mmu.c 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. #undef MMU_DEBUG
  48. #undef AUDIT
  49. #ifdef AUDIT
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  51. #else
  52. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  53. #endif
  54. #ifdef MMU_DEBUG
  55. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  56. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  57. #else
  58. #define pgprintk(x...) do { } while (0)
  59. #define rmap_printk(x...) do { } while (0)
  60. #endif
  61. #if defined(MMU_DEBUG) || defined(AUDIT)
  62. static int dbg = 0;
  63. module_param(dbg, bool, 0644);
  64. #endif
  65. static int oos_shadow = 1;
  66. module_param(oos_shadow, bool, 0644);
  67. #ifndef MMU_DEBUG
  68. #define ASSERT(x) do { } while (0)
  69. #else
  70. #define ASSERT(x) \
  71. if (!(x)) { \
  72. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  73. __FILE__, __LINE__, #x); \
  74. }
  75. #endif
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static u64 __read_mostly shadow_trap_nonpresent_pte;
  142. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  143. static u64 __read_mostly shadow_base_present_pte;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static inline u64 rsvd_bits(int s, int e)
  150. {
  151. return ((1ULL << (e - s + 1)) - 1) << s;
  152. }
  153. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  154. {
  155. shadow_trap_nonpresent_pte = trap_pte;
  156. shadow_notrap_nonpresent_pte = notrap_pte;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  159. void kvm_mmu_set_base_ptes(u64 base_pte)
  160. {
  161. shadow_base_present_pte = base_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  164. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  165. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  166. {
  167. shadow_user_mask = user_mask;
  168. shadow_accessed_mask = accessed_mask;
  169. shadow_dirty_mask = dirty_mask;
  170. shadow_nx_mask = nx_mask;
  171. shadow_x_mask = x_mask;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  174. static bool is_write_protection(struct kvm_vcpu *vcpu)
  175. {
  176. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  177. }
  178. static int is_cpuid_PSE36(void)
  179. {
  180. return 1;
  181. }
  182. static int is_nx(struct kvm_vcpu *vcpu)
  183. {
  184. return vcpu->arch.efer & EFER_NX;
  185. }
  186. static int is_shadow_present_pte(u64 pte)
  187. {
  188. return pte != shadow_trap_nonpresent_pte
  189. && pte != shadow_notrap_nonpresent_pte;
  190. }
  191. static int is_large_pte(u64 pte)
  192. {
  193. return pte & PT_PAGE_SIZE_MASK;
  194. }
  195. static int is_writable_pte(unsigned long pte)
  196. {
  197. return pte & PT_WRITABLE_MASK;
  198. }
  199. static int is_dirty_gpte(unsigned long pte)
  200. {
  201. return pte & PT_DIRTY_MASK;
  202. }
  203. static int is_rmap_spte(u64 pte)
  204. {
  205. return is_shadow_present_pte(pte);
  206. }
  207. static int is_last_spte(u64 pte, int level)
  208. {
  209. if (level == PT_PAGE_TABLE_LEVEL)
  210. return 1;
  211. if (is_large_pte(pte))
  212. return 1;
  213. return 0;
  214. }
  215. static pfn_t spte_to_pfn(u64 pte)
  216. {
  217. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  218. }
  219. static gfn_t pse36_gfn_delta(u32 gpte)
  220. {
  221. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  222. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  223. }
  224. static void __set_spte(u64 *sptep, u64 spte)
  225. {
  226. set_64bit(sptep, spte);
  227. }
  228. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  229. {
  230. #ifdef CONFIG_X86_64
  231. return xchg(sptep, new_spte);
  232. #else
  233. u64 old_spte;
  234. do {
  235. old_spte = *sptep;
  236. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  237. return old_spte;
  238. #endif
  239. }
  240. static bool spte_has_volatile_bits(u64 spte)
  241. {
  242. if (!shadow_accessed_mask)
  243. return false;
  244. if (!is_shadow_present_pte(spte))
  245. return false;
  246. if ((spte & shadow_accessed_mask) &&
  247. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  248. return false;
  249. return true;
  250. }
  251. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  252. {
  253. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  254. }
  255. static void update_spte(u64 *sptep, u64 new_spte)
  256. {
  257. u64 mask, old_spte = *sptep;
  258. WARN_ON(!is_rmap_spte(new_spte));
  259. new_spte |= old_spte & shadow_dirty_mask;
  260. mask = shadow_accessed_mask;
  261. if (is_writable_pte(old_spte))
  262. mask |= shadow_dirty_mask;
  263. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  264. __set_spte(sptep, new_spte);
  265. else
  266. old_spte = __xchg_spte(sptep, new_spte);
  267. if (!shadow_accessed_mask)
  268. return;
  269. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  270. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  271. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  272. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  273. }
  274. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  275. struct kmem_cache *base_cache, int min)
  276. {
  277. void *obj;
  278. if (cache->nobjs >= min)
  279. return 0;
  280. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  281. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  282. if (!obj)
  283. return -ENOMEM;
  284. cache->objects[cache->nobjs++] = obj;
  285. }
  286. return 0;
  287. }
  288. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  289. struct kmem_cache *cache)
  290. {
  291. while (mc->nobjs)
  292. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  293. }
  294. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  295. int min)
  296. {
  297. struct page *page;
  298. if (cache->nobjs >= min)
  299. return 0;
  300. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  301. page = alloc_page(GFP_KERNEL);
  302. if (!page)
  303. return -ENOMEM;
  304. cache->objects[cache->nobjs++] = page_address(page);
  305. }
  306. return 0;
  307. }
  308. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  309. {
  310. while (mc->nobjs)
  311. free_page((unsigned long)mc->objects[--mc->nobjs]);
  312. }
  313. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  314. {
  315. int r;
  316. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  317. pte_chain_cache, 4);
  318. if (r)
  319. goto out;
  320. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  321. rmap_desc_cache, 4);
  322. if (r)
  323. goto out;
  324. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  325. if (r)
  326. goto out;
  327. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  328. mmu_page_header_cache, 4);
  329. out:
  330. return r;
  331. }
  332. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  333. {
  334. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  335. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  336. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  337. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  338. mmu_page_header_cache);
  339. }
  340. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  341. size_t size)
  342. {
  343. void *p;
  344. BUG_ON(!mc->nobjs);
  345. p = mc->objects[--mc->nobjs];
  346. return p;
  347. }
  348. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  349. {
  350. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  351. sizeof(struct kvm_pte_chain));
  352. }
  353. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  354. {
  355. kmem_cache_free(pte_chain_cache, pc);
  356. }
  357. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  358. {
  359. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  360. sizeof(struct kvm_rmap_desc));
  361. }
  362. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  363. {
  364. kmem_cache_free(rmap_desc_cache, rd);
  365. }
  366. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  367. {
  368. if (!sp->role.direct)
  369. return sp->gfns[index];
  370. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  371. }
  372. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  373. {
  374. if (sp->role.direct)
  375. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  376. else
  377. sp->gfns[index] = gfn;
  378. }
  379. /*
  380. * Return the pointer to the largepage write count for a given
  381. * gfn, handling slots that are not large page aligned.
  382. */
  383. static int *slot_largepage_idx(gfn_t gfn,
  384. struct kvm_memory_slot *slot,
  385. int level)
  386. {
  387. unsigned long idx;
  388. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  389. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  390. return &slot->lpage_info[level - 2][idx].write_count;
  391. }
  392. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  393. {
  394. struct kvm_memory_slot *slot;
  395. int *write_count;
  396. int i;
  397. slot = gfn_to_memslot(kvm, gfn);
  398. for (i = PT_DIRECTORY_LEVEL;
  399. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  400. write_count = slot_largepage_idx(gfn, slot, i);
  401. *write_count += 1;
  402. }
  403. }
  404. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  405. {
  406. struct kvm_memory_slot *slot;
  407. int *write_count;
  408. int i;
  409. slot = gfn_to_memslot(kvm, gfn);
  410. for (i = PT_DIRECTORY_LEVEL;
  411. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  412. write_count = slot_largepage_idx(gfn, slot, i);
  413. *write_count -= 1;
  414. WARN_ON(*write_count < 0);
  415. }
  416. }
  417. static int has_wrprotected_page(struct kvm *kvm,
  418. gfn_t gfn,
  419. int level)
  420. {
  421. struct kvm_memory_slot *slot;
  422. int *largepage_idx;
  423. slot = gfn_to_memslot(kvm, gfn);
  424. if (slot) {
  425. largepage_idx = slot_largepage_idx(gfn, slot, level);
  426. return *largepage_idx;
  427. }
  428. return 1;
  429. }
  430. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  431. {
  432. unsigned long page_size;
  433. int i, ret = 0;
  434. page_size = kvm_host_page_size(kvm, gfn);
  435. for (i = PT_PAGE_TABLE_LEVEL;
  436. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  437. if (page_size >= KVM_HPAGE_SIZE(i))
  438. ret = i;
  439. else
  440. break;
  441. }
  442. return ret;
  443. }
  444. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  445. {
  446. struct kvm_memory_slot *slot;
  447. int host_level, level, max_level;
  448. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  449. if (slot && slot->dirty_bitmap)
  450. return PT_PAGE_TABLE_LEVEL;
  451. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  452. if (host_level == PT_PAGE_TABLE_LEVEL)
  453. return host_level;
  454. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  455. kvm_x86_ops->get_lpage_level() : host_level;
  456. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  457. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  458. break;
  459. return level - 1;
  460. }
  461. /*
  462. * Take gfn and return the reverse mapping to it.
  463. */
  464. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  465. {
  466. struct kvm_memory_slot *slot;
  467. unsigned long idx;
  468. slot = gfn_to_memslot(kvm, gfn);
  469. if (likely(level == PT_PAGE_TABLE_LEVEL))
  470. return &slot->rmap[gfn - slot->base_gfn];
  471. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  472. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  473. return &slot->lpage_info[level - 2][idx].rmap_pde;
  474. }
  475. /*
  476. * Reverse mapping data structures:
  477. *
  478. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  479. * that points to page_address(page).
  480. *
  481. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  482. * containing more mappings.
  483. *
  484. * Returns the number of rmap entries before the spte was added or zero if
  485. * the spte was not added.
