memory.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <asm/pgalloc.h>
  49. #include <asm/uaccess.h>
  50. #include <asm/tlb.h>
  51. #include <asm/tlbflush.h>
  52. #include <asm/pgtable.h>
  53. #include <linux/swapops.h>
  54. #include <linux/elf.h>
  55. #ifndef CONFIG_NEED_MULTIPLE_NODES
  56. /* use the per-pgdat data instead for discontigmem - mbligh */
  57. unsigned long max_mapnr;
  58. struct page *mem_map;
  59. EXPORT_SYMBOL(max_mapnr);
  60. EXPORT_SYMBOL(mem_map);
  61. #endif
  62. unsigned long num_physpages;
  63. /*
  64. * A number of key systems in x86 including ioremap() rely on the assumption
  65. * that high_memory defines the upper bound on direct map memory, then end
  66. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  67. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  68. * and ZONE_HIGHMEM.
  69. */
  70. void * high_memory;
  71. EXPORT_SYMBOL(num_physpages);
  72. EXPORT_SYMBOL(high_memory);
  73. int randomize_va_space __read_mostly = 1;
  74. static int __init disable_randmaps(char *s)
  75. {
  76. randomize_va_space = 0;
  77. return 1;
  78. }
  79. __setup("norandmaps", disable_randmaps);
  80. /*
  81. * If a p?d_bad entry is found while walking page tables, report
  82. * the error, before resetting entry to p?d_none. Usually (but
  83. * very seldom) called out from the p?d_none_or_clear_bad macros.
  84. */
  85. void pgd_clear_bad(pgd_t *pgd)
  86. {
  87. pgd_ERROR(*pgd);
  88. pgd_clear(pgd);
  89. }
  90. void pud_clear_bad(pud_t *pud)
  91. {
  92. pud_ERROR(*pud);
  93. pud_clear(pud);
  94. }
  95. void pmd_clear_bad(pmd_t *pmd)
  96. {
  97. pmd_ERROR(*pmd);
  98. pmd_clear(pmd);
  99. }
  100. /*
  101. * Note: this doesn't free the actual pages themselves. That
  102. * has been handled earlier when unmapping all the memory regions.
  103. */
  104. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  105. {
  106. struct page *page = pmd_page(*pmd);
  107. pmd_clear(pmd);
  108. pte_lock_deinit(page);
  109. pte_free_tlb(tlb, page);
  110. dec_zone_page_state(page, NR_PAGETABLE);
  111. tlb->mm->nr_ptes--;
  112. }
  113. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  114. unsigned long addr, unsigned long end,
  115. unsigned long floor, unsigned long ceiling)
  116. {
  117. pmd_t *pmd;
  118. unsigned long next;
  119. unsigned long start;
  120. start = addr;
  121. pmd = pmd_offset(pud, addr);
  122. do {
  123. next = pmd_addr_end(addr, end);
  124. if (pmd_none_or_clear_bad(pmd))
  125. continue;
  126. free_pte_range(tlb, pmd);
  127. } while (pmd++, addr = next, addr != end);
  128. start &= PUD_MASK;
  129. if (start < floor)
  130. return;
  131. if (ceiling) {
  132. ceiling &= PUD_MASK;
  133. if (!ceiling)
  134. return;
  135. }
  136. if (end - 1 > ceiling - 1)
  137. return;
  138. pmd = pmd_offset(pud, start);
  139. pud_clear(pud);
  140. pmd_free_tlb(tlb, pmd);
  141. }
  142. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  143. unsigned long addr, unsigned long end,
  144. unsigned long floor, unsigned long ceiling)
  145. {
  146. pud_t *pud;
  147. unsigned long next;
  148. unsigned long start;
  149. start = addr;
  150. pud = pud_offset(pgd, addr);
  151. do {
  152. next = pud_addr_end(addr, end);
  153. if (pud_none_or_clear_bad(pud))
  154. continue;
  155. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  156. } while (pud++, addr = next, addr != end);
  157. start &= PGDIR_MASK;
  158. if (start < floor)
  159. return;
  160. if (ceiling) {
  161. ceiling &= PGDIR_MASK;
  162. if (!ceiling)
  163. return;
  164. }
  165. if (end - 1 > ceiling - 1)
  166. return;
  167. pud = pud_offset(pgd, start);
  168. pgd_clear(pgd);
  169. pud_free_tlb(tlb, pud);
  170. }
  171. /*
  172. * This function frees user-level page tables of a process.
