slab.c 115 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/uaccess.h>
  106. #include <linux/nodemask.h>
  107. #include <linux/mempolicy.h>
  108. #include <linux/mutex.h>
  109. #include <linux/fault-inject.h>
  110. #include <linux/rtmutex.h>
  111. #include <linux/reciprocal_div.h>
  112. #include <asm/cacheflush.h>
  113. #include <asm/tlbflush.h>
  114. #include <asm/page.h>
  115. /*
  116. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  117. * 0 for faster, smaller code (especially in the critical paths).
  118. *
  119. * STATS - 1 to collect stats for /proc/slabinfo.
  120. * 0 for faster, smaller code (especially in the critical paths).
  121. *
  122. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  123. */
  124. #ifdef CONFIG_DEBUG_SLAB
  125. #define DEBUG 1
  126. #define STATS 1
  127. #define FORCED_DEBUG 1
  128. #else
  129. #define DEBUG 0
  130. #define STATS 0
  131. #define FORCED_DEBUG 0
  132. #endif
  133. /* Shouldn't this be in a header file somewhere? */
  134. #define BYTES_PER_WORD sizeof(void *)
  135. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  136. #ifndef cache_line_size
  137. #define cache_line_size() L1_CACHE_BYTES
  138. #endif
  139. #ifndef ARCH_KMALLOC_MINALIGN
  140. /*
  141. * Enforce a minimum alignment for the kmalloc caches.
  142. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  143. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  144. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  145. * alignment larger than the alignment of a 64-bit integer.
  146. * ARCH_KMALLOC_MINALIGN allows that.
  147. * Note that increasing this value may disable some debug features.
  148. */
  149. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  150. #endif
  151. #ifndef ARCH_SLAB_MINALIGN
  152. /*
  153. * Enforce a minimum alignment for all caches.
  154. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  155. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  156. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  157. * some debug features.
  158. */
  159. #define ARCH_SLAB_MINALIGN 0
  160. #endif
  161. #ifndef ARCH_KMALLOC_FLAGS
  162. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  163. #endif
  164. /* Legal flag mask for kmem_cache_create(). */
  165. #if DEBUG
  166. # define CREATE_MASK (SLAB_RED_ZONE | \
  167. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  168. SLAB_CACHE_DMA | \
  169. SLAB_STORE_USER | \
  170. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  171. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  172. #else
  173. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  174. SLAB_CACHE_DMA | \
  175. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  176. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  177. #endif
  178. /*
  179. * kmem_bufctl_t:
  180. *
  181. * Bufctl's are used for linking objs within a slab
  182. * linked offsets.
  183. *
  184. * This implementation relies on "struct page" for locating the cache &
  185. * slab an object belongs to.
  186. * This allows the bufctl structure to be small (one int), but limits
  187. * the number of objects a slab (not a cache) can contain when off-slab
  188. * bufctls are used. The limit is the size of the largest general cache
  189. * that does not use off-slab slabs.
  190. * For 32bit archs with 4 kB pages, is this 56.
  191. * This is not serious, as it is only for large objects, when it is unwise
  192. * to have too many per slab.
  193. * Note: This limit can be raised by introducing a general cache whose size
  194. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  195. */
  196. typedef unsigned int kmem_bufctl_t;
  197. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  198. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  199. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  200. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  201. /*
  202. * struct slab
  203. *
  204. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  205. * for a slab, or allocated from an general cache.
  206. * Slabs are chained into three list: fully used, partial, fully free slabs.
  207. */
  208. struct slab {
  209. struct list_head list;
  210. unsigned long colouroff;
  211. void *s_mem; /* including colour offset */
  212. unsigned int inuse; /* num of objs active in slab */
  213. kmem_bufctl_t free;
  214. unsigned short nodeid;
  215. };
  216. /*
  217. * struct slab_rcu
  218. *
  219. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  220. * arrange for kmem_freepages to be called via RCU. This is useful if
  221. * we need to approach a kernel structure obliquely, from its address
  222. * obtained without the usual locking. We can lock the structure to
  223. * stabilize it and check it's still at the given address, only if we
  224. * can be sure that the memory has not been meanwhile reused for some
  225. * other kind of object (which our subsystem's lock might corrupt).
  226. *
  227. * rcu_read_lock before reading the address, then rcu_read_unlock after
  228. * taking the spinlock within the structure expected at that address.
  229. *
  230. * We assume struct slab_rcu can overlay struct slab when destroying.
  231. */
  232. struct slab_rcu {
  233. struct rcu_head head;
  234. struct kmem_cache *cachep;
  235. void *addr;
  236. };
  237. /*
  238. * struct array_cache
  239. *
  240. * Purpose:
  241. * - LIFO ordering, to hand out cache-warm objects from _alloc
  242. * - reduce the number of linked list operations
  243. * - reduce spinlock operations
  244. *
  245. * The limit is stored in the per-cpu structure to reduce the data cache
  246. * footprint.
  247. *
  248. */
  249. struct array_cache {
  250. unsigned int avail;
  251. unsigned int limit;
  252. unsigned int batchcount;
  253. unsigned int touched;
  254. spinlock_t lock;
  255. void *entry[0]; /*
  256. * Must have this definition in here for the proper
  257. * alignment of array_cache. Also simplifies accessing
  258. * the entries.
  259. * [0] is for gcc 2.95. It should really be [].
  260. */
  261. };
  262. /*
  263. * bootstrap: The caches do not work without cpuarrays anymore, but the
  264. * cpuarrays are allocated from the generic caches...
  265. */
  266. #define BOOT_CPUCACHE_ENTRIES 1
  267. struct arraycache_init {
  268. struct array_cache cache;
  269. void *entries[BOOT_CPUCACHE_ENTRIES];
  270. };
  271. /*
  272. * The slab lists for all objects.
  273. */
  274. struct kmem_list3 {
  275. struct list_head slabs_partial; /* partial list first, better asm code */
  276. struct list_head slabs_full;
  277. struct list_head slabs_free;
  278. unsigned long free_objects;
  279. unsigned int free_limit;
  280. unsigned int colour_next; /* Per-node cache coloring */
  281. spinlock_t list_lock;
  282. struct array_cache *shared; /* shared per node */
  283. struct array_cache **alien; /* on other nodes */
  284. unsigned long next_reap; /* updated without locking */
  285. int free_touched; /* updated without locking */
  286. };
  287. /*
  288. * Need this for bootstrapping a per node allocator.
  289. */
  290. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  291. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  292. #define CACHE_CACHE 0
  293. #define SIZE_AC 1
  294. #define SIZE_L3 (1 + MAX_NUMNODES)
  295. static int drain_freelist(struct kmem_cache *cache,
  296. struct kmem_list3 *l3, int tofree);
  297. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  298. int node);
  299. static int enable_cpucache(struct kmem_cache *cachep);
  300. static void cache_reap(struct work_struct *unused);
  301. /*
  302. * This function must be completely optimized away if a constant is passed to
  303. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  304. */
  305. static __always_inline int index_of(const size_t size)
  306. {
  307. extern void __bad_size(void);
  308. if (__builtin_constant_p(size)) {
  309. int i = 0;
  310. #define CACHE(x) \
  311. if (size <=x) \
  312. return i; \
  313. else \
  314. i++;
  315. #include "linux/kmalloc_sizes.h"
  316. #undef CACHE
  317. __bad_size();
  318. } else
  319. __bad_size();
  320. return 0;
  321. }
  322. static int slab_early_init = 1;
  323. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  324. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  325. static void kmem_list3_init(struct kmem_list3 *parent)
  326. {
  327. INIT_LIST_HEAD(&parent->slabs_full);
  328. INIT_LIST_HEAD(&parent->slabs_partial);
  329. INIT_LIST_HEAD(&parent->slabs_free);
  330. parent->shared = NULL;
  331. parent->alien = NULL;
  332. parent->colour_next = 0;
  333. spin_lock_init(&parent->list_lock);
  334. parent->free_objects = 0;
  335. parent->free_touched = 0;
  336. }
  337. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  338. do { \
  339. INIT_LIST_HEAD(listp); \
  340. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  341. } while (0)
  342. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  343. do { \
  344. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  345. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  346. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  347. } while (0)
  348. /*
  349. * struct kmem_cache
  350. *
  351. * manages a cache.
  352. */
  353. struct kmem_cache {
  354. /* 1) per-cpu data, touched during every alloc/free */
  355. struct array_cache *array[NR_CPUS];
  356. /* 2) Cache tunables. Protected by cache_chain_mutex */
  357. unsigned int batchcount;
  358. unsigned int limit;
  359. unsigned int shared;
  360. unsigned int buffer_size;
  361. u32 reciprocal_buffer_size;
  362. /* 3) touched by every alloc & free from the backend */
  363. unsigned int flags; /* constant flags */
  364. unsigned int num; /* # of objs per slab */
  365. /* 4) cache_grow/shrink */
  366. /* order of pgs per slab (2^n) */
  367. unsigned int gfporder;
  368. /* force GFP flags, e.g. GFP_DMA */
  369. gfp_t gfpflags;
  370. size_t colour; /* cache colouring range */
  371. unsigned int colour_off; /* colour offset */
  372. struct kmem_cache *slabp_cache;
  373. unsigned int slab_size;
  374. unsigned int dflags; /* dynamic flags */
  375. /* constructor func */
  376. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  377. /* 5) cache creation/removal */
  378. const char *name;
  379. struct list_head next;
  380. /* 6) statistics */
  381. #if STATS
  382. unsigned long num_active;
  383. unsigned long num_allocations;
  384. unsigned long high_mark;
  385. unsigned long grown;
  386. unsigned long reaped;
  387. unsigned long errors;
  388. unsigned long max_freeable;
  389. unsigned long node_allocs;
  390. unsigned long node_frees;
  391. unsigned long node_overflow;
  392. atomic_t allochit;
  393. atomic_t allocmiss;
  394. atomic_t freehit;
  395. atomic_t freemiss;
  396. #endif
  397. #if DEBUG
  398. /*
  399. * If debugging is enabled, then the allocator can add additional
  400. * fields and/or padding to every object. buffer_size contains the total
  401. * object size including these internal fields, the following two
  402. * variables contain the offset to the user object and its size.
  403. */
  404. int obj_offset;
  405. int obj_size;
  406. #endif
  407. /*
  408. * We put nodelists[] at the end of kmem_cache, because we want to size
  409. * this array to nr_node_ids slots instead of MAX_NUMNODES
  410. * (see kmem_cache_init())
  411. * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
  412. * is statically defined, so we reserve the max number of nodes.
  413. */
  414. struct kmem_list3 *nodelists[MAX_NUMNODES];
  415. /*
  416. * Do not add fields after nodelists[]
  417. */
  418. };
  419. #define CFLGS_OFF_SLAB (0x80000000UL)
  420. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  421. #define BATCHREFILL_LIMIT 16
  422. /*
  423. * Optimization question: fewer reaps means less probability for unnessary
  424. * cpucache drain/refill cycles.
  425. *
  426. * OTOH the cpuarrays can contain lots of objects,
  427. * which could lock up otherwise freeable slabs.
  428. */
  429. #define REAPTIMEOUT_CPUC (2*HZ)
  430. #define REAPTIMEOUT_LIST3 (4*HZ)
  431. #if STATS
  432. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  433. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  434. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  435. #define STATS_INC_GROWN(x) ((x)->grown++)
  436. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  437. #define STATS_SET_HIGH(x) \
  438. do { \
  439. if ((x)->num_active > (x)->high_mark) \
  440. (x)->high_mark = (x)->num_active; \
  441. } while (0)
  442. #define STATS_INC_ERR(x) ((x)->errors++)
  443. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  444. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  445. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  446. #define STATS_SET_FREEABLE(x, i) \
  447. do { \
  448. if ((x)->max_freeable < i) \
  449. (x)->max_freeable = i; \
  450. } while (0)
  451. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  452. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  453. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  454. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  455. #else
  456. #define STATS_INC_ACTIVE(x) do { } while (0)
  457. #define STATS_DEC_ACTIVE(x) do { } while (0)
  458. #define STATS_INC_ALLOCED(x) do { } while (0)
  459. #define STATS_INC_GROWN(x) do { } while (0)
  460. #define STATS_ADD_REAPED(x,y) do { } while (0)
  461. #define STATS_SET_HIGH(x) do { } while (0)
  462. #define STATS_INC_ERR(x) do { } while (0)
  463. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  464. #define STATS_INC_NODEFREES(x) do { } while (0)
  465. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  466. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  467. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  468. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  469. #define STATS_INC_FREEHIT(x) do { } while (0)
  470. #define STATS_INC_FREEMISS(x) do { } while (0)
  471. #endif
  472. #if DEBUG
  473. /*
  474. * memory layout of objects:
  475. * 0 : objp
  476. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  477. * the end of an object is aligned with the end of the real
  478. * allocation. Catches writes behind the end of the allocation.
  479. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  480. * redzone word.
  481. * cachep->obj_offset: The real object.
  482. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  483. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  484. * [BYTES_PER_WORD long]
  485. */
  486. static int obj_offset(struct kmem_cache *cachep)
  487. {
  488. return cachep->obj_offset;
  489. }
  490. static int obj_size(struct kmem_cache *cachep)
  491. {
  492. return cachep->obj_size;
  493. }
  494. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  495. {
  496. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  497. return (unsigned long long*) (objp + obj_offset(cachep) -
  498. sizeof(unsigned long long));
  499. }
  500. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  501. {
  502. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  503. if (cachep->flags & SLAB_STORE_USER)
  504. return (unsigned long long *)(objp + cachep->buffer_size -
  505. sizeof(unsigned long long) -
  506. REDZONE_ALIGN);
  507. return (unsigned long long *) (objp + cachep->buffer_size -
  508. sizeof(unsigned long long));
  509. }
  510. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  511. {
  512. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  513. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  514. }
  515. #else
  516. #define obj_offset(x) 0
  517. #define obj_size(cachep) (cachep->buffer_size)
  518. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  519. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  520. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  521. #endif
  522. /*
  523. * Do not go above this order unless 0 objects fit into the slab.
  524. */
  525. #define BREAK_GFP_ORDER_HI 1
  526. #define BREAK_GFP_ORDER_LO 0
  527. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  528. /*
  529. * Functions for storing/retrieving the cachep and or slab from the page
  530. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  531. * these are used to find the cache which an obj belongs to.
  532. */
  533. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  534. {
  535. page->lru.next = (struct list_head *)cache;
  536. }
  537. static inline struct kmem_cache *page_get_cache(struct page *page)
  538. {
  539. page = compound_head(page);
  540. BUG_ON(!PageSlab(page));
  541. return (struct kmem_cache *)page->lru.next;
  542. }
  543. static inline void page_set_slab(struct page *page, struct slab *slab)
  544. {
  545. page->lru.prev = (struct list_head *)slab;
  546. }
  547. static inline struct slab *page_get_slab(struct page *page)
  548. {
  549. BUG_ON(!PageSlab(page));
  550. return (struct slab *)page->lru.prev;
  551. }
  552. static inline struct kmem_cache *virt_to_cache(const void *obj)
  553. {
  554. struct page *page = virt_to_head_page(obj);
  555. return page_get_cache(page);
  556. }
  557. static inline struct slab *virt_to_slab(const void *obj)
  558. {
  559. struct page *page = virt_to_head_page(obj);
  560. return page_get_slab(page);
  561. }
  562. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  563. unsigned int idx)
  564. {
  565. return slab->s_mem + cache->buffer_size * idx;
  566. }
  567. /*
  568. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  569. * Using the fact that buffer_size is a constant for a particular cache,
  570. * we can replace (offset / cache->buffer_size) by
  571. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  572. */
  573. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  574. const struct slab *slab, void *obj)
  575. {
  576. u32 offset = (obj - slab->s_mem);
  577. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  578. }
  579. /*
  580. * These are the default caches for kmalloc. Custom caches can have other sizes.
  581. */
  582. struct cache_sizes malloc_sizes[] = {
  583. #define CACHE(x) { .cs_size = (x) },
  584. #include <linux/kmalloc_sizes.h>
  585. CACHE(ULONG_MAX)
  586. #undef CACHE
  587. };
  588. EXPORT_SYMBOL(malloc_sizes);
  589. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  590. struct cache_names {
  591. char *name;
  592. char *name_dma;
  593. };
  594. static struct cache_names __initdata cache_names[] = {
  595. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  596. #include <linux/kmalloc_sizes.h>
  597. {NULL,}
  598. #undef CACHE
  599. };
  600. static struct arraycache_init initarray_cache __initdata =
  601. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  602. static struct arraycache_init initarray_generic =
  603. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  604. /* internal cache of cache description objs */
  605. static struct kmem_cache cache_cache = {
  606. .batchcount = 1,
  607. .limit = BOOT_CPUCACHE_ENTRIES,
  608. .shared = 1,
  609. .buffer_size = sizeof(struct kmem_cache),
  610. .name = "kmem_cache",
  611. };
  612. #define BAD_ALIEN_MAGIC 0x01020304ul
  613. #ifdef CONFIG_LOCKDEP
  614. /*
  615. * Slab sometimes uses the kmalloc slabs to store the slab headers
  616. * for other slabs "off slab".