  486. *
  487. */
  488. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  489. {
  490. struct kvm_mmu_page *sp;
  491. struct kvm_rmap_desc *desc;
  492. unsigned long *rmapp;
  493. int i, count = 0;
  494. if (!is_rmap_spte(*spte))
  495. return count;
  496. sp = page_header(__pa(spte));
  497. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  498. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  499. if (!*rmapp) {
  500. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  501. *rmapp = (unsigned long)spte;
  502. } else if (!(*rmapp & 1)) {
  503. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  504. desc = mmu_alloc_rmap_desc(vcpu);
  505. desc->sptes[0] = (u64 *)*rmapp;
  506. desc->sptes[1] = spte;
  507. *rmapp = (unsigned long)desc | 1;
  508. } else {
  509. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  510. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  511. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  512. desc = desc->more;
  513. count += RMAP_EXT;
  514. }
  515. if (desc->sptes[RMAP_EXT-1]) {
  516. desc->more = mmu_alloc_rmap_desc(vcpu);
  517. desc = desc->more;
  518. }
  519. for (i = 0; desc->sptes[i]; ++i)
  520. ;
  521. desc->sptes[i] = spte;
  522. }
  523. return count;
  524. }
  525. static void rmap_desc_remove_entry(unsigned long *rmapp,
  526. struct kvm_rmap_desc *desc,
  527. int i,
  528. struct kvm_rmap_desc *prev_desc)
  529. {
  530. int j;
  531. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  532. ;
  533. desc->sptes[i] = desc->sptes[j];
  534. desc->sptes[j] = NULL;
  535. if (j != 0)
  536. return;
  537. if (!prev_desc && !desc->more)
  538. *rmapp = (unsigned long)desc->sptes[0];
  539. else
  540. if (prev_desc)
  541. prev_desc->more = desc->more;
  542. else
  543. *rmapp = (unsigned long)desc->more | 1;
  544. mmu_free_rmap_desc(desc);
  545. }
  546. static void rmap_remove(struct kvm *kvm, u64 *spte)
  547. {
  548. struct kvm_rmap_desc *desc;
  549. struct kvm_rmap_desc *prev_desc;
  550. struct kvm_mmu_page *sp;
  551. gfn_t gfn;
  552. unsigned long *rmapp;
  553. int i;
  554. sp = page_header(__pa(spte));
  555. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  556. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  557. if (!*rmapp) {
  558. printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
  559. BUG();
  560. } else if (!(*rmapp & 1)) {
  561. rmap_printk("rmap_remove: %p 1->0\n", spte);
  562. if ((u64 *)*rmapp != spte) {
  563. printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
  564. BUG();
  565. }
  566. *rmapp = 0;
  567. } else {
  568. rmap_printk("rmap_remove: %p many->many\n", spte);
  569. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  570. prev_desc = NULL;
  571. while (desc) {
  572. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  573. if (desc->sptes[i] == spte) {
  574. rmap_desc_remove_entry(rmapp,
  575. desc, i,
  576. prev_desc);
  577. return;
  578. }
  579. prev_desc = desc;
  580. desc = desc->more;
  581. }
  582. pr_err("rmap_remove: %p many->many\n", spte);
  583. BUG();
  584. }
  585. }
  586. static void set_spte_track_bits(u64 *sptep, u64 new_spte)
  587. {
  588. pfn_t pfn;
  589. u64 old_spte = *sptep;
  590. if (!spte_has_volatile_bits(old_spte))
  591. __set_spte(sptep, new_spte);
  592. else
  593. old_spte = __xchg_spte(sptep, new_spte);
  594. if (!is_rmap_spte(old_spte))
  595. return;
  596. pfn = spte_to_pfn(old_spte);
  597. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  598. kvm_set_pfn_accessed(pfn);
  599. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  600. kvm_set_pfn_dirty(pfn);
  601. }
  602. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  603. {
  604. set_spte_track_bits(sptep, new_spte);
  605. rmap_remove(kvm, sptep);
  606. }
  607. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  608. {
  609. struct kvm_rmap_desc *desc;
  610. u64 *prev_spte;
  611. int i;
  612. if (!*rmapp)
  613. return NULL;
  614. else if (!(*rmapp & 1)) {
  615. if (!spte)
  616. return (u64 *)*rmapp;
  617. return NULL;
  618. }
  619. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  620. prev_spte = NULL;
  621. while (desc) {
  622. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  623. if (prev_spte == spte)
  624. return desc->sptes[i];
  625. prev_spte = desc->sptes[i];
  626. }
  627. desc = desc->more;
  628. }
  629. return NULL;
  630. }
  631. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  632. {
  633. unsigned long *rmapp;
  634. u64 *spte;
  635. int i, write_protected = 0;
  636. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  637. spte = rmap_next(kvm, rmapp, NULL);
  638. while (spte) {
  639. BUG_ON(!spte);
  640. BUG_ON(!(*spte & PT_PRESENT_MASK));
  641. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  642. if (is_writable_pte(*spte)) {
  643. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  644. write_protected = 1;
  645. }
  646. spte = rmap_next(kvm, rmapp, spte);
  647. }
  648. /* check for huge page mappings */
  649. for (i = PT_DIRECTORY_LEVEL;
  650. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  651. rmapp = gfn_to_rmap(kvm, gfn, i);
  652. spte = rmap_next(kvm, rmapp, NULL);
  653. while (spte) {
  654. BUG_ON(!spte);
  655. BUG_ON(!(*spte & PT_PRESENT_MASK));
  656. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  657. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  658. if (is_writable_pte(*spte)) {
  659. drop_spte(kvm, spte,
  660. shadow_trap_nonpresent_pte);
  661. --kvm->stat.lpages;
  662. spte = NULL;
  663. write_protected = 1;
  664. }
  665. spte = rmap_next(kvm, rmapp, spte);
  666. }
  667. }
  668. return write_protected;
  669. }
  670. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  671. unsigned long data)
  672. {
  673. u64 *spte;
  674. int need_tlb_flush = 0;
  675. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  676. BUG_ON(!(*spte & PT_PRESENT_MASK));
  677. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  678. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  679. need_tlb_flush = 1;
  680. }
  681. return need_tlb_flush;
  682. }
  683. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  684. unsigned long data)
  685. {
  686. int need_flush = 0;
  687. u64 *spte, new_spte;
  688. pte_t *ptep = (pte_t *)data;
  689. pfn_t new_pfn;
  690. WARN_ON(pte_huge(*ptep));
  691. new_pfn = pte_pfn(*ptep);
  692. spte = rmap_next(kvm, rmapp, NULL);
  693. while (spte) {
  694. BUG_ON(!is_shadow_present_pte(*spte));
  695. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  696. need_flush = 1;
  697. if (pte_write(*ptep)) {
  698. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  699. spte = rmap_next(kvm, rmapp, NULL);
  700. } else {
  701. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  702. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  703. new_spte &= ~PT_WRITABLE_MASK;
  704. new_spte &= ~SPTE_HOST_WRITEABLE;
  705. new_spte &= ~shadow_accessed_mask;
  706. set_spte_track_bits(spte, new_spte);
  707. spte = rmap_next(kvm, rmapp, spte);
  708. }
  709. }
  710. if (need_flush)
  711. kvm_flush_remote_tlbs(kvm);
  712. return 0;
  713. }
  714. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  715. unsigned long data,
  716. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  717. unsigned long data))
  718. {
  719. int i, j;
  720. int ret;
  721. int retval = 0;
  722. struct kvm_memslots *slots;
  723. slots = kvm_memslots(kvm);
  724. for (i = 0; i < slots->nmemslots; i++) {
  725. struct kvm_memory_slot *memslot = &slots->memslots[i];
  726. unsigned long start = memslot->userspace_addr;
  727. unsigned long end;
  728. end = start + (memslot->npages << PAGE_SHIFT);
  729. if (hva >= start && hva < end) {
  730. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  731. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  732. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  733. unsigned long idx;
  734. int sh;
  735. sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
  736. idx = ((memslot->base_gfn+gfn_offset) >> sh) -
  737. (memslot->base_gfn >> sh);
  738. ret |= handler(kvm,
  739. &memslot->lpage_info[j][idx].rmap_pde,
  740. data);
  741. }
  742. trace_kvm_age_page(hva, memslot, ret);
  743. retval |= ret;
  744. }
  745. }
  746. return retval;
  747. }
  748. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  749. {
  750. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  751. }
  752. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  753. {
  754. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  755. }
  756. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  757. unsigned long data)
  758. {
  759. u64 *spte;
  760. int young = 0;
  761. /*
  762. * Emulate the accessed bit for EPT, by checking if this page has
  763. * an EPT mapping, and clearing it if it does. On the next access,
  764. * a new EPT mapping will be established.
  765. * This has some overhead, but not as much as the cost of swapping
  766. * out actively used pages or breaking up actively used hugepages.
  767. */
  768. if (!shadow_accessed_mask)
  769. return kvm_unmap_rmapp(kvm, rmapp, data);
  770. spte = rmap_next(kvm, rmapp, NULL);
  771. while (spte) {
  772. int _young;
  773. u64 _spte = *spte;
  774. BUG_ON(!(_spte & PT_PRESENT_MASK));
  775. _young = _spte & PT_ACCESSED_MASK;
  776. if (_young) {
  777. young = 1;
  778. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  779. }
  780. spte = rmap_next(kvm, rmapp, spte);
  781. }
  782. return young;
  783. }
  784. #define RMAP_RECYCLE_THRESHOLD 1000
  785. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  786. {
  787. unsigned long *rmapp;
  788. struct kvm_mmu_page *sp;
  789. sp = page_header(__pa(spte));
  790. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  791. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  792. kvm_flush_remote_tlbs(vcpu->kvm);
  793. }
  794. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  795. {
  796. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  797. }
  798. #ifdef MMU_DEBUG
  799. static int is_empty_shadow_page(u64 *spt)
  800. {
  801. u64 *pos;
  802. u64 *end;
  803. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  804. if (is_shadow_present_pte(*pos)) {
  805. printk(KERN_ERR "%s: %p %llx\n", __func__,
  806. pos, *pos);
  807. return 0;
  808. }
  809. return 1;
  810. }
  811. #endif
  812. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  813. {
  814. ASSERT(is_empty_shadow_page(sp->spt));
  815. hlist_del(&sp->hash_link);
  816. list_del(&sp->link);
  817. __free_page(virt_to_page(sp->spt));
  818. if (!sp->role.direct)
  819. __free_page(virt_to_page(sp->gfns));
  820. kmem_cache_free(mmu_page_header_cache, sp);
  821. --kvm->arch.n_used_mmu_pages;
  822. }
  823. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  824. {
  825. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  826. }
  827. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  828. u64 *parent_pte, int direct)
  829. {
  830. struct kvm_mmu_page *sp;
  831. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  832. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  833. if (!direct)
  834. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  835. PAGE_SIZE);
  836. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  837. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  838. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  839. sp->multimapped = 0;
  840. sp->parent_pte = parent_pte;
  841. ++vcpu->kvm->arch.n_used_mmu_pages;
  842. return sp;
  843. }
  844. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  845. struct kvm_mmu_page *sp, u64 *parent_pte)
  846. {
  847. struct kvm_pte_chain *pte_chain;
  848. struct hlist_node *node;
  849. int i;
  850. if (!parent_pte)
  851. return;
  852. if (!sp->multimapped) {
  853. u64 *old = sp->parent_pte;
  854. if (!old) {
  855. sp->parent_pte = parent_pte;
  856. return;
  857. }
  858. sp->multimapped = 1;
  859. pte_chain = mmu_alloc_pte_chain(vcpu);
  860. INIT_HLIST_HEAD(&sp->parent_ptes);
  861. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  862. pte_chain->parent_ptes[0] = old;
  863. }
  864. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  865. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  866. continue;
  867. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  868. if (!pte_chain->parent_ptes[i]) {
  869. pte_chain->parent_ptes[i] = parent_pte;
  870. return;
  871. }
  872. }
  873. pte_chain = mmu_alloc_pte_chain(vcpu);
  874. BUG_ON(!pte_chain);
  875. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  876. pte_chain->parent_ptes[0] = parent_pte;
  877. }
  878. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  879. u64 *parent_pte)
  880. {
  881. struct kvm_pte_chain *pte_chain;
  882. struct hlist_node *node;
  883. int i;
  884. if (!sp->multimapped) {
  885. BUG_ON(sp->parent_pte != parent_pte);
  886. sp->parent_pte = NULL;
  887. return;
  888. }
  889. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  890. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  891. if (!pte_chain->parent_ptes[i])
  892. break;
  893. if (pte_chain->parent_ptes[i] != parent_pte)
  894. continue;
  895. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  896. && pte_chain->parent_ptes[i + 1]) {
  897. pte_chain->parent_ptes[i]
  898. = pte_chain->parent_ptes[i + 1];
  899. ++i;
  900. }
