x86.c 144 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <linux/srcu.h>
  40. #include <linux/slab.h>
  41. #include <trace/events/kvm.h>
  42. #define CREATE_TRACE_POINTS
  43. #include "trace.h"
  44. #include <asm/debugreg.h>
  45. #include <asm/uaccess.h>
  46. #include <asm/msr.h>
  47. #include <asm/desc.h>
  48. #include <asm/mtrr.h>
  49. #include <asm/mce.h>
  50. #define MAX_IO_MSRS 256
  51. #define CR0_RESERVED_BITS \
  52. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  53. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  54. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  55. #define CR4_RESERVED_BITS \
  56. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  57. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  58. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  59. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  60. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  61. #define KVM_MAX_MCE_BANKS 32
  62. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  63. /* EFER defaults:
  64. * - enable syscall per default because its emulated by KVM
  65. * - enable LME and LMA per default on 64 bit KVM
  66. */
  67. #ifdef CONFIG_X86_64
  68. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  69. #else
  70. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  71. #endif
  72. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  73. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  74. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  75. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  76. struct kvm_cpuid_entry2 __user *entries);
  77. struct kvm_x86_ops *kvm_x86_ops;
  78. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  79. int ignore_msrs = 0;
  80. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  81. #define KVM_NR_SHARED_MSRS 16
  82. struct kvm_shared_msrs_global {
  83. int nr;
  84. u32 msrs[KVM_NR_SHARED_MSRS];
  85. };
  86. struct kvm_shared_msrs {
  87. struct user_return_notifier urn;
  88. bool registered;
  89. struct kvm_shared_msr_values {
  90. u64 host;
  91. u64 curr;
  92. } values[KVM_NR_SHARED_MSRS];
  93. };
  94. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  95. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  96. struct kvm_stats_debugfs_item debugfs_entries[] = {
  97. { "pf_fixed", VCPU_STAT(pf_fixed) },
  98. { "pf_guest", VCPU_STAT(pf_guest) },
  99. { "tlb_flush", VCPU_STAT(tlb_flush) },
  100. { "invlpg", VCPU_STAT(invlpg) },
  101. { "exits", VCPU_STAT(exits) },
  102. { "io_exits", VCPU_STAT(io_exits) },
  103. { "mmio_exits", VCPU_STAT(mmio_exits) },
  104. { "signal_exits", VCPU_STAT(signal_exits) },
  105. { "irq_window", VCPU_STAT(irq_window_exits) },
  106. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  107. { "halt_exits", VCPU_STAT(halt_exits) },
  108. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  109. { "hypercalls", VCPU_STAT(hypercalls) },
  110. { "request_irq", VCPU_STAT(request_irq_exits) },
  111. { "irq_exits", VCPU_STAT(irq_exits) },
  112. { "host_state_reload", VCPU_STAT(host_state_reload) },
  113. { "efer_reload", VCPU_STAT(efer_reload) },
  114. { "fpu_reload", VCPU_STAT(fpu_reload) },
  115. { "insn_emulation", VCPU_STAT(insn_emulation) },
  116. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  117. { "irq_injections", VCPU_STAT(irq_injections) },
  118. { "nmi_injections", VCPU_STAT(nmi_injections) },
  119. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  120. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  121. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  122. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  123. { "mmu_flooded", VM_STAT(mmu_flooded) },
  124. { "mmu_recycled", VM_STAT(mmu_recycled) },
  125. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  126. { "mmu_unsync", VM_STAT(mmu_unsync) },
  127. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  128. { "largepages", VM_STAT(lpages) },
  129. { NULL }
  130. };
  131. static void kvm_on_user_return(struct user_return_notifier *urn)
  132. {
  133. unsigned slot;
  134. struct kvm_shared_msrs *locals
  135. = container_of(urn, struct kvm_shared_msrs, urn);
  136. struct kvm_shared_msr_values *values;
  137. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  138. values = &locals->values[slot];
  139. if (values->host != values->curr) {
  140. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  141. values->curr = values->host;
  142. }
  143. }
  144. locals->registered = false;
  145. user_return_notifier_unregister(urn);
  146. }
  147. static void shared_msr_update(unsigned slot, u32 msr)
  148. {
  149. struct kvm_shared_msrs *smsr;
  150. u64 value;
  151. smsr = &__get_cpu_var(shared_msrs);
  152. /* only read, and nobody should modify it at this time,
  153. * so don't need lock */
  154. if (slot >= shared_msrs_global.nr) {
  155. printk(KERN_ERR "kvm: invalid MSR slot!");
  156. return;
  157. }
  158. rdmsrl_safe(msr, &value);
  159. smsr->values[slot].host = value;
  160. smsr->values[slot].curr = value;
  161. }
  162. void kvm_define_shared_msr(unsigned slot, u32 msr)
  163. {
  164. if (slot >= shared_msrs_global.nr)
  165. shared_msrs_global.nr = slot + 1;
  166. shared_msrs_global.msrs[slot] = msr;
  167. /* we need ensured the shared_msr_global have been updated */
  168. smp_wmb();
  169. }
  170. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  171. static void kvm_shared_msr_cpu_online(void)
  172. {
  173. unsigned i;
  174. for (i = 0; i < shared_msrs_global.nr; ++i)
  175. shared_msr_update(i, shared_msrs_global.msrs[i]);
  176. }
  177. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  178. {
  179. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  180. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  181. return;
  182. smsr->values[slot].curr = value;
  183. wrmsrl(shared_msrs_global.msrs[slot], value);
  184. if (!smsr->registered) {
  185. smsr->urn.on_user_return = kvm_on_user_return;
  186. user_return_notifier_register(&smsr->urn);
  187. smsr->registered = true;
  188. }
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  191. static void drop_user_return_notifiers(void *ignore)
  192. {
  193. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  194. if (smsr->registered)
  195. kvm_on_user_return(&smsr->urn);
  196. }
  197. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  198. {
  199. if (irqchip_in_kernel(vcpu->kvm))
  200. return vcpu->arch.apic_base;
  201. else
  202. return vcpu->arch.apic_base;
  203. }
  204. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  205. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  206. {
  207. /* TODO: reserve bits check */
  208. if (irqchip_in_kernel(vcpu->kvm))
  209. kvm_lapic_set_base(vcpu, data);
  210. else
  211. vcpu->arch.apic_base = data;
  212. }
  213. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  214. #define EXCPT_BENIGN 0
  215. #define EXCPT_CONTRIBUTORY 1
  216. #define EXCPT_PF 2
  217. static int exception_class(int vector)
  218. {
  219. switch (vector) {
  220. case PF_VECTOR:
  221. return EXCPT_PF;
  222. case DE_VECTOR:
  223. case TS_VECTOR:
  224. case NP_VECTOR:
  225. case SS_VECTOR:
  226. case GP_VECTOR:
  227. return EXCPT_CONTRIBUTORY;
  228. default:
  229. break;
  230. }
  231. return EXCPT_BENIGN;
  232. }
  233. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  234. unsigned nr, bool has_error, u32 error_code)
  235. {
  236. u32 prev_nr;
  237. int class1, class2;
  238. if (!vcpu->arch.exception.pending) {
  239. queue:
  240. vcpu->arch.exception.pending = true;
  241. vcpu->arch.exception.has_error_code = has_error;
  242. vcpu->arch.exception.nr = nr;
  243. vcpu->arch.exception.error_code = error_code;
  244. return;
  245. }
  246. /* to check exception */
  247. prev_nr = vcpu->arch.exception.nr;
  248. if (prev_nr == DF_VECTOR) {
  249. /* triple fault -> shutdown */
  250. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  251. return;
  252. }
  253. class1 = exception_class(prev_nr);
  254. class2 = exception_class(nr);
  255. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  256. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  257. /* generate double fault per SDM Table 5-5 */
  258. vcpu->arch.exception.pending = true;
  259. vcpu->arch.exception.has_error_code = true;
  260. vcpu->arch.exception.nr = DF_VECTOR;
  261. vcpu->arch.exception.error_code = 0;
  262. } else
  263. /* replace previous exception with a new one in a hope
  264. that instruction re-execution will regenerate lost
  265. exception */
  266. goto queue;
  267. }
  268. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  269. {
  270. kvm_multiple_exception(vcpu, nr, false, 0);
  271. }
  272. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  273. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  274. u32 error_code)
  275. {
  276. ++vcpu->stat.pf_guest;
  277. vcpu->arch.cr2 = addr;
  278. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  279. }
  280. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  281. {
  282. vcpu->arch.nmi_pending = 1;
  283. }
  284. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  285. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  286. {
  287. kvm_multiple_exception(vcpu, nr, true, error_code);
  288. }
  289. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  290. /*
  291. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  292. * a #GP and return false.
  293. */
  294. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  295. {
  296. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  297. return true;
  298. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  299. return false;
  300. }
  301. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  302. /*
  303. * Load the pae pdptrs. Return true is they are all valid.
  304. */
  305. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  306. {
  307. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  308. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  309. int i;
  310. int ret;
  311. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  312. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  313. offset * sizeof(u64), sizeof(pdpte));
  314. if (ret < 0) {
  315. ret = 0;
  316. goto out;
  317. }
  318. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  319. if (is_present_gpte(pdpte[i]) &&
  320. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  321. ret = 0;
  322. goto out;
  323. }
  324. }
  325. ret = 1;
  326. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  327. __set_bit(VCPU_EXREG_PDPTR,
  328. (unsigned long *)&vcpu->arch.regs_avail);
  329. __set_bit(VCPU_EXREG_PDPTR,
  330. (unsigned long *)&vcpu->arch.regs_dirty);
  331. out:
  332. return ret;
  333. }
  334. EXPORT_SYMBOL_GPL(load_pdptrs);
  335. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  336. {
  337. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  338. bool changed = true;
  339. int r;
  340. if (is_long_mode(vcpu) || !is_pae(vcpu))
  341. return false;
  342. if (!test_bit(VCPU_EXREG_PDPTR,
  343. (unsigned long *)&vcpu->arch.regs_avail))
  344. return true;
  345. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  346. if (r < 0)
  347. goto out;
  348. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  349. out:
  350. return changed;
  351. }
  352. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  353. {
  354. cr0 |= X86_CR0_ET;
  355. #ifdef CONFIG_X86_64
  356. if (cr0 & 0xffffffff00000000UL) {
  357. kvm_inject_gp(vcpu, 0);
  358. return;
  359. }
  360. #endif
  361. cr0 &= ~CR0_RESERVED_BITS;
  362. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  363. kvm_inject_gp(vcpu, 0);
  364. return;
  365. }
  366. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  367. kvm_inject_gp(vcpu, 0);
  368. return;
  369. }
  370. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  371. #ifdef CONFIG_X86_64
  372. if ((vcpu->arch.efer & EFER_LME)) {
  373. int cs_db, cs_l;
  374. if (!is_pae(vcpu)) {
  375. kvm_inject_gp(vcpu, 0);
  376. return;
  377. }
  378. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  379. if (cs_l) {
  380. kvm_inject_gp(vcpu, 0);
  381. return;
  382. }
  383. } else
  384. #endif
  385. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  386. kvm_inject_gp(vcpu, 0);
  387. return;
  388. }
  389. }
  390. kvm_x86_ops->set_cr0(vcpu, cr0);
  391. kvm_mmu_reset_context(vcpu);
  392. return;
  393. }
  394. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  395. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  396. {
  397. kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
  398. }
  399. EXPORT_SYMBOL_GPL(kvm_lmsw);
  400. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  401. {
  402. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  403. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  404. if (cr4 & CR4_RESERVED_BITS) {
  405. kvm_inject_gp(vcpu, 0);
  406. return;
  407. }
  408. if (is_long_mode(vcpu)) {
  409. if (!(cr4 & X86_CR4_PAE)) {
  410. kvm_inject_gp(vcpu, 0);
  411. return;
  412. }
  413. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  414. && ((cr4 ^ old_cr4) & pdptr_bits)
  415. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  416. kvm_inject_gp(vcpu, 0);
  417. return;
  418. }
  419. if (cr4 & X86_CR4_VMXE) {
  420. kvm_inject_gp(vcpu, 0);
  421. return;
  422. }
  423. kvm_x86_ops->set_cr4(vcpu, cr4);
  424. vcpu->arch.cr4 = cr4;
  425. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  426. kvm_mmu_reset_context(vcpu);
  427. }
  428. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  429. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  430. {
  431. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  432. kvm_mmu_sync_roots(vcpu);
  433. kvm_mmu_flush_tlb(vcpu);
  434. return;
  435. }
  436. if (is_long_mode(vcpu)) {
  437. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  438. kvm_inject_gp(vcpu, 0);
  439. return;
  440. }
  441. } else {
  442. if (is_pae(vcpu)) {
  443. if (cr3 & CR3_PAE_RESERVED_BITS) {
  444. kvm_inject_gp(vcpu, 0);
  445. return;
  446. }
  447. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  448. kvm_inject_gp(vcpu, 0);
  449. return;
  450. }
  451. }
  452. /*
  453. * We don't check reserved bits in nonpae mode, because
  454. * this isn't enforced, and VMware depends on this.
  455. */
  456. }
  457. /*
  458. * Does the new cr3 value map to physical memory? (Note, we
  459. * catch an invalid cr3 even in real-mode, because it would
  460. * cause trouble later on when we turn on paging anyway.)
  461. *
  462. * A real CPU would silently accept an invalid cr3 and would
  463. * attempt to use it - with largely undefined (and often hard
  464. * to debug) behavior on the guest side.
  465. */
  466. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  467. kvm_inject_gp(vcpu, 0);
  468. else {
  469. vcpu->arch.cr3 = cr3;
  470. vcpu->arch.mmu.new_cr3(vcpu);
  471. }
  472. }
  473. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  474. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  475. {
  476. if (cr8 & CR8_RESERVED_BITS) {
  477. kvm_inject_gp(vcpu, 0);
  478. return;
  479. }
  480. if (irqchip_in_kernel(vcpu->kvm))
  481. kvm_lapic_set_tpr(vcpu, cr8);
  482. else
  483. vcpu->arch.cr8 = cr8;
  484. }
  485. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  486. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  487. {
  488. if (irqchip_in_kernel(vcpu->kvm))
  489. return kvm_lapic_get_cr8(vcpu);
  490. else
  491. return vcpu->arch.cr8;
  492. }
  493. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  494. static inline u32 bit(int bitno)
  495. {
  496. return 1 << (bitno & 31);
  497. }
  498. /*
  499. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  500. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  501. *
  502. * This list is modified at module load time to reflect the
  503. * capabilities of the host cpu. This capabilities test skips MSRs that are
  504. * kvm-specific. Those are put in the beginning of the list.
  505. */
  506. #define KVM_SAVE_MSRS_BEGIN 5
  507. static u32 msrs_to_save[] = {
  508. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  509. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  510. HV_X64_MSR_APIC_ASSIST_PAGE,
  511. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  512. MSR_K6_STAR,
  513. #ifdef CONFIG_X86_64
  514. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  515. #endif
  516. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  517. };
  518. static unsigned num_msrs_to_save;
  519. static u32 emulated_msrs[] = {
  520. MSR_IA32_MISC_ENABLE,
  521. };
  522. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  523. {
  524. if (efer & efer_reserved_bits) {
  525. kvm_inject_gp(vcpu, 0);
  526. return;
  527. }
  528. if (is_paging(vcpu)
  529. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
  530. kvm_inject_gp(vcpu, 0);
  531. return;
  532. }
  533. if (efer & EFER_FFXSR) {
  534. struct kvm_cpuid_entry2 *feat;
  535. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  536. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  537. kvm_inject_gp(vcpu, 0);
  538. return;
  539. }
  540. }
  541. if (efer & EFER_SVME) {
  542. struct kvm_cpuid_entry2 *feat;
  543. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  544. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  545. kvm_inject_gp(vcpu, 0);
  546. return;
  547. }
  548. }
  549. kvm_x86_ops->set_efer(vcpu, efer);
  550. efer &= ~EFER_LMA;
  551. efer |= vcpu->arch.efer & EFER_LMA;
  552. vcpu->arch.efer = efer;
  553. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  554. kvm_mmu_reset_context(vcpu);
  555. }
  556. void kvm_enable_efer_bits(u64 mask)
  557. {
  558. efer_reserved_bits &= ~mask;
  559. }
  560. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  561. /*
  562. * Writes msr value into into the appropriate "register".
  563. * Returns 0 on success, non-0 otherwise.
  564. * Assumes vcpu_load() was already called.
  565. */
  566. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  567. {
  568. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  569. }
  570. /*
  571. * Adapt set_msr() to msr_io()'s calling convention
  572. */
  573. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  574. {
  575. return kvm_set_msr(vcpu, index, *data);
  576. }
  577. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  578. {
  579. static int version;
  580. struct pvclock_wall_clock wc;
  581. struct timespec boot;
  582. if (!wall_clock)
  583. return;
  584. version++;
  585. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  586. /*
  587. * The guest calculates current wall clock time by adding
  588. * system time (updated by kvm_write_guest_time below) to the
  589. * wall clock specified here. guest system time equals host
  590. * system time for us, thus we must fill in host boot time here.
  591. */
  592. getboottime(&boot);
  593. wc.sec = boot.tv_sec;
  594. wc.nsec = boot.tv_nsec;
  595. wc.version = version;
  596. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  597. version++;
  598. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  599. }
  600. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  601. {
  602. uint32_t quotient, remainder;
  603. /* Don't try to replace with do_div(), this one calculates
  604. * "(dividend << 32) / divisor" */
  605. __asm__ ( "divl %4"
  606. : "=a" (quotient), "=d" (remainder)
  607. : "0" (0), "1" (dividend), "r" (divisor) );
  608. return quotient;
  609. }
  610. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  611. {
  612. uint64_t nsecs = 1000000000LL;
  613. int32_t shift = 0;
  614. uint64_t tps64;
  615. uint32_t tps32;
  616. tps64 = tsc_khz * 1000LL;
  617. while (tps64 > nsecs*2) {
  618. tps64 >>= 1;
  619. shift--;
  620. }
  621. tps32 = (uint32_t)tps64;
  622. while (tps32 <= (uint32_t)nsecs) {
  623. tps32 <<= 1;
  624. shift++;
  625. }
  626. hv_clock->tsc_shift = shift;
  627. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  628. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  629. __func__, tsc_khz, hv_clock->tsc_shift,
  630. hv_clock->tsc_to_system_mul);
  631. }
  632. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  633. static void kvm_write_guest_time(struct kvm_vcpu *v)
  634. {
  635. struct timespec ts;
  636. unsigned long flags;
  637. struct kvm_vcpu_arch *vcpu = &v->arch;
  638. void *shared_kaddr;
  639. unsigned long this_tsc_khz;
  640. if ((!vcpu->time_page))
  641. return;
  642. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  643. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  644. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  645. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  646. }
  647. put_cpu_var(cpu_tsc_khz);
  648. /* Keep irq disabled to prevent changes to the clock */
  649. local_irq_save(flags);
  650. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  651. ktime_get_ts(&ts);
  652. monotonic_to_bootbased(&ts);
  653. local_irq_restore(flags);
  654. /* With all the info we got, fill in the values */
  655. vcpu->hv_clock.system_time = ts.tv_nsec +
  656. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  657. /*
  658. * The interface expects us to write an even number signaling that the
  659. * update is finished. Since the guest won't see the intermediate
  660. * state, we just increase by 2 at the end.
