nohz list to be the next
  3842. * ilb owner.
  3843. *
  3844. * TBD: Traverse the sched domains and nominate
  3845. * the nearest cpu in the nohz.cpu_mask.
  3846. */
  3847. int ilb = cpumask_first(nohz.cpu_mask);
  3848. if (ilb < nr_cpu_ids)
  3849. resched_cpu(ilb);
  3850. }
  3851. }
  3852. /*
  3853. * If this cpu is idle and doing idle load balancing for all the
  3854. * cpus with ticks stopped, is it time for that to stop?
  3855. */
  3856. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3857. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3858. resched_cpu(cpu);
  3859. return;
  3860. }
  3861. /*
  3862. * If this cpu is idle and the idle load balancing is done by
  3863. * someone else, then no need raise the SCHED_SOFTIRQ
  3864. */
  3865. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3866. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3867. return;
  3868. #endif
  3869. /* Don't need to rebalance while attached to NULL domain */
  3870. if (time_after_eq(jiffies, rq->next_balance) &&
  3871. likely(!on_null_domain(cpu)))
  3872. raise_softirq(SCHED_SOFTIRQ);
  3873. }
  3874. #else /* CONFIG_SMP */
  3875. /*
  3876. * on UP we do not need to balance between CPUs:
  3877. */
  3878. static inline void idle_balance(int cpu, struct rq *rq)
  3879. {
  3880. }
  3881. #endif
  3882. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3883. EXPORT_PER_CPU_SYMBOL(kstat);
  3884. /*
  3885. * Return any ns on the sched_clock that have not yet been banked in
  3886. * @p in case that task is currently running.
  3887. */
  3888. unsigned long long __task_delta_exec(struct task_struct *p, int update)
  3889. {
  3890. s64 delta_exec;
  3891. struct rq *rq;
  3892. rq = task_rq(p);
  3893. WARN_ON_ONCE(!runqueue_is_locked());
  3894. WARN_ON_ONCE(!task_current(rq, p));
  3895. if (update)
  3896. update_rq_clock(rq);
  3897. delta_exec = rq->clock - p->se.exec_start;
  3898. WARN_ON_ONCE(delta_exec < 0);
  3899. return delta_exec;
  3900. }
  3901. /*
  3902. * Return any ns on the sched_clock that have not yet been banked in
  3903. * @p in case that task is currently running.
  3904. */
  3905. unsigned long long task_delta_exec(struct task_struct *p)
  3906. {
  3907. unsigned long flags;
  3908. struct rq *rq;
  3909. u64 ns = 0;
  3910. rq = task_rq_lock(p, &flags);
  3911. if (task_current(rq, p)) {
  3912. u64 delta_exec;
  3913. update_rq_clock(rq);
  3914. delta_exec = rq->clock - p->se.exec_start;
  3915. if ((s64)delta_exec > 0)
  3916. ns = delta_exec;
  3917. }
  3918. task_rq_unlock(rq, &flags);
  3919. return ns;
  3920. }
  3921. /*
  3922. * Account user cpu time to a process.
  3923. * @p: the process that the cpu time gets accounted to
  3924. * @cputime: the cpu time spent in user space since the last update
  3925. * @cputime_scaled: cputime scaled by cpu frequency
  3926. */
  3927. void account_user_time(struct task_struct *p, cputime_t cputime,
  3928. cputime_t cputime_scaled)
  3929. {
  3930. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3931. cputime64_t tmp;
  3932. /* Add user time to process. */
  3933. p->utime = cputime_add(p->utime, cputime);
  3934. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3935. account_group_user_time(p, cputime);
  3936. /* Add user time to cpustat. */
  3937. tmp = cputime_to_cputime64(cputime);
  3938. if (TASK_NICE(p) > 0)
  3939. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3940. else
  3941. cpustat->user = cputime64_add(cpustat->user, tmp);
  3942. /* Account for user time used */
  3943. acct_update_integrals(p);
  3944. }
  3945. /*
  3946. * Account guest cpu time to a process.
  3947. * @p: the process that the cpu time gets accounted to
  3948. * @cputime: the cpu time spent in virtual machine since the last update
  3949. * @cputime_scaled: cputime scaled by cpu frequency
  3950. */
  3951. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3952. cputime_t cputime_scaled)
  3953. {
  3954. cputime64_t tmp;
  3955. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3956. tmp = cputime_to_cputime64(cputime);
  3957. /* Add guest time to process. */
  3958. p->utime = cputime_add(p->utime, cputime);
  3959. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3960. account_group_user_time(p, cputime);
  3961. p->gtime = cputime_add(p->gtime, cputime);
  3962. /* Add guest time to cpustat. */
  3963. cpustat->user = cputime64_add(cpustat->user, tmp);
  3964. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3965. }
  3966. /*
  3967. * Account system cpu time to a process.
  3968. * @p: the process that the cpu time gets accounted to
  3969. * @hardirq_offset: the offset to subtract from hardirq_count()
  3970. * @cputime: the cpu time spent in kernel space since the last update
  3971. * @cputime_scaled: cputime scaled by cpu frequency
  3972. */
  3973. void account_system_time(struct task_struct *p, int hardirq_offset,
  3974. cputime_t cputime, cputime_t cputime_scaled)
  3975. {
  3976. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3977. cputime64_t tmp;
  3978. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3979. account_guest_time(p, cputime, cputime_scaled);
  3980. return;
  3981. }
  3982. /* Add system time to process. */
  3983. p->stime = cputime_add(p->stime, cputime);
  3984. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3985. account_group_system_time(p, cputime);
  3986. /* Add system time to cpustat. */
  3987. tmp = cputime_to_cputime64(cputime);
  3988. if (hardirq_count() - hardirq_offset)
  3989. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3990. else if (softirq_count())
  3991. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3992. else
  3993. cpustat->system = cputime64_add(cpustat->system, tmp);
  3994. /* Account for system time used */
  3995. acct_update_integrals(p);
  3996. }
  3997. /*
  3998. * Account for involuntary wait time.
  3999. * @steal: the cpu time spent in involuntary wait
  4000. */
  4001. void account_steal_time(cputime_t cputime)
  4002. {
  4003. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4004. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4005. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4006. }
  4007. /*
  4008. * Account for idle time.
  4009. * @cputime: the cpu time spent in idle wait
  4010. */
  4011. void account_idle_time(cputime_t cputime)
  4012. {
  4013. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4014. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4015. struct rq *rq = this_rq();
  4016. if (atomic_read(&rq->nr_iowait) > 0)
  4017. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4018. else
  4019. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4020. }
  4021. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4022. /*
  4023. * Account a single tick of cpu time.
  4024. * @p: the process that the cpu time gets accounted to
  4025. * @user_tick: indicates if the tick is a user or a system tick
  4026. */
  4027. void account_process_tick(struct task_struct *p, int user_tick)
  4028. {
  4029. cputime_t one_jiffy = jiffies_to_cputime(1);
  4030. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4031. struct rq *rq = this_rq();
  4032. if (user_tick)
  4033. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4034. else if (p != rq->idle)
  4035. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4036. one_jiffy_scaled);
  4037. else
  4038. account_idle_time(one_jiffy);
  4039. }
  4040. /*
  4041. * Account multiple ticks of steal time.
  4042. * @p: the process from which the cpu time has been stolen
  4043. * @ticks: number of stolen ticks
  4044. */
  4045. void account_steal_ticks(unsigned long ticks)
  4046. {
  4047. account_steal_time(jiffies_to_cputime(ticks));
  4048. }
  4049. /*
  4050. * Account multiple ticks of idle time.
  4051. * @ticks: number of stolen ticks
  4052. */
  4053. void account_idle_ticks(unsigned long ticks)
  4054. {
  4055. account_idle_time(jiffies_to_cputime(ticks));
  4056. }
  4057. #endif
  4058. /*
  4059. * Use precise platform statistics if available:
  4060. */
  4061. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4062. cputime_t task_utime(struct task_struct *p)
  4063. {
  4064. return p->utime;
  4065. }
  4066. cputime_t task_stime(struct task_struct *p)
  4067. {
  4068. return p->stime;
  4069. }
  4070. #else
  4071. cputime_t task_utime(struct task_struct *p)
  4072. {
  4073. clock_t utime = cputime_to_clock_t(p->utime),
  4074. total = utime + cputime_to_clock_t(p->stime);
  4075. u64 temp;
  4076. /*
  4077. * Use CFS's precise accounting:
  4078. */
  4079. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4080. if (total) {
  4081. temp *= utime;
  4082. do_div(temp, total);
  4083. }
  4084. utime = (clock_t)temp;
  4085. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4086. return p->prev_utime;
  4087. }
  4088. cputime_t task_stime(struct task_struct *p)
  4089. {
  4090. clock_t stime;
  4091. /*
  4092. * Use CFS's precise accounting. (we subtract utime from
  4093. * the total, to make sure the total observed by userspace
  4094. * grows monotonically - apps rely on that):
  4095. */
  4096. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4097. cputime_to_clock_t(task_utime(p));
  4098. if (stime >= 0)
  4099. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4100. return p->prev_stime;
  4101. }
  4102. #endif
  4103. inline cputime_t task_gtime(struct task_struct *p)
  4104. {
  4105. return p->gtime;
  4106. }
  4107. /*
  4108. * This function gets called by the timer code, with HZ frequency.
  4109. * We call it with interrupts disabled.
  4110. *
  4111. * It also gets called by the fork code, when changing the parent's
  4112. * timeslices.
  4113. */
  4114. void scheduler_tick(void)
  4115. {
  4116. int cpu = smp_processor_id();
  4117. struct rq *rq = cpu_rq(cpu);
  4118. struct task_struct *curr = rq->curr;
  4119. sched_clock_tick();
  4120. spin_lock(&rq->lock);
  4121. update_rq_clock(rq);
  4122. update_cpu_load(rq);
  4123. curr->sched_class->task_tick(rq, curr, 0);
  4124. perf_counter_task_tick(curr, cpu);
  4125. spin_unlock(&rq->lock);
  4126. #ifdef CONFIG_SMP
  4127. rq->idle_at_tick = idle_cpu(cpu);
  4128. trigger_load_balance(rq, cpu);
  4129. #endif
  4130. }
  4131. unsigned long get_parent_ip(unsigned long addr)
  4132. {
  4133. if (in_lock_functions(addr)) {
  4134. addr = CALLER_ADDR2;
  4135. if (in_lock_functions(addr))
  4136. addr = CALLER_ADDR3;
  4137. }
  4138. return addr;
  4139. }
  4140. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4141. defined(CONFIG_PREEMPT_TRACER))
  4142. void __kprobes add_preempt_count(int val)
  4143. {
  4144. #ifdef CONFIG_DEBUG_PREEMPT
  4145. /*
  4146. * Underflow?
  4147. */
  4148. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4149. return;
  4150. #endif
  4151. preempt_count() += val;
  4152. #ifdef CONFIG_DEBUG_PREEMPT
  4153. /*
  4154. * Spinlock count overflowing soon?
  4155. */
  4156. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4157. PREEMPT_MASK - 10);
  4158. #endif
  4159. if (preempt_count() == val)
  4160. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4161. }
  4162. EXPORT_SYMBOL(add_preempt_count);
  4163. void __kprobes sub_preempt_count(int val)
  4164. {
  4165. #ifdef CONFIG_DEBUG_PREEMPT
  4166. /*
  4167. * Underflow?
  4168. */
  4169. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4170. return;
  4171. /*
  4172. * Is the spinlock portion underflowing?
  4173. */
  4174. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4175. !(preempt_count() & PREEMPT_MASK)))
  4176. return;
  4177. #endif
  4178. if (preempt_count() == val)
  4179. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4180. preempt_count() -= val;
  4181. }
  4182. EXPORT_SYMBOL(sub_preempt_count);
  4183. #endif
  4184. /*
  4185. * Print scheduling while atomic bug:
  4186. */
  4187. static noinline void __schedule_bug(struct task_struct *prev)
  4188. {
  4189. struct pt_regs *regs = get_irq_regs();
  4190. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4191. prev->comm, prev->pid, preempt_count());
  4192. debug_show_held_locks(prev);
  4193. print_modules();
  4194. if (irqs_disabled())
  4195. print_irqtrace_events(prev);
  4196. if (regs)
  4197. show_regs(regs);
  4198. else
  4199. dump_stack();
  4200. }
  4201. /*
  4202. * Various schedule()-time debugging checks and statistics:
  4203. */
  4204. static inline void schedule_debug(struct task_struct *prev)
  4205. {
  4206. /*
  4207. * Test if we are atomic. Since do_exit() needs to call into
  4208. * schedule() atomically, we ignore that path for now.
  4209. * Otherwise, whine if we are scheduling when we should not be.
  4210. */
  4211. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4212. __schedule_bug(prev);
  4213. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4214. schedstat_inc(this_rq(), sched_count);
  4215. #ifdef CONFIG_SCHEDSTATS
  4216. if (unlikely(prev->lock_depth >= 0)) {
  4217. schedstat_inc(this_rq(), bkl_count);
  4218. schedstat_inc(prev, sched_info.bkl_count);
  4219. }
  4220. #endif
  4221. }
  4222. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4223. {
  4224. if (prev->state == TASK_RUNNING) {
  4225. u64 runtime = prev->se.sum_exec_runtime;
  4226. runtime -= prev->se.prev_sum_exec_runtime;
  4227. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4228. /*
  4229. * In order to avoid avg_overlap growing stale when we are
  4230. * indeed overlapping and hence not getting put to sleep, grow
  4231. * the avg_overlap on preemption.
  4232. *
  4233. * We use the average preemption runtime because that
  4234. * correlates to the amount of cache footprint a task can
  4235. * build up.
  4236. */
  4237. update_avg(&prev->se.avg_overlap, runtime);
  4238. }
  4239. prev->sched_class->put_prev_task(rq, prev);
  4240. }
  4241. /*
  4242. * Pick up the highest-prio task:
  4243. */
  4244. static inline struct task_struct *
  4245. pick_next_task(struct rq *rq)
  4246. {
  4247. const struct sched_class *class;
  4248. struct task_struct *p;
  4249. /*
  4250. * Optimization: we know that if all tasks are in
  4251. * the fair class we can call that function directly:
  4252. */
  4253. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4254. p = fair_sched_class.pick_next_task(rq);
  4255. if (likely(p))
  4256. return p;
  4257. }
  4258. class = sched_class_highest;
  4259. for ( ; ; ) {
  4260. p = class->pick_next_task(rq);
  4261. if (p)
  4262. return p;
  4263. /*
  4264. * Will never be NULL as the idle class always
  4265. * returns a non-NULL p:
  4266. */
  4267. class = class->next;
  4268. }
  4269. }
  4270. /*
  4271. * schedule() is the main scheduler function.
  4272. */
  4273. asmlinkage void __sched __schedule(void)
  4274. {
  4275. struct task_struct *prev, *next;
  4276. unsigned long *switch_count;
  4277. struct rq *rq;
  4278. int cpu;
  4279. cpu = smp_processor_id();
  4280. rq = cpu_rq(cpu);
  4281. rcu_qsctr_inc(cpu);
  4282. prev = rq->curr;
  4283. switch_count = &prev->nivcsw;
  4284. release_kernel_lock(prev);
  4285. need_resched_nonpreemptible:
  4286. schedule_debug(prev);
  4287. if (sched_feat(HRTICK))
  4288. hrtick_clear(rq);
  4289. spin_lock_irq(&rq->lock);
  4290. update_rq_clock(rq);
  4291. clear_tsk_need_resched(prev);
  4292. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4293. if (unlikely(signal_pending_state(prev->state, prev)))
  4294. prev->state = TASK_RUNNING;
  4295. else
  4296. deactivate_task(rq, prev, 1);
  4297. switch_count = &prev->nvcsw;
  4298. }
  4299. #ifdef CONFIG_SMP
  4300. if (prev->sched_class->pre_schedule)
  4301. prev->sched_class->pre_schedule(rq, prev);
  4302. #endif
  4303. if (unlikely(!rq->nr_running))
  4304. idle_balance(cpu, rq);
  4305. put_prev_task(rq, prev);
  4306. next = pick_next_task(rq);
  4307. if (likely(prev != next)) {
  4308. sched_info_switch(prev, next);
  4309. perf_counter_task_sched_out(prev, cpu);
  4310. rq->nr_switches++;
  4311. rq->curr = next;
  4312. ++*switch_count;
  4313. context_switch(rq, prev, next); /* unlocks the rq */
  4314. /*
  4315. * the context switch might have flipped the stack from under
  4316. * us, hence refresh the local variables.
  4317. */
  4318. cpu = smp_processor_id();
  4319. rq = cpu_rq(cpu);
  4320. } else
  4321. spin_unlock_irq(&rq->lock);
  4322. if (unlikely(reacquire_kernel_lock(current) < 0))
  4323. goto need_resched_nonpreemptible;
  4324. }
  4325. asmlinkage void __sched schedule(void)
  4326. {
  4327. need_resched:
  4328. preempt_disable();
  4329. __schedule();
  4330. preempt_enable_no_resched();
  4331. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  4332. goto need_resched;
  4333. }
  4334. EXPORT_SYMBOL(schedule);
  4335. #ifdef CONFIG_SMP
  4336. /*
  4337. * Look out! "owner" is an entirely speculative pointer
  4338. * access and not reliable.
  4339. */
  4340. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4341. {
  4342. unsigned int cpu;
  4343. struct rq *rq;
  4344. if (!sched_feat(OWNER_SPIN))
  4345. return 0;
  4346. #ifdef CONFIG_DEBUG_PAGEALLOC
  4347. /*
  4348. * Need to access the cpu field knowing that
  4349. * DEBUG_PAGEALLOC could have unmapped it if
  4350. * the mutex owner just released it and exited.
  4351. */
  4352. if (probe_kernel_address(&owner->cpu, cpu))
  4353. goto out;
  4354. #else
  4355. cpu = owner->cpu;
  4356. #endif
  4357. /*
  4358. * Even if the access succeeded (likely case),
  4359. * the cpu field may no longer be valid.
  4360. */
  4361. if (cpu >= nr_cpumask_bits)
  4362. goto out;
  4363. /*
  4364. * We need to validate that we can do a
  4365. * get_cpu() and that we have the percpu area.
  4366. */
  4367. if (!cpu_online(cpu))
  4368. goto out;
  4369. rq = cpu_rq(cpu);
  4370. for (;;) {
  4371. /*
  4372. * Owner changed, break to re-assess state.
  4373. */
  4374. if (lock->owner != owner)
  4375. break;
  4376. /*
  4377. * Is that owner really running on that cpu?
  4378. */
  4379. if (task_thread_info(rq->curr) != owner || need_resched())
  4380. return 0;
  4381. cpu_relax();
  4382. }
  4383. out:
  4384. return 1;
  4385. }
  4386. #endif
  4387. #ifdef CONFIG_PREEMPT
  4388. /*
  4389. * this is the entry point to schedule() from in-kernel preemption
  4390. * off of preempt_enable. Kernel preemptions off return from interrupt
  4391. * occur there and call schedule directly.
  4392. */
  4393. asmlinkage void __sched preempt_schedule(void)
  4394. {
  4395. struct thread_info *ti = current_thread_info();
  4396. /*
  4397. * If there is a non-zero preempt_count or interrupts are disabled,
  4398. * we do not want to preempt the current task. Just return..
  4399. */
  4400. if (likely(ti->preempt_count || irqs_disabled()))
  4401. return;
  4402. do {
  4403. add_preempt_count(PREEMPT_ACTIVE);
  4404. schedule();
  4405. sub_preempt_count(PREEMPT_ACTIVE);
  4406. /*
  4407. * Check again in case we missed a preemption opportunity
  4408. * between schedule and now.
  4409. */
  4410. barrier();
  4411. } while (need_resched());
  4412. }
  4413. EXPORT_SYMBOL(preempt_schedule);
  4414. /*
  4415. * this is the entry point to schedule() from kernel preemption
  4416. * off of irq context.
  4417. * Note, that this is called and return with irqs disabled. This will
  4418. * protect us against recursive calling from irq.
  4419. */
  4420. asmlinkage void __sched preempt_schedule_irq(void)
  4421. {
  4422. struct thread_info *ti = current_thread_info();
  4423. /* Catch callers which need to be fixed */
  4424. BUG_ON(ti->preempt_count || !irqs_disabled());
  4425. do {
  4426. add_preempt_count(PREEMPT_ACTIVE);
  4427. local_irq_enable();
  4428. schedule();
  4429. local_irq_disable();
  4430. sub_preempt_count(PREEMPT_ACTIVE);
  4431. /*
  4432. * Check again in case we missed a preemption opportunity
  4433. * between schedule and now.