  173. *
  174. * Must be called with pagetable lock held.
  175. */
  176. void free_pgd_range(struct mmu_gather **tlb,
  177. unsigned long addr, unsigned long end,
  178. unsigned long floor, unsigned long ceiling)
  179. {
  180. pgd_t *pgd;
  181. unsigned long next;
  182. unsigned long start;
  183. /*
  184. * The next few lines have given us lots of grief...
  185. *
  186. * Why are we testing PMD* at this top level? Because often
  187. * there will be no work to do at all, and we'd prefer not to
  188. * go all the way down to the bottom just to discover that.
  189. *
  190. * Why all these "- 1"s? Because 0 represents both the bottom
  191. * of the address space and the top of it (using -1 for the
  192. * top wouldn't help much: the masks would do the wrong thing).
  193. * The rule is that addr 0 and floor 0 refer to the bottom of
  194. * the address space, but end 0 and ceiling 0 refer to the top
  195. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  196. * that end 0 case should be mythical).
  197. *
  198. * Wherever addr is brought up or ceiling brought down, we must
  199. * be careful to reject "the opposite 0" before it confuses the
  200. * subsequent tests. But what about where end is brought down
  201. * by PMD_SIZE below? no, end can't go down to 0 there.
  202. *
  203. * Whereas we round start (addr) and ceiling down, by different
  204. * masks at different levels, in order to test whether a table
  205. * now has no other vmas using it, so can be freed, we don't
  206. * bother to round floor or end up - the tests don't need that.
  207. */
  208. addr &= PMD_MASK;
  209. if (addr < floor) {
  210. addr += PMD_SIZE;
  211. if (!addr)
  212. return;
  213. }
  214. if (ceiling) {
  215. ceiling &= PMD_MASK;
  216. if (!ceiling)
  217. return;
  218. }
  219. if (end - 1 > ceiling - 1)
  220. end -= PMD_SIZE;
  221. if (addr > end - 1)
  222. return;
  223. start = addr;
  224. pgd = pgd_offset((*tlb)->mm, addr);
  225. do {
  226. next = pgd_addr_end(addr, end);
  227. if (pgd_none_or_clear_bad(pgd))
  228. continue;
  229. free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
  230. } while (pgd++, addr = next, addr != end);
  231. if (!(*tlb)->fullmm)
  232. flush_tlb_pgtables((*tlb)->mm, start, end);
  233. }
  234. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
  235. unsigned long floor, unsigned long ceiling)
  236. {
  237. while (vma) {
  238. struct vm_area_struct *next = vma->vm_next;
  239. unsigned long addr = vma->vm_start;
  240. /*
  241. * Hide vma from rmap and vmtruncate before freeing pgtables
  242. */
  243. anon_vma_unlink(vma);
  244. unlink_file_vma(vma);
  245. if (is_vm_hugetlb_page(vma)) {
  246. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  247. floor, next? next->vm_start: ceiling);
  248. } else {
  249. /*
  250. * Optimization: gather nearby vmas into one call down
  251. */
  252. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  253. && !is_vm_hugetlb_page(next)) {
  254. vma = next;
  255. next = vma->vm_next;
  256. anon_vma_unlink(vma);
  257. unlink_file_vma(vma);
  258. }
  259. free_pgd_range(tlb, addr, vma->vm_end,
  260. floor, next? next->vm_start: ceiling);
  261. }
  262. vma = next;
  263. }
  264. }
  265. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  266. {
  267. struct page *new = pte_alloc_one(mm, address);
  268. if (!new)
  269. return -ENOMEM;
  270. pte_lock_init(new);
  271. spin_lock(&mm->page_table_lock);
  272. if (pmd_present(*pmd)) { /* Another has populated it */
  273. pte_lock_deinit(new);
  274. pte_free(new);
  275. } else {
  276. mm->nr_ptes++;
  277. inc_zone_page_state(new, NR_PAGETABLE);
  278. pmd_populate(mm, pmd, new);
  279. }
  280. spin_unlock(&mm->page_table_lock);
  281. return 0;
  282. }
  283. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  284. {
  285. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  286. if (!new)
  287. return -ENOMEM;
  288. spin_lock(&init_mm.page_table_lock);
  289. if (pmd_present(*pmd)) /* Another has populated it */
  290. pte_free_kernel(new);
  291. else
  292. pmd_populate_kernel(&init_mm, pmd, new);
  293. spin_unlock(&init_mm.page_table_lock);
  294. return 0;
  295. }
  296. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  297. {
  298. if (file_rss)
  299. add_mm_counter(mm, file_rss, file_rss);
  300. if (anon_rss)
  301. add_mm_counter(mm, anon_rss, anon_rss);
  302. }
  303. /*
  304. * This function is called to print an error when a bad pte
  305. * is found. For example, we might have a PFN-mapped pte in
  306. * a region that doesn't allow it.