  901. pte_chain->parent_ptes[i] = NULL;
  902. if (i == 0) {
  903. hlist_del(&pte_chain->link);
  904. mmu_free_pte_chain(pte_chain);
  905. if (hlist_empty(&sp->parent_ptes)) {
  906. sp->multimapped = 0;
  907. sp->parent_pte = NULL;
  908. }
  909. }
  910. return;
  911. }
  912. BUG();
  913. }
  914. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  915. {
  916. struct kvm_pte_chain *pte_chain;
  917. struct hlist_node *node;
  918. struct kvm_mmu_page *parent_sp;
  919. int i;
  920. if (!sp->multimapped && sp->parent_pte) {
  921. parent_sp = page_header(__pa(sp->parent_pte));
  922. fn(parent_sp, sp->parent_pte);
  923. return;
  924. }
  925. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  926. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  927. u64 *spte = pte_chain->parent_ptes[i];
  928. if (!spte)
  929. break;
  930. parent_sp = page_header(__pa(spte));
  931. fn(parent_sp, spte);
  932. }
  933. }
  934. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  935. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  936. {
  937. mmu_parent_walk(sp, mark_unsync);
  938. }
  939. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  940. {
  941. unsigned int index;
  942. index = spte - sp->spt;
  943. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  944. return;
  945. if (sp->unsync_children++)
  946. return;
  947. kvm_mmu_mark_parents_unsync(sp);
  948. }
  949. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  950. struct kvm_mmu_page *sp)
  951. {
  952. int i;
  953. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  954. sp->spt[i] = shadow_trap_nonpresent_pte;
  955. }
  956. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  957. struct kvm_mmu_page *sp, bool clear_unsync)
  958. {
  959. return 1;
  960. }
  961. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  962. {
  963. }
  964. #define KVM_PAGE_ARRAY_NR 16
  965. struct kvm_mmu_pages {
  966. struct mmu_page_and_offset {
  967. struct kvm_mmu_page *sp;
  968. unsigned int idx;
  969. } page[KVM_PAGE_ARRAY_NR];
  970. unsigned int nr;
  971. };
  972. #define for_each_unsync_children(bitmap, idx) \
  973. for (idx = find_first_bit(bitmap, 512); \
  974. idx < 512; \
  975. idx = find_next_bit(bitmap, 512, idx+1))
  976. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  977. int idx)
  978. {
  979. int i;
  980. if (sp->unsync)
  981. for (i=0; i < pvec->nr; i++)
  982. if (pvec->page[i].sp == sp)
  983. return 0;
  984. pvec->page[pvec->nr].sp = sp;
  985. pvec->page[pvec->nr].idx = idx;
  986. pvec->nr++;
  987. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  988. }
  989. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  990. struct kvm_mmu_pages *pvec)
  991. {
  992. int i, ret, nr_unsync_leaf = 0;
  993. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  994. struct kvm_mmu_page *child;
  995. u64 ent = sp->spt[i];
  996. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  997. goto clear_child_bitmap;
  998. child = page_header(ent & PT64_BASE_ADDR_MASK);
  999. if (child->unsync_children) {
  1000. if (mmu_pages_add(pvec, child, i))
  1001. return -ENOSPC;
  1002. ret = __mmu_unsync_walk(child, pvec);
  1003. if (!ret)
  1004. goto clear_child_bitmap;
  1005. else if (ret > 0)
  1006. nr_unsync_leaf += ret;
  1007. else
  1008. return ret;
  1009. } else if (child->unsync) {
  1010. nr_unsync_leaf++;
  1011. if (mmu_pages_add(pvec, child, i))
  1012. return -ENOSPC;
  1013. } else
  1014. goto clear_child_bitmap;
  1015. continue;
  1016. clear_child_bitmap:
  1017. __clear_bit(i, sp->unsync_child_bitmap);
  1018. sp->unsync_children--;
  1019. WARN_ON((int)sp->unsync_children < 0);
  1020. }
  1021. return nr_unsync_leaf;
  1022. }
  1023. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1024. struct kvm_mmu_pages *pvec)
  1025. {
  1026. if (!sp->unsync_children)
  1027. return 0;
  1028. mmu_pages_add(pvec, sp, 0);
  1029. return __mmu_unsync_walk(sp, pvec);
  1030. }
  1031. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1032. {
  1033. WARN_ON(!sp->unsync);
  1034. trace_kvm_mmu_sync_page(sp);
  1035. sp->unsync = 0;
  1036. --kvm->stat.mmu_unsync;
  1037. }
  1038. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1039. struct list_head *invalid_list);
  1040. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1041. struct list_head *invalid_list);
  1042. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1043. hlist_for_each_entry(sp, pos, \
  1044. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1045. if ((sp)->gfn != (gfn)) {} else
  1046. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1047. hlist_for_each_entry(sp, pos, \
  1048. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1049. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1050. (sp)->role.invalid) {} else
  1051. /* @sp->gfn should be write-protected at the call site */
  1052. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1053. struct list_head *invalid_list, bool clear_unsync)
  1054. {
  1055. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1056. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1057. return 1;
  1058. }
  1059. if (clear_unsync)
  1060. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1061. if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
  1062. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1063. return 1;
  1064. }
  1065. kvm_mmu_flush_tlb(vcpu);
  1066. return 0;
  1067. }
  1068. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1069. struct kvm_mmu_page *sp)
  1070. {
  1071. LIST_HEAD(invalid_list);
  1072. int ret;
  1073. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1074. if (ret)
  1075. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1076. return ret;
  1077. }
  1078. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1079. struct list_head *invalid_list)
  1080. {
  1081. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1082. }
  1083. /* @gfn should be write-protected at the call site */
  1084. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1085. {
  1086. struct kvm_mmu_page *s;
  1087. struct hlist_node *node;
  1088. LIST_HEAD(invalid_list);
  1089. bool flush = false;
  1090. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1091. if (!s->unsync)
  1092. continue;
  1093. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1094. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1095. (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
  1096. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1097. continue;
  1098. }
  1099. kvm_unlink_unsync_page(vcpu->kvm, s);
  1100. flush = true;
  1101. }
  1102. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1103. if (flush)
  1104. kvm_mmu_flush_tlb(vcpu);
  1105. }
  1106. struct mmu_page_path {
  1107. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1108. unsigned int idx[PT64_ROOT_LEVEL-1];
  1109. };
  1110. #define for_each_sp(pvec, sp, parents, i) \
  1111. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1112. sp = pvec.page[i].sp; \
  1113. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1114. i = mmu_pages_next(&pvec, &parents, i))
  1115. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1116. struct mmu_page_path *parents,
  1117. int i)
  1118. {
  1119. int n;
  1120. for (n = i+1; n < pvec->nr; n++) {
  1121. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1122. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1123. parents->idx[0] = pvec->page[n].idx;
  1124. return n;
  1125. }
  1126. parents->parent[sp->role.level-2] = sp;
  1127. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1128. }
  1129. return n;
  1130. }
  1131. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1132. {
  1133. struct kvm_mmu_page *sp;
  1134. unsigned int level = 0;
  1135. do {
  1136. unsigned int idx = parents->idx[level];
  1137. sp = parents->parent[level];
  1138. if (!sp)
  1139. return;
  1140. --sp->unsync_children;
  1141. WARN_ON((int)sp->unsync_children < 0);
  1142. __clear_bit(idx, sp->unsync_child_bitmap);
  1143. level++;
  1144. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1145. }
  1146. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1147. struct mmu_page_path *parents,
  1148. struct kvm_mmu_pages *pvec)
  1149. {
  1150. parents->parent[parent->role.level-1] = NULL;
  1151. pvec->nr = 0;
  1152. }
  1153. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1154. struct kvm_mmu_page *parent)
  1155. {
  1156. int i;
  1157. struct kvm_mmu_page *sp;
  1158. struct mmu_page_path parents;
  1159. struct kvm_mmu_pages pages;
  1160. LIST_HEAD(invalid_list);
  1161. kvm_mmu_pages_init(parent, &parents, &pages);
  1162. while (mmu_unsync_walk(parent, &pages)) {
  1163. int protected = 0;
  1164. for_each_sp(pages, sp, parents, i)
  1165. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1166. if (protected)
  1167. kvm_flush_remote_tlbs(vcpu->kvm);
  1168. for_each_sp(pages, sp, parents, i) {
  1169. kvm_sync_page(vcpu, sp, &invalid_list);
  1170. mmu_pages_clear_parents(&parents);
  1171. }
  1172. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1173. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1174. kvm_mmu_pages_init(parent, &parents, &pages);
  1175. }
  1176. }
  1177. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1178. gfn_t gfn,
  1179. gva_t gaddr,
  1180. unsigned level,
  1181. int direct,
  1182. unsigned access,
  1183. u64 *parent_pte)
  1184. {
  1185. union kvm_mmu_page_role role;
  1186. unsigned quadrant;
  1187. struct kvm_mmu_page *sp;
  1188. struct hlist_node *node;
  1189. bool need_sync = false;
  1190. role = vcpu->arch.mmu.base_role;
  1191. role.level = level;
  1192. role.direct = direct;
  1193. if (role.direct)
  1194. role.cr4_pae = 0;
  1195. role.access = access;
  1196. if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1197. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1198. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1199. role.quadrant = quadrant;
  1200. }
  1201. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1202. if (!need_sync && sp->unsync)
  1203. need_sync = true;
  1204. if (sp->role.word != role.word)
  1205. continue;
  1206. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1207. break;
  1208. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1209. if (sp->unsync_children) {
  1210. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1211. kvm_mmu_mark_parents_unsync(sp);
  1212. } else if (sp->unsync)
  1213. kvm_mmu_mark_parents_unsync(sp);
  1214. trace_kvm_mmu_get_page(sp, false);
  1215. return sp;
  1216. }
  1217. ++vcpu->kvm->stat.mmu_cache_miss;
  1218. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1219. if (!sp)
  1220. return sp;
  1221. sp->gfn = gfn;
  1222. sp->role = role;
  1223. hlist_add_head(&sp->hash_link,
  1224. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1225. if (!direct) {
  1226. if (rmap_write_protect(vcpu->kvm, gfn))
  1227. kvm_flush_remote_tlbs(vcpu->kvm);
  1228. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1229. kvm_sync_pages(vcpu, gfn);
  1230. account_shadowed(vcpu->kvm, gfn);
  1231. }
  1232. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1233. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1234. else
  1235. nonpaging_prefetch_page(vcpu, sp);
  1236. trace_kvm_mmu_get_page(sp, true);
  1237. return sp;
  1238. }
  1239. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1240. struct kvm_vcpu *vcpu, u64 addr)
  1241. {
  1242. iterator->addr = addr;
  1243. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1244. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1245. if (iterator->level == PT32E_ROOT_LEVEL) {
  1246. iterator->shadow_addr
  1247. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1248. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1249. --iterator->level;
  1250. if (!iterator->shadow_addr)
  1251. iterator->level = 0;
  1252. }
  1253. }
  1254. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1255. {
  1256. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1257. return false;
  1258. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1259. if (is_large_pte(*iterator->sptep))
  1260. return false;
  1261. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1262. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1263. return true;
  1264. }
  1265. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1266. {
  1267. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1268. --iterator->level;
  1269. }
  1270. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1271. {
  1272. u64 spte;
  1273. spte = __pa(sp->spt)
  1274. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1275. | PT_WRITABLE_MASK | PT_USER_MASK;
  1276. __set_spte(sptep, spte);
  1277. }
  1278. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1279. {
  1280. if (is_large_pte(*sptep)) {
  1281. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1282. kvm_flush_remote_tlbs(vcpu->kvm);
  1283. }
  1284. }
  1285. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1286. unsigned direct_access)
  1287. {
  1288. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1289. struct kvm_mmu_page *child;
  1290. /*
  1291. * For the direct sp, if the guest pte's dirty bit
  1292. * changed form clean to dirty, it will corrupt the
  1293. * sp's access: allow writable in the read-only sp,
  1294. * so we should update the spte at this point to get
  1295. * a new sp with the correct access.