  617. * The locking for this is tricky in that it nests within the locks
  618. * of all other slabs in a few places; to deal with this special
  619. * locking we put on-slab caches into a separate lock-class.
  620. *
  621. * We set lock class for alien array caches which are up during init.
  622. * The lock annotation will be lost if all cpus of a node goes down and
  623. * then comes back up during hotplug
  624. */
  625. static struct lock_class_key on_slab_l3_key;
  626. static struct lock_class_key on_slab_alc_key;
  627. static inline void init_lock_keys(void)
  628. {
  629. int q;
  630. struct cache_sizes *s = malloc_sizes;
  631. while (s->cs_size != ULONG_MAX) {
  632. for_each_node(q) {
  633. struct array_cache **alc;
  634. int r;
  635. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  636. if (!l3 || OFF_SLAB(s->cs_cachep))
  637. continue;
  638. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  639. alc = l3->alien;
  640. /*
  641. * FIXME: This check for BAD_ALIEN_MAGIC
  642. * should go away when common slab code is taught to
  643. * work even without alien caches.
  644. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  645. * for alloc_alien_cache,
  646. */
  647. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  648. continue;
  649. for_each_node(r) {
  650. if (alc[r])
  651. lockdep_set_class(&alc[r]->lock,
  652. &on_slab_alc_key);
  653. }
  654. }
  655. s++;
  656. }
  657. }
  658. #else
  659. static inline void init_lock_keys(void)
  660. {
  661. }
  662. #endif
  663. /*
  664. * 1. Guard access to the cache-chain.
  665. * 2. Protect sanity of cpu_online_map against cpu hotplug events
  666. */
  667. static DEFINE_MUTEX(cache_chain_mutex);
  668. static struct list_head cache_chain;
  669. /*
  670. * chicken and egg problem: delay the per-cpu array allocation
  671. * until the general caches are up.
  672. */
  673. static enum {
  674. NONE,
  675. PARTIAL_AC,
  676. PARTIAL_L3,
  677. FULL
  678. } g_cpucache_up;
  679. /*
  680. * used by boot code to determine if it can use slab based allocator
  681. */
  682. int slab_is_available(void)
  683. {
  684. return g_cpucache_up == FULL;
  685. }
  686. static DEFINE_PER_CPU(struct delayed_work, reap_work);
  687. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  688. {
  689. return cachep->array[smp_processor_id()];
  690. }
  691. static inline struct kmem_cache *__find_general_cachep(size_t size,
  692. gfp_t gfpflags)
  693. {
  694. struct cache_sizes *csizep = malloc_sizes;
  695. #if DEBUG
  696. /* This happens if someone tries to call
  697. * kmem_cache_create(), or __kmalloc(), before
  698. * the generic caches are initialized.
  699. */
  700. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  701. #endif
  702. if (!size)
  703. return ZERO_SIZE_PTR;
  704. while (size > csizep->cs_size)
  705. csizep++;
  706. /*
  707. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  708. * has cs_{dma,}cachep==NULL. Thus no special case
  709. * for large kmalloc calls required.
  710. */
  711. #ifdef CONFIG_ZONE_DMA
  712. if (unlikely(gfpflags & GFP_DMA))
  713. return csizep->cs_dmacachep;
  714. #endif
  715. return csizep->cs_cachep;
  716. }
  717. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  718. {
  719. return __find_general_cachep(size, gfpflags);
  720. }
  721. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  722. {
  723. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  724. }
  725. /*
  726. * Calculate the number of objects and left-over bytes for a given buffer size.
  727. */
  728. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  729. size_t align, int flags, size_t *left_over,
  730. unsigned int *num)
  731. {
  732. int nr_objs;
  733. size_t mgmt_size;
  734. size_t slab_size = PAGE_SIZE << gfporder;
  735. /*
  736. * The slab management structure can be either off the slab or
  737. * on it. For the latter case, the memory allocated for a
  738. * slab is used for:
  739. *
  740. * - The struct slab
  741. * - One kmem_bufctl_t for each object
  742. * - Padding to respect alignment of @align
  743. * - @buffer_size bytes for each object
  744. *
  745. * If the slab management structure is off the slab, then the
  746. * alignment will already be calculated into the size. Because
  747. * the slabs are all pages aligned, the objects will be at the
  748. * correct alignment when allocated.
  749. */
  750. if (flags & CFLGS_OFF_SLAB) {
  751. mgmt_size = 0;
  752. nr_objs = slab_size / buffer_size;
  753. if (nr_objs > SLAB_LIMIT)
  754. nr_objs = SLAB_LIMIT;
  755. } else {
  756. /*
  757. * Ignore padding for the initial guess. The padding
  758. * is at most @align-1 bytes, and @buffer_size is at
  759. * least @align. In the worst case, this result will
  760. * be one greater than the number of objects that fit
  761. * into the memory allocation when taking the padding
  762. * into account.
  763. */
  764. nr_objs = (slab_size - sizeof(struct slab)) /
  765. (buffer_size + sizeof(kmem_bufctl_t));
  766. /*
  767. * This calculated number will be either the right
  768. * amount, or one greater than what we want.
  769. */
  770. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  771. > slab_size)
  772. nr_objs--;
  773. if (nr_objs > SLAB_LIMIT)
  774. nr_objs = SLAB_LIMIT;
  775. mgmt_size = slab_mgmt_size(nr_objs, align);
  776. }
  777. *num = nr_objs;
  778. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  779. }
  780. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  781. static void __slab_error(const char *function, struct kmem_cache *cachep,
  782. char *msg)
  783. {
  784. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  785. function, cachep->name, msg);
  786. dump_stack();
  787. }
  788. /*
  789. * By default on NUMA we use alien caches to stage the freeing of
  790. * objects allocated from other nodes. This causes massive memory
  791. * inefficiencies when using fake NUMA setup to split memory into a
  792. * large number of small nodes, so it can be disabled on the command
  793. * line
  794. */
  795. static int use_alien_caches __read_mostly = 1;
  796. static int __init noaliencache_setup(char *s)
  797. {
  798. use_alien_caches = 0;
  799. return 1;
  800. }
  801. __setup("noaliencache", noaliencache_setup);
  802. #ifdef CONFIG_NUMA
  803. /*
  804. * Special reaping functions for NUMA systems called from cache_reap().
  805. * These take care of doing round robin flushing of alien caches (containing
  806. * objects freed on different nodes from which they were allocated) and the
  807. * flushing of remote pcps by calling drain_node_pages.
  808. */
  809. static DEFINE_PER_CPU(unsigned long, reap_node);
  810. static void init_reap_node(int cpu)
  811. {
  812. int node;
  813. node = next_node(cpu_to_node(cpu), node_online_map);
  814. if (node == MAX_NUMNODES)
  815. node = first_node(node_online_map);
  816. per_cpu(reap_node, cpu) = node;
  817. }
  818. static void next_reap_node(void)
  819. {
  820. int node = __get_cpu_var(reap_node);
  821. node = next_node(node, node_online_map);
  822. if (unlikely(node >= MAX_NUMNODES))
  823. node = first_node(node_online_map);
  824. __get_cpu_var(reap_node) = node;
  825. }
  826. #else
  827. #define init_reap_node(cpu) do { } while (0)
  828. #define next_reap_node(void) do { } while (0)
  829. #endif
  830. /*
  831. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  832. * via the workqueue/eventd.
  833. * Add the CPU number into the expiration time to minimize the possibility of
  834. * the CPUs getting into lockstep and contending for the global cache chain
  835. * lock.
  836. */
  837. static void __cpuinit start_cpu_timer(int cpu)
  838. {
  839. struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
  840. /*
  841. * When this gets called from do_initcalls via cpucache_init(),
  842. * init_workqueues() has already run, so keventd will be setup
  843. * at that time.
  844. */
  845. if (keventd_up() && reap_work->work.func == NULL) {
  846. init_reap_node(cpu);
  847. INIT_DELAYED_WORK(reap_work, cache_reap);
  848. schedule_delayed_work_on(cpu, reap_work,
  849. __round_jiffies_relative(HZ, cpu));
  850. }
  851. }
  852. static struct array_cache *alloc_arraycache(int node, int entries,
  853. int batchcount)
  854. {
  855. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  856. struct array_cache *nc = NULL;
  857. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  858. if (nc) {
  859. nc->avail = 0;
  860. nc->limit = entries;
  861. nc->batchcount = batchcount;
  862. nc->touched = 0;
  863. spin_lock_init(&nc->lock);
  864. }
  865. return nc;
  866. }
  867. /*
  868. * Transfer objects in one arraycache to another.
  869. * Locking must be handled by the caller.
  870. *
  871. * Return the number of entries transferred.
  872. */
  873. static int transfer_objects(struct array_cache *to,
  874. struct array_cache *from, unsigned int max)
  875. {
  876. /* Figure out how many entries to transfer */
  877. int nr = min(min(from->avail, max), to->limit - to->avail);
  878. if (!nr)
  879. return 0;
  880. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  881. sizeof(void *) *nr);
  882. from->avail -= nr;
  883. to->avail += nr;
  884. to->touched = 1;
  885. return nr;
  886. }
  887. #ifndef CONFIG_NUMA
  888. #define drain_alien_cache(cachep, alien) do { } while (0)
  889. #define reap_alien(cachep, l3) do { } while (0)
  890. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  891. {
  892. return (struct array_cache **)BAD_ALIEN_MAGIC;
  893. }
  894. static inline void free_alien_cache(struct array_cache **ac_ptr)
  895. {
  896. }
  897. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  898. {
  899. return 0;
  900. }
  901. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  902. gfp_t flags)
  903. {
  904. return NULL;
  905. }
  906. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  907. gfp_t flags, int nodeid)
  908. {
  909. return NULL;
  910. }
  911. #else /* CONFIG_NUMA */
  912. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  913. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  914. static struct array_cache **alloc_alien_cache(int node, int limit)
  915. {
  916. struct array_cache **ac_ptr;
  917. int memsize = sizeof(void *) * nr_node_ids;
  918. int i;
  919. if (limit > 1)
  920. limit = 12;
  921. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  922. if (ac_ptr) {
  923. for_each_node(i) {
  924. if (i == node || !node_online(i)) {
  925. ac_ptr[i] = NULL;
  926. continue;
  927. }
  928. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  929. if (!ac_ptr[i]) {
  930. for (i--; i <= 0; i--)
  931. kfree(ac_ptr[i]);
  932. kfree(ac_ptr);
  933. return NULL;
  934. }
  935. }
  936. }
  937. return ac_ptr;
  938. }
  939. static void free_alien_cache(struct array_cache **ac_ptr)
  940. {
  941. int i;
  942. if (!ac_ptr)
  943. return;
  944. for_each_node(i)
  945. kfree(ac_ptr[i]);
  946. kfree(ac_ptr);
  947. }
  948. static void __drain_alien_cache(struct kmem_cache *cachep,
  949. struct array_cache *ac, int node)
  950. {
  951. struct kmem_list3 *rl3 = cachep->nodelists[node];
  952. if (ac->avail) {
  953. spin_lock(&rl3->list_lock);
  954. /*
  955. * Stuff objects into the remote nodes shared array first.
  956. * That way we could avoid the overhead of putting the objects
  957. * into the free lists and getting them back later.
  958. */
  959. if (rl3->shared)
  960. transfer_objects(rl3->shared, ac, ac->limit);
  961. free_block(cachep, ac->entry, ac->avail, node);
  962. ac->avail = 0;
  963. spin_unlock(&rl3->list_lock);
  964. }
  965. }
  966. /*
  967. * Called from cache_reap() to regularly drain alien caches round robin.
  968. */
  969. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  970. {
  971. int node = __get_cpu_var(reap_node);
  972. if (l3->alien) {
  973. struct array_cache *ac = l3->alien[node];
  974. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  975. __drain_alien_cache(cachep, ac, node);
  976. spin_unlock_irq(&ac->lock);
  977. }
  978. }
  979. }
  980. static void drain_alien_cache(struct kmem_cache *cachep,
  981. struct array_cache **alien)
  982. {
  983. int i = 0;
  984. struct array_cache *ac;
  985. unsigned long flags;
  986. for_each_online_node(i) {
  987. ac = alien[i];
  988. if (ac) {
  989. spin_lock_irqsave(&ac->lock, flags);
  990. __drain_alien_cache(cachep, ac, i);
  991. spin_unlock_irqrestore(&ac->lock, flags);
  992. }
  993. }
  994. }
  995. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  996. {
  997. struct slab *slabp = virt_to_slab(objp);
  998. int nodeid = slabp->nodeid;
  999. struct kmem_list3 *l3;
  1000. struct array_cache *alien = NULL;
  1001. int node;
  1002. node = numa_node_id();
  1003. /*
  1004. * Make sure we are not freeing a object from another node to the array
  1005. * cache on this cpu.
  1006. */
  1007. if (likely(slabp->nodeid == node))
  1008. return 0;
  1009. l3 = cachep->nodelists[node];
  1010. STATS_INC_NODEFREES(cachep);
  1011. if (l3->alien && l3->alien[nodeid]) {
  1012. alien = l3->alien[nodeid];
  1013. spin_lock(&alien->lock);
  1014. if (unlikely(alien->avail == alien->limit)) {
  1015. STATS_INC_ACOVERFLOW(cachep);
  1016. __drain_alien_cache(cachep, alien, nodeid);
  1017. }
  1018. alien->entry[alien->avail++] = objp;
  1019. spin_unlock(&alien->lock);
  1020. } else {
  1021. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  1022. free_block(cachep, &objp, 1, nodeid);
  1023. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  1024. }
  1025. return 1;
  1026. }
  1027. #endif
  1028. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1029. unsigned long action, void *hcpu)
  1030. {
  1031. long cpu = (long)hcpu;
  1032. struct kmem_cache *cachep;
  1033. struct kmem_list3 *l3 = NULL;
  1034. int node = cpu_to_node(cpu);
  1035. int memsize = sizeof(struct kmem_list3);
  1036. switch (action) {
  1037. case CPU_LOCK_ACQUIRE:
  1038. mutex_lock(&cache_chain_mutex);
  1039. break;
  1040. case CPU_UP_PREPARE:
  1041. case CPU_UP_PREPARE_FROZEN:
  1042. /*
  1043. * We need to do this right in the beginning since
  1044. * alloc_arraycache's are going to use this list.
  1045. * kmalloc_node allows us to add the slab to the right
  1046. * kmem_list3 and not this cpu's kmem_list3
  1047. */
  1048. list_for_each_entry(cachep, &cache_chain, next) {
  1049. /*
  1050. * Set up the size64 kmemlist for cpu before we can
  1051. * begin anything. Make sure some other cpu on this
  1052. * node has not already allocated this
  1053. */
  1054. if (!cachep->nodelists[node]) {
  1055. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1056. if (!l3)
  1057. goto bad;
  1058. kmem_list3_init(l3);
  1059. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1060. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1061. /*
  1062. * The l3s don't come and go as CPUs come and
  1063. * go. cache_chain_mutex is sufficient
  1064. * protection here.
