qlge_main.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. NETIF_MSG_TX_QUEUED |
  58. NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
  72. /* required last entry */
  73. {0,}
  74. };
  75. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  76. /* This hardware semaphore causes exclusive access to
  77. * resources shared between the NIC driver, MPI firmware,
  78. * FCOE firmware and the FC driver.
  79. */
  80. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  81. {
  82. u32 sem_bits = 0;
  83. switch (sem_mask) {
  84. case SEM_XGMAC0_MASK:
  85. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  86. break;
  87. case SEM_XGMAC1_MASK:
  88. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  89. break;
  90. case SEM_ICB_MASK:
  91. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  92. break;
  93. case SEM_MAC_ADDR_MASK:
  94. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  95. break;
  96. case SEM_FLASH_MASK:
  97. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  98. break;
  99. case SEM_PROBE_MASK:
  100. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  101. break;
  102. case SEM_RT_IDX_MASK:
  103. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  104. break;
  105. case SEM_PROC_REG_MASK:
  106. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  107. break;
  108. default:
  109. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  110. return -EINVAL;
  111. }
  112. ql_write32(qdev, SEM, sem_bits | sem_mask);
  113. return !(ql_read32(qdev, SEM) & sem_bits);
  114. }
  115. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  116. {
  117. unsigned int wait_count = 30;
  118. do {
  119. if (!ql_sem_trylock(qdev, sem_mask))
  120. return 0;
  121. udelay(100);
  122. } while (--wait_count);
  123. return -ETIMEDOUT;
  124. }
  125. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. ql_write32(qdev, SEM, sem_mask);
  128. ql_read32(qdev, SEM); /* flush */
  129. }
  130. /* This function waits for a specific bit to come ready
  131. * in a given register. It is used mostly by the initialize
  132. * process, but is also used in kernel thread API such as
  133. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  134. */
  135. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  136. {
  137. u32 temp;
  138. int count = UDELAY_COUNT;
  139. while (count) {
  140. temp = ql_read32(qdev, reg);
  141. /* check for errors */
  142. if (temp & err_bit) {
  143. QPRINTK(qdev, PROBE, ALERT,
  144. "register 0x%.08x access error, value = 0x%.08x!.\n",
  145. reg, temp);
  146. return -EIO;
  147. } else if (temp & bit)
  148. return 0;
  149. udelay(UDELAY_DELAY);
  150. count--;
  151. }
  152. QPRINTK(qdev, PROBE, ALERT,
  153. "Timed out waiting for reg %x to come ready.\n", reg);
  154. return -ETIMEDOUT;
  155. }
  156. /* The CFG register is used to download TX and RX control blocks
  157. * to the chip. This function waits for an operation to complete.
  158. */
  159. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  160. {
  161. int count = UDELAY_COUNT;
  162. u32 temp;
  163. while (count) {
  164. temp = ql_read32(qdev, CFG);
  165. if (temp & CFG_LE)
  166. return -EIO;
  167. if (!(temp & bit))
  168. return 0;
  169. udelay(UDELAY_DELAY);
  170. count--;
  171. }
  172. return -ETIMEDOUT;
  173. }
  174. /* Used to issue init control blocks to hw. Maps control block,
  175. * sets address, triggers download, waits for completion.
  176. */
  177. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  178. u16 q_id)
  179. {
  180. u64 map;
  181. int status = 0;
  182. int direction;
  183. u32 mask;
  184. u32 value;
  185. direction =
  186. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  187. PCI_DMA_FROMDEVICE;
  188. map = pci_map_single(qdev->pdev, ptr, size, direction);
  189. if (pci_dma_mapping_error(qdev->pdev, map)) {
  190. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  191. return -ENOMEM;
  192. }
  193. status = ql_wait_cfg(qdev, bit);
  194. if (status) {
  195. QPRINTK(qdev, IFUP, ERR,
  196. "Timed out waiting for CFG to come ready.\n");
  197. goto exit;
  198. }
  199. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  200. if (status)
  201. goto exit;
  202. ql_write32(qdev, ICB_L, (u32) map);
  203. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  204. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  205. mask = CFG_Q_MASK | (bit << 16);
  206. value = bit | (q_id << CFG_Q_SHIFT);
  207. ql_write32(qdev, CFG, (mask | value));
  208. /*
  209. * Wait for the bit to clear after signaling hw.
  210. */
  211. status = ql_wait_cfg(qdev, bit);
  212. exit:
  213. pci_unmap_single(qdev->pdev, map, size, direction);
  214. return status;
  215. }
  216. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  217. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  218. u32 *value)
  219. {
  220. u32 offset = 0;
  221. int status;
  222. switch (type) {
  223. case MAC_ADDR_TYPE_MULTI_MAC:
  224. case MAC_ADDR_TYPE_CAM_MAC:
  225. {
  226. status =
  227. ql_wait_reg_rdy(qdev,
  228. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  229. if (status)
  230. goto exit;
  231. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  232. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  233. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  234. status =
  235. ql_wait_reg_rdy(qdev,
  236. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  237. if (status)
  238. goto exit;
  239. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  243. if (status)
  244. goto exit;
  245. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  246. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  247. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  248. status =
  249. ql_wait_reg_rdy(qdev,
  250. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  251. if (status)
  252. goto exit;
  253. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  254. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  255. status =
  256. ql_wait_reg_rdy(qdev,
  257. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  258. if (status)
  259. goto exit;
  260. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  261. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  262. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  263. status =
  264. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  265. MAC_ADDR_MR, 0);
  266. if (status)
  267. goto exit;
  268. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  269. }
  270. break;
  271. }
  272. case MAC_ADDR_TYPE_VLAN:
  273. case MAC_ADDR_TYPE_MULTI_FLTR:
  274. default:
  275. QPRINTK(qdev, IFUP, CRIT,
  276. "Address type %d not yet supported.\n", type);
  277. status = -EPERM;
  278. }
  279. exit:
  280. return status;
  281. }
  282. /* Set up a MAC, multicast or VLAN address for the
  283. * inbound frame matching.
  284. */
  285. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  286. u16 index)
  287. {
  288. u32 offset = 0;
  289. int status = 0;
  290. switch (type) {
  291. case MAC_ADDR_TYPE_MULTI_MAC:
  292. case MAC_ADDR_TYPE_CAM_MAC:
  293. {
  294. u32 cam_output;
  295. u32 upper = (addr[0] << 8) | addr[1];
  296. u32 lower =
  297. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  298. (addr[5]);
  299. QPRINTK(qdev, IFUP, INFO,
  300. "Adding %s address %pM"
  301. " at index %d in the CAM.\n",
  302. ((type ==
  303. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  304. "UNICAST"), addr, index);
  305. status =
  306. ql_wait_reg_rdy(qdev,
  307. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  308. if (status)
  309. goto exit;
  310. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  311. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  312. type); /* type */
  313. ql_write32(qdev, MAC_ADDR_DATA, lower);
  314. status =
  315. ql_wait_reg_rdy(qdev,
  316. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  317. if (status)
  318. goto exit;
  319. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  320. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  321. type); /* type */
  322. ql_write32(qdev, MAC_ADDR_DATA, upper);
  323. status =
  324. ql_wait_reg_rdy(qdev,
  325. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  326. if (status)
  327. goto exit;
  328. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  329. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  330. type); /* type */
  331. /* This field should also include the queue id
  332. and possibly the function id. Right now we hardcode
  333. the route field to NIC core.
  334. */
  335. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  336. cam_output = (CAM_OUT_ROUTE_NIC |
  337. (qdev->
  338. func << CAM_OUT_FUNC_SHIFT) |
  339. (qdev->
  340. rss_ring_first_cq_id <<
  341. CAM_OUT_CQ_ID_SHIFT));
  342. if (qdev->vlgrp)
  343. cam_output |= CAM_OUT_RV;
  344. /* route to NIC core */
  345. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  346. }
  347. break;
  348. }
  349. case MAC_ADDR_TYPE_VLAN:
  350. {
  351. u32 enable_bit = *((u32 *) &addr[0]);
  352. /* For VLAN, the addr actually holds a bit that
  353. * either enables or disables the vlan id we are
  354. * addressing. It's either MAC_ADDR_E on or off.
  355. * That's bit-27 we're talking about.
  356. */
  357. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  358. (enable_bit ? "Adding" : "Removing"),
  359. index, (enable_bit ? "to" : "from"));
  360. status =
  361. ql_wait_reg_rdy(qdev,
  362. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  363. if (status)
  364. goto exit;
  365. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  366. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  367. type | /* type */
  368. enable_bit); /* enable/disable */
  369. break;
  370. }
  371. case MAC_ADDR_TYPE_MULTI_FLTR:
  372. default:
  373. QPRINTK(qdev, IFUP, CRIT,
  374. "Address type %d not yet supported.\n", type);
  375. status = -EPERM;
  376. }
  377. exit:
  378. return status;
  379. }
  380. /* Get a specific frame routing value from the CAM.
  381. * Used for debug and reg dump.
  382. */
  383. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  384. {
  385. int status = 0;
  386. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  387. if (status)
  388. goto exit;
  389. ql_write32(qdev, RT_IDX,
  390. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  391. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  392. if (status)
  393. goto exit;
  394. *value = ql_read32(qdev, RT_DATA);
  395. exit:
  396. return status;
  397. }
  398. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  399. * to route different frame types to various inbound queues. We send broadcast/
  400. * multicast/error frames to the default queue for slow handling,
  401. * and CAM hit/RSS frames to the fast handling queues.
  402. */
  403. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  404. int enable)
  405. {
  406. int status = -EINVAL; /* Return error if no mask match. */
  407. u32 value = 0;
  408. QPRINTK(qdev, IFUP, DEBUG,
  409. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  410. (enable ? "Adding" : "Removing"),
  411. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  412. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  413. ((index ==
  414. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  415. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  416. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  417. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  418. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  419. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  420. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  421. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  422. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  423. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  424. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  425. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  426. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  427. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  428. (enable ? "to" : "from"));
  429. switch (mask) {
  430. case RT_IDX_CAM_HIT:
  431. {
  432. value = RT_IDX_DST_CAM_Q | /* dest */
  433. RT_IDX_TYPE_NICQ | /* type */
  434. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  435. break;
  436. }
  437. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  438. {
  439. value = RT_IDX_DST_DFLT_Q | /* dest */
  440. RT_IDX_TYPE_NICQ | /* type */
  441. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  442. break;
  443. }
  444. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  445. {
  446. value = RT_IDX_DST_DFLT_Q | /* dest */
  447. RT_IDX_TYPE_NICQ | /* type */
  448. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  449. break;
  450. }
  451. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  452. {
  453. value = RT_IDX_DST_DFLT_Q | /* dest */
  454. RT_IDX_TYPE_NICQ | /* type */
  455. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  456. break;
  457. }
  458. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  459. {
  460. value = RT_IDX_DST_CAM_Q | /* dest */
  461. RT_IDX_TYPE_NICQ | /* type */
  462. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  463. break;
  464. }
  465. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  466. {
  467. value = RT_IDX_DST_CAM_Q | /* dest */
  468. RT_IDX_TYPE_NICQ | /* type */
  469. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  470. break;
  471. }
  472. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  473. {
  474. value = RT_IDX_DST_RSS | /* dest */
  475. RT_IDX_TYPE_NICQ | /* type */
  476. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  477. break;
  478. }
  479. case 0: /* Clear the E-bit on an entry. */
  480. {
  481. value = RT_IDX_DST_DFLT_Q | /* dest */
  482. RT_IDX_TYPE_NICQ | /* type */
  483. (index << RT_IDX_IDX_SHIFT);/* index */
  484. break;
  485. }
  486. default:
  487. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  488. mask);
  489. status = -EPERM;
  490. goto exit;
  491. }
  492. if (value) {
  493. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  494. if (status)
  495. goto exit;
  496. value |= (enable ? RT_IDX_E : 0);
  497. ql_write32(qdev, RT_IDX, value);
  498. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  499. }
  500. exit:
  501. return status;
  502. }
  503. static void ql_enable_interrupts(struct ql_adapter *qdev)
  504. {
  505. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  506. }
  507. static void ql_disable_interrupts(struct ql_adapter *qdev)
  508. {
  509. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  510. }
  511. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  512. * Otherwise, we may have multiple outstanding workers and don't want to
  513. * enable until the last one finishes. In this case, the irq_cnt gets
  514. * incremented everytime we queue a worker and decremented everytime
  515. * a worker finishes. Once it hits zero we enable the interrupt.
  516. */
  517. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  518. {
  519. u32 var = 0;
  520. unsigned long hw_flags = 0;
  521. struct intr_context *ctx = qdev->intr_context + intr;
  522. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  523. /* Always enable if we're MSIX multi interrupts and
  524. * it's not the default (zeroeth) interrupt.
  525. */
  526. ql_write32(qdev, INTR_EN,
  527. ctx->intr_en_mask);
  528. var = ql_read32(qdev, STS);
  529. return var;
  530. }
  531. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  532. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  533. ql_write32(qdev, INTR_EN,
  534. ctx->intr_en_mask);
  535. var = ql_read32(qdev, STS);
  536. }
  537. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  538. return var;
  539. }
  540. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  541. {
  542. u32 var = 0;
  543. unsigned long hw_flags;
  544. struct intr_context *ctx;
  545. /* HW disables for us if we're MSIX multi interrupts and
  546. * it's not the default (zeroeth) interrupt.
  547. */
  548. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  549. return 0;
  550. ctx = qdev->intr_context + intr;
  551. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  552. if (!atomic_read(&ctx->irq_cnt)) {
  553. ql_write32(qdev, INTR_EN,
  554. ctx->intr_dis_mask);
  555. var = ql_read32(qdev, STS);
  556. }
  557. atomic_inc(&ctx->irq_cnt);
  558. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  559. return var;
  560. }
  561. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  562. {
  563. int i;
  564. for (i = 0; i < qdev->intr_count; i++) {
  565. /* The enable call does a atomic_dec_and_test
  566. * and enables only if the result is zero.
  567. * So we precharge it here.
  568. */
  569. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  570. i == 0))
  571. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  572. ql_enable_completion_interrupt(qdev, i);
  573. }
  574. }
  575. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  576. {
  577. int status = 0;
  578. /* wait for reg to come ready */
  579. status = ql_wait_reg_rdy(qdev,
  580. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  581. if (status)
  582. goto exit;
  583. /* set up for reg read */
  584. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  585. /* wait for reg to come ready */
  586. status = ql_wait_reg_rdy(qdev,
  587. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  588. if (status)
  589. goto exit;
  590. /* This data is stored on flash as an array of
  591. * __le32. Since ql_read32() returns cpu endian
  592. * we need to swap it back.