  661. */
  662. vcpu->hv_clock.version += 2;
  663. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  664. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  665. sizeof(vcpu->hv_clock));
  666. kunmap_atomic(shared_kaddr, KM_USER0);
  667. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  668. }
  669. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  670. {
  671. struct kvm_vcpu_arch *vcpu = &v->arch;
  672. if (!vcpu->time_page)
  673. return 0;
  674. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  675. return 1;
  676. }
  677. static bool msr_mtrr_valid(unsigned msr)
  678. {
  679. switch (msr) {
  680. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  681. case MSR_MTRRfix64K_00000:
  682. case MSR_MTRRfix16K_80000:
  683. case MSR_MTRRfix16K_A0000:
  684. case MSR_MTRRfix4K_C0000:
  685. case MSR_MTRRfix4K_C8000:
  686. case MSR_MTRRfix4K_D0000:
  687. case MSR_MTRRfix4K_D8000:
  688. case MSR_MTRRfix4K_E0000:
  689. case MSR_MTRRfix4K_E8000:
  690. case MSR_MTRRfix4K_F0000:
  691. case MSR_MTRRfix4K_F8000:
  692. case MSR_MTRRdefType:
  693. case MSR_IA32_CR_PAT:
  694. return true;
  695. case 0x2f8:
  696. return true;
  697. }
  698. return false;
  699. }
  700. static bool valid_pat_type(unsigned t)
  701. {
  702. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  703. }
  704. static bool valid_mtrr_type(unsigned t)
  705. {
  706. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  707. }
  708. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  709. {
  710. int i;
  711. if (!msr_mtrr_valid(msr))
  712. return false;
  713. if (msr == MSR_IA32_CR_PAT) {
  714. for (i = 0; i < 8; i++)
  715. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  716. return false;
  717. return true;
  718. } else if (msr == MSR_MTRRdefType) {
  719. if (data & ~0xcff)
  720. return false;
  721. return valid_mtrr_type(data & 0xff);
  722. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  723. for (i = 0; i < 8 ; i++)
  724. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  725. return false;
  726. return true;
  727. }
  728. /* variable MTRRs */
  729. return valid_mtrr_type(data & 0xff);
  730. }
  731. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  732. {
  733. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  734. if (!mtrr_valid(vcpu, msr, data))
  735. return 1;
  736. if (msr == MSR_MTRRdefType) {
  737. vcpu->arch.mtrr_state.def_type = data;
  738. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  739. } else if (msr == MSR_MTRRfix64K_00000)
  740. p[0] = data;
  741. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  742. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  743. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  744. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  745. else if (msr == MSR_IA32_CR_PAT)
  746. vcpu->arch.pat = data;
  747. else { /* Variable MTRRs */
  748. int idx, is_mtrr_mask;
  749. u64 *pt;
  750. idx = (msr - 0x200) / 2;
  751. is_mtrr_mask = msr - 0x200 - 2 * idx;
  752. if (!is_mtrr_mask)
  753. pt =
  754. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  755. else
  756. pt =
  757. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  758. *pt = data;
  759. }
  760. kvm_mmu_reset_context(vcpu);
  761. return 0;
  762. }
  763. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  764. {
  765. u64 mcg_cap = vcpu->arch.mcg_cap;
  766. unsigned bank_num = mcg_cap & 0xff;
  767. switch (msr) {
  768. case MSR_IA32_MCG_STATUS:
  769. vcpu->arch.mcg_status = data;
  770. break;
  771. case MSR_IA32_MCG_CTL:
  772. if (!(mcg_cap & MCG_CTL_P))
  773. return 1;
  774. if (data != 0 && data != ~(u64)0)
  775. return -1;
  776. vcpu->arch.mcg_ctl = data;
  777. break;
  778. default:
  779. if (msr >= MSR_IA32_MC0_CTL &&
  780. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  781. u32 offset = msr - MSR_IA32_MC0_CTL;
  782. /* only 0 or all 1s can be written to IA32_MCi_CTL
  783. * some Linux kernels though clear bit 10 in bank 4 to
  784. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  785. * this to avoid an uncatched #GP in the guest
  786. */
  787. if ((offset & 0x3) == 0 &&
  788. data != 0 && (data | (1 << 10)) != ~(u64)0)
  789. return -1;
  790. vcpu->arch.mce_banks[offset] = data;
  791. break;
  792. }
  793. return 1;
  794. }
  795. return 0;
  796. }
  797. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  798. {
  799. struct kvm *kvm = vcpu->kvm;
  800. int lm = is_long_mode(vcpu);
  801. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  802. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  803. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  804. : kvm->arch.xen_hvm_config.blob_size_32;
  805. u32 page_num = data & ~PAGE_MASK;
  806. u64 page_addr = data & PAGE_MASK;
  807. u8 *page;
  808. int r;
  809. r = -E2BIG;
  810. if (page_num >= blob_size)
  811. goto out;
  812. r = -ENOMEM;
  813. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  814. if (!page)
  815. goto out;
  816. r = -EFAULT;
  817. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  818. goto out_free;
  819. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  820. goto out_free;
  821. r = 0;
  822. out_free:
  823. kfree(page);
  824. out:
  825. return r;
  826. }
  827. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  828. {
  829. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  830. }
  831. static bool kvm_hv_msr_partition_wide(u32 msr)
  832. {
  833. bool r = false;
  834. switch (msr) {
  835. case HV_X64_MSR_GUEST_OS_ID:
  836. case HV_X64_MSR_HYPERCALL:
  837. r = true;
  838. break;
  839. }
  840. return r;
  841. }
  842. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  843. {
  844. struct kvm *kvm = vcpu->kvm;
  845. switch (msr) {
  846. case HV_X64_MSR_GUEST_OS_ID:
  847. kvm->arch.hv_guest_os_id = data;
  848. /* setting guest os id to zero disables hypercall page */
  849. if (!kvm->arch.hv_guest_os_id)
  850. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  851. break;
  852. case HV_X64_MSR_HYPERCALL: {
  853. u64 gfn;
  854. unsigned long addr;
  855. u8 instructions[4];
  856. /* if guest os id is not set hypercall should remain disabled */
  857. if (!kvm->arch.hv_guest_os_id)
  858. break;
  859. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  860. kvm->arch.hv_hypercall = data;
  861. break;
  862. }
  863. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  864. addr = gfn_to_hva(kvm, gfn);
  865. if (kvm_is_error_hva(addr))
  866. return 1;
  867. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  868. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  869. if (copy_to_user((void __user *)addr, instructions, 4))
  870. return 1;
  871. kvm->arch.hv_hypercall = data;
  872. break;
  873. }
  874. default:
  875. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  876. "data 0x%llx\n", msr, data);
  877. return 1;
  878. }
  879. return 0;
  880. }
  881. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  882. {
  883. switch (msr) {
  884. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  885. unsigned long addr;
  886. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  887. vcpu->arch.hv_vapic = data;
  888. break;
  889. }
  890. addr = gfn_to_hva(vcpu->kvm, data >>
  891. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  892. if (kvm_is_error_hva(addr))
  893. return 1;
  894. if (clear_user((void __user *)addr, PAGE_SIZE))
  895. return 1;
  896. vcpu->arch.hv_vapic = data;
  897. break;
  898. }
  899. case HV_X64_MSR_EOI:
  900. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  901. case HV_X64_MSR_ICR:
  902. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  903. case HV_X64_MSR_TPR:
  904. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  905. default:
  906. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  907. "data 0x%llx\n", msr, data);
  908. return 1;
  909. }
  910. return 0;
  911. }
  912. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  913. {
  914. switch (msr) {
  915. case MSR_EFER:
  916. set_efer(vcpu, data);
  917. break;
  918. case MSR_K7_HWCR:
  919. data &= ~(u64)0x40; /* ignore flush filter disable */
  920. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  921. if (data != 0) {
  922. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  923. data);
  924. return 1;
  925. }
  926. break;
  927. case MSR_FAM10H_MMIO_CONF_BASE:
  928. if (data != 0) {
  929. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  930. "0x%llx\n", data);
  931. return 1;
  932. }
  933. break;
  934. case MSR_AMD64_NB_CFG:
  935. break;
  936. case MSR_IA32_DEBUGCTLMSR:
  937. if (!data) {
  938. /* We support the non-activated case already */
  939. break;
  940. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  941. /* Values other than LBR and BTF are vendor-specific,
  942. thus reserved and should throw a #GP */
  943. return 1;
  944. }
  945. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  946. __func__, data);
  947. break;
  948. case MSR_IA32_UCODE_REV:
  949. case MSR_IA32_UCODE_WRITE:
  950. case MSR_VM_HSAVE_PA:
  951. case MSR_AMD64_PATCH_LOADER:
  952. break;
  953. case 0x200 ... 0x2ff:
  954. return set_msr_mtrr(vcpu, msr, data);
  955. case MSR_IA32_APICBASE:
  956. kvm_set_apic_base(vcpu, data);
  957. break;
  958. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  959. return kvm_x2apic_msr_write(vcpu, msr, data);
  960. case MSR_IA32_MISC_ENABLE:
  961. vcpu->arch.ia32_misc_enable_msr = data;
  962. break;
  963. case MSR_KVM_WALL_CLOCK:
  964. vcpu->kvm->arch.wall_clock = data;
  965. kvm_write_wall_clock(vcpu->kvm, data);
  966. break;
  967. case MSR_KVM_SYSTEM_TIME: {
  968. if (vcpu->arch.time_page) {
  969. kvm_release_page_dirty(vcpu->arch.time_page);
  970. vcpu->arch.time_page = NULL;
  971. }
  972. vcpu->arch.time = data;
  973. /* we verify if the enable bit is set... */
  974. if (!(data & 1))
  975. break;
  976. /* ...but clean it before doing the actual write */
  977. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  978. vcpu->arch.time_page =
  979. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  980. if (is_error_page(vcpu->arch.time_page)) {
  981. kvm_release_page_clean(vcpu->arch.time_page);
  982. vcpu->arch.time_page = NULL;
  983. }
  984. kvm_request_guest_time_update(vcpu);
  985. break;
  986. }
  987. case MSR_IA32_MCG_CTL:
  988. case MSR_IA32_MCG_STATUS:
  989. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  990. return set_msr_mce(vcpu, msr, data);
  991. /* Performance counters are not protected by a CPUID bit,
  992. * so we should check all of them in the generic path for the sake of
  993. * cross vendor migration.
  994. * Writing a zero into the event select MSRs disables them,
  995. * which we perfectly emulate ;-). Any other value should be at least
  996. * reported, some guests depend on them.
  997. */
  998. case MSR_P6_EVNTSEL0:
  999. case MSR_P6_EVNTSEL1:
  1000. case MSR_K7_EVNTSEL0:
  1001. case MSR_K7_EVNTSEL1:
  1002. case MSR_K7_EVNTSEL2:
  1003. case MSR_K7_EVNTSEL3:
  1004. if (data != 0)
  1005. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1006. "0x%x data 0x%llx\n", msr, data);
  1007. break;
  1008. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1009. * so we ignore writes to make it happy.
  1010. */
  1011. case MSR_P6_PERFCTR0:
  1012. case MSR_P6_PERFCTR1:
  1013. case MSR_K7_PERFCTR0:
  1014. case MSR_K7_PERFCTR1:
  1015. case MSR_K7_PERFCTR2:
  1016. case MSR_K7_PERFCTR3:
  1017. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1018. "0x%x data 0x%llx\n", msr, data);
  1019. break;
  1020. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1021. if (kvm_hv_msr_partition_wide(msr)) {
  1022. int r;
  1023. mutex_lock(&vcpu->kvm->lock);
  1024. r = set_msr_hyperv_pw(vcpu, msr, data);
  1025. mutex_unlock(&vcpu->kvm->lock);
  1026. return r;
  1027. } else
  1028. return set_msr_hyperv(vcpu, msr, data);
  1029. break;
  1030. default:
  1031. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1032. return xen_hvm_config(vcpu, data);
  1033. if (!ignore_msrs) {
  1034. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1035. msr, data);
  1036. return 1;
  1037. } else {
  1038. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1039. msr, data);
  1040. break;
  1041. }
  1042. }
  1043. return 0;
  1044. }
  1045. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1046. /*
  1047. * Reads an msr value (of 'msr_index') into 'pdata'.
  1048. * Returns 0 on success, non-0 otherwise.
  1049. * Assumes vcpu_load() was already called.
  1050. */
  1051. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1052. {
  1053. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1054. }
  1055. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1056. {
  1057. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1058. if (!msr_mtrr_valid(msr))
  1059. return 1;
  1060. if (msr == MSR_MTRRdefType)
  1061. *pdata = vcpu->arch.mtrr_state.def_type +
  1062. (vcpu->arch.mtrr_state.enabled << 10);
  1063. else if (msr == MSR_MTRRfix64K_00000)
  1064. *pdata = p[0];
  1065. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1066. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1067. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1068. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1069. else if (msr == MSR_IA32_CR_PAT)
  1070. *pdata = vcpu->arch.pat;
  1071. else { /* Variable MTRRs */
  1072. int idx, is_mtrr_mask;
  1073. u64 *pt;
  1074. idx = (msr - 0x200) / 2;
  1075. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1076. if (!is_mtrr_mask)
  1077. pt =
  1078. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1079. else
  1080. pt =
  1081. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1082. *pdata = *pt;
  1083. }
  1084. return 0;
  1085. }
  1086. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1087. {
  1088. u64 data;
  1089. u64 mcg_cap = vcpu->arch.mcg_cap;
  1090. unsigned bank_num = mcg_cap & 0xff;
  1091. switch (msr) {
  1092. case MSR_IA32_P5_MC_ADDR:
  1093. case MSR_IA32_P5_MC_TYPE:
  1094. data = 0;
  1095. break;
  1096. case MSR_IA32_MCG_CAP:
  1097. data = vcpu->arch.mcg_cap;
  1098. break;
  1099. case MSR_IA32_MCG_CTL:
  1100. if (!(mcg_cap & MCG_CTL_P))
  1101. return 1;
  1102. data = vcpu->arch.mcg_ctl;
  1103. break;
  1104. case MSR_IA32_MCG_STATUS:
  1105. data = vcpu->arch.mcg_status;
  1106. break;
  1107. default:
  1108. if (msr >= MSR_IA32_MC0_CTL &&
  1109. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1110. u32 offset = msr - MSR_IA32_MC0_CTL;
  1111. data = vcpu->arch.mce_banks[offset];
  1112. break;
  1113. }
  1114. return 1;
  1115. }
  1116. *pdata = data;
  1117. return 0;
  1118. }
  1119. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1120. {
  1121. u64 data = 0;
  1122. struct kvm *kvm = vcpu->kvm;
  1123. switch (msr) {
  1124. case HV_X64_MSR_GUEST_OS_ID:
  1125. data = kvm->arch.hv_guest_os_id;
  1126. break;
  1127. case HV_X64_MSR_HYPERCALL:
  1128. data = kvm->arch.hv_hypercall;
  1129. break;
  1130. default:
  1131. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1132. return 1;
  1133. }
  1134. *pdata = data;
  1135. return 0;
  1136. }
  1137. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1138. {
  1139. u64 data = 0;
  1140. switch (msr) {
  1141. case HV_X64_MSR_VP_INDEX: {
  1142. int r;
  1143. struct kvm_vcpu *v;
  1144. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1145. if (v == vcpu)
  1146. data = r;
  1147. break;
  1148. }
  1149. case HV_X64_MSR_EOI:
  1150. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1151. case HV_X64_MSR_ICR:
  1152. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1153. case HV_X64_MSR_TPR:
  1154. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1155. default:
  1156. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1157. return 1;
  1158. }
  1159. *pdata = data;
  1160. return 0;
  1161. }
  1162. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1163. {
  1164. u64 data;
  1165. switch (msr) {
  1166. case MSR_IA32_PLATFORM_ID:
  1167. case MSR_IA32_UCODE_REV:
  1168. case MSR_IA32_EBL_CR_POWERON:
  1169. case MSR_IA32_DEBUGCTLMSR:
  1170. case MSR_IA32_LASTBRANCHFROMIP:
  1171. case MSR_IA32_LASTBRANCHTOIP:
  1172. case MSR_IA32_LASTINTFROMIP:
  1173. case MSR_IA32_LASTINTTOIP:
  1174. case MSR_K8_SYSCFG:
  1175. case MSR_K7_HWCR:
  1176. case MSR_VM_HSAVE_PA:
  1177. case MSR_P6_PERFCTR0:
  1178. case MSR_P6_PERFCTR1:
  1179. case MSR_P6_EVNTSEL0:
  1180. case MSR_P6_EVNTSEL1:
  1181. case MSR_K7_EVNTSEL0:
  1182. case MSR_K7_PERFCTR0:
  1183. case MSR_K8_INT_PENDING_MSG:
  1184. case MSR_AMD64_NB_CFG:
  1185. case MSR_FAM10H_MMIO_CONF_BASE:
  1186. data = 0;
  1187. break;
  1188. case MSR_MTRRcap:
  1189. data = 0x500 | KVM_NR_VAR_MTRR;
  1190. break;
  1191. case 0x200 ... 0x2ff:
  1192. return get_msr_mtrr(vcpu, msr, pdata);
  1193. case 0xcd: /* fsb frequency */
  1194. data = 3;
  1195. break;
  1196. case MSR_IA32_APICBASE:
  1197. data = kvm_get_apic_base(vcpu);
  1198. break;
  1199. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1200. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1201. break;
  1202. case MSR_IA32_MISC_ENABLE:
  1203. data = vcpu->arch.ia32_misc_enable_msr;
  1204. break;
  1205. case MSR_IA32_PERF_STATUS:
  1206. /* TSC increment by tick */
  1207. data = 1000ULL;
  1208. /* CPU multiplier */
  1209. data |= (((uint64_t)4ULL) << 40);
  1210. break;
  1211. case MSR_EFER:
  1212. data = vcpu->arch.efer;
  1213. break;
  1214. case MSR_KVM_WALL_CLOCK:
  1215. data = vcpu->kvm->arch.wall_clock;
  1216. break;
  1217. case MSR_KVM_SYSTEM_TIME:
  1218. data = vcpu->arch.time;
  1219. break;
  1220. case MSR_IA32_P5_MC_ADDR:
  1221. case MSR_IA32_P5_MC_TYPE:
  1222. case MSR_IA32_MCG_CAP:
  1223. case MSR_IA32_MCG_CTL:
  1224. case MSR_IA32_MCG_STATUS:
  1225. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1226. return get_msr_mce(vcpu, msr, pdata);
  1227. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1228. if (kvm_hv_msr_partition_wide(msr)) {
  1229. int r;
  1230. mutex_lock(&vcpu->kvm->lock);
  1231. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1232. mutex_unlock(&vcpu->kvm->lock);
  1233. return r;
  1234. } else
  1235. return get_msr_hyperv(vcpu, msr, pdata);
  1236. break;
  1237. default:
  1238. if (!ignore_msrs) {
  1239. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1240. return 1;
  1241. } else {
  1242. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1243. data = 0;
  1244. }
  1245. break;
  1246. }
  1247. *pdata = data;
  1248. return 0;
  1249. }
  1250. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1251. /*
  1252. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1253. *
  1254. * @return number of msrs set successfully.
  1255. */
  1256. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1257. struct kvm_msr_entry *entries,
  1258. int (*do_msr)(struct kvm_vcpu *vcpu,
  1259. unsigned index, u64 *data))
  1260. {
  1261. int i, idx;
  1262. vcpu_load(vcpu);
  1263. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1264. for (i = 0; i < msrs->nmsrs; ++i)
  1265. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1266. break;
  1267. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1268. vcpu_put(vcpu);
  1269. return i;
  1270. }
  1271. /*
  1272. * Read or write a bunch of msrs. Parameters are user addresses.
  1273. *
  1274. * @return number of msrs set successfully.