  1065. */
  1066. cachep->nodelists[node] = l3;
  1067. }
  1068. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1069. cachep->nodelists[node]->free_limit =
  1070. (1 + nr_cpus_node(node)) *
  1071. cachep->batchcount + cachep->num;
  1072. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1073. }
  1074. /*
  1075. * Now we can go ahead with allocating the shared arrays and
  1076. * array caches
  1077. */
  1078. list_for_each_entry(cachep, &cache_chain, next) {
  1079. struct array_cache *nc;
  1080. struct array_cache *shared = NULL;
  1081. struct array_cache **alien = NULL;
  1082. nc = alloc_arraycache(node, cachep->limit,
  1083. cachep->batchcount);
  1084. if (!nc)
  1085. goto bad;
  1086. if (cachep->shared) {
  1087. shared = alloc_arraycache(node,
  1088. cachep->shared * cachep->batchcount,
  1089. 0xbaadf00d);
  1090. if (!shared)
  1091. goto bad;
  1092. }
  1093. if (use_alien_caches) {
  1094. alien = alloc_alien_cache(node, cachep->limit);
  1095. if (!alien)
  1096. goto bad;
  1097. }
  1098. cachep->array[cpu] = nc;
  1099. l3 = cachep->nodelists[node];
  1100. BUG_ON(!l3);
  1101. spin_lock_irq(&l3->list_lock);
  1102. if (!l3->shared) {
  1103. /*
  1104. * We are serialised from CPU_DEAD or
  1105. * CPU_UP_CANCELLED by the cpucontrol lock
  1106. */
  1107. l3->shared = shared;
  1108. shared = NULL;
  1109. }
  1110. #ifdef CONFIG_NUMA
  1111. if (!l3->alien) {
  1112. l3->alien = alien;
  1113. alien = NULL;
  1114. }
  1115. #endif
  1116. spin_unlock_irq(&l3->list_lock);
  1117. kfree(shared);
  1118. free_alien_cache(alien);
  1119. }
  1120. break;
  1121. case CPU_ONLINE:
  1122. case CPU_ONLINE_FROZEN:
  1123. start_cpu_timer(cpu);
  1124. break;
  1125. #ifdef CONFIG_HOTPLUG_CPU
  1126. case CPU_DOWN_PREPARE:
  1127. case CPU_DOWN_PREPARE_FROZEN:
  1128. /*
  1129. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1130. * held so that if cache_reap() is invoked it cannot do
  1131. * anything expensive but will only modify reap_work
  1132. * and reschedule the timer.
  1133. */
  1134. cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
  1135. /* Now the cache_reaper is guaranteed to be not running. */
  1136. per_cpu(reap_work, cpu).work.func = NULL;
  1137. break;
  1138. case CPU_DOWN_FAILED:
  1139. case CPU_DOWN_FAILED_FROZEN:
  1140. start_cpu_timer(cpu);
  1141. break;
  1142. case CPU_DEAD:
  1143. case CPU_DEAD_FROZEN:
  1144. /*
  1145. * Even if all the cpus of a node are down, we don't free the
  1146. * kmem_list3 of any cache. This to avoid a race between
  1147. * cpu_down, and a kmalloc allocation from another cpu for
  1148. * memory from the node of the cpu going down. The list3
  1149. * structure is usually allocated from kmem_cache_create() and
  1150. * gets destroyed at kmem_cache_destroy().
  1151. */
  1152. /* fall thru */
  1153. #endif
  1154. case CPU_UP_CANCELED:
  1155. case CPU_UP_CANCELED_FROZEN:
  1156. list_for_each_entry(cachep, &cache_chain, next) {
  1157. struct array_cache *nc;
  1158. struct array_cache *shared;
  1159. struct array_cache **alien;
  1160. cpumask_t mask;
  1161. mask = node_to_cpumask(node);
  1162. /* cpu is dead; no one can alloc from it. */
  1163. nc = cachep->array[cpu];
  1164. cachep->array[cpu] = NULL;
  1165. l3 = cachep->nodelists[node];
  1166. if (!l3)
  1167. goto free_array_cache;
  1168. spin_lock_irq(&l3->list_lock);
  1169. /* Free limit for this kmem_list3 */
  1170. l3->free_limit -= cachep->batchcount;
  1171. if (nc)
  1172. free_block(cachep, nc->entry, nc->avail, node);
  1173. if (!cpus_empty(mask)) {
  1174. spin_unlock_irq(&l3->list_lock);
  1175. goto free_array_cache;
  1176. }
  1177. shared = l3->shared;
  1178. if (shared) {
  1179. free_block(cachep, shared->entry,
  1180. shared->avail, node);
  1181. l3->shared = NULL;
  1182. }
  1183. alien = l3->alien;
  1184. l3->alien = NULL;
  1185. spin_unlock_irq(&l3->list_lock);
  1186. kfree(shared);
  1187. if (alien) {
  1188. drain_alien_cache(cachep, alien);
  1189. free_alien_cache(alien);
  1190. }
  1191. free_array_cache:
  1192. kfree(nc);
  1193. }
  1194. /*
  1195. * In the previous loop, all the objects were freed to
  1196. * the respective cache's slabs, now we can go ahead and
  1197. * shrink each nodelist to its limit.
  1198. */
  1199. list_for_each_entry(cachep, &cache_chain, next) {
  1200. l3 = cachep->nodelists[node];
  1201. if (!l3)
  1202. continue;
  1203. drain_freelist(cachep, l3, l3->free_objects);
  1204. }
  1205. break;
  1206. case CPU_LOCK_RELEASE:
  1207. mutex_unlock(&cache_chain_mutex);
  1208. break;
  1209. }
  1210. return NOTIFY_OK;
  1211. bad:
  1212. return NOTIFY_BAD;
  1213. }
  1214. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1215. &cpuup_callback, NULL, 0
  1216. };
  1217. /*
  1218. * swap the static kmem_list3 with kmalloced memory
  1219. */
  1220. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1221. int nodeid)
  1222. {
  1223. struct kmem_list3 *ptr;
  1224. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1225. BUG_ON(!ptr);
  1226. local_irq_disable();
  1227. memcpy(ptr, list, sizeof(struct kmem_list3));
  1228. /*
  1229. * Do not assume that spinlocks can be initialized via memcpy:
  1230. */
  1231. spin_lock_init(&ptr->list_lock);
  1232. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1233. cachep->nodelists[nodeid] = ptr;
  1234. local_irq_enable();
  1235. }
  1236. /*
  1237. * Initialisation. Called after the page allocator have been initialised and
  1238. * before smp_init().
  1239. */
  1240. void __init kmem_cache_init(void)
  1241. {
  1242. size_t left_over;
  1243. struct cache_sizes *sizes;
  1244. struct cache_names *names;
  1245. int i;
  1246. int order;
  1247. int node;
  1248. if (num_possible_nodes() == 1)
  1249. use_alien_caches = 0;
  1250. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1251. kmem_list3_init(&initkmem_list3[i]);
  1252. if (i < MAX_NUMNODES)
  1253. cache_cache.nodelists[i] = NULL;
  1254. }
  1255. /*
  1256. * Fragmentation resistance on low memory - only use bigger
  1257. * page orders on machines with more than 32MB of memory.
  1258. */
  1259. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1260. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1261. /* Bootstrap is tricky, because several objects are allocated
  1262. * from caches that do not exist yet:
  1263. * 1) initialize the cache_cache cache: it contains the struct
  1264. * kmem_cache structures of all caches, except cache_cache itself:
  1265. * cache_cache is statically allocated.
  1266. * Initially an __init data area is used for the head array and the
  1267. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1268. * array at the end of the bootstrap.
  1269. * 2) Create the first kmalloc cache.
  1270. * The struct kmem_cache for the new cache is allocated normally.
  1271. * An __init data area is used for the head array.
  1272. * 3) Create the remaining kmalloc caches, with minimally sized
  1273. * head arrays.
  1274. * 4) Replace the __init data head arrays for cache_cache and the first
  1275. * kmalloc cache with kmalloc allocated arrays.
  1276. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1277. * the other cache's with kmalloc allocated memory.
  1278. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1279. */
  1280. node = numa_node_id();
  1281. /* 1) create the cache_cache */
  1282. INIT_LIST_HEAD(&cache_chain);
  1283. list_add(&cache_cache.next, &cache_chain);
  1284. cache_cache.colour_off = cache_line_size();
  1285. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1286. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
  1287. /*
  1288. * struct kmem_cache size depends on nr_node_ids, which
  1289. * can be less than MAX_NUMNODES.
  1290. */
  1291. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1292. nr_node_ids * sizeof(struct kmem_list3 *);
  1293. #if DEBUG
  1294. cache_cache.obj_size = cache_cache.buffer_size;
  1295. #endif
  1296. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1297. cache_line_size());
  1298. cache_cache.reciprocal_buffer_size =
  1299. reciprocal_value(cache_cache.buffer_size);
  1300. for (order = 0; order < MAX_ORDER; order++) {
  1301. cache_estimate(order, cache_cache.buffer_size,
  1302. cache_line_size(), 0, &left_over, &cache_cache.num);
  1303. if (cache_cache.num)
  1304. break;
  1305. }
  1306. BUG_ON(!cache_cache.num);
  1307. cache_cache.gfporder = order;
  1308. cache_cache.colour = left_over / cache_cache.colour_off;
  1309. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1310. sizeof(struct slab), cache_line_size());
  1311. /* 2+3) create the kmalloc caches */
  1312. sizes = malloc_sizes;
  1313. names = cache_names;
  1314. /*
  1315. * Initialize the caches that provide memory for the array cache and the
  1316. * kmem_list3 structures first. Without this, further allocations will
  1317. * bug.
  1318. */
  1319. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1320. sizes[INDEX_AC].cs_size,
  1321. ARCH_KMALLOC_MINALIGN,
  1322. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1323. NULL, NULL);
  1324. if (INDEX_AC != INDEX_L3) {
  1325. sizes[INDEX_L3].cs_cachep =
  1326. kmem_cache_create(names[INDEX_L3].name,
  1327. sizes[INDEX_L3].cs_size,
  1328. ARCH_KMALLOC_MINALIGN,
  1329. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1330. NULL, NULL);
  1331. }
  1332. slab_early_init = 0;
  1333. while (sizes->cs_size != ULONG_MAX) {
  1334. /*
  1335. * For performance, all the general caches are L1 aligned.
  1336. * This should be particularly beneficial on SMP boxes, as it
  1337. * eliminates "false sharing".
  1338. * Note for systems short on memory removing the alignment will
  1339. * allow tighter packing of the smaller caches.
  1340. */
  1341. if (!sizes->cs_cachep) {
  1342. sizes->cs_cachep = kmem_cache_create(names->name,
  1343. sizes->cs_size,
  1344. ARCH_KMALLOC_MINALIGN,
  1345. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1346. NULL, NULL);
  1347. }
  1348. #ifdef CONFIG_ZONE_DMA
  1349. sizes->cs_dmacachep = kmem_cache_create(
  1350. names->name_dma,
  1351. sizes->cs_size,
  1352. ARCH_KMALLOC_MINALIGN,
  1353. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1354. SLAB_PANIC,
  1355. NULL, NULL);
  1356. #endif
  1357. sizes++;
  1358. names++;
  1359. }
  1360. /* 4) Replace the bootstrap head arrays */
  1361. {
  1362. struct array_cache *ptr;
  1363. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1364. local_irq_disable();
  1365. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1366. memcpy(ptr, cpu_cache_get(&cache_cache),
  1367. sizeof(struct arraycache_init));
  1368. /*
  1369. * Do not assume that spinlocks can be initialized via memcpy:
  1370. */
  1371. spin_lock_init(&ptr->lock);
  1372. cache_cache.array[smp_processor_id()] = ptr;
  1373. local_irq_enable();
  1374. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1375. local_irq_disable();
  1376. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1377. != &initarray_generic.cache);
  1378. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1379. sizeof(struct arraycache_init));
  1380. /*
  1381. * Do not assume that spinlocks can be initialized via memcpy:
  1382. */
  1383. spin_lock_init(&ptr->lock);
  1384. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1385. ptr;
  1386. local_irq_enable();
  1387. }
  1388. /* 5) Replace the bootstrap kmem_list3's */
  1389. {
  1390. int nid;
  1391. /* Replace the static kmem_list3 structures for the boot cpu */
  1392. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
  1393. for_each_online_node(nid) {
  1394. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1395. &initkmem_list3[SIZE_AC + nid], nid);
  1396. if (INDEX_AC != INDEX_L3) {
  1397. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1398. &initkmem_list3[SIZE_L3 + nid], nid);
  1399. }
  1400. }
  1401. }
  1402. /* 6) resize the head arrays to their final sizes */
  1403. {
  1404. struct kmem_cache *cachep;
  1405. mutex_lock(&cache_chain_mutex);
  1406. list_for_each_entry(cachep, &cache_chain, next)
  1407. if (enable_cpucache(cachep))
  1408. BUG();
  1409. mutex_unlock(&cache_chain_mutex);
  1410. }
  1411. /* Annotate slab for lockdep -- annotate the malloc caches */
  1412. init_lock_keys();
  1413. /* Done! */
  1414. g_cpucache_up = FULL;
  1415. /*
  1416. * Register a cpu startup notifier callback that initializes
  1417. * cpu_cache_get for all new cpus
  1418. */
  1419. register_cpu_notifier(&cpucache_notifier);
  1420. /*
  1421. * The reap timers are started later, with a module init call: That part
  1422. * of the kernel is not yet operational.
  1423. */
  1424. }
  1425. static int __init cpucache_init(void)
  1426. {
  1427. int cpu;
  1428. /*
  1429. * Register the timers that return unneeded pages to the page allocator
  1430. */
  1431. for_each_online_cpu(cpu)
  1432. start_cpu_timer(cpu);
  1433. return 0;
  1434. }
  1435. __initcall(cpucache_init);
  1436. /*
  1437. * Interface to system's page allocator. No need to hold the cache-lock.
  1438. *
  1439. * If we requested dmaable memory, we will get it. Even if we
  1440. * did not request dmaable memory, we might get it, but that
  1441. * would be relatively rare and ignorable.
  1442. */
  1443. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1444. {
  1445. struct page *page;
  1446. int nr_pages;
  1447. int i;
  1448. #ifndef CONFIG_MMU
  1449. /*
  1450. * Nommu uses slab's for process anonymous memory allocations, and thus
  1451. * requires __GFP_COMP to properly refcount higher order allocations
  1452. */
  1453. flags |= __GFP_COMP;
  1454. #endif
  1455. flags |= cachep->gfpflags;
  1456. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1457. if (!page)
  1458. return NULL;
  1459. nr_pages = (1 << cachep->gfporder);
  1460. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1461. add_zone_page_state(page_zone(page),
  1462. NR_SLAB_RECLAIMABLE, nr_pages);
  1463. else
  1464. add_zone_page_state(page_zone(page),
  1465. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1466. for (i = 0; i < nr_pages; i++)
  1467. __SetPageSlab(page + i);
  1468. return page_address(page);
  1469. }
  1470. /*
  1471. * Interface to system's page release.