  1296. */
  1297. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1298. if (child->role.access == direct_access)
  1299. return;
  1300. mmu_page_remove_parent_pte(child, sptep);
  1301. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1302. kvm_flush_remote_tlbs(vcpu->kvm);
  1303. }
  1304. }
  1305. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1306. struct kvm_mmu_page *sp)
  1307. {
  1308. unsigned i;
  1309. u64 *pt;
  1310. u64 ent;
  1311. pt = sp->spt;
  1312. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1313. ent = pt[i];
  1314. if (is_shadow_present_pte(ent)) {
  1315. if (!is_last_spte(ent, sp->role.level)) {
  1316. ent &= PT64_BASE_ADDR_MASK;
  1317. mmu_page_remove_parent_pte(page_header(ent),
  1318. &pt[i]);
  1319. } else {
  1320. if (is_large_pte(ent))
  1321. --kvm->stat.lpages;
  1322. drop_spte(kvm, &pt[i],
  1323. shadow_trap_nonpresent_pte);
  1324. }
  1325. }
  1326. pt[i] = shadow_trap_nonpresent_pte;
  1327. }
  1328. }
  1329. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1330. {
  1331. mmu_page_remove_parent_pte(sp, parent_pte);
  1332. }
  1333. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1334. {
  1335. int i;
  1336. struct kvm_vcpu *vcpu;
  1337. kvm_for_each_vcpu(i, vcpu, kvm)
  1338. vcpu->arch.last_pte_updated = NULL;
  1339. }
  1340. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1341. {
  1342. u64 *parent_pte;
  1343. while (sp->multimapped || sp->parent_pte) {
  1344. if (!sp->multimapped)
  1345. parent_pte = sp->parent_pte;
  1346. else {
  1347. struct kvm_pte_chain *chain;
  1348. chain = container_of(sp->parent_ptes.first,
  1349. struct kvm_pte_chain, link);
  1350. parent_pte = chain->parent_ptes[0];
  1351. }
  1352. BUG_ON(!parent_pte);
  1353. kvm_mmu_put_page(sp, parent_pte);
  1354. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1355. }
  1356. }
  1357. static int mmu_zap_unsync_children(struct kvm *kvm,
  1358. struct kvm_mmu_page *parent,
  1359. struct list_head *invalid_list)
  1360. {
  1361. int i, zapped = 0;
  1362. struct mmu_page_path parents;
  1363. struct kvm_mmu_pages pages;
  1364. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1365. return 0;
  1366. kvm_mmu_pages_init(parent, &parents, &pages);
  1367. while (mmu_unsync_walk(parent, &pages)) {
  1368. struct kvm_mmu_page *sp;
  1369. for_each_sp(pages, sp, parents, i) {
  1370. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1371. mmu_pages_clear_parents(&parents);
  1372. zapped++;
  1373. }
  1374. kvm_mmu_pages_init(parent, &parents, &pages);
  1375. }
  1376. return zapped;
  1377. }
  1378. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1379. struct list_head *invalid_list)
  1380. {
  1381. int ret;
  1382. trace_kvm_mmu_prepare_zap_page(sp);
  1383. ++kvm->stat.mmu_shadow_zapped;
  1384. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1385. kvm_mmu_page_unlink_children(kvm, sp);
  1386. kvm_mmu_unlink_parents(kvm, sp);
  1387. if (!sp->role.invalid && !sp->role.direct)
  1388. unaccount_shadowed(kvm, sp->gfn);
  1389. if (sp->unsync)
  1390. kvm_unlink_unsync_page(kvm, sp);
  1391. if (!sp->root_count) {
  1392. /* Count self */
  1393. ret++;
  1394. list_move(&sp->link, invalid_list);
  1395. } else {
  1396. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1397. kvm_reload_remote_mmus(kvm);
  1398. }
  1399. sp->role.invalid = 1;
  1400. kvm_mmu_reset_last_pte_updated(kvm);
  1401. return ret;
  1402. }
  1403. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1404. struct list_head *invalid_list)
  1405. {
  1406. struct kvm_mmu_page *sp;
  1407. if (list_empty(invalid_list))
  1408. return;
  1409. kvm_flush_remote_tlbs(kvm);
  1410. do {
  1411. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1412. WARN_ON(!sp->role.invalid || sp->root_count);
  1413. kvm_mmu_free_page(kvm, sp);
  1414. } while (!list_empty(invalid_list));
  1415. }
  1416. /*
  1417. * Changing the number of mmu pages allocated to the vm
  1418. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1419. */
  1420. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1421. {
  1422. LIST_HEAD(invalid_list);
  1423. /*
  1424. * If we set the number of mmu pages to be smaller be than the
  1425. * number of actived pages , we must to free some mmu pages before we
  1426. * change the value
  1427. */
  1428. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1429. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1430. !list_empty(&kvm->arch.active_mmu_pages)) {
  1431. struct kvm_mmu_page *page;
  1432. page = container_of(kvm->arch.active_mmu_pages.prev,
  1433. struct kvm_mmu_page, link);
  1434. kvm_mmu_prepare_zap_page(kvm, page,
  1435. &invalid_list);
  1436. }
  1437. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1438. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1439. }
  1440. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1441. }
  1442. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1443. {
  1444. struct kvm_mmu_page *sp;
  1445. struct hlist_node *node;
  1446. LIST_HEAD(invalid_list);
  1447. int r;
  1448. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1449. r = 0;
  1450. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1451. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1452. sp->role.word);
  1453. r = 1;
  1454. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1455. }
  1456. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1457. return r;
  1458. }
  1459. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1460. {
  1461. struct kvm_mmu_page *sp;
  1462. struct hlist_node *node;
  1463. LIST_HEAD(invalid_list);
  1464. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1465. pgprintk("%s: zap %lx %x\n",
  1466. __func__, gfn, sp->role.word);
  1467. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1468. }
  1469. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1470. }
  1471. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1472. {
  1473. int slot = memslot_id(kvm, gfn);
  1474. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1475. __set_bit(slot, sp->slot_bitmap);
  1476. }
  1477. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1478. {
  1479. int i;
  1480. u64 *pt = sp->spt;
  1481. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1482. return;
  1483. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1484. if (pt[i] == shadow_notrap_nonpresent_pte)
  1485. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1486. }
  1487. }
  1488. /*
  1489. * The function is based on mtrr_type_lookup() in
  1490. * arch/x86/kernel/cpu/mtrr/generic.c
  1491. */
  1492. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1493. u64 start, u64 end)
  1494. {
  1495. int i;
  1496. u64 base, mask;
  1497. u8 prev_match, curr_match;
  1498. int num_var_ranges = KVM_NR_VAR_MTRR;
  1499. if (!mtrr_state->enabled)
  1500. return 0xFF;
  1501. /* Make end inclusive end, instead of exclusive */
  1502. end--;
  1503. /* Look in fixed ranges. Just return the type as per start */
  1504. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1505. int idx;
  1506. if (start < 0x80000) {
  1507. idx = 0;
  1508. idx += (start >> 16);
  1509. return mtrr_state->fixed_ranges[idx];
  1510. } else if (start < 0xC0000) {
  1511. idx = 1 * 8;
  1512. idx += ((start - 0x80000) >> 14);
  1513. return mtrr_state->fixed_ranges[idx];
  1514. } else if (start < 0x1000000) {
  1515. idx = 3 * 8;
  1516. idx += ((start - 0xC0000) >> 12);
  1517. return mtrr_state->fixed_ranges[idx];
  1518. }
  1519. }
  1520. /*
  1521. * Look in variable ranges
  1522. * Look of multiple ranges matching this address and pick type
  1523. * as per MTRR precedence
  1524. */
  1525. if (!(mtrr_state->enabled & 2))
  1526. return mtrr_state->def_type;
  1527. prev_match = 0xFF;
  1528. for (i = 0; i < num_var_ranges; ++i) {
  1529. unsigned short start_state, end_state;
  1530. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1531. continue;
  1532. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1533. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1534. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1535. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1536. start_state = ((start & mask) == (base & mask));
  1537. end_state = ((end & mask) == (base & mask));
  1538. if (start_state != end_state)
  1539. return 0xFE;
  1540. if ((start & mask) != (base & mask))
  1541. continue;
  1542. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1543. if (prev_match == 0xFF) {
  1544. prev_match = curr_match;
  1545. continue;
  1546. }
  1547. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1548. curr_match == MTRR_TYPE_UNCACHABLE)
  1549. return MTRR_TYPE_UNCACHABLE;
  1550. if ((prev_match == MTRR_TYPE_WRBACK &&
  1551. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1552. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1553. curr_match == MTRR_TYPE_WRBACK)) {
  1554. prev_match = MTRR_TYPE_WRTHROUGH;
  1555. curr_match = MTRR_TYPE_WRTHROUGH;
  1556. }
  1557. if (prev_match != curr_match)
  1558. return MTRR_TYPE_UNCACHABLE;
  1559. }
  1560. if (prev_match != 0xFF)
  1561. return prev_match;
  1562. return mtrr_state->def_type;
  1563. }
  1564. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1565. {
  1566. u8 mtrr;
  1567. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1568. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1569. if (mtrr == 0xfe || mtrr == 0xff)
  1570. mtrr = MTRR_TYPE_WRBACK;
  1571. return mtrr;
  1572. }
  1573. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1574. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1575. {
  1576. trace_kvm_mmu_unsync_page(sp);
  1577. ++vcpu->kvm->stat.mmu_unsync;
  1578. sp->unsync = 1;
  1579. kvm_mmu_mark_parents_unsync(sp);
  1580. mmu_convert_notrap(sp);
  1581. }
  1582. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1583. {
  1584. struct kvm_mmu_page *s;
  1585. struct hlist_node *node;
  1586. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1587. if (s->unsync)
  1588. continue;
  1589. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1590. __kvm_unsync_page(vcpu, s);
  1591. }
  1592. }
  1593. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1594. bool can_unsync)
  1595. {
  1596. struct kvm_mmu_page *s;
  1597. struct hlist_node *node;
  1598. bool need_unsync = false;
  1599. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1600. if (!can_unsync)
  1601. return 1;
  1602. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1603. return 1;
  1604. if (!need_unsync && !s->unsync) {
  1605. if (!oos_shadow)
  1606. return 1;
  1607. need_unsync = true;
  1608. }
  1609. }
  1610. if (need_unsync)
  1611. kvm_unsync_pages(vcpu, gfn);
  1612. return 0;
  1613. }
  1614. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1615. unsigned pte_access, int user_fault,
  1616. int write_fault, int dirty, int level,
  1617. gfn_t gfn, pfn_t pfn, bool speculative,
  1618. bool can_unsync, bool reset_host_protection)
  1619. {
  1620. u64 spte;
  1621. int ret = 0;
  1622. /*
  1623. * We don't set the accessed bit, since we sometimes want to see
  1624. * whether the guest actually used the pte (in order to detect
  1625. * demand paging).