  307. *
  308. * The calling function must still handle the error.
  309. */
  310. void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
  311. {
  312. printk(KERN_ERR "Bad pte = %08llx, process = %s, "
  313. "vm_flags = %lx, vaddr = %lx\n",
  314. (long long)pte_val(pte),
  315. (vma->vm_mm == current->mm ? current->comm : "???"),
  316. vma->vm_flags, vaddr);
  317. dump_stack();
  318. }
  319. static inline int is_cow_mapping(unsigned int flags)
  320. {
  321. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  322. }
  323. /*
  324. * This function gets the "struct page" associated with a pte.
  325. *
  326. * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
  327. * will have each page table entry just pointing to a raw page frame
  328. * number, and as far as the VM layer is concerned, those do not have
  329. * pages associated with them - even if the PFN might point to memory
  330. * that otherwise is perfectly fine and has a "struct page".
  331. *
  332. * The way we recognize those mappings is through the rules set up
  333. * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
  334. * and the vm_pgoff will point to the first PFN mapped: thus every
  335. * page that is a raw mapping will always honor the rule
  336. *
  337. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  338. *
  339. * and if that isn't true, the page has been COW'ed (in which case it
  340. * _does_ have a "struct page" associated with it even if it is in a
  341. * VM_PFNMAP range).
  342. */
  343. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  344. {
  345. unsigned long pfn = pte_pfn(pte);
  346. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  347. unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
  348. if (pfn == vma->vm_pgoff + off)
  349. return NULL;
  350. if (!is_cow_mapping(vma->vm_flags))
  351. return NULL;
  352. }
  353. /*
  354. * Add some anal sanity checks for now. Eventually,
  355. * we should just do "return pfn_to_page(pfn)", but
  356. * in the meantime we check that we get a valid pfn,
  357. * and that the resulting page looks ok.
  358. */
  359. if (unlikely(!pfn_valid(pfn))) {
  360. print_bad_pte(vma, pte, addr);
  361. return NULL;
  362. }
  363. /*
  364. * NOTE! We still have PageReserved() pages in the page
  365. * tables.
  366. *
  367. * The PAGE_ZERO() pages and various VDSO mappings can
  368. * cause them to exist.
  369. */
  370. return pfn_to_page(pfn);
  371. }
  372. /*
  373. * copy one vm_area from one task to the other. Assumes the page tables
  374. * already present in the new task to be cleared in the whole range
  375. * covered by this vma.
  376. */
  377. static inline void
  378. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  379. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  380. unsigned long addr, int *rss)
  381. {
  382. unsigned long vm_flags = vma->vm_flags;
  383. pte_t pte = *src_pte;
  384. struct page *page;
  385. /* pte contains position in swap or file, so copy. */
  386. if (unlikely(!pte_present(pte))) {
  387. if (!pte_file(pte)) {
  388. swp_entry_t entry = pte_to_swp_entry(pte);
  389. swap_duplicate(entry);
  390. /* make sure dst_mm is on swapoff's mmlist. */
  391. if (unlikely(list_empty(&dst_mm->mmlist))) {
  392. spin_lock(&mmlist_lock);
  393. if (list_empty(&dst_mm->mmlist))
  394. list_add(&dst_mm->mmlist,
  395. &src_mm->mmlist);
  396. spin_unlock(&mmlist_lock);
  397. }
  398. if (is_write_migration_entry(entry) &&
  399. is_cow_mapping(vm_flags)) {
  400. /*
  401. * COW mappings require pages in both parent
  402. * and child to be set to read.