  1275. */
  1276. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1277. int (*do_msr)(struct kvm_vcpu *vcpu,
  1278. unsigned index, u64 *data),
  1279. int writeback)
  1280. {
  1281. struct kvm_msrs msrs;
  1282. struct kvm_msr_entry *entries;
  1283. int r, n;
  1284. unsigned size;
  1285. r = -EFAULT;
  1286. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1287. goto out;
  1288. r = -E2BIG;
  1289. if (msrs.nmsrs >= MAX_IO_MSRS)
  1290. goto out;
  1291. r = -ENOMEM;
  1292. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1293. entries = vmalloc(size);
  1294. if (!entries)
  1295. goto out;
  1296. r = -EFAULT;
  1297. if (copy_from_user(entries, user_msrs->entries, size))
  1298. goto out_free;
  1299. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1300. if (r < 0)
  1301. goto out_free;
  1302. r = -EFAULT;
  1303. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1304. goto out_free;
  1305. r = n;
  1306. out_free:
  1307. vfree(entries);
  1308. out:
  1309. return r;
  1310. }
  1311. int kvm_dev_ioctl_check_extension(long ext)
  1312. {
  1313. int r;
  1314. switch (ext) {
  1315. case KVM_CAP_IRQCHIP:
  1316. case KVM_CAP_HLT:
  1317. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1318. case KVM_CAP_SET_TSS_ADDR:
  1319. case KVM_CAP_EXT_CPUID:
  1320. case KVM_CAP_CLOCKSOURCE:
  1321. case KVM_CAP_PIT:
  1322. case KVM_CAP_NOP_IO_DELAY:
  1323. case KVM_CAP_MP_STATE:
  1324. case KVM_CAP_SYNC_MMU:
  1325. case KVM_CAP_REINJECT_CONTROL:
  1326. case KVM_CAP_IRQ_INJECT_STATUS:
  1327. case KVM_CAP_ASSIGN_DEV_IRQ:
  1328. case KVM_CAP_IRQFD:
  1329. case KVM_CAP_IOEVENTFD:
  1330. case KVM_CAP_PIT2:
  1331. case KVM_CAP_PIT_STATE2:
  1332. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1333. case KVM_CAP_XEN_HVM:
  1334. case KVM_CAP_ADJUST_CLOCK:
  1335. case KVM_CAP_VCPU_EVENTS:
  1336. case KVM_CAP_HYPERV:
  1337. case KVM_CAP_HYPERV_VAPIC:
  1338. case KVM_CAP_HYPERV_SPIN:
  1339. case KVM_CAP_PCI_SEGMENT:
  1340. case KVM_CAP_DEBUGREGS:
  1341. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1342. r = 1;
  1343. break;
  1344. case KVM_CAP_COALESCED_MMIO:
  1345. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1346. break;
  1347. case KVM_CAP_VAPIC:
  1348. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1349. break;
  1350. case KVM_CAP_NR_VCPUS:
  1351. r = KVM_MAX_VCPUS;
  1352. break;
  1353. case KVM_CAP_NR_MEMSLOTS:
  1354. r = KVM_MEMORY_SLOTS;
  1355. break;
  1356. case KVM_CAP_PV_MMU: /* obsolete */
  1357. r = 0;
  1358. break;
  1359. case KVM_CAP_IOMMU:
  1360. r = iommu_found();
  1361. break;
  1362. case KVM_CAP_MCE:
  1363. r = KVM_MAX_MCE_BANKS;
  1364. break;
  1365. default:
  1366. r = 0;
  1367. break;
  1368. }
  1369. return r;
  1370. }
  1371. long kvm_arch_dev_ioctl(struct file *filp,
  1372. unsigned int ioctl, unsigned long arg)
  1373. {
  1374. void __user *argp = (void __user *)arg;
  1375. long r;
  1376. switch (ioctl) {
  1377. case KVM_GET_MSR_INDEX_LIST: {
  1378. struct kvm_msr_list __user *user_msr_list = argp;
  1379. struct kvm_msr_list msr_list;
  1380. unsigned n;
  1381. r = -EFAULT;
  1382. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1383. goto out;
  1384. n = msr_list.nmsrs;
  1385. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1386. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1387. goto out;
  1388. r = -E2BIG;
  1389. if (n < msr_list.nmsrs)
  1390. goto out;
  1391. r = -EFAULT;
  1392. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1393. num_msrs_to_save * sizeof(u32)))
  1394. goto out;
  1395. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1396. &emulated_msrs,
  1397. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1398. goto out;
  1399. r = 0;
  1400. break;
  1401. }
  1402. case KVM_GET_SUPPORTED_CPUID: {
  1403. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1404. struct kvm_cpuid2 cpuid;
  1405. r = -EFAULT;
  1406. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1407. goto out;
  1408. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1409. cpuid_arg->entries);
  1410. if (r)
  1411. goto out;
  1412. r = -EFAULT;
  1413. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1414. goto out;
  1415. r = 0;
  1416. break;
  1417. }
  1418. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1419. u64 mce_cap;
  1420. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1421. r = -EFAULT;
  1422. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1423. goto out;
  1424. r = 0;
  1425. break;
  1426. }
  1427. default:
  1428. r = -EINVAL;
  1429. }
  1430. out:
  1431. return r;
  1432. }
  1433. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1434. {
  1435. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1436. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1437. unsigned long khz = cpufreq_quick_get(cpu);
  1438. if (!khz)
  1439. khz = tsc_khz;
  1440. per_cpu(cpu_tsc_khz, cpu) = khz;
  1441. }
  1442. kvm_request_guest_time_update(vcpu);
  1443. }
  1444. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1445. {
  1446. kvm_put_guest_fpu(vcpu);
  1447. kvm_x86_ops->vcpu_put(vcpu);
  1448. }
  1449. static int is_efer_nx(void)
  1450. {
  1451. unsigned long long efer = 0;
  1452. rdmsrl_safe(MSR_EFER, &efer);
  1453. return efer & EFER_NX;
  1454. }
  1455. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1456. {
  1457. int i;
  1458. struct kvm_cpuid_entry2 *e, *entry;
  1459. entry = NULL;
  1460. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1461. e = &vcpu->arch.cpuid_entries[i];
  1462. if (e->function == 0x80000001) {
  1463. entry = e;
  1464. break;
  1465. }
  1466. }
  1467. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1468. entry->edx &= ~(1 << 20);
  1469. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1470. }
  1471. }
  1472. /* when an old userspace process fills a new kernel module */
  1473. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1474. struct kvm_cpuid *cpuid,
  1475. struct kvm_cpuid_entry __user *entries)
  1476. {
  1477. int r, i;
  1478. struct kvm_cpuid_entry *cpuid_entries;
  1479. r = -E2BIG;
  1480. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1481. goto out;
  1482. r = -ENOMEM;
  1483. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1484. if (!cpuid_entries)
  1485. goto out;
  1486. r = -EFAULT;
  1487. if (copy_from_user(cpuid_entries, entries,
  1488. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1489. goto out_free;
  1490. for (i = 0; i < cpuid->nent; i++) {
  1491. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1492. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1493. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1494. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1495. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1496. vcpu->arch.cpuid_entries[i].index = 0;
  1497. vcpu->arch.cpuid_entries[i].flags = 0;
  1498. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1499. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1500. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1501. }
  1502. vcpu->arch.cpuid_nent = cpuid->nent;
  1503. cpuid_fix_nx_cap(vcpu);
  1504. r = 0;
  1505. kvm_apic_set_version(vcpu);
  1506. kvm_x86_ops->cpuid_update(vcpu);
  1507. out_free:
  1508. vfree(cpuid_entries);
  1509. out:
  1510. return r;
  1511. }
  1512. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1513. struct kvm_cpuid2 *cpuid,
  1514. struct kvm_cpuid_entry2 __user *entries)
  1515. {
  1516. int r;
  1517. r = -E2BIG;
  1518. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1519. goto out;
  1520. r = -EFAULT;
  1521. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1522. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1523. goto out;
  1524. vcpu->arch.cpuid_nent = cpuid->nent;
  1525. kvm_apic_set_version(vcpu);
  1526. kvm_x86_ops->cpuid_update(vcpu);
  1527. return 0;
  1528. out:
  1529. return r;
  1530. }
  1531. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1532. struct kvm_cpuid2 *cpuid,
  1533. struct kvm_cpuid_entry2 __user *entries)
  1534. {
  1535. int r;
  1536. r = -E2BIG;
  1537. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1538. goto out;
  1539. r = -EFAULT;
  1540. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1541. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1542. goto out;
  1543. return 0;
  1544. out:
  1545. cpuid->nent = vcpu->arch.cpuid_nent;
  1546. return r;
  1547. }
  1548. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1549. u32 index)
  1550. {
  1551. entry->function = function;
  1552. entry->index = index;
  1553. cpuid_count(entry->function, entry->index,
  1554. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1555. entry->flags = 0;
  1556. }
  1557. #define F(x) bit(X86_FEATURE_##x)
  1558. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1559. u32 index, int *nent, int maxnent)
  1560. {
  1561. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1562. #ifdef CONFIG_X86_64
  1563. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1564. ? F(GBPAGES) : 0;
  1565. unsigned f_lm = F(LM);
  1566. #else
  1567. unsigned f_gbpages = 0;
  1568. unsigned f_lm = 0;
  1569. #endif
  1570. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1571. /* cpuid 1.edx */
  1572. const u32 kvm_supported_word0_x86_features =
  1573. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1574. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1575. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1576. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1577. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1578. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1579. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1580. 0 /* HTT, TM, Reserved, PBE */;
  1581. /* cpuid 0x80000001.edx */
  1582. const u32 kvm_supported_word1_x86_features =
  1583. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1584. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1585. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1586. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1587. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1588. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1589. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1590. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1591. /* cpuid 1.ecx */
  1592. const u32 kvm_supported_word4_x86_features =
  1593. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1594. 0 /* DS-CPL, VMX, SMX, EST */ |
  1595. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1596. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1597. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1598. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1599. 0 /* Reserved, XSAVE, OSXSAVE */;
  1600. /* cpuid 0x80000001.ecx */
  1601. const u32 kvm_supported_word6_x86_features =
  1602. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1603. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1604. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1605. 0 /* SKINIT */ | 0 /* WDT */;
  1606. /* all calls to cpuid_count() should be made on the same cpu */
  1607. get_cpu();
  1608. do_cpuid_1_ent(entry, function, index);
  1609. ++*nent;
  1610. switch (function) {
  1611. case 0:
  1612. entry->eax = min(entry->eax, (u32)0xb);
  1613. break;
  1614. case 1:
  1615. entry->edx &= kvm_supported_word0_x86_features;
  1616. entry->ecx &= kvm_supported_word4_x86_features;
  1617. /* we support x2apic emulation even if host does not support
  1618. * it since we emulate x2apic in software */
  1619. entry->ecx |= F(X2APIC);
  1620. break;
  1621. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1622. * may return different values. This forces us to get_cpu() before
  1623. * issuing the first command, and also to emulate this annoying behavior
  1624. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1625. case 2: {
  1626. int t, times = entry->eax & 0xff;
  1627. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1628. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1629. for (t = 1; t < times && *nent < maxnent; ++t) {
  1630. do_cpuid_1_ent(&entry[t], function, 0);
  1631. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1632. ++*nent;
  1633. }
  1634. break;
  1635. }
  1636. /* function 4 and 0xb have additional index. */
  1637. case 4: {
  1638. int i, cache_type;
  1639. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1640. /* read more entries until cache_type is zero */
  1641. for (i = 1; *nent < maxnent; ++i) {
  1642. cache_type = entry[i - 1].eax & 0x1f;
  1643. if (!cache_type)
  1644. break;
  1645. do_cpuid_1_ent(&entry[i], function, i);
  1646. entry[i].flags |=
  1647. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1648. ++*nent;
  1649. }
  1650. break;
  1651. }
  1652. case 0xb: {
  1653. int i, level_type;
  1654. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1655. /* read more entries until level_type is zero */
  1656. for (i = 1; *nent < maxnent; ++i) {
  1657. level_type = entry[i - 1].ecx & 0xff00;
  1658. if (!level_type)
  1659. break;
  1660. do_cpuid_1_ent(&entry[i], function, i);
  1661. entry[i].flags |=
  1662. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1663. ++*nent;
  1664. }
  1665. break;
  1666. }
  1667. case 0x80000000:
  1668. entry->eax = min(entry->eax, 0x8000001a);
  1669. break;
  1670. case 0x80000001:
  1671. entry->edx &= kvm_supported_word1_x86_features;
  1672. entry->ecx &= kvm_supported_word6_x86_features;
  1673. break;
  1674. }
  1675. put_cpu();
  1676. }
  1677. #undef F
  1678. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1679. struct kvm_cpuid_entry2 __user *entries)
  1680. {
  1681. struct kvm_cpuid_entry2 *cpuid_entries;
  1682. int limit, nent = 0, r = -E2BIG;
  1683. u32 func;
  1684. if (cpuid->nent < 1)
  1685. goto out;
  1686. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1687. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1688. r = -ENOMEM;
  1689. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1690. if (!cpuid_entries)
  1691. goto out;
  1692. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1693. limit = cpuid_entries[0].eax;
  1694. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1695. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1696. &nent, cpuid->nent);
  1697. r = -E2BIG;
  1698. if (nent >= cpuid->nent)
  1699. goto out_free;
  1700. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1701. limit = cpuid_entries[nent - 1].eax;
  1702. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1703. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1704. &nent, cpuid->nent);
  1705. r = -E2BIG;
  1706. if (nent >= cpuid->nent)
  1707. goto out_free;
  1708. r = -EFAULT;
  1709. if (copy_to_user(entries, cpuid_entries,
  1710. nent * sizeof(struct kvm_cpuid_entry2)))
  1711. goto out_free;
  1712. cpuid->nent = nent;
  1713. r = 0;
  1714. out_free:
  1715. vfree(cpuid_entries);
  1716. out:
  1717. return r;
  1718. }
  1719. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1720. struct kvm_lapic_state *s)
  1721. {
  1722. vcpu_load(vcpu);
  1723. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1724. vcpu_put(vcpu);
  1725. return 0;
  1726. }
  1727. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1728. struct kvm_lapic_state *s)
  1729. {
  1730. vcpu_load(vcpu);
  1731. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1732. kvm_apic_post_state_restore(vcpu);
  1733. update_cr8_intercept(vcpu);
  1734. vcpu_put(vcpu);
  1735. return 0;
  1736. }
  1737. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1738. struct kvm_interrupt *irq)
  1739. {
  1740. if (irq->irq < 0 || irq->irq >= 256)
  1741. return -EINVAL;
  1742. if (irqchip_in_kernel(vcpu->kvm))
  1743. return -ENXIO;
  1744. vcpu_load(vcpu);
  1745. kvm_queue_interrupt(vcpu, irq->irq, false);
  1746. vcpu_put(vcpu);
  1747. return 0;
  1748. }
  1749. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1750. {
  1751. vcpu_load(vcpu);
  1752. kvm_inject_nmi(vcpu);
  1753. vcpu_put(vcpu);
  1754. return 0;
  1755. }
  1756. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1757. struct kvm_tpr_access_ctl *tac)
  1758. {
  1759. if (tac->flags)
  1760. return -EINVAL;
  1761. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1762. return 0;
  1763. }
  1764. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1765. u64 mcg_cap)
  1766. {
  1767. int r;
  1768. unsigned bank_num = mcg_cap & 0xff, bank;
  1769. r = -EINVAL;
  1770. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1771. goto out;
  1772. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1773. goto out;
  1774. r = 0;
  1775. vcpu->arch.mcg_cap = mcg_cap;
  1776. /* Init IA32_MCG_CTL to all 1s */
  1777. if (mcg_cap & MCG_CTL_P)
  1778. vcpu->arch.mcg_ctl = ~(u64)0;
  1779. /* Init IA32_MCi_CTL to all 1s */
  1780. for (bank = 0; bank < bank_num; bank++)
  1781. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1782. out:
  1783. return r;
  1784. }
  1785. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1786. struct kvm_x86_mce *mce)
  1787. {
  1788. u64 mcg_cap = vcpu->arch.mcg_cap;
  1789. unsigned bank_num = mcg_cap & 0xff;
  1790. u64 *banks = vcpu->arch.mce_banks;
  1791. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1792. return -EINVAL;
  1793. /*
  1794. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1795. * reporting is disabled
  1796. */
  1797. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1798. vcpu->arch.mcg_ctl != ~(u64)0)
  1799. return 0;
  1800. banks += 4 * mce->bank;
  1801. /*
  1802. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1803. * reporting is disabled for the bank
  1804. */
  1805. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1806. return 0;
  1807. if (mce->status & MCI_STATUS_UC) {
  1808. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1809. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  1810. printk(KERN_DEBUG "kvm: set_mce: "
  1811. "injects mce exception while "
  1812. "previous one is in progress!\n");
  1813. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1814. return 0;
  1815. }
  1816. if (banks[1] & MCI_STATUS_VAL)
  1817. mce->status |= MCI_STATUS_OVER;
  1818. banks[2] = mce->addr;
  1819. banks[3] = mce->misc;
  1820. vcpu->arch.mcg_status = mce->mcg_status;
  1821. banks[1] = mce->status;
  1822. kvm_queue_exception(vcpu, MC_VECTOR);
  1823. } else if (!(banks[1] & MCI_STATUS_VAL)
  1824. || !(banks[1] & MCI_STATUS_UC)) {
  1825. if (banks[1] & MCI_STATUS_VAL)
  1826. mce->status |= MCI_STATUS_OVER;
  1827. banks[2] = mce->addr;
  1828. banks[3] = mce->misc;
  1829. banks[1] = mce->status;
  1830. } else
  1831. banks[1] |= MCI_STATUS_OVER;
  1832. return 0;
  1833. }