  4434. */
  4435. barrier();
  4436. } while (need_resched());
  4437. }
  4438. #endif /* CONFIG_PREEMPT */
  4439. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4440. void *key)
  4441. {
  4442. return try_to_wake_up(curr->private, mode, sync);
  4443. }
  4444. EXPORT_SYMBOL(default_wake_function);
  4445. /*
  4446. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4447. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4448. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4449. *
  4450. * There are circumstances in which we can try to wake a task which has already
  4451. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4452. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4453. */
  4454. void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4455. int nr_exclusive, int sync, void *key)
  4456. {
  4457. wait_queue_t *curr, *next;
  4458. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4459. unsigned flags = curr->flags;
  4460. if (curr->func(curr, mode, sync, key) &&
  4461. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4462. break;
  4463. }
  4464. }
  4465. /**
  4466. * __wake_up - wake up threads blocked on a waitqueue.
  4467. * @q: the waitqueue
  4468. * @mode: which threads
  4469. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4470. * @key: is directly passed to the wakeup function
  4471. */
  4472. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4473. int nr_exclusive, void *key)
  4474. {
  4475. unsigned long flags;
  4476. spin_lock_irqsave(&q->lock, flags);
  4477. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4478. spin_unlock_irqrestore(&q->lock, flags);
  4479. }
  4480. EXPORT_SYMBOL(__wake_up);
  4481. /*
  4482. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4483. */
  4484. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4485. {
  4486. __wake_up_common(q, mode, 1, 0, NULL);
  4487. }
  4488. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4489. {
  4490. __wake_up_common(q, mode, 1, 0, key);
  4491. }
  4492. /**
  4493. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4494. * @q: the waitqueue
  4495. * @mode: which threads
  4496. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4497. * @key: opaque value to be passed to wakeup targets
  4498. *
  4499. * The sync wakeup differs that the waker knows that it will schedule
  4500. * away soon, so while the target thread will be woken up, it will not
  4501. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4502. * with each other. This can prevent needless bouncing between CPUs.
  4503. *
  4504. * On UP it can prevent extra preemption.
  4505. */
  4506. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4507. int nr_exclusive, void *key)
  4508. {
  4509. unsigned long flags;
  4510. int sync = 1;
  4511. if (unlikely(!q))
  4512. return;
  4513. if (unlikely(!nr_exclusive))
  4514. sync = 0;
  4515. spin_lock_irqsave(&q->lock, flags);
  4516. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4517. spin_unlock_irqrestore(&q->lock, flags);
  4518. }
  4519. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4520. /*
  4521. * __wake_up_sync - see __wake_up_sync_key()
  4522. */
  4523. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4524. {
  4525. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4526. }
  4527. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4528. /**
  4529. * complete: - signals a single thread waiting on this completion
  4530. * @x: holds the state of this particular completion
  4531. *
  4532. * This will wake up a single thread waiting on this completion. Threads will be
  4533. * awakened in the same order in which they were queued.
  4534. *
  4535. * See also complete_all(), wait_for_completion() and related routines.
  4536. */
  4537. void complete(struct completion *x)
  4538. {
  4539. unsigned long flags;
  4540. spin_lock_irqsave(&x->wait.lock, flags);
  4541. x->done++;
  4542. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4543. spin_unlock_irqrestore(&x->wait.lock, flags);
  4544. }
  4545. EXPORT_SYMBOL(complete);
  4546. /**
  4547. * complete_all: - signals all threads waiting on this completion
  4548. * @x: holds the state of this particular completion
  4549. *
  4550. * This will wake up all threads waiting on this particular completion event.
  4551. */
  4552. void complete_all(struct completion *x)
  4553. {
  4554. unsigned long flags;
  4555. spin_lock_irqsave(&x->wait.lock, flags);
  4556. x->done += UINT_MAX/2;
  4557. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4558. spin_unlock_irqrestore(&x->wait.lock, flags);
  4559. }
  4560. EXPORT_SYMBOL(complete_all);
  4561. static inline long __sched
  4562. do_wait_for_common(struct completion *x, long timeout, int state)
  4563. {
  4564. if (!x->done) {
  4565. DECLARE_WAITQUEUE(wait, current);
  4566. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4567. __add_wait_queue_tail(&x->wait, &wait);
  4568. do {
  4569. if (signal_pending_state(state, current)) {
  4570. timeout = -ERESTARTSYS;
  4571. break;
  4572. }
  4573. __set_current_state(state);
  4574. spin_unlock_irq(&x->wait.lock);
  4575. timeout = schedule_timeout(timeout);
  4576. spin_lock_irq(&x->wait.lock);
  4577. } while (!x->done && timeout);
  4578. __remove_wait_queue(&x->wait, &wait);
  4579. if (!x->done)
  4580. return timeout;
  4581. }
  4582. x->done--;
  4583. return timeout ?: 1;
  4584. }
  4585. static long __sched
  4586. wait_for_common(struct completion *x, long timeout, int state)
  4587. {
  4588. might_sleep();
  4589. spin_lock_irq(&x->wait.lock);
  4590. timeout = do_wait_for_common(x, timeout, state);
  4591. spin_unlock_irq(&x->wait.lock);
  4592. return timeout;
  4593. }
  4594. /**
  4595. * wait_for_completion: - waits for completion of a task
  4596. * @x: holds the state of this particular completion
  4597. *
  4598. * This waits to be signaled for completion of a specific task. It is NOT
  4599. * interruptible and there is no timeout.
  4600. *
  4601. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4602. * and interrupt capability. Also see complete().
  4603. */
  4604. void __sched wait_for_completion(struct completion *x)
  4605. {
  4606. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4607. }
  4608. EXPORT_SYMBOL(wait_for_completion);
  4609. /**
  4610. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4611. * @x: holds the state of this particular completion
  4612. * @timeout: timeout value in jiffies
  4613. *
  4614. * This waits for either a completion of a specific task to be signaled or for a
  4615. * specified timeout to expire. The timeout is in jiffies. It is not
  4616. * interruptible.
  4617. */
  4618. unsigned long __sched
  4619. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4620. {
  4621. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4622. }
  4623. EXPORT_SYMBOL(wait_for_completion_timeout);
  4624. /**
  4625. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4626. * @x: holds the state of this particular completion
  4627. *
  4628. * This waits for completion of a specific task to be signaled. It is
  4629. * interruptible.
  4630. */
  4631. int __sched wait_for_completion_interruptible(struct completion *x)
  4632. {
  4633. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4634. if (t == -ERESTARTSYS)
  4635. return t;
  4636. return 0;
  4637. }
  4638. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4639. /**
  4640. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4641. * @x: holds the state of this particular completion
  4642. * @timeout: timeout value in jiffies
  4643. *
  4644. * This waits for either a completion of a specific task to be signaled or for a
  4645. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4646. */
  4647. unsigned long __sched
  4648. wait_for_completion_interruptible_timeout(struct completion *x,
  4649. unsigned long timeout)
  4650. {
  4651. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4652. }
  4653. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4654. /**
  4655. * wait_for_completion_killable: - waits for completion of a task (killable)
  4656. * @x: holds the state of this particular completion
  4657. *
  4658. * This waits to be signaled for completion of a specific task. It can be
  4659. * interrupted by a kill signal.
  4660. */
  4661. int __sched wait_for_completion_killable(struct completion *x)
  4662. {
  4663. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4664. if (t == -ERESTARTSYS)
  4665. return t;
  4666. return 0;
  4667. }
  4668. EXPORT_SYMBOL(wait_for_completion_killable);
  4669. /**
  4670. * try_wait_for_completion - try to decrement a completion without blocking
  4671. * @x: completion structure
  4672. *
  4673. * Returns: 0 if a decrement cannot be done without blocking
  4674. * 1 if a decrement succeeded.
  4675. *
  4676. * If a completion is being used as a counting completion,
  4677. * attempt to decrement the counter without blocking. This
  4678. * enables us to avoid waiting if the resource the completion
  4679. * is protecting is not available.
  4680. */
  4681. bool try_wait_for_completion(struct completion *x)
  4682. {
  4683. int ret = 1;
  4684. spin_lock_irq(&x->wait.lock);
  4685. if (!x->done)
  4686. ret = 0;
  4687. else
  4688. x->done--;
  4689. spin_unlock_irq(&x->wait.lock);
  4690. return ret;
  4691. }
  4692. EXPORT_SYMBOL(try_wait_for_completion);
  4693. /**
  4694. * completion_done - Test to see if a completion has any waiters
  4695. * @x: completion structure
  4696. *
  4697. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4698. * 1 if there are no waiters.
  4699. *
  4700. */
  4701. bool completion_done(struct completion *x)
  4702. {
  4703. int ret = 1;
  4704. spin_lock_irq(&x->wait.lock);
  4705. if (!x->done)
  4706. ret = 0;
  4707. spin_unlock_irq(&x->wait.lock);
  4708. return ret;
  4709. }
  4710. EXPORT_SYMBOL(completion_done);
  4711. static long __sched
  4712. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4713. {
  4714. unsigned long flags;
  4715. wait_queue_t wait;
  4716. init_waitqueue_entry(&wait, current);
  4717. __set_current_state(state);
  4718. spin_lock_irqsave(&q->lock, flags);
  4719. __add_wait_queue(q, &wait);
  4720. spin_unlock(&q->lock);
  4721. timeout = schedule_timeout(timeout);
  4722. spin_lock_irq(&q->lock);
  4723. __remove_wait_queue(q, &wait);
  4724. spin_unlock_irqrestore(&q->lock, flags);
  4725. return timeout;
  4726. }
  4727. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4728. {
  4729. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4730. }
  4731. EXPORT_SYMBOL(interruptible_sleep_on);
  4732. long __sched
  4733. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4734. {
  4735. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4736. }
  4737. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4738. void __sched sleep_on(wait_queue_head_t *q)
  4739. {
  4740. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4741. }
  4742. EXPORT_SYMBOL(sleep_on);
  4743. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4744. {
  4745. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4746. }
  4747. EXPORT_SYMBOL(sleep_on_timeout);
  4748. #ifdef CONFIG_RT_MUTEXES
  4749. /*
  4750. * rt_mutex_setprio - set the current priority of a task
  4751. * @p: task
  4752. * @prio: prio value (kernel-internal form)
  4753. *
  4754. * This function changes the 'effective' priority of a task. It does
  4755. * not touch ->normal_prio like __setscheduler().
  4756. *
  4757. * Used by the rt_mutex code to implement priority inheritance logic.
  4758. */
  4759. void rt_mutex_setprio(struct task_struct *p, int prio)
  4760. {
  4761. unsigned long flags;
  4762. int oldprio, on_rq, running;
  4763. struct rq *rq;
  4764. const struct sched_class *prev_class = p->sched_class;
  4765. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4766. rq = task_rq_lock(p, &flags);
  4767. update_rq_clock(rq);
  4768. oldprio = p->prio;
  4769. on_rq = p->se.on_rq;
  4770. running = task_current(rq, p);
  4771. if (on_rq)
  4772. dequeue_task(rq, p, 0);
  4773. if (running)
  4774. p->sched_class->put_prev_task(rq, p);
  4775. if (rt_prio(prio))
  4776. p->sched_class = &rt_sched_class;
  4777. else
  4778. p->sched_class = &fair_sched_class;
  4779. p->prio = prio;
  4780. if (running)
  4781. p->sched_class->set_curr_task(rq);
  4782. if (on_rq) {
  4783. enqueue_task(rq, p, 0);
  4784. check_class_changed(rq, p, prev_class, oldprio, running);
  4785. }
  4786. task_rq_unlock(rq, &flags);
  4787. }
  4788. #endif
  4789. void set_user_nice(struct task_struct *p, long nice)
  4790. {
  4791. int old_prio, delta, on_rq;
  4792. unsigned long flags;
  4793. struct rq *rq;
  4794. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4795. return;
  4796. /*
  4797. * We have to be careful, if called from sys_setpriority(),
  4798. * the task might be in the middle of scheduling on another CPU.
  4799. */
  4800. rq = task_rq_lock(p, &flags);
  4801. update_rq_clock(rq);
  4802. /*
  4803. * The RT priorities are set via sched_setscheduler(), but we still
  4804. * allow the 'normal' nice value to be set - but as expected
  4805. * it wont have any effect on scheduling until the task is
  4806. * SCHED_FIFO/SCHED_RR:
  4807. */
  4808. if (task_has_rt_policy(p)) {
  4809. p->static_prio = NICE_TO_PRIO(nice);
  4810. goto out_unlock;
  4811. }
  4812. on_rq = p->se.on_rq;
  4813. if (on_rq)
  4814. dequeue_task(rq, p, 0);
  4815. p->static_prio = NICE_TO_PRIO(nice);
  4816. set_load_weight(p);
  4817. old_prio = p->prio;
  4818. p->prio = effective_prio(p);
  4819. delta = p->prio - old_prio;
  4820. if (on_rq) {
  4821. enqueue_task(rq, p, 0);
  4822. /*
  4823. * If the task increased its priority or is running and
  4824. * lowered its priority, then reschedule its CPU:
  4825. */
  4826. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4827. resched_task(rq->curr);
  4828. }
  4829. out_unlock:
  4830. task_rq_unlock(rq, &flags);
  4831. }
  4832. EXPORT_SYMBOL(set_user_nice);
  4833. /*
  4834. * can_nice - check if a task can reduce its nice value
  4835. * @p: task
  4836. * @nice: nice value
  4837. */
  4838. int can_nice(const struct task_struct *p, const int nice)
  4839. {
  4840. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4841. int nice_rlim = 20 - nice;
  4842. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4843. capable(CAP_SYS_NICE));
  4844. }
  4845. #ifdef __ARCH_WANT_SYS_NICE
  4846. /*
  4847. * sys_nice - change the priority of the current process.
  4848. * @increment: priority increment
  4849. *
  4850. * sys_setpriority is a more generic, but much slower function that
  4851. * does similar things.
  4852. */
  4853. SYSCALL_DEFINE1(nice, int, increment)
  4854. {
  4855. long nice, retval;
  4856. /*
  4857. * Setpriority might change our priority at the same moment.
  4858. * We don't have to worry. Conceptually one call occurs first
  4859. * and we have a single winner.
  4860. */
  4861. if (increment < -40)
  4862. increment = -40;
  4863. if (increment > 40)
  4864. increment = 40;
  4865. nice = TASK_NICE(current) + increment;
  4866. if (nice < -20)
  4867. nice = -20;
  4868. if (nice > 19)
  4869. nice = 19;
  4870. if (increment < 0 && !can_nice(current, nice))
  4871. return -EPERM;
  4872. retval = security_task_setnice(current, nice);
  4873. if (retval)
  4874. return retval;
  4875. set_user_nice(current, nice);
  4876. return 0;
  4877. }
  4878. #endif
  4879. /**
  4880. * task_prio - return the priority value of a given task.
  4881. * @p: the task in question.
  4882. *
  4883. * This is the priority value as seen by users in /proc.
  4884. * RT tasks are offset by -200. Normal tasks are centered
  4885. * around 0, value goes from -16 to +15.
  4886. */
  4887. int task_prio(const struct task_struct *p)
  4888. {
  4889. return p->prio - MAX_RT_PRIO;
  4890. }
  4891. /**
  4892. * task_nice - return the nice value of a given task.
  4893. * @p: the task in question.
  4894. */
  4895. int task_nice(const struct task_struct *p)
  4896. {
  4897. return TASK_NICE(p);
  4898. }
  4899. EXPORT_SYMBOL(task_nice);
  4900. /**
  4901. * idle_cpu - is a given cpu idle currently?
  4902. * @cpu: the processor in question.
  4903. */
  4904. int idle_cpu(int cpu)
  4905. {
  4906. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4907. }
  4908. /**
  4909. * idle_task - return the idle task for a given cpu.
  4910. * @cpu: the processor in question.
  4911. */
  4912. struct task_struct *idle_task(int cpu)
  4913. {
  4914. return cpu_rq(cpu)->idle;
  4915. }
  4916. /**
  4917. * find_process_by_pid - find a process with a matching PID value.
  4918. * @pid: the pid in question.
  4919. */
  4920. static struct task_struct *find_process_by_pid(pid_t pid)
  4921. {
  4922. return pid ? find_task_by_vpid(pid) : current;
  4923. }
  4924. /* Actually do priority change: must hold rq lock. */
  4925. static void
  4926. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4927. {
  4928. BUG_ON(p->se.on_rq);
  4929. p->policy = policy;
  4930. switch (p->policy) {
  4931. case SCHED_NORMAL:
  4932. case SCHED_BATCH:
  4933. case SCHED_IDLE:
  4934. p->sched_class = &fair_sched_class;
  4935. break;
  4936. case SCHED_FIFO:
  4937. case SCHED_RR:
  4938. p->sched_class = &rt_sched_class;
  4939. break;
  4940. }
  4941. p->rt_priority = prio;
  4942. p->normal_prio = normal_prio(p);
  4943. /* we are holding p->pi_lock already */
  4944. p->prio = rt_mutex_getprio(p);
  4945. set_load_weight(p);
  4946. }
  4947. /*
  4948. * check the target process has a UID that matches the current process's
  4949. */
  4950. static bool check_same_owner(struct task_struct *p)
  4951. {
  4952. const struct cred *cred = current_cred(), *pcred;
  4953. bool match;
  4954. rcu_read_lock();
  4955. pcred = __task_cred(p);
  4956. match = (cred->euid == pcred->euid ||
  4957. cred->euid == pcred->uid);
  4958. rcu_read_unlock();
  4959. return match;
  4960. }
  4961. static int __sched_setscheduler(struct task_struct *p, int policy,
  4962. struct sched_param *param, bool user)
  4963. {
  4964. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4965. unsigned long flags;
  4966. const struct sched_class *prev_class = p->sched_class;
  4967. struct rq *rq;
  4968. /* may grab non-irq protected spin_locks */
  4969. BUG_ON(in_interrupt());
  4970. recheck:
  4971. /* double check policy once rq lock held */
  4972. if (policy < 0)
  4973. policy = oldpolicy = p->policy;
  4974. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4975. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4976. policy != SCHED_IDLE)
  4977. return -EINVAL;
  4978. /*
  4979. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4980. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4981. * SCHED_BATCH and SCHED_IDLE is 0.
  4982. */
  4983. if (param->sched_priority < 0 ||
  4984. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4985. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4986. return -EINVAL;
  4987. if (rt_policy(policy) != (param->sched_priority != 0))
  4988. return -EINVAL;
  4989. /*
  4990. * Allow unprivileged RT tasks to decrease priority:
  4991. */
  4992. if (user && !capable(CAP_SYS_NICE)) {
  4993. if (rt_policy(policy)) {
  4994. unsigned long rlim_rtprio;
  4995. if (!lock_task_sighand(p, &flags))
  4996. return -ESRCH;
  4997. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4998. unlock_task_sighand(p, &flags);
  4999. /* can't set/change the rt policy */
  5000. if (policy != p->policy && !rlim_rtprio)
  5001. return -EPERM;
  5002. /* can't increase priority */
  5003. if (param->sched_priority > p->rt_priority &&
  5004. param->sched_priority > rlim_rtprio)
  5005. return -EPERM;
  5006. }
  5007. /*
  5008. * Like positive nice levels, dont allow tasks to
  5009. * move out of SCHED_IDLE either:
  5010. */
  5011. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5012. return -EPERM;
  5013. /* can't change other user's priorities */
  5014. if (!check_same_owner(p))
  5015. return -EPERM;
  5016. }
  5017. if (user) {
  5018. #ifdef CONFIG_RT_GROUP_SCHED
  5019. /*
  5020. * Do not allow realtime tasks into groups that have no runtime
  5021. * assigned.
  5022. */
  5023. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5024. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5025. return -EPERM;
  5026. #endif
  5027. retval = security_task_setscheduler(p, policy, param);
  5028. if (retval)
  5029. return retval;
  5030. }
  5031. /*
  5032. * make sure no PI-waiters arrive (or leave) while we are
  5033. * changing the priority of the task:
  5034. */
  5035. spin_lock_irqsave(&p->pi_lock, flags);
  5036. /*
  5037. * To be able to change p->policy safely, the apropriate
  5038. * runqueue lock must be held.
  5039. */
  5040. rq = __task_rq_lock(p);
  5041. /* recheck policy now with rq lock held */
  5042. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5043. policy = oldpolicy = -1;
  5044. __task_rq_unlock(rq);
  5045. spin_unlock_irqrestore(&p->pi_lock, flags);
  5046. goto recheck;
  5047. }
  5048. update_rq_clock(rq);
  5049. on_rq = p->se.on_rq;
  5050. running = task_current(rq, p);
  5051. if (on_rq)
  5052. deactivate_task(rq, p, 0);
  5053. if (running)
  5054. p->sched_class->put_prev_task(rq, p);
  5055. oldprio = p->prio;
  5056. __setscheduler(rq, p, policy, param->sched_priority);
  5057. if (running)
  5058. p->sched_class->set_curr_task(rq);
  5059. if (on_rq) {
  5060. activate_task(rq, p, 0);
  5061. check_class_changed(rq, p, prev_class, oldprio, running);
  5062. }
  5063. __task_rq_unlock(rq);
  5064. spin_unlock_irqrestore(&p->pi_lock, flags);
  5065. rt_mutex_adjust_pi(p);
  5066. return 0;
  5067. }
  5068. /**
  5069. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5070. * @p: the task in question.