  593. */
  594. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  595. exit:
  596. return status;
  597. }
  598. static int ql_get_flash_params(struct ql_adapter *qdev)
  599. {
  600. int i;
  601. int status;
  602. __le32 *p = (__le32 *)&qdev->flash;
  603. u32 offset = 0;
  604. /* Second function's parameters follow the first
  605. * function's.
  606. */
  607. if (qdev->func)
  608. offset = sizeof(qdev->flash) / sizeof(u32);
  609. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  610. return -ETIMEDOUT;
  611. for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
  612. status = ql_read_flash_word(qdev, i+offset, p);
  613. if (status) {
  614. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  615. goto exit;
  616. }
  617. }
  618. exit:
  619. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  620. return status;
  621. }
  622. /* xgmac register are located behind the xgmac_addr and xgmac_data
  623. * register pair. Each read/write requires us to wait for the ready
  624. * bit before reading/writing the data.
  625. */
  626. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  627. {
  628. int status;
  629. /* wait for reg to come ready */
  630. status = ql_wait_reg_rdy(qdev,
  631. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  632. if (status)
  633. return status;
  634. /* write the data to the data reg */
  635. ql_write32(qdev, XGMAC_DATA, data);
  636. /* trigger the write */
  637. ql_write32(qdev, XGMAC_ADDR, reg);
  638. return status;
  639. }
  640. /* xgmac register are located behind the xgmac_addr and xgmac_data
  641. * register pair. Each read/write requires us to wait for the ready
  642. * bit before reading/writing the data.
  643. */
  644. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  645. {
  646. int status = 0;
  647. /* wait for reg to come ready */
  648. status = ql_wait_reg_rdy(qdev,
  649. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  650. if (status)
  651. goto exit;
  652. /* set up for reg read */
  653. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  654. /* wait for reg to come ready */
  655. status = ql_wait_reg_rdy(qdev,
  656. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  657. if (status)
  658. goto exit;
  659. /* get the data */
  660. *data = ql_read32(qdev, XGMAC_DATA);
  661. exit:
  662. return status;
  663. }
  664. /* This is used for reading the 64-bit statistics regs. */
  665. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  666. {
  667. int status = 0;
  668. u32 hi = 0;
  669. u32 lo = 0;
  670. status = ql_read_xgmac_reg(qdev, reg, &lo);
  671. if (status)
  672. goto exit;
  673. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  674. if (status)
  675. goto exit;
  676. *data = (u64) lo | ((u64) hi << 32);
  677. exit:
  678. return status;
  679. }
  680. /* Take the MAC Core out of reset.
  681. * Enable statistics counting.
  682. * Take the transmitter/receiver out of reset.
  683. * This functionality may be done in the MPI firmware at a
  684. * later date.
  685. */
  686. static int ql_port_initialize(struct ql_adapter *qdev)
  687. {
  688. int status = 0;
  689. u32 data;
  690. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  691. /* Another function has the semaphore, so
  692. * wait for the port init bit to come ready.
  693. */
  694. QPRINTK(qdev, LINK, INFO,
  695. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  696. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  697. if (status) {
  698. QPRINTK(qdev, LINK, CRIT,
  699. "Port initialize timed out.\n");
  700. }
  701. return status;
  702. }
  703. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  704. /* Set the core reset. */
  705. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  706. if (status)
  707. goto end;
  708. data |= GLOBAL_CFG_RESET;
  709. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  710. if (status)
  711. goto end;
  712. /* Clear the core reset and turn on jumbo for receiver. */
  713. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  714. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  715. data |= GLOBAL_CFG_TX_STAT_EN;
  716. data |= GLOBAL_CFG_RX_STAT_EN;
  717. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  718. if (status)
  719. goto end;
  720. /* Enable transmitter, and clear it's reset. */
  721. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  722. if (status)
  723. goto end;
  724. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  725. data |= TX_CFG_EN; /* Enable the transmitter. */
  726. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  727. if (status)
  728. goto end;
  729. /* Enable receiver and clear it's reset. */
  730. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  731. if (status)
  732. goto end;
  733. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  734. data |= RX_CFG_EN; /* Enable the receiver. */
  735. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  736. if (status)
  737. goto end;
  738. /* Turn on jumbo. */
  739. status =
  740. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  741. if (status)
  742. goto end;
  743. status =
  744. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  745. if (status)
  746. goto end;
  747. /* Signal to the world that the port is enabled. */
  748. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  749. end:
  750. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  751. return status;
  752. }
  753. /* Get the next large buffer. */
  754. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  755. {
  756. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  757. rx_ring->lbq_curr_idx++;
  758. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  759. rx_ring->lbq_curr_idx = 0;
  760. rx_ring->lbq_free_cnt++;
  761. return lbq_desc;
  762. }
  763. /* Get the next small buffer. */
  764. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  765. {
  766. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  767. rx_ring->sbq_curr_idx++;
  768. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  769. rx_ring->sbq_curr_idx = 0;
  770. rx_ring->sbq_free_cnt++;
  771. return sbq_desc;
  772. }
  773. /* Update an rx ring index. */
  774. static void ql_update_cq(struct rx_ring *rx_ring)
  775. {
  776. rx_ring->cnsmr_idx++;
  777. rx_ring->curr_entry++;
  778. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  779. rx_ring->cnsmr_idx = 0;
  780. rx_ring->curr_entry = rx_ring->cq_base;
  781. }
  782. }
  783. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  784. {
  785. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  786. }
  787. /* Process (refill) a large buffer queue. */
  788. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  789. {
  790. u32 clean_idx = rx_ring->lbq_clean_idx;
  791. u32 start_idx = clean_idx;
  792. struct bq_desc *lbq_desc;
  793. u64 map;
  794. int i;
  795. while (rx_ring->lbq_free_cnt > 16) {
  796. for (i = 0; i < 16; i++) {
  797. QPRINTK(qdev, RX_STATUS, DEBUG,
  798. "lbq: try cleaning clean_idx = %d.\n",
  799. clean_idx);
  800. lbq_desc = &rx_ring->lbq[clean_idx];
  801. if (lbq_desc->p.lbq_page == NULL) {
  802. QPRINTK(qdev, RX_STATUS, DEBUG,
  803. "lbq: getting new page for index %d.\n",
  804. lbq_desc->index);
  805. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  806. if (lbq_desc->p.lbq_page == NULL) {
  807. rx_ring->lbq_clean_idx = clean_idx;
  808. QPRINTK(qdev, RX_STATUS, ERR,
  809. "Couldn't get a page.\n");
  810. return;
  811. }
  812. map = pci_map_page(qdev->pdev,
  813. lbq_desc->p.lbq_page,
  814. 0, PAGE_SIZE,
  815. PCI_DMA_FROMDEVICE);
  816. if (pci_dma_mapping_error(qdev->pdev, map)) {
  817. rx_ring->lbq_clean_idx = clean_idx;
  818. put_page(lbq_desc->p.lbq_page);
  819. lbq_desc->p.lbq_page = NULL;
  820. QPRINTK(qdev, RX_STATUS, ERR,
  821. "PCI mapping failed.\n");
  822. return;
  823. }
  824. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  825. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  826. *lbq_desc->addr = cpu_to_le64(map);
  827. }
  828. clean_idx++;
  829. if (clean_idx == rx_ring->lbq_len)
  830. clean_idx = 0;
  831. }
  832. rx_ring->lbq_clean_idx = clean_idx;
  833. rx_ring->lbq_prod_idx += 16;
  834. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  835. rx_ring->lbq_prod_idx = 0;
  836. rx_ring->lbq_free_cnt -= 16;
  837. }
  838. if (start_idx != clean_idx) {
  839. QPRINTK(qdev, RX_STATUS, DEBUG,
  840. "lbq: updating prod idx = %d.\n",
  841. rx_ring->lbq_prod_idx);
  842. ql_write_db_reg(rx_ring->lbq_prod_idx,
  843. rx_ring->lbq_prod_idx_db_reg);
  844. }
  845. }
  846. /* Process (refill) a small buffer queue. */
  847. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  848. {
  849. u32 clean_idx = rx_ring->sbq_clean_idx;
  850. u32 start_idx = clean_idx;
  851. struct bq_desc *sbq_desc;
  852. u64 map;
  853. int i;
  854. while (rx_ring->sbq_free_cnt > 16) {
  855. for (i = 0; i < 16; i++) {
  856. sbq_desc = &rx_ring->sbq[clean_idx];
  857. QPRINTK(qdev, RX_STATUS, DEBUG,
  858. "sbq: try cleaning clean_idx = %d.\n",
  859. clean_idx);
  860. if (sbq_desc->p.skb == NULL) {
  861. QPRINTK(qdev, RX_STATUS, DEBUG,
  862. "sbq: getting new skb for index %d.\n",
  863. sbq_desc->index);
  864. sbq_desc->p.skb =
  865. netdev_alloc_skb(qdev->ndev,
  866. rx_ring->sbq_buf_size);
  867. if (sbq_desc->p.skb == NULL) {
  868. QPRINTK(qdev, PROBE, ERR,
  869. "Couldn't get an skb.\n");
  870. rx_ring->sbq_clean_idx = clean_idx;
  871. return;
  872. }
  873. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  874. map = pci_map_single(qdev->pdev,
  875. sbq_desc->p.skb->data,
  876. rx_ring->sbq_buf_size /
  877. 2, PCI_DMA_FROMDEVICE);
  878. if (pci_dma_mapping_error(qdev->pdev, map)) {
  879. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  880. rx_ring->sbq_clean_idx = clean_idx;
  881. dev_kfree_skb_any(sbq_desc->p.skb);
  882. sbq_desc->p.skb = NULL;
  883. return;
  884. }
  885. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  886. pci_unmap_len_set(sbq_desc, maplen,
  887. rx_ring->sbq_buf_size / 2);
  888. *sbq_desc->addr = cpu_to_le64(map);
  889. }
  890. clean_idx++;
  891. if (clean_idx == rx_ring->sbq_len)
  892. clean_idx = 0;
  893. }
  894. rx_ring->sbq_clean_idx = clean_idx;
  895. rx_ring->sbq_prod_idx += 16;
  896. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  897. rx_ring->sbq_prod_idx = 0;
  898. rx_ring->sbq_free_cnt -= 16;
  899. }
  900. if (start_idx != clean_idx) {
  901. QPRINTK(qdev, RX_STATUS, DEBUG,
  902. "sbq: updating prod idx = %d.\n",
  903. rx_ring->sbq_prod_idx);
  904. ql_write_db_reg(rx_ring->sbq_prod_idx,
  905. rx_ring->sbq_prod_idx_db_reg);
  906. }
  907. }
  908. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  909. struct rx_ring *rx_ring)
  910. {
  911. ql_update_sbq(qdev, rx_ring);
  912. ql_update_lbq(qdev, rx_ring);
  913. }
  914. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  915. * fails at some stage, or from the interrupt when a tx completes.
  916. */
  917. static void ql_unmap_send(struct ql_adapter *qdev,
  918. struct tx_ring_desc *tx_ring_desc, int mapped)
  919. {
  920. int i;
  921. for (i = 0; i < mapped; i++) {
  922. if (i == 0 || (i == 7 && mapped > 7)) {
  923. /*
  924. * Unmap the skb->data area, or the
  925. * external sglist (AKA the Outbound
  926. * Address List (OAL)).
  927. * If its the zeroeth element, then it's
  928. * the skb->data area. If it's the 7th
  929. * element and there is more than 6 frags,
  930. * then its an OAL.
  931. */
  932. if (i == 7) {
  933. QPRINTK(qdev, TX_DONE, DEBUG,
  934. "unmapping OAL area.\n");
  935. }
  936. pci_unmap_single(qdev->pdev,
  937. pci_unmap_addr(&tx_ring_desc->map[i],
  938. mapaddr),
  939. pci_unmap_len(&tx_ring_desc->map[i],
  940. maplen),
  941. PCI_DMA_TODEVICE);
  942. } else {
  943. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  944. i);
  945. pci_unmap_page(qdev->pdev,
  946. pci_unmap_addr(&tx_ring_desc->map[i],
  947. mapaddr),
  948. pci_unmap_len(&tx_ring_desc->map[i],
  949. maplen), PCI_DMA_TODEVICE);
  950. }
  951. }
  952. }
  953. /* Map the buffers for this transmit. This will return
  954. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  955. */
  956. static int ql_map_send(struct ql_adapter *qdev,
  957. struct ob_mac_iocb_req *mac_iocb_ptr,
  958. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  959. {
  960. int len = skb_headlen(skb);
  961. dma_addr_t map;
  962. int frag_idx, err, map_idx = 0;
  963. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  964. int frag_cnt = skb_shinfo(skb)->nr_frags;
  965. if (frag_cnt) {
  966. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  967. }
  968. /*
  969. * Map the skb buffer first.
  970. */
  971. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  972. err = pci_dma_mapping_error(qdev->pdev, map);
  973. if (err) {
  974. QPRINTK(qdev, TX_QUEUED, ERR,
  975. "PCI mapping failed with error: %d\n", err);
  976. return NETDEV_TX_BUSY;
  977. }
  978. tbd->len = cpu_to_le32(len);
  979. tbd->addr = cpu_to_le64(map);
  980. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  981. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  982. map_idx++;
  983. /*
  984. * This loop fills the remainder of the 8 address descriptors
  985. * in the IOCB. If there are more than 7 fragments, then the
  986. * eighth address desc will point to an external list (OAL).
  987. * When this happens, the remainder of the frags will be stored
  988. * in this list.
  989. */
  990. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  991. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  992. tbd++;
  993. if (frag_idx == 6 && frag_cnt > 7) {
  994. /* Let's tack on an sglist.
  995. * Our control block will now
  996. * look like this:
  997. * iocb->seg[0] = skb->data
  998. * iocb->seg[1] = frag[0]
  999. * iocb->seg[2] = frag[1]
  1000. * iocb->seg[3] = frag[2]
  1001. * iocb->seg[4] = frag[3]
  1002. * iocb->seg[5] = frag[4]
  1003. * iocb->seg[6] = frag[5]
  1004. * iocb->seg[7] = ptr to OAL (external sglist)
  1005. * oal->seg[0] = frag[6]
  1006. * oal->seg[1] = frag[7]
  1007. * oal->seg[2] = frag[8]
  1008. * oal->seg[3] = frag[9]
  1009. * oal->seg[4] = frag[10]
  1010. * etc...
  1011. */
  1012. /* Tack on the OAL in the eighth segment of IOCB. */
  1013. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1014. sizeof(struct oal),
  1015. PCI_DMA_TODEVICE);
  1016. err = pci_dma_mapping_error(qdev->pdev, map);
  1017. if (err) {
  1018. QPRINTK(qdev, TX_QUEUED, ERR,
  1019. "PCI mapping outbound address list with error: %d\n",
  1020. err);
  1021. goto map_error;
  1022. }
  1023. tbd->addr = cpu_to_le64(map);
  1024. /*
  1025. * The length is the number of fragments
  1026. * that remain to be mapped times the length
  1027. * of our sglist (OAL).