  1472. */
  1473. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1474. {
  1475. unsigned long i = (1 << cachep->gfporder);
  1476. struct page *page = virt_to_page(addr);
  1477. const unsigned long nr_freed = i;
  1478. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1479. sub_zone_page_state(page_zone(page),
  1480. NR_SLAB_RECLAIMABLE, nr_freed);
  1481. else
  1482. sub_zone_page_state(page_zone(page),
  1483. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1484. while (i--) {
  1485. BUG_ON(!PageSlab(page));
  1486. __ClearPageSlab(page);
  1487. page++;
  1488. }
  1489. if (current->reclaim_state)
  1490. current->reclaim_state->reclaimed_slab += nr_freed;
  1491. free_pages((unsigned long)addr, cachep->gfporder);
  1492. }
  1493. static void kmem_rcu_free(struct rcu_head *head)
  1494. {
  1495. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1496. struct kmem_cache *cachep = slab_rcu->cachep;
  1497. kmem_freepages(cachep, slab_rcu->addr);
  1498. if (OFF_SLAB(cachep))
  1499. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1500. }
  1501. #if DEBUG
  1502. #ifdef CONFIG_DEBUG_PAGEALLOC
  1503. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1504. unsigned long caller)
  1505. {
  1506. int size = obj_size(cachep);
  1507. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1508. if (size < 5 * sizeof(unsigned long))
  1509. return;
  1510. *addr++ = 0x12345678;
  1511. *addr++ = caller;
  1512. *addr++ = smp_processor_id();
  1513. size -= 3 * sizeof(unsigned long);
  1514. {
  1515. unsigned long *sptr = &caller;
  1516. unsigned long svalue;
  1517. while (!kstack_end(sptr)) {
  1518. svalue = *sptr++;
  1519. if (kernel_text_address(svalue)) {
  1520. *addr++ = svalue;
  1521. size -= sizeof(unsigned long);
  1522. if (size <= sizeof(unsigned long))
  1523. break;
  1524. }
  1525. }
  1526. }
  1527. *addr++ = 0x87654321;
  1528. }
  1529. #endif
  1530. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1531. {
  1532. int size = obj_size(cachep);
  1533. addr = &((char *)addr)[obj_offset(cachep)];
  1534. memset(addr, val, size);
  1535. *(unsigned char *)(addr + size - 1) = POISON_END;
  1536. }
  1537. static void dump_line(char *data, int offset, int limit)
  1538. {
  1539. int i;
  1540. unsigned char error = 0;
  1541. int bad_count = 0;
  1542. printk(KERN_ERR "%03x:", offset);
  1543. for (i = 0; i < limit; i++) {
  1544. if (data[offset + i] != POISON_FREE) {
  1545. error = data[offset + i];
  1546. bad_count++;
  1547. }
  1548. printk(" %02x", (unsigned char)data[offset + i]);
  1549. }
  1550. printk("\n");
  1551. if (bad_count == 1) {
  1552. error ^= POISON_FREE;
  1553. if (!(error & (error - 1))) {
  1554. printk(KERN_ERR "Single bit error detected. Probably "
  1555. "bad RAM.\n");
  1556. #ifdef CONFIG_X86
  1557. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1558. "test tool.\n");
  1559. #else
  1560. printk(KERN_ERR "Run a memory test tool.\n");
  1561. #endif
  1562. }
  1563. }
  1564. }
  1565. #endif
  1566. #if DEBUG
  1567. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1568. {
  1569. int i, size;
  1570. char *realobj;
  1571. if (cachep->flags & SLAB_RED_ZONE) {
  1572. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1573. *dbg_redzone1(cachep, objp),
  1574. *dbg_redzone2(cachep, objp));
  1575. }
  1576. if (cachep->flags & SLAB_STORE_USER) {
  1577. printk(KERN_ERR "Last user: [<%p>]",
  1578. *dbg_userword(cachep, objp));
  1579. print_symbol("(%s)",
  1580. (unsigned long)*dbg_userword(cachep, objp));
  1581. printk("\n");
  1582. }
  1583. realobj = (char *)objp + obj_offset(cachep);
  1584. size = obj_size(cachep);
  1585. for (i = 0; i < size && lines; i += 16, lines--) {
  1586. int limit;
  1587. limit = 16;
  1588. if (i + limit > size)
  1589. limit = size - i;
  1590. dump_line(realobj, i, limit);
  1591. }
  1592. }
  1593. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1594. {
  1595. char *realobj;
  1596. int size, i;
  1597. int lines = 0;
  1598. realobj = (char *)objp + obj_offset(cachep);
  1599. size = obj_size(cachep);
  1600. for (i = 0; i < size; i++) {
  1601. char exp = POISON_FREE;
  1602. if (i == size - 1)
  1603. exp = POISON_END;
  1604. if (realobj[i] != exp) {
  1605. int limit;
  1606. /* Mismatch ! */
  1607. /* Print header */
  1608. if (lines == 0) {
  1609. printk(KERN_ERR
  1610. "Slab corruption: %s start=%p, len=%d\n",
  1611. cachep->name, realobj, size);
  1612. print_objinfo(cachep, objp, 0);
  1613. }
  1614. /* Hexdump the affected line */
  1615. i = (i / 16) * 16;
  1616. limit = 16;
  1617. if (i + limit > size)
  1618. limit = size - i;
  1619. dump_line(realobj, i, limit);
  1620. i += 16;
  1621. lines++;
  1622. /* Limit to 5 lines */
  1623. if (lines > 5)
  1624. break;
  1625. }
  1626. }
  1627. if (lines != 0) {
  1628. /* Print some data about the neighboring objects, if they
  1629. * exist:
  1630. */
  1631. struct slab *slabp = virt_to_slab(objp);
  1632. unsigned int objnr;
  1633. objnr = obj_to_index(cachep, slabp, objp);
  1634. if (objnr) {
  1635. objp = index_to_obj(cachep, slabp, objnr - 1);
  1636. realobj = (char *)objp + obj_offset(cachep);
  1637. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1638. realobj, size);
  1639. print_objinfo(cachep, objp, 2);
  1640. }
  1641. if (objnr + 1 < cachep->num) {
  1642. objp = index_to_obj(cachep, slabp, objnr + 1);
  1643. realobj = (char *)objp + obj_offset(cachep);
  1644. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1645. realobj, size);
  1646. print_objinfo(cachep, objp, 2);
  1647. }
  1648. }
  1649. }
  1650. #endif
  1651. #if DEBUG
  1652. /**
  1653. * slab_destroy_objs - destroy a slab and its objects
  1654. * @cachep: cache pointer being destroyed
  1655. * @slabp: slab pointer being destroyed
  1656. *
  1657. * Call the registered destructor for each object in a slab that is being
  1658. * destroyed.
  1659. */
  1660. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1661. {
  1662. int i;
  1663. for (i = 0; i < cachep->num; i++) {
  1664. void *objp = index_to_obj(cachep, slabp, i);
  1665. if (cachep->flags & SLAB_POISON) {
  1666. #ifdef CONFIG_DEBUG_PAGEALLOC
  1667. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1668. OFF_SLAB(cachep))
  1669. kernel_map_pages(virt_to_page(objp),
  1670. cachep->buffer_size / PAGE_SIZE, 1);
  1671. else
  1672. check_poison_obj(cachep, objp);
  1673. #else
  1674. check_poison_obj(cachep, objp);
  1675. #endif
  1676. }
  1677. if (cachep->flags & SLAB_RED_ZONE) {
  1678. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1679. slab_error(cachep, "start of a freed object "
  1680. "was overwritten");
  1681. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1682. slab_error(cachep, "end of a freed object "
  1683. "was overwritten");
  1684. }
  1685. }
  1686. }
  1687. #else
  1688. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1689. {
  1690. }
  1691. #endif
  1692. /**
  1693. * slab_destroy - destroy and release all objects in a slab
  1694. * @cachep: cache pointer being destroyed
  1695. * @slabp: slab pointer being destroyed
  1696. *
  1697. * Destroy all the objs in a slab, and release the mem back to the system.
  1698. * Before calling the slab must have been unlinked from the cache. The
  1699. * cache-lock is not held/needed.
  1700. */
  1701. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1702. {
  1703. void *addr = slabp->s_mem - slabp->colouroff;
  1704. slab_destroy_objs(cachep, slabp);
  1705. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1706. struct slab_rcu *slab_rcu;
  1707. slab_rcu = (struct slab_rcu *)slabp;
  1708. slab_rcu->cachep = cachep;
  1709. slab_rcu->addr = addr;
  1710. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1711. } else {
  1712. kmem_freepages(cachep, addr);
  1713. if (OFF_SLAB(cachep))
  1714. kmem_cache_free(cachep->slabp_cache, slabp);
  1715. }
  1716. }
  1717. /*
  1718. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1719. * size of kmem_list3.
  1720. */
  1721. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1722. {
  1723. int node;
  1724. for_each_online_node(node) {
  1725. cachep->nodelists[node] = &initkmem_list3[index + node];
  1726. cachep->nodelists[node]->next_reap = jiffies +
  1727. REAPTIMEOUT_LIST3 +
  1728. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1729. }
  1730. }
  1731. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1732. {
  1733. int i;
  1734. struct kmem_list3 *l3;
  1735. for_each_online_cpu(i)
  1736. kfree(cachep->array[i]);
  1737. /* NUMA: free the list3 structures */
  1738. for_each_online_node(i) {
  1739. l3 = cachep->nodelists[i];
  1740. if (l3) {
  1741. kfree(l3->shared);
  1742. free_alien_cache(l3->alien);
  1743. kfree(l3);
  1744. }
  1745. }
  1746. kmem_cache_free(&cache_cache, cachep);
  1747. }
  1748. /**
  1749. * calculate_slab_order - calculate size (page order) of slabs
  1750. * @cachep: pointer to the cache that is being created
  1751. * @size: size of objects to be created in this cache.
  1752. * @align: required alignment for the objects.
  1753. * @flags: slab allocation flags
  1754. *
  1755. * Also calculates the number of objects per slab.
  1756. *
  1757. * This could be made much more intelligent. For now, try to avoid using
  1758. * high order pages for slabs. When the gfp() functions are more friendly
  1759. * towards high-order requests, this should be changed.
  1760. */
  1761. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1762. size_t size, size_t align, unsigned long flags)
  1763. {
  1764. unsigned long offslab_limit;
  1765. size_t left_over = 0;
  1766. int gfporder;
  1767. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1768. unsigned int num;
  1769. size_t remainder;
  1770. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1771. if (!num)
  1772. continue;
  1773. if (flags & CFLGS_OFF_SLAB) {
  1774. /*
  1775. * Max number of objs-per-slab for caches which
  1776. * use off-slab slabs. Needed to avoid a possible
  1777. * looping condition in cache_grow().
  1778. */
  1779. offslab_limit = size - sizeof(struct slab);
  1780. offslab_limit /= sizeof(kmem_bufctl_t);
  1781. if (num > offslab_limit)
  1782. break;
  1783. }
  1784. /* Found something acceptable - save it away */
  1785. cachep->num = num;
  1786. cachep->gfporder = gfporder;
  1787. left_over = remainder;
  1788. /*
  1789. * A VFS-reclaimable slab tends to have most allocations
  1790. * as GFP_NOFS and we really don't want to have to be allocating
  1791. * higher-order pages when we are unable to shrink dcache.
  1792. */
  1793. if (flags & SLAB_RECLAIM_ACCOUNT)
  1794. break;
  1795. /*
  1796. * Large number of objects is good, but very large slabs are
  1797. * currently bad for the gfp()s.
  1798. */
  1799. if (gfporder >= slab_break_gfp_order)
  1800. break;
  1801. /*
  1802. * Acceptable internal fragmentation?
  1803. */
  1804. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1805. break;
  1806. }
  1807. return left_over;
  1808. }
  1809. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
  1810. {
  1811. if (g_cpucache_up == FULL)
  1812. return enable_cpucache(cachep);
  1813. if (g_cpucache_up == NONE) {
  1814. /*
  1815. * Note: the first kmem_cache_create must create the cache
  1816. * that's used by kmalloc(24), otherwise the creation of
  1817. * further caches will BUG().
  1818. */
  1819. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1820. /*
  1821. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1822. * the first cache, then we need to set up all its list3s,
  1823. * otherwise the creation of further caches will BUG().
  1824. */
  1825. set_up_list3s(cachep, SIZE_AC);
  1826. if (INDEX_AC == INDEX_L3)
  1827. g_cpucache_up = PARTIAL_L3;
  1828. else
  1829. g_cpucache_up = PARTIAL_AC;
  1830. } else {
  1831. cachep->array[smp_processor_id()] =
  1832. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1833. if (g_cpucache_up == PARTIAL_AC) {
  1834. set_up_list3s(cachep, SIZE_L3);
  1835. g_cpucache_up = PARTIAL_L3;
  1836. } else {
  1837. int node;
  1838. for_each_online_node(node) {
  1839. cachep->nodelists[node] =
  1840. kmalloc_node(sizeof(struct kmem_list3),
  1841. GFP_KERNEL, node);
  1842. BUG_ON(!cachep->nodelists[node]);
  1843. kmem_list3_init(cachep->nodelists[node]);
  1844. }
  1845. }
  1846. }
  1847. cachep->nodelists[numa_node_id()]->next_reap =
  1848. jiffies + REAPTIMEOUT_LIST3 +
  1849. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1850. cpu_cache_get(cachep)->avail = 0;
  1851. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1852. cpu_cache_get(cachep)->batchcount = 1;
  1853. cpu_cache_get(cachep)->touched = 0;
  1854. cachep->batchcount = 1;
  1855. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1856. return 0;
  1857. }
  1858. /**
  1859. * kmem_cache_create - Create a cache.
  1860. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1861. * @size: The size of objects to be created in this cache.
  1862. * @align: The required alignment for the objects.
  1863. * @flags: SLAB flags
  1864. * @ctor: A constructor for the objects.
  1865. * @dtor: A destructor for the objects (not implemented anymore).
  1866. *
  1867. * Returns a ptr to the cache on success, NULL on failure.
  1868. * Cannot be called within a int, but can be interrupted.
  1869. * The @ctor is run when new pages are allocated by the cache
  1870. * and the @dtor is run before the pages are handed back.
  1871. *
  1872. * @name must be valid until the cache is destroyed. This implies that
  1873. * the module calling this has to destroy the cache before getting unloaded.
  1874. *
  1875. * The flags are
  1876. *
  1877. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1878. * to catch references to uninitialised memory.
  1879. *
  1880. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1881. * for buffer overruns.
  1882. *
  1883. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1884. * cacheline. This can be beneficial if you're counting cycles as closely
  1885. * as davem.
  1886. */
  1887. struct kmem_cache *
  1888. kmem_cache_create (const char *name, size_t size, size_t align,
  1889. unsigned long flags,
  1890. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1891. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1892. {
  1893. size_t left_over, slab_size, ralign;
  1894. struct kmem_cache *cachep = NULL, *pc;
  1895. /*
  1896. * Sanity checks... these are all serious usage bugs.
  1897. */
  1898. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1899. size > KMALLOC_MAX_SIZE || dtor) {
  1900. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1901. name);
  1902. BUG();
  1903. }
  1904. /*
  1905. * We use cache_chain_mutex to ensure a consistent view of
  1906. * cpu_online_map as well. Please see cpuup_callback
  1907. */
  1908. mutex_lock(&cache_chain_mutex);
  1909. list_for_each_entry(pc, &cache_chain, next) {
  1910. char tmp;
  1911. int res;
  1912. /*
  1913. * This happens when the module gets unloaded and doesn't
  1914. * destroy its slab cache and no-one else reuses the vmalloc
  1915. * area of the module. Print a warning.
  1916. */
  1917. res = probe_kernel_address(pc->name, tmp);
  1918. if (res) {
  1919. printk(KERN_ERR
  1920. "SLAB: cache with size %d has lost its name\n",
  1921. pc->buffer_size);
  1922. continue;
  1923. }
  1924. if (!strcmp(pc->name, name)) {
  1925. printk(KERN_ERR
  1926. "kmem_cache_create: duplicate cache %s\n", name);
  1927. dump_stack();
  1928. goto oops;
  1929. }
  1930. }
  1931. #if DEBUG
  1932. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1933. #if FORCED_DEBUG
  1934. /*
  1935. * Enable redzoning and last user accounting, except for caches with
  1936. * large objects, if the increased size would increase the object size
  1937. * above the next power of two: caches with object sizes just above a
  1938. * power of two have a significant amount of internal fragmentation.
  1939. */
  1940. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1941. 2 * sizeof(unsigned long long)))
  1942. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1943. if (!(flags & SLAB_DESTROY_BY_RCU))
  1944. flags |= SLAB_POISON;
  1945. #endif
  1946. if (flags & SLAB_DESTROY_BY_RCU)
  1947. BUG_ON(flags & SLAB_POISON);
  1948. #endif
  1949. /*
  1950. * Always checks flags, a caller might be expecting debug support which
  1951. * isn't available.
  1952. */
  1953. BUG_ON(flags & ~CREATE_MASK);
  1954. /*
  1955. * Check that size is in terms of words. This is needed to avoid
  1956. * unaligned accesses for some archs when redzoning is used, and makes
  1957. * sure any on-slab bufctl's are also correctly aligned.
  1958. */
  1959. if (size & (BYTES_PER_WORD - 1)) {
  1960. size += (BYTES_PER_WORD - 1);
  1961. size &= ~(BYTES_PER_WORD - 1);
  1962. }
  1963. /* calculate the final buffer alignment: */
  1964. /* 1) arch recommendation: can be overridden for debug */
  1965. if (flags & SLAB_HWCACHE_ALIGN) {
  1966. /*
  1967. * Default alignment: as specified by the arch code. Except if
  1968. * an object is really small, then squeeze multiple objects into
  1969. * one cacheline.
  1970. */
  1971. ralign = cache_line_size();
  1972. while (size <= ralign / 2)
  1973. ralign /= 2;
  1974. } else {
  1975. ralign = BYTES_PER_WORD;
  1976. }
  1977. /*
  1978. * Redzoning and user store require word alignment or possibly larger.
  1979. * Note this will be overridden by architecture or caller mandated
  1980. * alignment if either is greater than BYTES_PER_WORD.
  1981. */
  1982. if (flags & SLAB_STORE_USER)
  1983. ralign = BYTES_PER_WORD;
  1984. if (flags & SLAB_RED_ZONE) {
  1985. ralign = REDZONE_ALIGN;
  1986. /* If redzoning, ensure that the second redzone is suitably
  1987. * aligned, by adjusting the object size accordingly. */
  1988. size += REDZONE_ALIGN - 1;
  1989. size &= ~(REDZONE_ALIGN - 1);
  1990. }
  1991. /* 2) arch mandated alignment */
  1992. if (ralign < ARCH_SLAB_MINALIGN) {
  1993. ralign = ARCH_SLAB_MINALIGN;
  1994. }
  1995. /* 3) caller mandated alignment */
  1996. if (ralign < align) {
  1997. ralign = align;
  1998. }
  1999. /* disable debug if necessary */
  2000. if (ralign > __alignof__(unsigned long long))
  2001. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2002. /*
  2003. * 4) Store it.
  2004. */
  2005. align = ralign;
  2006. /* Get cache's description obj. */
  2007. cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
  2008. if (!cachep)
  2009. goto oops;
  2010. #if DEBUG
  2011. cachep->obj_size = size;
  2012. /*
  2013. * Both debugging options require word-alignment which is calculated
  2014. * into align above.