  1626. */
  1627. spte = shadow_base_present_pte;
  1628. if (!speculative)
  1629. spte |= shadow_accessed_mask;
  1630. if (!dirty)
  1631. pte_access &= ~ACC_WRITE_MASK;
  1632. if (pte_access & ACC_EXEC_MASK)
  1633. spte |= shadow_x_mask;
  1634. else
  1635. spte |= shadow_nx_mask;
  1636. if (pte_access & ACC_USER_MASK)
  1637. spte |= shadow_user_mask;
  1638. if (level > PT_PAGE_TABLE_LEVEL)
  1639. spte |= PT_PAGE_SIZE_MASK;
  1640. if (tdp_enabled)
  1641. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1642. kvm_is_mmio_pfn(pfn));
  1643. if (reset_host_protection)
  1644. spte |= SPTE_HOST_WRITEABLE;
  1645. spte |= (u64)pfn << PAGE_SHIFT;
  1646. if ((pte_access & ACC_WRITE_MASK)
  1647. || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
  1648. && !user_fault)) {
  1649. if (level > PT_PAGE_TABLE_LEVEL &&
  1650. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1651. ret = 1;
  1652. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1653. goto done;
  1654. }
  1655. spte |= PT_WRITABLE_MASK;
  1656. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1657. spte &= ~PT_USER_MASK;
  1658. /*
  1659. * Optimization: for pte sync, if spte was writable the hash
  1660. * lookup is unnecessary (and expensive). Write protection
  1661. * is responsibility of mmu_get_page / kvm_sync_page.
  1662. * Same reasoning can be applied to dirty page accounting.
  1663. */
  1664. if (!can_unsync && is_writable_pte(*sptep))
  1665. goto set_pte;
  1666. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1667. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1668. __func__, gfn);
  1669. ret = 1;
  1670. pte_access &= ~ACC_WRITE_MASK;
  1671. if (is_writable_pte(spte))
  1672. spte &= ~PT_WRITABLE_MASK;
  1673. }
  1674. }
  1675. if (pte_access & ACC_WRITE_MASK)
  1676. mark_page_dirty(vcpu->kvm, gfn);
  1677. set_pte:
  1678. update_spte(sptep, spte);
  1679. done:
  1680. return ret;
  1681. }
  1682. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1683. unsigned pt_access, unsigned pte_access,
  1684. int user_fault, int write_fault, int dirty,
  1685. int *ptwrite, int level, gfn_t gfn,
  1686. pfn_t pfn, bool speculative,
  1687. bool reset_host_protection)
  1688. {
  1689. int was_rmapped = 0;
  1690. int rmap_count;
  1691. pgprintk("%s: spte %llx access %x write_fault %d"
  1692. " user_fault %d gfn %lx\n",
  1693. __func__, *sptep, pt_access,
  1694. write_fault, user_fault, gfn);
  1695. if (is_rmap_spte(*sptep)) {
  1696. /*
  1697. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1698. * the parent of the now unreachable PTE.
  1699. */
  1700. if (level > PT_PAGE_TABLE_LEVEL &&
  1701. !is_large_pte(*sptep)) {
  1702. struct kvm_mmu_page *child;
  1703. u64 pte = *sptep;
  1704. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1705. mmu_page_remove_parent_pte(child, sptep);
  1706. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1707. kvm_flush_remote_tlbs(vcpu->kvm);
  1708. } else if (pfn != spte_to_pfn(*sptep)) {
  1709. pgprintk("hfn old %lx new %lx\n",
  1710. spte_to_pfn(*sptep), pfn);
  1711. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1712. kvm_flush_remote_tlbs(vcpu->kvm);
  1713. } else
  1714. was_rmapped = 1;
  1715. }
  1716. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1717. dirty, level, gfn, pfn, speculative, true,
  1718. reset_host_protection)) {
  1719. if (write_fault)
  1720. *ptwrite = 1;
  1721. kvm_mmu_flush_tlb(vcpu);
  1722. }
  1723. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1724. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1725. is_large_pte(*sptep)? "2MB" : "4kB",
  1726. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1727. *sptep, sptep);
  1728. if (!was_rmapped && is_large_pte(*sptep))
  1729. ++vcpu->kvm->stat.lpages;
  1730. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1731. if (!was_rmapped) {
  1732. rmap_count = rmap_add(vcpu, sptep, gfn);
  1733. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1734. rmap_recycle(vcpu, sptep, gfn);
  1735. }
  1736. kvm_release_pfn_clean(pfn);
  1737. if (speculative) {
  1738. vcpu->arch.last_pte_updated = sptep;
  1739. vcpu->arch.last_pte_gfn = gfn;
  1740. }
  1741. }
  1742. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1743. {
  1744. }
  1745. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1746. int level, gfn_t gfn, pfn_t pfn)
  1747. {
  1748. struct kvm_shadow_walk_iterator iterator;
  1749. struct kvm_mmu_page *sp;
  1750. int pt_write = 0;
  1751. gfn_t pseudo_gfn;
  1752. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1753. if (iterator.level == level) {
  1754. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1755. 0, write, 1, &pt_write,
  1756. level, gfn, pfn, false, true);
  1757. ++vcpu->stat.pf_fixed;
  1758. break;
  1759. }
  1760. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1761. u64 base_addr = iterator.addr;
  1762. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1763. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1764. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1765. iterator.level - 1,
  1766. 1, ACC_ALL, iterator.sptep);
  1767. if (!sp) {
  1768. pgprintk("nonpaging_map: ENOMEM\n");
  1769. kvm_release_pfn_clean(pfn);
  1770. return -ENOMEM;
  1771. }
  1772. __set_spte(iterator.sptep,
  1773. __pa(sp->spt)
  1774. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1775. | shadow_user_mask | shadow_x_mask);
  1776. }
  1777. }
  1778. return pt_write;
  1779. }
  1780. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1781. {
  1782. char buf[1];
  1783. void __user *hva;
  1784. int r;
  1785. /* Touch the page, so send SIGBUS */
  1786. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1787. r = copy_from_user(buf, hva, 1);
  1788. }
  1789. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1790. {
  1791. kvm_release_pfn_clean(pfn);
  1792. if (is_hwpoison_pfn(pfn)) {
  1793. kvm_send_hwpoison_signal(kvm, gfn);
  1794. return 0;
  1795. } else if (is_fault_pfn(pfn))
  1796. return -EFAULT;
  1797. return 1;
  1798. }
  1799. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1800. {
  1801. int r;
  1802. int level;
  1803. pfn_t pfn;
  1804. unsigned long mmu_seq;
  1805. level = mapping_level(vcpu, gfn);
  1806. /*
  1807. * This path builds a PAE pagetable - so we can map 2mb pages at
  1808. * maximum. Therefore check if the level is larger than that.
  1809. */
  1810. if (level > PT_DIRECTORY_LEVEL)
  1811. level = PT_DIRECTORY_LEVEL;
  1812. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1813. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1814. smp_rmb();
  1815. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1816. /* mmio */
  1817. if (is_error_pfn(pfn))
  1818. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1819. spin_lock(&vcpu->kvm->mmu_lock);
  1820. if (mmu_notifier_retry(vcpu, mmu_seq))
  1821. goto out_unlock;
  1822. kvm_mmu_free_some_pages(vcpu);
  1823. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1824. spin_unlock(&vcpu->kvm->mmu_lock);
  1825. return r;
  1826. out_unlock:
  1827. spin_unlock(&vcpu->kvm->mmu_lock);
  1828. kvm_release_pfn_clean(pfn);
  1829. return 0;
  1830. }
  1831. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1832. {
  1833. int i;
  1834. struct kvm_mmu_page *sp;
  1835. LIST_HEAD(invalid_list);
  1836. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1837. return;
  1838. spin_lock(&vcpu->kvm->mmu_lock);
  1839. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1840. hpa_t root = vcpu->arch.mmu.root_hpa;
  1841. sp = page_header(root);
  1842. --sp->root_count;
  1843. if (!sp->root_count && sp->role.invalid) {
  1844. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1845. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1846. }
  1847. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1848. spin_unlock(&vcpu->kvm->mmu_lock);
  1849. return;
  1850. }
  1851. for (i = 0; i < 4; ++i) {
  1852. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1853. if (root) {
  1854. root &= PT64_BASE_ADDR_MASK;
  1855. sp = page_header(root);
  1856. --sp->root_count;
  1857. if (!sp->root_count && sp->role.invalid)
  1858. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1859. &invalid_list);
  1860. }
  1861. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1862. }
  1863. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1864. spin_unlock(&vcpu->kvm->mmu_lock);
  1865. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1866. }
  1867. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1868. {
  1869. int ret = 0;
  1870. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1871. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1872. ret = 1;
  1873. }
  1874. return ret;
  1875. }
  1876. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1877. {
  1878. int i;
  1879. gfn_t root_gfn;
  1880. struct kvm_mmu_page *sp;
  1881. int direct = 0;
  1882. u64 pdptr;
  1883. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1884. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1885. hpa_t root = vcpu->arch.mmu.root_hpa;
  1886. ASSERT(!VALID_PAGE(root));
  1887. if (mmu_check_root(vcpu, root_gfn))
  1888. return 1;
  1889. if (tdp_enabled) {
  1890. direct = 1;
  1891. root_gfn = 0;
  1892. }
  1893. spin_lock(&vcpu->kvm->mmu_lock);
  1894. kvm_mmu_free_some_pages(vcpu);
  1895. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1896. PT64_ROOT_LEVEL, direct,
  1897. ACC_ALL, NULL);
  1898. root = __pa(sp->spt);
  1899. ++sp->root_count;
  1900. spin_unlock(&vcpu->kvm->mmu_lock);
  1901. vcpu->arch.mmu.root_hpa = root;
  1902. return 0;
  1903. }
  1904. direct = !is_paging(vcpu);
  1905. for (i = 0; i < 4; ++i) {
  1906. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1907. ASSERT(!VALID_PAGE(root));
  1908. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1909. pdptr = kvm_pdptr_read(vcpu, i);
  1910. if (!is_present_gpte(pdptr)) {
  1911. vcpu->arch.mmu.pae_root[i] = 0;
  1912. continue;
  1913. }
  1914. root_gfn = pdptr >> PAGE_SHIFT;
  1915. } else if (vcpu->arch.mmu.root_level == 0)
  1916. root_gfn = 0;
  1917. if (mmu_check_root(vcpu, root_gfn))
  1918. return 1;
  1919. if (tdp_enabled) {
  1920. direct = 1;
  1921. root_gfn = i << 30;
  1922. }
  1923. spin_lock(&vcpu->kvm->mmu_lock);
  1924. kvm_mmu_free_some_pages(vcpu);
  1925. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1926. PT32_ROOT_LEVEL, direct,
  1927. ACC_ALL, NULL);
  1928. root = __pa(sp->spt);
  1929. ++sp->root_count;
  1930. spin_unlock(&vcpu->kvm->mmu_lock);
  1931. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1932. }
  1933. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1934. return 0;
  1935. }
  1936. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1937. {
  1938. int i;
  1939. struct kvm_mmu_page *sp;
  1940. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1941. return;
  1942. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1943. hpa_t root = vcpu->arch.mmu.root_hpa;
  1944. sp = page_header(root);
  1945. mmu_sync_children(vcpu, sp);
  1946. return;
  1947. }
  1948. for (i = 0; i < 4; ++i) {
  1949. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1950. if (root && VALID_PAGE(root)) {
  1951. root &= PT64_BASE_ADDR_MASK;
  1952. sp = page_header(root);
  1953. mmu_sync_children(vcpu, sp);
  1954. }
  1955. }
  1956. }
  1957. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1958. {
  1959. spin_lock(&vcpu->kvm->mmu_lock);
  1960. mmu_sync_roots(vcpu);
  1961. spin_unlock(&vcpu->kvm->mmu_lock);
  1962. }
  1963. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1964. u32 access, u32 *error)
  1965. {
  1966. if (error)
  1967. *error = 0;
  1968. return vaddr;
  1969. }
  1970. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1971. u32 error_code)
  1972. {
  1973. gfn_t gfn;
  1974. int r;
  1975. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1976. r = mmu_topup_memory_caches(vcpu);
  1977. if (r)
  1978. return r;
  1979. ASSERT(vcpu);
  1980. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1981. gfn = gva >> PAGE_SHIFT;
  1982. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1983. error_code & PFERR_WRITE_MASK, gfn);
  1984. }
  1985. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1986. u32 error_code)
  1987. {
  1988. pfn_t pfn;
  1989. int r;
  1990. int level;
  1991. gfn_t gfn = gpa >> PAGE_SHIFT;
  1992. unsigned long mmu_seq;
  1993. ASSERT(vcpu);
  1994. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1995. r = mmu_topup_memory_caches(vcpu);
  1996. if (r)
  1997. return r;
  1998. level = mapping_level(vcpu, gfn);
  1999. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2000. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2001. smp_rmb();
  2002. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2003. if (is_error_pfn(pfn))
  2004. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2005. spin_lock(&vcpu->kvm->mmu_lock);
  2006. if (mmu_notifier_retry(vcpu, mmu_seq))
  2007. goto out_unlock;
  2008. kvm_mmu_free_some_pages(vcpu);
  2009. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  2010. level, gfn, pfn);