  1028. */
  1029. tbd->len =
  1030. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1031. (frag_cnt - frag_idx)) | TX_DESC_C);
  1032. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1033. map);
  1034. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1035. sizeof(struct oal));
  1036. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1037. map_idx++;
  1038. }
  1039. map =
  1040. pci_map_page(qdev->pdev, frag->page,
  1041. frag->page_offset, frag->size,
  1042. PCI_DMA_TODEVICE);
  1043. err = pci_dma_mapping_error(qdev->pdev, map);
  1044. if (err) {
  1045. QPRINTK(qdev, TX_QUEUED, ERR,
  1046. "PCI mapping frags failed with error: %d.\n",
  1047. err);
  1048. goto map_error;
  1049. }
  1050. tbd->addr = cpu_to_le64(map);
  1051. tbd->len = cpu_to_le32(frag->size);
  1052. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1053. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1054. frag->size);
  1055. }
  1056. /* Save the number of segments we've mapped. */
  1057. tx_ring_desc->map_cnt = map_idx;
  1058. /* Terminate the last segment. */
  1059. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1060. return NETDEV_TX_OK;
  1061. map_error:
  1062. /*
  1063. * If the first frag mapping failed, then i will be zero.
  1064. * This causes the unmap of the skb->data area. Otherwise
  1065. * we pass in the number of frags that mapped successfully
  1066. * so they can be umapped.
  1067. */
  1068. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1069. return NETDEV_TX_BUSY;
  1070. }
  1071. static void ql_realign_skb(struct sk_buff *skb, int len)
  1072. {
  1073. void *temp_addr = skb->data;
  1074. /* Undo the skb_reserve(skb,32) we did before
  1075. * giving to hardware, and realign data on
  1076. * a 2-byte boundary.
  1077. */
  1078. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1079. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1080. skb_copy_to_linear_data(skb, temp_addr,
  1081. (unsigned int)len);
  1082. }
  1083. /*
  1084. * This function builds an skb for the given inbound
  1085. * completion. It will be rewritten for readability in the near
  1086. * future, but for not it works well.
  1087. */
  1088. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1089. struct rx_ring *rx_ring,
  1090. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1091. {
  1092. struct bq_desc *lbq_desc;
  1093. struct bq_desc *sbq_desc;
  1094. struct sk_buff *skb = NULL;
  1095. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1096. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1097. /*
  1098. * Handle the header buffer if present.
  1099. */
  1100. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1101. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1102. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1103. /*
  1104. * Headers fit nicely into a small buffer.
  1105. */
  1106. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1107. pci_unmap_single(qdev->pdev,
  1108. pci_unmap_addr(sbq_desc, mapaddr),
  1109. pci_unmap_len(sbq_desc, maplen),
  1110. PCI_DMA_FROMDEVICE);
  1111. skb = sbq_desc->p.skb;
  1112. ql_realign_skb(skb, hdr_len);
  1113. skb_put(skb, hdr_len);
  1114. sbq_desc->p.skb = NULL;
  1115. }
  1116. /*
  1117. * Handle the data buffer(s).
  1118. */
  1119. if (unlikely(!length)) { /* Is there data too? */
  1120. QPRINTK(qdev, RX_STATUS, DEBUG,
  1121. "No Data buffer in this packet.\n");
  1122. return skb;
  1123. }
  1124. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1125. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1126. QPRINTK(qdev, RX_STATUS, DEBUG,
  1127. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1128. /*
  1129. * Data is less than small buffer size so it's
  1130. * stuffed in a small buffer.
  1131. * For this case we append the data
  1132. * from the "data" small buffer to the "header" small
  1133. * buffer.
  1134. */
  1135. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1136. pci_dma_sync_single_for_cpu(qdev->pdev,
  1137. pci_unmap_addr
  1138. (sbq_desc, mapaddr),
  1139. pci_unmap_len
  1140. (sbq_desc, maplen),
  1141. PCI_DMA_FROMDEVICE);
  1142. memcpy(skb_put(skb, length),
  1143. sbq_desc->p.skb->data, length);
  1144. pci_dma_sync_single_for_device(qdev->pdev,
  1145. pci_unmap_addr
  1146. (sbq_desc,
  1147. mapaddr),
  1148. pci_unmap_len
  1149. (sbq_desc,
  1150. maplen),
  1151. PCI_DMA_FROMDEVICE);
  1152. } else {
  1153. QPRINTK(qdev, RX_STATUS, DEBUG,
  1154. "%d bytes in a single small buffer.\n", length);
  1155. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1156. skb = sbq_desc->p.skb;
  1157. ql_realign_skb(skb, length);
  1158. skb_put(skb, length);
  1159. pci_unmap_single(qdev->pdev,
  1160. pci_unmap_addr(sbq_desc,
  1161. mapaddr),
  1162. pci_unmap_len(sbq_desc,
  1163. maplen),
  1164. PCI_DMA_FROMDEVICE);
  1165. sbq_desc->p.skb = NULL;
  1166. }
  1167. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1168. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1169. QPRINTK(qdev, RX_STATUS, DEBUG,
  1170. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1171. /*
  1172. * The data is in a single large buffer. We
  1173. * chain it to the header buffer's skb and let
  1174. * it rip.
  1175. */
  1176. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1177. pci_unmap_page(qdev->pdev,
  1178. pci_unmap_addr(lbq_desc,
  1179. mapaddr),
  1180. pci_unmap_len(lbq_desc, maplen),
  1181. PCI_DMA_FROMDEVICE);
  1182. QPRINTK(qdev, RX_STATUS, DEBUG,
  1183. "Chaining page to skb.\n");
  1184. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1185. 0, length);
  1186. skb->len += length;
  1187. skb->data_len += length;
  1188. skb->truesize += length;
  1189. lbq_desc->p.lbq_page = NULL;
  1190. } else {
  1191. /*
  1192. * The headers and data are in a single large buffer. We
  1193. * copy it to a new skb and let it go. This can happen with
  1194. * jumbo mtu on a non-TCP/UDP frame.
  1195. */
  1196. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1197. skb = netdev_alloc_skb(qdev->ndev, length);
  1198. if (skb == NULL) {
  1199. QPRINTK(qdev, PROBE, DEBUG,
  1200. "No skb available, drop the packet.\n");
  1201. return NULL;
  1202. }
  1203. pci_unmap_page(qdev->pdev,
  1204. pci_unmap_addr(lbq_desc,
  1205. mapaddr),
  1206. pci_unmap_len(lbq_desc, maplen),
  1207. PCI_DMA_FROMDEVICE);
  1208. skb_reserve(skb, NET_IP_ALIGN);
  1209. QPRINTK(qdev, RX_STATUS, DEBUG,
  1210. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1211. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1212. 0, length);
  1213. skb->len += length;
  1214. skb->data_len += length;
  1215. skb->truesize += length;
  1216. length -= length;
  1217. lbq_desc->p.lbq_page = NULL;
  1218. __pskb_pull_tail(skb,
  1219. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1220. VLAN_ETH_HLEN : ETH_HLEN);
  1221. }
  1222. } else {
  1223. /*
  1224. * The data is in a chain of large buffers
  1225. * pointed to by a small buffer. We loop
  1226. * thru and chain them to the our small header
  1227. * buffer's skb.
  1228. * frags: There are 18 max frags and our small
  1229. * buffer will hold 32 of them. The thing is,
  1230. * we'll use 3 max for our 9000 byte jumbo
  1231. * frames. If the MTU goes up we could
  1232. * eventually be in trouble.
  1233. */
  1234. int size, offset, i = 0;
  1235. __le64 *bq, bq_array[8];
  1236. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1237. pci_unmap_single(qdev->pdev,
  1238. pci_unmap_addr(sbq_desc, mapaddr),
  1239. pci_unmap_len(sbq_desc, maplen),
  1240. PCI_DMA_FROMDEVICE);
  1241. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1242. /*
  1243. * This is an non TCP/UDP IP frame, so
  1244. * the headers aren't split into a small
  1245. * buffer. We have to use the small buffer
  1246. * that contains our sg list as our skb to
  1247. * send upstairs. Copy the sg list here to
  1248. * a local buffer and use it to find the
  1249. * pages to chain.
  1250. */
  1251. QPRINTK(qdev, RX_STATUS, DEBUG,
  1252. "%d bytes of headers & data in chain of large.\n", length);
  1253. skb = sbq_desc->p.skb;
  1254. bq = &bq_array[0];
  1255. memcpy(bq, skb->data, sizeof(bq_array));
  1256. sbq_desc->p.skb = NULL;
  1257. skb_reserve(skb, NET_IP_ALIGN);
  1258. } else {
  1259. QPRINTK(qdev, RX_STATUS, DEBUG,
  1260. "Headers in small, %d bytes of data in chain of large.\n", length);
  1261. bq = (__le64 *)sbq_desc->p.skb->data;
  1262. }
  1263. while (length > 0) {
  1264. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1265. pci_unmap_page(qdev->pdev,
  1266. pci_unmap_addr(lbq_desc,
  1267. mapaddr),
  1268. pci_unmap_len(lbq_desc,
  1269. maplen),
  1270. PCI_DMA_FROMDEVICE);
  1271. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1272. offset = 0;
  1273. QPRINTK(qdev, RX_STATUS, DEBUG,
  1274. "Adding page %d to skb for %d bytes.\n",
  1275. i, size);
  1276. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1277. offset, size);
  1278. skb->len += size;
  1279. skb->data_len += size;
  1280. skb->truesize += size;
  1281. length -= size;
  1282. lbq_desc->p.lbq_page = NULL;
  1283. bq++;
  1284. i++;
  1285. }
  1286. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1287. VLAN_ETH_HLEN : ETH_HLEN);
  1288. }
  1289. return skb;
  1290. }
  1291. /* Process an inbound completion from an rx ring. */
  1292. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1293. struct rx_ring *rx_ring,
  1294. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1295. {
  1296. struct net_device *ndev = qdev->ndev;
  1297. struct sk_buff *skb = NULL;
  1298. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1299. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1300. if (unlikely(!skb)) {
  1301. QPRINTK(qdev, RX_STATUS, DEBUG,
  1302. "No skb available, drop packet.\n");
  1303. return;
  1304. }
  1305. prefetch(skb->data);
  1306. skb->dev = ndev;
  1307. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1308. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1309. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1310. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1311. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1312. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1313. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1314. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1315. }
  1316. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1317. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1318. }
  1319. if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
  1320. QPRINTK(qdev, RX_STATUS, ERR,
  1321. "Bad checksum for this %s packet.\n",
  1322. ((ib_mac_rsp->
  1323. flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
  1324. skb->ip_summed = CHECKSUM_NONE;
  1325. } else if (qdev->rx_csum &&
  1326. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
  1327. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1328. !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
  1329. QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
  1330. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1331. }
  1332. qdev->stats.rx_packets++;
  1333. qdev->stats.rx_bytes += skb->len;
  1334. skb->protocol = eth_type_trans(skb, ndev);
  1335. skb_record_rx_queue(skb, rx_ring - &qdev->rx_ring[0]);
  1336. if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
  1337. QPRINTK(qdev, RX_STATUS, DEBUG,
  1338. "Passing a VLAN packet upstream.\n");
  1339. vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
  1340. le16_to_cpu(ib_mac_rsp->vlan_id));
  1341. } else {
  1342. QPRINTK(qdev, RX_STATUS, DEBUG,
  1343. "Passing a normal packet upstream.\n");
  1344. netif_receive_skb(skb);
  1345. }
  1346. }
  1347. /* Process an outbound completion from an rx ring. */
  1348. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1349. struct ob_mac_iocb_rsp *mac_rsp)
  1350. {
  1351. struct tx_ring *tx_ring;
  1352. struct tx_ring_desc *tx_ring_desc;
  1353. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1354. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1355. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1356. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1357. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1358. qdev->stats.tx_packets++;
  1359. dev_kfree_skb(tx_ring_desc->skb);
  1360. tx_ring_desc->skb = NULL;
  1361. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1362. OB_MAC_IOCB_RSP_S |
  1363. OB_MAC_IOCB_RSP_L |
  1364. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1365. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1366. QPRINTK(qdev, TX_DONE, WARNING,
  1367. "Total descriptor length did not match transfer length.\n");
  1368. }
  1369. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1370. QPRINTK(qdev, TX_DONE, WARNING,
  1371. "Frame too short to be legal, not sent.\n");
  1372. }
  1373. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1374. QPRINTK(qdev, TX_DONE, WARNING,
  1375. "Frame too long, but sent anyway.\n");
  1376. }
  1377. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1378. QPRINTK(qdev, TX_DONE, WARNING,
  1379. "PCI backplane error. Frame not sent.\n");
  1380. }
  1381. }
  1382. atomic_inc(&tx_ring->tx_count);
  1383. }
  1384. /* Fire up a handler to reset the MPI processor. */
  1385. void ql_queue_fw_error(struct ql_adapter *qdev)
  1386. {
  1387. netif_stop_queue(qdev->ndev);
  1388. netif_carrier_off(qdev->ndev);
  1389. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1390. }
  1391. void ql_queue_asic_error(struct ql_adapter *qdev)
  1392. {
  1393. netif_stop_queue(qdev->ndev);
  1394. netif_carrier_off(qdev->ndev);
  1395. ql_disable_interrupts(qdev);
  1396. /* Clear adapter up bit to signal the recovery
  1397. * process that it shouldn't kill the reset worker
  1398. * thread
  1399. */
  1400. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1401. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1402. }
  1403. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1404. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1405. {
  1406. switch (ib_ae_rsp->event) {
  1407. case MGMT_ERR_EVENT:
  1408. QPRINTK(qdev, RX_ERR, ERR,
  1409. "Management Processor Fatal Error.\n");
  1410. ql_queue_fw_error(qdev);
  1411. return;
  1412. case CAM_LOOKUP_ERR_EVENT:
  1413. QPRINTK(qdev, LINK, ERR,
  1414. "Multiple CAM hits lookup occurred.\n");
  1415. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1416. ql_queue_asic_error(qdev);
  1417. return;
  1418. case SOFT_ECC_ERROR_EVENT:
  1419. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1420. ql_queue_asic_error(qdev);
  1421. break;
  1422. case PCI_ERR_ANON_BUF_RD:
  1423. QPRINTK(qdev, RX_ERR, ERR,
  1424. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1425. ib_ae_rsp->q_id);
  1426. ql_queue_asic_error(qdev);
  1427. break;
  1428. default:
  1429. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1430. ib_ae_rsp->event);
  1431. ql_queue_asic_error(qdev);
  1432. break;
  1433. }
  1434. }
  1435. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1436. {
  1437. struct ql_adapter *qdev = rx_ring->qdev;
  1438. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1439. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1440. int count = 0;
  1441. /* While there are entries in the completion queue. */
  1442. while (prod != rx_ring->cnsmr_idx) {
  1443. QPRINTK(qdev, RX_STATUS, DEBUG,
  1444. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1445. prod, rx_ring->cnsmr_idx);
  1446. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1447. rmb();
  1448. switch (net_rsp->opcode) {
  1449. case OPCODE_OB_MAC_TSO_IOCB:
  1450. case OPCODE_OB_MAC_IOCB:
  1451. ql_process_mac_tx_intr(qdev, net_rsp);
  1452. break;
  1453. default:
  1454. QPRINTK(qdev, RX_STATUS, DEBUG,
  1455. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1456. net_rsp->opcode);
  1457. }
  1458. count++;
  1459. ql_update_cq(rx_ring);
  1460. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1461. }
  1462. ql_write_cq_idx(rx_ring);
  1463. if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
  1464. struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1465. if (atomic_read(&tx_ring->queue_stopped) &&
  1466. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1467. /*
  1468. * The queue got stopped because the tx_ring was full.