  403. */
  404. make_migration_entry_read(&entry);
  405. pte = swp_entry_to_pte(entry);
  406. set_pte_at(src_mm, addr, src_pte, pte);
  407. }
  408. }
  409. goto out_set_pte;
  410. }
  411. /*
  412. * If it's a COW mapping, write protect it both
  413. * in the parent and the child
  414. */
  415. if (is_cow_mapping(vm_flags)) {
  416. ptep_set_wrprotect(src_mm, addr, src_pte);
  417. pte = pte_wrprotect(pte);
  418. }
  419. /*
  420. * If it's a shared mapping, mark it clean in
  421. * the child
  422. */
  423. if (vm_flags & VM_SHARED)
  424. pte = pte_mkclean(pte);
  425. pte = pte_mkold(pte);
  426. page = vm_normal_page(vma, addr, pte);
  427. if (page) {
  428. get_page(page);
  429. page_dup_rmap(page, vma, addr);
  430. rss[!!PageAnon(page)]++;
  431. }
  432. out_set_pte:
  433. set_pte_at(dst_mm, addr, dst_pte, pte);
  434. }
  435. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  436. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  437. unsigned long addr, unsigned long end)
  438. {
  439. pte_t *src_pte, *dst_pte;
  440. spinlock_t *src_ptl, *dst_ptl;
  441. int progress = 0;
  442. int rss[2];
  443. again:
  444. rss[1] = rss[0] = 0;
  445. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  446. if (!dst_pte)
  447. return -ENOMEM;
  448. src_pte = pte_offset_map_nested(src_pmd, addr);
  449. src_ptl = pte_lockptr(src_mm, src_pmd);
  450. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  451. arch_enter_lazy_mmu_mode();
  452. do {
  453. /*
  454. * We are holding two locks at this point - either of them
  455. * could generate latencies in another task on another CPU.
  456. */
  457. if (progress >= 32) {
  458. progress = 0;
  459. if (need_resched() ||
  460. need_lockbreak(src_ptl) ||
  461. need_lockbreak(dst_ptl))
  462. break;
  463. }
  464. if (pte_none(*src_pte)) {
  465. progress++;
  466. continue;
  467. }
  468. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  469. progress += 8;
  470. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  471. arch_leave_lazy_mmu_mode();
  472. spin_unlock(src_ptl);
  473. pte_unmap_nested(src_pte - 1);
  474. add_mm_rss(dst_mm, rss[0], rss[1]);
  475. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  476. cond_resched();
  477. if (addr != end)
  478. goto again;
  479. return 0;
  480. }
  481. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  482. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  483. unsigned long addr, unsigned long end)
  484. {
  485. pmd_t *src_pmd, *dst_pmd;
  486. unsigned long next;
  487. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  488. if (!dst_pmd)
  489. return -ENOMEM;
  490. src_pmd = pmd_offset(src_pud, addr);
  491. do {
  492. next = pmd_addr_end(addr, end);
  493. if (pmd_none_or_clear_bad(src_pmd))
  494. continue;
  495. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  496. vma, addr, next))
  497. return -ENOMEM;
  498. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  499. return 0;
  500. }
  501. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  502. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  503. unsigned long addr, unsigned long end)
  504. {
  505. pud_t *src_pud, *dst_pud;
  506. unsigned long next;
  507. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  508. if (!dst_pud)
  509. return -ENOMEM;
  510. src_pud = pud_offset(src_pgd, addr);
  511. do {
  512. next = pud_addr_end(addr, end);
  513. if (pud_none_or_clear_bad(src_pud))
  514. continue;
  515. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  516. vma, addr, next))
  517. return -ENOMEM;
  518. } while (dst_pud++, src_pud++, addr = next, addr != end);
  519. return 0;
  520. }
  521. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  522. struct vm_area_struct *vma)
  523. {
  524. pgd_t *src_pgd, *dst_pgd;
  525. unsigned long next;
  526. unsigned long addr = vma->vm_start;
  527. unsigned long end = vma->vm_end;
  528. /*
  529. * Don't copy ptes where a page fault will fill them correctly.
  530. * Fork becomes much lighter when there are big shared or private
  531. * readonly mappings. The tradeoff is that copy_page_range is more
  532. * efficient than faulting.