  1834. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1835. struct kvm_vcpu_events *events)
  1836. {
  1837. vcpu_load(vcpu);
  1838. events->exception.injected =
  1839. vcpu->arch.exception.pending &&
  1840. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  1841. events->exception.nr = vcpu->arch.exception.nr;
  1842. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1843. events->exception.error_code = vcpu->arch.exception.error_code;
  1844. events->interrupt.injected =
  1845. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  1846. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1847. events->interrupt.soft = 0;
  1848. events->interrupt.shadow =
  1849. kvm_x86_ops->get_interrupt_shadow(vcpu,
  1850. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  1851. events->nmi.injected = vcpu->arch.nmi_injected;
  1852. events->nmi.pending = vcpu->arch.nmi_pending;
  1853. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1854. events->sipi_vector = vcpu->arch.sipi_vector;
  1855. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  1856. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  1857. | KVM_VCPUEVENT_VALID_SHADOW);
  1858. vcpu_put(vcpu);
  1859. }
  1860. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1861. struct kvm_vcpu_events *events)
  1862. {
  1863. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  1864. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  1865. | KVM_VCPUEVENT_VALID_SHADOW))
  1866. return -EINVAL;
  1867. vcpu_load(vcpu);
  1868. vcpu->arch.exception.pending = events->exception.injected;
  1869. vcpu->arch.exception.nr = events->exception.nr;
  1870. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1871. vcpu->arch.exception.error_code = events->exception.error_code;
  1872. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1873. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1874. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1875. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1876. kvm_pic_clear_isr_ack(vcpu->kvm);
  1877. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  1878. kvm_x86_ops->set_interrupt_shadow(vcpu,
  1879. events->interrupt.shadow);
  1880. vcpu->arch.nmi_injected = events->nmi.injected;
  1881. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  1882. vcpu->arch.nmi_pending = events->nmi.pending;
  1883. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1884. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  1885. vcpu->arch.sipi_vector = events->sipi_vector;
  1886. vcpu_put(vcpu);
  1887. return 0;
  1888. }
  1889. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  1890. struct kvm_debugregs *dbgregs)
  1891. {
  1892. vcpu_load(vcpu);
  1893. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  1894. dbgregs->dr6 = vcpu->arch.dr6;
  1895. dbgregs->dr7 = vcpu->arch.dr7;
  1896. dbgregs->flags = 0;
  1897. vcpu_put(vcpu);
  1898. }
  1899. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  1900. struct kvm_debugregs *dbgregs)
  1901. {
  1902. if (dbgregs->flags)
  1903. return -EINVAL;
  1904. vcpu_load(vcpu);
  1905. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  1906. vcpu->arch.dr6 = dbgregs->dr6;
  1907. vcpu->arch.dr7 = dbgregs->dr7;
  1908. vcpu_put(vcpu);
  1909. return 0;
  1910. }
  1911. long kvm_arch_vcpu_ioctl(struct file *filp,
  1912. unsigned int ioctl, unsigned long arg)
  1913. {
  1914. struct kvm_vcpu *vcpu = filp->private_data;
  1915. void __user *argp = (void __user *)arg;
  1916. int r;
  1917. struct kvm_lapic_state *lapic = NULL;
  1918. switch (ioctl) {
  1919. case KVM_GET_LAPIC: {
  1920. r = -EINVAL;
  1921. if (!vcpu->arch.apic)
  1922. goto out;
  1923. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1924. r = -ENOMEM;
  1925. if (!lapic)
  1926. goto out;
  1927. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1928. if (r)
  1929. goto out;
  1930. r = -EFAULT;
  1931. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1932. goto out;
  1933. r = 0;
  1934. break;
  1935. }
  1936. case KVM_SET_LAPIC: {
  1937. r = -EINVAL;
  1938. if (!vcpu->arch.apic)
  1939. goto out;
  1940. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1941. r = -ENOMEM;
  1942. if (!lapic)
  1943. goto out;
  1944. r = -EFAULT;
  1945. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1946. goto out;
  1947. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1948. if (r)
  1949. goto out;
  1950. r = 0;
  1951. break;
  1952. }
  1953. case KVM_INTERRUPT: {
  1954. struct kvm_interrupt irq;
  1955. r = -EFAULT;
  1956. if (copy_from_user(&irq, argp, sizeof irq))
  1957. goto out;
  1958. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1959. if (r)
  1960. goto out;
  1961. r = 0;
  1962. break;
  1963. }
  1964. case KVM_NMI: {
  1965. r = kvm_vcpu_ioctl_nmi(vcpu);
  1966. if (r)
  1967. goto out;
  1968. r = 0;
  1969. break;
  1970. }
  1971. case KVM_SET_CPUID: {
  1972. struct kvm_cpuid __user *cpuid_arg = argp;
  1973. struct kvm_cpuid cpuid;
  1974. r = -EFAULT;
  1975. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1976. goto out;
  1977. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1978. if (r)
  1979. goto out;
  1980. break;
  1981. }
  1982. case KVM_SET_CPUID2: {
  1983. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1984. struct kvm_cpuid2 cpuid;
  1985. r = -EFAULT;
  1986. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1987. goto out;
  1988. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1989. cpuid_arg->entries);
  1990. if (r)
  1991. goto out;
  1992. break;
  1993. }
  1994. case KVM_GET_CPUID2: {
  1995. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1996. struct kvm_cpuid2 cpuid;
  1997. r = -EFAULT;
  1998. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1999. goto out;
  2000. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2001. cpuid_arg->entries);
  2002. if (r)
  2003. goto out;
  2004. r = -EFAULT;
  2005. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2006. goto out;
  2007. r = 0;
  2008. break;
  2009. }
  2010. case KVM_GET_MSRS:
  2011. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2012. break;
  2013. case KVM_SET_MSRS:
  2014. r = msr_io(vcpu, argp, do_set_msr, 0);
  2015. break;
  2016. case KVM_TPR_ACCESS_REPORTING: {
  2017. struct kvm_tpr_access_ctl tac;
  2018. r = -EFAULT;
  2019. if (copy_from_user(&tac, argp, sizeof tac))
  2020. goto out;
  2021. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2022. if (r)
  2023. goto out;
  2024. r = -EFAULT;
  2025. if (copy_to_user(argp, &tac, sizeof tac))
  2026. goto out;
  2027. r = 0;
  2028. break;
  2029. };
  2030. case KVM_SET_VAPIC_ADDR: {
  2031. struct kvm_vapic_addr va;
  2032. r = -EINVAL;
  2033. if (!irqchip_in_kernel(vcpu->kvm))
  2034. goto out;
  2035. r = -EFAULT;
  2036. if (copy_from_user(&va, argp, sizeof va))
  2037. goto out;
  2038. r = 0;
  2039. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2040. break;
  2041. }
  2042. case KVM_X86_SETUP_MCE: {
  2043. u64 mcg_cap;
  2044. r = -EFAULT;
  2045. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2046. goto out;
  2047. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2048. break;
  2049. }
  2050. case KVM_X86_SET_MCE: {
  2051. struct kvm_x86_mce mce;
  2052. r = -EFAULT;
  2053. if (copy_from_user(&mce, argp, sizeof mce))
  2054. goto out;
  2055. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2056. break;
  2057. }
  2058. case KVM_GET_VCPU_EVENTS: {
  2059. struct kvm_vcpu_events events;
  2060. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2061. r = -EFAULT;
  2062. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2063. break;
  2064. r = 0;
  2065. break;
  2066. }
  2067. case KVM_SET_VCPU_EVENTS: {
  2068. struct kvm_vcpu_events events;
  2069. r = -EFAULT;
  2070. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2071. break;
  2072. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2073. break;
  2074. }
  2075. case KVM_GET_DEBUGREGS: {
  2076. struct kvm_debugregs dbgregs;
  2077. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2078. r = -EFAULT;
  2079. if (copy_to_user(argp, &dbgregs,
  2080. sizeof(struct kvm_debugregs)))
  2081. break;
  2082. r = 0;
  2083. break;
  2084. }
  2085. case KVM_SET_DEBUGREGS: {
  2086. struct kvm_debugregs dbgregs;
  2087. r = -EFAULT;
  2088. if (copy_from_user(&dbgregs, argp,
  2089. sizeof(struct kvm_debugregs)))
  2090. break;
  2091. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2092. break;
  2093. }
  2094. default:
  2095. r = -EINVAL;
  2096. }
  2097. out:
  2098. kfree(lapic);
  2099. return r;
  2100. }
  2101. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2102. {
  2103. int ret;
  2104. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2105. return -1;
  2106. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2107. return ret;
  2108. }
  2109. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2110. u64 ident_addr)
  2111. {
  2112. kvm->arch.ept_identity_map_addr = ident_addr;
  2113. return 0;
  2114. }
  2115. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2116. u32 kvm_nr_mmu_pages)
  2117. {
  2118. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2119. return -EINVAL;
  2120. mutex_lock(&kvm->slots_lock);
  2121. spin_lock(&kvm->mmu_lock);
  2122. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2123. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2124. spin_unlock(&kvm->mmu_lock);
  2125. mutex_unlock(&kvm->slots_lock);
  2126. return 0;
  2127. }
  2128. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2129. {
  2130. return kvm->arch.n_alloc_mmu_pages;
  2131. }
  2132. gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
  2133. {
  2134. int i;
  2135. struct kvm_mem_alias *alias;
  2136. struct kvm_mem_aliases *aliases;
  2137. aliases = rcu_dereference(kvm->arch.aliases);
  2138. for (i = 0; i < aliases->naliases; ++i) {
  2139. alias = &aliases->aliases[i];
  2140. if (alias->flags & KVM_ALIAS_INVALID)
  2141. continue;
  2142. if (gfn >= alias->base_gfn
  2143. && gfn < alias->base_gfn + alias->npages)
  2144. return alias->target_gfn + gfn - alias->base_gfn;
  2145. }
  2146. return gfn;
  2147. }
  2148. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  2149. {
  2150. int i;
  2151. struct kvm_mem_alias *alias;
  2152. struct kvm_mem_aliases *aliases;
  2153. aliases = rcu_dereference(kvm->arch.aliases);
  2154. for (i = 0; i < aliases->naliases; ++i) {
  2155. alias = &aliases->aliases[i];
  2156. if (gfn >= alias->base_gfn
  2157. && gfn < alias->base_gfn + alias->npages)
  2158. return alias->target_gfn + gfn - alias->base_gfn;
  2159. }
  2160. return gfn;
  2161. }
  2162. /*
  2163. * Set a new alias region. Aliases map a portion of physical memory into
  2164. * another portion. This is useful for memory windows, for example the PC
  2165. * VGA region.
  2166. */
  2167. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  2168. struct kvm_memory_alias *alias)
  2169. {
  2170. int r, n;
  2171. struct kvm_mem_alias *p;
  2172. struct kvm_mem_aliases *aliases, *old_aliases;
  2173. r = -EINVAL;
  2174. /* General sanity checks */
  2175. if (alias->memory_size & (PAGE_SIZE - 1))
  2176. goto out;
  2177. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  2178. goto out;
  2179. if (alias->slot >= KVM_ALIAS_SLOTS)
  2180. goto out;
  2181. if (alias->guest_phys_addr + alias->memory_size
  2182. < alias->guest_phys_addr)
  2183. goto out;
  2184. if (alias->target_phys_addr + alias->memory_size
  2185. < alias->target_phys_addr)
  2186. goto out;
  2187. r = -ENOMEM;
  2188. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2189. if (!aliases)
  2190. goto out;
  2191. mutex_lock(&kvm->slots_lock);
  2192. /* invalidate any gfn reference in case of deletion/shrinking */
  2193. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2194. aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
  2195. old_aliases = kvm->arch.aliases;
  2196. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2197. synchronize_srcu_expedited(&kvm->srcu);
  2198. kvm_mmu_zap_all(kvm);
  2199. kfree(old_aliases);
  2200. r = -ENOMEM;
  2201. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2202. if (!aliases)
  2203. goto out_unlock;
  2204. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2205. p = &aliases->aliases[alias->slot];
  2206. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  2207. p->npages = alias->memory_size >> PAGE_SHIFT;
  2208. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  2209. p->flags &= ~(KVM_ALIAS_INVALID);
  2210. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  2211. if (aliases->aliases[n - 1].npages)
  2212. break;
  2213. aliases->naliases = n;
  2214. old_aliases = kvm->arch.aliases;
  2215. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2216. synchronize_srcu_expedited(&kvm->srcu);
  2217. kfree(old_aliases);
  2218. r = 0;
  2219. out_unlock:
  2220. mutex_unlock(&kvm->slots_lock);
  2221. out:
  2222. return r;
  2223. }
  2224. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2225. {
  2226. int r;
  2227. r = 0;
  2228. switch (chip->chip_id) {
  2229. case KVM_IRQCHIP_PIC_MASTER:
  2230. memcpy(&chip->chip.pic,
  2231. &pic_irqchip(kvm)->pics[0],
  2232. sizeof(struct kvm_pic_state));
  2233. break;
  2234. case KVM_IRQCHIP_PIC_SLAVE:
  2235. memcpy(&chip->chip.pic,
  2236. &pic_irqchip(kvm)->pics[1],
  2237. sizeof(struct kvm_pic_state));
  2238. break;
  2239. case KVM_IRQCHIP_IOAPIC:
  2240. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2241. break;
  2242. default:
  2243. r = -EINVAL;
  2244. break;
  2245. }
  2246. return r;
  2247. }
  2248. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2249. {
  2250. int r;
  2251. r = 0;
  2252. switch (chip->chip_id) {
  2253. case KVM_IRQCHIP_PIC_MASTER:
  2254. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2255. memcpy(&pic_irqchip(kvm)->pics[0],
  2256. &chip->chip.pic,
  2257. sizeof(struct kvm_pic_state));
  2258. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2259. break;
  2260. case KVM_IRQCHIP_PIC_SLAVE:
  2261. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2262. memcpy(&pic_irqchip(kvm)->pics[1],
  2263. &chip->chip.pic,
  2264. sizeof(struct kvm_pic_state));
  2265. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2266. break;
  2267. case KVM_IRQCHIP_IOAPIC:
  2268. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2269. break;
  2270. default:
  2271. r = -EINVAL;
  2272. break;
  2273. }
  2274. kvm_pic_update_irq(pic_irqchip(kvm));
  2275. return r;
  2276. }
  2277. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2278. {
  2279. int r = 0;
  2280. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2281. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2282. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2283. return r;
  2284. }
  2285. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2286. {
  2287. int r = 0;
  2288. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2289. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2290. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2291. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2292. return r;
  2293. }
  2294. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2295. {
  2296. int r = 0;
  2297. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2298. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2299. sizeof(ps->channels));
  2300. ps->flags = kvm->arch.vpit->pit_state.flags;
  2301. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2302. return r;
  2303. }
  2304. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2305. {
  2306. int r = 0, start = 0;
  2307. u32 prev_legacy, cur_legacy;
  2308. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2309. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2310. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2311. if (!prev_legacy && cur_legacy)
  2312. start = 1;
  2313. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2314. sizeof(kvm->arch.vpit->pit_state.channels));
  2315. kvm->arch.vpit->pit_state.flags = ps->flags;
  2316. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2317. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2318. return r;
  2319. }
  2320. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2321. struct kvm_reinject_control *control)
  2322. {
  2323. if (!kvm->arch.vpit)
  2324. return -ENXIO;
  2325. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2326. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2327. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2328. return 0;
  2329. }
  2330. /*
  2331. * Get (and clear) the dirty memory log for a memory slot.
  2332. */
  2333. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2334. struct kvm_dirty_log *log)
  2335. {
  2336. int r, i;
  2337. struct kvm_memory_slot *memslot;
  2338. unsigned long n;
  2339. unsigned long is_dirty = 0;
  2340. unsigned long *dirty_bitmap = NULL;
  2341. mutex_lock(&kvm->slots_lock);
  2342. r = -EINVAL;
  2343. if (log->slot >= KVM_MEMORY_SLOTS)
  2344. goto out;
  2345. memslot = &kvm->memslots->memslots[log->slot];
  2346. r = -ENOENT;
  2347. if (!memslot->dirty_bitmap)
  2348. goto out;
  2349. n = kvm_dirty_bitmap_bytes(memslot);
  2350. r = -ENOMEM;
  2351. dirty_bitmap = vmalloc(n);
  2352. if (!dirty_bitmap)
  2353. goto out;
  2354. memset(dirty_bitmap, 0, n);
  2355. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2356. is_dirty = memslot->dirty_bitmap[i];
  2357. /* If nothing is dirty, don't bother messing with page tables. */
  2358. if (is_dirty) {
  2359. struct kvm_memslots *slots, *old_slots;
  2360. spin_lock(&kvm->mmu_lock);
  2361. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2362. spin_unlock(&kvm->mmu_lock);
  2363. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2364. if (!slots)
  2365. goto out_free;
  2366. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2367. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2368. old_slots = kvm->memslots;
  2369. rcu_assign_pointer(kvm->memslots, slots);
  2370. synchronize_srcu_expedited(&kvm->srcu);
  2371. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2372. kfree(old_slots);
  2373. }
  2374. r = 0;
  2375. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2376. r = -EFAULT;
  2377. out_free:
  2378. vfree(dirty_bitmap);
  2379. out:
  2380. mutex_unlock(&kvm->slots_lock);
  2381. return r;
  2382. }
  2383. long kvm_arch_vm_ioctl(struct file *filp,
  2384. unsigned int ioctl, unsigned long arg)
  2385. {
  2386. struct kvm *kvm = filp->private_data;
  2387. void __user *argp = (void __user *)arg;
  2388. int r = -ENOTTY;
  2389. /*
  2390. * This union makes it completely explicit to gcc-3.x
  2391. * that these two variables' stack usage should be
  2392. * combined, not added together.