  2015. */
  2016. if (flags & SLAB_RED_ZONE) {
  2017. /* add space for red zone words */
  2018. cachep->obj_offset += sizeof(unsigned long long);
  2019. size += 2 * sizeof(unsigned long long);
  2020. }
  2021. if (flags & SLAB_STORE_USER) {
  2022. /* user store requires one word storage behind the end of
  2023. * the real object. But if the second red zone needs to be
  2024. * aligned to 64 bits, we must allow that much space.
  2025. */
  2026. if (flags & SLAB_RED_ZONE)
  2027. size += REDZONE_ALIGN;
  2028. else
  2029. size += BYTES_PER_WORD;
  2030. }
  2031. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2032. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2033. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2034. cachep->obj_offset += PAGE_SIZE - size;
  2035. size = PAGE_SIZE;
  2036. }
  2037. #endif
  2038. #endif
  2039. /*
  2040. * Determine if the slab management is 'on' or 'off' slab.
  2041. * (bootstrapping cannot cope with offslab caches so don't do
  2042. * it too early on.)
  2043. */
  2044. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  2045. /*
  2046. * Size is large, assume best to place the slab management obj
  2047. * off-slab (should allow better packing of objs).
  2048. */
  2049. flags |= CFLGS_OFF_SLAB;
  2050. size = ALIGN(size, align);
  2051. left_over = calculate_slab_order(cachep, size, align, flags);
  2052. if (!cachep->num) {
  2053. printk(KERN_ERR
  2054. "kmem_cache_create: couldn't create cache %s.\n", name);
  2055. kmem_cache_free(&cache_cache, cachep);
  2056. cachep = NULL;
  2057. goto oops;
  2058. }
  2059. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2060. + sizeof(struct slab), align);
  2061. /*
  2062. * If the slab has been placed off-slab, and we have enough space then
  2063. * move it on-slab. This is at the expense of any extra colouring.
  2064. */
  2065. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2066. flags &= ~CFLGS_OFF_SLAB;
  2067. left_over -= slab_size;
  2068. }
  2069. if (flags & CFLGS_OFF_SLAB) {
  2070. /* really off slab. No need for manual alignment */
  2071. slab_size =
  2072. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2073. }
  2074. cachep->colour_off = cache_line_size();
  2075. /* Offset must be a multiple of the alignment. */
  2076. if (cachep->colour_off < align)
  2077. cachep->colour_off = align;
  2078. cachep->colour = left_over / cachep->colour_off;
  2079. cachep->slab_size = slab_size;
  2080. cachep->flags = flags;
  2081. cachep->gfpflags = 0;
  2082. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2083. cachep->gfpflags |= GFP_DMA;
  2084. cachep->buffer_size = size;
  2085. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2086. if (flags & CFLGS_OFF_SLAB) {
  2087. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2088. /*
  2089. * This is a possibility for one of the malloc_sizes caches.
  2090. * But since we go off slab only for object size greater than
  2091. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2092. * this should not happen at all.
  2093. * But leave a BUG_ON for some lucky dude.
  2094. */
  2095. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2096. }
  2097. cachep->ctor = ctor;
  2098. cachep->name = name;
  2099. if (setup_cpu_cache(cachep)) {
  2100. __kmem_cache_destroy(cachep);
  2101. cachep = NULL;
  2102. goto oops;
  2103. }
  2104. /* cache setup completed, link it into the list */
  2105. list_add(&cachep->next, &cache_chain);
  2106. oops:
  2107. if (!cachep && (flags & SLAB_PANIC))
  2108. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2109. name);
  2110. mutex_unlock(&cache_chain_mutex);
  2111. return cachep;
  2112. }
  2113. EXPORT_SYMBOL(kmem_cache_create);
  2114. #if DEBUG
  2115. static void check_irq_off(void)
  2116. {
  2117. BUG_ON(!irqs_disabled());
  2118. }
  2119. static void check_irq_on(void)
  2120. {
  2121. BUG_ON(irqs_disabled());
  2122. }
  2123. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2124. {
  2125. #ifdef CONFIG_SMP
  2126. check_irq_off();
  2127. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2128. #endif
  2129. }
  2130. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2131. {
  2132. #ifdef CONFIG_SMP
  2133. check_irq_off();
  2134. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2135. #endif
  2136. }
  2137. #else
  2138. #define check_irq_off() do { } while(0)
  2139. #define check_irq_on() do { } while(0)
  2140. #define check_spinlock_acquired(x) do { } while(0)
  2141. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2142. #endif
  2143. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2144. struct array_cache *ac,
  2145. int force, int node);
  2146. static void do_drain(void *arg)
  2147. {
  2148. struct kmem_cache *cachep = arg;
  2149. struct array_cache *ac;
  2150. int node = numa_node_id();
  2151. check_irq_off();
  2152. ac = cpu_cache_get(cachep);
  2153. spin_lock(&cachep->nodelists[node]->list_lock);
  2154. free_block(cachep, ac->entry, ac->avail, node);
  2155. spin_unlock(&cachep->nodelists[node]->list_lock);
  2156. ac->avail = 0;
  2157. }
  2158. static void drain_cpu_caches(struct kmem_cache *cachep)
  2159. {
  2160. struct kmem_list3 *l3;
  2161. int node;
  2162. on_each_cpu(do_drain, cachep, 1, 1);
  2163. check_irq_on();
  2164. for_each_online_node(node) {
  2165. l3 = cachep->nodelists[node];
  2166. if (l3 && l3->alien)
  2167. drain_alien_cache(cachep, l3->alien);
  2168. }
  2169. for_each_online_node(node) {
  2170. l3 = cachep->nodelists[node];
  2171. if (l3)
  2172. drain_array(cachep, l3, l3->shared, 1, node);
  2173. }
  2174. }
  2175. /*
  2176. * Remove slabs from the list of free slabs.
  2177. * Specify the number of slabs to drain in tofree.
  2178. *
  2179. * Returns the actual number of slabs released.
  2180. */
  2181. static int drain_freelist(struct kmem_cache *cache,
  2182. struct kmem_list3 *l3, int tofree)
  2183. {
  2184. struct list_head *p;
  2185. int nr_freed;
  2186. struct slab *slabp;
  2187. nr_freed = 0;
  2188. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2189. spin_lock_irq(&l3->list_lock);
  2190. p = l3->slabs_free.prev;
  2191. if (p == &l3->slabs_free) {
  2192. spin_unlock_irq(&l3->list_lock);
  2193. goto out;
  2194. }
  2195. slabp = list_entry(p, struct slab, list);
  2196. #if DEBUG
  2197. BUG_ON(slabp->inuse);
  2198. #endif
  2199. list_del(&slabp->list);
  2200. /*
  2201. * Safe to drop the lock. The slab is no longer linked
  2202. * to the cache.
  2203. */
  2204. l3->free_objects -= cache->num;
  2205. spin_unlock_irq(&l3->list_lock);
  2206. slab_destroy(cache, slabp);
  2207. nr_freed++;
  2208. }
  2209. out:
  2210. return nr_freed;
  2211. }
  2212. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2213. static int __cache_shrink(struct kmem_cache *cachep)
  2214. {
  2215. int ret = 0, i = 0;
  2216. struct kmem_list3 *l3;
  2217. drain_cpu_caches(cachep);
  2218. check_irq_on();
  2219. for_each_online_node(i) {
  2220. l3 = cachep->nodelists[i];
  2221. if (!l3)
  2222. continue;
  2223. drain_freelist(cachep, l3, l3->free_objects);
  2224. ret += !list_empty(&l3->slabs_full) ||
  2225. !list_empty(&l3->slabs_partial);
  2226. }
  2227. return (ret ? 1 : 0);
  2228. }
  2229. /**
  2230. * kmem_cache_shrink - Shrink a cache.
  2231. * @cachep: The cache to shrink.
  2232. *
  2233. * Releases as many slabs as possible for a cache.
  2234. * To help debugging, a zero exit status indicates all slabs were released.
  2235. */
  2236. int kmem_cache_shrink(struct kmem_cache *cachep)
  2237. {
  2238. int ret;
  2239. BUG_ON(!cachep || in_interrupt());
  2240. mutex_lock(&cache_chain_mutex);
  2241. ret = __cache_shrink(cachep);
  2242. mutex_unlock(&cache_chain_mutex);
  2243. return ret;
  2244. }
  2245. EXPORT_SYMBOL(kmem_cache_shrink);
  2246. /**
  2247. * kmem_cache_destroy - delete a cache
  2248. * @cachep: the cache to destroy
  2249. *
  2250. * Remove a &struct kmem_cache object from the slab cache.
  2251. *
  2252. * It is expected this function will be called by a module when it is
  2253. * unloaded. This will remove the cache completely, and avoid a duplicate
  2254. * cache being allocated each time a module is loaded and unloaded, if the
  2255. * module doesn't have persistent in-kernel storage across loads and unloads.
  2256. *
  2257. * The cache must be empty before calling this function.
  2258. *
  2259. * The caller must guarantee that noone will allocate memory from the cache
  2260. * during the kmem_cache_destroy().
  2261. */
  2262. void kmem_cache_destroy(struct kmem_cache *cachep)
  2263. {
  2264. BUG_ON(!cachep || in_interrupt());
  2265. /* Find the cache in the chain of caches. */
  2266. mutex_lock(&cache_chain_mutex);
  2267. /*
  2268. * the chain is never empty, cache_cache is never destroyed
  2269. */
  2270. list_del(&cachep->next);
  2271. if (__cache_shrink(cachep)) {
  2272. slab_error(cachep, "Can't free all objects");
  2273. list_add(&cachep->next, &cache_chain);
  2274. mutex_unlock(&cache_chain_mutex);
  2275. return;
  2276. }
  2277. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2278. synchronize_rcu();
  2279. __kmem_cache_destroy(cachep);
  2280. mutex_unlock(&cache_chain_mutex);
  2281. }
  2282. EXPORT_SYMBOL(kmem_cache_destroy);
  2283. /*
  2284. * Get the memory for a slab management obj.
  2285. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2286. * always come from malloc_sizes caches. The slab descriptor cannot
  2287. * come from the same cache which is getting created because,
  2288. * when we are searching for an appropriate cache for these
  2289. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2290. * If we are creating a malloc_sizes cache here it would not be visible to
  2291. * kmem_find_general_cachep till the initialization is complete.
  2292. * Hence we cannot have slabp_cache same as the original cache.
  2293. */
  2294. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2295. int colour_off, gfp_t local_flags,
  2296. int nodeid)
  2297. {
  2298. struct slab *slabp;
  2299. if (OFF_SLAB(cachep)) {
  2300. /* Slab management obj is off-slab. */
  2301. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2302. local_flags & ~GFP_THISNODE, nodeid);
  2303. if (!slabp)
  2304. return NULL;
  2305. } else {
  2306. slabp = objp + colour_off;
  2307. colour_off += cachep->slab_size;
  2308. }
  2309. slabp->inuse = 0;
  2310. slabp->colouroff = colour_off;
  2311. slabp->s_mem = objp + colour_off;
  2312. slabp->nodeid = nodeid;
  2313. return slabp;
  2314. }
  2315. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2316. {
  2317. return (kmem_bufctl_t *) (slabp + 1);
  2318. }
  2319. static void cache_init_objs(struct kmem_cache *cachep,
  2320. struct slab *slabp)
  2321. {
  2322. int i;
  2323. for (i = 0; i < cachep->num; i++) {
  2324. void *objp = index_to_obj(cachep, slabp, i);
  2325. #if DEBUG
  2326. /* need to poison the objs? */
  2327. if (cachep->flags & SLAB_POISON)
  2328. poison_obj(cachep, objp, POISON_FREE);
  2329. if (cachep->flags & SLAB_STORE_USER)
  2330. *dbg_userword(cachep, objp) = NULL;
  2331. if (cachep->flags & SLAB_RED_ZONE) {
  2332. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2333. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2334. }
  2335. /*
  2336. * Constructors are not allowed to allocate memory from the same
  2337. * cache which they are a constructor for. Otherwise, deadlock.
  2338. * They must also be threaded.
  2339. */
  2340. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2341. cachep->ctor(objp + obj_offset(cachep), cachep,
  2342. 0);
  2343. if (cachep->flags & SLAB_RED_ZONE) {
  2344. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2345. slab_error(cachep, "constructor overwrote the"
  2346. " end of an object");
  2347. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2348. slab_error(cachep, "constructor overwrote the"
  2349. " start of an object");
  2350. }
  2351. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2352. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2353. kernel_map_pages(virt_to_page(objp),
  2354. cachep->buffer_size / PAGE_SIZE, 0);
  2355. #else
  2356. if (cachep->ctor)
  2357. cachep->ctor(objp, cachep, 0);
  2358. #endif
  2359. slab_bufctl(slabp)[i] = i + 1;
  2360. }
  2361. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2362. slabp->free = 0;
  2363. }
  2364. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2365. {
  2366. if (CONFIG_ZONE_DMA_FLAG) {
  2367. if (flags & GFP_DMA)
  2368. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2369. else
  2370. BUG_ON(cachep->gfpflags & GFP_DMA);
  2371. }
  2372. }
  2373. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2374. int nodeid)
  2375. {
  2376. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2377. kmem_bufctl_t next;
  2378. slabp->inuse++;
  2379. next = slab_bufctl(slabp)[slabp->free];
  2380. #if DEBUG
  2381. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2382. WARN_ON(slabp->nodeid != nodeid);
  2383. #endif
  2384. slabp->free = next;
  2385. return objp;
  2386. }
  2387. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2388. void *objp, int nodeid)
  2389. {
  2390. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2391. #if DEBUG
  2392. /* Verify that the slab belongs to the intended node */
  2393. WARN_ON(slabp->nodeid != nodeid);
  2394. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2395. printk(KERN_ERR "slab: double free detected in cache "
  2396. "'%s', objp %p\n", cachep->name, objp);
  2397. BUG();
  2398. }
  2399. #endif
  2400. slab_bufctl(slabp)[objnr] = slabp->free;
  2401. slabp->free = objnr;
  2402. slabp->inuse--;
  2403. }
  2404. /*
  2405. * Map pages beginning at addr to the given cache and slab. This is required
  2406. * for the slab allocator to be able to lookup the cache and slab of a
  2407. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2408. */
  2409. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2410. void *addr)
  2411. {
  2412. int nr_pages;
  2413. struct page *page;
  2414. page = virt_to_page(addr);
  2415. nr_pages = 1;
  2416. if (likely(!PageCompound(page)))
  2417. nr_pages <<= cache->gfporder;
  2418. do {
  2419. page_set_cache(page, cache);
  2420. page_set_slab(page, slab);
  2421. page++;
  2422. } while (--nr_pages);
  2423. }
  2424. /*
  2425. * Grow (by 1) the number of slabs within a cache. This is called by
  2426. * kmem_cache_alloc() when there are no active objs left in a cache.
  2427. */
  2428. static int cache_grow(struct kmem_cache *cachep,
  2429. gfp_t flags, int nodeid, void *objp)
  2430. {
  2431. struct slab *slabp;
  2432. size_t offset;
  2433. gfp_t local_flags;
  2434. struct kmem_list3 *l3;
  2435. /*
  2436. * Be lazy and only check for valid flags here, keeping it out of the
  2437. * critical path in kmem_cache_alloc().
  2438. */
  2439. BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
  2440. local_flags = (flags & GFP_LEVEL_MASK);
  2441. /* Take the l3 list lock to change the colour_next on this node */
  2442. check_irq_off();
  2443. l3 = cachep->nodelists[nodeid];
  2444. spin_lock(&l3->list_lock);
  2445. /* Get colour for the slab, and cal the next value. */
  2446. offset = l3->colour_next;
  2447. l3->colour_next++;
  2448. if (l3->colour_next >= cachep->colour)
  2449. l3->colour_next = 0;
  2450. spin_unlock(&l3->list_lock);
  2451. offset *= cachep->colour_off;
  2452. if (local_flags & __GFP_WAIT)
  2453. local_irq_enable();
  2454. /*
  2455. * The test for missing atomic flag is performed here, rather than
  2456. * the more obvious place, simply to reduce the critical path length
  2457. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2458. * will eventually be caught here (where it matters).
  2459. */
  2460. kmem_flagcheck(cachep, flags);
  2461. /*
  2462. * Get mem for the objs. Attempt to allocate a physical page from
  2463. * 'nodeid'.