  2011. spin_unlock(&vcpu->kvm->mmu_lock);
  2012. return r;
  2013. out_unlock:
  2014. spin_unlock(&vcpu->kvm->mmu_lock);
  2015. kvm_release_pfn_clean(pfn);
  2016. return 0;
  2017. }
  2018. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2019. {
  2020. mmu_free_roots(vcpu);
  2021. }
  2022. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  2023. {
  2024. struct kvm_mmu *context = &vcpu->arch.mmu;
  2025. context->new_cr3 = nonpaging_new_cr3;
  2026. context->page_fault = nonpaging_page_fault;
  2027. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2028. context->free = nonpaging_free;
  2029. context->prefetch_page = nonpaging_prefetch_page;
  2030. context->sync_page = nonpaging_sync_page;
  2031. context->invlpg = nonpaging_invlpg;
  2032. context->root_level = 0;
  2033. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2034. context->root_hpa = INVALID_PAGE;
  2035. return 0;
  2036. }
  2037. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2038. {
  2039. ++vcpu->stat.tlb_flush;
  2040. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2041. }
  2042. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2043. {
  2044. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  2045. mmu_free_roots(vcpu);
  2046. }
  2047. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2048. u64 addr,
  2049. u32 err_code)
  2050. {
  2051. kvm_inject_page_fault(vcpu, addr, err_code);
  2052. }
  2053. static void paging_free(struct kvm_vcpu *vcpu)
  2054. {
  2055. nonpaging_free(vcpu);
  2056. }
  2057. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  2058. {
  2059. int bit7;
  2060. bit7 = (gpte >> 7) & 1;
  2061. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  2062. }
  2063. #define PTTYPE 64
  2064. #include "paging_tmpl.h"
  2065. #undef PTTYPE
  2066. #define PTTYPE 32
  2067. #include "paging_tmpl.h"
  2068. #undef PTTYPE
  2069. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  2070. {
  2071. struct kvm_mmu *context = &vcpu->arch.mmu;
  2072. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2073. u64 exb_bit_rsvd = 0;
  2074. if (!is_nx(vcpu))
  2075. exb_bit_rsvd = rsvd_bits(63, 63);
  2076. switch (level) {
  2077. case PT32_ROOT_LEVEL:
  2078. /* no rsvd bits for 2 level 4K page table entries */
  2079. context->rsvd_bits_mask[0][1] = 0;
  2080. context->rsvd_bits_mask[0][0] = 0;
  2081. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2082. if (!is_pse(vcpu)) {
  2083. context->rsvd_bits_mask[1][1] = 0;
  2084. break;
  2085. }
  2086. if (is_cpuid_PSE36())
  2087. /* 36bits PSE 4MB page */
  2088. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2089. else
  2090. /* 32 bits PSE 4MB page */
  2091. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2092. break;
  2093. case PT32E_ROOT_LEVEL:
  2094. context->rsvd_bits_mask[0][2] =
  2095. rsvd_bits(maxphyaddr, 63) |
  2096. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2097. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2098. rsvd_bits(maxphyaddr, 62); /* PDE */
  2099. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2100. rsvd_bits(maxphyaddr, 62); /* PTE */
  2101. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2102. rsvd_bits(maxphyaddr, 62) |
  2103. rsvd_bits(13, 20); /* large page */
  2104. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2105. break;
  2106. case PT64_ROOT_LEVEL:
  2107. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2108. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2109. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2110. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2111. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2112. rsvd_bits(maxphyaddr, 51);
  2113. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2114. rsvd_bits(maxphyaddr, 51);
  2115. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2116. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2117. rsvd_bits(maxphyaddr, 51) |
  2118. rsvd_bits(13, 29);
  2119. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2120. rsvd_bits(maxphyaddr, 51) |
  2121. rsvd_bits(13, 20); /* large page */
  2122. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2123. break;
  2124. }
  2125. }
  2126. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2127. {
  2128. struct kvm_mmu *context = &vcpu->arch.mmu;
  2129. ASSERT(is_pae(vcpu));
  2130. context->new_cr3 = paging_new_cr3;
  2131. context->page_fault = paging64_page_fault;
  2132. context->gva_to_gpa = paging64_gva_to_gpa;
  2133. context->prefetch_page = paging64_prefetch_page;
  2134. context->sync_page = paging64_sync_page;
  2135. context->invlpg = paging64_invlpg;
  2136. context->free = paging_free;
  2137. context->root_level = level;
  2138. context->shadow_root_level = level;
  2139. context->root_hpa = INVALID_PAGE;
  2140. return 0;
  2141. }
  2142. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2143. {
  2144. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2145. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2146. }
  2147. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2148. {
  2149. struct kvm_mmu *context = &vcpu->arch.mmu;
  2150. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2151. context->new_cr3 = paging_new_cr3;
  2152. context->page_fault = paging32_page_fault;
  2153. context->gva_to_gpa = paging32_gva_to_gpa;
  2154. context->free = paging_free;
  2155. context->prefetch_page = paging32_prefetch_page;
  2156. context->sync_page = paging32_sync_page;
  2157. context->invlpg = paging32_invlpg;
  2158. context->root_level = PT32_ROOT_LEVEL;
  2159. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2160. context->root_hpa = INVALID_PAGE;
  2161. return 0;
  2162. }
  2163. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2164. {
  2165. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2166. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2167. }
  2168. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2169. {
  2170. struct kvm_mmu *context = &vcpu->arch.mmu;
  2171. context->new_cr3 = nonpaging_new_cr3;
  2172. context->page_fault = tdp_page_fault;
  2173. context->free = nonpaging_free;
  2174. context->prefetch_page = nonpaging_prefetch_page;
  2175. context->sync_page = nonpaging_sync_page;
  2176. context->invlpg = nonpaging_invlpg;
  2177. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2178. context->root_hpa = INVALID_PAGE;
  2179. if (!is_paging(vcpu)) {
  2180. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2181. context->root_level = 0;
  2182. } else if (is_long_mode(vcpu)) {
  2183. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2184. context->gva_to_gpa = paging64_gva_to_gpa;
  2185. context->root_level = PT64_ROOT_LEVEL;
  2186. } else if (is_pae(vcpu)) {
  2187. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2188. context->gva_to_gpa = paging64_gva_to_gpa;
  2189. context->root_level = PT32E_ROOT_LEVEL;
  2190. } else {
  2191. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2192. context->gva_to_gpa = paging32_gva_to_gpa;
  2193. context->root_level = PT32_ROOT_LEVEL;
  2194. }
  2195. return 0;
  2196. }
  2197. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2198. {
  2199. int r;
  2200. ASSERT(vcpu);
  2201. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2202. if (!is_paging(vcpu))
  2203. r = nonpaging_init_context(vcpu);
  2204. else if (is_long_mode(vcpu))
  2205. r = paging64_init_context(vcpu);
  2206. else if (is_pae(vcpu))
  2207. r = paging32E_init_context(vcpu);
  2208. else
  2209. r = paging32_init_context(vcpu);
  2210. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2211. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2212. return r;
  2213. }
  2214. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2215. {
  2216. vcpu->arch.update_pte.pfn = bad_pfn;
  2217. if (tdp_enabled)
  2218. return init_kvm_tdp_mmu(vcpu);
  2219. else
  2220. return init_kvm_softmmu(vcpu);
  2221. }
  2222. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2223. {
  2224. ASSERT(vcpu);
  2225. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2226. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2227. vcpu->arch.mmu.free(vcpu);
  2228. }
  2229. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2230. {
  2231. destroy_kvm_mmu(vcpu);
  2232. return init_kvm_mmu(vcpu);
  2233. }
  2234. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2235. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2236. {
  2237. int r;
  2238. r = mmu_topup_memory_caches(vcpu);
  2239. if (r)
  2240. goto out;
  2241. r = mmu_alloc_roots(vcpu);
  2242. spin_lock(&vcpu->kvm->mmu_lock);
  2243. mmu_sync_roots(vcpu);
  2244. spin_unlock(&vcpu->kvm->mmu_lock);
  2245. if (r)
  2246. goto out;
  2247. /* set_cr3() should ensure TLB has been flushed */
  2248. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2249. out:
  2250. return r;
  2251. }
  2252. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2253. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2254. {
  2255. mmu_free_roots(vcpu);
  2256. }
  2257. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2258. struct kvm_mmu_page *sp,
  2259. u64 *spte)
  2260. {
  2261. u64 pte;
  2262. struct kvm_mmu_page *child;
  2263. pte = *spte;
  2264. if (is_shadow_present_pte(pte)) {
  2265. if (is_last_spte(pte, sp->role.level))
  2266. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2267. else {
  2268. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2269. mmu_page_remove_parent_pte(child, spte);
  2270. }
  2271. }
  2272. __set_spte(spte, shadow_trap_nonpresent_pte);
  2273. if (is_large_pte(pte))
  2274. --vcpu->kvm->stat.lpages;
  2275. }
  2276. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2277. struct kvm_mmu_page *sp,
  2278. u64 *spte,
  2279. const void *new)
  2280. {
  2281. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2282. ++vcpu->kvm->stat.mmu_pde_zapped;
  2283. return;
  2284. }
  2285. if (is_rsvd_bits_set(vcpu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
  2286. return;
  2287. ++vcpu->kvm->stat.mmu_pte_updated;
  2288. if (!sp->role.cr4_pae)
  2289. paging32_update_pte(vcpu, sp, spte, new);
  2290. else
  2291. paging64_update_pte(vcpu, sp, spte, new);
  2292. }
  2293. static bool need_remote_flush(u64 old, u64 new)
  2294. {
  2295. if (!is_shadow_present_pte(old))
  2296. return false;
  2297. if (!is_shadow_present_pte(new))
  2298. return true;
  2299. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2300. return true;
  2301. old ^= PT64_NX_MASK;
  2302. new ^= PT64_NX_MASK;
  2303. return (old & ~new & PT64_PERM_MASK) != 0;
  2304. }
  2305. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2306. bool remote_flush, bool local_flush)
  2307. {
  2308. if (zap_page)
  2309. return;
  2310. if (remote_flush)
  2311. kvm_flush_remote_tlbs(vcpu->kvm);
  2312. else if (local_flush)
  2313. kvm_mmu_flush_tlb(vcpu);
  2314. }
  2315. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2316. {
  2317. u64 *spte = vcpu->arch.last_pte_updated;
  2318. return !!(spte && (*spte & shadow_accessed_mask));
  2319. }
  2320. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2321. u64 gpte)
  2322. {
  2323. gfn_t gfn;
  2324. pfn_t pfn;
  2325. if (!is_present_gpte(gpte))
  2326. return;
  2327. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2328. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2329. smp_rmb();
  2330. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2331. if (is_error_pfn(pfn)) {
  2332. kvm_release_pfn_clean(pfn);
  2333. return;
  2334. }
  2335. vcpu->arch.update_pte.gfn = gfn;
  2336. vcpu->arch.update_pte.pfn = pfn;
  2337. }
  2338. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2339. {
  2340. u64 *spte = vcpu->arch.last_pte_updated;
  2341. if (spte
  2342. && vcpu->arch.last_pte_gfn == gfn
  2343. && shadow_accessed_mask
  2344. && !(*spte & shadow_accessed_mask)
  2345. && is_shadow_present_pte(*spte))
  2346. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2347. }
  2348. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2349. const u8 *new, int bytes,
  2350. bool guest_initiated)
  2351. {
  2352. gfn_t gfn = gpa >> PAGE_SHIFT;
  2353. union kvm_mmu_page_role mask = { .word = 0 };
  2354. struct kvm_mmu_page *sp;
  2355. struct hlist_node *node;
  2356. LIST_HEAD(invalid_list);
  2357. u64 entry, gentry;
  2358. u64 *spte;
  2359. unsigned offset = offset_in_page(gpa);
  2360. unsigned pte_size;
  2361. unsigned page_offset;
  2362. unsigned misaligned;
  2363. unsigned quadrant;
  2364. int level;
  2365. int flooded = 0;
  2366. int npte;
  2367. int r;
  2368. int invlpg_counter;
  2369. bool remote_flush, local_flush, zap_page;
  2370. zap_page = remote_flush = local_flush = false;
  2371. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2372. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2373. /*
  2374. * Assume that the pte write on a page table of the same type
  2375. * as the current vcpu paging mode. This is nearly always true
  2376. * (might be false while changing modes). Note it is verified later
  2377. * by update_pte().