  2393. */
  2394. union {
  2395. struct kvm_pit_state ps;
  2396. struct kvm_pit_state2 ps2;
  2397. struct kvm_memory_alias alias;
  2398. struct kvm_pit_config pit_config;
  2399. } u;
  2400. switch (ioctl) {
  2401. case KVM_SET_TSS_ADDR:
  2402. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2403. if (r < 0)
  2404. goto out;
  2405. break;
  2406. case KVM_SET_IDENTITY_MAP_ADDR: {
  2407. u64 ident_addr;
  2408. r = -EFAULT;
  2409. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2410. goto out;
  2411. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2412. if (r < 0)
  2413. goto out;
  2414. break;
  2415. }
  2416. case KVM_SET_MEMORY_REGION: {
  2417. struct kvm_memory_region kvm_mem;
  2418. struct kvm_userspace_memory_region kvm_userspace_mem;
  2419. r = -EFAULT;
  2420. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2421. goto out;
  2422. kvm_userspace_mem.slot = kvm_mem.slot;
  2423. kvm_userspace_mem.flags = kvm_mem.flags;
  2424. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2425. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2426. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2427. if (r)
  2428. goto out;
  2429. break;
  2430. }
  2431. case KVM_SET_NR_MMU_PAGES:
  2432. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2433. if (r)
  2434. goto out;
  2435. break;
  2436. case KVM_GET_NR_MMU_PAGES:
  2437. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2438. break;
  2439. case KVM_SET_MEMORY_ALIAS:
  2440. r = -EFAULT;
  2441. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2442. goto out;
  2443. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2444. if (r)
  2445. goto out;
  2446. break;
  2447. case KVM_CREATE_IRQCHIP: {
  2448. struct kvm_pic *vpic;
  2449. mutex_lock(&kvm->lock);
  2450. r = -EEXIST;
  2451. if (kvm->arch.vpic)
  2452. goto create_irqchip_unlock;
  2453. r = -ENOMEM;
  2454. vpic = kvm_create_pic(kvm);
  2455. if (vpic) {
  2456. r = kvm_ioapic_init(kvm);
  2457. if (r) {
  2458. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2459. &vpic->dev);
  2460. kfree(vpic);
  2461. goto create_irqchip_unlock;
  2462. }
  2463. } else
  2464. goto create_irqchip_unlock;
  2465. smp_wmb();
  2466. kvm->arch.vpic = vpic;
  2467. smp_wmb();
  2468. r = kvm_setup_default_irq_routing(kvm);
  2469. if (r) {
  2470. mutex_lock(&kvm->irq_lock);
  2471. kvm_ioapic_destroy(kvm);
  2472. kvm_destroy_pic(kvm);
  2473. mutex_unlock(&kvm->irq_lock);
  2474. }
  2475. create_irqchip_unlock:
  2476. mutex_unlock(&kvm->lock);
  2477. break;
  2478. }
  2479. case KVM_CREATE_PIT:
  2480. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2481. goto create_pit;
  2482. case KVM_CREATE_PIT2:
  2483. r = -EFAULT;
  2484. if (copy_from_user(&u.pit_config, argp,
  2485. sizeof(struct kvm_pit_config)))
  2486. goto out;
  2487. create_pit:
  2488. mutex_lock(&kvm->slots_lock);
  2489. r = -EEXIST;
  2490. if (kvm->arch.vpit)
  2491. goto create_pit_unlock;
  2492. r = -ENOMEM;
  2493. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2494. if (kvm->arch.vpit)
  2495. r = 0;
  2496. create_pit_unlock:
  2497. mutex_unlock(&kvm->slots_lock);
  2498. break;
  2499. case KVM_IRQ_LINE_STATUS:
  2500. case KVM_IRQ_LINE: {
  2501. struct kvm_irq_level irq_event;
  2502. r = -EFAULT;
  2503. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2504. goto out;
  2505. r = -ENXIO;
  2506. if (irqchip_in_kernel(kvm)) {
  2507. __s32 status;
  2508. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2509. irq_event.irq, irq_event.level);
  2510. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2511. r = -EFAULT;
  2512. irq_event.status = status;
  2513. if (copy_to_user(argp, &irq_event,
  2514. sizeof irq_event))
  2515. goto out;
  2516. }
  2517. r = 0;
  2518. }
  2519. break;
  2520. }
  2521. case KVM_GET_IRQCHIP: {
  2522. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2523. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2524. r = -ENOMEM;
  2525. if (!chip)
  2526. goto out;
  2527. r = -EFAULT;
  2528. if (copy_from_user(chip, argp, sizeof *chip))
  2529. goto get_irqchip_out;
  2530. r = -ENXIO;
  2531. if (!irqchip_in_kernel(kvm))
  2532. goto get_irqchip_out;
  2533. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2534. if (r)
  2535. goto get_irqchip_out;
  2536. r = -EFAULT;
  2537. if (copy_to_user(argp, chip, sizeof *chip))
  2538. goto get_irqchip_out;
  2539. r = 0;
  2540. get_irqchip_out:
  2541. kfree(chip);
  2542. if (r)
  2543. goto out;
  2544. break;
  2545. }
  2546. case KVM_SET_IRQCHIP: {
  2547. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2548. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2549. r = -ENOMEM;
  2550. if (!chip)
  2551. goto out;
  2552. r = -EFAULT;
  2553. if (copy_from_user(chip, argp, sizeof *chip))
  2554. goto set_irqchip_out;
  2555. r = -ENXIO;
  2556. if (!irqchip_in_kernel(kvm))
  2557. goto set_irqchip_out;
  2558. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2559. if (r)
  2560. goto set_irqchip_out;
  2561. r = 0;
  2562. set_irqchip_out:
  2563. kfree(chip);
  2564. if (r)
  2565. goto out;
  2566. break;
  2567. }
  2568. case KVM_GET_PIT: {
  2569. r = -EFAULT;
  2570. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2571. goto out;
  2572. r = -ENXIO;
  2573. if (!kvm->arch.vpit)
  2574. goto out;
  2575. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2576. if (r)
  2577. goto out;
  2578. r = -EFAULT;
  2579. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2580. goto out;
  2581. r = 0;
  2582. break;
  2583. }
  2584. case KVM_SET_PIT: {
  2585. r = -EFAULT;
  2586. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2587. goto out;
  2588. r = -ENXIO;
  2589. if (!kvm->arch.vpit)
  2590. goto out;
  2591. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2592. if (r)
  2593. goto out;
  2594. r = 0;
  2595. break;
  2596. }
  2597. case KVM_GET_PIT2: {
  2598. r = -ENXIO;
  2599. if (!kvm->arch.vpit)
  2600. goto out;
  2601. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2602. if (r)
  2603. goto out;
  2604. r = -EFAULT;
  2605. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2606. goto out;
  2607. r = 0;
  2608. break;
  2609. }
  2610. case KVM_SET_PIT2: {
  2611. r = -EFAULT;
  2612. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2613. goto out;
  2614. r = -ENXIO;
  2615. if (!kvm->arch.vpit)
  2616. goto out;
  2617. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2618. if (r)
  2619. goto out;
  2620. r = 0;
  2621. break;
  2622. }
  2623. case KVM_REINJECT_CONTROL: {
  2624. struct kvm_reinject_control control;
  2625. r = -EFAULT;
  2626. if (copy_from_user(&control, argp, sizeof(control)))
  2627. goto out;
  2628. r = kvm_vm_ioctl_reinject(kvm, &control);
  2629. if (r)
  2630. goto out;
  2631. r = 0;
  2632. break;
  2633. }
  2634. case KVM_XEN_HVM_CONFIG: {
  2635. r = -EFAULT;
  2636. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2637. sizeof(struct kvm_xen_hvm_config)))
  2638. goto out;
  2639. r = -EINVAL;
  2640. if (kvm->arch.xen_hvm_config.flags)
  2641. goto out;
  2642. r = 0;
  2643. break;
  2644. }
  2645. case KVM_SET_CLOCK: {
  2646. struct timespec now;
  2647. struct kvm_clock_data user_ns;
  2648. u64 now_ns;
  2649. s64 delta;
  2650. r = -EFAULT;
  2651. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2652. goto out;
  2653. r = -EINVAL;
  2654. if (user_ns.flags)
  2655. goto out;
  2656. r = 0;
  2657. ktime_get_ts(&now);
  2658. now_ns = timespec_to_ns(&now);
  2659. delta = user_ns.clock - now_ns;
  2660. kvm->arch.kvmclock_offset = delta;
  2661. break;
  2662. }
  2663. case KVM_GET_CLOCK: {
  2664. struct timespec now;
  2665. struct kvm_clock_data user_ns;
  2666. u64 now_ns;
  2667. ktime_get_ts(&now);
  2668. now_ns = timespec_to_ns(&now);
  2669. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2670. user_ns.flags = 0;
  2671. r = -EFAULT;
  2672. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2673. goto out;
  2674. r = 0;
  2675. break;
  2676. }
  2677. default:
  2678. ;
  2679. }
  2680. out:
  2681. return r;
  2682. }
  2683. static void kvm_init_msr_list(void)
  2684. {
  2685. u32 dummy[2];
  2686. unsigned i, j;
  2687. /* skip the first msrs in the list. KVM-specific */
  2688. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2689. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2690. continue;
  2691. if (j < i)
  2692. msrs_to_save[j] = msrs_to_save[i];
  2693. j++;
  2694. }
  2695. num_msrs_to_save = j;
  2696. }
  2697. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2698. const void *v)
  2699. {
  2700. if (vcpu->arch.apic &&
  2701. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2702. return 0;
  2703. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2704. }
  2705. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2706. {
  2707. if (vcpu->arch.apic &&
  2708. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2709. return 0;
  2710. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2711. }
  2712. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2713. {
  2714. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2715. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2716. }
  2717. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2718. {
  2719. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2720. access |= PFERR_FETCH_MASK;
  2721. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2722. }
  2723. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2724. {
  2725. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2726. access |= PFERR_WRITE_MASK;
  2727. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2728. }
  2729. /* uses this to access any guest's mapped memory without checking CPL */
  2730. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2731. {
  2732. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  2733. }
  2734. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  2735. struct kvm_vcpu *vcpu, u32 access,
  2736. u32 *error)
  2737. {
  2738. void *data = val;
  2739. int r = X86EMUL_CONTINUE;
  2740. while (bytes) {
  2741. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  2742. unsigned offset = addr & (PAGE_SIZE-1);
  2743. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2744. int ret;
  2745. if (gpa == UNMAPPED_GVA) {
  2746. r = X86EMUL_PROPAGATE_FAULT;
  2747. goto out;
  2748. }
  2749. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2750. if (ret < 0) {
  2751. r = X86EMUL_UNHANDLEABLE;
  2752. goto out;
  2753. }
  2754. bytes -= toread;
  2755. data += toread;
  2756. addr += toread;
  2757. }
  2758. out:
  2759. return r;
  2760. }
  2761. /* used for instruction fetching */
  2762. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2763. struct kvm_vcpu *vcpu, u32 *error)
  2764. {
  2765. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2766. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  2767. access | PFERR_FETCH_MASK, error);
  2768. }
  2769. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2770. struct kvm_vcpu *vcpu, u32 *error)
  2771. {
  2772. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2773. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  2774. error);
  2775. }
  2776. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  2777. struct kvm_vcpu *vcpu, u32 *error)
  2778. {
  2779. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  2780. }
  2781. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2782. struct kvm_vcpu *vcpu, u32 *error)
  2783. {
  2784. void *data = val;
  2785. int r = X86EMUL_CONTINUE;
  2786. while (bytes) {
  2787. gpa_t gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error);
  2788. unsigned offset = addr & (PAGE_SIZE-1);
  2789. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2790. int ret;
  2791. if (gpa == UNMAPPED_GVA) {
  2792. r = X86EMUL_PROPAGATE_FAULT;
  2793. goto out;
  2794. }
  2795. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2796. if (ret < 0) {
  2797. r = X86EMUL_UNHANDLEABLE;
  2798. goto out;
  2799. }
  2800. bytes -= towrite;
  2801. data += towrite;
  2802. addr += towrite;
  2803. }
  2804. out:
  2805. return r;
  2806. }
  2807. static int emulator_read_emulated(unsigned long addr,
  2808. void *val,
  2809. unsigned int bytes,
  2810. struct kvm_vcpu *vcpu)
  2811. {
  2812. gpa_t gpa;
  2813. u32 error_code;
  2814. if (vcpu->mmio_read_completed) {
  2815. memcpy(val, vcpu->mmio_data, bytes);
  2816. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2817. vcpu->mmio_phys_addr, *(u64 *)val);
  2818. vcpu->mmio_read_completed = 0;
  2819. return X86EMUL_CONTINUE;
  2820. }
  2821. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
  2822. if (gpa == UNMAPPED_GVA) {
  2823. kvm_inject_page_fault(vcpu, addr, error_code);
  2824. return X86EMUL_PROPAGATE_FAULT;
  2825. }
  2826. /* For APIC access vmexit */
  2827. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2828. goto mmio;
  2829. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  2830. == X86EMUL_CONTINUE)
  2831. return X86EMUL_CONTINUE;
  2832. mmio:
  2833. /*
  2834. * Is this MMIO handled locally?
  2835. */
  2836. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2837. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2838. return X86EMUL_CONTINUE;
  2839. }
  2840. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2841. vcpu->mmio_needed = 1;
  2842. vcpu->mmio_phys_addr = gpa;
  2843. vcpu->mmio_size = bytes;
  2844. vcpu->mmio_is_write = 0;
  2845. return X86EMUL_UNHANDLEABLE;
  2846. }
  2847. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2848. const void *val, int bytes)
  2849. {
  2850. int ret;
  2851. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2852. if (ret < 0)
  2853. return 0;
  2854. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2855. return 1;
  2856. }
  2857. static int emulator_write_emulated_onepage(unsigned long addr,
  2858. const void *val,
  2859. unsigned int bytes,
  2860. struct kvm_vcpu *vcpu,
  2861. bool mmu_only)
  2862. {
  2863. gpa_t gpa;
  2864. u32 error_code;
  2865. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
  2866. if (gpa == UNMAPPED_GVA) {
  2867. kvm_inject_page_fault(vcpu, addr, error_code);
  2868. return X86EMUL_PROPAGATE_FAULT;
  2869. }
  2870. /* For APIC access vmexit */
  2871. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2872. goto mmio;
  2873. if (mmu_only) {
  2874. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2875. return X86EMUL_CONTINUE;
  2876. }
  2877. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2878. return X86EMUL_CONTINUE;
  2879. mmio:
  2880. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2881. /*
  2882. * Is this MMIO handled locally?
  2883. */
  2884. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2885. return X86EMUL_CONTINUE;
  2886. vcpu->mmio_needed = 1;
  2887. vcpu->mmio_phys_addr = gpa;
  2888. vcpu->mmio_size = bytes;
  2889. vcpu->mmio_is_write = 1;
  2890. memcpy(vcpu->mmio_data, val, bytes);
  2891. return X86EMUL_CONTINUE;
  2892. }
  2893. int __emulator_write_emulated(unsigned long addr,
  2894. const void *val,
  2895. unsigned int bytes,
  2896. struct kvm_vcpu *vcpu,
  2897. bool mmu_only)
  2898. {
  2899. /* Crossing a page boundary? */
  2900. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2901. int rc, now;
  2902. now = -addr & ~PAGE_MASK;
  2903. rc = emulator_write_emulated_onepage(addr, val, now, vcpu,
  2904. mmu_only);
  2905. if (rc != X86EMUL_CONTINUE)
  2906. return rc;
  2907. addr += now;
  2908. val += now;
  2909. bytes -= now;
  2910. }
  2911. return emulator_write_emulated_onepage(addr, val, bytes, vcpu,
  2912. mmu_only);
  2913. }
  2914. int emulator_write_emulated(unsigned long addr,
  2915. const void *val,
  2916. unsigned int bytes,
  2917. struct kvm_vcpu *vcpu)
  2918. {
  2919. return __emulator_write_emulated(addr, val, bytes, vcpu, false);
  2920. }
  2921. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2922. #define CMPXCHG_TYPE(t, ptr, old, new) \
  2923. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  2924. #ifdef CONFIG_X86_64
  2925. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  2926. #else
  2927. # define CMPXCHG64(ptr, old, new) \
  2928. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u *)(new)) == *(u64 *)(old))
  2929. #endif
  2930. static int emulator_cmpxchg_emulated(unsigned long addr,
  2931. const void *old,
  2932. const void *new,
  2933. unsigned int bytes,
  2934. struct kvm_vcpu *vcpu)
  2935. {
  2936. gpa_t gpa;
  2937. struct page *page;
  2938. char *kaddr;
  2939. bool exchanged;
  2940. /* guests cmpxchg8b have to be emulated atomically */
  2941. if (bytes > 8 || (bytes & (bytes - 1)))
  2942. goto emul_write;
  2943. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  2944. if (gpa == UNMAPPED_GVA ||
  2945. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2946. goto emul_write;
  2947. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2948. goto emul_write;
  2949. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2950. kaddr = kmap_atomic(page, KM_USER0);
  2951. kaddr += offset_in_page(gpa);
  2952. switch (bytes) {
  2953. case 1:
  2954. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  2955. break;
  2956. case 2:
  2957. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  2958. break;
  2959. case 4:
  2960. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  2961. break;
  2962. case 8:
  2963. exchanged = CMPXCHG64(kaddr, old, new);
  2964. break;
  2965. default:
  2966. BUG();
  2967. }
  2968. kunmap_atomic(kaddr, KM_USER0);
  2969. kvm_release_page_dirty(page);
  2970. if (!exchanged)
  2971. return X86EMUL_CMPXCHG_FAILED;
  2972. return __emulator_write_emulated(addr, new, bytes, vcpu, true);
  2973. emul_write:
  2974. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2975. return emulator_write_emulated(addr, new, bytes, vcpu);
  2976. }
  2977. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2978. {
  2979. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2980. }
  2981. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2982. {
  2983. kvm_mmu_invlpg(vcpu, address);
  2984. return X86EMUL_CONTINUE;
  2985. }
  2986. int emulate_clts(struct kvm_vcpu *vcpu)
  2987. {
  2988. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2989. kvm_x86_ops->fpu_activate(vcpu);
  2990. return X86EMUL_CONTINUE;
  2991. }
  2992. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2993. {
  2994. return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
  2995. }
  2996. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2997. {
  2998. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2999. return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
  3000. }
  3001. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  3002. {
  3003. u8 opcodes[4];
  3004. unsigned long rip = kvm_rip_read(vcpu);
  3005. unsigned long rip_linear;
  3006. if (!printk_ratelimit())
  3007. return;
  3008. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  3009. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
  3010. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  3011. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  3012. }
  3013. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  3014. static struct x86_emulate_ops emulate_ops = {
  3015. .read_std = kvm_read_guest_virt_system,
  3016. .fetch = kvm_fetch_guest_virt,
  3017. .read_emulated = emulator_read_emulated,
  3018. .write_emulated = emulator_write_emulated,
  3019. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3020. };
  3021. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3022. {
  3023. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3024. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3025. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3026. vcpu->arch.regs_dirty = ~0;
  3027. }
  3028. int emulate_instruction(struct kvm_vcpu *vcpu,
  3029. unsigned long cr2,
  3030. u16 error_code,
  3031. int emulation_type)
  3032. {
  3033. int r, shadow_mask;
  3034. struct decode_cache *c;
  3035. struct kvm_run *run = vcpu->run;
  3036. kvm_clear_exception_queue(vcpu);
  3037. vcpu->arch.mmio_fault_cr2 = cr2;
  3038. /*
  3039. * TODO: fix emulate.c to use guest_read/write_register
  3040. * instead of direct ->regs accesses, can save hundred cycles
  3041. * on Intel for instructions that don't read/change RSP, for
  3042. * for example.
  3043. */
  3044. cache_all_regs(vcpu);
  3045. vcpu->mmio_is_write = 0;
  3046. vcpu->arch.pio.string = 0;
  3047. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3048. int cs_db, cs_l;
  3049. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3050. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3051. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3052. vcpu->arch.emulate_ctxt.mode =
  3053. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3054. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3055. ? X86EMUL_MODE_VM86 : cs_l
  3056. ? X86EMUL_MODE_PROT64 : cs_db
  3057. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3058. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3059. /* Only allow emulation of specific instructions on #UD
  3060. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3061. c = &vcpu->arch.emulate_ctxt.decode;
  3062. if (emulation_type & EMULTYPE_TRAP_UD) {
  3063. if (!c->twobyte)
  3064. return EMULATE_FAIL;
  3065. switch (c->b) {
  3066. case 0x01: /* VMMCALL */
  3067. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3068. return EMULATE_FAIL;
  3069. break;
  3070. case 0x34: /* sysenter */
  3071. case 0x35: /* sysexit */
  3072. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3073. return EMULATE_FAIL;
  3074. break;
  3075. case 0x05: /* syscall */
  3076. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3077. return EMULATE_FAIL;
  3078. break;
  3079. default:
  3080. return EMULATE_FAIL;
  3081. }
  3082. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3083. return EMULATE_FAIL;
  3084. }
  3085. ++vcpu->stat.insn_emulation;
  3086. if (r) {
  3087. ++vcpu->stat.insn_emulation_fail;
  3088. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3089. return EMULATE_DONE;
  3090. return EMULATE_FAIL;
  3091. }
  3092. }
  3093. if (emulation_type & EMULTYPE_SKIP) {
  3094. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3095. return EMULATE_DONE;
  3096. }
  3097. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3098. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  3099. if (r == 0)
  3100. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  3101. if (vcpu->arch.pio.string)
  3102. return EMULATE_DO_MMIO;
  3103. if (r || vcpu->mmio_is_write) {
  3104. run->exit_reason = KVM_EXIT_MMIO;
  3105. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  3106. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  3107. run->mmio.len = vcpu->mmio_size;
  3108. run->mmio.is_write = vcpu->mmio_is_write;
  3109. }
  3110. if (r) {
  3111. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3112. return EMULATE_DONE;
  3113. if (!vcpu->mmio_needed) {
  3114. kvm_report_emulation_failure(vcpu, "mmio");
  3115. return EMULATE_FAIL;
  3116. }
  3117. return EMULATE_DO_MMIO;
  3118. }
  3119. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3120. if (vcpu->mmio_is_write) {
  3121. vcpu->mmio_needed = 0;
  3122. return EMULATE_DO_MMIO;
  3123. }
  3124. return EMULATE_DONE;
  3125. }
  3126. EXPORT_SYMBOL_GPL(emulate_instruction);
  3127. static int pio_copy_data(struct kvm_vcpu *vcpu)
  3128. {
  3129. void *p = vcpu->arch.pio_data;
  3130. gva_t q = vcpu->arch.pio.guest_gva;
  3131. unsigned bytes;
  3132. int ret;
  3133. u32 error_code;
  3134. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  3135. if (vcpu->arch.pio.in)
  3136. ret = kvm_write_guest_virt(q, p, bytes, vcpu, &error_code);
  3137. else
  3138. ret = kvm_read_guest_virt(q, p, bytes, vcpu, &error_code);
  3139. if (ret == X86EMUL_PROPAGATE_FAULT)
  3140. kvm_inject_page_fault(vcpu, q, error_code);
  3141. return ret;
  3142. }
  3143. int complete_pio(struct kvm_vcpu *vcpu)
  3144. {
  3145. struct kvm_pio_request *io = &vcpu->arch.pio;
  3146. long delta;
  3147. int r;
  3148. unsigned long val;
  3149. if (!io->string) {
  3150. if (io->in) {
  3151. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3152. memcpy(&val, vcpu->arch.pio_data, io->size);
  3153. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  3154. }
  3155. } else {
  3156. if (io->in) {
  3157. r = pio_copy_data(vcpu);
  3158. if (r)
  3159. goto out;
  3160. }
  3161. delta = 1;
  3162. if (io->rep) {
  3163. delta *= io->cur_count;
  3164. /*
  3165. * The size of the register should really depend on
  3166. * current address size.
  3167. */
  3168. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3169. val -= delta;
  3170. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  3171. }
  3172. if (io->down)
  3173. delta = -delta;
  3174. delta *= io->size;
  3175. if (io->in) {
  3176. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3177. val += delta;
  3178. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  3179. } else {
  3180. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3181. val += delta;
  3182. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  3183. }
  3184. }
  3185. out:
  3186. io->count -= io->cur_count;
  3187. io->cur_count = 0;
  3188. return 0;
  3189. }
  3190. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3191. {
  3192. /* TODO: String I/O for in kernel device */
  3193. int r;
  3194. if (vcpu->arch.pio.in)
  3195. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3196. vcpu->arch.pio.size, pd);
  3197. else
  3198. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3199. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3200. pd);
  3201. return r;
  3202. }
  3203. static int pio_string_write(struct kvm_vcpu *vcpu)
  3204. {
  3205. struct kvm_pio_request *io = &vcpu->arch.pio;
  3206. void *pd = vcpu->arch.pio_data;
  3207. int i, r = 0;
  3208. for (i = 0; i < io->cur_count; i++) {
  3209. if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3210. io->port, io->size, pd)) {
  3211. r = -EOPNOTSUPP;
  3212. break;
  3213. }
  3214. pd += io->size;
  3215. }
  3216. return r;
  3217. }
  3218. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  3219. {
  3220. unsigned long val;
  3221. trace_kvm_pio(!in, port, size, 1);
  3222. vcpu->run->exit_reason = KVM_EXIT_IO;
  3223. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3224. vcpu->run->io.size = vcpu->arch.pio.size = size;
  3225. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3226. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  3227. vcpu->run->io.port = vcpu->arch.pio.port = port;
  3228. vcpu->arch.pio.in = in;
  3229. vcpu->arch.pio.string = 0;
  3230. vcpu->arch.pio.down = 0;
  3231. vcpu->arch.pio.rep = 0;
  3232. if (!vcpu->arch.pio.in) {
  3233. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3234. memcpy(vcpu->arch.pio_data, &val, 4);
  3235. }
  3236. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3237. complete_pio(vcpu);
  3238. return 1;
  3239. }
  3240. return 0;
  3241. }
  3242. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  3243. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  3244. int size, unsigned long count, int down,
  3245. gva_t address, int rep, unsigned port)
  3246. {
  3247. unsigned now, in_page;
  3248. int ret = 0;
  3249. trace_kvm_pio(!in, port, size, count);
  3250. vcpu->run->exit_reason = KVM_EXIT_IO;
  3251. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3252. vcpu->run->io.size = vcpu->arch.pio.size = size;
  3253. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3254. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  3255. vcpu->run->io.port = vcpu->arch.pio.port = port;
  3256. vcpu->arch.pio.in = in;
  3257. vcpu->arch.pio.string = 1;
  3258. vcpu->arch.pio.down = down;
  3259. vcpu->arch.pio.rep = rep;
  3260. if (!count) {
  3261. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3262. return 1;
  3263. }
  3264. if (!down)
  3265. in_page = PAGE_SIZE - offset_in_page(address);
  3266. else
  3267. in_page = offset_in_page(address) + size;
  3268. now = min(count, (unsigned long)in_page / size);
  3269. if (!now)
  3270. now = 1;
  3271. if (down) {
  3272. /*
  3273. * String I/O in reverse. Yuck. Kill the guest, fix later.