  2464. */
  2465. if (!objp)
  2466. objp = kmem_getpages(cachep, flags, nodeid);
  2467. if (!objp)
  2468. goto failed;
  2469. /* Get slab management. */
  2470. slabp = alloc_slabmgmt(cachep, objp, offset,
  2471. local_flags & ~GFP_THISNODE, nodeid);
  2472. if (!slabp)
  2473. goto opps1;
  2474. slabp->nodeid = nodeid;
  2475. slab_map_pages(cachep, slabp, objp);
  2476. cache_init_objs(cachep, slabp);
  2477. if (local_flags & __GFP_WAIT)
  2478. local_irq_disable();
  2479. check_irq_off();
  2480. spin_lock(&l3->list_lock);
  2481. /* Make slab active. */
  2482. list_add_tail(&slabp->list, &(l3->slabs_free));
  2483. STATS_INC_GROWN(cachep);
  2484. l3->free_objects += cachep->num;
  2485. spin_unlock(&l3->list_lock);
  2486. return 1;
  2487. opps1:
  2488. kmem_freepages(cachep, objp);
  2489. failed:
  2490. if (local_flags & __GFP_WAIT)
  2491. local_irq_disable();
  2492. return 0;
  2493. }
  2494. #if DEBUG
  2495. /*
  2496. * Perform extra freeing checks:
  2497. * - detect bad pointers.
  2498. * - POISON/RED_ZONE checking
  2499. */
  2500. static void kfree_debugcheck(const void *objp)
  2501. {
  2502. if (!virt_addr_valid(objp)) {
  2503. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2504. (unsigned long)objp);
  2505. BUG();
  2506. }
  2507. }
  2508. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2509. {
  2510. unsigned long long redzone1, redzone2;
  2511. redzone1 = *dbg_redzone1(cache, obj);
  2512. redzone2 = *dbg_redzone2(cache, obj);
  2513. /*
  2514. * Redzone is ok.
  2515. */
  2516. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2517. return;
  2518. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2519. slab_error(cache, "double free detected");
  2520. else
  2521. slab_error(cache, "memory outside object was overwritten");
  2522. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2523. obj, redzone1, redzone2);
  2524. }
  2525. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2526. void *caller)
  2527. {
  2528. struct page *page;
  2529. unsigned int objnr;
  2530. struct slab *slabp;
  2531. objp -= obj_offset(cachep);
  2532. kfree_debugcheck(objp);
  2533. page = virt_to_head_page(objp);
  2534. slabp = page_get_slab(page);
  2535. if (cachep->flags & SLAB_RED_ZONE) {
  2536. verify_redzone_free(cachep, objp);
  2537. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2538. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2539. }
  2540. if (cachep->flags & SLAB_STORE_USER)
  2541. *dbg_userword(cachep, objp) = caller;
  2542. objnr = obj_to_index(cachep, slabp, objp);
  2543. BUG_ON(objnr >= cachep->num);
  2544. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2545. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2546. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2547. #endif
  2548. if (cachep->flags & SLAB_POISON) {
  2549. #ifdef CONFIG_DEBUG_PAGEALLOC
  2550. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2551. store_stackinfo(cachep, objp, (unsigned long)caller);
  2552. kernel_map_pages(virt_to_page(objp),
  2553. cachep->buffer_size / PAGE_SIZE, 0);
  2554. } else {
  2555. poison_obj(cachep, objp, POISON_FREE);
  2556. }
  2557. #else
  2558. poison_obj(cachep, objp, POISON_FREE);
  2559. #endif
  2560. }
  2561. return objp;
  2562. }
  2563. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2564. {
  2565. kmem_bufctl_t i;
  2566. int entries = 0;
  2567. /* Check slab's freelist to see if this obj is there. */
  2568. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2569. entries++;
  2570. if (entries > cachep->num || i >= cachep->num)
  2571. goto bad;
  2572. }
  2573. if (entries != cachep->num - slabp->inuse) {
  2574. bad:
  2575. printk(KERN_ERR "slab: Internal list corruption detected in "
  2576. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2577. cachep->name, cachep->num, slabp, slabp->inuse);
  2578. for (i = 0;
  2579. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2580. i++) {
  2581. if (i % 16 == 0)
  2582. printk("\n%03x:", i);
  2583. printk(" %02x", ((unsigned char *)slabp)[i]);
  2584. }
  2585. printk("\n");
  2586. BUG();
  2587. }
  2588. }
  2589. #else
  2590. #define kfree_debugcheck(x) do { } while(0)
  2591. #define cache_free_debugcheck(x,objp,z) (objp)
  2592. #define check_slabp(x,y) do { } while(0)
  2593. #endif
  2594. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2595. {
  2596. int batchcount;
  2597. struct kmem_list3 *l3;
  2598. struct array_cache *ac;
  2599. int node;
  2600. node = numa_node_id();
  2601. check_irq_off();
  2602. ac = cpu_cache_get(cachep);
  2603. retry:
  2604. batchcount = ac->batchcount;
  2605. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2606. /*
  2607. * If there was little recent activity on this cache, then
  2608. * perform only a partial refill. Otherwise we could generate
  2609. * refill bouncing.
  2610. */
  2611. batchcount = BATCHREFILL_LIMIT;
  2612. }
  2613. l3 = cachep->nodelists[node];
  2614. BUG_ON(ac->avail > 0 || !l3);
  2615. spin_lock(&l3->list_lock);
  2616. /* See if we can refill from the shared array */
  2617. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2618. goto alloc_done;
  2619. while (batchcount > 0) {
  2620. struct list_head *entry;
  2621. struct slab *slabp;
  2622. /* Get slab alloc is to come from. */
  2623. entry = l3->slabs_partial.next;
  2624. if (entry == &l3->slabs_partial) {
  2625. l3->free_touched = 1;
  2626. entry = l3->slabs_free.next;
  2627. if (entry == &l3->slabs_free)
  2628. goto must_grow;
  2629. }
  2630. slabp = list_entry(entry, struct slab, list);
  2631. check_slabp(cachep, slabp);
  2632. check_spinlock_acquired(cachep);
  2633. /*
  2634. * The slab was either on partial or free list so
  2635. * there must be at least one object available for
  2636. * allocation.
  2637. */
  2638. BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
  2639. while (slabp->inuse < cachep->num && batchcount--) {
  2640. STATS_INC_ALLOCED(cachep);
  2641. STATS_INC_ACTIVE(cachep);
  2642. STATS_SET_HIGH(cachep);
  2643. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2644. node);
  2645. }
  2646. check_slabp(cachep, slabp);
  2647. /* move slabp to correct slabp list: */
  2648. list_del(&slabp->list);
  2649. if (slabp->free == BUFCTL_END)
  2650. list_add(&slabp->list, &l3->slabs_full);
  2651. else
  2652. list_add(&slabp->list, &l3->slabs_partial);
  2653. }
  2654. must_grow:
  2655. l3->free_objects -= ac->avail;
  2656. alloc_done:
  2657. spin_unlock(&l3->list_lock);
  2658. if (unlikely(!ac->avail)) {
  2659. int x;
  2660. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2661. /* cache_grow can reenable interrupts, then ac could change. */
  2662. ac = cpu_cache_get(cachep);
  2663. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2664. return NULL;
  2665. if (!ac->avail) /* objects refilled by interrupt? */
  2666. goto retry;
  2667. }
  2668. ac->touched = 1;
  2669. return ac->entry[--ac->avail];
  2670. }
  2671. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2672. gfp_t flags)
  2673. {
  2674. might_sleep_if(flags & __GFP_WAIT);
  2675. #if DEBUG
  2676. kmem_flagcheck(cachep, flags);
  2677. #endif
  2678. }
  2679. #if DEBUG
  2680. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2681. gfp_t flags, void *objp, void *caller)
  2682. {
  2683. if (!objp)
  2684. return objp;
  2685. if (cachep->flags & SLAB_POISON) {
  2686. #ifdef CONFIG_DEBUG_PAGEALLOC
  2687. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2688. kernel_map_pages(virt_to_page(objp),
  2689. cachep->buffer_size / PAGE_SIZE, 1);
  2690. else
  2691. check_poison_obj(cachep, objp);
  2692. #else
  2693. check_poison_obj(cachep, objp);
  2694. #endif
  2695. poison_obj(cachep, objp, POISON_INUSE);
  2696. }
  2697. if (cachep->flags & SLAB_STORE_USER)
  2698. *dbg_userword(cachep, objp) = caller;
  2699. if (cachep->flags & SLAB_RED_ZONE) {
  2700. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2701. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2702. slab_error(cachep, "double free, or memory outside"
  2703. " object was overwritten");
  2704. printk(KERN_ERR
  2705. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2706. objp, *dbg_redzone1(cachep, objp),
  2707. *dbg_redzone2(cachep, objp));
  2708. }
  2709. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2710. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2711. }
  2712. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2713. {
  2714. struct slab *slabp;
  2715. unsigned objnr;
  2716. slabp = page_get_slab(virt_to_head_page(objp));
  2717. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2718. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2719. }
  2720. #endif
  2721. objp += obj_offset(cachep);
  2722. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2723. cachep->ctor(objp, cachep, 0);
  2724. #if ARCH_SLAB_MINALIGN
  2725. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2726. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2727. objp, ARCH_SLAB_MINALIGN);
  2728. }
  2729. #endif
  2730. return objp;
  2731. }
  2732. #else
  2733. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2734. #endif
  2735. #ifdef CONFIG_FAILSLAB
  2736. static struct failslab_attr {
  2737. struct fault_attr attr;
  2738. u32 ignore_gfp_wait;
  2739. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2740. struct dentry *ignore_gfp_wait_file;
  2741. #endif
  2742. } failslab = {
  2743. .attr = FAULT_ATTR_INITIALIZER,
  2744. .ignore_gfp_wait = 1,
  2745. };
  2746. static int __init setup_failslab(char *str)
  2747. {
  2748. return setup_fault_attr(&failslab.attr, str);
  2749. }
  2750. __setup("failslab=", setup_failslab);
  2751. static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2752. {
  2753. if (cachep == &cache_cache)
  2754. return 0;
  2755. if (flags & __GFP_NOFAIL)
  2756. return 0;
  2757. if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
  2758. return 0;
  2759. return should_fail(&failslab.attr, obj_size(cachep));
  2760. }
  2761. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2762. static int __init failslab_debugfs(void)
  2763. {
  2764. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2765. struct dentry *dir;
  2766. int err;
  2767. err = init_fault_attr_dentries(&failslab.attr, "failslab");
  2768. if (err)
  2769. return err;
  2770. dir = failslab.attr.dentries.dir;
  2771. failslab.ignore_gfp_wait_file =
  2772. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2773. &failslab.ignore_gfp_wait);
  2774. if (!failslab.ignore_gfp_wait_file) {
  2775. err = -ENOMEM;
  2776. debugfs_remove(failslab.ignore_gfp_wait_file);
  2777. cleanup_fault_attr_dentries(&failslab.attr);
  2778. }
  2779. return err;
  2780. }
  2781. late_initcall(failslab_debugfs);
  2782. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2783. #else /* CONFIG_FAILSLAB */
  2784. static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2785. {
  2786. return 0;
  2787. }
  2788. #endif /* CONFIG_FAILSLAB */
  2789. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2790. {
  2791. void *objp;
  2792. struct array_cache *ac;
  2793. check_irq_off();
  2794. ac = cpu_cache_get(cachep);
  2795. if (likely(ac->avail)) {
  2796. STATS_INC_ALLOCHIT(cachep);
  2797. ac->touched = 1;
  2798. objp = ac->entry[--ac->avail];
  2799. } else {
  2800. STATS_INC_ALLOCMISS(cachep);
  2801. objp = cache_alloc_refill(cachep, flags);
  2802. }
  2803. return objp;
  2804. }
  2805. #ifdef CONFIG_NUMA
  2806. /*
  2807. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2808. *
  2809. * If we are in_interrupt, then process context, including cpusets and
  2810. * mempolicy, may not apply and should not be used for allocation policy.
  2811. */
  2812. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2813. {
  2814. int nid_alloc, nid_here;
  2815. if (in_interrupt() || (flags & __GFP_THISNODE))
  2816. return NULL;
  2817. nid_alloc = nid_here = numa_node_id();
  2818. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2819. nid_alloc = cpuset_mem_spread_node();
  2820. else if (current->mempolicy)
  2821. nid_alloc = slab_node(current->mempolicy);
  2822. if (nid_alloc != nid_here)
  2823. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2824. return NULL;
  2825. }
  2826. /*
  2827. * Fallback function if there was no memory available and no objects on a
  2828. * certain node and fall back is permitted. First we scan all the
  2829. * available nodelists for available objects. If that fails then we
  2830. * perform an allocation without specifying a node. This allows the page
  2831. * allocator to do its reclaim / fallback magic. We then insert the
  2832. * slab into the proper nodelist and then allocate from it.
  2833. */
  2834. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2835. {
  2836. struct zonelist *zonelist;
  2837. gfp_t local_flags;
  2838. struct zone **z;
  2839. void *obj = NULL;
  2840. int nid;
  2841. if (flags & __GFP_THISNODE)
  2842. return NULL;
  2843. zonelist = &NODE_DATA(slab_node(current->mempolicy))
  2844. ->node_zonelists[gfp_zone(flags)];
  2845. local_flags = (flags & GFP_LEVEL_MASK);
  2846. retry:
  2847. /*
  2848. * Look through allowed nodes for objects available
  2849. * from existing per node queues.
  2850. */
  2851. for (z = zonelist->zones; *z && !obj; z++) {
  2852. nid = zone_to_nid(*z);
  2853. if (cpuset_zone_allowed_hardwall(*z, flags) &&
  2854. cache->nodelists[nid] &&
  2855. cache->nodelists[nid]->free_objects)
  2856. obj = ____cache_alloc_node(cache,
  2857. flags | GFP_THISNODE, nid);
  2858. }
  2859. if (!obj) {
  2860. /*
  2861. * This allocation will be performed within the constraints
  2862. * of the current cpuset / memory policy requirements.
  2863. * We may trigger various forms of reclaim on the allowed
  2864. * set and go into memory reserves if necessary.
  2865. */
  2866. if (local_flags & __GFP_WAIT)
  2867. local_irq_enable();
  2868. kmem_flagcheck(cache, flags);
  2869. obj = kmem_getpages(cache, flags, -1);
  2870. if (local_flags & __GFP_WAIT)
  2871. local_irq_disable();
  2872. if (obj) {
  2873. /*
  2874. * Insert into the appropriate per node queues
  2875. */
  2876. nid = page_to_nid(virt_to_page(obj));
  2877. if (cache_grow(cache, flags, nid, obj)) {
  2878. obj = ____cache_alloc_node(cache,
  2879. flags | GFP_THISNODE, nid);
  2880. if (!obj)
  2881. /*
  2882. * Another processor may allocate the
  2883. * objects in the slab since we are
  2884. * not holding any locks.
  2885. */
  2886. goto retry;
  2887. } else {
  2888. /* cache_grow already freed obj */
  2889. obj = NULL;
  2890. }
  2891. }
  2892. }
  2893. return obj;
  2894. }
  2895. /*
  2896. * A interface to enable slab creation on nodeid
  2897. */
  2898. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2899. int nodeid)
  2900. {
  2901. struct list_head *entry;
  2902. struct slab *slabp;
  2903. struct kmem_list3 *l3;
  2904. void *obj;
  2905. int x;
  2906. l3 = cachep->nodelists[nodeid];
  2907. BUG_ON(!l3);
  2908. retry:
  2909. check_irq_off();
  2910. spin_lock(&l3->list_lock);
  2911. entry = l3->slabs_partial.next;
  2912. if (entry == &l3->slabs_partial) {
  2913. l3->free_touched = 1;
  2914. entry = l3->slabs_free.next;
  2915. if (entry == &l3->slabs_free)
  2916. goto must_grow;
  2917. }
  2918. slabp = list_entry(entry, struct slab, list);
  2919. check_spinlock_acquired_node(cachep, nodeid);
  2920. check_slabp(cachep, slabp);
  2921. STATS_INC_NODEALLOCS(cachep);
  2922. STATS_INC_ACTIVE(cachep);
  2923. STATS_SET_HIGH(cachep);
  2924. BUG_ON(slabp->inuse == cachep->num);
  2925. obj = slab_get_obj(cachep, slabp, nodeid);
  2926. check_slabp(cachep, slabp);
  2927. l3->free_objects--;
  2928. /* move slabp to correct slabp list: */
  2929. list_del(&slabp->list);
  2930. if (slabp->free == BUFCTL_END)
  2931. list_add(&slabp->list, &l3->slabs_full);
  2932. else
  2933. list_add(&slabp->list, &l3->slabs_partial);
  2934. spin_unlock(&l3->list_lock);
  2935. goto done;
  2936. must_grow:
  2937. spin_unlock(&l3->list_lock);
  2938. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2939. if (x)
  2940. goto retry;
  2941. return fallback_alloc(cachep, flags);
  2942. done:
  2943. return obj;
  2944. }
  2945. /**
  2946. * kmem_cache_alloc_node - Allocate an object on the specified node
  2947. * @cachep: The cache to allocate from.