  2378. */
  2379. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2380. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2381. if (is_pae(vcpu)) {
  2382. gpa &= ~(gpa_t)7;
  2383. bytes = 8;
  2384. }
  2385. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2386. if (r)
  2387. gentry = 0;
  2388. new = (const u8 *)&gentry;
  2389. }
  2390. switch (bytes) {
  2391. case 4:
  2392. gentry = *(const u32 *)new;
  2393. break;
  2394. case 8:
  2395. gentry = *(const u64 *)new;
  2396. break;
  2397. default:
  2398. gentry = 0;
  2399. break;
  2400. }
  2401. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2402. spin_lock(&vcpu->kvm->mmu_lock);
  2403. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2404. gentry = 0;
  2405. kvm_mmu_access_page(vcpu, gfn);
  2406. kvm_mmu_free_some_pages(vcpu);
  2407. ++vcpu->kvm->stat.mmu_pte_write;
  2408. kvm_mmu_audit(vcpu, "pre pte write");
  2409. if (guest_initiated) {
  2410. if (gfn == vcpu->arch.last_pt_write_gfn
  2411. && !last_updated_pte_accessed(vcpu)) {
  2412. ++vcpu->arch.last_pt_write_count;
  2413. if (vcpu->arch.last_pt_write_count >= 3)
  2414. flooded = 1;
  2415. } else {
  2416. vcpu->arch.last_pt_write_gfn = gfn;
  2417. vcpu->arch.last_pt_write_count = 1;
  2418. vcpu->arch.last_pte_updated = NULL;
  2419. }
  2420. }
  2421. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  2422. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2423. pte_size = sp->role.cr4_pae ? 8 : 4;
  2424. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2425. misaligned |= bytes < 4;
  2426. if (misaligned || flooded) {
  2427. /*
  2428. * Misaligned accesses are too much trouble to fix
  2429. * up; also, they usually indicate a page is not used
  2430. * as a page table.
  2431. *
  2432. * If we're seeing too many writes to a page,
  2433. * it may no longer be a page table, or we may be
  2434. * forking, in which case it is better to unmap the
  2435. * page.
  2436. */
  2437. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2438. gpa, bytes, sp->role.word);
  2439. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2440. &invalid_list);
  2441. ++vcpu->kvm->stat.mmu_flooded;
  2442. continue;
  2443. }
  2444. page_offset = offset;
  2445. level = sp->role.level;
  2446. npte = 1;
  2447. if (!sp->role.cr4_pae) {
  2448. page_offset <<= 1; /* 32->64 */
  2449. /*
  2450. * A 32-bit pde maps 4MB while the shadow pdes map
  2451. * only 2MB. So we need to double the offset again
  2452. * and zap two pdes instead of one.
  2453. */
  2454. if (level == PT32_ROOT_LEVEL) {
  2455. page_offset &= ~7; /* kill rounding error */
  2456. page_offset <<= 1;
  2457. npte = 2;
  2458. }
  2459. quadrant = page_offset >> PAGE_SHIFT;
  2460. page_offset &= ~PAGE_MASK;
  2461. if (quadrant != sp->role.quadrant)
  2462. continue;
  2463. }
  2464. local_flush = true;
  2465. spte = &sp->spt[page_offset / sizeof(*spte)];
  2466. while (npte--) {
  2467. entry = *spte;
  2468. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2469. if (gentry &&
  2470. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  2471. & mask.word))
  2472. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2473. if (!remote_flush && need_remote_flush(entry, *spte))
  2474. remote_flush = true;
  2475. ++spte;
  2476. }
  2477. }
  2478. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2479. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2480. kvm_mmu_audit(vcpu, "post pte write");
  2481. spin_unlock(&vcpu->kvm->mmu_lock);
  2482. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2483. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2484. vcpu->arch.update_pte.pfn = bad_pfn;
  2485. }
  2486. }
  2487. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2488. {
  2489. gpa_t gpa;
  2490. int r;
  2491. if (tdp_enabled)
  2492. return 0;
  2493. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2494. spin_lock(&vcpu->kvm->mmu_lock);
  2495. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2496. spin_unlock(&vcpu->kvm->mmu_lock);
  2497. return r;
  2498. }
  2499. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2500. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2501. {
  2502. LIST_HEAD(invalid_list);
  2503. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  2504. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2505. struct kvm_mmu_page *sp;
  2506. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2507. struct kvm_mmu_page, link);
  2508. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2509. ++vcpu->kvm->stat.mmu_recycled;
  2510. }
  2511. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2512. }
  2513. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2514. {
  2515. int r;
  2516. enum emulation_result er;
  2517. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2518. if (r < 0)
  2519. goto out;
  2520. if (!r) {
  2521. r = 1;
  2522. goto out;
  2523. }
  2524. r = mmu_topup_memory_caches(vcpu);
  2525. if (r)
  2526. goto out;
  2527. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2528. switch (er) {
  2529. case EMULATE_DONE:
  2530. return 1;
  2531. case EMULATE_DO_MMIO:
  2532. ++vcpu->stat.mmio_exits;
  2533. /* fall through */
  2534. case EMULATE_FAIL:
  2535. return 0;
  2536. default:
  2537. BUG();
  2538. }
  2539. out:
  2540. return r;
  2541. }
  2542. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2543. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2544. {
  2545. vcpu->arch.mmu.invlpg(vcpu, gva);
  2546. kvm_mmu_flush_tlb(vcpu);
  2547. ++vcpu->stat.invlpg;
  2548. }
  2549. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2550. void kvm_enable_tdp(void)
  2551. {
  2552. tdp_enabled = true;
  2553. }
  2554. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2555. void kvm_disable_tdp(void)
  2556. {
  2557. tdp_enabled = false;
  2558. }
  2559. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2560. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2561. {
  2562. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2563. }
  2564. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2565. {
  2566. struct page *page;
  2567. int i;
  2568. ASSERT(vcpu);
  2569. /*
  2570. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2571. * Therefore we need to allocate shadow page tables in the first
  2572. * 4GB of memory, which happens to fit the DMA32 zone.
  2573. */
  2574. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2575. if (!page)
  2576. return -ENOMEM;
  2577. vcpu->arch.mmu.pae_root = page_address(page);
  2578. for (i = 0; i < 4; ++i)
  2579. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2580. return 0;
  2581. }
  2582. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2583. {
  2584. ASSERT(vcpu);
  2585. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2586. return alloc_mmu_pages(vcpu);
  2587. }
  2588. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2589. {
  2590. ASSERT(vcpu);
  2591. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2592. return init_kvm_mmu(vcpu);
  2593. }
  2594. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2595. {
  2596. ASSERT(vcpu);
  2597. destroy_kvm_mmu(vcpu);
  2598. free_mmu_pages(vcpu);
  2599. mmu_free_memory_caches(vcpu);
  2600. }
  2601. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2602. {
  2603. struct kvm_mmu_page *sp;
  2604. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2605. int i;
  2606. u64 *pt;
  2607. if (!test_bit(slot, sp->slot_bitmap))
  2608. continue;
  2609. pt = sp->spt;
  2610. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2611. /* avoid RMW */
  2612. if (is_writable_pte(pt[i]))
  2613. pt[i] &= ~PT_WRITABLE_MASK;
  2614. }
  2615. kvm_flush_remote_tlbs(kvm);
  2616. }
  2617. void kvm_mmu_zap_all(struct kvm *kvm)
  2618. {
  2619. struct kvm_mmu_page *sp, *node;
  2620. LIST_HEAD(invalid_list);
  2621. spin_lock(&kvm->mmu_lock);
  2622. restart:
  2623. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2624. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2625. goto restart;
  2626. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2627. spin_unlock(&kvm->mmu_lock);
  2628. }
  2629. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2630. struct list_head *invalid_list)
  2631. {
  2632. struct kvm_mmu_page *page;
  2633. page = container_of(kvm->arch.active_mmu_pages.prev,
  2634. struct kvm_mmu_page, link);
  2635. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2636. }
  2637. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2638. {
  2639. struct kvm *kvm;
  2640. struct kvm *kvm_freed = NULL;
  2641. int cache_count = 0;
  2642. spin_lock(&kvm_lock);
  2643. list_for_each_entry(kvm, &vm_list, vm_list) {
  2644. int npages, idx, freed_pages;
  2645. LIST_HEAD(invalid_list);
  2646. idx = srcu_read_lock(&kvm->srcu);
  2647. spin_lock(&kvm->mmu_lock);
  2648. npages = kvm->arch.n_max_mmu_pages -
  2649. kvm_mmu_available_pages(kvm);
  2650. cache_count += npages;
  2651. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2652. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2653. &invalid_list);
  2654. cache_count -= freed_pages;
  2655. kvm_freed = kvm;
  2656. }
  2657. nr_to_scan--;
  2658. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2659. spin_unlock(&kvm->mmu_lock);
  2660. srcu_read_unlock(&kvm->srcu, idx);
  2661. }
  2662. if (kvm_freed)
  2663. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2664. spin_unlock(&kvm_lock);
  2665. return cache_count;
  2666. }
  2667. static struct shrinker mmu_shrinker = {
  2668. .shrink = mmu_shrink,
  2669. .seeks = DEFAULT_SEEKS * 10,
  2670. };
  2671. static void mmu_destroy_caches(void)
  2672. {
  2673. if (pte_chain_cache)
  2674. kmem_cache_destroy(pte_chain_cache);
  2675. if (rmap_desc_cache)
  2676. kmem_cache_destroy(rmap_desc_cache);
  2677. if (mmu_page_header_cache)
  2678. kmem_cache_destroy(mmu_page_header_cache);
  2679. }
  2680. void kvm_mmu_module_exit(void)
  2681. {
  2682. mmu_destroy_caches();
  2683. unregister_shrinker(&mmu_shrinker);
  2684. }
  2685. int kvm_mmu_module_init(void)
  2686. {
  2687. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2688. sizeof(struct kvm_pte_chain),
  2689. 0, 0, NULL);
  2690. if (!pte_chain_cache)
  2691. goto nomem;
  2692. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2693. sizeof(struct kvm_rmap_desc),
  2694. 0, 0, NULL);
  2695. if (!rmap_desc_cache)
  2696. goto nomem;
  2697. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2698. sizeof(struct kvm_mmu_page),
  2699. 0, 0, NULL);
  2700. if (!mmu_page_header_cache)
  2701. goto nomem;
  2702. register_shrinker(&mmu_shrinker);
  2703. return 0;
  2704. nomem:
  2705. mmu_destroy_caches();
  2706. return -ENOMEM;
  2707. }
  2708. /*
  2709. * Caculate mmu pages needed for kvm.