  3274. */
  3275. pr_unimpl(vcpu, "guest string pio down\n");
  3276. kvm_inject_gp(vcpu, 0);
  3277. return 1;
  3278. }
  3279. vcpu->run->io.count = now;
  3280. vcpu->arch.pio.cur_count = now;
  3281. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  3282. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3283. vcpu->arch.pio.guest_gva = address;
  3284. if (!vcpu->arch.pio.in) {
  3285. /* string PIO write */
  3286. ret = pio_copy_data(vcpu);
  3287. if (ret == X86EMUL_PROPAGATE_FAULT)
  3288. return 1;
  3289. if (ret == 0 && !pio_string_write(vcpu)) {
  3290. complete_pio(vcpu);
  3291. if (vcpu->arch.pio.count == 0)
  3292. ret = 1;
  3293. }
  3294. }
  3295. /* no string PIO read support yet */
  3296. return ret;
  3297. }
  3298. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  3299. static void bounce_off(void *info)
  3300. {
  3301. /* nothing */
  3302. }
  3303. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3304. void *data)
  3305. {
  3306. struct cpufreq_freqs *freq = data;
  3307. struct kvm *kvm;
  3308. struct kvm_vcpu *vcpu;
  3309. int i, send_ipi = 0;
  3310. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3311. return 0;
  3312. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3313. return 0;
  3314. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3315. spin_lock(&kvm_lock);
  3316. list_for_each_entry(kvm, &vm_list, vm_list) {
  3317. kvm_for_each_vcpu(i, vcpu, kvm) {
  3318. if (vcpu->cpu != freq->cpu)
  3319. continue;
  3320. if (!kvm_request_guest_time_update(vcpu))
  3321. continue;
  3322. if (vcpu->cpu != smp_processor_id())
  3323. send_ipi++;
  3324. }
  3325. }
  3326. spin_unlock(&kvm_lock);
  3327. if (freq->old < freq->new && send_ipi) {
  3328. /*
  3329. * We upscale the frequency. Must make the guest
  3330. * doesn't see old kvmclock values while running with
  3331. * the new frequency, otherwise we risk the guest sees
  3332. * time go backwards.
  3333. *
  3334. * In case we update the frequency for another cpu
  3335. * (which might be in guest context) send an interrupt
  3336. * to kick the cpu out of guest context. Next time
  3337. * guest context is entered kvmclock will be updated,
  3338. * so the guest will not see stale values.
  3339. */
  3340. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3341. }
  3342. return 0;
  3343. }
  3344. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3345. .notifier_call = kvmclock_cpufreq_notifier
  3346. };
  3347. static void kvm_timer_init(void)
  3348. {
  3349. int cpu;
  3350. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3351. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3352. CPUFREQ_TRANSITION_NOTIFIER);
  3353. for_each_online_cpu(cpu) {
  3354. unsigned long khz = cpufreq_get(cpu);
  3355. if (!khz)
  3356. khz = tsc_khz;
  3357. per_cpu(cpu_tsc_khz, cpu) = khz;
  3358. }
  3359. } else {
  3360. for_each_possible_cpu(cpu)
  3361. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3362. }
  3363. }
  3364. int kvm_arch_init(void *opaque)
  3365. {
  3366. int r;
  3367. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3368. if (kvm_x86_ops) {
  3369. printk(KERN_ERR "kvm: already loaded the other module\n");
  3370. r = -EEXIST;
  3371. goto out;
  3372. }
  3373. if (!ops->cpu_has_kvm_support()) {
  3374. printk(KERN_ERR "kvm: no hardware support\n");
  3375. r = -EOPNOTSUPP;
  3376. goto out;
  3377. }
  3378. if (ops->disabled_by_bios()) {
  3379. printk(KERN_ERR "kvm: disabled by bios\n");
  3380. r = -EOPNOTSUPP;
  3381. goto out;
  3382. }
  3383. r = kvm_mmu_module_init();
  3384. if (r)
  3385. goto out;
  3386. kvm_init_msr_list();
  3387. kvm_x86_ops = ops;
  3388. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3389. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3390. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3391. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3392. kvm_timer_init();
  3393. return 0;
  3394. out:
  3395. return r;
  3396. }
  3397. void kvm_arch_exit(void)
  3398. {
  3399. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3400. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3401. CPUFREQ_TRANSITION_NOTIFIER);
  3402. kvm_x86_ops = NULL;
  3403. kvm_mmu_module_exit();
  3404. }
  3405. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3406. {
  3407. ++vcpu->stat.halt_exits;
  3408. if (irqchip_in_kernel(vcpu->kvm)) {
  3409. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3410. return 1;
  3411. } else {
  3412. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3413. return 0;
  3414. }
  3415. }
  3416. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3417. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3418. unsigned long a1)
  3419. {
  3420. if (is_long_mode(vcpu))
  3421. return a0;
  3422. else
  3423. return a0 | ((gpa_t)a1 << 32);
  3424. }
  3425. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3426. {
  3427. u64 param, ingpa, outgpa, ret;
  3428. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3429. bool fast, longmode;
  3430. int cs_db, cs_l;
  3431. /*
  3432. * hypercall generates UD from non zero cpl and real mode
  3433. * per HYPER-V spec
  3434. */
  3435. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3436. kvm_queue_exception(vcpu, UD_VECTOR);
  3437. return 0;
  3438. }
  3439. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3440. longmode = is_long_mode(vcpu) && cs_l == 1;
  3441. if (!longmode) {
  3442. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3443. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3444. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3445. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3446. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3447. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3448. }
  3449. #ifdef CONFIG_X86_64
  3450. else {
  3451. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3452. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3453. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3454. }
  3455. #endif
  3456. code = param & 0xffff;
  3457. fast = (param >> 16) & 0x1;
  3458. rep_cnt = (param >> 32) & 0xfff;
  3459. rep_idx = (param >> 48) & 0xfff;
  3460. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3461. switch (code) {
  3462. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3463. kvm_vcpu_on_spin(vcpu);
  3464. break;
  3465. default:
  3466. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3467. break;
  3468. }
  3469. ret = res | (((u64)rep_done & 0xfff) << 32);
  3470. if (longmode) {
  3471. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3472. } else {
  3473. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3474. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3475. }
  3476. return 1;
  3477. }
  3478. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3479. {
  3480. unsigned long nr, a0, a1, a2, a3, ret;
  3481. int r = 1;
  3482. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3483. return kvm_hv_hypercall(vcpu);
  3484. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3485. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3486. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3487. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3488. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3489. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3490. if (!is_long_mode(vcpu)) {
  3491. nr &= 0xFFFFFFFF;
  3492. a0 &= 0xFFFFFFFF;
  3493. a1 &= 0xFFFFFFFF;
  3494. a2 &= 0xFFFFFFFF;
  3495. a3 &= 0xFFFFFFFF;
  3496. }
  3497. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3498. ret = -KVM_EPERM;
  3499. goto out;
  3500. }
  3501. switch (nr) {
  3502. case KVM_HC_VAPIC_POLL_IRQ:
  3503. ret = 0;
  3504. break;
  3505. case KVM_HC_MMU_OP:
  3506. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3507. break;
  3508. default:
  3509. ret = -KVM_ENOSYS;
  3510. break;
  3511. }
  3512. out:
  3513. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3514. ++vcpu->stat.hypercalls;
  3515. return r;
  3516. }
  3517. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3518. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3519. {
  3520. char instruction[3];
  3521. unsigned long rip = kvm_rip_read(vcpu);
  3522. /*
  3523. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3524. * to ensure that the updated hypercall appears atomically across all
  3525. * VCPUs.
  3526. */
  3527. kvm_mmu_zap_all(vcpu->kvm);
  3528. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3529. return __emulator_write_emulated(rip, instruction, 3, vcpu, false);
  3530. }
  3531. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3532. {
  3533. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3534. }
  3535. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3536. {
  3537. struct desc_ptr dt = { limit, base };
  3538. kvm_x86_ops->set_gdt(vcpu, &dt);
  3539. }
  3540. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3541. {
  3542. struct desc_ptr dt = { limit, base };
  3543. kvm_x86_ops->set_idt(vcpu, &dt);
  3544. }
  3545. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  3546. unsigned long *rflags)
  3547. {
  3548. kvm_lmsw(vcpu, msw);
  3549. *rflags = kvm_get_rflags(vcpu);
  3550. }
  3551. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  3552. {
  3553. unsigned long value;
  3554. switch (cr) {
  3555. case 0:
  3556. value = kvm_read_cr0(vcpu);
  3557. break;
  3558. case 2:
  3559. value = vcpu->arch.cr2;
  3560. break;
  3561. case 3:
  3562. value = vcpu->arch.cr3;
  3563. break;
  3564. case 4:
  3565. value = kvm_read_cr4(vcpu);
  3566. break;
  3567. case 8:
  3568. value = kvm_get_cr8(vcpu);
  3569. break;
  3570. default:
  3571. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3572. return 0;
  3573. }
  3574. return value;
  3575. }
  3576. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val)
  3577. {
  3578. switch (cr) {
  3579. case 0:
  3580. kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3581. break;
  3582. case 2:
  3583. vcpu->arch.cr2 = val;
  3584. break;
  3585. case 3:
  3586. kvm_set_cr3(vcpu, val);
  3587. break;
  3588. case 4:
  3589. kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3590. break;
  3591. case 8:
  3592. kvm_set_cr8(vcpu, val & 0xfUL);
  3593. break;
  3594. default:
  3595. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3596. }
  3597. }
  3598. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3599. {
  3600. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3601. int j, nent = vcpu->arch.cpuid_nent;
  3602. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3603. /* when no next entry is found, the current entry[i] is reselected */
  3604. for (j = i + 1; ; j = (j + 1) % nent) {
  3605. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3606. if (ej->function == e->function) {
  3607. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3608. return j;
  3609. }
  3610. }
  3611. return 0; /* silence gcc, even though control never reaches here */
  3612. }
  3613. /* find an entry with matching function, matching index (if needed), and that
  3614. * should be read next (if it's stateful) */
  3615. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3616. u32 function, u32 index)
  3617. {
  3618. if (e->function != function)
  3619. return 0;
  3620. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3621. return 0;
  3622. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3623. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3624. return 0;
  3625. return 1;
  3626. }
  3627. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3628. u32 function, u32 index)
  3629. {
  3630. int i;
  3631. struct kvm_cpuid_entry2 *best = NULL;
  3632. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3633. struct kvm_cpuid_entry2 *e;
  3634. e = &vcpu->arch.cpuid_entries[i];
  3635. if (is_matching_cpuid_entry(e, function, index)) {
  3636. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3637. move_to_next_stateful_cpuid_entry(vcpu, i);
  3638. best = e;
  3639. break;
  3640. }
  3641. /*
  3642. * Both basic or both extended?
  3643. */
  3644. if (((e->function ^ function) & 0x80000000) == 0)
  3645. if (!best || e->function > best->function)
  3646. best = e;
  3647. }
  3648. return best;
  3649. }
  3650. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3651. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3652. {
  3653. struct kvm_cpuid_entry2 *best;
  3654. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3655. if (best)
  3656. return best->eax & 0xff;
  3657. return 36;
  3658. }
  3659. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3660. {
  3661. u32 function, index;
  3662. struct kvm_cpuid_entry2 *best;
  3663. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3664. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3665. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3666. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3667. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3668. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3669. best = kvm_find_cpuid_entry(vcpu, function, index);
  3670. if (best) {
  3671. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3672. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3673. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3674. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3675. }
  3676. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3677. trace_kvm_cpuid(function,
  3678. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3679. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3680. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3681. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3682. }
  3683. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3684. /*
  3685. * Check if userspace requested an interrupt window, and that the
  3686. * interrupt window is open.
  3687. *
  3688. * No need to exit to userspace if we already have an interrupt queued.
  3689. */
  3690. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3691. {
  3692. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3693. vcpu->run->request_interrupt_window &&
  3694. kvm_arch_interrupt_allowed(vcpu));
  3695. }
  3696. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3697. {
  3698. struct kvm_run *kvm_run = vcpu->run;
  3699. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3700. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3701. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3702. if (irqchip_in_kernel(vcpu->kvm))
  3703. kvm_run->ready_for_interrupt_injection = 1;
  3704. else
  3705. kvm_run->ready_for_interrupt_injection =
  3706. kvm_arch_interrupt_allowed(vcpu) &&
  3707. !kvm_cpu_has_interrupt(vcpu) &&
  3708. !kvm_event_needs_reinjection(vcpu);
  3709. }
  3710. static void vapic_enter(struct kvm_vcpu *vcpu)
  3711. {
  3712. struct kvm_lapic *apic = vcpu->arch.apic;
  3713. struct page *page;
  3714. if (!apic || !apic->vapic_addr)
  3715. return;
  3716. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3717. vcpu->arch.apic->vapic_page = page;
  3718. }
  3719. static void vapic_exit(struct kvm_vcpu *vcpu)
  3720. {
  3721. struct kvm_lapic *apic = vcpu->arch.apic;
  3722. int idx;
  3723. if (!apic || !apic->vapic_addr)
  3724. return;
  3725. idx = srcu_read_lock(&vcpu->kvm->srcu);
  3726. kvm_release_page_dirty(apic->vapic_page);
  3727. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3728. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  3729. }
  3730. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3731. {
  3732. int max_irr, tpr;
  3733. if (!kvm_x86_ops->update_cr8_intercept)
  3734. return;
  3735. if (!vcpu->arch.apic)
  3736. return;
  3737. if (!vcpu->arch.apic->vapic_addr)
  3738. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3739. else
  3740. max_irr = -1;
  3741. if (max_irr != -1)
  3742. max_irr >>= 4;
  3743. tpr = kvm_lapic_get_cr8(vcpu);
  3744. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3745. }
  3746. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3747. {
  3748. /* try to reinject previous events if any */
  3749. if (vcpu->arch.exception.pending) {
  3750. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  3751. vcpu->arch.exception.has_error_code,
  3752. vcpu->arch.exception.error_code);
  3753. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3754. vcpu->arch.exception.has_error_code,
  3755. vcpu->arch.exception.error_code);
  3756. return;
  3757. }
  3758. if (vcpu->arch.nmi_injected) {
  3759. kvm_x86_ops->set_nmi(vcpu);
  3760. return;
  3761. }
  3762. if (vcpu->arch.interrupt.pending) {
  3763. kvm_x86_ops->set_irq(vcpu);
  3764. return;
  3765. }
  3766. /* try to inject new event if pending */
  3767. if (vcpu->arch.nmi_pending) {
  3768. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3769. vcpu->arch.nmi_pending = false;
  3770. vcpu->arch.nmi_injected = true;
  3771. kvm_x86_ops->set_nmi(vcpu);
  3772. }
  3773. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3774. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3775. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3776. false);
  3777. kvm_x86_ops->set_irq(vcpu);
  3778. }
  3779. }
  3780. }
  3781. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3782. {
  3783. int r;
  3784. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3785. vcpu->run->request_interrupt_window;
  3786. if (vcpu->requests)
  3787. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3788. kvm_mmu_unload(vcpu);
  3789. r = kvm_mmu_reload(vcpu);
  3790. if (unlikely(r))
  3791. goto out;
  3792. if (vcpu->requests) {
  3793. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3794. __kvm_migrate_timers(vcpu);
  3795. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3796. kvm_write_guest_time(vcpu);
  3797. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3798. kvm_mmu_sync_roots(vcpu);
  3799. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3800. kvm_x86_ops->tlb_flush(vcpu);
  3801. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3802. &vcpu->requests)) {
  3803. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3804. r = 0;
  3805. goto out;
  3806. }
  3807. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3808. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3809. r = 0;
  3810. goto out;
  3811. }
  3812. if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
  3813. vcpu->fpu_active = 0;
  3814. kvm_x86_ops->fpu_deactivate(vcpu);
  3815. }
  3816. }
  3817. preempt_disable();
  3818. kvm_x86_ops->prepare_guest_switch(vcpu);
  3819. if (vcpu->fpu_active)
  3820. kvm_load_guest_fpu(vcpu);
  3821. local_irq_disable();
  3822. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3823. smp_mb__after_clear_bit();
  3824. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3825. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3826. local_irq_enable();
  3827. preempt_enable();
  3828. r = 1;
  3829. goto out;
  3830. }
  3831. inject_pending_event(vcpu);
  3832. /* enable NMI/IRQ window open exits if needed */
  3833. if (vcpu->arch.nmi_pending)
  3834. kvm_x86_ops->enable_nmi_window(vcpu);
  3835. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3836. kvm_x86_ops->enable_irq_window(vcpu);
  3837. if (kvm_lapic_enabled(vcpu)) {
  3838. update_cr8_intercept(vcpu);
  3839. kvm_lapic_sync_to_vapic(vcpu);
  3840. }
  3841. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3842. kvm_guest_enter();
  3843. if (unlikely(vcpu->arch.switch_db_regs)) {
  3844. set_debugreg(0, 7);
  3845. set_debugreg(vcpu->arch.eff_db[0], 0);
  3846. set_debugreg(vcpu->arch.eff_db[1], 1);
  3847. set_debugreg(vcpu->arch.eff_db[2], 2);
  3848. set_debugreg(vcpu->arch.eff_db[3], 3);
  3849. }
  3850. trace_kvm_entry(vcpu->vcpu_id);
  3851. kvm_x86_ops->run(vcpu);
  3852. /*
  3853. * If the guest has used debug registers, at least dr7
  3854. * will be disabled while returning to the host.
  3855. * If we don't have active breakpoints in the host, we don't
  3856. * care about the messed up debug address registers. But if
  3857. * we have some of them active, restore the old state.
  3858. */
  3859. if (hw_breakpoint_active())
  3860. hw_breakpoint_restore();
  3861. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3862. local_irq_enable();
  3863. ++vcpu->stat.exits;
  3864. /*
  3865. * We must have an instruction between local_irq_enable() and
  3866. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3867. * the interrupt shadow. The stat.exits increment will do nicely.