  1469. * Wake it up, because it's now at least 25% empty.
  1470. */
  1471. netif_wake_queue(qdev->ndev);
  1472. }
  1473. return count;
  1474. }
  1475. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1476. {
  1477. struct ql_adapter *qdev = rx_ring->qdev;
  1478. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1479. struct ql_net_rsp_iocb *net_rsp;
  1480. int count = 0;
  1481. /* While there are entries in the completion queue. */
  1482. while (prod != rx_ring->cnsmr_idx) {
  1483. QPRINTK(qdev, RX_STATUS, DEBUG,
  1484. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1485. prod, rx_ring->cnsmr_idx);
  1486. net_rsp = rx_ring->curr_entry;
  1487. rmb();
  1488. switch (net_rsp->opcode) {
  1489. case OPCODE_IB_MAC_IOCB:
  1490. ql_process_mac_rx_intr(qdev, rx_ring,
  1491. (struct ib_mac_iocb_rsp *)
  1492. net_rsp);
  1493. break;
  1494. case OPCODE_IB_AE_IOCB:
  1495. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1496. net_rsp);
  1497. break;
  1498. default:
  1499. {
  1500. QPRINTK(qdev, RX_STATUS, DEBUG,
  1501. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1502. net_rsp->opcode);
  1503. }
  1504. }
  1505. count++;
  1506. ql_update_cq(rx_ring);
  1507. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1508. if (count == budget)
  1509. break;
  1510. }
  1511. ql_update_buffer_queues(qdev, rx_ring);
  1512. ql_write_cq_idx(rx_ring);
  1513. return count;
  1514. }
  1515. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1516. {
  1517. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1518. struct ql_adapter *qdev = rx_ring->qdev;
  1519. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1520. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1521. rx_ring->cq_id);
  1522. if (work_done < budget) {
  1523. __napi_complete(napi);
  1524. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1525. }
  1526. return work_done;
  1527. }
  1528. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1529. {
  1530. struct ql_adapter *qdev = netdev_priv(ndev);
  1531. qdev->vlgrp = grp;
  1532. if (grp) {
  1533. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1534. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1535. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1536. } else {
  1537. QPRINTK(qdev, IFUP, DEBUG,
  1538. "Turning off VLAN in NIC_RCV_CFG.\n");
  1539. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1540. }
  1541. }
  1542. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1543. {
  1544. struct ql_adapter *qdev = netdev_priv(ndev);
  1545. u32 enable_bit = MAC_ADDR_E;
  1546. int status;
  1547. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1548. if (status)
  1549. return;
  1550. spin_lock(&qdev->hw_lock);
  1551. if (ql_set_mac_addr_reg
  1552. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1553. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1554. }
  1555. spin_unlock(&qdev->hw_lock);
  1556. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1557. }
  1558. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1559. {
  1560. struct ql_adapter *qdev = netdev_priv(ndev);
  1561. u32 enable_bit = 0;
  1562. int status;
  1563. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1564. if (status)
  1565. return;
  1566. spin_lock(&qdev->hw_lock);
  1567. if (ql_set_mac_addr_reg
  1568. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1569. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1570. }
  1571. spin_unlock(&qdev->hw_lock);
  1572. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1573. }
  1574. /* Worker thread to process a given rx_ring that is dedicated
  1575. * to outbound completions.
  1576. */
  1577. static void ql_tx_clean(struct work_struct *work)
  1578. {
  1579. struct rx_ring *rx_ring =
  1580. container_of(work, struct rx_ring, rx_work.work);
  1581. ql_clean_outbound_rx_ring(rx_ring);
  1582. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1583. }
  1584. /* Worker thread to process a given rx_ring that is dedicated
  1585. * to inbound completions.
  1586. */
  1587. static void ql_rx_clean(struct work_struct *work)
  1588. {
  1589. struct rx_ring *rx_ring =
  1590. container_of(work, struct rx_ring, rx_work.work);
  1591. ql_clean_inbound_rx_ring(rx_ring, 64);
  1592. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1593. }
  1594. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1595. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1596. {
  1597. struct rx_ring *rx_ring = dev_id;
  1598. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1599. &rx_ring->rx_work, 0);
  1600. return IRQ_HANDLED;
  1601. }
  1602. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1603. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1604. {
  1605. struct rx_ring *rx_ring = dev_id;
  1606. napi_schedule(&rx_ring->napi);
  1607. return IRQ_HANDLED;
  1608. }
  1609. /* This handles a fatal error, MPI activity, and the default
  1610. * rx_ring in an MSI-X multiple vector environment.
  1611. * In MSI/Legacy environment it also process the rest of
  1612. * the rx_rings.
  1613. */
  1614. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1615. {
  1616. struct rx_ring *rx_ring = dev_id;
  1617. struct ql_adapter *qdev = rx_ring->qdev;
  1618. struct intr_context *intr_context = &qdev->intr_context[0];
  1619. u32 var;
  1620. int i;
  1621. int work_done = 0;
  1622. spin_lock(&qdev->hw_lock);
  1623. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1624. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1625. spin_unlock(&qdev->hw_lock);
  1626. return IRQ_NONE;
  1627. }
  1628. spin_unlock(&qdev->hw_lock);
  1629. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1630. /*
  1631. * Check for fatal error.
  1632. */
  1633. if (var & STS_FE) {
  1634. ql_queue_asic_error(qdev);
  1635. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1636. var = ql_read32(qdev, ERR_STS);
  1637. QPRINTK(qdev, INTR, ERR,
  1638. "Resetting chip. Error Status Register = 0x%x\n", var);
  1639. return IRQ_HANDLED;
  1640. }
  1641. /*
  1642. * Check MPI processor activity.
  1643. */
  1644. if (var & STS_PI) {
  1645. /*
  1646. * We've got an async event or mailbox completion.
  1647. * Handle it and clear the source of the interrupt.
  1648. */
  1649. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1650. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1651. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1652. &qdev->mpi_work, 0);
  1653. work_done++;
  1654. }
  1655. /*
  1656. * Check the default queue and wake handler if active.
  1657. */
  1658. rx_ring = &qdev->rx_ring[0];
  1659. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1660. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1661. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1662. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1663. &rx_ring->rx_work, 0);
  1664. work_done++;
  1665. }
  1666. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1667. /*
  1668. * Start the DPC for each active queue.
  1669. */
  1670. for (i = 1; i < qdev->rx_ring_count; i++) {
  1671. rx_ring = &qdev->rx_ring[i];
  1672. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1673. rx_ring->cnsmr_idx) {
  1674. QPRINTK(qdev, INTR, INFO,
  1675. "Waking handler for rx_ring[%d].\n", i);
  1676. ql_disable_completion_interrupt(qdev,
  1677. intr_context->
  1678. intr);
  1679. if (i < qdev->rss_ring_first_cq_id)
  1680. queue_delayed_work_on(rx_ring->cpu,
  1681. qdev->q_workqueue,
  1682. &rx_ring->rx_work,
  1683. 0);
  1684. else
  1685. napi_schedule(&rx_ring->napi);
  1686. work_done++;
  1687. }
  1688. }
  1689. }
  1690. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1691. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1692. }
  1693. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1694. {
  1695. if (skb_is_gso(skb)) {
  1696. int err;
  1697. if (skb_header_cloned(skb)) {
  1698. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1699. if (err)
  1700. return err;
  1701. }
  1702. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1703. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1704. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1705. mac_iocb_ptr->total_hdrs_len =
  1706. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1707. mac_iocb_ptr->net_trans_offset =
  1708. cpu_to_le16(skb_network_offset(skb) |
  1709. skb_transport_offset(skb)
  1710. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1711. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1712. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1713. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1714. struct iphdr *iph = ip_hdr(skb);
  1715. iph->check = 0;
  1716. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1717. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1718. iph->daddr, 0,
  1719. IPPROTO_TCP,
  1720. 0);
  1721. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1722. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1723. tcp_hdr(skb)->check =
  1724. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1725. &ipv6_hdr(skb)->daddr,
  1726. 0, IPPROTO_TCP, 0);
  1727. }
  1728. return 1;
  1729. }
  1730. return 0;
  1731. }
  1732. static void ql_hw_csum_setup(struct sk_buff *skb,
  1733. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1734. {
  1735. int len;
  1736. struct iphdr *iph = ip_hdr(skb);
  1737. __sum16 *check;
  1738. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1739. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1740. mac_iocb_ptr->net_trans_offset =
  1741. cpu_to_le16(skb_network_offset(skb) |
  1742. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1743. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1744. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1745. if (likely(iph->protocol == IPPROTO_TCP)) {
  1746. check = &(tcp_hdr(skb)->check);
  1747. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1748. mac_iocb_ptr->total_hdrs_len =
  1749. cpu_to_le16(skb_transport_offset(skb) +
  1750. (tcp_hdr(skb)->doff << 2));
  1751. } else {
  1752. check = &(udp_hdr(skb)->check);
  1753. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1754. mac_iocb_ptr->total_hdrs_len =
  1755. cpu_to_le16(skb_transport_offset(skb) +
  1756. sizeof(struct udphdr));
  1757. }
  1758. *check = ~csum_tcpudp_magic(iph->saddr,
  1759. iph->daddr, len, iph->protocol, 0);
  1760. }
  1761. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1762. {
  1763. struct tx_ring_desc *tx_ring_desc;
  1764. struct ob_mac_iocb_req *mac_iocb_ptr;
  1765. struct ql_adapter *qdev = netdev_priv(ndev);
  1766. int tso;
  1767. struct tx_ring *tx_ring;
  1768. u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
  1769. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1770. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1771. QPRINTK(qdev, TX_QUEUED, INFO,
  1772. "%s: shutting down tx queue %d du to lack of resources.\n",
  1773. __func__, tx_ring_idx);
  1774. netif_stop_queue(ndev);
  1775. atomic_inc(&tx_ring->queue_stopped);
  1776. return NETDEV_TX_BUSY;
  1777. }
  1778. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1779. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1780. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1781. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1782. mac_iocb_ptr->tid = tx_ring_desc->index;
  1783. /* We use the upper 32-bits to store the tx queue for this IO.
  1784. * When we get the completion we can use it to establish the context.
  1785. */
  1786. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1787. tx_ring_desc->skb = skb;
  1788. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1789. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1790. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1791. vlan_tx_tag_get(skb));
  1792. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1793. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1794. }
  1795. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1796. if (tso < 0) {
  1797. dev_kfree_skb_any(skb);
  1798. return NETDEV_TX_OK;
  1799. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1800. ql_hw_csum_setup(skb,
  1801. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1802. }
  1803. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1804. NETDEV_TX_OK) {
  1805. QPRINTK(qdev, TX_QUEUED, ERR,
  1806. "Could not map the segments.\n");
  1807. return NETDEV_TX_BUSY;
  1808. }
  1809. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1810. tx_ring->prod_idx++;
  1811. if (tx_ring->prod_idx == tx_ring->wq_len)
  1812. tx_ring->prod_idx = 0;
  1813. wmb();
  1814. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1815. ndev->trans_start = jiffies;
  1816. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1817. tx_ring->prod_idx, skb->len);
  1818. atomic_dec(&tx_ring->tx_count);
  1819. return NETDEV_TX_OK;
  1820. }
  1821. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1822. {
  1823. if (qdev->rx_ring_shadow_reg_area) {
  1824. pci_free_consistent(qdev->pdev,
  1825. PAGE_SIZE,
  1826. qdev->rx_ring_shadow_reg_area,
  1827. qdev->rx_ring_shadow_reg_dma);
  1828. qdev->rx_ring_shadow_reg_area = NULL;
  1829. }
  1830. if (qdev->tx_ring_shadow_reg_area) {
  1831. pci_free_consistent(qdev->pdev,
  1832. PAGE_SIZE,
  1833. qdev->tx_ring_shadow_reg_area,
  1834. qdev->tx_ring_shadow_reg_dma);
  1835. qdev->tx_ring_shadow_reg_area = NULL;
  1836. }
  1837. }
  1838. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1839. {
  1840. qdev->rx_ring_shadow_reg_area =
  1841. pci_alloc_consistent(qdev->pdev,
  1842. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1843. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1844. QPRINTK(qdev, IFUP, ERR,
  1845. "Allocation of RX shadow space failed.\n");
  1846. return -ENOMEM;
  1847. }
  1848. qdev->tx_ring_shadow_reg_area =
  1849. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1850. &qdev->tx_ring_shadow_reg_dma);
  1851. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1852. QPRINTK(qdev, IFUP, ERR,
  1853. "Allocation of TX shadow space failed.\n");
  1854. goto err_wqp_sh_area;
  1855. }
  1856. return 0;
  1857. err_wqp_sh_area:
  1858. pci_free_consistent(qdev->pdev,
  1859. PAGE_SIZE,
  1860. qdev->rx_ring_shadow_reg_area,
  1861. qdev->rx_ring_shadow_reg_dma);
  1862. return -ENOMEM;
  1863. }
  1864. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1865. {
  1866. struct tx_ring_desc *tx_ring_desc;
  1867. int i;
  1868. struct ob_mac_iocb_req *mac_iocb_ptr;
  1869. mac_iocb_ptr = tx_ring->wq_base;
  1870. tx_ring_desc = tx_ring->q;
  1871. for (i = 0; i < tx_ring->wq_len; i++) {
  1872. tx_ring_desc->index = i;
  1873. tx_ring_desc->skb = NULL;
  1874. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1875. mac_iocb_ptr++;
  1876. tx_ring_desc++;
  1877. }
  1878. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1879. atomic_set(&tx_ring->queue_stopped, 0);
  1880. }
  1881. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1882. struct tx_ring *tx_ring)
  1883. {
  1884. if (tx_ring->wq_base) {
  1885. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1886. tx_ring->wq_base, tx_ring->wq_base_dma);
  1887. tx_ring->wq_base = NULL;
  1888. }
  1889. kfree(tx_ring->q);
  1890. tx_ring->q = NULL;
  1891. }
  1892. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  1893. struct tx_ring *tx_ring)
  1894. {
  1895. tx_ring->wq_base =
  1896. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  1897. &tx_ring->wq_base_dma);
  1898. if ((tx_ring->wq_base == NULL)
  1899. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  1900. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  1901. return -ENOMEM;
  1902. }
  1903. tx_ring->q =
  1904. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  1905. if (tx_ring->q == NULL)
  1906. goto err;
  1907. return 0;
  1908. err:
  1909. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1910. tx_ring->wq_base, tx_ring->wq_base_dma);
  1911. return -ENOMEM;
  1912. }
  1913. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1914. {
  1915. int i;
  1916. struct bq_desc *lbq_desc;
  1917. for (i = 0; i < rx_ring->lbq_len; i++) {
  1918. lbq_desc = &rx_ring->lbq[i];
  1919. if (lbq_desc->p.lbq_page) {
  1920. pci_unmap_page(qdev->pdev,
  1921. pci_unmap_addr(lbq_desc, mapaddr),
  1922. pci_unmap_len(lbq_desc, maplen),
  1923. PCI_DMA_FROMDEVICE);
  1924. put_page(lbq_desc->p.lbq_page);
  1925. lbq_desc->p.lbq_page = NULL;
  1926. }
  1927. }
  1928. }
  1929. /*
  1930. * Allocate and map a page for each element of the lbq.