  2948. * @flags: See kmalloc().
  2949. * @nodeid: node number of the target node.
  2950. * @caller: return address of caller, used for debug information
  2951. *
  2952. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2953. * node, which can improve the performance for cpu bound structures.
  2954. *
  2955. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2956. */
  2957. static __always_inline void *
  2958. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2959. void *caller)
  2960. {
  2961. unsigned long save_flags;
  2962. void *ptr;
  2963. if (should_failslab(cachep, flags))
  2964. return NULL;
  2965. cache_alloc_debugcheck_before(cachep, flags);
  2966. local_irq_save(save_flags);
  2967. if (unlikely(nodeid == -1))
  2968. nodeid = numa_node_id();
  2969. if (unlikely(!cachep->nodelists[nodeid])) {
  2970. /* Node not bootstrapped yet */
  2971. ptr = fallback_alloc(cachep, flags);
  2972. goto out;
  2973. }
  2974. if (nodeid == numa_node_id()) {
  2975. /*
  2976. * Use the locally cached objects if possible.
  2977. * However ____cache_alloc does not allow fallback
  2978. * to other nodes. It may fail while we still have
  2979. * objects on other nodes available.
  2980. */
  2981. ptr = ____cache_alloc(cachep, flags);
  2982. if (ptr)
  2983. goto out;
  2984. }
  2985. /* ___cache_alloc_node can fall back to other nodes */
  2986. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  2987. out:
  2988. local_irq_restore(save_flags);
  2989. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  2990. if (unlikely((flags & __GFP_ZERO) && ptr))
  2991. memset(ptr, 0, obj_size(cachep));
  2992. return ptr;
  2993. }
  2994. static __always_inline void *
  2995. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  2996. {
  2997. void *objp;
  2998. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2999. objp = alternate_node_alloc(cache, flags);
  3000. if (objp)
  3001. goto out;
  3002. }
  3003. objp = ____cache_alloc(cache, flags);
  3004. /*
  3005. * We may just have run out of memory on the local node.
  3006. * ____cache_alloc_node() knows how to locate memory on other nodes
  3007. */
  3008. if (!objp)
  3009. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  3010. out:
  3011. return objp;
  3012. }
  3013. #else
  3014. static __always_inline void *
  3015. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3016. {
  3017. return ____cache_alloc(cachep, flags);
  3018. }
  3019. #endif /* CONFIG_NUMA */
  3020. static __always_inline void *
  3021. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3022. {
  3023. unsigned long save_flags;
  3024. void *objp;
  3025. if (should_failslab(cachep, flags))
  3026. return NULL;
  3027. cache_alloc_debugcheck_before(cachep, flags);
  3028. local_irq_save(save_flags);
  3029. objp = __do_cache_alloc(cachep, flags);
  3030. local_irq_restore(save_flags);
  3031. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3032. prefetchw(objp);
  3033. if (unlikely((flags & __GFP_ZERO) && objp))
  3034. memset(objp, 0, obj_size(cachep));
  3035. return objp;
  3036. }
  3037. /*
  3038. * Caller needs to acquire correct kmem_list's list_lock
  3039. */
  3040. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3041. int node)
  3042. {
  3043. int i;
  3044. struct kmem_list3 *l3;
  3045. for (i = 0; i < nr_objects; i++) {
  3046. void *objp = objpp[i];
  3047. struct slab *slabp;
  3048. slabp = virt_to_slab(objp);
  3049. l3 = cachep->nodelists[node];
  3050. list_del(&slabp->list);
  3051. check_spinlock_acquired_node(cachep, node);
  3052. check_slabp(cachep, slabp);
  3053. slab_put_obj(cachep, slabp, objp, node);
  3054. STATS_DEC_ACTIVE(cachep);
  3055. l3->free_objects++;
  3056. check_slabp(cachep, slabp);
  3057. /* fixup slab chains */
  3058. if (slabp->inuse == 0) {
  3059. if (l3->free_objects > l3->free_limit) {
  3060. l3->free_objects -= cachep->num;
  3061. /* No need to drop any previously held
  3062. * lock here, even if we have a off-slab slab
  3063. * descriptor it is guaranteed to come from
  3064. * a different cache, refer to comments before
  3065. * alloc_slabmgmt.
  3066. */
  3067. slab_destroy(cachep, slabp);
  3068. } else {
  3069. list_add(&slabp->list, &l3->slabs_free);
  3070. }
  3071. } else {
  3072. /* Unconditionally move a slab to the end of the
  3073. * partial list on free - maximum time for the
  3074. * other objects to be freed, too.
  3075. */
  3076. list_add_tail(&slabp->list, &l3->slabs_partial);
  3077. }
  3078. }
  3079. }
  3080. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3081. {
  3082. int batchcount;
  3083. struct kmem_list3 *l3;
  3084. int node = numa_node_id();
  3085. batchcount = ac->batchcount;
  3086. #if DEBUG
  3087. BUG_ON(!batchcount || batchcount > ac->avail);
  3088. #endif
  3089. check_irq_off();
  3090. l3 = cachep->nodelists[node];
  3091. spin_lock(&l3->list_lock);
  3092. if (l3->shared) {
  3093. struct array_cache *shared_array = l3->shared;
  3094. int max = shared_array->limit - shared_array->avail;
  3095. if (max) {
  3096. if (batchcount > max)
  3097. batchcount = max;
  3098. memcpy(&(shared_array->entry[shared_array->avail]),
  3099. ac->entry, sizeof(void *) * batchcount);
  3100. shared_array->avail += batchcount;
  3101. goto free_done;
  3102. }
  3103. }
  3104. free_block(cachep, ac->entry, batchcount, node);
  3105. free_done:
  3106. #if STATS
  3107. {
  3108. int i = 0;
  3109. struct list_head *p;
  3110. p = l3->slabs_free.next;
  3111. while (p != &(l3->slabs_free)) {
  3112. struct slab *slabp;
  3113. slabp = list_entry(p, struct slab, list);
  3114. BUG_ON(slabp->inuse);
  3115. i++;
  3116. p = p->next;
  3117. }
  3118. STATS_SET_FREEABLE(cachep, i);
  3119. }
  3120. #endif
  3121. spin_unlock(&l3->list_lock);
  3122. ac->avail -= batchcount;
  3123. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3124. }
  3125. /*
  3126. * Release an obj back to its cache. If the obj has a constructed state, it must
  3127. * be in this state _before_ it is released. Called with disabled ints.
  3128. */
  3129. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3130. {
  3131. struct array_cache *ac = cpu_cache_get(cachep);
  3132. check_irq_off();
  3133. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3134. if (cache_free_alien(cachep, objp))
  3135. return;
  3136. if (likely(ac->avail < ac->limit)) {
  3137. STATS_INC_FREEHIT(cachep);
  3138. ac->entry[ac->avail++] = objp;
  3139. return;
  3140. } else {
  3141. STATS_INC_FREEMISS(cachep);
  3142. cache_flusharray(cachep, ac);
  3143. ac->entry[ac->avail++] = objp;
  3144. }
  3145. }
  3146. /**
  3147. * kmem_cache_alloc - Allocate an object
  3148. * @cachep: The cache to allocate from.
  3149. * @flags: See kmalloc().
  3150. *
  3151. * Allocate an object from this cache. The flags are only relevant
  3152. * if the cache has no available objects.
  3153. */
  3154. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3155. {
  3156. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3157. }
  3158. EXPORT_SYMBOL(kmem_cache_alloc);
  3159. /**
  3160. * kmem_ptr_validate - check if an untrusted pointer might
  3161. * be a slab entry.
  3162. * @cachep: the cache we're checking against
  3163. * @ptr: pointer to validate
  3164. *
  3165. * This verifies that the untrusted pointer looks sane:
  3166. * it is _not_ a guarantee that the pointer is actually
  3167. * part of the slab cache in question, but it at least
  3168. * validates that the pointer can be dereferenced and
  3169. * looks half-way sane.
  3170. *
  3171. * Currently only used for dentry validation.
  3172. */
  3173. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3174. {
  3175. unsigned long addr = (unsigned long)ptr;
  3176. unsigned long min_addr = PAGE_OFFSET;
  3177. unsigned long align_mask = BYTES_PER_WORD - 1;
  3178. unsigned long size = cachep->buffer_size;
  3179. struct page *page;
  3180. if (unlikely(addr < min_addr))
  3181. goto out;
  3182. if (unlikely(addr > (unsigned long)high_memory - size))
  3183. goto out;
  3184. if (unlikely(addr & align_mask))
  3185. goto out;
  3186. if (unlikely(!kern_addr_valid(addr)))
  3187. goto out;
  3188. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3189. goto out;
  3190. page = virt_to_page(ptr);
  3191. if (unlikely(!PageSlab(page)))
  3192. goto out;
  3193. if (unlikely(page_get_cache(page) != cachep))
  3194. goto out;
  3195. return 1;
  3196. out:
  3197. return 0;
  3198. }
  3199. #ifdef CONFIG_NUMA
  3200. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3201. {
  3202. return __cache_alloc_node(cachep, flags, nodeid,
  3203. __builtin_return_address(0));
  3204. }
  3205. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3206. static __always_inline void *
  3207. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3208. {
  3209. struct kmem_cache *cachep;
  3210. cachep = kmem_find_general_cachep(size, flags);
  3211. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3212. return cachep;
  3213. return kmem_cache_alloc_node(cachep, flags, node);
  3214. }
  3215. #ifdef CONFIG_DEBUG_SLAB
  3216. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3217. {
  3218. return __do_kmalloc_node(size, flags, node,
  3219. __builtin_return_address(0));
  3220. }
  3221. EXPORT_SYMBOL(__kmalloc_node);
  3222. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3223. int node, void *caller)
  3224. {
  3225. return __do_kmalloc_node(size, flags, node, caller);
  3226. }
  3227. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3228. #else
  3229. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3230. {
  3231. return __do_kmalloc_node(size, flags, node, NULL);
  3232. }
  3233. EXPORT_SYMBOL(__kmalloc_node);
  3234. #endif /* CONFIG_DEBUG_SLAB */
  3235. #endif /* CONFIG_NUMA */
  3236. /**
  3237. * __do_kmalloc - allocate memory
  3238. * @size: how many bytes of memory are required.
  3239. * @flags: the type of memory to allocate (see kmalloc).
  3240. * @caller: function caller for debug tracking of the caller
  3241. */
  3242. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3243. void *caller)
  3244. {
  3245. struct kmem_cache *cachep;
  3246. /* If you want to save a few bytes .text space: replace
  3247. * __ with kmem_.
  3248. * Then kmalloc uses the uninlined functions instead of the inline
  3249. * functions.
  3250. */
  3251. cachep = __find_general_cachep(size, flags);
  3252. if (unlikely(cachep == NULL))
  3253. return NULL;
  3254. return __cache_alloc(cachep, flags, caller);
  3255. }
  3256. #ifdef CONFIG_DEBUG_SLAB
  3257. void *__kmalloc(size_t size, gfp_t flags)
  3258. {
  3259. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3260. }
  3261. EXPORT_SYMBOL(__kmalloc);
  3262. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  3263. {
  3264. return __do_kmalloc(size, flags, caller);
  3265. }
  3266. EXPORT_SYMBOL(__kmalloc_track_caller);
  3267. #else
  3268. void *__kmalloc(size_t size, gfp_t flags)
  3269. {
  3270. return __do_kmalloc(size, flags, NULL);
  3271. }
  3272. EXPORT_SYMBOL(__kmalloc);
  3273. #endif
  3274. /**
  3275. * kmem_cache_free - Deallocate an object
  3276. * @cachep: The cache the allocation was from.
  3277. * @objp: The previously allocated object.
  3278. *
  3279. * Free an object which was previously allocated from this
  3280. * cache.
  3281. */
  3282. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3283. {
  3284. unsigned long flags;
  3285. BUG_ON(virt_to_cache(objp) != cachep);
  3286. local_irq_save(flags);
  3287. debug_check_no_locks_freed(objp, obj_size(cachep));
  3288. __cache_free(cachep, objp);
  3289. local_irq_restore(flags);
  3290. }
  3291. EXPORT_SYMBOL(kmem_cache_free);
  3292. /**
  3293. * kfree - free previously allocated memory
  3294. * @objp: pointer returned by kmalloc.
  3295. *
  3296. * If @objp is NULL, no operation is performed.
  3297. *
  3298. * Don't free memory not originally allocated by kmalloc()
  3299. * or you will run into trouble.
  3300. */
  3301. void kfree(const void *objp)
  3302. {
  3303. struct kmem_cache *c;
  3304. unsigned long flags;
  3305. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3306. return;
  3307. local_irq_save(flags);
  3308. kfree_debugcheck(objp);
  3309. c = virt_to_cache(objp);
  3310. debug_check_no_locks_freed(objp, obj_size(c));
  3311. __cache_free(c, (void *)objp);
  3312. local_irq_restore(flags);
  3313. }
  3314. EXPORT_SYMBOL(kfree);
  3315. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3316. {
  3317. return obj_size(cachep);
  3318. }
  3319. EXPORT_SYMBOL(kmem_cache_size);
  3320. const char *kmem_cache_name(struct kmem_cache *cachep)
  3321. {
  3322. return cachep->name;
  3323. }
  3324. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3325. /*
  3326. * This initializes kmem_list3 or resizes varioius caches for all nodes.
  3327. */
  3328. static int alloc_kmemlist(struct kmem_cache *cachep)
  3329. {
  3330. int node;
  3331. struct kmem_list3 *l3;
  3332. struct array_cache *new_shared;
  3333. struct array_cache **new_alien = NULL;
  3334. for_each_online_node(node) {
  3335. if (use_alien_caches) {
  3336. new_alien = alloc_alien_cache(node, cachep->limit);
  3337. if (!new_alien)
  3338. goto fail;
  3339. }
  3340. new_shared = NULL;
  3341. if (cachep->shared) {
  3342. new_shared = alloc_arraycache(node,
  3343. cachep->shared*cachep->batchcount,
  3344. 0xbaadf00d);
  3345. if (!new_shared) {
  3346. free_alien_cache(new_alien);
  3347. goto fail;
  3348. }
  3349. }
  3350. l3 = cachep->nodelists[node];
  3351. if (l3) {
  3352. struct array_cache *shared = l3->shared;
  3353. spin_lock_irq(&l3->list_lock);
  3354. if (shared)
  3355. free_block(cachep, shared->entry,
  3356. shared->avail, node);
  3357. l3->shared = new_shared;
  3358. if (!l3->alien) {
  3359. l3->alien = new_alien;
  3360. new_alien = NULL;
  3361. }
  3362. l3->free_limit = (1 + nr_cpus_node(node)) *
  3363. cachep->batchcount + cachep->num;
  3364. spin_unlock_irq(&l3->list_lock);
  3365. kfree(shared);
  3366. free_alien_cache(new_alien);
  3367. continue;
  3368. }
  3369. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3370. if (!l3) {
  3371. free_alien_cache(new_alien);
  3372. kfree(new_shared);
  3373. goto fail;
  3374. }
  3375. kmem_list3_init(l3);
  3376. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3377. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3378. l3->shared = new_shared;
  3379. l3->alien = new_alien;
  3380. l3->free_limit = (1 + nr_cpus_node(node)) *
  3381. cachep->batchcount + cachep->num;
  3382. cachep->nodelists[node] = l3;
  3383. }
  3384. return 0;
  3385. fail:
  3386. if (!cachep->next.next) {
  3387. /* Cache is not active yet. Roll back what we did */
  3388. node--;
  3389. while (node >= 0) {
  3390. if (cachep->nodelists[node]) {
  3391. l3 = cachep->nodelists[node];
  3392. kfree(l3->shared);
  3393. free_alien_cache(l3->alien);
  3394. kfree(l3);
  3395. cachep->nodelists[node] = NULL;
  3396. }
  3397. node--;
  3398. }
  3399. }
  3400. return -ENOMEM;
  3401. }
  3402. struct ccupdate_struct {
  3403. struct kmem_cache *cachep;
  3404. struct array_cache *new[NR_CPUS];
  3405. };
  3406. static void do_ccupdate_local(void *info)
  3407. {
  3408. struct ccupdate_struct *new = info;
  3409. struct array_cache *old;
  3410. check_irq_off();
  3411. old = cpu_cache_get(new->cachep);
  3412. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3413. new->new[smp_processor_id()] = old;
  3414. }
  3415. /* Always called with the cache_chain_mutex held */
  3416. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3417. int batchcount, int shared)
  3418. {
  3419. struct ccupdate_struct *new;
  3420. int i;
  3421. new = kzalloc(sizeof(*new), GFP_KERNEL);
  3422. if (!new)
  3423. return -ENOMEM;
  3424. for_each_online_cpu(i) {
  3425. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3426. batchcount);
  3427. if (!new->new[i]) {
  3428. for (i--; i >= 0; i--)
  3429. kfree(new->new[i]);
  3430. kfree(new);
  3431. return -ENOMEM;
  3432. }
  3433. }
  3434. new->cachep = cachep;
  3435. on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
  3436. check_irq_on();
  3437. cachep->batchcount = batchcount;
  3438. cachep->limit = limit;
  3439. cachep->shared = shared;
  3440. for_each_online_cpu(i) {
  3441. struct array_cache *ccold = new->new[i];
  3442. if (!ccold)
  3443. continue;
  3444. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3445. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3446. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3447. kfree(ccold);
  3448. }
  3449. kfree(new);
  3450. return alloc_kmemlist(cachep);
  3451. }
  3452. /* Called with cache_chain_mutex held always */
  3453. static int enable_cpucache(struct kmem_cache *cachep)
  3454. {
  3455. int err;
  3456. int limit, shared;
  3457. /*
  3458. * The head array serves three purposes:
  3459. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3460. * - reduce the number of spinlock operations.