  5071. * @policy: new policy.
  5072. * @param: structure containing the new RT priority.
  5073. *
  5074. * NOTE that the task may be already dead.
  5075. */
  5076. int sched_setscheduler(struct task_struct *p, int policy,
  5077. struct sched_param *param)
  5078. {
  5079. return __sched_setscheduler(p, policy, param, true);
  5080. }
  5081. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5082. /**
  5083. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5084. * @p: the task in question.
  5085. * @policy: new policy.
  5086. * @param: structure containing the new RT priority.
  5087. *
  5088. * Just like sched_setscheduler, only don't bother checking if the
  5089. * current context has permission. For example, this is needed in
  5090. * stop_machine(): we create temporary high priority worker threads,
  5091. * but our caller might not have that capability.
  5092. */
  5093. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5094. struct sched_param *param)
  5095. {
  5096. return __sched_setscheduler(p, policy, param, false);
  5097. }
  5098. static int
  5099. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5100. {
  5101. struct sched_param lparam;
  5102. struct task_struct *p;
  5103. int retval;
  5104. if (!param || pid < 0)
  5105. return -EINVAL;
  5106. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5107. return -EFAULT;
  5108. rcu_read_lock();
  5109. retval = -ESRCH;
  5110. p = find_process_by_pid(pid);
  5111. if (p != NULL)
  5112. retval = sched_setscheduler(p, policy, &lparam);
  5113. rcu_read_unlock();
  5114. return retval;
  5115. }
  5116. /**
  5117. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5118. * @pid: the pid in question.
  5119. * @policy: new policy.
  5120. * @param: structure containing the new RT priority.
  5121. */
  5122. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5123. struct sched_param __user *, param)
  5124. {
  5125. /* negative values for policy are not valid */
  5126. if (policy < 0)
  5127. return -EINVAL;
  5128. return do_sched_setscheduler(pid, policy, param);
  5129. }
  5130. /**
  5131. * sys_sched_setparam - set/change the RT priority of a thread
  5132. * @pid: the pid in question.
  5133. * @param: structure containing the new RT priority.
  5134. */
  5135. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5136. {
  5137. return do_sched_setscheduler(pid, -1, param);
  5138. }
  5139. /**
  5140. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5141. * @pid: the pid in question.
  5142. */
  5143. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5144. {
  5145. struct task_struct *p;
  5146. int retval;
  5147. if (pid < 0)
  5148. return -EINVAL;
  5149. retval = -ESRCH;
  5150. read_lock(&tasklist_lock);
  5151. p = find_process_by_pid(pid);
  5152. if (p) {
  5153. retval = security_task_getscheduler(p);
  5154. if (!retval)
  5155. retval = p->policy;
  5156. }
  5157. read_unlock(&tasklist_lock);
  5158. return retval;
  5159. }
  5160. /**
  5161. * sys_sched_getscheduler - get the RT priority of a thread
  5162. * @pid: the pid in question.
  5163. * @param: structure containing the RT priority.
  5164. */
  5165. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5166. {
  5167. struct sched_param lp;
  5168. struct task_struct *p;
  5169. int retval;
  5170. if (!param || pid < 0)
  5171. return -EINVAL;
  5172. read_lock(&tasklist_lock);
  5173. p = find_process_by_pid(pid);
  5174. retval = -ESRCH;
  5175. if (!p)
  5176. goto out_unlock;
  5177. retval = security_task_getscheduler(p);
  5178. if (retval)
  5179. goto out_unlock;
  5180. lp.sched_priority = p->rt_priority;
  5181. read_unlock(&tasklist_lock);
  5182. /*
  5183. * This one might sleep, we cannot do it with a spinlock held ...
  5184. */
  5185. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5186. return retval;
  5187. out_unlock:
  5188. read_unlock(&tasklist_lock);
  5189. return retval;
  5190. }
  5191. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5192. {
  5193. cpumask_var_t cpus_allowed, new_mask;
  5194. struct task_struct *p;
  5195. int retval;
  5196. get_online_cpus();
  5197. read_lock(&tasklist_lock);
  5198. p = find_process_by_pid(pid);
  5199. if (!p) {
  5200. read_unlock(&tasklist_lock);
  5201. put_online_cpus();
  5202. return -ESRCH;
  5203. }
  5204. /*
  5205. * It is not safe to call set_cpus_allowed with the
  5206. * tasklist_lock held. We will bump the task_struct's
  5207. * usage count and then drop tasklist_lock.
  5208. */
  5209. get_task_struct(p);
  5210. read_unlock(&tasklist_lock);
  5211. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5212. retval = -ENOMEM;
  5213. goto out_put_task;
  5214. }
  5215. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5216. retval = -ENOMEM;
  5217. goto out_free_cpus_allowed;
  5218. }
  5219. retval = -EPERM;
  5220. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5221. goto out_unlock;
  5222. retval = security_task_setscheduler(p, 0, NULL);
  5223. if (retval)
  5224. goto out_unlock;
  5225. cpuset_cpus_allowed(p, cpus_allowed);
  5226. cpumask_and(new_mask, in_mask, cpus_allowed);
  5227. again:
  5228. retval = set_cpus_allowed_ptr(p, new_mask);
  5229. if (!retval) {
  5230. cpuset_cpus_allowed(p, cpus_allowed);
  5231. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5232. /*
  5233. * We must have raced with a concurrent cpuset
  5234. * update. Just reset the cpus_allowed to the
  5235. * cpuset's cpus_allowed
  5236. */
  5237. cpumask_copy(new_mask, cpus_allowed);
  5238. goto again;
  5239. }
  5240. }
  5241. out_unlock:
  5242. free_cpumask_var(new_mask);
  5243. out_free_cpus_allowed:
  5244. free_cpumask_var(cpus_allowed);
  5245. out_put_task:
  5246. put_task_struct(p);
  5247. put_online_cpus();
  5248. return retval;
  5249. }
  5250. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5251. struct cpumask *new_mask)
  5252. {
  5253. if (len < cpumask_size())
  5254. cpumask_clear(new_mask);
  5255. else if (len > cpumask_size())
  5256. len = cpumask_size();
  5257. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5258. }
  5259. /**
  5260. * sys_sched_setaffinity - set the cpu affinity of a process
  5261. * @pid: pid of the process
  5262. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5263. * @user_mask_ptr: user-space pointer to the new cpu mask
  5264. */
  5265. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5266. unsigned long __user *, user_mask_ptr)
  5267. {
  5268. cpumask_var_t new_mask;
  5269. int retval;
  5270. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5271. return -ENOMEM;
  5272. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5273. if (retval == 0)
  5274. retval = sched_setaffinity(pid, new_mask);
  5275. free_cpumask_var(new_mask);
  5276. return retval;
  5277. }
  5278. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5279. {
  5280. struct task_struct *p;
  5281. int retval;
  5282. get_online_cpus();
  5283. read_lock(&tasklist_lock);
  5284. retval = -ESRCH;
  5285. p = find_process_by_pid(pid);
  5286. if (!p)
  5287. goto out_unlock;
  5288. retval = security_task_getscheduler(p);
  5289. if (retval)
  5290. goto out_unlock;
  5291. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5292. out_unlock:
  5293. read_unlock(&tasklist_lock);
  5294. put_online_cpus();
  5295. return retval;
  5296. }
  5297. /**
  5298. * sys_sched_getaffinity - get the cpu affinity of a process
  5299. * @pid: pid of the process
  5300. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5301. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5302. */
  5303. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5304. unsigned long __user *, user_mask_ptr)
  5305. {
  5306. int ret;
  5307. cpumask_var_t mask;
  5308. if (len < cpumask_size())
  5309. return -EINVAL;
  5310. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5311. return -ENOMEM;
  5312. ret = sched_getaffinity(pid, mask);
  5313. if (ret == 0) {
  5314. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5315. ret = -EFAULT;
  5316. else
  5317. ret = cpumask_size();
  5318. }
  5319. free_cpumask_var(mask);
  5320. return ret;
  5321. }
  5322. /**
  5323. * sys_sched_yield - yield the current processor to other threads.
  5324. *
  5325. * This function yields the current CPU to other tasks. If there are no
  5326. * other threads running on this CPU then this function will return.
  5327. */
  5328. SYSCALL_DEFINE0(sched_yield)
  5329. {
  5330. struct rq *rq = this_rq_lock();
  5331. schedstat_inc(rq, yld_count);
  5332. current->sched_class->yield_task(rq);
  5333. /*
  5334. * Since we are going to call schedule() anyway, there's
  5335. * no need to preempt or enable interrupts:
  5336. */
  5337. __release(rq->lock);
  5338. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5339. _raw_spin_unlock(&rq->lock);
  5340. preempt_enable_no_resched();
  5341. schedule();
  5342. return 0;
  5343. }
  5344. static void __cond_resched(void)
  5345. {
  5346. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5347. __might_sleep(__FILE__, __LINE__);
  5348. #endif
  5349. /*
  5350. * The BKS might be reacquired before we have dropped
  5351. * PREEMPT_ACTIVE, which could trigger a second
  5352. * cond_resched() call.
  5353. */
  5354. do {
  5355. add_preempt_count(PREEMPT_ACTIVE);
  5356. schedule();
  5357. sub_preempt_count(PREEMPT_ACTIVE);
  5358. } while (need_resched());
  5359. }
  5360. int __sched _cond_resched(void)
  5361. {
  5362. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5363. system_state == SYSTEM_RUNNING) {
  5364. __cond_resched();
  5365. return 1;
  5366. }
  5367. return 0;
  5368. }
  5369. EXPORT_SYMBOL(_cond_resched);
  5370. /*
  5371. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5372. * call schedule, and on return reacquire the lock.
  5373. *
  5374. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5375. * operations here to prevent schedule() from being called twice (once via
  5376. * spin_unlock(), once by hand).
  5377. */
  5378. int cond_resched_lock(spinlock_t *lock)
  5379. {
  5380. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5381. int ret = 0;
  5382. if (spin_needbreak(lock) || resched) {
  5383. spin_unlock(lock);
  5384. if (resched && need_resched())
  5385. __cond_resched();
  5386. else
  5387. cpu_relax();
  5388. ret = 1;
  5389. spin_lock(lock);
  5390. }
  5391. return ret;
  5392. }
  5393. EXPORT_SYMBOL(cond_resched_lock);
  5394. int __sched cond_resched_softirq(void)
  5395. {
  5396. BUG_ON(!in_softirq());
  5397. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5398. local_bh_enable();
  5399. __cond_resched();
  5400. local_bh_disable();
  5401. return 1;
  5402. }
  5403. return 0;
  5404. }
  5405. EXPORT_SYMBOL(cond_resched_softirq);
  5406. /**
  5407. * yield - yield the current processor to other threads.
  5408. *
  5409. * This is a shortcut for kernel-space yielding - it marks the
  5410. * thread runnable and calls sys_sched_yield().
  5411. */
  5412. void __sched yield(void)
  5413. {
  5414. set_current_state(TASK_RUNNING);
  5415. sys_sched_yield();
  5416. }
  5417. EXPORT_SYMBOL(yield);
  5418. /*
  5419. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5420. * that process accounting knows that this is a task in IO wait state.
  5421. *
  5422. * But don't do that if it is a deliberate, throttling IO wait (this task
  5423. * has set its backing_dev_info: the queue against which it should throttle)
  5424. */
  5425. void __sched io_schedule(void)
  5426. {
  5427. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5428. delayacct_blkio_start();
  5429. atomic_inc(&rq->nr_iowait);
  5430. schedule();
  5431. atomic_dec(&rq->nr_iowait);
  5432. delayacct_blkio_end();
  5433. }
  5434. EXPORT_SYMBOL(io_schedule);
  5435. long __sched io_schedule_timeout(long timeout)
  5436. {
  5437. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5438. long ret;
  5439. delayacct_blkio_start();
  5440. atomic_inc(&rq->nr_iowait);
  5441. ret = schedule_timeout(timeout);
  5442. atomic_dec(&rq->nr_iowait);
  5443. delayacct_blkio_end();
  5444. return ret;
  5445. }
  5446. /**
  5447. * sys_sched_get_priority_max - return maximum RT priority.
  5448. * @policy: scheduling class.
  5449. *
  5450. * this syscall returns the maximum rt_priority that can be used
  5451. * by a given scheduling class.
  5452. */
  5453. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5454. {
  5455. int ret = -EINVAL;
  5456. switch (policy) {
  5457. case SCHED_FIFO:
  5458. case SCHED_RR:
  5459. ret = MAX_USER_RT_PRIO-1;
  5460. break;
  5461. case SCHED_NORMAL:
  5462. case SCHED_BATCH:
  5463. case SCHED_IDLE:
  5464. ret = 0;
  5465. break;
  5466. }
  5467. return ret;
  5468. }
  5469. /**
  5470. * sys_sched_get_priority_min - return minimum RT priority.
  5471. * @policy: scheduling class.
  5472. *
  5473. * this syscall returns the minimum rt_priority that can be used
  5474. * by a given scheduling class.
  5475. */
  5476. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5477. {
  5478. int ret = -EINVAL;
  5479. switch (policy) {
  5480. case SCHED_FIFO:
  5481. case SCHED_RR:
  5482. ret = 1;
  5483. break;
  5484. case SCHED_NORMAL:
  5485. case SCHED_BATCH:
  5486. case SCHED_IDLE:
  5487. ret = 0;
  5488. }
  5489. return ret;
  5490. }
  5491. /**
  5492. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5493. * @pid: pid of the process.
  5494. * @interval: userspace pointer to the timeslice value.
  5495. *
  5496. * this syscall writes the default timeslice value of a given process
  5497. * into the user-space timespec buffer. A value of '0' means infinity.
  5498. */
  5499. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5500. struct timespec __user *, interval)
  5501. {
  5502. struct task_struct *p;
  5503. unsigned int time_slice;
  5504. int retval;
  5505. struct timespec t;
  5506. if (pid < 0)
  5507. return -EINVAL;
  5508. retval = -ESRCH;
  5509. read_lock(&tasklist_lock);
  5510. p = find_process_by_pid(pid);
  5511. if (!p)
  5512. goto out_unlock;
  5513. retval = security_task_getscheduler(p);
  5514. if (retval)
  5515. goto out_unlock;
  5516. /*
  5517. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5518. * tasks that are on an otherwise idle runqueue:
  5519. */
  5520. time_slice = 0;
  5521. if (p->policy == SCHED_RR) {
  5522. time_slice = DEF_TIMESLICE;
  5523. } else if (p->policy != SCHED_FIFO) {
  5524. struct sched_entity *se = &p->se;
  5525. unsigned long flags;
  5526. struct rq *rq;
  5527. rq = task_rq_lock(p, &flags);
  5528. if (rq->cfs.load.weight)
  5529. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5530. task_rq_unlock(rq, &flags);
  5531. }
  5532. read_unlock(&tasklist_lock);
  5533. jiffies_to_timespec(time_slice, &t);
  5534. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5535. return retval;
  5536. out_unlock:
  5537. read_unlock(&tasklist_lock);
  5538. return retval;
  5539. }
  5540. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5541. void sched_show_task(struct task_struct *p)
  5542. {
  5543. unsigned long free = 0;
  5544. unsigned state;
  5545. state = p->state ? __ffs(p->state) + 1 : 0;
  5546. printk(KERN_INFO "%-13.13s %c", p->comm,
  5547. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5548. #if BITS_PER_LONG == 32
  5549. if (state == TASK_RUNNING)
  5550. printk(KERN_CONT " running ");
  5551. else
  5552. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5553. #else
  5554. if (state == TASK_RUNNING)
  5555. printk(KERN_CONT " running task ");
  5556. else
  5557. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5558. #endif
  5559. #ifdef CONFIG_DEBUG_STACK_USAGE
  5560. free = stack_not_used(p);
  5561. #endif
  5562. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5563. task_pid_nr(p), task_pid_nr(p->real_parent));
  5564. show_stack(p, NULL);
  5565. }
  5566. void show_state_filter(unsigned long state_filter)
  5567. {
  5568. struct task_struct *g, *p;
  5569. #if BITS_PER_LONG == 32
  5570. printk(KERN_INFO
  5571. " task PC stack pid father\n");
  5572. #else
  5573. printk(KERN_INFO
  5574. " task PC stack pid father\n");
  5575. #endif
  5576. read_lock(&tasklist_lock);
  5577. do_each_thread(g, p) {
  5578. /*
  5579. * reset the NMI-timeout, listing all files on a slow
  5580. * console might take alot of time:
  5581. */
  5582. touch_nmi_watchdog();
  5583. if (!state_filter || (p->state & state_filter))
  5584. sched_show_task(p);
  5585. } while_each_thread(g, p);
  5586. touch_all_softlockup_watchdogs();
  5587. #ifdef CONFIG_SCHED_DEBUG
  5588. sysrq_sched_debug_show();
  5589. #endif
  5590. read_unlock(&tasklist_lock);
  5591. /*
  5592. * Only show locks if all tasks are dumped:
  5593. */
  5594. if (state_filter == -1)
  5595. debug_show_all_locks();
  5596. }
  5597. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5598. {
  5599. idle->sched_class = &idle_sched_class;
  5600. }
  5601. /**
  5602. * init_idle - set up an idle thread for a given CPU
  5603. * @idle: task in question
  5604. * @cpu: cpu the idle task belongs to
  5605. *
  5606. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5607. * flag, to make booting more robust.
  5608. */
  5609. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5610. {
  5611. struct rq *rq = cpu_rq(cpu);
  5612. unsigned long flags;
  5613. spin_lock_irqsave(&rq->lock, flags);
  5614. __sched_fork(idle);
  5615. idle->se.exec_start = sched_clock();
  5616. idle->prio = idle->normal_prio = MAX_PRIO;
  5617. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5618. __set_task_cpu(idle, cpu);
  5619. rq->curr = rq->idle = idle;
  5620. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5621. idle->oncpu = 1;
  5622. #endif
  5623. spin_unlock_irqrestore(&rq->lock, flags);
  5624. /* Set the preempt count _outside_ the spinlocks! */
  5625. #if defined(CONFIG_PREEMPT)
  5626. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5627. #else
  5628. task_thread_info(idle)->preempt_count = 0;
  5629. #endif
  5630. /*
  5631. * The idle tasks have their own, simple scheduling class:
  5632. */
  5633. idle->sched_class = &idle_sched_class;
  5634. ftrace_graph_init_task(idle);
  5635. }
  5636. /*
  5637. * In a system that switches off the HZ timer nohz_cpu_mask
  5638. * indicates which cpus entered this state. This is used
  5639. * in the rcu update to wait only for active cpus. For system
  5640. * which do not switch off the HZ timer nohz_cpu_mask should
  5641. * always be CPU_BITS_NONE.
  5642. */
  5643. cpumask_var_t nohz_cpu_mask;
  5644. /*
  5645. * Increase the granularity value when there are more CPUs,
  5646. * because with more CPUs the 'effective latency' as visible
  5647. * to users decreases. But the relationship is not linear,
  5648. * so pick a second-best guess by going with the log2 of the
  5649. * number of CPUs.
  5650. *
  5651. * This idea comes from the SD scheduler of Con Kolivas:
  5652. */
  5653. static inline void sched_init_granularity(void)
  5654. {
  5655. unsigned int factor = 1 + ilog2(num_online_cpus());
  5656. const unsigned long limit = 200000000;
  5657. sysctl_sched_min_granularity *= factor;
  5658. if (sysctl_sched_min_granularity > limit)
  5659. sysctl_sched_min_granularity = limit;
  5660. sysctl_sched_latency *= factor;
  5661. if (sysctl_sched_latency > limit)
  5662. sysctl_sched_latency = limit;
  5663. sysctl_sched_wakeup_granularity *= factor;
  5664. sysctl_sched_shares_ratelimit *= factor;
  5665. }
  5666. #ifdef CONFIG_SMP
  5667. /*
  5668. * This is how migration works:
  5669. *
  5670. * 1) we queue a struct migration_req structure in the source CPU's
  5671. * runqueue and wake up that CPU's migration thread.
  5672. * 2) we down() the locked semaphore => thread blocks.
  5673. * 3) migration thread wakes up (implicitly it forces the migrated
  5674. * thread off the CPU)
  5675. * 4) it gets the migration request and checks whether the migrated
  5676. * task is still in the wrong runqueue.