  2710. */
  2711. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2712. {
  2713. int i;
  2714. unsigned int nr_mmu_pages;
  2715. unsigned int nr_pages = 0;
  2716. struct kvm_memslots *slots;
  2717. slots = kvm_memslots(kvm);
  2718. for (i = 0; i < slots->nmemslots; i++)
  2719. nr_pages += slots->memslots[i].npages;
  2720. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2721. nr_mmu_pages = max(nr_mmu_pages,
  2722. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2723. return nr_mmu_pages;
  2724. }
  2725. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2726. unsigned len)
  2727. {
  2728. if (len > buffer->len)
  2729. return NULL;
  2730. return buffer->ptr;
  2731. }
  2732. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2733. unsigned len)
  2734. {
  2735. void *ret;
  2736. ret = pv_mmu_peek_buffer(buffer, len);
  2737. if (!ret)
  2738. return ret;
  2739. buffer->ptr += len;
  2740. buffer->len -= len;
  2741. buffer->processed += len;
  2742. return ret;
  2743. }
  2744. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2745. gpa_t addr, gpa_t value)
  2746. {
  2747. int bytes = 8;
  2748. int r;
  2749. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2750. bytes = 4;
  2751. r = mmu_topup_memory_caches(vcpu);
  2752. if (r)
  2753. return r;
  2754. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2755. return -EFAULT;
  2756. return 1;
  2757. }
  2758. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2759. {
  2760. (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2761. return 1;
  2762. }
  2763. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2764. {
  2765. spin_lock(&vcpu->kvm->mmu_lock);
  2766. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2767. spin_unlock(&vcpu->kvm->mmu_lock);
  2768. return 1;
  2769. }
  2770. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2771. struct kvm_pv_mmu_op_buffer *buffer)
  2772. {
  2773. struct kvm_mmu_op_header *header;
  2774. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2775. if (!header)
  2776. return 0;
  2777. switch (header->op) {
  2778. case KVM_MMU_OP_WRITE_PTE: {
  2779. struct kvm_mmu_op_write_pte *wpte;
  2780. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2781. if (!wpte)
  2782. return 0;
  2783. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2784. wpte->pte_val);
  2785. }
  2786. case KVM_MMU_OP_FLUSH_TLB: {
  2787. struct kvm_mmu_op_flush_tlb *ftlb;
  2788. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2789. if (!ftlb)
  2790. return 0;
  2791. return kvm_pv_mmu_flush_tlb(vcpu);
  2792. }
  2793. case KVM_MMU_OP_RELEASE_PT: {
  2794. struct kvm_mmu_op_release_pt *rpt;
  2795. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2796. if (!rpt)
  2797. return 0;
  2798. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2799. }
  2800. default: return 0;
  2801. }
  2802. }
  2803. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2804. gpa_t addr, unsigned long *ret)
  2805. {
  2806. int r;
  2807. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2808. buffer->ptr = buffer->buf;
  2809. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2810. buffer->processed = 0;
  2811. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2812. if (r)
  2813. goto out;
  2814. while (buffer->len) {
  2815. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2816. if (r < 0)
  2817. goto out;
  2818. if (r == 0)
  2819. break;
  2820. }
  2821. r = 1;
  2822. out:
  2823. *ret = buffer->processed;
  2824. return r;
  2825. }
  2826. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2827. {
  2828. struct kvm_shadow_walk_iterator iterator;
  2829. int nr_sptes = 0;
  2830. spin_lock(&vcpu->kvm->mmu_lock);
  2831. for_each_shadow_entry(vcpu, addr, iterator) {
  2832. sptes[iterator.level-1] = *iterator.sptep;
  2833. nr_sptes++;
  2834. if (!is_shadow_present_pte(*iterator.sptep))
  2835. break;
  2836. }
  2837. spin_unlock(&vcpu->kvm->mmu_lock);
  2838. return nr_sptes;
  2839. }
  2840. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2841. #ifdef AUDIT
  2842. static const char *audit_msg;
  2843. static gva_t canonicalize(gva_t gva)
  2844. {
  2845. #ifdef CONFIG_X86_64
  2846. gva = (long long)(gva << 16) >> 16;
  2847. #endif
  2848. return gva;
  2849. }
  2850. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2851. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2852. inspect_spte_fn fn)
  2853. {
  2854. int i;
  2855. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2856. u64 ent = sp->spt[i];
  2857. if (is_shadow_present_pte(ent)) {
  2858. if (!is_last_spte(ent, sp->role.level)) {
  2859. struct kvm_mmu_page *child;
  2860. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2861. __mmu_spte_walk(kvm, child, fn);
  2862. } else
  2863. fn(kvm, &sp->spt[i]);
  2864. }
  2865. }
  2866. }
  2867. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2868. {
  2869. int i;
  2870. struct kvm_mmu_page *sp;
  2871. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2872. return;
  2873. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2874. hpa_t root = vcpu->arch.mmu.root_hpa;
  2875. sp = page_header(root);
  2876. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2877. return;
  2878. }
  2879. for (i = 0; i < 4; ++i) {
  2880. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2881. if (root && VALID_PAGE(root)) {
  2882. root &= PT64_BASE_ADDR_MASK;
  2883. sp = page_header(root);
  2884. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2885. }
  2886. }
  2887. return;
  2888. }
  2889. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2890. gva_t va, int level)
  2891. {
  2892. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2893. int i;
  2894. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2895. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2896. u64 ent = pt[i];
  2897. if (ent == shadow_trap_nonpresent_pte)
  2898. continue;
  2899. va = canonicalize(va);
  2900. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2901. audit_mappings_page(vcpu, ent, va, level - 1);
  2902. else {
  2903. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2904. gfn_t gfn = gpa >> PAGE_SHIFT;
  2905. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2906. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2907. if (is_error_pfn(pfn)) {
  2908. kvm_release_pfn_clean(pfn);
  2909. continue;
  2910. }
  2911. if (is_shadow_present_pte(ent)
  2912. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2913. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2914. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2915. audit_msg, vcpu->arch.mmu.root_level,
  2916. va, gpa, hpa, ent,
  2917. is_shadow_present_pte(ent));
  2918. else if (ent == shadow_notrap_nonpresent_pte
  2919. && !is_error_hpa(hpa))
  2920. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2921. " valid guest gva %lx\n", audit_msg, va);
  2922. kvm_release_pfn_clean(pfn);
  2923. }
  2924. }
  2925. }
  2926. static void audit_mappings(struct kvm_vcpu *vcpu)
  2927. {
  2928. unsigned i;
  2929. if (vcpu->arch.mmu.root_level == 4)
  2930. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2931. else
  2932. for (i = 0; i < 4; ++i)
  2933. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2934. audit_mappings_page(vcpu,
  2935. vcpu->arch.mmu.pae_root[i],
  2936. i << 30,
  2937. 2);
  2938. }
  2939. static int count_rmaps(struct kvm_vcpu *vcpu)
  2940. {
  2941. struct kvm *kvm = vcpu->kvm;
  2942. struct kvm_memslots *slots;
  2943. int nmaps = 0;
  2944. int i, j, k, idx;
  2945. idx = srcu_read_lock(&kvm->srcu);
  2946. slots = kvm_memslots(kvm);
  2947. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2948. struct kvm_memory_slot *m = &slots->memslots[i];
  2949. struct kvm_rmap_desc *d;
  2950. for (j = 0; j < m->npages; ++j) {
  2951. unsigned long *rmapp = &m->rmap[j];
  2952. if (!*rmapp)
  2953. continue;
  2954. if (!(*rmapp & 1)) {
  2955. ++nmaps;
  2956. continue;
  2957. }
  2958. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2959. while (d) {
  2960. for (k = 0; k < RMAP_EXT; ++k)
  2961. if (d->sptes[k])
  2962. ++nmaps;
  2963. else
  2964. break;
  2965. d = d->more;
  2966. }
  2967. }
  2968. }
  2969. srcu_read_unlock(&kvm->srcu, idx);
  2970. return nmaps;
  2971. }
  2972. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2973. {
  2974. unsigned long *rmapp;
  2975. struct kvm_mmu_page *rev_sp;
  2976. gfn_t gfn;
  2977. if (is_writable_pte(*sptep)) {
  2978. rev_sp = page_header(__pa(sptep));
  2979. gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
  2980. if (!gfn_to_memslot(kvm, gfn)) {
  2981. if (!printk_ratelimit())
  2982. return;
  2983. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2984. audit_msg, gfn);
  2985. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2986. audit_msg, (long int)(sptep - rev_sp->spt),
  2987. rev_sp->gfn);
  2988. dump_stack();
  2989. return;
  2990. }
  2991. rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
  2992. if (!*rmapp) {
  2993. if (!printk_ratelimit())
  2994. return;
  2995. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2996. audit_msg, *sptep);
  2997. dump_stack();
  2998. }
  2999. }
  3000. }
  3001. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  3002. {
  3003. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  3004. }
  3005. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  3006. {
  3007. struct kvm_mmu_page *sp;
  3008. int i;
  3009. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3010. u64 *pt = sp->spt;
  3011. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  3012. continue;
  3013. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3014. u64 ent = pt[i];
  3015. if (!(ent & PT_PRESENT_MASK))
  3016. continue;
  3017. if (!is_writable_pte(ent))
  3018. continue;
  3019. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  3020. }
  3021. }
  3022. return;
  3023. }
  3024. static void audit_rmap(struct kvm_vcpu *vcpu)
  3025. {
  3026. check_writable_mappings_rmap(vcpu);
  3027. count_rmaps(vcpu);
  3028. }
  3029. static void audit_write_protection(struct kvm_vcpu *vcpu)
  3030. {
  3031. struct kvm_mmu_page *sp;
  3032. struct kvm_memory_slot *slot;
  3033. unsigned long *rmapp;
  3034. u64 *spte;
  3035. gfn_t gfn;
  3036. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3037. if (sp->role.direct)
  3038. continue;
  3039. if (sp->unsync)
  3040. continue;
  3041. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  3042. rmapp = &slot->rmap[gfn - slot->base_gfn];
  3043. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  3044. while (spte) {
  3045. if (is_writable_pte(*spte))
  3046. printk(KERN_ERR "%s: (%s) shadow page has "
  3047. "writable mappings: gfn %lx role %x\n",
  3048. __func__, audit_msg, sp->gfn,
  3049. sp->role.word);
  3050. spte = rmap_next(vcpu->kvm, rmapp, spte);
  3051. }
  3052. }
  3053. }
  3054. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  3055. {
  3056. int olddbg = dbg;
  3057. dbg = 0;
  3058. audit_msg = msg;
  3059. audit_rmap(vcpu);
  3060. audit_write_protection(vcpu);
  3061. if (strcmp("pre pte write", audit_msg) != 0)
  3062. audit_mappings(vcpu);
  3063. audit_writable_sptes_have_rmaps(vcpu);
  3064. dbg = olddbg;
  3065. }
  3066. #endif