  3868. * But we need to prevent reordering, hence this barrier():
  3869. */
  3870. barrier();
  3871. kvm_guest_exit();
  3872. preempt_enable();
  3873. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3874. /*
  3875. * Profile KVM exit RIPs:
  3876. */
  3877. if (unlikely(prof_on == KVM_PROFILING)) {
  3878. unsigned long rip = kvm_rip_read(vcpu);
  3879. profile_hit(KVM_PROFILING, (void *)rip);
  3880. }
  3881. kvm_lapic_sync_from_vapic(vcpu);
  3882. r = kvm_x86_ops->handle_exit(vcpu);
  3883. out:
  3884. return r;
  3885. }
  3886. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3887. {
  3888. int r;
  3889. struct kvm *kvm = vcpu->kvm;
  3890. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3891. pr_debug("vcpu %d received sipi with vector # %x\n",
  3892. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3893. kvm_lapic_reset(vcpu);
  3894. r = kvm_arch_vcpu_reset(vcpu);
  3895. if (r)
  3896. return r;
  3897. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3898. }
  3899. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3900. vapic_enter(vcpu);
  3901. r = 1;
  3902. while (r > 0) {
  3903. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3904. r = vcpu_enter_guest(vcpu);
  3905. else {
  3906. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3907. kvm_vcpu_block(vcpu);
  3908. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3909. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3910. {
  3911. switch(vcpu->arch.mp_state) {
  3912. case KVM_MP_STATE_HALTED:
  3913. vcpu->arch.mp_state =
  3914. KVM_MP_STATE_RUNNABLE;
  3915. case KVM_MP_STATE_RUNNABLE:
  3916. break;
  3917. case KVM_MP_STATE_SIPI_RECEIVED:
  3918. default:
  3919. r = -EINTR;
  3920. break;
  3921. }
  3922. }
  3923. }
  3924. if (r <= 0)
  3925. break;
  3926. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3927. if (kvm_cpu_has_pending_timer(vcpu))
  3928. kvm_inject_pending_timer_irqs(vcpu);
  3929. if (dm_request_for_irq_injection(vcpu)) {
  3930. r = -EINTR;
  3931. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3932. ++vcpu->stat.request_irq_exits;
  3933. }
  3934. if (signal_pending(current)) {
  3935. r = -EINTR;
  3936. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3937. ++vcpu->stat.signal_exits;
  3938. }
  3939. if (need_resched()) {
  3940. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3941. kvm_resched(vcpu);
  3942. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3943. }
  3944. }
  3945. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3946. post_kvm_run_save(vcpu);
  3947. vapic_exit(vcpu);
  3948. return r;
  3949. }
  3950. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3951. {
  3952. int r;
  3953. sigset_t sigsaved;
  3954. vcpu_load(vcpu);
  3955. if (vcpu->sigset_active)
  3956. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3957. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3958. kvm_vcpu_block(vcpu);
  3959. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3960. r = -EAGAIN;
  3961. goto out;
  3962. }
  3963. /* re-sync apic's tpr */
  3964. if (!irqchip_in_kernel(vcpu->kvm))
  3965. kvm_set_cr8(vcpu, kvm_run->cr8);
  3966. if (vcpu->arch.pio.cur_count) {
  3967. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3968. r = complete_pio(vcpu);
  3969. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3970. if (r)
  3971. goto out;
  3972. }
  3973. if (vcpu->mmio_needed) {
  3974. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3975. vcpu->mmio_read_completed = 1;
  3976. vcpu->mmio_needed = 0;
  3977. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3978. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3979. EMULTYPE_NO_DECODE);
  3980. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3981. if (r == EMULATE_DO_MMIO) {
  3982. /*
  3983. * Read-modify-write. Back to userspace.
  3984. */
  3985. r = 0;
  3986. goto out;
  3987. }
  3988. }
  3989. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3990. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3991. kvm_run->hypercall.ret);
  3992. r = __vcpu_run(vcpu);
  3993. out:
  3994. if (vcpu->sigset_active)
  3995. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3996. vcpu_put(vcpu);
  3997. return r;
  3998. }
  3999. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4000. {
  4001. vcpu_load(vcpu);
  4002. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4003. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4004. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4005. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4006. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4007. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4008. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4009. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4010. #ifdef CONFIG_X86_64
  4011. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4012. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4013. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4014. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4015. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4016. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4017. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4018. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4019. #endif
  4020. regs->rip = kvm_rip_read(vcpu);
  4021. regs->rflags = kvm_get_rflags(vcpu);
  4022. vcpu_put(vcpu);
  4023. return 0;
  4024. }
  4025. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4026. {
  4027. vcpu_load(vcpu);
  4028. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4029. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4030. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4031. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4032. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4033. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4034. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4035. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4036. #ifdef CONFIG_X86_64
  4037. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4038. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4039. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4040. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4041. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4042. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4043. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4044. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4045. #endif
  4046. kvm_rip_write(vcpu, regs->rip);
  4047. kvm_set_rflags(vcpu, regs->rflags);
  4048. vcpu->arch.exception.pending = false;
  4049. vcpu_put(vcpu);
  4050. return 0;
  4051. }
  4052. void kvm_get_segment(struct kvm_vcpu *vcpu,
  4053. struct kvm_segment *var, int seg)
  4054. {
  4055. kvm_x86_ops->get_segment(vcpu, var, seg);
  4056. }
  4057. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4058. {
  4059. struct kvm_segment cs;
  4060. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4061. *db = cs.db;
  4062. *l = cs.l;
  4063. }
  4064. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4065. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4066. struct kvm_sregs *sregs)
  4067. {
  4068. struct desc_ptr dt;
  4069. vcpu_load(vcpu);
  4070. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4071. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4072. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4073. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4074. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4075. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4076. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4077. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4078. kvm_x86_ops->get_idt(vcpu, &dt);
  4079. sregs->idt.limit = dt.size;
  4080. sregs->idt.base = dt.address;
  4081. kvm_x86_ops->get_gdt(vcpu, &dt);
  4082. sregs->gdt.limit = dt.size;
  4083. sregs->gdt.base = dt.address;
  4084. sregs->cr0 = kvm_read_cr0(vcpu);
  4085. sregs->cr2 = vcpu->arch.cr2;
  4086. sregs->cr3 = vcpu->arch.cr3;
  4087. sregs->cr4 = kvm_read_cr4(vcpu);
  4088. sregs->cr8 = kvm_get_cr8(vcpu);
  4089. sregs->efer = vcpu->arch.efer;
  4090. sregs->apic_base = kvm_get_apic_base(vcpu);
  4091. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4092. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4093. set_bit(vcpu->arch.interrupt.nr,
  4094. (unsigned long *)sregs->interrupt_bitmap);
  4095. vcpu_put(vcpu);
  4096. return 0;
  4097. }
  4098. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4099. struct kvm_mp_state *mp_state)
  4100. {
  4101. vcpu_load(vcpu);
  4102. mp_state->mp_state = vcpu->arch.mp_state;
  4103. vcpu_put(vcpu);
  4104. return 0;
  4105. }
  4106. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4107. struct kvm_mp_state *mp_state)
  4108. {
  4109. vcpu_load(vcpu);
  4110. vcpu->arch.mp_state = mp_state->mp_state;
  4111. vcpu_put(vcpu);
  4112. return 0;
  4113. }
  4114. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  4115. struct kvm_segment *var, int seg)
  4116. {
  4117. kvm_x86_ops->set_segment(vcpu, var, seg);
  4118. }
  4119. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  4120. struct kvm_segment *kvm_desct)
  4121. {
  4122. kvm_desct->base = get_desc_base(seg_desc);
  4123. kvm_desct->limit = get_desc_limit(seg_desc);
  4124. if (seg_desc->g) {
  4125. kvm_desct->limit <<= 12;
  4126. kvm_desct->limit |= 0xfff;
  4127. }
  4128. kvm_desct->selector = selector;
  4129. kvm_desct->type = seg_desc->type;
  4130. kvm_desct->present = seg_desc->p;
  4131. kvm_desct->dpl = seg_desc->dpl;
  4132. kvm_desct->db = seg_desc->d;
  4133. kvm_desct->s = seg_desc->s;
  4134. kvm_desct->l = seg_desc->l;
  4135. kvm_desct->g = seg_desc->g;
  4136. kvm_desct->avl = seg_desc->avl;
  4137. if (!selector)
  4138. kvm_desct->unusable = 1;
  4139. else
  4140. kvm_desct->unusable = 0;
  4141. kvm_desct->padding = 0;
  4142. }
  4143. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  4144. u16 selector,
  4145. struct desc_ptr *dtable)
  4146. {
  4147. if (selector & 1 << 2) {
  4148. struct kvm_segment kvm_seg;
  4149. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  4150. if (kvm_seg.unusable)
  4151. dtable->size = 0;
  4152. else
  4153. dtable->size = kvm_seg.limit;
  4154. dtable->address = kvm_seg.base;
  4155. }
  4156. else
  4157. kvm_x86_ops->get_gdt(vcpu, dtable);
  4158. }
  4159. /* allowed just for 8 bytes segments */
  4160. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  4161. struct desc_struct *seg_desc)
  4162. {
  4163. struct desc_ptr dtable;
  4164. u16 index = selector >> 3;
  4165. int ret;
  4166. u32 err;
  4167. gva_t addr;
  4168. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  4169. if (dtable.size < index * 8 + 7) {
  4170. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  4171. return X86EMUL_PROPAGATE_FAULT;
  4172. }
  4173. addr = dtable.base + index * 8;
  4174. ret = kvm_read_guest_virt_system(addr, seg_desc, sizeof(*seg_desc),
  4175. vcpu, &err);
  4176. if (ret == X86EMUL_PROPAGATE_FAULT)
  4177. kvm_inject_page_fault(vcpu, addr, err);
  4178. return ret;
  4179. }
  4180. /* allowed just for 8 bytes segments */
  4181. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  4182. struct desc_struct *seg_desc)
  4183. {
  4184. struct desc_ptr dtable;
  4185. u16 index = selector >> 3;
  4186. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  4187. if (dtable.size < index * 8 + 7)
  4188. return 1;
  4189. return kvm_write_guest_virt(dtable.address + index*8, seg_desc, sizeof(*seg_desc), vcpu, NULL);
  4190. }
  4191. static gpa_t get_tss_base_addr_write(struct kvm_vcpu *vcpu,
  4192. struct desc_struct *seg_desc)
  4193. {
  4194. u32 base_addr = get_desc_base(seg_desc);
  4195. return kvm_mmu_gva_to_gpa_write(vcpu, base_addr, NULL);
  4196. }
  4197. static gpa_t get_tss_base_addr_read(struct kvm_vcpu *vcpu,
  4198. struct desc_struct *seg_desc)
  4199. {
  4200. u32 base_addr = get_desc_base(seg_desc);
  4201. return kvm_mmu_gva_to_gpa_read(vcpu, base_addr, NULL);
  4202. }
  4203. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  4204. {
  4205. struct kvm_segment kvm_seg;
  4206. kvm_get_segment(vcpu, &kvm_seg, seg);
  4207. return kvm_seg.selector;
  4208. }
  4209. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  4210. {
  4211. struct kvm_segment segvar = {
  4212. .base = selector << 4,
  4213. .limit = 0xffff,
  4214. .selector = selector,
  4215. .type = 3,
  4216. .present = 1,
  4217. .dpl = 3,
  4218. .db = 0,
  4219. .s = 1,
  4220. .l = 0,
  4221. .g = 0,
  4222. .avl = 0,
  4223. .unusable = 0,
  4224. };
  4225. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  4226. return X86EMUL_CONTINUE;
  4227. }
  4228. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  4229. {
  4230. return (seg != VCPU_SREG_LDTR) &&
  4231. (seg != VCPU_SREG_TR) &&
  4232. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  4233. }
  4234. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg)
  4235. {
  4236. struct kvm_segment kvm_seg;
  4237. struct desc_struct seg_desc;
  4238. u8 dpl, rpl, cpl;
  4239. unsigned err_vec = GP_VECTOR;
  4240. u32 err_code = 0;
  4241. bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
  4242. int ret;
  4243. if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
  4244. return kvm_load_realmode_segment(vcpu, selector, seg);
  4245. /* NULL selector is not valid for TR, CS and SS */
  4246. if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR)
  4247. && null_selector)
  4248. goto exception;
  4249. /* TR should be in GDT only */
  4250. if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
  4251. goto exception;
  4252. ret = load_guest_segment_descriptor(vcpu, selector, &seg_desc);
  4253. if (ret)
  4254. return ret;
  4255. seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
  4256. if (null_selector) { /* for NULL selector skip all following checks */
  4257. kvm_seg.unusable = 1;
  4258. goto load;
  4259. }
  4260. err_code = selector & 0xfffc;
  4261. err_vec = GP_VECTOR;
  4262. /* can't load system descriptor into segment selecor */
  4263. if (seg <= VCPU_SREG_GS && !kvm_seg.s)
  4264. goto exception;
  4265. if (!kvm_seg.present) {
  4266. err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
  4267. goto exception;
  4268. }
  4269. rpl = selector & 3;
  4270. dpl = kvm_seg.dpl;
  4271. cpl = kvm_x86_ops->get_cpl(vcpu);
  4272. switch (seg) {
  4273. case VCPU_SREG_SS:
  4274. /*
  4275. * segment is not a writable data segment or segment
  4276. * selector's RPL != CPL or segment selector's RPL != CPL
  4277. */
  4278. if (rpl != cpl || (kvm_seg.type & 0xa) != 0x2 || dpl != cpl)
  4279. goto exception;
  4280. break;
  4281. case VCPU_SREG_CS:
  4282. if (!(kvm_seg.type & 8))
  4283. goto exception;
  4284. if (kvm_seg.type & 4) {
  4285. /* conforming */
  4286. if (dpl > cpl)
  4287. goto exception;
  4288. } else {
  4289. /* nonconforming */
  4290. if (rpl > cpl || dpl != cpl)
  4291. goto exception;
  4292. }
  4293. /* CS(RPL) <- CPL */
  4294. selector = (selector & 0xfffc) | cpl;
  4295. break;
  4296. case VCPU_SREG_TR:
  4297. if (kvm_seg.s || (kvm_seg.type != 1 && kvm_seg.type != 9))
  4298. goto exception;
  4299. break;
  4300. case VCPU_SREG_LDTR:
  4301. if (kvm_seg.s || kvm_seg.type != 2)
  4302. goto exception;
  4303. break;
  4304. default: /* DS, ES, FS, or GS */
  4305. /*
  4306. * segment is not a data or readable code segment or
  4307. * ((segment is a data or nonconforming code segment)
  4308. * and (both RPL and CPL > DPL))
  4309. */
  4310. if ((kvm_seg.type & 0xa) == 0x8 ||
  4311. (((kvm_seg.type & 0xc) != 0xc) && (rpl > dpl && cpl > dpl)))
  4312. goto exception;
  4313. break;
  4314. }
  4315. if (!kvm_seg.unusable && kvm_seg.s) {
  4316. /* mark segment as accessed */
  4317. kvm_seg.type |= 1;
  4318. seg_desc.type |= 1;
  4319. save_guest_segment_descriptor(vcpu, selector, &seg_desc);
  4320. }
  4321. load:
  4322. kvm_set_segment(vcpu, &kvm_seg, seg);
  4323. return X86EMUL_CONTINUE;
  4324. exception:
  4325. kvm_queue_exception_e(vcpu, err_vec, err_code);
  4326. return X86EMUL_PROPAGATE_FAULT;
  4327. }
  4328. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  4329. struct tss_segment_32 *tss)
  4330. {
  4331. tss->cr3 = vcpu->arch.cr3;
  4332. tss->eip = kvm_rip_read(vcpu);
  4333. tss->eflags = kvm_get_rflags(vcpu);
  4334. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4335. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4336. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4337. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4338. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4339. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4340. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4341. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4342. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  4343. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  4344. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  4345. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  4346. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  4347. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  4348. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  4349. }
  4350. static void kvm_load_segment_selector(struct kvm_vcpu *vcpu, u16 sel, int seg)
  4351. {
  4352. struct kvm_segment kvm_seg;
  4353. kvm_get_segment(vcpu, &kvm_seg, seg);
  4354. kvm_seg.selector = sel;
  4355. kvm_set_segment(vcpu, &kvm_seg, seg);
  4356. }
  4357. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  4358. struct tss_segment_32 *tss)
  4359. {
  4360. kvm_set_cr3(vcpu, tss->cr3);
  4361. kvm_rip_write(vcpu, tss->eip);
  4362. kvm_set_rflags(vcpu, tss->eflags | 2);
  4363. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  4364. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  4365. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  4366. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  4367. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  4368. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  4369. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  4370. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  4371. /*
  4372. * SDM says that segment selectors are loaded before segment
  4373. * descriptors
  4374. */
  4375. kvm_load_segment_selector(vcpu, tss->ldt_selector, VCPU_SREG_LDTR);
  4376. kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
  4377. kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
  4378. kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
  4379. kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
  4380. kvm_load_segment_selector(vcpu, tss->fs, VCPU_SREG_FS);
  4381. kvm_load_segment_selector(vcpu, tss->gs, VCPU_SREG_GS);
  4382. /*
  4383. * Now load segment descriptors. If fault happenes at this stage
  4384. * it is handled in a context of new task
  4385. */
  4386. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, VCPU_SREG_LDTR))
  4387. return 1;
  4388. if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
  4389. return 1;
  4390. if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
  4391. return 1;
  4392. if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
  4393. return 1;
  4394. if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
  4395. return 1;
  4396. if (kvm_load_segment_descriptor(vcpu, tss->fs, VCPU_SREG_FS))
  4397. return 1;
  4398. if (kvm_load_segment_descriptor(vcpu, tss->gs, VCPU_SREG_GS))
  4399. return 1;
  4400. return 0;
  4401. }
  4402. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  4403. struct tss_segment_16 *tss)
  4404. {
  4405. tss->ip = kvm_rip_read(vcpu);
  4406. tss->flag = kvm_get_rflags(vcpu);
  4407. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4408. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4409. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4410. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4411. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4412. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4413. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4414. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4415. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  4416. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  4417. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  4418. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  4419. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  4420. }
  4421. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  4422. struct tss_segment_16 *tss)
  4423. {
  4424. kvm_rip_write(vcpu, tss->ip);
  4425. kvm_set_rflags(vcpu, tss->flag | 2);
  4426. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  4427. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  4428. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  4429. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  4430. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  4431. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  4432. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  4433. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  4434. /*
  4435. * SDM says that segment selectors are loaded before segment
  4436. * descriptors
  4437. */
  4438. kvm_load_segment_selector(vcpu, tss->ldt, VCPU_SREG_LDTR);
  4439. kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
  4440. kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
  4441. kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
  4442. kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
  4443. /*
  4444. * Now load segment descriptors. If fault happenes at this stage
  4445. * it is handled in a context of new task
  4446. */
  4447. if (kvm_load_segment_descriptor(vcpu, tss->ldt, VCPU_SREG_LDTR))
  4448. return 1;
  4449. if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
  4450. return 1;
  4451. if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
  4452. return 1;
  4453. if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
  4454. return 1;
  4455. if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
  4456. return 1;
  4457. return 0;
  4458. }
  4459. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  4460. u16 old_tss_sel, u32 old_tss_base,
  4461. struct desc_struct *nseg_desc)
  4462. {
  4463. struct tss_segment_16 tss_segment_16;
  4464. int ret = 0;
  4465. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  4466. sizeof tss_segment_16))
  4467. goto out;
  4468. save_state_to_tss16(vcpu, &tss_segment_16);
  4469. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  4470. sizeof tss_segment_16))
  4471. goto out;
  4472. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
  4473. &tss_segment_16, sizeof tss_segment_16))
  4474. goto out;
  4475. if (old_tss_sel != 0xffff) {
  4476. tss_segment_16.prev_task_link = old_tss_sel;
  4477. if (kvm_write_guest(vcpu->kvm,
  4478. get_tss_base_addr_write(vcpu, nseg_desc),
  4479. &tss_segment_16.prev_task_link,
  4480. sizeof tss_segment_16.prev_task_link))
  4481. goto out;
  4482. }
  4483. if (load_state_from_tss16(vcpu, &tss_segment_16))
  4484. goto out;
  4485. ret = 1;
  4486. out:
  4487. return ret;
  4488. }
  4489. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  4490. u16 old_tss_sel, u32 old_tss_base,
  4491. struct desc_struct *nseg_desc)
  4492. {
  4493. struct tss_segment_32 tss_segment_32;
  4494. int ret = 0;
  4495. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4496. sizeof tss_segment_32))
  4497. goto out;
  4498. save_state_to_tss32(vcpu, &tss_segment_32);
  4499. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4500. sizeof tss_segment_32))
  4501. goto out;
  4502. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
  4503. &tss_segment_32, sizeof tss_segment_32))
  4504. goto out;
  4505. if (old_tss_sel != 0xffff) {
  4506. tss_segment_32.prev_task_link = old_tss_sel;
  4507. if (kvm_write_guest(vcpu->kvm,
  4508. get_tss_base_addr_write(vcpu, nseg_desc),
  4509. &tss_segment_32.prev_task_link,
  4510. sizeof tss_segment_32.prev_task_link))
  4511. goto out;
  4512. }
  4513. if (load_state_from_tss32(vcpu, &tss_segment_32))
  4514. goto out;
  4515. ret = 1;
  4516. out:
  4517. return ret;
  4518. }
  4519. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  4520. {
  4521. struct kvm_segment tr_seg;
  4522. struct desc_struct cseg_desc;
  4523. struct desc_struct nseg_desc;
  4524. int ret = 0;
  4525. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  4526. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  4527. u32 desc_limit;
  4528. old_tss_base = kvm_mmu_gva_to_gpa_write(vcpu, old_tss_base, NULL);
  4529. /* FIXME: Handle errors. Failure to read either TSS or their
  4530. * descriptors should generate a pagefault.