  3461. * - reduce the number of linked list operations on the slab and
  3462. * bufctl chains: array operations are cheaper.
  3463. * The numbers are guessed, we should auto-tune as described by
  3464. * Bonwick.
  3465. */
  3466. if (cachep->buffer_size > 131072)
  3467. limit = 1;
  3468. else if (cachep->buffer_size > PAGE_SIZE)
  3469. limit = 8;
  3470. else if (cachep->buffer_size > 1024)
  3471. limit = 24;
  3472. else if (cachep->buffer_size > 256)
  3473. limit = 54;
  3474. else
  3475. limit = 120;
  3476. /*
  3477. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3478. * allocation behaviour: Most allocs on one cpu, most free operations
  3479. * on another cpu. For these cases, an efficient object passing between
  3480. * cpus is necessary. This is provided by a shared array. The array
  3481. * replaces Bonwick's magazine layer.
  3482. * On uniprocessor, it's functionally equivalent (but less efficient)
  3483. * to a larger limit. Thus disabled by default.
  3484. */
  3485. shared = 0;
  3486. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3487. shared = 8;
  3488. #if DEBUG
  3489. /*
  3490. * With debugging enabled, large batchcount lead to excessively long
  3491. * periods with disabled local interrupts. Limit the batchcount
  3492. */
  3493. if (limit > 32)
  3494. limit = 32;
  3495. #endif
  3496. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3497. if (err)
  3498. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3499. cachep->name, -err);
  3500. return err;
  3501. }
  3502. /*
  3503. * Drain an array if it contains any elements taking the l3 lock only if
  3504. * necessary. Note that the l3 listlock also protects the array_cache
  3505. * if drain_array() is used on the shared array.
  3506. */
  3507. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3508. struct array_cache *ac, int force, int node)
  3509. {
  3510. int tofree;
  3511. if (!ac || !ac->avail)
  3512. return;
  3513. if (ac->touched && !force) {
  3514. ac->touched = 0;
  3515. } else {
  3516. spin_lock_irq(&l3->list_lock);
  3517. if (ac->avail) {
  3518. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3519. if (tofree > ac->avail)
  3520. tofree = (ac->avail + 1) / 2;
  3521. free_block(cachep, ac->entry, tofree, node);
  3522. ac->avail -= tofree;
  3523. memmove(ac->entry, &(ac->entry[tofree]),
  3524. sizeof(void *) * ac->avail);
  3525. }
  3526. spin_unlock_irq(&l3->list_lock);
  3527. }
  3528. }
  3529. /**
  3530. * cache_reap - Reclaim memory from caches.
  3531. * @w: work descriptor
  3532. *
  3533. * Called from workqueue/eventd every few seconds.
  3534. * Purpose:
  3535. * - clear the per-cpu caches for this CPU.
  3536. * - return freeable pages to the main free memory pool.
  3537. *
  3538. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3539. * again on the next iteration.
  3540. */
  3541. static void cache_reap(struct work_struct *w)
  3542. {
  3543. struct kmem_cache *searchp;
  3544. struct kmem_list3 *l3;
  3545. int node = numa_node_id();
  3546. struct delayed_work *work =
  3547. container_of(w, struct delayed_work, work);
  3548. if (!mutex_trylock(&cache_chain_mutex))
  3549. /* Give up. Setup the next iteration. */
  3550. goto out;
  3551. list_for_each_entry(searchp, &cache_chain, next) {
  3552. check_irq_on();
  3553. /*
  3554. * We only take the l3 lock if absolutely necessary and we
  3555. * have established with reasonable certainty that
  3556. * we can do some work if the lock was obtained.
  3557. */
  3558. l3 = searchp->nodelists[node];
  3559. reap_alien(searchp, l3);
  3560. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3561. /*
  3562. * These are racy checks but it does not matter
  3563. * if we skip one check or scan twice.
  3564. */
  3565. if (time_after(l3->next_reap, jiffies))
  3566. goto next;
  3567. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3568. drain_array(searchp, l3, l3->shared, 0, node);
  3569. if (l3->free_touched)
  3570. l3->free_touched = 0;
  3571. else {
  3572. int freed;
  3573. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3574. 5 * searchp->num - 1) / (5 * searchp->num));
  3575. STATS_ADD_REAPED(searchp, freed);
  3576. }
  3577. next:
  3578. cond_resched();
  3579. }
  3580. check_irq_on();
  3581. mutex_unlock(&cache_chain_mutex);
  3582. next_reap_node();
  3583. out:
  3584. /* Set up the next iteration */
  3585. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3586. }
  3587. #ifdef CONFIG_PROC_FS
  3588. static void print_slabinfo_header(struct seq_file *m)
  3589. {
  3590. /*
  3591. * Output format version, so at least we can change it
  3592. * without _too_ many complaints.
  3593. */
  3594. #if STATS
  3595. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3596. #else
  3597. seq_puts(m, "slabinfo - version: 2.1\n");
  3598. #endif
  3599. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3600. "<objperslab> <pagesperslab>");
  3601. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3602. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3603. #if STATS
  3604. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3605. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3606. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3607. #endif
  3608. seq_putc(m, '\n');
  3609. }
  3610. static void *s_start(struct seq_file *m, loff_t *pos)
  3611. {
  3612. loff_t n = *pos;
  3613. mutex_lock(&cache_chain_mutex);
  3614. if (!n)
  3615. print_slabinfo_header(m);
  3616. return seq_list_start(&cache_chain, *pos);
  3617. }
  3618. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3619. {
  3620. return seq_list_next(p, &cache_chain, pos);
  3621. }
  3622. static void s_stop(struct seq_file *m, void *p)
  3623. {
  3624. mutex_unlock(&cache_chain_mutex);
  3625. }
  3626. static int s_show(struct seq_file *m, void *p)
  3627. {
  3628. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3629. struct slab *slabp;
  3630. unsigned long active_objs;
  3631. unsigned long num_objs;
  3632. unsigned long active_slabs = 0;
  3633. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3634. const char *name;
  3635. char *error = NULL;
  3636. int node;
  3637. struct kmem_list3 *l3;
  3638. active_objs = 0;
  3639. num_slabs = 0;
  3640. for_each_online_node(node) {
  3641. l3 = cachep->nodelists[node];
  3642. if (!l3)
  3643. continue;
  3644. check_irq_on();
  3645. spin_lock_irq(&l3->list_lock);
  3646. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3647. if (slabp->inuse != cachep->num && !error)
  3648. error = "slabs_full accounting error";
  3649. active_objs += cachep->num;
  3650. active_slabs++;
  3651. }
  3652. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3653. if (slabp->inuse == cachep->num && !error)
  3654. error = "slabs_partial inuse accounting error";
  3655. if (!slabp->inuse && !error)
  3656. error = "slabs_partial/inuse accounting error";
  3657. active_objs += slabp->inuse;
  3658. active_slabs++;
  3659. }
  3660. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3661. if (slabp->inuse && !error)
  3662. error = "slabs_free/inuse accounting error";
  3663. num_slabs++;
  3664. }
  3665. free_objects += l3->free_objects;
  3666. if (l3->shared)
  3667. shared_avail += l3->shared->avail;
  3668. spin_unlock_irq(&l3->list_lock);
  3669. }
  3670. num_slabs += active_slabs;
  3671. num_objs = num_slabs * cachep->num;
  3672. if (num_objs - active_objs != free_objects && !error)
  3673. error = "free_objects accounting error";
  3674. name = cachep->name;
  3675. if (error)
  3676. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3677. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3678. name, active_objs, num_objs, cachep->buffer_size,
  3679. cachep->num, (1 << cachep->gfporder));
  3680. seq_printf(m, " : tunables %4u %4u %4u",
  3681. cachep->limit, cachep->batchcount, cachep->shared);
  3682. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3683. active_slabs, num_slabs, shared_avail);
  3684. #if STATS
  3685. { /* list3 stats */
  3686. unsigned long high = cachep->high_mark;
  3687. unsigned long allocs = cachep->num_allocations;
  3688. unsigned long grown = cachep->grown;
  3689. unsigned long reaped = cachep->reaped;
  3690. unsigned long errors = cachep->errors;
  3691. unsigned long max_freeable = cachep->max_freeable;
  3692. unsigned long node_allocs = cachep->node_allocs;
  3693. unsigned long node_frees = cachep->node_frees;
  3694. unsigned long overflows = cachep->node_overflow;
  3695. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3696. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3697. reaped, errors, max_freeable, node_allocs,
  3698. node_frees, overflows);
  3699. }
  3700. /* cpu stats */
  3701. {
  3702. unsigned long allochit = atomic_read(&cachep->allochit);
  3703. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3704. unsigned long freehit = atomic_read(&cachep->freehit);
  3705. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3706. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3707. allochit, allocmiss, freehit, freemiss);
  3708. }
  3709. #endif
  3710. seq_putc(m, '\n');
  3711. return 0;
  3712. }
  3713. /*
  3714. * slabinfo_op - iterator that generates /proc/slabinfo
  3715. *
  3716. * Output layout:
  3717. * cache-name
  3718. * num-active-objs
  3719. * total-objs
  3720. * object size
  3721. * num-active-slabs
  3722. * total-slabs
  3723. * num-pages-per-slab
  3724. * + further values on SMP and with statistics enabled
  3725. */
  3726. const struct seq_operations slabinfo_op = {
  3727. .start = s_start,
  3728. .next = s_next,
  3729. .stop = s_stop,
  3730. .show = s_show,
  3731. };
  3732. #define MAX_SLABINFO_WRITE 128
  3733. /**
  3734. * slabinfo_write - Tuning for the slab allocator
  3735. * @file: unused
  3736. * @buffer: user buffer
  3737. * @count: data length
  3738. * @ppos: unused
  3739. */
  3740. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3741. size_t count, loff_t *ppos)
  3742. {
  3743. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3744. int limit, batchcount, shared, res;
  3745. struct kmem_cache *cachep;
  3746. if (count > MAX_SLABINFO_WRITE)
  3747. return -EINVAL;
  3748. if (copy_from_user(&kbuf, buffer, count))
  3749. return -EFAULT;
  3750. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3751. tmp = strchr(kbuf, ' ');
  3752. if (!tmp)
  3753. return -EINVAL;
  3754. *tmp = '\0';
  3755. tmp++;
  3756. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3757. return -EINVAL;
  3758. /* Find the cache in the chain of caches. */
  3759. mutex_lock(&cache_chain_mutex);
  3760. res = -EINVAL;
  3761. list_for_each_entry(cachep, &cache_chain, next) {
  3762. if (!strcmp(cachep->name, kbuf)) {
  3763. if (limit < 1 || batchcount < 1 ||
  3764. batchcount > limit || shared < 0) {
  3765. res = 0;
  3766. } else {
  3767. res = do_tune_cpucache(cachep, limit,
  3768. batchcount, shared);
  3769. }
  3770. break;
  3771. }
  3772. }
  3773. mutex_unlock(&cache_chain_mutex);
  3774. if (res >= 0)
  3775. res = count;
  3776. return res;
  3777. }
  3778. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3779. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3780. {
  3781. mutex_lock(&cache_chain_mutex);
  3782. return seq_list_start(&cache_chain, *pos);
  3783. }
  3784. static inline int add_caller(unsigned long *n, unsigned long v)
  3785. {
  3786. unsigned long *p;
  3787. int l;
  3788. if (!v)
  3789. return 1;
  3790. l = n[1];
  3791. p = n + 2;
  3792. while (l) {
  3793. int i = l/2;
  3794. unsigned long *q = p + 2 * i;
  3795. if (*q == v) {
  3796. q[1]++;
  3797. return 1;
  3798. }
  3799. if (*q > v) {
  3800. l = i;
  3801. } else {
  3802. p = q + 2;
  3803. l -= i + 1;
  3804. }
  3805. }
  3806. if (++n[1] == n[0])
  3807. return 0;
  3808. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3809. p[0] = v;
  3810. p[1] = 1;
  3811. return 1;
  3812. }
  3813. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3814. {
  3815. void *p;
  3816. int i;
  3817. if (n[0] == n[1])
  3818. return;
  3819. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3820. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3821. continue;
  3822. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3823. return;
  3824. }
  3825. }
  3826. static void show_symbol(struct seq_file *m, unsigned long address)
  3827. {
  3828. #ifdef CONFIG_KALLSYMS
  3829. unsigned long offset, size;
  3830. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3831. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3832. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3833. if (modname[0])
  3834. seq_printf(m, " [%s]", modname);
  3835. return;
  3836. }
  3837. #endif
  3838. seq_printf(m, "%p", (void *)address);
  3839. }
  3840. static int leaks_show(struct seq_file *m, void *p)
  3841. {
  3842. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3843. struct slab *slabp;
  3844. struct kmem_list3 *l3;
  3845. const char *name;
  3846. unsigned long *n = m->private;
  3847. int node;
  3848. int i;
  3849. if (!(cachep->flags & SLAB_STORE_USER))
  3850. return 0;
  3851. if (!(cachep->flags & SLAB_RED_ZONE))
  3852. return 0;
  3853. /* OK, we can do it */
  3854. n[1] = 0;
  3855. for_each_online_node(node) {
  3856. l3 = cachep->nodelists[node];
  3857. if (!l3)
  3858. continue;
  3859. check_irq_on();
  3860. spin_lock_irq(&l3->list_lock);
  3861. list_for_each_entry(slabp, &l3->slabs_full, list)
  3862. handle_slab(n, cachep, slabp);
  3863. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3864. handle_slab(n, cachep, slabp);
  3865. spin_unlock_irq(&l3->list_lock);
  3866. }
  3867. name = cachep->name;
  3868. if (n[0] == n[1]) {
  3869. /* Increase the buffer size */
  3870. mutex_unlock(&cache_chain_mutex);
  3871. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3872. if (!m->private) {
  3873. /* Too bad, we are really out */
  3874. m->private = n;
  3875. mutex_lock(&cache_chain_mutex);
  3876. return -ENOMEM;
  3877. }
  3878. *(unsigned long *)m->private = n[0] * 2;
  3879. kfree(n);
  3880. mutex_lock(&cache_chain_mutex);
  3881. /* Now make sure this entry will be retried */
  3882. m->count = m->size;
  3883. return 0;
  3884. }
  3885. for (i = 0; i < n[1]; i++) {
  3886. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3887. show_symbol(m, n[2*i+2]);
  3888. seq_putc(m, '\n');
  3889. }
  3890. return 0;
  3891. }
  3892. const struct seq_operations slabstats_op = {
  3893. .start = leaks_start,
  3894. .next = s_next,
  3895. .stop = s_stop,
  3896. .show = leaks_show,
  3897. };
  3898. #endif
  3899. #endif
  3900. /**
  3901. * ksize - get the actual amount of memory allocated for a given object
  3902. * @objp: Pointer to the object
  3903. *
  3904. * kmalloc may internally round up allocations and return more memory
  3905. * than requested. ksize() can be used to determine the actual amount of
  3906. * memory allocated. The caller may use this additional memory, even though
  3907. * a smaller amount of memory was initially specified with the kmalloc call.
  3908. * The caller must guarantee that objp points to a valid object previously
  3909. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3910. * must not be freed during the duration of the call.
  3911. */
  3912. size_t ksize(const void *objp)
  3913. {
  3914. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3915. return 0;
  3916. return obj_size(virt_to_cache(objp));
  3917. }