  5677. * 5) if it's in the wrong runqueue then the migration thread removes
  5678. * it and puts it into the right queue.
  5679. * 6) migration thread up()s the semaphore.
  5680. * 7) we wake up and the migration is done.
  5681. */
  5682. /*
  5683. * Change a given task's CPU affinity. Migrate the thread to a
  5684. * proper CPU and schedule it away if the CPU it's executing on
  5685. * is removed from the allowed bitmask.
  5686. *
  5687. * NOTE: the caller must have a valid reference to the task, the
  5688. * task must not exit() & deallocate itself prematurely. The
  5689. * call is not atomic; no spinlocks may be held.
  5690. */
  5691. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5692. {
  5693. struct migration_req req;
  5694. unsigned long flags;
  5695. struct rq *rq;
  5696. int ret = 0;
  5697. rq = task_rq_lock(p, &flags);
  5698. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5699. ret = -EINVAL;
  5700. goto out;
  5701. }
  5702. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5703. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5704. ret = -EINVAL;
  5705. goto out;
  5706. }
  5707. if (p->sched_class->set_cpus_allowed)
  5708. p->sched_class->set_cpus_allowed(p, new_mask);
  5709. else {
  5710. cpumask_copy(&p->cpus_allowed, new_mask);
  5711. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5712. }
  5713. /* Can the task run on the task's current CPU? If so, we're done */
  5714. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5715. goto out;
  5716. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5717. /* Need help from migration thread: drop lock and wait. */
  5718. task_rq_unlock(rq, &flags);
  5719. wake_up_process(rq->migration_thread);
  5720. wait_for_completion(&req.done);
  5721. tlb_migrate_finish(p->mm);
  5722. return 0;
  5723. }
  5724. out:
  5725. task_rq_unlock(rq, &flags);
  5726. return ret;
  5727. }
  5728. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5729. /*
  5730. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5731. * this because either it can't run here any more (set_cpus_allowed()
  5732. * away from this CPU, or CPU going down), or because we're
  5733. * attempting to rebalance this task on exec (sched_exec).
  5734. *
  5735. * So we race with normal scheduler movements, but that's OK, as long
  5736. * as the task is no longer on this CPU.
  5737. *
  5738. * Returns non-zero if task was successfully migrated.
  5739. */
  5740. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5741. {
  5742. struct rq *rq_dest, *rq_src;
  5743. int ret = 0, on_rq;
  5744. if (unlikely(!cpu_active(dest_cpu)))
  5745. return ret;
  5746. rq_src = cpu_rq(src_cpu);
  5747. rq_dest = cpu_rq(dest_cpu);
  5748. double_rq_lock(rq_src, rq_dest);
  5749. /* Already moved. */
  5750. if (task_cpu(p) != src_cpu)
  5751. goto done;
  5752. /* Affinity changed (again). */
  5753. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5754. goto fail;
  5755. on_rq = p->se.on_rq;
  5756. if (on_rq)
  5757. deactivate_task(rq_src, p, 0);
  5758. set_task_cpu(p, dest_cpu);
  5759. if (on_rq) {
  5760. activate_task(rq_dest, p, 0);
  5761. check_preempt_curr(rq_dest, p, 0);
  5762. }
  5763. done:
  5764. ret = 1;
  5765. fail:
  5766. double_rq_unlock(rq_src, rq_dest);
  5767. return ret;
  5768. }
  5769. /*
  5770. * migration_thread - this is a highprio system thread that performs
  5771. * thread migration by bumping thread off CPU then 'pushing' onto
  5772. * another runqueue.
  5773. */
  5774. static int migration_thread(void *data)
  5775. {
  5776. int cpu = (long)data;
  5777. struct rq *rq;
  5778. rq = cpu_rq(cpu);
  5779. BUG_ON(rq->migration_thread != current);
  5780. set_current_state(TASK_INTERRUPTIBLE);
  5781. while (!kthread_should_stop()) {
  5782. struct migration_req *req;
  5783. struct list_head *head;
  5784. spin_lock_irq(&rq->lock);
  5785. if (cpu_is_offline(cpu)) {
  5786. spin_unlock_irq(&rq->lock);
  5787. goto wait_to_die;
  5788. }
  5789. if (rq->active_balance) {
  5790. active_load_balance(rq, cpu);
  5791. rq->active_balance = 0;
  5792. }
  5793. head = &rq->migration_queue;
  5794. if (list_empty(head)) {
  5795. spin_unlock_irq(&rq->lock);
  5796. schedule();
  5797. set_current_state(TASK_INTERRUPTIBLE);
  5798. continue;
  5799. }
  5800. req = list_entry(head->next, struct migration_req, list);
  5801. list_del_init(head->next);
  5802. spin_unlock(&rq->lock);
  5803. __migrate_task(req->task, cpu, req->dest_cpu);
  5804. local_irq_enable();
  5805. complete(&req->done);
  5806. }
  5807. __set_current_state(TASK_RUNNING);
  5808. return 0;
  5809. wait_to_die:
  5810. /* Wait for kthread_stop */
  5811. set_current_state(TASK_INTERRUPTIBLE);
  5812. while (!kthread_should_stop()) {
  5813. schedule();
  5814. set_current_state(TASK_INTERRUPTIBLE);
  5815. }
  5816. __set_current_state(TASK_RUNNING);
  5817. return 0;
  5818. }
  5819. #ifdef CONFIG_HOTPLUG_CPU
  5820. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5821. {
  5822. int ret;
  5823. local_irq_disable();
  5824. ret = __migrate_task(p, src_cpu, dest_cpu);
  5825. local_irq_enable();
  5826. return ret;
  5827. }
  5828. /*
  5829. * Figure out where task on dead CPU should go, use force if necessary.
  5830. */
  5831. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5832. {
  5833. int dest_cpu;
  5834. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5835. again:
  5836. /* Look for allowed, online CPU in same node. */
  5837. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5838. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5839. goto move;
  5840. /* Any allowed, online CPU? */
  5841. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5842. if (dest_cpu < nr_cpu_ids)
  5843. goto move;
  5844. /* No more Mr. Nice Guy. */
  5845. if (dest_cpu >= nr_cpu_ids) {
  5846. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5847. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5848. /*
  5849. * Don't tell them about moving exiting tasks or
  5850. * kernel threads (both mm NULL), since they never
  5851. * leave kernel.
  5852. */
  5853. if (p->mm && printk_ratelimit()) {
  5854. printk(KERN_INFO "process %d (%s) no "
  5855. "longer affine to cpu%d\n",
  5856. task_pid_nr(p), p->comm, dead_cpu);
  5857. }
  5858. }
  5859. move:
  5860. /* It can have affinity changed while we were choosing. */
  5861. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5862. goto again;
  5863. }
  5864. /*
  5865. * While a dead CPU has no uninterruptible tasks queued at this point,
  5866. * it might still have a nonzero ->nr_uninterruptible counter, because
  5867. * for performance reasons the counter is not stricly tracking tasks to
  5868. * their home CPUs. So we just add the counter to another CPU's counter,
  5869. * to keep the global sum constant after CPU-down:
  5870. */
  5871. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5872. {
  5873. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5874. unsigned long flags;
  5875. local_irq_save(flags);
  5876. double_rq_lock(rq_src, rq_dest);
  5877. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5878. rq_src->nr_uninterruptible = 0;
  5879. double_rq_unlock(rq_src, rq_dest);
  5880. local_irq_restore(flags);
  5881. }
  5882. /* Run through task list and migrate tasks from the dead cpu. */
  5883. static void migrate_live_tasks(int src_cpu)
  5884. {
  5885. struct task_struct *p, *t;
  5886. read_lock(&tasklist_lock);
  5887. do_each_thread(t, p) {
  5888. if (p == current)
  5889. continue;
  5890. if (task_cpu(p) == src_cpu)
  5891. move_task_off_dead_cpu(src_cpu, p);
  5892. } while_each_thread(t, p);
  5893. read_unlock(&tasklist_lock);
  5894. }
  5895. /*
  5896. * Schedules idle task to be the next runnable task on current CPU.
  5897. * It does so by boosting its priority to highest possible.
  5898. * Used by CPU offline code.
  5899. */
  5900. void sched_idle_next(void)
  5901. {
  5902. int this_cpu = smp_processor_id();
  5903. struct rq *rq = cpu_rq(this_cpu);
  5904. struct task_struct *p = rq->idle;
  5905. unsigned long flags;
  5906. /* cpu has to be offline */
  5907. BUG_ON(cpu_online(this_cpu));
  5908. /*
  5909. * Strictly not necessary since rest of the CPUs are stopped by now
  5910. * and interrupts disabled on the current cpu.
  5911. */
  5912. spin_lock_irqsave(&rq->lock, flags);
  5913. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5914. update_rq_clock(rq);
  5915. activate_task(rq, p, 0);
  5916. spin_unlock_irqrestore(&rq->lock, flags);
  5917. }
  5918. /*
  5919. * Ensures that the idle task is using init_mm right before its cpu goes
  5920. * offline.
  5921. */
  5922. void idle_task_exit(void)
  5923. {
  5924. struct mm_struct *mm = current->active_mm;
  5925. BUG_ON(cpu_online(smp_processor_id()));
  5926. if (mm != &init_mm)
  5927. switch_mm(mm, &init_mm, current);
  5928. mmdrop(mm);
  5929. }
  5930. /* called under rq->lock with disabled interrupts */
  5931. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5932. {
  5933. struct rq *rq = cpu_rq(dead_cpu);
  5934. /* Must be exiting, otherwise would be on tasklist. */
  5935. BUG_ON(!p->exit_state);
  5936. /* Cannot have done final schedule yet: would have vanished. */
  5937. BUG_ON(p->state == TASK_DEAD);
  5938. get_task_struct(p);
  5939. /*
  5940. * Drop lock around migration; if someone else moves it,
  5941. * that's OK. No task can be added to this CPU, so iteration is
  5942. * fine.
  5943. */
  5944. spin_unlock_irq(&rq->lock);
  5945. move_task_off_dead_cpu(dead_cpu, p);
  5946. spin_lock_irq(&rq->lock);
  5947. put_task_struct(p);
  5948. }
  5949. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5950. static void migrate_dead_tasks(unsigned int dead_cpu)
  5951. {
  5952. struct rq *rq = cpu_rq(dead_cpu);
  5953. struct task_struct *next;
  5954. for ( ; ; ) {
  5955. if (!rq->nr_running)
  5956. break;
  5957. update_rq_clock(rq);
  5958. next = pick_next_task(rq);
  5959. if (!next)
  5960. break;
  5961. next->sched_class->put_prev_task(rq, next);
  5962. migrate_dead(dead_cpu, next);
  5963. }
  5964. }
  5965. #endif /* CONFIG_HOTPLUG_CPU */
  5966. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5967. static struct ctl_table sd_ctl_dir[] = {
  5968. {
  5969. .procname = "sched_domain",
  5970. .mode = 0555,
  5971. },
  5972. {0, },
  5973. };
  5974. static struct ctl_table sd_ctl_root[] = {
  5975. {
  5976. .ctl_name = CTL_KERN,
  5977. .procname = "kernel",
  5978. .mode = 0555,
  5979. .child = sd_ctl_dir,
  5980. },
  5981. {0, },
  5982. };
  5983. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5984. {
  5985. struct ctl_table *entry =
  5986. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5987. return entry;
  5988. }
  5989. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5990. {
  5991. struct ctl_table *entry;
  5992. /*
  5993. * In the intermediate directories, both the child directory and
  5994. * procname are dynamically allocated and could fail but the mode
  5995. * will always be set. In the lowest directory the names are
  5996. * static strings and all have proc handlers.
  5997. */
  5998. for (entry = *tablep; entry->mode; entry++) {
  5999. if (entry->child)
  6000. sd_free_ctl_entry(&entry->child);
  6001. if (entry->proc_handler == NULL)
  6002. kfree(entry->procname);
  6003. }
  6004. kfree(*tablep);
  6005. *tablep = NULL;
  6006. }
  6007. static void
  6008. set_table_entry(struct ctl_table *entry,
  6009. const char *procname, void *data, int maxlen,
  6010. mode_t mode, proc_handler *proc_handler)
  6011. {
  6012. entry->procname = procname;
  6013. entry->data = data;
  6014. entry->maxlen = maxlen;
  6015. entry->mode = mode;
  6016. entry->proc_handler = proc_handler;
  6017. }
  6018. static struct ctl_table *
  6019. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6020. {
  6021. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6022. if (table == NULL)
  6023. return NULL;
  6024. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6025. sizeof(long), 0644, proc_doulongvec_minmax);
  6026. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6027. sizeof(long), 0644, proc_doulongvec_minmax);
  6028. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6029. sizeof(int), 0644, proc_dointvec_minmax);
  6030. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6031. sizeof(int), 0644, proc_dointvec_minmax);
  6032. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6033. sizeof(int), 0644, proc_dointvec_minmax);
  6034. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6035. sizeof(int), 0644, proc_dointvec_minmax);
  6036. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6037. sizeof(int), 0644, proc_dointvec_minmax);
  6038. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6039. sizeof(int), 0644, proc_dointvec_minmax);
  6040. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6041. sizeof(int), 0644, proc_dointvec_minmax);
  6042. set_table_entry(&table[9], "cache_nice_tries",
  6043. &sd->cache_nice_tries,
  6044. sizeof(int), 0644, proc_dointvec_minmax);
  6045. set_table_entry(&table[10], "flags", &sd->flags,
  6046. sizeof(int), 0644, proc_dointvec_minmax);
  6047. set_table_entry(&table[11], "name", sd->name,
  6048. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6049. /* &table[12] is terminator */
  6050. return table;
  6051. }
  6052. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6053. {
  6054. struct ctl_table *entry, *table;
  6055. struct sched_domain *sd;
  6056. int domain_num = 0, i;
  6057. char buf[32];
  6058. for_each_domain(cpu, sd)
  6059. domain_num++;
  6060. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6061. if (table == NULL)
  6062. return NULL;
  6063. i = 0;
  6064. for_each_domain(cpu, sd) {
  6065. snprintf(buf, 32, "domain%d", i);
  6066. entry->procname = kstrdup(buf, GFP_KERNEL);
  6067. entry->mode = 0555;
  6068. entry->child = sd_alloc_ctl_domain_table(sd);
  6069. entry++;
  6070. i++;
  6071. }
  6072. return table;
  6073. }
  6074. static struct ctl_table_header *sd_sysctl_header;
  6075. static void register_sched_domain_sysctl(void)
  6076. {
  6077. int i, cpu_num = num_online_cpus();
  6078. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6079. char buf[32];
  6080. WARN_ON(sd_ctl_dir[0].child);
  6081. sd_ctl_dir[0].child = entry;
  6082. if (entry == NULL)
  6083. return;
  6084. for_each_online_cpu(i) {
  6085. snprintf(buf, 32, "cpu%d", i);
  6086. entry->procname = kstrdup(buf, GFP_KERNEL);
  6087. entry->mode = 0555;
  6088. entry->child = sd_alloc_ctl_cpu_table(i);
  6089. entry++;
  6090. }
  6091. WARN_ON(sd_sysctl_header);
  6092. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6093. }
  6094. /* may be called multiple times per register */
  6095. static void unregister_sched_domain_sysctl(void)
  6096. {
  6097. if (sd_sysctl_header)
  6098. unregister_sysctl_table(sd_sysctl_header);
  6099. sd_sysctl_header = NULL;
  6100. if (sd_ctl_dir[0].child)
  6101. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6102. }
  6103. #else
  6104. static void register_sched_domain_sysctl(void)
  6105. {
  6106. }
  6107. static void unregister_sched_domain_sysctl(void)
  6108. {
  6109. }
  6110. #endif
  6111. static void set_rq_online(struct rq *rq)
  6112. {
  6113. if (!rq->online) {
  6114. const struct sched_class *class;
  6115. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6116. rq->online = 1;
  6117. for_each_class(class) {
  6118. if (class->rq_online)
  6119. class->rq_online(rq);
  6120. }
  6121. }
  6122. }
  6123. static void set_rq_offline(struct rq *rq)
  6124. {
  6125. if (rq->online) {
  6126. const struct sched_class *class;
  6127. for_each_class(class) {
  6128. if (class->rq_offline)
  6129. class->rq_offline(rq);
  6130. }
  6131. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6132. rq->online = 0;
  6133. }
  6134. }
  6135. /*
  6136. * migration_call - callback that gets triggered when a CPU is added.
  6137. * Here we can start up the necessary migration thread for the new CPU.
  6138. */
  6139. static int __cpuinit
  6140. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6141. {
  6142. struct task_struct *p;
  6143. int cpu = (long)hcpu;
  6144. unsigned long flags;
  6145. struct rq *rq;
  6146. switch (action) {
  6147. case CPU_UP_PREPARE:
  6148. case CPU_UP_PREPARE_FROZEN:
  6149. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6150. if (IS_ERR(p))
  6151. return NOTIFY_BAD;
  6152. kthread_bind(p, cpu);
  6153. /* Must be high prio: stop_machine expects to yield to it. */
  6154. rq = task_rq_lock(p, &flags);
  6155. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6156. task_rq_unlock(rq, &flags);
  6157. cpu_rq(cpu)->migration_thread = p;
  6158. break;
  6159. case CPU_ONLINE:
  6160. case CPU_ONLINE_FROZEN:
  6161. /* Strictly unnecessary, as first user will wake it. */
  6162. wake_up_process(cpu_rq(cpu)->migration_thread);
  6163. /* Update our root-domain */
  6164. rq = cpu_rq(cpu);
  6165. spin_lock_irqsave(&rq->lock, flags);
  6166. if (rq->rd) {
  6167. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6168. set_rq_online(rq);
  6169. }
  6170. spin_unlock_irqrestore(&rq->lock, flags);
  6171. break;
  6172. #ifdef CONFIG_HOTPLUG_CPU
  6173. case CPU_UP_CANCELED:
  6174. case CPU_UP_CANCELED_FROZEN:
  6175. if (!cpu_rq(cpu)->migration_thread)
  6176. break;
  6177. /* Unbind it from offline cpu so it can run. Fall thru. */
  6178. kthread_bind(cpu_rq(cpu)->migration_thread,
  6179. cpumask_any(cpu_online_mask));
  6180. kthread_stop(cpu_rq(cpu)->migration_thread);
  6181. cpu_rq(cpu)->migration_thread = NULL;
  6182. break;
  6183. case CPU_DEAD:
  6184. case CPU_DEAD_FROZEN:
  6185. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6186. migrate_live_tasks(cpu);
  6187. rq = cpu_rq(cpu);
  6188. kthread_stop(rq->migration_thread);
  6189. rq->migration_thread = NULL;
  6190. /* Idle task back to normal (off runqueue, low prio) */
  6191. spin_lock_irq(&rq->lock);
  6192. update_rq_clock(rq);
  6193. deactivate_task(rq, rq->idle, 0);
  6194. rq->idle->static_prio = MAX_PRIO;
  6195. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6196. rq->idle->sched_class = &idle_sched_class;
  6197. migrate_dead_tasks(cpu);
  6198. spin_unlock_irq(&rq->lock);
  6199. cpuset_unlock();
  6200. migrate_nr_uninterruptible(rq);
  6201. BUG_ON(rq->nr_running != 0);
  6202. /*
  6203. * No need to migrate the tasks: it was best-effort if
  6204. * they didn't take sched_hotcpu_mutex. Just wake up
  6205. * the requestors.
  6206. */
  6207. spin_lock_irq(&rq->lock);
  6208. while (!list_empty(&rq->migration_queue)) {
  6209. struct migration_req *req;
  6210. req = list_entry(rq->migration_queue.next,
  6211. struct migration_req, list);
  6212. list_del_init(&req->list);
  6213. spin_unlock_irq(&rq->lock);
  6214. complete(&req->done);
  6215. spin_lock_irq(&rq->lock);
  6216. }
  6217. spin_unlock_irq(&rq->lock);
  6218. break;
  6219. case CPU_DYING:
  6220. case CPU_DYING_FROZEN:
  6221. /* Update our root-domain */
  6222. rq = cpu_rq(cpu);
  6223. spin_lock_irqsave(&rq->lock, flags);
  6224. if (rq->rd) {
  6225. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6226. set_rq_offline(rq);
  6227. }
  6228. spin_unlock_irqrestore(&rq->lock, flags);
  6229. break;
  6230. #endif
  6231. }
  6232. return NOTIFY_OK;
  6233. }
  6234. /* Register at highest priority so that task migration (migrate_all_tasks)
  6235. * happens before everything else.