  533. */
  534. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  535. if (!vma->anon_vma)
  536. return 0;
  537. }
  538. if (is_vm_hugetlb_page(vma))
  539. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  540. dst_pgd = pgd_offset(dst_mm, addr);
  541. src_pgd = pgd_offset(src_mm, addr);
  542. do {
  543. next = pgd_addr_end(addr, end);
  544. if (pgd_none_or_clear_bad(src_pgd))
  545. continue;
  546. if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  547. vma, addr, next))
  548. return -ENOMEM;
  549. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  550. return 0;
  551. }
  552. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  553. struct vm_area_struct *vma, pmd_t *pmd,
  554. unsigned long addr, unsigned long end,
  555. long *zap_work, struct zap_details *details)
  556. {
  557. struct mm_struct *mm = tlb->mm;
  558. pte_t *pte;
  559. spinlock_t *ptl;
  560. int file_rss = 0;
  561. int anon_rss = 0;
  562. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  563. arch_enter_lazy_mmu_mode();
  564. do {
  565. pte_t ptent = *pte;
  566. if (pte_none(ptent)) {
  567. (*zap_work)--;
  568. continue;
  569. }
  570. (*zap_work) -= PAGE_SIZE;
  571. if (pte_present(ptent)) {
  572. struct page *page;
  573. page = vm_normal_page(vma, addr, ptent);
  574. if (unlikely(details) && page) {
  575. /*
  576. * unmap_shared_mapping_pages() wants to
  577. * invalidate cache without truncating:
  578. * unmap shared but keep private pages.
  579. */
  580. if (details->check_mapping &&
  581. details->check_mapping != page->mapping)
  582. continue;
  583. /*
  584. * Each page->index must be checked when
  585. * invalidating or truncating nonlinear.
  586. */
  587. if (details->nonlinear_vma &&
  588. (page->index < details->first_index ||
  589. page->index > details->last_index))
  590. continue;
  591. }
  592. ptent = ptep_get_and_clear_full(mm, addr, pte,
  593. tlb->fullmm);
  594. tlb_remove_tlb_entry(tlb, pte, addr);
  595. if (unlikely(!page))
  596. continue;
  597. if (unlikely(details) && details->nonlinear_vma
  598. && linear_page_index(details->nonlinear_vma,
  599. addr) != page->index)
  600. set_pte_at(mm, addr, pte,
  601. pgoff_to_pte(page->index));
  602. if (PageAnon(page))
  603. anon_rss--;
  604. else {
  605. if (pte_dirty(ptent))
  606. set_page_dirty(page);
  607. if (pte_young(ptent))
  608. SetPageReferenced(page);
  609. file_rss--;
  610. }
  611. page_remove_rmap(page, vma);
  612. tlb_remove_page(tlb, page);
  613. continue;
  614. }
  615. /*
  616. * If details->check_mapping, we leave swap entries;
  617. * if details->nonlinear_vma, we leave file entries.
  618. */
  619. if (unlikely(details))
  620. continue;
  621. if (!pte_file(ptent))
  622. free_swap_and_cache(pte_to_swp_entry(ptent));
  623. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  624. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  625. add_mm_rss(mm, file_rss, anon_rss);
  626. arch_leave_lazy_mmu_mode();
  627. pte_unmap_unlock(pte - 1, ptl);
  628. return addr;
  629. }
  630. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  631. struct vm_area_struct *vma, pud_t *pud,
  632. unsigned long addr, unsigned long end,
  633. long *zap_work, struct zap_details *details)
  634. {
  635. pmd_t *pmd;
  636. unsigned long next;
  637. pmd = pmd_offset(pud, addr);
  638. do {
  639. next = pmd_addr_end(addr, end);
  640. if (pmd_none_or_clear_bad(pmd)) {
  641. (*zap_work)--;
  642. continue;
  643. }
  644. next = zap_pte_range(tlb, vma, pmd, addr, next,
  645. zap_work, details);
  646. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  647. return addr;
  648. }
  649. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  650. struct vm_area_struct *vma, pgd_t *pgd,
  651. unsigned long addr, unsigned long end,
  652. long *zap_work, struct zap_details *details)
  653. {
  654. pud_t *pud;
  655. unsigned long next;
  656. pud = pud_offset(pgd, addr);
  657. do {
  658. next = pud_addr_end(addr, end);
  659. if (pud_none_or_clear_bad(pud)) {
  660. (*zap_work)--;
  661. continue;
  662. }
  663. next = zap_pmd_range(tlb, vma, pud, addr, next,
  664. zap_work, details);
  665. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  666. return addr;
  667. }
  668. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  669. struct vm_area_struct *vma,
  670. unsigned long addr, unsigned long end,
  671. long *zap_work, struct zap_details *details)
  672. {
  673. pgd_t *pgd;
  674. unsigned long next;
  675. if (details && !details->check_mapping && !details->nonlinear_vma)
  676. details = NULL;
  677. BUG_ON(addr >= end);
  678. tlb_start_vma(tlb, vma);
  679. pgd = pgd_offset(vma->vm_mm, addr);
  680. do {
  681. next = pgd_addr_end(addr, end);
  682. if (pgd_none_or_clear_bad(pgd)) {
  683. (*zap_work)--;
  684. continue;
  685. }
  686. next = zap_pud_range(tlb, vma, pgd, addr, next,
  687. zap_work, details);
  688. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  689. tlb_end_vma(tlb, vma);
  690. return addr;
  691. }
  692. #ifdef CONFIG_PREEMPT
  693. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  694. #else
  695. /* No preempt: go for improved straight-line efficiency */
  696. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  697. #endif
  698. /**
  699. * unmap_vmas - unmap a range of memory covered by a list of vma's
  700. * @tlbp: address of the caller's struct mmu_gather
  701. * @vma: the starting vma
  702. * @start_addr: virtual address at which to start unmapping
  703. * @end_addr: virtual address at which to end unmapping
  704. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  705. * @details: details of nonlinear truncation or shared cache invalidation
  706. *
  707. * Returns the end address of the unmapping (restart addr if interrupted).