  1931. */
  1932. static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
  1933. struct rx_ring *rx_ring)
  1934. {
  1935. int i;
  1936. struct bq_desc *lbq_desc;
  1937. u64 map;
  1938. __le64 *bq = rx_ring->lbq_base;
  1939. for (i = 0; i < rx_ring->lbq_len; i++) {
  1940. lbq_desc = &rx_ring->lbq[i];
  1941. memset(lbq_desc, 0, sizeof(lbq_desc));
  1942. lbq_desc->addr = bq;
  1943. lbq_desc->index = i;
  1944. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  1945. if (unlikely(!lbq_desc->p.lbq_page)) {
  1946. QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
  1947. goto mem_error;
  1948. } else {
  1949. map = pci_map_page(qdev->pdev,
  1950. lbq_desc->p.lbq_page,
  1951. 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1952. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1953. QPRINTK(qdev, IFUP, ERR,
  1954. "PCI mapping failed.\n");
  1955. goto mem_error;
  1956. }
  1957. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1958. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  1959. *lbq_desc->addr = cpu_to_le64(map);
  1960. }
  1961. bq++;
  1962. }
  1963. return 0;
  1964. mem_error:
  1965. ql_free_lbq_buffers(qdev, rx_ring);
  1966. return -ENOMEM;
  1967. }
  1968. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1969. {
  1970. int i;
  1971. struct bq_desc *sbq_desc;
  1972. for (i = 0; i < rx_ring->sbq_len; i++) {
  1973. sbq_desc = &rx_ring->sbq[i];
  1974. if (sbq_desc == NULL) {
  1975. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  1976. return;
  1977. }
  1978. if (sbq_desc->p.skb) {
  1979. pci_unmap_single(qdev->pdev,
  1980. pci_unmap_addr(sbq_desc, mapaddr),
  1981. pci_unmap_len(sbq_desc, maplen),
  1982. PCI_DMA_FROMDEVICE);
  1983. dev_kfree_skb(sbq_desc->p.skb);
  1984. sbq_desc->p.skb = NULL;
  1985. }
  1986. }
  1987. }
  1988. /* Allocate and map an skb for each element of the sbq. */
  1989. static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
  1990. struct rx_ring *rx_ring)
  1991. {
  1992. int i;
  1993. struct bq_desc *sbq_desc;
  1994. struct sk_buff *skb;
  1995. u64 map;
  1996. __le64 *bq = rx_ring->sbq_base;
  1997. for (i = 0; i < rx_ring->sbq_len; i++) {
  1998. sbq_desc = &rx_ring->sbq[i];
  1999. memset(sbq_desc, 0, sizeof(sbq_desc));
  2000. sbq_desc->index = i;
  2001. sbq_desc->addr = bq;
  2002. skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
  2003. if (unlikely(!skb)) {
  2004. /* Better luck next round */
  2005. QPRINTK(qdev, IFUP, ERR,
  2006. "small buff alloc failed for %d bytes at index %d.\n",
  2007. rx_ring->sbq_buf_size, i);
  2008. goto mem_err;
  2009. }
  2010. skb_reserve(skb, QLGE_SB_PAD);
  2011. sbq_desc->p.skb = skb;
  2012. /*
  2013. * Map only half the buffer. Because the
  2014. * other half may get some data copied to it
  2015. * when the completion arrives.
  2016. */
  2017. map = pci_map_single(qdev->pdev,
  2018. skb->data,
  2019. rx_ring->sbq_buf_size / 2,
  2020. PCI_DMA_FROMDEVICE);
  2021. if (pci_dma_mapping_error(qdev->pdev, map)) {
  2022. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  2023. goto mem_err;
  2024. }
  2025. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  2026. pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
  2027. *sbq_desc->addr = cpu_to_le64(map);
  2028. bq++;
  2029. }
  2030. return 0;
  2031. mem_err:
  2032. ql_free_sbq_buffers(qdev, rx_ring);
  2033. return -ENOMEM;
  2034. }
  2035. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2036. struct rx_ring *rx_ring)
  2037. {
  2038. if (rx_ring->sbq_len)
  2039. ql_free_sbq_buffers(qdev, rx_ring);
  2040. if (rx_ring->lbq_len)
  2041. ql_free_lbq_buffers(qdev, rx_ring);
  2042. /* Free the small buffer queue. */
  2043. if (rx_ring->sbq_base) {
  2044. pci_free_consistent(qdev->pdev,
  2045. rx_ring->sbq_size,
  2046. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2047. rx_ring->sbq_base = NULL;
  2048. }
  2049. /* Free the small buffer queue control blocks. */
  2050. kfree(rx_ring->sbq);
  2051. rx_ring->sbq = NULL;
  2052. /* Free the large buffer queue. */
  2053. if (rx_ring->lbq_base) {
  2054. pci_free_consistent(qdev->pdev,
  2055. rx_ring->lbq_size,
  2056. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2057. rx_ring->lbq_base = NULL;
  2058. }
  2059. /* Free the large buffer queue control blocks. */
  2060. kfree(rx_ring->lbq);
  2061. rx_ring->lbq = NULL;
  2062. /* Free the rx queue. */
  2063. if (rx_ring->cq_base) {
  2064. pci_free_consistent(qdev->pdev,
  2065. rx_ring->cq_size,
  2066. rx_ring->cq_base, rx_ring->cq_base_dma);
  2067. rx_ring->cq_base = NULL;
  2068. }
  2069. }
  2070. /* Allocate queues and buffers for this completions queue based
  2071. * on the values in the parameter structure. */
  2072. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2073. struct rx_ring *rx_ring)
  2074. {
  2075. /*
  2076. * Allocate the completion queue for this rx_ring.
  2077. */
  2078. rx_ring->cq_base =
  2079. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2080. &rx_ring->cq_base_dma);
  2081. if (rx_ring->cq_base == NULL) {
  2082. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2083. return -ENOMEM;
  2084. }
  2085. if (rx_ring->sbq_len) {
  2086. /*
  2087. * Allocate small buffer queue.
  2088. */
  2089. rx_ring->sbq_base =
  2090. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2091. &rx_ring->sbq_base_dma);
  2092. if (rx_ring->sbq_base == NULL) {
  2093. QPRINTK(qdev, IFUP, ERR,
  2094. "Small buffer queue allocation failed.\n");
  2095. goto err_mem;
  2096. }
  2097. /*
  2098. * Allocate small buffer queue control blocks.
  2099. */
  2100. rx_ring->sbq =
  2101. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2102. GFP_KERNEL);
  2103. if (rx_ring->sbq == NULL) {
  2104. QPRINTK(qdev, IFUP, ERR,
  2105. "Small buffer queue control block allocation failed.\n");
  2106. goto err_mem;
  2107. }
  2108. if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
  2109. QPRINTK(qdev, IFUP, ERR,
  2110. "Small buffer allocation failed.\n");
  2111. goto err_mem;
  2112. }
  2113. }
  2114. if (rx_ring->lbq_len) {
  2115. /*
  2116. * Allocate large buffer queue.
  2117. */
  2118. rx_ring->lbq_base =
  2119. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2120. &rx_ring->lbq_base_dma);
  2121. if (rx_ring->lbq_base == NULL) {
  2122. QPRINTK(qdev, IFUP, ERR,
  2123. "Large buffer queue allocation failed.\n");
  2124. goto err_mem;
  2125. }
  2126. /*
  2127. * Allocate large buffer queue control blocks.
  2128. */
  2129. rx_ring->lbq =
  2130. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2131. GFP_KERNEL);
  2132. if (rx_ring->lbq == NULL) {
  2133. QPRINTK(qdev, IFUP, ERR,
  2134. "Large buffer queue control block allocation failed.\n");
  2135. goto err_mem;
  2136. }
  2137. /*
  2138. * Allocate the buffers.
  2139. */
  2140. if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
  2141. QPRINTK(qdev, IFUP, ERR,
  2142. "Large buffer allocation failed.\n");
  2143. goto err_mem;
  2144. }
  2145. }
  2146. return 0;
  2147. err_mem:
  2148. ql_free_rx_resources(qdev, rx_ring);
  2149. return -ENOMEM;
  2150. }
  2151. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2152. {
  2153. struct tx_ring *tx_ring;
  2154. struct tx_ring_desc *tx_ring_desc;
  2155. int i, j;
  2156. /*
  2157. * Loop through all queues and free
  2158. * any resources.
  2159. */
  2160. for (j = 0; j < qdev->tx_ring_count; j++) {
  2161. tx_ring = &qdev->tx_ring[j];
  2162. for (i = 0; i < tx_ring->wq_len; i++) {
  2163. tx_ring_desc = &tx_ring->q[i];
  2164. if (tx_ring_desc && tx_ring_desc->skb) {
  2165. QPRINTK(qdev, IFDOWN, ERR,
  2166. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2167. tx_ring_desc->skb, j,
  2168. tx_ring_desc->index);
  2169. ql_unmap_send(qdev, tx_ring_desc,
  2170. tx_ring_desc->map_cnt);
  2171. dev_kfree_skb(tx_ring_desc->skb);
  2172. tx_ring_desc->skb = NULL;
  2173. }
  2174. }
  2175. }
  2176. }
  2177. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2178. {
  2179. int i;
  2180. for (i = 0; i < qdev->tx_ring_count; i++)
  2181. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2182. for (i = 0; i < qdev->rx_ring_count; i++)
  2183. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2184. ql_free_shadow_space(qdev);
  2185. }
  2186. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2187. {
  2188. int i;
  2189. /* Allocate space for our shadow registers and such. */
  2190. if (ql_alloc_shadow_space(qdev))
  2191. return -ENOMEM;
  2192. for (i = 0; i < qdev->rx_ring_count; i++) {
  2193. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2194. QPRINTK(qdev, IFUP, ERR,
  2195. "RX resource allocation failed.\n");
  2196. goto err_mem;
  2197. }
  2198. }
  2199. /* Allocate tx queue resources */
  2200. for (i = 0; i < qdev->tx_ring_count; i++) {
  2201. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2202. QPRINTK(qdev, IFUP, ERR,
  2203. "TX resource allocation failed.\n");
  2204. goto err_mem;
  2205. }
  2206. }
  2207. return 0;
  2208. err_mem:
  2209. ql_free_mem_resources(qdev);
  2210. return -ENOMEM;
  2211. }
  2212. /* Set up the rx ring control block and pass it to the chip.
  2213. * The control block is defined as
  2214. * "Completion Queue Initialization Control Block", or cqicb.
  2215. */
  2216. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2217. {
  2218. struct cqicb *cqicb = &rx_ring->cqicb;
  2219. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2220. (rx_ring->cq_id * sizeof(u64) * 4);
  2221. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2222. (rx_ring->cq_id * sizeof(u64) * 4);
  2223. void __iomem *doorbell_area =
  2224. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2225. int err = 0;
  2226. u16 bq_len;
  2227. /* Set up the shadow registers for this ring. */
  2228. rx_ring->prod_idx_sh_reg = shadow_reg;
  2229. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2230. shadow_reg += sizeof(u64);
  2231. shadow_reg_dma += sizeof(u64);
  2232. rx_ring->lbq_base_indirect = shadow_reg;
  2233. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2234. shadow_reg += sizeof(u64);
  2235. shadow_reg_dma += sizeof(u64);
  2236. rx_ring->sbq_base_indirect = shadow_reg;
  2237. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2238. /* PCI doorbell mem area + 0x00 for consumer index register */
  2239. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2240. rx_ring->cnsmr_idx = 0;
  2241. rx_ring->curr_entry = rx_ring->cq_base;
  2242. /* PCI doorbell mem area + 0x04 for valid register */
  2243. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2244. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2245. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2246. /* PCI doorbell mem area + 0x1c */
  2247. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2248. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2249. cqicb->msix_vect = rx_ring->irq;
  2250. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2251. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2252. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2253. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2254. /*
  2255. * Set up the control block load flags.
  2256. */
  2257. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2258. FLAGS_LV | /* Load MSI-X vector */
  2259. FLAGS_LI; /* Load irq delay values */
  2260. if (rx_ring->lbq_len) {
  2261. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2262. *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
  2263. cqicb->lbq_addr =
  2264. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2265. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2266. (u16) rx_ring->lbq_buf_size;
  2267. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2268. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2269. (u16) rx_ring->lbq_len;
  2270. cqicb->lbq_len = cpu_to_le16(bq_len);
  2271. rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
  2272. rx_ring->lbq_curr_idx = 0;
  2273. rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
  2274. rx_ring->lbq_free_cnt = 16;
  2275. }
  2276. if (rx_ring->sbq_len) {
  2277. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2278. *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
  2279. cqicb->sbq_addr =
  2280. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2281. cqicb->sbq_buf_size =
  2282. cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
  2283. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2284. (u16) rx_ring->sbq_len;
  2285. cqicb->sbq_len = cpu_to_le16(bq_len);
  2286. rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
  2287. rx_ring->sbq_curr_idx = 0;
  2288. rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
  2289. rx_ring->sbq_free_cnt = 16;
  2290. }
  2291. switch (rx_ring->type) {
  2292. case TX_Q:
  2293. /* If there's only one interrupt, then we use
  2294. * worker threads to process the outbound
  2295. * completion handling rx_rings. We do this so
  2296. * they can be run on multiple CPUs. There is
  2297. * room to play with this more where we would only
  2298. * run in a worker if there are more than x number
  2299. * of outbound completions on the queue and more
  2300. * than one queue active. Some threshold that
  2301. * would indicate a benefit in spite of the cost
  2302. * of a context switch.