  6236. */
  6237. static struct notifier_block __cpuinitdata migration_notifier = {
  6238. .notifier_call = migration_call,
  6239. .priority = 10
  6240. };
  6241. static int __init migration_init(void)
  6242. {
  6243. void *cpu = (void *)(long)smp_processor_id();
  6244. int err;
  6245. /* Start one for the boot CPU: */
  6246. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6247. BUG_ON(err == NOTIFY_BAD);
  6248. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6249. register_cpu_notifier(&migration_notifier);
  6250. return err;
  6251. }
  6252. early_initcall(migration_init);
  6253. #endif
  6254. #ifdef CONFIG_SMP
  6255. #ifdef CONFIG_SCHED_DEBUG
  6256. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6257. struct cpumask *groupmask)
  6258. {
  6259. struct sched_group *group = sd->groups;
  6260. char str[256];
  6261. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6262. cpumask_clear(groupmask);
  6263. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6264. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6265. printk("does not load-balance\n");
  6266. if (sd->parent)
  6267. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6268. " has parent");
  6269. return -1;
  6270. }
  6271. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6272. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6273. printk(KERN_ERR "ERROR: domain->span does not contain "
  6274. "CPU%d\n", cpu);
  6275. }
  6276. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6277. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6278. " CPU%d\n", cpu);
  6279. }
  6280. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6281. do {
  6282. if (!group) {
  6283. printk("\n");
  6284. printk(KERN_ERR "ERROR: group is NULL\n");
  6285. break;
  6286. }
  6287. if (!group->__cpu_power) {
  6288. printk(KERN_CONT "\n");
  6289. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6290. "set\n");
  6291. break;
  6292. }
  6293. if (!cpumask_weight(sched_group_cpus(group))) {
  6294. printk(KERN_CONT "\n");
  6295. printk(KERN_ERR "ERROR: empty group\n");
  6296. break;
  6297. }
  6298. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6299. printk(KERN_CONT "\n");
  6300. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6301. break;
  6302. }
  6303. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6304. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6305. printk(KERN_CONT " %s", str);
  6306. group = group->next;
  6307. } while (group != sd->groups);
  6308. printk(KERN_CONT "\n");
  6309. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6310. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6311. if (sd->parent &&
  6312. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6313. printk(KERN_ERR "ERROR: parent span is not a superset "
  6314. "of domain->span\n");
  6315. return 0;
  6316. }
  6317. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6318. {
  6319. cpumask_var_t groupmask;
  6320. int level = 0;
  6321. if (!sd) {
  6322. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6323. return;
  6324. }
  6325. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6326. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6327. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6328. return;
  6329. }
  6330. for (;;) {
  6331. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6332. break;
  6333. level++;
  6334. sd = sd->parent;
  6335. if (!sd)
  6336. break;
  6337. }
  6338. free_cpumask_var(groupmask);
  6339. }
  6340. #else /* !CONFIG_SCHED_DEBUG */
  6341. # define sched_domain_debug(sd, cpu) do { } while (0)
  6342. #endif /* CONFIG_SCHED_DEBUG */
  6343. static int sd_degenerate(struct sched_domain *sd)
  6344. {
  6345. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6346. return 1;
  6347. /* Following flags need at least 2 groups */
  6348. if (sd->flags & (SD_LOAD_BALANCE |
  6349. SD_BALANCE_NEWIDLE |
  6350. SD_BALANCE_FORK |
  6351. SD_BALANCE_EXEC |
  6352. SD_SHARE_CPUPOWER |
  6353. SD_SHARE_PKG_RESOURCES)) {
  6354. if (sd->groups != sd->groups->next)
  6355. return 0;
  6356. }
  6357. /* Following flags don't use groups */
  6358. if (sd->flags & (SD_WAKE_IDLE |
  6359. SD_WAKE_AFFINE |
  6360. SD_WAKE_BALANCE))
  6361. return 0;
  6362. return 1;
  6363. }
  6364. static int
  6365. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6366. {
  6367. unsigned long cflags = sd->flags, pflags = parent->flags;
  6368. if (sd_degenerate(parent))
  6369. return 1;
  6370. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6371. return 0;
  6372. /* Does parent contain flags not in child? */
  6373. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6374. if (cflags & SD_WAKE_AFFINE)
  6375. pflags &= ~SD_WAKE_BALANCE;
  6376. /* Flags needing groups don't count if only 1 group in parent */
  6377. if (parent->groups == parent->groups->next) {
  6378. pflags &= ~(SD_LOAD_BALANCE |
  6379. SD_BALANCE_NEWIDLE |
  6380. SD_BALANCE_FORK |
  6381. SD_BALANCE_EXEC |
  6382. SD_SHARE_CPUPOWER |
  6383. SD_SHARE_PKG_RESOURCES);
  6384. if (nr_node_ids == 1)
  6385. pflags &= ~SD_SERIALIZE;
  6386. }
  6387. if (~cflags & pflags)
  6388. return 0;
  6389. return 1;
  6390. }
  6391. static void free_rootdomain(struct root_domain *rd)
  6392. {
  6393. cpupri_cleanup(&rd->cpupri);
  6394. free_cpumask_var(rd->rto_mask);
  6395. free_cpumask_var(rd->online);
  6396. free_cpumask_var(rd->span);
  6397. kfree(rd);
  6398. }
  6399. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6400. {
  6401. struct root_domain *old_rd = NULL;
  6402. unsigned long flags;
  6403. spin_lock_irqsave(&rq->lock, flags);
  6404. if (rq->rd) {
  6405. old_rd = rq->rd;
  6406. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6407. set_rq_offline(rq);
  6408. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6409. /*
  6410. * If we dont want to free the old_rt yet then
  6411. * set old_rd to NULL to skip the freeing later
  6412. * in this function:
  6413. */
  6414. if (!atomic_dec_and_test(&old_rd->refcount))
  6415. old_rd = NULL;
  6416. }
  6417. atomic_inc(&rd->refcount);
  6418. rq->rd = rd;
  6419. cpumask_set_cpu(rq->cpu, rd->span);
  6420. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6421. set_rq_online(rq);
  6422. spin_unlock_irqrestore(&rq->lock, flags);
  6423. if (old_rd)
  6424. free_rootdomain(old_rd);
  6425. }
  6426. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6427. {
  6428. memset(rd, 0, sizeof(*rd));
  6429. if (bootmem) {
  6430. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6431. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6432. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6433. cpupri_init(&rd->cpupri, true);
  6434. return 0;
  6435. }
  6436. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6437. goto out;
  6438. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6439. goto free_span;
  6440. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6441. goto free_online;
  6442. if (cpupri_init(&rd->cpupri, false) != 0)
  6443. goto free_rto_mask;
  6444. return 0;
  6445. free_rto_mask:
  6446. free_cpumask_var(rd->rto_mask);
  6447. free_online:
  6448. free_cpumask_var(rd->online);
  6449. free_span:
  6450. free_cpumask_var(rd->span);
  6451. out:
  6452. return -ENOMEM;
  6453. }
  6454. static void init_defrootdomain(void)
  6455. {
  6456. init_rootdomain(&def_root_domain, true);
  6457. atomic_set(&def_root_domain.refcount, 1);
  6458. }
  6459. static struct root_domain *alloc_rootdomain(void)
  6460. {
  6461. struct root_domain *rd;
  6462. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6463. if (!rd)
  6464. return NULL;
  6465. if (init_rootdomain(rd, false) != 0) {
  6466. kfree(rd);
  6467. return NULL;
  6468. }
  6469. return rd;
  6470. }
  6471. /*
  6472. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6473. * hold the hotplug lock.
  6474. */
  6475. static void
  6476. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6477. {
  6478. struct rq *rq = cpu_rq(cpu);
  6479. struct sched_domain *tmp;
  6480. /* Remove the sched domains which do not contribute to scheduling. */
  6481. for (tmp = sd; tmp; ) {
  6482. struct sched_domain *parent = tmp->parent;
  6483. if (!parent)
  6484. break;
  6485. if (sd_parent_degenerate(tmp, parent)) {
  6486. tmp->parent = parent->parent;
  6487. if (parent->parent)
  6488. parent->parent->child = tmp;
  6489. } else
  6490. tmp = tmp->parent;
  6491. }
  6492. if (sd && sd_degenerate(sd)) {
  6493. sd = sd->parent;
  6494. if (sd)
  6495. sd->child = NULL;
  6496. }
  6497. sched_domain_debug(sd, cpu);
  6498. rq_attach_root(rq, rd);
  6499. rcu_assign_pointer(rq->sd, sd);
  6500. }
  6501. /* cpus with isolated domains */
  6502. static cpumask_var_t cpu_isolated_map;
  6503. /* Setup the mask of cpus configured for isolated domains */
  6504. static int __init isolated_cpu_setup(char *str)
  6505. {
  6506. cpulist_parse(str, cpu_isolated_map);
  6507. return 1;
  6508. }
  6509. __setup("isolcpus=", isolated_cpu_setup);
  6510. /*
  6511. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6512. * to a function which identifies what group(along with sched group) a CPU
  6513. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6514. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6515. *
  6516. * init_sched_build_groups will build a circular linked list of the groups
  6517. * covered by the given span, and will set each group's ->cpumask correctly,
  6518. * and ->cpu_power to 0.
  6519. */
  6520. static void
  6521. init_sched_build_groups(const struct cpumask *span,
  6522. const struct cpumask *cpu_map,
  6523. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6524. struct sched_group **sg,
  6525. struct cpumask *tmpmask),
  6526. struct cpumask *covered, struct cpumask *tmpmask)
  6527. {
  6528. struct sched_group *first = NULL, *last = NULL;
  6529. int i;
  6530. cpumask_clear(covered);
  6531. for_each_cpu(i, span) {
  6532. struct sched_group *sg;
  6533. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6534. int j;
  6535. if (cpumask_test_cpu(i, covered))
  6536. continue;
  6537. cpumask_clear(sched_group_cpus(sg));
  6538. sg->__cpu_power = 0;
  6539. for_each_cpu(j, span) {
  6540. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6541. continue;
  6542. cpumask_set_cpu(j, covered);
  6543. cpumask_set_cpu(j, sched_group_cpus(sg));
  6544. }
  6545. if (!first)
  6546. first = sg;
  6547. if (last)
  6548. last->next = sg;
  6549. last = sg;
  6550. }
  6551. last->next = first;
  6552. }
  6553. #define SD_NODES_PER_DOMAIN 16
  6554. #ifdef CONFIG_NUMA
  6555. /**
  6556. * find_next_best_node - find the next node to include in a sched_domain
  6557. * @node: node whose sched_domain we're building
  6558. * @used_nodes: nodes already in the sched_domain
  6559. *
  6560. * Find the next node to include in a given scheduling domain. Simply
  6561. * finds the closest node not already in the @used_nodes map.
  6562. *
  6563. * Should use nodemask_t.
  6564. */
  6565. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6566. {
  6567. int i, n, val, min_val, best_node = 0;
  6568. min_val = INT_MAX;
  6569. for (i = 0; i < nr_node_ids; i++) {
  6570. /* Start at @node */
  6571. n = (node + i) % nr_node_ids;
  6572. if (!nr_cpus_node(n))
  6573. continue;
  6574. /* Skip already used nodes */
  6575. if (node_isset(n, *used_nodes))
  6576. continue;
  6577. /* Simple min distance search */
  6578. val = node_distance(node, n);
  6579. if (val < min_val) {
  6580. min_val = val;
  6581. best_node = n;
  6582. }
  6583. }
  6584. node_set(best_node, *used_nodes);
  6585. return best_node;
  6586. }
  6587. /**
  6588. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6589. * @node: node whose cpumask we're constructing
  6590. * @span: resulting cpumask
  6591. *
  6592. * Given a node, construct a good cpumask for its sched_domain to span. It
  6593. * should be one that prevents unnecessary balancing, but also spreads tasks
  6594. * out optimally.
  6595. */
  6596. static void sched_domain_node_span(int node, struct cpumask *span)
  6597. {
  6598. nodemask_t used_nodes;
  6599. int i;
  6600. cpumask_clear(span);
  6601. nodes_clear(used_nodes);
  6602. cpumask_or(span, span, cpumask_of_node(node));
  6603. node_set(node, used_nodes);
  6604. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6605. int next_node = find_next_best_node(node, &used_nodes);
  6606. cpumask_or(span, span, cpumask_of_node(next_node));
  6607. }
  6608. }
  6609. #endif /* CONFIG_NUMA */
  6610. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6611. /*
  6612. * The cpus mask in sched_group and sched_domain hangs off the end.
  6613. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6614. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6615. */
  6616. struct static_sched_group {
  6617. struct sched_group sg;
  6618. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6619. };
  6620. struct static_sched_domain {
  6621. struct sched_domain sd;
  6622. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6623. };
  6624. /*
  6625. * SMT sched-domains:
  6626. */
  6627. #ifdef CONFIG_SCHED_SMT
  6628. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6629. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6630. static int
  6631. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6632. struct sched_group **sg, struct cpumask *unused)
  6633. {
  6634. if (sg)
  6635. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6636. return cpu;
  6637. }
  6638. #endif /* CONFIG_SCHED_SMT */
  6639. /*
  6640. * multi-core sched-domains:
  6641. */
  6642. #ifdef CONFIG_SCHED_MC
  6643. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6644. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6645. #endif /* CONFIG_SCHED_MC */
  6646. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6647. static int
  6648. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6649. struct sched_group **sg, struct cpumask *mask)
  6650. {
  6651. int group;
  6652. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6653. group = cpumask_first(mask);
  6654. if (sg)
  6655. *sg = &per_cpu(sched_group_core, group).sg;
  6656. return group;
  6657. }
  6658. #elif defined(CONFIG_SCHED_MC)
  6659. static int
  6660. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6661. struct sched_group **sg, struct cpumask *unused)
  6662. {
  6663. if (sg)
  6664. *sg = &per_cpu(sched_group_core, cpu).sg;
  6665. return cpu;
  6666. }
  6667. #endif
  6668. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6669. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6670. static int
  6671. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6672. struct sched_group **sg, struct cpumask *mask)
  6673. {
  6674. int group;
  6675. #ifdef CONFIG_SCHED_MC
  6676. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6677. group = cpumask_first(mask);
  6678. #elif defined(CONFIG_SCHED_SMT)
  6679. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6680. group = cpumask_first(mask);
  6681. #else
  6682. group = cpu;
  6683. #endif
  6684. if (sg)
  6685. *sg = &per_cpu(sched_group_phys, group).sg;
  6686. return group;
  6687. }
  6688. #ifdef CONFIG_NUMA
  6689. /*
  6690. * The init_sched_build_groups can't handle what we want to do with node
  6691. * groups, so roll our own. Now each node has its own list of groups which
  6692. * gets dynamically allocated.
  6693. */
  6694. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6695. static struct sched_group ***sched_group_nodes_bycpu;
  6696. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6697. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6698. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6699. struct sched_group **sg,
  6700. struct cpumask *nodemask)
  6701. {
  6702. int group;
  6703. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6704. group = cpumask_first(nodemask);
  6705. if (sg)
  6706. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6707. return group;
  6708. }
  6709. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6710. {
  6711. struct sched_group *sg = group_head;
  6712. int j;
  6713. if (!sg)
  6714. return;
  6715. do {
  6716. for_each_cpu(j, sched_group_cpus(sg)) {
  6717. struct sched_domain *sd;
  6718. sd = &per_cpu(phys_domains, j).sd;
  6719. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6720. /*
  6721. * Only add "power" once for each
  6722. * physical package.
  6723. */
  6724. continue;
  6725. }
  6726. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6727. }
  6728. sg = sg->next;
  6729. } while (sg != group_head);
  6730. }
  6731. #endif /* CONFIG_NUMA */
  6732. #ifdef CONFIG_NUMA
  6733. /* Free memory allocated for various sched_group structures */
  6734. static void free_sched_groups(const struct cpumask *cpu_map,
  6735. struct cpumask *nodemask)
  6736. {
  6737. int cpu, i;
  6738. for_each_cpu(cpu, cpu_map) {
  6739. struct sched_group **sched_group_nodes
  6740. = sched_group_nodes_bycpu[cpu];
  6741. if (!sched_group_nodes)
  6742. continue;
  6743. for (i = 0; i < nr_node_ids; i++) {
  6744. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6745. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6746. if (cpumask_empty(nodemask))
  6747. continue;
  6748. if (sg == NULL)
  6749. continue;
  6750. sg = sg->next;
  6751. next_sg:
  6752. oldsg = sg;
  6753. sg = sg->next;
  6754. kfree(oldsg);
  6755. if (oldsg != sched_group_nodes[i])
  6756. goto next_sg;
  6757. }
  6758. kfree(sched_group_nodes);
  6759. sched_group_nodes_bycpu[cpu] = NULL;
  6760. }
  6761. }
  6762. #else /* !CONFIG_NUMA */
  6763. static void free_sched_groups(const struct cpumask *cpu_map,
  6764. struct cpumask *nodemask)
  6765. {
  6766. }
  6767. #endif /* CONFIG_NUMA */
  6768. /*
  6769. * Initialize sched groups cpu_power.
  6770. *
  6771. * cpu_power indicates the capacity of sched group, which is used while
  6772. * distributing the load between different sched groups in a sched domain.
  6773. * Typically cpu_power for all the groups in a sched domain will be same unless
  6774. * there are asymmetries in the topology. If there are asymmetries, group
  6775. * having more cpu_power will pickup more load compared to the group having
  6776. * less cpu_power.
  6777. *
  6778. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6779. * the maximum number of tasks a group can handle in the presence of other idle
  6780. * or lightly loaded groups in the same sched domain.
  6781. */
  6782. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6783. {
  6784. struct sched_domain *child;
  6785. struct sched_group *group;
  6786. WARN_ON(!sd || !sd->groups);
  6787. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6788. return;
  6789. child = sd->child;
  6790. sd->groups->__cpu_power = 0;
  6791. /*
  6792. * For perf policy, if the groups in child domain share resources
  6793. * (for example cores sharing some portions of the cache hierarchy
  6794. * or SMT), then set this domain groups cpu_power such that each group
  6795. * can handle only one task, when there are other idle groups in the
  6796. * same sched domain.
  6797. */
  6798. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6799. (child->flags &
  6800. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6801. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6802. return;
  6803. }
  6804. /*
  6805. * add cpu_power of each child group to this groups cpu_power
  6806. */
  6807. group = child->groups;
  6808. do {
  6809. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6810. group = group->next;
  6811. } while (group != child->groups);
  6812. }
  6813. /*
  6814. * Initializers for schedule domains
  6815. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6816. */
  6817. #ifdef CONFIG_SCHED_DEBUG
  6818. # define SD_INIT_NAME(sd, type) sd->name = #type
  6819. #else
  6820. # define SD_INIT_NAME(sd, type) do { } while (0)
  6821. #endif
  6822. #define SD_INIT(sd, type) sd_init_##type(sd)
  6823. #define SD_INIT_FUNC(type) \
  6824. static noinline void sd_init_##type(struct sched_domain *sd) \
  6825. { \
  6826. memset(sd, 0, sizeof(*sd)); \
  6827. *sd = SD_##type##_INIT; \
  6828. sd->level = SD_LV_##type; \
  6829. SD_INIT_NAME(sd, type); \
  6830. }
  6831. SD_INIT_FUNC(CPU)
  6832. #ifdef CONFIG_NUMA
  6833. SD_INIT_FUNC(ALLNODES)
  6834. SD_INIT_FUNC(NODE)
  6835. #endif
  6836. #ifdef CONFIG_SCHED_SMT
  6837. SD_INIT_FUNC(SIBLING)
  6838. #endif
  6839. #ifdef CONFIG_SCHED_MC
  6840. SD_INIT_FUNC(MC)
  6841. #endif
  6842. static int default_relax_domain_level = -1;
  6843. static int __init setup_relax_domain_level(char *str)
  6844. {
  6845. unsigned long val;
  6846. val = simple_strtoul(str, NULL, 0);
  6847. if (val < SD_LV_MAX)
  6848. default_relax_domain_level = val;
  6849. return 1;
  6850. }
  6851. __setup("relax_domain_level=", setup_relax_domain_level);
  6852. static void set_domain_attribute(struct sched_domain *sd,
  6853. struct sched_domain_attr *attr)
  6854. {
  6855. int request;
  6856. if (!attr || attr->relax_domain_level < 0) {
  6857. if (default_relax_domain_level < 0)
  6858. return;
  6859. else
  6860. request = default_relax_domain_level;
  6861. } else
  6862. request = attr->relax_domain_level;
  6863. if (request < sd->level) {
  6864. /* turn off idle balance on this domain */
  6865. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6866. } else {
  6867. /* turn on idle balance on this domain */
  6868. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6869. }
  6870. }
  6871. /*
  6872. * Build sched domains for a given set of cpus and attach the sched domains
  6873. * to the individual cpus
  6874. */
  6875. static int __build_sched_domains(const struct cpumask *cpu_map,
  6876. struct sched_domain_attr *attr)
  6877. {
  6878. int i, err = -ENOMEM;
  6879. struct root_domain *rd;
  6880. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6881. tmpmask;
  6882. #ifdef CONFIG_NUMA
  6883. cpumask_var_t domainspan, covered, notcovered;
  6884. struct sched_group **sched_group_nodes = NULL;
  6885. int sd_allnodes = 0;
  6886. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6887. goto out;
  6888. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6889. goto free_domainspan;
  6890. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6891. goto free_covered;
  6892. #endif
  6893. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6894. goto free_notcovered;
  6895. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6896. goto free_nodemask;
  6897. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6898. goto free_this_sibling_map;
  6899. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6900. goto free_this_core_map;
  6901. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6902. goto free_send_covered;
  6903. #ifdef CONFIG_NUMA
  6904. /*
  6905. * Allocate the per-node list of sched groups
  6906. */
  6907. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6908. GFP_KERNEL);
  6909. if (!sched_group_nodes) {
  6910. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6911. goto free_tmpmask;
  6912. }
  6913. #endif
  6914. rd = alloc_rootdomain();
  6915. if (!rd) {
  6916. printk(KERN_WARNING "Cannot alloc root domain\n");
  6917. goto free_sched_groups;
  6918. }
  6919. #ifdef CONFIG_NUMA
  6920. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6921. #endif
  6922. /*
  6923. * Set up domains for cpus specified by the cpu_map.