  708. *
  709. * Unmap all pages in the vma list.
  710. *
  711. * We aim to not hold locks for too long (for scheduling latency reasons).
  712. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  713. * return the ending mmu_gather to the caller.
  714. *
  715. * Only addresses between `start' and `end' will be unmapped.
  716. *
  717. * The VMA list must be sorted in ascending virtual address order.
  718. *
  719. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  720. * range after unmap_vmas() returns. So the only responsibility here is to
  721. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  722. * drops the lock and schedules.
  723. */
  724. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  725. struct vm_area_struct *vma, unsigned long start_addr,
  726. unsigned long end_addr, unsigned long *nr_accounted,
  727. struct zap_details *details)
  728. {
  729. long zap_work = ZAP_BLOCK_SIZE;
  730. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  731. int tlb_start_valid = 0;
  732. unsigned long start = start_addr;
  733. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  734. int fullmm = (*tlbp)->fullmm;
  735. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  736. unsigned long end;
  737. start = max(vma->vm_start, start_addr);
  738. if (start >= vma->vm_end)
  739. continue;
  740. end = min(vma->vm_end, end_addr);
  741. if (end <= vma->vm_start)
  742. continue;
  743. if (vma->vm_flags & VM_ACCOUNT)
  744. *nr_accounted += (end - start) >> PAGE_SHIFT;
  745. while (start != end) {
  746. if (!tlb_start_valid) {
  747. tlb_start = start;
  748. tlb_start_valid = 1;
  749. }
  750. if (unlikely(is_vm_hugetlb_page(vma))) {
  751. unmap_hugepage_range(vma, start, end);
  752. zap_work -= (end - start) /
  753. (HPAGE_SIZE / PAGE_SIZE);
  754. start = end;
  755. } else
  756. start = unmap_page_range(*tlbp, vma,
  757. start, end, &zap_work, details);
  758. if (zap_work > 0) {
  759. BUG_ON(start != end);
  760. break;
  761. }
  762. tlb_finish_mmu(*tlbp, tlb_start, start);
  763. if (need_resched() ||
  764. (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
  765. if (i_mmap_lock) {
  766. *tlbp = NULL;
  767. goto out;
  768. }
  769. cond_resched();
  770. }
  771. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  772. tlb_start_valid = 0;
  773. zap_work = ZAP_BLOCK_SIZE;
  774. }
  775. }
  776. out:
  777. return start; /* which is now the end (or restart) address */
  778. }
  779. /**
  780. * zap_page_range - remove user pages in a given range
  781. * @vma: vm_area_struct holding the applicable pages
  782. * @address: starting address of pages to zap
  783. * @size: number of bytes to zap
  784. * @details: details of nonlinear truncation or shared cache invalidation
  785. */
  786. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  787. unsigned long size, struct zap_details *details)
  788. {
  789. struct mm_struct *mm = vma->vm_mm;
  790. struct mmu_gather *tlb;
  791. unsigned long end = address + size;
  792. unsigned long nr_accounted = 0;
  793. lru_add_drain();
  794. tlb = tlb_gather_mmu(mm, 0);
  795. update_hiwater_rss(mm);
  796. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  797. if (tlb)
  798. tlb_finish_mmu(tlb, address, end);
  799. return end;
  800. }
  801. /*
  802. * Do a quick page-table lookup for a single page.