  4531. */
  4532. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  4533. goto out;
  4534. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  4535. goto out;
  4536. if (reason != TASK_SWITCH_IRET) {
  4537. int cpl;
  4538. cpl = kvm_x86_ops->get_cpl(vcpu);
  4539. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  4540. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  4541. return 1;
  4542. }
  4543. }
  4544. desc_limit = get_desc_limit(&nseg_desc);
  4545. if (!nseg_desc.p ||
  4546. ((desc_limit < 0x67 && (nseg_desc.type & 8)) ||
  4547. desc_limit < 0x2b)) {
  4548. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  4549. return 1;
  4550. }
  4551. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  4552. cseg_desc.type &= ~(1 << 1); //clear the B flag
  4553. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  4554. }
  4555. if (reason == TASK_SWITCH_IRET) {
  4556. u32 eflags = kvm_get_rflags(vcpu);
  4557. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  4558. }
  4559. /* set back link to prev task only if NT bit is set in eflags
  4560. note that old_tss_sel is not used afetr this point */
  4561. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  4562. old_tss_sel = 0xffff;
  4563. if (nseg_desc.type & 8)
  4564. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  4565. old_tss_base, &nseg_desc);
  4566. else
  4567. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  4568. old_tss_base, &nseg_desc);
  4569. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  4570. u32 eflags = kvm_get_rflags(vcpu);
  4571. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  4572. }
  4573. if (reason != TASK_SWITCH_IRET) {
  4574. nseg_desc.type |= (1 << 1);
  4575. save_guest_segment_descriptor(vcpu, tss_selector,
  4576. &nseg_desc);
  4577. }
  4578. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
  4579. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  4580. tr_seg.type = 11;
  4581. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  4582. out:
  4583. return ret;
  4584. }
  4585. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4586. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4587. struct kvm_sregs *sregs)
  4588. {
  4589. int mmu_reset_needed = 0;
  4590. int pending_vec, max_bits;
  4591. struct desc_ptr dt;
  4592. vcpu_load(vcpu);
  4593. dt.size = sregs->idt.limit;
  4594. dt.address = sregs->idt.base;
  4595. kvm_x86_ops->set_idt(vcpu, &dt);
  4596. dt.size = sregs->gdt.limit;
  4597. dt.address = sregs->gdt.base;
  4598. kvm_x86_ops->set_gdt(vcpu, &dt);
  4599. vcpu->arch.cr2 = sregs->cr2;
  4600. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4601. vcpu->arch.cr3 = sregs->cr3;
  4602. kvm_set_cr8(vcpu, sregs->cr8);
  4603. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4604. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4605. kvm_set_apic_base(vcpu, sregs->apic_base);
  4606. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4607. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4608. vcpu->arch.cr0 = sregs->cr0;
  4609. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4610. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4611. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4612. load_pdptrs(vcpu, vcpu->arch.cr3);
  4613. mmu_reset_needed = 1;
  4614. }
  4615. if (mmu_reset_needed)
  4616. kvm_mmu_reset_context(vcpu);
  4617. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4618. pending_vec = find_first_bit(
  4619. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4620. if (pending_vec < max_bits) {
  4621. kvm_queue_interrupt(vcpu, pending_vec, false);
  4622. pr_debug("Set back pending irq %d\n", pending_vec);
  4623. if (irqchip_in_kernel(vcpu->kvm))
  4624. kvm_pic_clear_isr_ack(vcpu->kvm);
  4625. }
  4626. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4627. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4628. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4629. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4630. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4631. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4632. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4633. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4634. update_cr8_intercept(vcpu);
  4635. /* Older userspace won't unhalt the vcpu on reset. */
  4636. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4637. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4638. !is_protmode(vcpu))
  4639. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4640. vcpu_put(vcpu);
  4641. return 0;
  4642. }
  4643. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4644. struct kvm_guest_debug *dbg)
  4645. {
  4646. unsigned long rflags;
  4647. int i, r;
  4648. vcpu_load(vcpu);
  4649. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4650. r = -EBUSY;
  4651. if (vcpu->arch.exception.pending)
  4652. goto unlock_out;
  4653. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4654. kvm_queue_exception(vcpu, DB_VECTOR);
  4655. else
  4656. kvm_queue_exception(vcpu, BP_VECTOR);
  4657. }
  4658. /*
  4659. * Read rflags as long as potentially injected trace flags are still
  4660. * filtered out.
  4661. */
  4662. rflags = kvm_get_rflags(vcpu);
  4663. vcpu->guest_debug = dbg->control;
  4664. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4665. vcpu->guest_debug = 0;
  4666. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4667. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4668. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4669. vcpu->arch.switch_db_regs =
  4670. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4671. } else {
  4672. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4673. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4674. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4675. }
  4676. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4677. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4678. get_segment_base(vcpu, VCPU_SREG_CS);
  4679. /*
  4680. * Trigger an rflags update that will inject or remove the trace
  4681. * flags.
  4682. */
  4683. kvm_set_rflags(vcpu, rflags);
  4684. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4685. r = 0;
  4686. unlock_out:
  4687. vcpu_put(vcpu);
  4688. return r;
  4689. }
  4690. /*
  4691. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4692. * we have asm/x86/processor.h
  4693. */
  4694. struct fxsave {
  4695. u16 cwd;
  4696. u16 swd;
  4697. u16 twd;
  4698. u16 fop;
  4699. u64 rip;
  4700. u64 rdp;
  4701. u32 mxcsr;
  4702. u32 mxcsr_mask;
  4703. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4704. #ifdef CONFIG_X86_64
  4705. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4706. #else
  4707. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4708. #endif
  4709. };
  4710. /*
  4711. * Translate a guest virtual address to a guest physical address.
  4712. */
  4713. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4714. struct kvm_translation *tr)
  4715. {
  4716. unsigned long vaddr = tr->linear_address;
  4717. gpa_t gpa;
  4718. int idx;
  4719. vcpu_load(vcpu);
  4720. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4721. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4722. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4723. tr->physical_address = gpa;
  4724. tr->valid = gpa != UNMAPPED_GVA;
  4725. tr->writeable = 1;
  4726. tr->usermode = 0;
  4727. vcpu_put(vcpu);
  4728. return 0;
  4729. }
  4730. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4731. {
  4732. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4733. vcpu_load(vcpu);
  4734. memcpy(fpu->fpr, fxsave->st_space, 128);
  4735. fpu->fcw = fxsave->cwd;
  4736. fpu->fsw = fxsave->swd;
  4737. fpu->ftwx = fxsave->twd;
  4738. fpu->last_opcode = fxsave->fop;
  4739. fpu->last_ip = fxsave->rip;
  4740. fpu->last_dp = fxsave->rdp;
  4741. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4742. vcpu_put(vcpu);
  4743. return 0;
  4744. }
  4745. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4746. {
  4747. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4748. vcpu_load(vcpu);
  4749. memcpy(fxsave->st_space, fpu->fpr, 128);
  4750. fxsave->cwd = fpu->fcw;
  4751. fxsave->swd = fpu->fsw;
  4752. fxsave->twd = fpu->ftwx;
  4753. fxsave->fop = fpu->last_opcode;
  4754. fxsave->rip = fpu->last_ip;
  4755. fxsave->rdp = fpu->last_dp;
  4756. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4757. vcpu_put(vcpu);
  4758. return 0;
  4759. }
  4760. void fx_init(struct kvm_vcpu *vcpu)
  4761. {
  4762. unsigned after_mxcsr_mask;
  4763. /*
  4764. * Touch the fpu the first time in non atomic context as if
  4765. * this is the first fpu instruction the exception handler
  4766. * will fire before the instruction returns and it'll have to
  4767. * allocate ram with GFP_KERNEL.
  4768. */
  4769. if (!used_math())
  4770. kvm_fx_save(&vcpu->arch.host_fx_image);
  4771. /* Initialize guest FPU by resetting ours and saving into guest's */
  4772. preempt_disable();
  4773. kvm_fx_save(&vcpu->arch.host_fx_image);
  4774. kvm_fx_finit();
  4775. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4776. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4777. preempt_enable();
  4778. vcpu->arch.cr0 |= X86_CR0_ET;
  4779. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4780. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4781. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4782. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4783. }
  4784. EXPORT_SYMBOL_GPL(fx_init);
  4785. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4786. {
  4787. if (vcpu->guest_fpu_loaded)
  4788. return;
  4789. vcpu->guest_fpu_loaded = 1;
  4790. kvm_fx_save(&vcpu->arch.host_fx_image);
  4791. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4792. trace_kvm_fpu(1);
  4793. }
  4794. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4795. {
  4796. if (!vcpu->guest_fpu_loaded)
  4797. return;
  4798. vcpu->guest_fpu_loaded = 0;
  4799. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4800. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4801. ++vcpu->stat.fpu_reload;
  4802. set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
  4803. trace_kvm_fpu(0);
  4804. }
  4805. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4806. {
  4807. if (vcpu->arch.time_page) {
  4808. kvm_release_page_dirty(vcpu->arch.time_page);
  4809. vcpu->arch.time_page = NULL;
  4810. }
  4811. kvm_x86_ops->vcpu_free(vcpu);
  4812. }
  4813. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4814. unsigned int id)
  4815. {
  4816. return kvm_x86_ops->vcpu_create(kvm, id);
  4817. }
  4818. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4819. {
  4820. int r;
  4821. /* We do fxsave: this must be aligned. */
  4822. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4823. vcpu->arch.mtrr_state.have_fixed = 1;
  4824. vcpu_load(vcpu);
  4825. r = kvm_arch_vcpu_reset(vcpu);
  4826. if (r == 0)
  4827. r = kvm_mmu_setup(vcpu);
  4828. vcpu_put(vcpu);
  4829. if (r < 0)
  4830. goto free_vcpu;
  4831. return 0;
  4832. free_vcpu:
  4833. kvm_x86_ops->vcpu_free(vcpu);
  4834. return r;
  4835. }
  4836. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4837. {
  4838. vcpu_load(vcpu);
  4839. kvm_mmu_unload(vcpu);
  4840. vcpu_put(vcpu);
  4841. kvm_x86_ops->vcpu_free(vcpu);
  4842. }
  4843. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4844. {
  4845. vcpu->arch.nmi_pending = false;
  4846. vcpu->arch.nmi_injected = false;
  4847. vcpu->arch.switch_db_regs = 0;
  4848. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4849. vcpu->arch.dr6 = DR6_FIXED_1;
  4850. vcpu->arch.dr7 = DR7_FIXED_1;
  4851. return kvm_x86_ops->vcpu_reset(vcpu);
  4852. }
  4853. int kvm_arch_hardware_enable(void *garbage)
  4854. {
  4855. /*
  4856. * Since this may be called from a hotplug notifcation,
  4857. * we can't get the CPU frequency directly.
  4858. */
  4859. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4860. int cpu = raw_smp_processor_id();
  4861. per_cpu(cpu_tsc_khz, cpu) = 0;
  4862. }
  4863. kvm_shared_msr_cpu_online();
  4864. return kvm_x86_ops->hardware_enable(garbage);
  4865. }
  4866. void kvm_arch_hardware_disable(void *garbage)
  4867. {
  4868. kvm_x86_ops->hardware_disable(garbage);
  4869. drop_user_return_notifiers(garbage);
  4870. }
  4871. int kvm_arch_hardware_setup(void)
  4872. {
  4873. return kvm_x86_ops->hardware_setup();
  4874. }
  4875. void kvm_arch_hardware_unsetup(void)
  4876. {
  4877. kvm_x86_ops->hardware_unsetup();
  4878. }
  4879. void kvm_arch_check_processor_compat(void *rtn)
  4880. {
  4881. kvm_x86_ops->check_processor_compatibility(rtn);
  4882. }
  4883. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4884. {
  4885. struct page *page;
  4886. struct kvm *kvm;
  4887. int r;
  4888. BUG_ON(vcpu->kvm == NULL);
  4889. kvm = vcpu->kvm;
  4890. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4891. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4892. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4893. else
  4894. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4895. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4896. if (!page) {
  4897. r = -ENOMEM;
  4898. goto fail;
  4899. }
  4900. vcpu->arch.pio_data = page_address(page);
  4901. r = kvm_mmu_create(vcpu);
  4902. if (r < 0)
  4903. goto fail_free_pio_data;
  4904. if (irqchip_in_kernel(kvm)) {
  4905. r = kvm_create_lapic(vcpu);
  4906. if (r < 0)
  4907. goto fail_mmu_destroy;
  4908. }
  4909. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4910. GFP_KERNEL);
  4911. if (!vcpu->arch.mce_banks) {
  4912. r = -ENOMEM;
  4913. goto fail_free_lapic;
  4914. }
  4915. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4916. return 0;
  4917. fail_free_lapic:
  4918. kvm_free_lapic(vcpu);
  4919. fail_mmu_destroy:
  4920. kvm_mmu_destroy(vcpu);
  4921. fail_free_pio_data:
  4922. free_page((unsigned long)vcpu->arch.pio_data);
  4923. fail:
  4924. return r;
  4925. }
  4926. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4927. {
  4928. int idx;
  4929. kfree(vcpu->arch.mce_banks);
  4930. kvm_free_lapic(vcpu);
  4931. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4932. kvm_mmu_destroy(vcpu);
  4933. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4934. free_page((unsigned long)vcpu->arch.pio_data);
  4935. }
  4936. struct kvm *kvm_arch_create_vm(void)
  4937. {
  4938. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4939. if (!kvm)
  4940. return ERR_PTR(-ENOMEM);
  4941. kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  4942. if (!kvm->arch.aliases) {
  4943. kfree(kvm);
  4944. return ERR_PTR(-ENOMEM);
  4945. }
  4946. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4947. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4948. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4949. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4950. rdtscll(kvm->arch.vm_init_tsc);
  4951. return kvm;
  4952. }
  4953. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4954. {
  4955. vcpu_load(vcpu);
  4956. kvm_mmu_unload(vcpu);
  4957. vcpu_put(vcpu);
  4958. }
  4959. static void kvm_free_vcpus(struct kvm *kvm)
  4960. {
  4961. unsigned int i;
  4962. struct kvm_vcpu *vcpu;
  4963. /*
  4964. * Unpin any mmu pages first.
  4965. */
  4966. kvm_for_each_vcpu(i, vcpu, kvm)
  4967. kvm_unload_vcpu_mmu(vcpu);
  4968. kvm_for_each_vcpu(i, vcpu, kvm)
  4969. kvm_arch_vcpu_free(vcpu);
  4970. mutex_lock(&kvm->lock);
  4971. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4972. kvm->vcpus[i] = NULL;
  4973. atomic_set(&kvm->online_vcpus, 0);
  4974. mutex_unlock(&kvm->lock);
  4975. }
  4976. void kvm_arch_sync_events(struct kvm *kvm)
  4977. {
  4978. kvm_free_all_assigned_devices(kvm);
  4979. }
  4980. void kvm_arch_destroy_vm(struct kvm *kvm)
  4981. {
  4982. kvm_iommu_unmap_guest(kvm);
  4983. kvm_free_pit(kvm);
  4984. kfree(kvm->arch.vpic);
  4985. kfree(kvm->arch.vioapic);
  4986. kvm_free_vcpus(kvm);
  4987. kvm_free_physmem(kvm);
  4988. if (kvm->arch.apic_access_page)
  4989. put_page(kvm->arch.apic_access_page);
  4990. if (kvm->arch.ept_identity_pagetable)
  4991. put_page(kvm->arch.ept_identity_pagetable);
  4992. cleanup_srcu_struct(&kvm->srcu);
  4993. kfree(kvm->arch.aliases);
  4994. kfree(kvm);
  4995. }
  4996. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4997. struct kvm_memory_slot *memslot,
  4998. struct kvm_memory_slot old,
  4999. struct kvm_userspace_memory_region *mem,
  5000. int user_alloc)
  5001. {
  5002. int npages = memslot->npages;
  5003. /*To keep backward compatibility with older userspace,
  5004. *x86 needs to hanlde !user_alloc case.
  5005. */
  5006. if (!user_alloc) {
  5007. if (npages && !old.rmap) {
  5008. unsigned long userspace_addr;
  5009. down_write(&current->mm->mmap_sem);
  5010. userspace_addr = do_mmap(NULL, 0,
  5011. npages * PAGE_SIZE,
  5012. PROT_READ | PROT_WRITE,
  5013. MAP_PRIVATE | MAP_ANONYMOUS,
  5014. 0);
  5015. up_write(&current->mm->mmap_sem);
  5016. if (IS_ERR((void *)userspace_addr))
  5017. return PTR_ERR((void *)userspace_addr);
  5018. memslot->userspace_addr = userspace_addr;
  5019. }
  5020. }
  5021. return 0;
  5022. }
  5023. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5024. struct kvm_userspace_memory_region *mem,
  5025. struct kvm_memory_slot old,
  5026. int user_alloc)
  5027. {
  5028. int npages = mem->memory_size >> PAGE_SHIFT;
  5029. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5030. int ret;
  5031. down_write(&current->mm->mmap_sem);
  5032. ret = do_munmap(current->mm, old.userspace_addr,
  5033. old.npages * PAGE_SIZE);
  5034. up_write(&current->mm->mmap_sem);
  5035. if (ret < 0)
  5036. printk(KERN_WARNING
  5037. "kvm_vm_ioctl_set_memory_region: "
  5038. "failed to munmap memory\n");
  5039. }
  5040. spin_lock(&kvm->mmu_lock);
  5041. if (!kvm->arch.n_requested_mmu_pages) {
  5042. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5043. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5044. }
  5045. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5046. spin_unlock(&kvm->mmu_lock);
  5047. }
  5048. void kvm_arch_flush_shadow(struct kvm *kvm)
  5049. {
  5050. kvm_mmu_zap_all(kvm);
  5051. kvm_reload_remote_mmus(kvm);
  5052. }
  5053. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5054. {
  5055. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  5056. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5057. || vcpu->arch.nmi_pending ||
  5058. (kvm_arch_interrupt_allowed(vcpu) &&
  5059. kvm_cpu_has_interrupt(vcpu));
  5060. }
  5061. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5062. {
  5063. int me;
  5064. int cpu = vcpu->cpu;
  5065. if (waitqueue_active(&vcpu->wq)) {
  5066. wake_up_interruptible(&vcpu->wq);
  5067. ++vcpu->stat.halt_wakeup;
  5068. }
  5069. me = get_cpu();
  5070. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5071. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  5072. smp_send_reschedule(cpu);
  5073. put_cpu();
  5074. }
  5075. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5076. {
  5077. return kvm_x86_ops->interrupt_allowed(vcpu);
  5078. }
  5079. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5080. {
  5081. unsigned long current_rip = kvm_rip_read(vcpu) +
  5082. get_segment_base(vcpu, VCPU_SREG_CS);
  5083. return current_rip == linear_rip;
  5084. }
  5085. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5086. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5087. {
  5088. unsigned long rflags;
  5089. rflags = kvm_x86_ops->get_rflags(vcpu);
  5090. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5091. rflags &= ~X86_EFLAGS_TF;
  5092. return rflags;
  5093. }
  5094. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5095. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5096. {
  5097. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5098. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5099. rflags |= X86_EFLAGS_TF;
  5100. kvm_x86_ops->set_rflags(vcpu, rflags);
  5101. }
  5102. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5103. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5104. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5105. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5106. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5107. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5108. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5109. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5110. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5111. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5112. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5113. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5114. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);