  6924. */
  6925. for_each_cpu(i, cpu_map) {
  6926. struct sched_domain *sd = NULL, *p;
  6927. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6928. #ifdef CONFIG_NUMA
  6929. if (cpumask_weight(cpu_map) >
  6930. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6931. sd = &per_cpu(allnodes_domains, i).sd;
  6932. SD_INIT(sd, ALLNODES);
  6933. set_domain_attribute(sd, attr);
  6934. cpumask_copy(sched_domain_span(sd), cpu_map);
  6935. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6936. p = sd;
  6937. sd_allnodes = 1;
  6938. } else
  6939. p = NULL;
  6940. sd = &per_cpu(node_domains, i).sd;
  6941. SD_INIT(sd, NODE);
  6942. set_domain_attribute(sd, attr);
  6943. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6944. sd->parent = p;
  6945. if (p)
  6946. p->child = sd;
  6947. cpumask_and(sched_domain_span(sd),
  6948. sched_domain_span(sd), cpu_map);
  6949. #endif
  6950. p = sd;
  6951. sd = &per_cpu(phys_domains, i).sd;
  6952. SD_INIT(sd, CPU);
  6953. set_domain_attribute(sd, attr);
  6954. cpumask_copy(sched_domain_span(sd), nodemask);
  6955. sd->parent = p;
  6956. if (p)
  6957. p->child = sd;
  6958. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6959. #ifdef CONFIG_SCHED_MC
  6960. p = sd;
  6961. sd = &per_cpu(core_domains, i).sd;
  6962. SD_INIT(sd, MC);
  6963. set_domain_attribute(sd, attr);
  6964. cpumask_and(sched_domain_span(sd), cpu_map,
  6965. cpu_coregroup_mask(i));
  6966. sd->parent = p;
  6967. p->child = sd;
  6968. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6969. #endif
  6970. #ifdef CONFIG_SCHED_SMT
  6971. p = sd;
  6972. sd = &per_cpu(cpu_domains, i).sd;
  6973. SD_INIT(sd, SIBLING);
  6974. set_domain_attribute(sd, attr);
  6975. cpumask_and(sched_domain_span(sd),
  6976. topology_thread_cpumask(i), cpu_map);
  6977. sd->parent = p;
  6978. p->child = sd;
  6979. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6980. #endif
  6981. }
  6982. #ifdef CONFIG_SCHED_SMT
  6983. /* Set up CPU (sibling) groups */
  6984. for_each_cpu(i, cpu_map) {
  6985. cpumask_and(this_sibling_map,
  6986. topology_thread_cpumask(i), cpu_map);
  6987. if (i != cpumask_first(this_sibling_map))
  6988. continue;
  6989. init_sched_build_groups(this_sibling_map, cpu_map,
  6990. &cpu_to_cpu_group,
  6991. send_covered, tmpmask);
  6992. }
  6993. #endif
  6994. #ifdef CONFIG_SCHED_MC
  6995. /* Set up multi-core groups */
  6996. for_each_cpu(i, cpu_map) {
  6997. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  6998. if (i != cpumask_first(this_core_map))
  6999. continue;
  7000. init_sched_build_groups(this_core_map, cpu_map,
  7001. &cpu_to_core_group,
  7002. send_covered, tmpmask);
  7003. }
  7004. #endif
  7005. /* Set up physical groups */
  7006. for (i = 0; i < nr_node_ids; i++) {
  7007. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7008. if (cpumask_empty(nodemask))
  7009. continue;
  7010. init_sched_build_groups(nodemask, cpu_map,
  7011. &cpu_to_phys_group,
  7012. send_covered, tmpmask);
  7013. }
  7014. #ifdef CONFIG_NUMA
  7015. /* Set up node groups */
  7016. if (sd_allnodes) {
  7017. init_sched_build_groups(cpu_map, cpu_map,
  7018. &cpu_to_allnodes_group,
  7019. send_covered, tmpmask);
  7020. }
  7021. for (i = 0; i < nr_node_ids; i++) {
  7022. /* Set up node groups */
  7023. struct sched_group *sg, *prev;
  7024. int j;
  7025. cpumask_clear(covered);
  7026. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7027. if (cpumask_empty(nodemask)) {
  7028. sched_group_nodes[i] = NULL;
  7029. continue;
  7030. }
  7031. sched_domain_node_span(i, domainspan);
  7032. cpumask_and(domainspan, domainspan, cpu_map);
  7033. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7034. GFP_KERNEL, i);
  7035. if (!sg) {
  7036. printk(KERN_WARNING "Can not alloc domain group for "
  7037. "node %d\n", i);
  7038. goto error;
  7039. }
  7040. sched_group_nodes[i] = sg;
  7041. for_each_cpu(j, nodemask) {
  7042. struct sched_domain *sd;
  7043. sd = &per_cpu(node_domains, j).sd;
  7044. sd->groups = sg;
  7045. }
  7046. sg->__cpu_power = 0;
  7047. cpumask_copy(sched_group_cpus(sg), nodemask);
  7048. sg->next = sg;
  7049. cpumask_or(covered, covered, nodemask);
  7050. prev = sg;
  7051. for (j = 0; j < nr_node_ids; j++) {
  7052. int n = (i + j) % nr_node_ids;
  7053. cpumask_complement(notcovered, covered);
  7054. cpumask_and(tmpmask, notcovered, cpu_map);
  7055. cpumask_and(tmpmask, tmpmask, domainspan);
  7056. if (cpumask_empty(tmpmask))
  7057. break;
  7058. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7059. if (cpumask_empty(tmpmask))
  7060. continue;
  7061. sg = kmalloc_node(sizeof(struct sched_group) +
  7062. cpumask_size(),
  7063. GFP_KERNEL, i);
  7064. if (!sg) {
  7065. printk(KERN_WARNING
  7066. "Can not alloc domain group for node %d\n", j);
  7067. goto error;
  7068. }
  7069. sg->__cpu_power = 0;
  7070. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7071. sg->next = prev->next;
  7072. cpumask_or(covered, covered, tmpmask);
  7073. prev->next = sg;
  7074. prev = sg;
  7075. }
  7076. }
  7077. #endif
  7078. /* Calculate CPU power for physical packages and nodes */
  7079. #ifdef CONFIG_SCHED_SMT
  7080. for_each_cpu(i, cpu_map) {
  7081. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7082. init_sched_groups_power(i, sd);
  7083. }
  7084. #endif
  7085. #ifdef CONFIG_SCHED_MC
  7086. for_each_cpu(i, cpu_map) {
  7087. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7088. init_sched_groups_power(i, sd);
  7089. }
  7090. #endif
  7091. for_each_cpu(i, cpu_map) {
  7092. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7093. init_sched_groups_power(i, sd);
  7094. }
  7095. #ifdef CONFIG_NUMA
  7096. for (i = 0; i < nr_node_ids; i++)
  7097. init_numa_sched_groups_power(sched_group_nodes[i]);
  7098. if (sd_allnodes) {
  7099. struct sched_group *sg;
  7100. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7101. tmpmask);
  7102. init_numa_sched_groups_power(sg);
  7103. }
  7104. #endif
  7105. /* Attach the domains */
  7106. for_each_cpu(i, cpu_map) {
  7107. struct sched_domain *sd;
  7108. #ifdef CONFIG_SCHED_SMT
  7109. sd = &per_cpu(cpu_domains, i).sd;
  7110. #elif defined(CONFIG_SCHED_MC)
  7111. sd = &per_cpu(core_domains, i).sd;
  7112. #else
  7113. sd = &per_cpu(phys_domains, i).sd;
  7114. #endif
  7115. cpu_attach_domain(sd, rd, i);
  7116. }
  7117. err = 0;
  7118. free_tmpmask:
  7119. free_cpumask_var(tmpmask);
  7120. free_send_covered:
  7121. free_cpumask_var(send_covered);
  7122. free_this_core_map:
  7123. free_cpumask_var(this_core_map);
  7124. free_this_sibling_map:
  7125. free_cpumask_var(this_sibling_map);
  7126. free_nodemask:
  7127. free_cpumask_var(nodemask);
  7128. free_notcovered:
  7129. #ifdef CONFIG_NUMA
  7130. free_cpumask_var(notcovered);
  7131. free_covered:
  7132. free_cpumask_var(covered);
  7133. free_domainspan:
  7134. free_cpumask_var(domainspan);
  7135. out:
  7136. #endif
  7137. return err;
  7138. free_sched_groups:
  7139. #ifdef CONFIG_NUMA
  7140. kfree(sched_group_nodes);
  7141. #endif
  7142. goto free_tmpmask;
  7143. #ifdef CONFIG_NUMA
  7144. error:
  7145. free_sched_groups(cpu_map, tmpmask);
  7146. free_rootdomain(rd);
  7147. goto free_tmpmask;
  7148. #endif
  7149. }
  7150. static int build_sched_domains(const struct cpumask *cpu_map)
  7151. {
  7152. return __build_sched_domains(cpu_map, NULL);
  7153. }
  7154. static struct cpumask *doms_cur; /* current sched domains */
  7155. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7156. static struct sched_domain_attr *dattr_cur;
  7157. /* attribues of custom domains in 'doms_cur' */
  7158. /*
  7159. * Special case: If a kmalloc of a doms_cur partition (array of
  7160. * cpumask) fails, then fallback to a single sched domain,
  7161. * as determined by the single cpumask fallback_doms.
  7162. */
  7163. static cpumask_var_t fallback_doms;
  7164. /*
  7165. * arch_update_cpu_topology lets virtualized architectures update the
  7166. * cpu core maps. It is supposed to return 1 if the topology changed
  7167. * or 0 if it stayed the same.
  7168. */
  7169. int __attribute__((weak)) arch_update_cpu_topology(void)
  7170. {
  7171. return 0;
  7172. }
  7173. /*
  7174. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7175. * For now this just excludes isolated cpus, but could be used to
  7176. * exclude other special cases in the future.
  7177. */
  7178. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7179. {
  7180. int err;
  7181. arch_update_cpu_topology();
  7182. ndoms_cur = 1;
  7183. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7184. if (!doms_cur)
  7185. doms_cur = fallback_doms;
  7186. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7187. dattr_cur = NULL;
  7188. err = build_sched_domains(doms_cur);
  7189. register_sched_domain_sysctl();
  7190. return err;
  7191. }
  7192. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7193. struct cpumask *tmpmask)
  7194. {
  7195. free_sched_groups(cpu_map, tmpmask);
  7196. }
  7197. /*
  7198. * Detach sched domains from a group of cpus specified in cpu_map
  7199. * These cpus will now be attached to the NULL domain
  7200. */
  7201. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7202. {
  7203. /* Save because hotplug lock held. */
  7204. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7205. int i;
  7206. for_each_cpu(i, cpu_map)
  7207. cpu_attach_domain(NULL, &def_root_domain, i);
  7208. synchronize_sched();
  7209. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7210. }
  7211. /* handle null as "default" */
  7212. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7213. struct sched_domain_attr *new, int idx_new)
  7214. {
  7215. struct sched_domain_attr tmp;
  7216. /* fast path */
  7217. if (!new && !cur)
  7218. return 1;
  7219. tmp = SD_ATTR_INIT;
  7220. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7221. new ? (new + idx_new) : &tmp,
  7222. sizeof(struct sched_domain_attr));
  7223. }
  7224. /*
  7225. * Partition sched domains as specified by the 'ndoms_new'
  7226. * cpumasks in the array doms_new[] of cpumasks. This compares
  7227. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7228. * It destroys each deleted domain and builds each new domain.
  7229. *
  7230. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7231. * The masks don't intersect (don't overlap.) We should setup one
  7232. * sched domain for each mask. CPUs not in any of the cpumasks will
  7233. * not be load balanced. If the same cpumask appears both in the
  7234. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7235. * it as it is.
  7236. *
  7237. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7238. * ownership of it and will kfree it when done with it. If the caller
  7239. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7240. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7241. * the single partition 'fallback_doms', it also forces the domains
  7242. * to be rebuilt.
  7243. *
  7244. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7245. * ndoms_new == 0 is a special case for destroying existing domains,
  7246. * and it will not create the default domain.
  7247. *
  7248. * Call with hotplug lock held
  7249. */
  7250. /* FIXME: Change to struct cpumask *doms_new[] */
  7251. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7252. struct sched_domain_attr *dattr_new)
  7253. {
  7254. int i, j, n;
  7255. int new_topology;
  7256. mutex_lock(&sched_domains_mutex);
  7257. /* always unregister in case we don't destroy any domains */
  7258. unregister_sched_domain_sysctl();
  7259. /* Let architecture update cpu core mappings. */
  7260. new_topology = arch_update_cpu_topology();
  7261. n = doms_new ? ndoms_new : 0;
  7262. /* Destroy deleted domains */
  7263. for (i = 0; i < ndoms_cur; i++) {
  7264. for (j = 0; j < n && !new_topology; j++) {
  7265. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7266. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7267. goto match1;
  7268. }
  7269. /* no match - a current sched domain not in new doms_new[] */
  7270. detach_destroy_domains(doms_cur + i);
  7271. match1:
  7272. ;
  7273. }
  7274. if (doms_new == NULL) {
  7275. ndoms_cur = 0;
  7276. doms_new = fallback_doms;
  7277. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7278. WARN_ON_ONCE(dattr_new);
  7279. }
  7280. /* Build new domains */
  7281. for (i = 0; i < ndoms_new; i++) {
  7282. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7283. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7284. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7285. goto match2;
  7286. }
  7287. /* no match - add a new doms_new */
  7288. __build_sched_domains(doms_new + i,
  7289. dattr_new ? dattr_new + i : NULL);
  7290. match2:
  7291. ;
  7292. }
  7293. /* Remember the new sched domains */
  7294. if (doms_cur != fallback_doms)
  7295. kfree(doms_cur);
  7296. kfree(dattr_cur); /* kfree(NULL) is safe */
  7297. doms_cur = doms_new;
  7298. dattr_cur = dattr_new;
  7299. ndoms_cur = ndoms_new;
  7300. register_sched_domain_sysctl();
  7301. mutex_unlock(&sched_domains_mutex);
  7302. }
  7303. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7304. static void arch_reinit_sched_domains(void)
  7305. {
  7306. get_online_cpus();
  7307. /* Destroy domains first to force the rebuild */
  7308. partition_sched_domains(0, NULL, NULL);
  7309. rebuild_sched_domains();
  7310. put_online_cpus();
  7311. }
  7312. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7313. {
  7314. unsigned int level = 0;
  7315. if (sscanf(buf, "%u", &level) != 1)
  7316. return -EINVAL;
  7317. /*
  7318. * level is always be positive so don't check for
  7319. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7320. * What happens on 0 or 1 byte write,
  7321. * need to check for count as well?
  7322. */
  7323. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7324. return -EINVAL;
  7325. if (smt)
  7326. sched_smt_power_savings = level;
  7327. else
  7328. sched_mc_power_savings = level;
  7329. arch_reinit_sched_domains();
  7330. return count;
  7331. }
  7332. #ifdef CONFIG_SCHED_MC
  7333. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7334. char *page)
  7335. {
  7336. return sprintf(page, "%u\n", sched_mc_power_savings);
  7337. }
  7338. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7339. const char *buf, size_t count)
  7340. {
  7341. return sched_power_savings_store(buf, count, 0);
  7342. }
  7343. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7344. sched_mc_power_savings_show,
  7345. sched_mc_power_savings_store);
  7346. #endif
  7347. #ifdef CONFIG_SCHED_SMT
  7348. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7349. char *page)
  7350. {
  7351. return sprintf(page, "%u\n", sched_smt_power_savings);
  7352. }
  7353. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7354. const char *buf, size_t count)
  7355. {
  7356. return sched_power_savings_store(buf, count, 1);
  7357. }
  7358. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7359. sched_smt_power_savings_show,
  7360. sched_smt_power_savings_store);
  7361. #endif
  7362. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7363. {
  7364. int err = 0;
  7365. #ifdef CONFIG_SCHED_SMT
  7366. if (smt_capable())
  7367. err = sysfs_create_file(&cls->kset.kobj,
  7368. &attr_sched_smt_power_savings.attr);
  7369. #endif
  7370. #ifdef CONFIG_SCHED_MC
  7371. if (!err && mc_capable())
  7372. err = sysfs_create_file(&cls->kset.kobj,
  7373. &attr_sched_mc_power_savings.attr);
  7374. #endif
  7375. return err;
  7376. }
  7377. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7378. #ifndef CONFIG_CPUSETS
  7379. /*
  7380. * Add online and remove offline CPUs from the scheduler domains.
  7381. * When cpusets are enabled they take over this function.