  803. */
  804. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  805. unsigned int flags)
  806. {
  807. pgd_t *pgd;
  808. pud_t *pud;
  809. pmd_t *pmd;
  810. pte_t *ptep, pte;
  811. spinlock_t *ptl;
  812. struct page *page;
  813. struct mm_struct *mm = vma->vm_mm;
  814. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  815. if (!IS_ERR(page)) {
  816. BUG_ON(flags & FOLL_GET);
  817. goto out;
  818. }
  819. page = NULL;
  820. pgd = pgd_offset(mm, address);
  821. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  822. goto no_page_table;
  823. pud = pud_offset(pgd, address);
  824. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  825. goto no_page_table;
  826. pmd = pmd_offset(pud, address);
  827. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  828. goto no_page_table;
  829. if (pmd_huge(*pmd)) {
  830. BUG_ON(flags & FOLL_GET);
  831. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  832. goto out;
  833. }
  834. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  835. if (!ptep)
  836. goto out;
  837. pte = *ptep;
  838. if (!pte_present(pte))
  839. goto unlock;
  840. if ((flags & FOLL_WRITE) && !pte_write(pte))
  841. goto unlock;
  842. page = vm_normal_page(vma, address, pte);
  843. if (unlikely(!page))
  844. goto unlock;
  845. if (flags & FOLL_GET)
  846. get_page(page);
  847. if (flags & FOLL_TOUCH) {
  848. if ((flags & FOLL_WRITE) &&
  849. !pte_dirty(pte) && !PageDirty(page))
  850. set_page_dirty(page);
  851. mark_page_accessed(page);
  852. }
  853. unlock:
  854. pte_unmap_unlock(ptep, ptl);
  855. out:
  856. return page;
  857. no_page_table:
  858. /*
  859. * When core dumping an enormous anonymous area that nobody
  860. * has touched so far, we don't want to allocate page tables.
  861. */
  862. if (flags & FOLL_ANON) {
  863. page = ZERO_PAGE(address);
  864. if (flags & FOLL_GET)
  865. get_page(page);
  866. BUG_ON(flags & FOLL_WRITE);
  867. }
  868. return page;
  869. }
  870. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  871. unsigned long start, int len, int write, int force,
  872. struct page **pages, struct vm_area_struct **vmas)
  873. {
  874. int i;
  875. unsigned int vm_flags;
  876. /*
  877. * Require read or write permissions.
  878. * If 'force' is set, we only require the "MAY" flags.
  879. */
  880. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  881. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  882. i = 0;
  883. do {
  884. struct vm_area_struct *vma;
  885. unsigned int foll_flags;
  886. vma = find_extend_vma(mm, start);
  887. if (!vma && in_gate_area(tsk, start)) {
  888. unsigned long pg = start & PAGE_MASK;
  889. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  890. pgd_t *pgd;
  891. pud_t *pud;
  892. pmd_t *pmd;
  893. pte_t *pte;
  894. if (write) /* user gate pages are read-only */
  895. return i ? : -EFAULT;
  896. if (pg > TASK_SIZE)
  897. pgd = pgd_offset_k(pg);
  898. else
  899. pgd = pgd_offset_gate(mm, pg);
  900. BUG_ON(pgd_none(*pgd));
  901. pud = pud_offset(pgd, pg);
  902. BUG_ON(pud_none(*pud));
  903. pmd = pmd_offset(pud, pg);
  904. if (pmd_none(*pmd))
  905. return i ? : -EFAULT;
  906. pte = pte_offset_map(pmd, pg);
  907. if (pte_none(*pte)) {
  908. pte_unmap(pte);
  909. return i ? : -EFAULT;
  910. }
  911. if (pages) {
  912. struct page *page = vm_normal_page(gate_vma, start, *pte);
  913. pages[i] = page;
  914. if (page)
  915. get_page(page);
  916. }
  917. pte_unmap(pte);
  918. if (vmas)
  919. vmas[i] = gate_vma;
  920. i++;
  921. start += PAGE_SIZE;
  922. len--;
  923. continue;
  924. }
  925. if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
  926. || !(vm_flags & vma->vm_flags))
  927. return i ? : -EFAULT;
  928. if (is_vm_hugetlb_page(vma)) {
  929. i = follow_hugetlb_page(mm, vma, pages, vmas,
  930. &start, &len, i);
  931. continue;
  932. }
  933. foll_flags = FOLL_TOUCH;
  934. if (pages)
  935. foll_flags |= FOLL_GET;
  936. if (!write && !(vma->vm_flags & VM_LOCKED) &&
  937. (!vma->vm_ops || !vma->vm_ops->nopage))
  938. foll_flags |= FOLL_ANON;
  939. do {
  940. struct page *page;
  941. /*
  942. * If tsk is ooming, cut off its access to large memory
  943. * allocations. It has a pending SIGKILL, but it can't
  944. * be processed until returning to user space.