  2303. * If there's more than one interrupt, then the
  2304. * outbound completions are processed in the ISR.
  2305. */
  2306. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2307. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2308. else {
  2309. /* With all debug warnings on we see a WARN_ON message
  2310. * when we free the skb in the interrupt context.
  2311. */
  2312. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2313. }
  2314. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2315. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2316. break;
  2317. case DEFAULT_Q:
  2318. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2319. cqicb->irq_delay = 0;
  2320. cqicb->pkt_delay = 0;
  2321. break;
  2322. case RX_Q:
  2323. /* Inbound completion handling rx_rings run in
  2324. * separate NAPI contexts.
  2325. */
  2326. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2327. 64);
  2328. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2329. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2330. break;
  2331. default:
  2332. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2333. rx_ring->type);
  2334. }
  2335. QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
  2336. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2337. CFG_LCQ, rx_ring->cq_id);
  2338. if (err) {
  2339. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2340. return err;
  2341. }
  2342. QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
  2343. /*
  2344. * Advance the producer index for the buffer queues.
  2345. */
  2346. wmb();
  2347. if (rx_ring->lbq_len)
  2348. ql_write_db_reg(rx_ring->lbq_prod_idx,
  2349. rx_ring->lbq_prod_idx_db_reg);
  2350. if (rx_ring->sbq_len)
  2351. ql_write_db_reg(rx_ring->sbq_prod_idx,
  2352. rx_ring->sbq_prod_idx_db_reg);
  2353. return err;
  2354. }
  2355. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2356. {
  2357. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2358. void __iomem *doorbell_area =
  2359. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2360. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2361. (tx_ring->wq_id * sizeof(u64));
  2362. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2363. (tx_ring->wq_id * sizeof(u64));
  2364. int err = 0;
  2365. /*
  2366. * Assign doorbell registers for this tx_ring.
  2367. */
  2368. /* TX PCI doorbell mem area for tx producer index */
  2369. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2370. tx_ring->prod_idx = 0;
  2371. /* TX PCI doorbell mem area + 0x04 */
  2372. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2373. /*
  2374. * Assign shadow registers for this tx_ring.
  2375. */
  2376. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2377. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2378. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2379. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2380. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2381. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2382. wqicb->rid = 0;
  2383. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2384. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2385. ql_init_tx_ring(qdev, tx_ring);
  2386. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2387. (u16) tx_ring->wq_id);
  2388. if (err) {
  2389. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2390. return err;
  2391. }
  2392. QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
  2393. return err;
  2394. }
  2395. static void ql_disable_msix(struct ql_adapter *qdev)
  2396. {
  2397. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2398. pci_disable_msix(qdev->pdev);
  2399. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2400. kfree(qdev->msi_x_entry);
  2401. qdev->msi_x_entry = NULL;
  2402. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2403. pci_disable_msi(qdev->pdev);
  2404. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2405. }
  2406. }
  2407. static void ql_enable_msix(struct ql_adapter *qdev)
  2408. {
  2409. int i;
  2410. qdev->intr_count = 1;
  2411. /* Get the MSIX vectors. */
  2412. if (irq_type == MSIX_IRQ) {
  2413. /* Try to alloc space for the msix struct,
  2414. * if it fails then go to MSI/legacy.
  2415. */
  2416. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2417. sizeof(struct msix_entry),
  2418. GFP_KERNEL);
  2419. if (!qdev->msi_x_entry) {
  2420. irq_type = MSI_IRQ;
  2421. goto msi;
  2422. }
  2423. for (i = 0; i < qdev->rx_ring_count; i++)
  2424. qdev->msi_x_entry[i].entry = i;
  2425. if (!pci_enable_msix
  2426. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2427. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2428. qdev->intr_count = qdev->rx_ring_count;
  2429. QPRINTK(qdev, IFUP, INFO,
  2430. "MSI-X Enabled, got %d vectors.\n",
  2431. qdev->intr_count);
  2432. return;
  2433. } else {
  2434. kfree(qdev->msi_x_entry);
  2435. qdev->msi_x_entry = NULL;
  2436. QPRINTK(qdev, IFUP, WARNING,
  2437. "MSI-X Enable failed, trying MSI.\n");
  2438. irq_type = MSI_IRQ;
  2439. }
  2440. }
  2441. msi:
  2442. if (irq_type == MSI_IRQ) {
  2443. if (!pci_enable_msi(qdev->pdev)) {
  2444. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2445. QPRINTK(qdev, IFUP, INFO,
  2446. "Running with MSI interrupts.\n");
  2447. return;
  2448. }
  2449. }
  2450. irq_type = LEG_IRQ;
  2451. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2452. }
  2453. /*
  2454. * Here we build the intr_context structures based on
  2455. * our rx_ring count and intr vector count.
  2456. * The intr_context structure is used to hook each vector
  2457. * to possibly different handlers.
  2458. */
  2459. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2460. {
  2461. int i = 0;
  2462. struct intr_context *intr_context = &qdev->intr_context[0];
  2463. ql_enable_msix(qdev);
  2464. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2465. /* Each rx_ring has it's
  2466. * own intr_context since we have separate
  2467. * vectors for each queue.
  2468. * This only true when MSI-X is enabled.
  2469. */
  2470. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2471. qdev->rx_ring[i].irq = i;
  2472. intr_context->intr = i;
  2473. intr_context->qdev = qdev;
  2474. /*
  2475. * We set up each vectors enable/disable/read bits so
  2476. * there's no bit/mask calculations in the critical path.
  2477. */
  2478. intr_context->intr_en_mask =
  2479. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2480. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2481. | i;
  2482. intr_context->intr_dis_mask =
  2483. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2484. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2485. INTR_EN_IHD | i;
  2486. intr_context->intr_read_mask =
  2487. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2488. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2489. i;
  2490. if (i == 0) {
  2491. /*
  2492. * Default queue handles bcast/mcast plus
  2493. * async events. Needs buffers.
  2494. */
  2495. intr_context->handler = qlge_isr;
  2496. sprintf(intr_context->name, "%s-default-queue",
  2497. qdev->ndev->name);
  2498. } else if (i < qdev->rss_ring_first_cq_id) {
  2499. /*
  2500. * Outbound queue is for outbound completions only.
  2501. */
  2502. intr_context->handler = qlge_msix_tx_isr;
  2503. sprintf(intr_context->name, "%s-tx-%d",
  2504. qdev->ndev->name, i);
  2505. } else {
  2506. /*
  2507. * Inbound queues handle unicast frames only.
  2508. */
  2509. intr_context->handler = qlge_msix_rx_isr;
  2510. sprintf(intr_context->name, "%s-rx-%d",
  2511. qdev->ndev->name, i);
  2512. }
  2513. }
  2514. } else {
  2515. /*
  2516. * All rx_rings use the same intr_context since
  2517. * there is only one vector.
  2518. */
  2519. intr_context->intr = 0;
  2520. intr_context->qdev = qdev;
  2521. /*
  2522. * We set up each vectors enable/disable/read bits so
  2523. * there's no bit/mask calculations in the critical path.
  2524. */
  2525. intr_context->intr_en_mask =
  2526. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2527. intr_context->intr_dis_mask =
  2528. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2529. INTR_EN_TYPE_DISABLE;
  2530. intr_context->intr_read_mask =
  2531. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2532. /*
  2533. * Single interrupt means one handler for all rings.
  2534. */
  2535. intr_context->handler = qlge_isr;
  2536. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2537. for (i = 0; i < qdev->rx_ring_count; i++)
  2538. qdev->rx_ring[i].irq = 0;
  2539. }
  2540. }
  2541. static void ql_free_irq(struct ql_adapter *qdev)
  2542. {
  2543. int i;
  2544. struct intr_context *intr_context = &qdev->intr_context[0];
  2545. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2546. if (intr_context->hooked) {
  2547. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2548. free_irq(qdev->msi_x_entry[i].vector,
  2549. &qdev->rx_ring[i]);
  2550. QPRINTK(qdev, IFDOWN, ERR,
  2551. "freeing msix interrupt %d.\n", i);
  2552. } else {
  2553. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2554. QPRINTK(qdev, IFDOWN, ERR,
  2555. "freeing msi interrupt %d.\n", i);
  2556. }
  2557. }
  2558. }
  2559. ql_disable_msix(qdev);
  2560. }
  2561. static int ql_request_irq(struct ql_adapter *qdev)
  2562. {
  2563. int i;
  2564. int status = 0;
  2565. struct pci_dev *pdev = qdev->pdev;
  2566. struct intr_context *intr_context = &qdev->intr_context[0];
  2567. ql_resolve_queues_to_irqs(qdev);
  2568. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2569. atomic_set(&intr_context->irq_cnt, 0);
  2570. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2571. status = request_irq(qdev->msi_x_entry[i].vector,
  2572. intr_context->handler,
  2573. 0,
  2574. intr_context->name,
  2575. &qdev->rx_ring[i]);
  2576. if (status) {
  2577. QPRINTK(qdev, IFUP, ERR,
  2578. "Failed request for MSIX interrupt %d.\n",
  2579. i);
  2580. goto err_irq;
  2581. } else {
  2582. QPRINTK(qdev, IFUP, INFO,
  2583. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2584. i,
  2585. qdev->rx_ring[i].type ==
  2586. DEFAULT_Q ? "DEFAULT_Q" : "",
  2587. qdev->rx_ring[i].type ==
  2588. TX_Q ? "TX_Q" : "",
  2589. qdev->rx_ring[i].type ==
  2590. RX_Q ? "RX_Q" : "", intr_context->name);
  2591. }
  2592. } else {
  2593. QPRINTK(qdev, IFUP, DEBUG,
  2594. "trying msi or legacy interrupts.\n");
  2595. QPRINTK(qdev, IFUP, DEBUG,
  2596. "%s: irq = %d.\n", __func__, pdev->irq);
  2597. QPRINTK(qdev, IFUP, DEBUG,
  2598. "%s: context->name = %s.\n", __func__,
  2599. intr_context->name);
  2600. QPRINTK(qdev, IFUP, DEBUG,
  2601. "%s: dev_id = 0x%p.\n", __func__,
  2602. &qdev->rx_ring[0]);
  2603. status =
  2604. request_irq(pdev->irq, qlge_isr,
  2605. test_bit(QL_MSI_ENABLED,
  2606. &qdev->
  2607. flags) ? 0 : IRQF_SHARED,
  2608. intr_context->name, &qdev->rx_ring[0]);
  2609. if (status)
  2610. goto err_irq;
  2611. QPRINTK(qdev, IFUP, ERR,
  2612. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2613. i,
  2614. qdev->rx_ring[0].type ==
  2615. DEFAULT_Q ? "DEFAULT_Q" : "",
  2616. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2617. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2618. intr_context->name);
  2619. }
  2620. intr_context->hooked = 1;
  2621. }
  2622. return status;
  2623. err_irq:
  2624. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2625. ql_free_irq(qdev);
  2626. return status;
  2627. }
  2628. static int ql_start_rss(struct ql_adapter *qdev)
  2629. {
  2630. struct ricb *ricb = &qdev->ricb;
  2631. int status = 0;
  2632. int i;
  2633. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2634. memset((void *)ricb, 0, sizeof(ricb));
  2635. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2636. ricb->flags =
  2637. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2638. RSS_RT6);
  2639. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2640. /*
  2641. * Fill out the Indirection Table.
  2642. */
  2643. for (i = 0; i < 256; i++)
  2644. hash_id[i] = i & (qdev->rss_ring_count - 1);
  2645. /*
  2646. * Random values for the IPv6 and IPv4 Hash Keys.
  2647. */
  2648. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2649. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2650. QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
  2651. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2652. if (status) {
  2653. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2654. return status;
  2655. }
  2656. QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
  2657. return status;
  2658. }
  2659. /* Initialize the frame-to-queue routing. */
  2660. static int ql_route_initialize(struct ql_adapter *qdev)
  2661. {
  2662. int status = 0;
  2663. int i;
  2664. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2665. if (status)
  2666. return status;
  2667. /* Clear all the entries in the routing table. */
  2668. for (i = 0; i < 16; i++) {
  2669. status = ql_set_routing_reg(qdev, i, 0, 0);
  2670. if (status) {
  2671. QPRINTK(qdev, IFUP, ERR,
  2672. "Failed to init routing register for CAM packets.\n");
  2673. goto exit;
  2674. }
  2675. }
  2676. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2677. if (status) {
  2678. QPRINTK(qdev, IFUP, ERR,
  2679. "Failed to init routing register for error packets.\n");
  2680. goto exit;
  2681. }
  2682. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2683. if (status) {
  2684. QPRINTK(qdev, IFUP, ERR,
  2685. "Failed to init routing register for broadcast packets.\n");
  2686. goto exit;
  2687. }
  2688. /* If we have more than one inbound queue, then turn on RSS in the
  2689. * routing block.
  2690. */
  2691. if (qdev->rss_ring_count > 1) {
  2692. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2693. RT_IDX_RSS_MATCH, 1);
  2694. if (status) {
  2695. QPRINTK(qdev, IFUP, ERR,
  2696. "Failed to init routing register for MATCH RSS packets.\n");
  2697. goto exit;
  2698. }
  2699. }
  2700. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2701. RT_IDX_CAM_HIT, 1);
  2702. if (status)
  2703. QPRINTK(qdev, IFUP, ERR,
  2704. "Failed to init routing register for CAM packets.\n");
  2705. exit:
  2706. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2707. return status;
  2708. }
  2709. static int ql_cam_route_initialize(struct ql_adapter *qdev)
  2710. {
  2711. int status;
  2712. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2713. if (status)
  2714. return status;
  2715. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2716. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  2717. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2718. if (status) {
  2719. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2720. return status;
  2721. }
  2722. status = ql_route_initialize(qdev);
  2723. if (status)
  2724. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2725. return status;
  2726. }
  2727. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2728. {
  2729. u32 value, mask;
  2730. int i;
  2731. int status = 0;
  2732. /*
  2733. * Set up the System register to halt on errors.