  7382. */
  7383. static int update_sched_domains(struct notifier_block *nfb,
  7384. unsigned long action, void *hcpu)
  7385. {
  7386. switch (action) {
  7387. case CPU_ONLINE:
  7388. case CPU_ONLINE_FROZEN:
  7389. case CPU_DEAD:
  7390. case CPU_DEAD_FROZEN:
  7391. partition_sched_domains(1, NULL, NULL);
  7392. return NOTIFY_OK;
  7393. default:
  7394. return NOTIFY_DONE;
  7395. }
  7396. }
  7397. #endif
  7398. static int update_runtime(struct notifier_block *nfb,
  7399. unsigned long action, void *hcpu)
  7400. {
  7401. int cpu = (int)(long)hcpu;
  7402. switch (action) {
  7403. case CPU_DOWN_PREPARE:
  7404. case CPU_DOWN_PREPARE_FROZEN:
  7405. disable_runtime(cpu_rq(cpu));
  7406. return NOTIFY_OK;
  7407. case CPU_DOWN_FAILED:
  7408. case CPU_DOWN_FAILED_FROZEN:
  7409. case CPU_ONLINE:
  7410. case CPU_ONLINE_FROZEN:
  7411. enable_runtime(cpu_rq(cpu));
  7412. return NOTIFY_OK;
  7413. default:
  7414. return NOTIFY_DONE;
  7415. }
  7416. }
  7417. void __init sched_init_smp(void)
  7418. {
  7419. cpumask_var_t non_isolated_cpus;
  7420. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7421. #if defined(CONFIG_NUMA)
  7422. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7423. GFP_KERNEL);
  7424. BUG_ON(sched_group_nodes_bycpu == NULL);
  7425. #endif
  7426. get_online_cpus();
  7427. mutex_lock(&sched_domains_mutex);
  7428. arch_init_sched_domains(cpu_online_mask);
  7429. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7430. if (cpumask_empty(non_isolated_cpus))
  7431. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7432. mutex_unlock(&sched_domains_mutex);
  7433. put_online_cpus();
  7434. #ifndef CONFIG_CPUSETS
  7435. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7436. hotcpu_notifier(update_sched_domains, 0);
  7437. #endif
  7438. /* RT runtime code needs to handle some hotplug events */
  7439. hotcpu_notifier(update_runtime, 0);
  7440. init_hrtick();
  7441. /* Move init over to a non-isolated CPU */
  7442. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7443. BUG();
  7444. sched_init_granularity();
  7445. free_cpumask_var(non_isolated_cpus);
  7446. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7447. init_sched_rt_class();
  7448. }
  7449. #else
  7450. void __init sched_init_smp(void)
  7451. {
  7452. sched_init_granularity();
  7453. }
  7454. #endif /* CONFIG_SMP */
  7455. int in_sched_functions(unsigned long addr)
  7456. {
  7457. return in_lock_functions(addr) ||
  7458. (addr >= (unsigned long)__sched_text_start
  7459. && addr < (unsigned long)__sched_text_end);
  7460. }
  7461. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7462. {
  7463. cfs_rq->tasks_timeline = RB_ROOT;
  7464. INIT_LIST_HEAD(&cfs_rq->tasks);
  7465. #ifdef CONFIG_FAIR_GROUP_SCHED
  7466. cfs_rq->rq = rq;
  7467. #endif
  7468. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7469. }
  7470. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7471. {
  7472. struct rt_prio_array *array;
  7473. int i;
  7474. array = &rt_rq->active;
  7475. for (i = 0; i < MAX_RT_PRIO; i++) {
  7476. INIT_LIST_HEAD(array->queue + i);
  7477. __clear_bit(i, array->bitmap);
  7478. }
  7479. /* delimiter for bitsearch: */
  7480. __set_bit(MAX_RT_PRIO, array->bitmap);
  7481. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7482. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7483. #ifdef CONFIG_SMP
  7484. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7485. #endif
  7486. #endif
  7487. #ifdef CONFIG_SMP
  7488. rt_rq->rt_nr_migratory = 0;
  7489. rt_rq->overloaded = 0;
  7490. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7491. #endif
  7492. rt_rq->rt_time = 0;
  7493. rt_rq->rt_throttled = 0;
  7494. rt_rq->rt_runtime = 0;
  7495. spin_lock_init(&rt_rq->rt_runtime_lock);
  7496. #ifdef CONFIG_RT_GROUP_SCHED
  7497. rt_rq->rt_nr_boosted = 0;
  7498. rt_rq->rq = rq;
  7499. #endif
  7500. }
  7501. #ifdef CONFIG_FAIR_GROUP_SCHED
  7502. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7503. struct sched_entity *se, int cpu, int add,
  7504. struct sched_entity *parent)
  7505. {
  7506. struct rq *rq = cpu_rq(cpu);
  7507. tg->cfs_rq[cpu] = cfs_rq;
  7508. init_cfs_rq(cfs_rq, rq);
  7509. cfs_rq->tg = tg;
  7510. if (add)
  7511. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7512. tg->se[cpu] = se;
  7513. /* se could be NULL for init_task_group */
  7514. if (!se)
  7515. return;
  7516. if (!parent)
  7517. se->cfs_rq = &rq->cfs;
  7518. else
  7519. se->cfs_rq = parent->my_q;
  7520. se->my_q = cfs_rq;
  7521. se->load.weight = tg->shares;
  7522. se->load.inv_weight = 0;
  7523. se->parent = parent;
  7524. }
  7525. #endif
  7526. #ifdef CONFIG_RT_GROUP_SCHED
  7527. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7528. struct sched_rt_entity *rt_se, int cpu, int add,
  7529. struct sched_rt_entity *parent)
  7530. {
  7531. struct rq *rq = cpu_rq(cpu);
  7532. tg->rt_rq[cpu] = rt_rq;
  7533. init_rt_rq(rt_rq, rq);
  7534. rt_rq->tg = tg;
  7535. rt_rq->rt_se = rt_se;
  7536. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7537. if (add)
  7538. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7539. tg->rt_se[cpu] = rt_se;
  7540. if (!rt_se)
  7541. return;
  7542. if (!parent)
  7543. rt_se->rt_rq = &rq->rt;
  7544. else
  7545. rt_se->rt_rq = parent->my_q;
  7546. rt_se->my_q = rt_rq;
  7547. rt_se->parent = parent;
  7548. INIT_LIST_HEAD(&rt_se->run_list);
  7549. }
  7550. #endif
  7551. void __init sched_init(void)
  7552. {
  7553. int i, j;
  7554. unsigned long alloc_size = 0, ptr;
  7555. #ifdef CONFIG_FAIR_GROUP_SCHED
  7556. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7557. #endif
  7558. #ifdef CONFIG_RT_GROUP_SCHED
  7559. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7560. #endif
  7561. #ifdef CONFIG_USER_SCHED
  7562. alloc_size *= 2;
  7563. #endif
  7564. #ifdef CONFIG_CPUMASK_OFFSTACK
  7565. alloc_size += num_possible_cpus() * cpumask_size();
  7566. #endif
  7567. /*
  7568. * As sched_init() is called before page_alloc is setup,
  7569. * we use alloc_bootmem().
  7570. */
  7571. if (alloc_size) {
  7572. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7573. #ifdef CONFIG_FAIR_GROUP_SCHED
  7574. init_task_group.se = (struct sched_entity **)ptr;
  7575. ptr += nr_cpu_ids * sizeof(void **);
  7576. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7577. ptr += nr_cpu_ids * sizeof(void **);
  7578. #ifdef CONFIG_USER_SCHED
  7579. root_task_group.se = (struct sched_entity **)ptr;
  7580. ptr += nr_cpu_ids * sizeof(void **);
  7581. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7582. ptr += nr_cpu_ids * sizeof(void **);
  7583. #endif /* CONFIG_USER_SCHED */
  7584. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7585. #ifdef CONFIG_RT_GROUP_SCHED
  7586. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7587. ptr += nr_cpu_ids * sizeof(void **);
  7588. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7589. ptr += nr_cpu_ids * sizeof(void **);
  7590. #ifdef CONFIG_USER_SCHED
  7591. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7592. ptr += nr_cpu_ids * sizeof(void **);
  7593. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7594. ptr += nr_cpu_ids * sizeof(void **);
  7595. #endif /* CONFIG_USER_SCHED */
  7596. #endif /* CONFIG_RT_GROUP_SCHED */
  7597. #ifdef CONFIG_CPUMASK_OFFSTACK
  7598. for_each_possible_cpu(i) {
  7599. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7600. ptr += cpumask_size();
  7601. }
  7602. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7603. }
  7604. #ifdef CONFIG_SMP
  7605. init_defrootdomain();
  7606. #endif
  7607. init_rt_bandwidth(&def_rt_bandwidth,
  7608. global_rt_period(), global_rt_runtime());
  7609. #ifdef CONFIG_RT_GROUP_SCHED
  7610. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7611. global_rt_period(), global_rt_runtime());
  7612. #ifdef CONFIG_USER_SCHED
  7613. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7614. global_rt_period(), RUNTIME_INF);
  7615. #endif /* CONFIG_USER_SCHED */
  7616. #endif /* CONFIG_RT_GROUP_SCHED */
  7617. #ifdef CONFIG_GROUP_SCHED
  7618. list_add(&init_task_group.list, &task_groups);
  7619. INIT_LIST_HEAD(&init_task_group.children);
  7620. #ifdef CONFIG_USER_SCHED
  7621. INIT_LIST_HEAD(&root_task_group.children);
  7622. init_task_group.parent = &root_task_group;
  7623. list_add(&init_task_group.siblings, &root_task_group.children);
  7624. #endif /* CONFIG_USER_SCHED */
  7625. #endif /* CONFIG_GROUP_SCHED */
  7626. for_each_possible_cpu(i) {
  7627. struct rq *rq;
  7628. rq = cpu_rq(i);
  7629. spin_lock_init(&rq->lock);
  7630. rq->nr_running = 0;
  7631. init_cfs_rq(&rq->cfs, rq);
  7632. init_rt_rq(&rq->rt, rq);
  7633. #ifdef CONFIG_FAIR_GROUP_SCHED
  7634. init_task_group.shares = init_task_group_load;
  7635. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7636. #ifdef CONFIG_CGROUP_SCHED
  7637. /*
  7638. * How much cpu bandwidth does init_task_group get?
  7639. *
  7640. * In case of task-groups formed thr' the cgroup filesystem, it
  7641. * gets 100% of the cpu resources in the system. This overall
  7642. * system cpu resource is divided among the tasks of
  7643. * init_task_group and its child task-groups in a fair manner,
  7644. * based on each entity's (task or task-group's) weight
  7645. * (se->load.weight).
  7646. *
  7647. * In other words, if init_task_group has 10 tasks of weight
  7648. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7649. * then A0's share of the cpu resource is:
  7650. *
  7651. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7652. *
  7653. * We achieve this by letting init_task_group's tasks sit
  7654. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7655. */
  7656. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7657. #elif defined CONFIG_USER_SCHED
  7658. root_task_group.shares = NICE_0_LOAD;
  7659. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7660. /*
  7661. * In case of task-groups formed thr' the user id of tasks,
  7662. * init_task_group represents tasks belonging to root user.
  7663. * Hence it forms a sibling of all subsequent groups formed.
  7664. * In this case, init_task_group gets only a fraction of overall
  7665. * system cpu resource, based on the weight assigned to root
  7666. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7667. * by letting tasks of init_task_group sit in a separate cfs_rq
  7668. * (init_cfs_rq) and having one entity represent this group of
  7669. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7670. */
  7671. init_tg_cfs_entry(&init_task_group,
  7672. &per_cpu(init_cfs_rq, i),
  7673. &per_cpu(init_sched_entity, i), i, 1,
  7674. root_task_group.se[i]);
  7675. #endif
  7676. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7677. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7678. #ifdef CONFIG_RT_GROUP_SCHED
  7679. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7680. #ifdef CONFIG_CGROUP_SCHED
  7681. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7682. #elif defined CONFIG_USER_SCHED
  7683. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7684. init_tg_rt_entry(&init_task_group,
  7685. &per_cpu(init_rt_rq, i),
  7686. &per_cpu(init_sched_rt_entity, i), i, 1,
  7687. root_task_group.rt_se[i]);
  7688. #endif
  7689. #endif
  7690. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7691. rq->cpu_load[j] = 0;
  7692. #ifdef CONFIG_SMP
  7693. rq->sd = NULL;
  7694. rq->rd = NULL;
  7695. rq->active_balance = 0;
  7696. rq->next_balance = jiffies;
  7697. rq->push_cpu = 0;
  7698. rq->cpu = i;
  7699. rq->online = 0;
  7700. rq->migration_thread = NULL;
  7701. INIT_LIST_HEAD(&rq->migration_queue);
  7702. rq_attach_root(rq, &def_root_domain);
  7703. #endif
  7704. init_rq_hrtick(rq);
  7705. atomic_set(&rq->nr_iowait, 0);
  7706. }
  7707. set_load_weight(&init_task);
  7708. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7709. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7710. #endif
  7711. #ifdef CONFIG_SMP
  7712. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7713. #endif
  7714. #ifdef CONFIG_RT_MUTEXES
  7715. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7716. #endif
  7717. /*
  7718. * The boot idle thread does lazy MMU switching as well:
  7719. */
  7720. atomic_inc(&init_mm.mm_count);
  7721. enter_lazy_tlb(&init_mm, current);
  7722. /*
  7723. * Make us the idle thread. Technically, schedule() should not be
  7724. * called from this thread, however somewhere below it might be,
  7725. * but because we are the idle thread, we just pick up running again
  7726. * when this runqueue becomes "idle".
  7727. */
  7728. init_idle(current, smp_processor_id());
  7729. /*
  7730. * During early bootup we pretend to be a normal task:
  7731. */
  7732. current->sched_class = &fair_sched_class;
  7733. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7734. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7735. #ifdef CONFIG_SMP
  7736. #ifdef CONFIG_NO_HZ
  7737. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7738. #endif
  7739. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7740. #endif /* SMP */
  7741. scheduler_running = 1;
  7742. }
  7743. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7744. void __might_sleep(char *file, int line)
  7745. {
  7746. #ifdef in_atomic
  7747. static unsigned long prev_jiffy; /* ratelimiting */
  7748. if ((!in_atomic() && !irqs_disabled()) ||
  7749. system_state != SYSTEM_RUNNING || oops_in_progress)
  7750. return;
  7751. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7752. return;
  7753. prev_jiffy = jiffies;
  7754. printk(KERN_ERR
  7755. "BUG: sleeping function called from invalid context at %s:%d\n",
  7756. file, line);
  7757. printk(KERN_ERR
  7758. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7759. in_atomic(), irqs_disabled(),
  7760. current->pid, current->comm);
  7761. debug_show_held_locks(current);
  7762. if (irqs_disabled())
  7763. print_irqtrace_events(current);
  7764. dump_stack();
  7765. #endif
  7766. }
  7767. EXPORT_SYMBOL(__might_sleep);
  7768. #endif
  7769. #ifdef CONFIG_MAGIC_SYSRQ
  7770. static void normalize_task(struct rq *rq, struct task_struct *p)
  7771. {
  7772. int on_rq;
  7773. update_rq_clock(rq);
  7774. on_rq = p->se.on_rq;
  7775. if (on_rq)
  7776. deactivate_task(rq, p, 0);
  7777. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7778. if (on_rq) {
  7779. activate_task(rq, p, 0);
  7780. resched_task(rq->curr);
  7781. }
  7782. }
  7783. void normalize_rt_tasks(void)
  7784. {
  7785. struct task_struct *g, *p;
  7786. unsigned long flags;
  7787. struct rq *rq;
  7788. read_lock_irqsave(&tasklist_lock, flags);
  7789. do_each_thread(g, p) {
  7790. /*
  7791. * Only normalize user tasks:
  7792. */
  7793. if (!p->mm)
  7794. continue;
  7795. p->se.exec_start = 0;
  7796. #ifdef CONFIG_SCHEDSTATS
  7797. p->se.wait_start = 0;
  7798. p->se.sleep_start = 0;
  7799. p->se.block_start = 0;
  7800. #endif
  7801. if (!rt_task(p)) {
  7802. /*
  7803. * Renice negative nice level userspace
  7804. * tasks back to 0:
  7805. */
  7806. if (TASK_NICE(p) < 0 && p->mm)
  7807. set_user_nice(p, 0);
  7808. continue;
  7809. }
  7810. spin_lock(&p->pi_lock);
  7811. rq = __task_rq_lock(p);
  7812. normalize_task(rq, p);
  7813. __task_rq_unlock(rq);
  7814. spin_unlock(&p->pi_lock);
  7815. } while_each_thread(g, p);
  7816. read_unlock_irqrestore(&tasklist_lock, flags);
  7817. }
  7818. #endif /* CONFIG_MAGIC_SYSRQ */
  7819. #ifdef CONFIG_IA64
  7820. /*
  7821. * These functions are only useful for the IA64 MCA handling.
  7822. *
  7823. * They can only be called when the whole system has been
  7824. * stopped - every CPU needs to be quiescent, and no scheduling
  7825. * activity can take place. Using them for anything else would
  7826. * be a serious bug, and as a result, they aren't even visible
  7827. * under any other configuration.
  7828. */
  7829. /**
  7830. * curr_task - return the current task for a given cpu.
  7831. * @cpu: the processor in question.
  7832. *
  7833. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7834. */
  7835. struct task_struct *curr_task(int cpu)
  7836. {
  7837. return cpu_curr(cpu);
  7838. }
  7839. /**
  7840. * set_curr_task - set the current task for a given cpu.
  7841. * @cpu: the processor in question.
  7842. * @p: the task pointer to set.
  7843. *
  7844. * Description: This function must only be used when non-maskable interrupts
  7845. * are serviced on a separate stack. It allows the architecture to switch the
  7846. * notion of the current task on a cpu in a non-blocking manner. This function
  7847. * must be called with all CPU's synchronized, and interrupts disabled, the
  7848. * and caller must save the original value of the current task (see
  7849. * curr_task() above) and restore that value before reenabling interrupts and
  7850. * re-starting the system.
  7851. *
  7852. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7853. */
  7854. void set_curr_task(int cpu, struct task_struct *p)
  7855. {
  7856. cpu_curr(cpu) = p;
  7857. }
  7858. #endif
  7859. #ifdef CONFIG_FAIR_GROUP_SCHED
  7860. static void free_fair_sched_group(struct task_group *tg)
  7861. {
  7862. int i;
  7863. for_each_possible_cpu(i) {
  7864. if (tg->cfs_rq)
  7865. kfree(tg->cfs_rq[i]);
  7866. if (tg->se)
  7867. kfree(tg->se[i]);
  7868. }
  7869. kfree(tg->cfs_rq);
  7870. kfree(tg->se);
  7871. }
  7872. static
  7873. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7874. {
  7875. struct cfs_rq *cfs_rq;
  7876. struct sched_entity *se;
  7877. struct rq *rq;
  7878. int i;
  7879. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7880. if (!tg->cfs_rq)
  7881. goto err;
  7882. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7883. if (!tg->se)
  7884. goto err;
  7885. tg->shares = NICE_0_LOAD;
  7886. for_each_possible_cpu(i) {
  7887. rq = cpu_rq(i);
  7888. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7889. GFP_KERNEL, cpu_to_node(i));
  7890. if (!cfs_rq)
  7891. goto err;
  7892. se = kzalloc_node(sizeof(struct sched_entity),
  7893. GFP_KERNEL, cpu_to_node(i));
  7894. if (!se)
  7895. goto err;
  7896. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7897. }
  7898. return 1;
  7899. err:
  7900. return 0;
  7901. }
  7902. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7903. {
  7904. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7905. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7906. }
  7907. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7908. {
  7909. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7910. }
  7911. #else /* !CONFG_FAIR_GROUP_SCHED */
  7912. static inline void free_fair_sched_group(struct task_group *tg)
  7913. {
  7914. }
  7915. static inline
  7916. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7917. {
  7918. return 1;
  7919. }
  7920. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7921. {
  7922. }
  7923. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7924. {
  7925. }
  7926. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7927. #ifdef CONFIG_RT_GROUP_SCHED
  7928. static void free_rt_sched_group(struct task_group *tg)
  7929. {
  7930. int i;
  7931. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7932. for_each_possible_cpu(i) {
  7933. if (tg->rt_rq)
  7934. kfree(tg->rt_rq[i]);
  7935. if (tg->rt_se)
  7936. kfree(tg->rt_se[i]);
  7937. }
  7938. kfree(tg->rt_rq);
  7939. kfree(tg->rt_se);
  7940. }
  7941. static
  7942. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7943. {
  7944. struct rt_rq *rt_rq;
  7945. struct sched_rt_entity *rt_se;
  7946. struct rq *rq;
  7947. int i;
  7948. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7949. if (!tg->rt_rq)
  7950. goto err;
  7951. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7952. if (!tg->rt_se)
  7953. goto err;
  7954. init_rt_bandwidth(&tg->rt_bandwidth,
  7955. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7956. for_each_possible_cpu(i) {
  7957. rq = cpu_rq(i);
  7958. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7959. GFP_KERNEL, cpu_to_node(i));
  7960. if (!rt_rq)
  7961. goto err;
  7962. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7963. GFP_KERNEL, cpu_to_node(i));
  7964. if (!rt_se)
  7965. goto err;
  7966. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7967. }
  7968. return 1;
  7969. err:
  7970. return 0;
  7971. }
  7972. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7973. {
  7974. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7975. &cpu_rq(cpu)->leaf_rt_rq_list);
  7976. }
  7977. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7978. {
  7979. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7980. }
  7981. #else /* !CONFIG_RT_GROUP_SCHED */
  7982. static inline void free_rt_sched_group(struct task_group *tg)
  7983. {
  7984. }
  7985. static inline
  7986. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7987. {
  7988. return 1;
  7989. }
  7990. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7991. {
  7992. }
  7993. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7994. {
  7995. }
  7996. #endif /* CONFIG_RT_GROUP_SCHED */
  7997. #ifdef CONFIG_GROUP_SCHED
  7998. static void free_sched_group(struct task_group *tg)
  7999. {
  8000. free_fair_sched_group(tg);
  8001. free_rt_sched_group(tg);
  8002. kfree(tg);
  8003. }
  8004. /* allocate runqueue etc for a new task group */
  8005. struct task_group *sched_create_group(struct task_group *parent)
  8006. {
  8007. struct task_group *tg;
  8008. unsigned long flags;
  8009. int i;
  8010. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8011. if (!tg)
  8012. return ERR_PTR(-ENOMEM);
  8013. if (!alloc_fair_sched_group(tg, parent))
  8014. goto err;
  8015. if (!alloc_rt_sched_group(tg, parent))
  8016. goto err;
  8017. spin_lock_irqsave(&task_group_lock, flags);
  8018. for_each_possible_cpu(i) {
  8019. register_fair_sched_group(tg, i);
  8020. register_rt_sched_group(tg, i);
  8021. }
  8022. list_add_rcu(&tg->list, &task_groups);
  8023. WARN_ON(!parent); /* root should already exist */
  8024. tg->parent = parent;
  8025. INIT_LIST_HEAD(&tg->children);
  8026. list_add_rcu(&tg->siblings, &parent->children);
  8027. spin_unlock_irqrestore(&task_group_lock, flags);
  8028. return tg;
  8029. err:
  8030. free_sched_group(tg);
  8031. return ERR_PTR(-ENOMEM);
  8032. }
  8033. /* rcu callback to free various structures associated with a task group */
  8034. static void free_sched_group_rcu(struct rcu_head *rhp)
  8035. {
  8036. /* now it should be safe to free those cfs_rqs */
  8037. free_sched_group(container_of(rhp, struct task_group, rcu));
  8038. }
  8039. /* Destroy runqueue etc associated with a task group */
  8040. void sched_destroy_group(struct task_group *tg)
  8041. {
  8042. unsigned long flags;
  8043. int i;
  8044. spin_lock_irqsave(&task_group_lock, flags);
  8045. for_each_possible_cpu(i) {
  8046. unregister_fair_sched_group(tg, i);
  8047. unregister_rt_sched_group(tg, i);
  8048. }
  8049. list_del_rcu(&tg->list);
  8050. list_del_rcu(&tg->siblings);
  8051. spin_unlock_irqrestore(&task_group_lock, flags);
  8052. /* wait for possible concurrent references to cfs_rqs complete */
  8053. call_rcu(&tg->rcu, free_sched_group_rcu);
  8054. }
  8055. /* change task's runqueue when it moves between groups.