  2734. */
  2735. value = SYS_EFE | SYS_FAE;
  2736. mask = value << 16;
  2737. ql_write32(qdev, SYS, mask | value);
  2738. /* Set the default queue. */
  2739. value = NIC_RCV_CFG_DFQ;
  2740. mask = NIC_RCV_CFG_DFQ_MASK;
  2741. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2742. /* Set the MPI interrupt to enabled. */
  2743. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2744. /* Enable the function, set pagesize, enable error checking. */
  2745. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2746. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2747. /* Set/clear header splitting. */
  2748. mask = FSC_VM_PAGESIZE_MASK |
  2749. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2750. ql_write32(qdev, FSC, mask | value);
  2751. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2752. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2753. /* Start up the rx queues. */
  2754. for (i = 0; i < qdev->rx_ring_count; i++) {
  2755. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2756. if (status) {
  2757. QPRINTK(qdev, IFUP, ERR,
  2758. "Failed to start rx ring[%d].\n", i);
  2759. return status;
  2760. }
  2761. }
  2762. /* If there is more than one inbound completion queue
  2763. * then download a RICB to configure RSS.
  2764. */
  2765. if (qdev->rss_ring_count > 1) {
  2766. status = ql_start_rss(qdev);
  2767. if (status) {
  2768. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2769. return status;
  2770. }
  2771. }
  2772. /* Start up the tx queues. */
  2773. for (i = 0; i < qdev->tx_ring_count; i++) {
  2774. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2775. if (status) {
  2776. QPRINTK(qdev, IFUP, ERR,
  2777. "Failed to start tx ring[%d].\n", i);
  2778. return status;
  2779. }
  2780. }
  2781. status = ql_port_initialize(qdev);
  2782. if (status) {
  2783. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2784. return status;
  2785. }
  2786. /* Set up the MAC address and frame routing filter. */
  2787. status = ql_cam_route_initialize(qdev);
  2788. if (status) {
  2789. QPRINTK(qdev, IFUP, ERR,
  2790. "Failed to init CAM/Routing tables.\n");
  2791. return status;
  2792. }
  2793. /* Start NAPI for the RSS queues. */
  2794. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2795. QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
  2796. i);
  2797. napi_enable(&qdev->rx_ring[i].napi);
  2798. }
  2799. return status;
  2800. }
  2801. /* Issue soft reset to chip. */
  2802. static int ql_adapter_reset(struct ql_adapter *qdev)
  2803. {
  2804. u32 value;
  2805. int max_wait_time;
  2806. int status = 0;
  2807. int resetCnt = 0;
  2808. #define MAX_RESET_CNT 1
  2809. issueReset:
  2810. resetCnt++;
  2811. QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
  2812. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2813. /* Wait for reset to complete. */
  2814. max_wait_time = 3;
  2815. QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
  2816. max_wait_time);
  2817. do {
  2818. value = ql_read32(qdev, RST_FO);
  2819. if ((value & RST_FO_FR) == 0)
  2820. break;
  2821. ssleep(1);
  2822. } while ((--max_wait_time));
  2823. if (value & RST_FO_FR) {
  2824. QPRINTK(qdev, IFDOWN, ERR,
  2825. "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
  2826. if (resetCnt < MAX_RESET_CNT)
  2827. goto issueReset;
  2828. }
  2829. if (max_wait_time == 0) {
  2830. status = -ETIMEDOUT;
  2831. QPRINTK(qdev, IFDOWN, ERR,
  2832. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2833. }
  2834. return status;
  2835. }
  2836. static void ql_display_dev_info(struct net_device *ndev)
  2837. {
  2838. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2839. QPRINTK(qdev, PROBE, INFO,
  2840. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2841. "XG Roll = %d, XG Rev = %d.\n",
  2842. qdev->func,
  2843. qdev->chip_rev_id & 0x0000000f,
  2844. qdev->chip_rev_id >> 4 & 0x0000000f,
  2845. qdev->chip_rev_id >> 8 & 0x0000000f,
  2846. qdev->chip_rev_id >> 12 & 0x0000000f);
  2847. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2848. }
  2849. static int ql_adapter_down(struct ql_adapter *qdev)
  2850. {
  2851. struct net_device *ndev = qdev->ndev;
  2852. int i, status = 0;
  2853. struct rx_ring *rx_ring;
  2854. netif_stop_queue(ndev);
  2855. netif_carrier_off(ndev);
  2856. /* Don't kill the reset worker thread if we
  2857. * are in the process of recovery.
  2858. */
  2859. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  2860. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2861. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2862. cancel_delayed_work_sync(&qdev->mpi_work);
  2863. /* The default queue at index 0 is always processed in
  2864. * a workqueue.
  2865. */
  2866. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2867. /* The rest of the rx_rings are processed in
  2868. * a workqueue only if it's a single interrupt
  2869. * environment (MSI/Legacy).
  2870. */
  2871. for (i = 1; i < qdev->rx_ring_count; i++) {
  2872. rx_ring = &qdev->rx_ring[i];
  2873. /* Only the RSS rings use NAPI on multi irq
  2874. * environment. Outbound completion processing
  2875. * is done in interrupt context.
  2876. */
  2877. if (i >= qdev->rss_ring_first_cq_id) {
  2878. napi_disable(&rx_ring->napi);
  2879. } else {
  2880. cancel_delayed_work_sync(&rx_ring->rx_work);
  2881. }
  2882. }
  2883. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2884. ql_disable_interrupts(qdev);
  2885. ql_tx_ring_clean(qdev);
  2886. spin_lock(&qdev->hw_lock);
  2887. status = ql_adapter_reset(qdev);
  2888. if (status)
  2889. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2890. qdev->func);
  2891. spin_unlock(&qdev->hw_lock);
  2892. return status;
  2893. }
  2894. static int ql_adapter_up(struct ql_adapter *qdev)
  2895. {
  2896. int err = 0;
  2897. spin_lock(&qdev->hw_lock);
  2898. err = ql_adapter_initialize(qdev);
  2899. if (err) {
  2900. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2901. spin_unlock(&qdev->hw_lock);
  2902. goto err_init;
  2903. }
  2904. spin_unlock(&qdev->hw_lock);
  2905. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2906. ql_enable_interrupts(qdev);
  2907. ql_enable_all_completion_interrupts(qdev);
  2908. if ((ql_read32(qdev, STS) & qdev->port_init)) {
  2909. netif_carrier_on(qdev->ndev);
  2910. netif_start_queue(qdev->ndev);
  2911. }
  2912. return 0;
  2913. err_init:
  2914. ql_adapter_reset(qdev);
  2915. return err;
  2916. }
  2917. static int ql_cycle_adapter(struct ql_adapter *qdev)
  2918. {
  2919. int status;
  2920. status = ql_adapter_down(qdev);
  2921. if (status)
  2922. goto error;
  2923. status = ql_adapter_up(qdev);
  2924. if (status)
  2925. goto error;
  2926. return status;
  2927. error:
  2928. QPRINTK(qdev, IFUP, ALERT,
  2929. "Driver up/down cycle failed, closing device\n");
  2930. rtnl_lock();
  2931. dev_close(qdev->ndev);
  2932. rtnl_unlock();
  2933. return status;
  2934. }
  2935. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2936. {
  2937. ql_free_mem_resources(qdev);
  2938. ql_free_irq(qdev);
  2939. }
  2940. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2941. {
  2942. int status = 0;
  2943. if (ql_alloc_mem_resources(qdev)) {
  2944. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2945. return -ENOMEM;
  2946. }
  2947. status = ql_request_irq(qdev);
  2948. if (status)
  2949. goto err_irq;
  2950. return status;
  2951. err_irq:
  2952. ql_free_mem_resources(qdev);
  2953. return status;
  2954. }
  2955. static int qlge_close(struct net_device *ndev)
  2956. {
  2957. struct ql_adapter *qdev = netdev_priv(ndev);
  2958. /*
  2959. * Wait for device to recover from a reset.
  2960. * (Rarely happens, but possible.)
  2961. */
  2962. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2963. msleep(1);
  2964. ql_adapter_down(qdev);
  2965. ql_release_adapter_resources(qdev);
  2966. return 0;
  2967. }
  2968. static int ql_configure_rings(struct ql_adapter *qdev)
  2969. {
  2970. int i;
  2971. struct rx_ring *rx_ring;
  2972. struct tx_ring *tx_ring;
  2973. int cpu_cnt = num_online_cpus();
  2974. /*
  2975. * For each processor present we allocate one
  2976. * rx_ring for outbound completions, and one
  2977. * rx_ring for inbound completions. Plus there is
  2978. * always the one default queue. For the CPU
  2979. * counts we end up with the following rx_rings:
  2980. * rx_ring count =
  2981. * one default queue +
  2982. * (CPU count * outbound completion rx_ring) +
  2983. * (CPU count * inbound (RSS) completion rx_ring)
  2984. * To keep it simple we limit the total number of
  2985. * queues to < 32, so we truncate CPU to 8.
  2986. * This limitation can be removed when requested.
  2987. */
  2988. if (cpu_cnt > MAX_CPUS)
  2989. cpu_cnt = MAX_CPUS;
  2990. /*
  2991. * rx_ring[0] is always the default queue.
  2992. */
  2993. /* Allocate outbound completion ring for each CPU. */
  2994. qdev->tx_ring_count = cpu_cnt;
  2995. /* Allocate inbound completion (RSS) ring for each CPU. */
  2996. qdev->rss_ring_count = cpu_cnt;
  2997. /* cq_id for the first inbound ring handler. */
  2998. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  2999. /*
  3000. * qdev->rx_ring_count:
  3001. * Total number of rx_rings. This includes the one
  3002. * default queue, a number of outbound completion
  3003. * handler rx_rings, and the number of inbound
  3004. * completion handler rx_rings.
  3005. */
  3006. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  3007. for (i = 0; i < qdev->tx_ring_count; i++) {
  3008. tx_ring = &qdev->tx_ring[i];
  3009. memset((void *)tx_ring, 0, sizeof(tx_ring));
  3010. tx_ring->qdev = qdev;
  3011. tx_ring->wq_id = i;
  3012. tx_ring->wq_len = qdev->tx_ring_size;
  3013. tx_ring->wq_size =
  3014. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3015. /*
  3016. * The completion queue ID for the tx rings start
  3017. * immediately after the default Q ID, which is zero.
  3018. */
  3019. tx_ring->cq_id = i + 1;
  3020. }
  3021. for (i = 0; i < qdev->rx_ring_count; i++) {
  3022. rx_ring = &qdev->rx_ring[i];
  3023. memset((void *)rx_ring, 0, sizeof(rx_ring));
  3024. rx_ring->qdev = qdev;
  3025. rx_ring->cq_id = i;
  3026. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3027. if (i == 0) { /* Default queue at index 0. */
  3028. /*
  3029. * Default queue handles bcast/mcast plus
  3030. * async events. Needs buffers.
  3031. */
  3032. rx_ring->cq_len = qdev->rx_ring_size;
  3033. rx_ring->cq_size =
  3034. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3035. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3036. rx_ring->lbq_size =
  3037. rx_ring->lbq_len * sizeof(__le64);
  3038. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3039. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3040. rx_ring->sbq_size =
  3041. rx_ring->sbq_len * sizeof(__le64);
  3042. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3043. rx_ring->type = DEFAULT_Q;
  3044. } else if (i < qdev->rss_ring_first_cq_id) {
  3045. /*
  3046. * Outbound queue handles outbound completions only.
  3047. */
  3048. /* outbound cq is same size as tx_ring it services. */
  3049. rx_ring->cq_len = qdev->tx_ring_size;
  3050. rx_ring->cq_size =
  3051. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3052. rx_ring->lbq_len = 0;
  3053. rx_ring->lbq_size = 0;
  3054. rx_ring->lbq_buf_size = 0;
  3055. rx_ring->sbq_len = 0;
  3056. rx_ring->sbq_size = 0;
  3057. rx_ring->sbq_buf_size = 0;
  3058. rx_ring->type = TX_Q;
  3059. } else { /* Inbound completions (RSS) queues */
  3060. /*
  3061. * Inbound queues handle unicast frames only.
  3062. */
  3063. rx_ring->cq_len = qdev->rx_ring_size;
  3064. rx_ring->cq_size =
  3065. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3066. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3067. rx_ring->lbq_size =
  3068. rx_ring->lbq_len * sizeof(__le64);
  3069. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3070. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3071. rx_ring->sbq_size =
  3072. rx_ring->sbq_len * sizeof(__le64);
  3073. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3074. rx_ring->type = RX_Q;
  3075. }
  3076. }
  3077. return 0;
  3078. }
  3079. static int qlge_open(struct net_device *ndev)
  3080. {
  3081. int err = 0;
  3082. struct ql_adapter *qdev = netdev_priv(ndev);
  3083. err = ql_configure_rings(qdev);
  3084. if (err)
  3085. return err;
  3086. err = ql_get_adapter_resources(qdev);
  3087. if (err)
  3088. goto error_up;
  3089. err = ql_adapter_up(qdev);
  3090. if (err)
  3091. goto error_up;
  3092. return err;
  3093. error_up:
  3094. ql_release_adapter_resources(qdev);
  3095. return err;
  3096. }
  3097. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3098. {
  3099. struct ql_adapter *qdev = netdev_priv(ndev);
  3100. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3101. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3102. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3103. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3104. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3105. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3106. return 0;
  3107. } else
  3108. return -EINVAL;
  3109. ndev->mtu = new_mtu;
  3110. return 0;
  3111. }
  3112. static struct net_device_stats *qlge_get_stats(struct net_device
  3113. *ndev)
  3114. {
  3115. struct ql_adapter *qdev = netdev_priv(ndev);
  3116. return &qdev->stats;
  3117. }
  3118. static void qlge_set_multicast_list(struct net_device *ndev)
  3119. {
  3120. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3121. struct dev_mc_list *mc_ptr;
  3122. int i, status;
  3123. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3124. if (status)
  3125. return;
  3126. spin_lock(&qdev->hw_lock);
  3127. /*
  3128. * Set or clear promiscuous mode if a
  3129. * transition is taking place.
  3130. */
  3131. if (ndev->flags & IFF_PROMISC) {
  3132. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3133. if (ql_set_routing_reg
  3134. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3135. QPRINTK(qdev, HW, ERR,
  3136. "Failed to set promiscous mode.\n");
  3137. } else {
  3138. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3139. }
  3140. }
  3141. } else {
  3142. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3143. if (ql_set_routing_reg
  3144. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3145. QPRINTK(qdev, HW, ERR,
  3146. "Failed to clear promiscous mode.\n");
  3147. } else {
  3148. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3149. }
  3150. }
  3151. }
  3152. /*
  3153. * Set or clear all multicast mode if a
  3154. * transition is taking place.
  3155. */
  3156. if ((ndev->flags & IFF_ALLMULTI) ||
  3157. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3158. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3159. if (ql_set_routing_reg
  3160. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3161. QPRINTK(qdev, HW, ERR,
  3162. "Failed to set all-multi mode.\n");
  3163. } else {
  3164. set_bit(QL_ALLMULTI, &qdev->flags);
  3165. }
  3166. }
  3167. } else {
  3168. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3169. if (ql_set_routing_reg
  3170. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3171. QPRINTK(qdev, HW, ERR,
  3172. "Failed to clear all-multi mode.\n");
  3173. } else {
  3174. clear_bit(QL_ALLMULTI, &qdev->flags);
  3175. }
  3176. }
  3177. }
  3178. if (ndev->mc_count) {
  3179. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3180. if (status)
  3181. goto exit;
  3182. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3183. i++, mc_ptr = mc_ptr->next)
  3184. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3185. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3186. QPRINTK(qdev, HW, ERR,
  3187. "Failed to loadmulticast address.\n");
  3188. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3189. goto exit;
  3190. }
  3191. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3192. if (ql_set_routing_reg
  3193. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3194. QPRINTK(qdev, HW, ERR,
  3195. "Failed to set multicast match mode.\n");
  3196. } else {
  3197. set_bit(QL_ALLMULTI, &qdev->flags);
  3198. }
  3199. }
  3200. exit:
  3201. spin_unlock(&qdev->hw_lock);
  3202. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3203. }
  3204. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3205. {
  3206. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3207. struct sockaddr *addr = p;
  3208. int status;
  3209. if (netif_running(ndev))
  3210. return -EBUSY;
  3211. if (!is_valid_ether_addr(addr->sa_data))
  3212. return -EADDRNOTAVAIL;
  3213. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3214. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3215. if (status)
  3216. return status;
  3217. spin_lock(&qdev->hw_lock);
  3218. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3219. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3220. spin_unlock(&qdev->hw_lock);
  3221. if (status)
  3222. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3223. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3224. return status;
  3225. }
  3226. static void qlge_tx_timeout(struct net_device *ndev)
  3227. {
  3228. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3229. ql_queue_asic_error(qdev);
  3230. }
  3231. static void ql_asic_reset_work(struct work_struct *work)
  3232. {
  3233. struct ql_adapter *qdev =
  3234. container_of(work, struct ql_adapter, asic_reset_work.work);
  3235. ql_cycle_adapter(qdev);
  3236. }
  3237. static void ql_get_board_info(struct ql_adapter *qdev)
  3238. {
  3239. qdev->func =
  3240. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3241. if (qdev->func) {
  3242. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3243. qdev->port_link_up = STS_PL1;
  3244. qdev->port_init = STS_PI1;
  3245. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3246. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3247. } else {
  3248. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3249. qdev->port_link_up = STS_PL0;
  3250. qdev->port_init = STS_PI0;
  3251. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3252. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3253. }
  3254. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3255. }
  3256. static void ql_release_all(struct pci_dev *pdev)
  3257. {
  3258. struct net_device *ndev = pci_get_drvdata(pdev);
  3259. struct ql_adapter *qdev = netdev_priv(ndev);
  3260. if (qdev->workqueue) {
  3261. destroy_workqueue(qdev->workqueue);
  3262. qdev->workqueue = NULL;
  3263. }
  3264. if (qdev->q_workqueue) {
  3265. destroy_workqueue(qdev->q_workqueue);
  3266. qdev->q_workqueue = NULL;
  3267. }
  3268. if (qdev->reg_base)
  3269. iounmap(qdev->reg_base);
  3270. if (qdev->doorbell_area)
  3271. iounmap(qdev->doorbell_area);
  3272. pci_release_regions(pdev);
  3273. pci_set_drvdata(pdev, NULL);
  3274. }
  3275. static int __devinit ql_init_device(struct pci_dev *pdev,
  3276. struct net_device *ndev, int cards_found)
  3277. {
  3278. struct ql_adapter *qdev = netdev_priv(ndev);
  3279. int pos, err = 0;
  3280. u16 val16;
  3281. memset((void *)qdev, 0, sizeof(qdev));
  3282. err = pci_enable_device(pdev);
  3283. if (err) {
  3284. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3285. return err;
  3286. }
  3287. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3288. if (pos <= 0) {
  3289. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3290. "aborting.\n");
  3291. goto err_out;
  3292. } else {
  3293. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3294. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3295. val16 |= (PCI_EXP_DEVCTL_CERE |
  3296. PCI_EXP_DEVCTL_NFERE |
  3297. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3298. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3299. }
  3300. err = pci_request_regions(pdev, DRV_NAME);
  3301. if (err) {
  3302. dev_err(&pdev->dev, "PCI region request failed.\n");
  3303. goto err_out;
  3304. }
  3305. pci_set_master(pdev);
  3306. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3307. set_bit(QL_DMA64, &qdev->flags);
  3308. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3309. } else {
  3310. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3311. if (!err)
  3312. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3313. }
  3314. if (err) {
  3315. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3316. goto err_out;
  3317. }
  3318. pci_set_drvdata(pdev, ndev);
  3319. qdev->reg_base =
  3320. ioremap_nocache(pci_resource_start(pdev, 1),
  3321. pci_resource_len(pdev, 1));
  3322. if (!qdev->reg_base) {
  3323. dev_err(&pdev->dev, "Register mapping failed.\n");
  3324. err = -ENOMEM;
  3325. goto err_out;
  3326. }
  3327. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3328. qdev->doorbell_area =
  3329. ioremap_nocache(pci_resource_start(pdev, 3),
  3330. pci_resource_len(pdev, 3));
  3331. if (!qdev->doorbell_area) {
  3332. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3333. err = -ENOMEM;
  3334. goto err_out;
  3335. }
  3336. ql_get_board_info(qdev);
  3337. qdev->ndev = ndev;
  3338. qdev->pdev = pdev;
  3339. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3340. spin_lock_init(&qdev->hw_lock);
  3341. spin_lock_init(&qdev->stats_lock);
  3342. /* make sure the EEPROM is good */
  3343. err = ql_get_flash_params(qdev);
  3344. if (err) {
  3345. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3346. goto err_out;
  3347. }
  3348. if (!is_valid_ether_addr(qdev->flash.mac_addr))
  3349. goto err_out;
  3350. memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
  3351. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3352. /* Set up the default ring sizes. */
  3353. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3354. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3355. /* Set up the coalescing parameters. */
  3356. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3357. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3358. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3359. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3360. /*
  3361. * Set up the operating parameters.
  3362. */
  3363. qdev->rx_csum = 1;
  3364. qdev->q_workqueue = create_workqueue(ndev->name);
  3365. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3366. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3367. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3368. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3369. if (!cards_found) {
  3370. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3371. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3372. DRV_NAME, DRV_VERSION);
  3373. }
  3374. return 0;
  3375. err_out:
  3376. ql_release_all(pdev);
  3377. pci_disable_device(pdev);
  3378. return err;
  3379. }
  3380. static const struct net_device_ops qlge_netdev_ops = {
  3381. .ndo_open = qlge_open,
  3382. .ndo_stop = qlge_close,
  3383. .ndo_start_xmit = qlge_send,
  3384. .ndo_change_mtu = qlge_change_mtu,
  3385. .ndo_get_stats = qlge_get_stats,
  3386. .ndo_set_multicast_list = qlge_set_multicast_list,
  3387. .ndo_set_mac_address = qlge_set_mac_address,
  3388. .ndo_validate_addr = eth_validate_addr,
  3389. .ndo_tx_timeout = qlge_tx_timeout,
  3390. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3391. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3392. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3393. };
  3394. static int __devinit qlge_probe(struct pci_dev *pdev,
  3395. const struct pci_device_id *pci_entry)
  3396. {
  3397. struct net_device *ndev = NULL;
  3398. struct ql_adapter *qdev = NULL;
  3399. static int cards_found = 0;
  3400. int err = 0;
  3401. ndev = alloc_etherdev(sizeof(struct ql_adapter));
  3402. if (!ndev)
  3403. return -ENOMEM;
  3404. err = ql_init_device(pdev, ndev, cards_found);
  3405. if (err < 0) {
  3406. free_netdev(ndev);
  3407. return err;
  3408. }
  3409. qdev = netdev_priv(ndev);
  3410. SET_NETDEV_DEV(ndev, &pdev->dev);
  3411. ndev->features = (0
  3412. | NETIF_F_IP_CSUM
  3413. | NETIF_F_SG
  3414. | NETIF_F_TSO
  3415. | NETIF_F_TSO6
  3416. | NETIF_F_TSO_ECN
  3417. | NETIF_F_HW_VLAN_TX
  3418. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3419. if (test_bit(QL_DMA64, &qdev->flags))
  3420. ndev->features |= NETIF_F_HIGHDMA;
  3421. /*
  3422. * Set up net_device structure.
  3423. */
  3424. ndev->tx_queue_len = qdev->tx_ring_size;
  3425. ndev->irq = pdev->irq;
  3426. ndev->netdev_ops = &qlge_netdev_ops;
  3427. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3428. ndev->watchdog_timeo = 10 * HZ;
  3429. err = register_netdev(ndev);
  3430. if (err) {
  3431. dev_err(&pdev->dev, "net device registration failed.\n");
  3432. ql_release_all(pdev);
  3433. pci_disable_device(pdev);
  3434. return err;
  3435. }
  3436. netif_carrier_off(ndev);
  3437. netif_stop_queue(ndev);
  3438. ql_display_dev_info(ndev);
  3439. cards_found++;
  3440. return 0;
  3441. }
  3442. static void __devexit qlge_remove(struct pci_dev *pdev)
  3443. {
  3444. struct net_device *ndev = pci_get_drvdata(pdev);
  3445. unregister_netdev(ndev);
  3446. ql_release_all(pdev);
  3447. pci_disable_device(pdev);
  3448. free_netdev(ndev);
  3449. }
  3450. /*
  3451. * This callback is called by the PCI subsystem whenever
  3452. * a PCI bus error is detected.
  3453. */
  3454. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3455. enum pci_channel_state state)
  3456. {
  3457. struct net_device *ndev = pci_get_drvdata(pdev);
  3458. struct ql_adapter *qdev = netdev_priv(ndev);
  3459. if (netif_running(ndev))
  3460. ql_adapter_down(qdev);
  3461. pci_disable_device(pdev);
  3462. /* Request a slot reset. */
  3463. return PCI_ERS_RESULT_NEED_RESET;
  3464. }
  3465. /*
  3466. * This callback is called after the PCI buss has been reset.
  3467. * Basically, this tries to restart the card from scratch.
  3468. * This is a shortened version of the device probe/discovery code,
  3469. * it resembles the first-half of the () routine.
  3470. */
  3471. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3472. {
  3473. struct net_device *ndev = pci_get_drvdata(pdev);
  3474. struct ql_adapter *qdev = netdev_priv(ndev);
  3475. if (pci_enable_device(pdev)) {
  3476. QPRINTK(qdev, IFUP, ERR,
  3477. "Cannot re-enable PCI device after reset.\n");
  3478. return PCI_ERS_RESULT_DISCONNECT;
  3479. }
  3480. pci_set_master(pdev);
  3481. netif_carrier_off(ndev);
  3482. netif_stop_queue(ndev);
  3483. ql_adapter_reset(qdev);
  3484. /* Make sure the EEPROM is good */
  3485. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3486. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3487. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3488. return PCI_ERS_RESULT_DISCONNECT;
  3489. }
  3490. return PCI_ERS_RESULT_RECOVERED;
  3491. }
  3492. static void qlge_io_resume(struct pci_dev *pdev)
  3493. {
  3494. struct net_device *ndev = pci_get_drvdata(pdev);
  3495. struct ql_adapter *qdev = netdev_priv(ndev);
  3496. pci_set_master(pdev);
  3497. if (netif_running(ndev)) {
  3498. if (ql_adapter_up(qdev)) {
  3499. QPRINTK(qdev, IFUP, ERR,
  3500. "Device initialization failed after reset.\n");
  3501. return;
  3502. }
  3503. }
  3504. netif_device_attach(ndev);
  3505. }
  3506. static struct pci_error_handlers qlge_err_handler = {
  3507. .error_detected = qlge_io_error_detected,
  3508. .slot_reset = qlge_io_slot_reset,
  3509. .resume = qlge_io_resume,
  3510. };
  3511. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3512. {
  3513. struct net_device *ndev = pci_get_drvdata(pdev);
  3514. struct ql_adapter *qdev = netdev_priv(ndev);
  3515. int err, i;
  3516. netif_device_detach(ndev);
  3517. if (netif_running(ndev)) {
  3518. err = ql_adapter_down(qdev);
  3519. if (!err)
  3520. return err;
  3521. }
  3522. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
  3523. netif_napi_del(&qdev->rx_ring[i].napi);
  3524. err = pci_save_state(pdev);
  3525. if (err)
  3526. return err;
  3527. pci_disable_device(pdev);
  3528. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3529. return 0;
  3530. }
  3531. #ifdef CONFIG_PM
  3532. static int qlge_resume(struct pci_dev *pdev)
  3533. {
  3534. struct net_device *ndev = pci_get_drvdata(pdev);
  3535. struct ql_adapter *qdev = netdev_priv(ndev);
  3536. int err;
  3537. pci_set_power_state(pdev, PCI_D0);
  3538. pci_restore_state(pdev);
  3539. err = pci_enable_device(pdev);
  3540. if (err) {
  3541. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3542. return err;
  3543. }
  3544. pci_set_master(pdev);
  3545. pci_enable_wake(pdev, PCI_D3hot, 0);
  3546. pci_enable_wake(pdev, PCI_D3cold, 0);
  3547. if (netif_running(ndev)) {
  3548. err = ql_adapter_up(qdev);
  3549. if (err)
  3550. return err;
  3551. }
  3552. netif_device_attach(ndev);
  3553. return 0;
  3554. }
  3555. #endif /* CONFIG_PM */
  3556. static void qlge_shutdown(struct pci_dev *pdev)
  3557. {
  3558. qlge_suspend(pdev, PMSG_SUSPEND);
  3559. }
  3560. static struct pci_driver qlge_driver = {
  3561. .name = DRV_NAME,
  3562. .id_table = qlge_pci_tbl,
  3563. .probe = qlge_probe,
  3564. .remove = __devexit_p(qlge_remove),
  3565. #ifdef CONFIG_PM
  3566. .suspend = qlge_suspend,
  3567. .resume = qlge_resume,
  3568. #endif
  3569. .shutdown = qlge_shutdown,
  3570. .err_handler = &qlge_err_handler
  3571. };
  3572. static int __init qlge_init_module(void)
  3573. {
  3574. return pci_register_driver(&qlge_driver);
  3575. }
  3576. static void __exit qlge_exit(void)
  3577. {
  3578. pci_unregister_driver(&qlge_driver);
  3579. }
  3580. module_init(qlge_init_module);
  3581. module_exit(qlge_exit);