  8056. * The caller of this function should have put the task in its new group
  8057. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8058. * reflect its new group.
  8059. */
  8060. void sched_move_task(struct task_struct *tsk)
  8061. {
  8062. int on_rq, running;
  8063. unsigned long flags;
  8064. struct rq *rq;
  8065. rq = task_rq_lock(tsk, &flags);
  8066. update_rq_clock(rq);
  8067. running = task_current(rq, tsk);
  8068. on_rq = tsk->se.on_rq;
  8069. if (on_rq)
  8070. dequeue_task(rq, tsk, 0);
  8071. if (unlikely(running))
  8072. tsk->sched_class->put_prev_task(rq, tsk);
  8073. set_task_rq(tsk, task_cpu(tsk));
  8074. #ifdef CONFIG_FAIR_GROUP_SCHED
  8075. if (tsk->sched_class->moved_group)
  8076. tsk->sched_class->moved_group(tsk);
  8077. #endif
  8078. if (unlikely(running))
  8079. tsk->sched_class->set_curr_task(rq);
  8080. if (on_rq)
  8081. enqueue_task(rq, tsk, 0);
  8082. task_rq_unlock(rq, &flags);
  8083. }
  8084. #endif /* CONFIG_GROUP_SCHED */
  8085. #ifdef CONFIG_FAIR_GROUP_SCHED
  8086. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8087. {
  8088. struct cfs_rq *cfs_rq = se->cfs_rq;
  8089. int on_rq;
  8090. on_rq = se->on_rq;
  8091. if (on_rq)
  8092. dequeue_entity(cfs_rq, se, 0);
  8093. se->load.weight = shares;
  8094. se->load.inv_weight = 0;
  8095. if (on_rq)
  8096. enqueue_entity(cfs_rq, se, 0);
  8097. }
  8098. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8099. {
  8100. struct cfs_rq *cfs_rq = se->cfs_rq;
  8101. struct rq *rq = cfs_rq->rq;
  8102. unsigned long flags;
  8103. spin_lock_irqsave(&rq->lock, flags);
  8104. __set_se_shares(se, shares);
  8105. spin_unlock_irqrestore(&rq->lock, flags);
  8106. }
  8107. static DEFINE_MUTEX(shares_mutex);
  8108. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8109. {
  8110. int i;
  8111. unsigned long flags;
  8112. /*
  8113. * We can't change the weight of the root cgroup.
  8114. */
  8115. if (!tg->se[0])
  8116. return -EINVAL;
  8117. if (shares < MIN_SHARES)
  8118. shares = MIN_SHARES;
  8119. else if (shares > MAX_SHARES)
  8120. shares = MAX_SHARES;
  8121. mutex_lock(&shares_mutex);
  8122. if (tg->shares == shares)
  8123. goto done;
  8124. spin_lock_irqsave(&task_group_lock, flags);
  8125. for_each_possible_cpu(i)
  8126. unregister_fair_sched_group(tg, i);
  8127. list_del_rcu(&tg->siblings);
  8128. spin_unlock_irqrestore(&task_group_lock, flags);
  8129. /* wait for any ongoing reference to this group to finish */
  8130. synchronize_sched();
  8131. /*
  8132. * Now we are free to modify the group's share on each cpu
  8133. * w/o tripping rebalance_share or load_balance_fair.
  8134. */
  8135. tg->shares = shares;
  8136. for_each_possible_cpu(i) {
  8137. /*
  8138. * force a rebalance
  8139. */
  8140. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8141. set_se_shares(tg->se[i], shares);
  8142. }
  8143. /*
  8144. * Enable load balance activity on this group, by inserting it back on
  8145. * each cpu's rq->leaf_cfs_rq_list.
  8146. */
  8147. spin_lock_irqsave(&task_group_lock, flags);
  8148. for_each_possible_cpu(i)
  8149. register_fair_sched_group(tg, i);
  8150. list_add_rcu(&tg->siblings, &tg->parent->children);
  8151. spin_unlock_irqrestore(&task_group_lock, flags);
  8152. done:
  8153. mutex_unlock(&shares_mutex);
  8154. return 0;
  8155. }
  8156. unsigned long sched_group_shares(struct task_group *tg)
  8157. {
  8158. return tg->shares;
  8159. }
  8160. #endif
  8161. #ifdef CONFIG_RT_GROUP_SCHED
  8162. /*
  8163. * Ensure that the real time constraints are schedulable.
  8164. */
  8165. static DEFINE_MUTEX(rt_constraints_mutex);
  8166. static unsigned long to_ratio(u64 period, u64 runtime)
  8167. {
  8168. if (runtime == RUNTIME_INF)
  8169. return 1ULL << 20;
  8170. return div64_u64(runtime << 20, period);
  8171. }
  8172. /* Must be called with tasklist_lock held */
  8173. static inline int tg_has_rt_tasks(struct task_group *tg)
  8174. {
  8175. struct task_struct *g, *p;
  8176. do_each_thread(g, p) {
  8177. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8178. return 1;
  8179. } while_each_thread(g, p);
  8180. return 0;
  8181. }
  8182. struct rt_schedulable_data {
  8183. struct task_group *tg;
  8184. u64 rt_period;
  8185. u64 rt_runtime;
  8186. };
  8187. static int tg_schedulable(struct task_group *tg, void *data)
  8188. {
  8189. struct rt_schedulable_data *d = data;
  8190. struct task_group *child;
  8191. unsigned long total, sum = 0;
  8192. u64 period, runtime;
  8193. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8194. runtime = tg->rt_bandwidth.rt_runtime;
  8195. if (tg == d->tg) {
  8196. period = d->rt_period;
  8197. runtime = d->rt_runtime;
  8198. }
  8199. #ifdef CONFIG_USER_SCHED
  8200. if (tg == &root_task_group) {
  8201. period = global_rt_period();
  8202. runtime = global_rt_runtime();
  8203. }
  8204. #endif
  8205. /*
  8206. * Cannot have more runtime than the period.
  8207. */
  8208. if (runtime > period && runtime != RUNTIME_INF)
  8209. return -EINVAL;
  8210. /*
  8211. * Ensure we don't starve existing RT tasks.
  8212. */
  8213. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8214. return -EBUSY;
  8215. total = to_ratio(period, runtime);
  8216. /*
  8217. * Nobody can have more than the global setting allows.
  8218. */
  8219. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8220. return -EINVAL;
  8221. /*
  8222. * The sum of our children's runtime should not exceed our own.
  8223. */
  8224. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8225. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8226. runtime = child->rt_bandwidth.rt_runtime;
  8227. if (child == d->tg) {
  8228. period = d->rt_period;
  8229. runtime = d->rt_runtime;
  8230. }
  8231. sum += to_ratio(period, runtime);
  8232. }
  8233. if (sum > total)
  8234. return -EINVAL;
  8235. return 0;
  8236. }
  8237. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8238. {
  8239. struct rt_schedulable_data data = {
  8240. .tg = tg,
  8241. .rt_period = period,
  8242. .rt_runtime = runtime,
  8243. };
  8244. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8245. }
  8246. static int tg_set_bandwidth(struct task_group *tg,
  8247. u64 rt_period, u64 rt_runtime)
  8248. {
  8249. int i, err = 0;
  8250. mutex_lock(&rt_constraints_mutex);
  8251. read_lock(&tasklist_lock);
  8252. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8253. if (err)
  8254. goto unlock;
  8255. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8256. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8257. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8258. for_each_possible_cpu(i) {
  8259. struct rt_rq *rt_rq = tg->rt_rq[i];
  8260. spin_lock(&rt_rq->rt_runtime_lock);
  8261. rt_rq->rt_runtime = rt_runtime;
  8262. spin_unlock(&rt_rq->rt_runtime_lock);
  8263. }
  8264. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8265. unlock:
  8266. read_unlock(&tasklist_lock);
  8267. mutex_unlock(&rt_constraints_mutex);
  8268. return err;
  8269. }
  8270. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8271. {
  8272. u64 rt_runtime, rt_period;
  8273. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8274. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8275. if (rt_runtime_us < 0)
  8276. rt_runtime = RUNTIME_INF;
  8277. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8278. }
  8279. long sched_group_rt_runtime(struct task_group *tg)
  8280. {
  8281. u64 rt_runtime_us;
  8282. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8283. return -1;
  8284. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8285. do_div(rt_runtime_us, NSEC_PER_USEC);
  8286. return rt_runtime_us;
  8287. }
  8288. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8289. {
  8290. u64 rt_runtime, rt_period;
  8291. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8292. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8293. if (rt_period == 0)
  8294. return -EINVAL;
  8295. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8296. }
  8297. long sched_group_rt_period(struct task_group *tg)
  8298. {
  8299. u64 rt_period_us;
  8300. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8301. do_div(rt_period_us, NSEC_PER_USEC);
  8302. return rt_period_us;
  8303. }
  8304. static int sched_rt_global_constraints(void)
  8305. {
  8306. u64 runtime, period;
  8307. int ret = 0;
  8308. if (sysctl_sched_rt_period <= 0)
  8309. return -EINVAL;
  8310. runtime = global_rt_runtime();
  8311. period = global_rt_period();
  8312. /*
  8313. * Sanity check on the sysctl variables.
  8314. */
  8315. if (runtime > period && runtime != RUNTIME_INF)
  8316. return -EINVAL;
  8317. mutex_lock(&rt_constraints_mutex);
  8318. read_lock(&tasklist_lock);
  8319. ret = __rt_schedulable(NULL, 0, 0);
  8320. read_unlock(&tasklist_lock);
  8321. mutex_unlock(&rt_constraints_mutex);
  8322. return ret;
  8323. }
  8324. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8325. {
  8326. /* Don't accept realtime tasks when there is no way for them to run */
  8327. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8328. return 0;
  8329. return 1;
  8330. }
  8331. #else /* !CONFIG_RT_GROUP_SCHED */
  8332. static int sched_rt_global_constraints(void)
  8333. {
  8334. unsigned long flags;
  8335. int i;
  8336. if (sysctl_sched_rt_period <= 0)
  8337. return -EINVAL;
  8338. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8339. for_each_possible_cpu(i) {
  8340. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8341. spin_lock(&rt_rq->rt_runtime_lock);
  8342. rt_rq->rt_runtime = global_rt_runtime();
  8343. spin_unlock(&rt_rq->rt_runtime_lock);
  8344. }
  8345. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8346. return 0;
  8347. }
  8348. #endif /* CONFIG_RT_GROUP_SCHED */
  8349. int sched_rt_handler(struct ctl_table *table, int write,
  8350. struct file *filp, void __user *buffer, size_t *lenp,
  8351. loff_t *ppos)
  8352. {
  8353. int ret;
  8354. int old_period, old_runtime;
  8355. static DEFINE_MUTEX(mutex);
  8356. mutex_lock(&mutex);
  8357. old_period = sysctl_sched_rt_period;
  8358. old_runtime = sysctl_sched_rt_runtime;
  8359. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8360. if (!ret && write) {
  8361. ret = sched_rt_global_constraints();
  8362. if (ret) {
  8363. sysctl_sched_rt_period = old_period;
  8364. sysctl_sched_rt_runtime = old_runtime;
  8365. } else {
  8366. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8367. def_rt_bandwidth.rt_period =
  8368. ns_to_ktime(global_rt_period());
  8369. }
  8370. }
  8371. mutex_unlock(&mutex);
  8372. return ret;
  8373. }
  8374. #ifdef CONFIG_CGROUP_SCHED
  8375. /* return corresponding task_group object of a cgroup */
  8376. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8377. {
  8378. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8379. struct task_group, css);
  8380. }
  8381. static struct cgroup_subsys_state *
  8382. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8383. {
  8384. struct task_group *tg, *parent;
  8385. if (!cgrp->parent) {
  8386. /* This is early initialization for the top cgroup */
  8387. return &init_task_group.css;
  8388. }
  8389. parent = cgroup_tg(cgrp->parent);
  8390. tg = sched_create_group(parent);
  8391. if (IS_ERR(tg))
  8392. return ERR_PTR(-ENOMEM);
  8393. return &tg->css;
  8394. }
  8395. static void
  8396. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8397. {
  8398. struct task_group *tg = cgroup_tg(cgrp);
  8399. sched_destroy_group(tg);
  8400. }
  8401. static int
  8402. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8403. struct task_struct *tsk)
  8404. {
  8405. #ifdef CONFIG_RT_GROUP_SCHED
  8406. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8407. return -EINVAL;
  8408. #else
  8409. /* We don't support RT-tasks being in separate groups */
  8410. if (tsk->sched_class != &fair_sched_class)
  8411. return -EINVAL;
  8412. #endif
  8413. return 0;
  8414. }
  8415. static void
  8416. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8417. struct cgroup *old_cont, struct task_struct *tsk)
  8418. {
  8419. sched_move_task(tsk);
  8420. }
  8421. #ifdef CONFIG_FAIR_GROUP_SCHED
  8422. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8423. u64 shareval)
  8424. {
  8425. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8426. }
  8427. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8428. {
  8429. struct task_group *tg = cgroup_tg(cgrp);
  8430. return (u64) tg->shares;
  8431. }
  8432. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8433. #ifdef CONFIG_RT_GROUP_SCHED
  8434. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8435. s64 val)
  8436. {
  8437. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8438. }
  8439. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8440. {
  8441. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8442. }
  8443. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8444. u64 rt_period_us)
  8445. {
  8446. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8447. }
  8448. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8449. {
  8450. return sched_group_rt_period(cgroup_tg(cgrp));
  8451. }
  8452. #endif /* CONFIG_RT_GROUP_SCHED */
  8453. static struct cftype cpu_files[] = {
  8454. #ifdef CONFIG_FAIR_GROUP_SCHED
  8455. {
  8456. .name = "shares",
  8457. .read_u64 = cpu_shares_read_u64,
  8458. .write_u64 = cpu_shares_write_u64,
  8459. },
  8460. #endif
  8461. #ifdef CONFIG_RT_GROUP_SCHED
  8462. {
  8463. .name = "rt_runtime_us",
  8464. .read_s64 = cpu_rt_runtime_read,
  8465. .write_s64 = cpu_rt_runtime_write,
  8466. },
  8467. {
  8468. .name = "rt_period_us",
  8469. .read_u64 = cpu_rt_period_read_uint,
  8470. .write_u64 = cpu_rt_period_write_uint,
  8471. },
  8472. #endif
  8473. };
  8474. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8475. {
  8476. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8477. }
  8478. struct cgroup_subsys cpu_cgroup_subsys = {
  8479. .name = "cpu",
  8480. .create = cpu_cgroup_create,
  8481. .destroy = cpu_cgroup_destroy,
  8482. .can_attach = cpu_cgroup_can_attach,
  8483. .attach = cpu_cgroup_attach,
  8484. .populate = cpu_cgroup_populate,
  8485. .subsys_id = cpu_cgroup_subsys_id,
  8486. .early_init = 1,
  8487. };
  8488. #endif /* CONFIG_CGROUP_SCHED */
  8489. #ifdef CONFIG_CGROUP_CPUACCT
  8490. /*
  8491. * CPU accounting code for task groups.
  8492. *
  8493. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8494. * (balbir@in.ibm.com).
  8495. */
  8496. /* track cpu usage of a group of tasks and its child groups */
  8497. struct cpuacct {
  8498. struct cgroup_subsys_state css;
  8499. /* cpuusage holds pointer to a u64-type object on every cpu */
  8500. u64 *cpuusage;
  8501. struct cpuacct *parent;
  8502. };
  8503. struct cgroup_subsys cpuacct_subsys;
  8504. /* return cpu accounting group corresponding to this container */
  8505. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8506. {
  8507. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8508. struct cpuacct, css);
  8509. }
  8510. /* return cpu accounting group to which this task belongs */
  8511. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8512. {
  8513. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8514. struct cpuacct, css);
  8515. }
  8516. /* create a new cpu accounting group */
  8517. static struct cgroup_subsys_state *cpuacct_create(
  8518. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8519. {
  8520. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8521. if (!ca)
  8522. return ERR_PTR(-ENOMEM);
  8523. ca->cpuusage = alloc_percpu(u64);
  8524. if (!ca->cpuusage) {
  8525. kfree(ca);
  8526. return ERR_PTR(-ENOMEM);
  8527. }
  8528. if (cgrp->parent)
  8529. ca->parent = cgroup_ca(cgrp->parent);
  8530. return &ca->css;
  8531. }
  8532. /* destroy an existing cpu accounting group */
  8533. static void
  8534. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8535. {
  8536. struct cpuacct *ca = cgroup_ca(cgrp);
  8537. free_percpu(ca->cpuusage);
  8538. kfree(ca);
  8539. }
  8540. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8541. {
  8542. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8543. u64 data;
  8544. #ifndef CONFIG_64BIT
  8545. /*
  8546. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8547. */
  8548. spin_lock_irq(&cpu_rq(cpu)->lock);
  8549. data = *cpuusage;
  8550. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8551. #else
  8552. data = *cpuusage;
  8553. #endif
  8554. return data;
  8555. }
  8556. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8557. {
  8558. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8559. #ifndef CONFIG_64BIT
  8560. /*
  8561. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8562. */
  8563. spin_lock_irq(&cpu_rq(cpu)->lock);
  8564. *cpuusage = val;
  8565. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8566. #else
  8567. *cpuusage = val;
  8568. #endif
  8569. }
  8570. /* return total cpu usage (in nanoseconds) of a group */
  8571. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8572. {
  8573. struct cpuacct *ca = cgroup_ca(cgrp);
  8574. u64 totalcpuusage = 0;
  8575. int i;
  8576. for_each_present_cpu(i)
  8577. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8578. return totalcpuusage;
  8579. }
  8580. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8581. u64 reset)
  8582. {
  8583. struct cpuacct *ca = cgroup_ca(cgrp);
  8584. int err = 0;
  8585. int i;
  8586. if (reset) {
  8587. err = -EINVAL;
  8588. goto out;
  8589. }
  8590. for_each_present_cpu(i)
  8591. cpuacct_cpuusage_write(ca, i, 0);
  8592. out:
  8593. return err;
  8594. }
  8595. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8596. struct seq_file *m)
  8597. {
  8598. struct cpuacct *ca = cgroup_ca(cgroup);
  8599. u64 percpu;
  8600. int i;
  8601. for_each_present_cpu(i) {
  8602. percpu = cpuacct_cpuusage_read(ca, i);
  8603. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8604. }
  8605. seq_printf(m, "\n");
  8606. return 0;
  8607. }
  8608. static struct cftype files[] = {
  8609. {
  8610. .name = "usage",
  8611. .read_u64 = cpuusage_read,
  8612. .write_u64 = cpuusage_write,
  8613. },
  8614. {
  8615. .name = "usage_percpu",
  8616. .read_seq_string = cpuacct_percpu_seq_read,
  8617. },
  8618. };
  8619. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8620. {
  8621. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8622. }
  8623. /*
  8624. * charge this task's execution time to its accounting group.
  8625. *
  8626. * called with rq->lock held.
  8627. */
  8628. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8629. {
  8630. struct cpuacct *ca;
  8631. int cpu;
  8632. if (unlikely(!cpuacct_subsys.active))
  8633. return;
  8634. cpu = task_cpu(tsk);
  8635. ca = task_ca(tsk);
  8636. for (; ca; ca = ca->parent) {
  8637. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8638. *cpuusage += cputime;
  8639. }
  8640. }
  8641. struct cgroup_subsys cpuacct_subsys = {
  8642. .name = "cpuacct",
  8643. .create = cpuacct_create,
  8644. .destroy = cpuacct_destroy,
  8645. .populate = cpuacct_populate,
  8646. .subsys_id = cpuacct_subsys_id,
  8647. };
  8648. #endif /* CONFIG_CGROUP_CPUACCT */