  945. */
  946. if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
  947. return -ENOMEM;
  948. if (write)
  949. foll_flags |= FOLL_WRITE;
  950. cond_resched();
  951. while (!(page = follow_page(vma, start, foll_flags))) {
  952. int ret;
  953. ret = __handle_mm_fault(mm, vma, start,
  954. foll_flags & FOLL_WRITE);
  955. /*
  956. * The VM_FAULT_WRITE bit tells us that do_wp_page has
  957. * broken COW when necessary, even if maybe_mkwrite
  958. * decided not to set pte_write. We can thus safely do
  959. * subsequent page lookups as if they were reads.
  960. */
  961. if (ret & VM_FAULT_WRITE)
  962. foll_flags &= ~FOLL_WRITE;
  963. switch (ret & ~VM_FAULT_WRITE) {
  964. case VM_FAULT_MINOR:
  965. tsk->min_flt++;
  966. break;
  967. case VM_FAULT_MAJOR:
  968. tsk->maj_flt++;
  969. break;
  970. case VM_FAULT_SIGBUS:
  971. return i ? i : -EFAULT;
  972. case VM_FAULT_OOM:
  973. return i ? i : -ENOMEM;
  974. default:
  975. BUG();
  976. }
  977. cond_resched();
  978. }
  979. if (pages) {
  980. pages[i] = page;
  981. flush_anon_page(vma, page, start);
  982. flush_dcache_page(page);
  983. }
  984. if (vmas)
  985. vmas[i] = vma;
  986. i++;
  987. start += PAGE_SIZE;
  988. len--;
  989. } while (len && start < vma->vm_end);
  990. } while (len);
  991. return i;
  992. }
  993. EXPORT_SYMBOL(get_user_pages);
  994. static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  995. unsigned long addr, unsigned long end, pgprot_t prot)
  996. {
  997. pte_t *pte;
  998. spinlock_t *ptl;
  999. int err = 0;
  1000. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1001. if (!pte)
  1002. return -EAGAIN;
  1003. arch_enter_lazy_mmu_mode();
  1004. do {
  1005. struct page *page = ZERO_PAGE(addr);
  1006. pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
  1007. if (unlikely(!pte_none(*pte))) {
  1008. err = -EEXIST;
  1009. pte++;
  1010. break;
  1011. }
  1012. page_cache_get(page);
  1013. page_add_file_rmap(page);
  1014. inc_mm_counter(mm, file_rss);
  1015. set_pte_at(mm, addr, pte, zero_pte);
  1016. } while (pte++, addr += PAGE_SIZE, addr != end);
  1017. arch_leave_lazy_mmu_mode();
  1018. pte_unmap_unlock(pte - 1, ptl);
  1019. return err;
  1020. }
  1021. static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1022. unsigned long addr, unsigned long end, pgprot_t prot)
  1023. {
  1024. pmd_t *pmd;
  1025. unsigned long next;
  1026. int err;
  1027. pmd = pmd_alloc(mm, pud, addr);
  1028. if (!pmd)
  1029. return -EAGAIN;
  1030. do {
  1031. next = pmd_addr_end(addr, end);
  1032. err = zeromap_pte_range(mm, pmd, addr, next, prot);
  1033. if (err)
  1034. break;
  1035. } while (pmd++, addr = next, addr != end);
  1036. return err;
  1037. }
  1038. static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1039. unsigned long addr, unsigned long end, pgprot_t prot)
  1040. {
  1041. pud_t *pud;
  1042. unsigned long next;
  1043. int err;
  1044. pud = pud_alloc(mm, pgd, addr);
  1045. if (!pud)
  1046. return -EAGAIN;
  1047. do {
  1048. next = pud_addr_end(addr, end);
  1049. err = zeromap_pmd_range(mm, pud, addr, next, prot);
  1050. if (err)
  1051. break;
  1052. } while (pud++, addr = next, addr != end);
  1053. return err;
  1054. }
  1055. int zeromap_page_range(struct vm_area_struct *vma,
  1056. unsigned long addr, unsigned long size, pgprot_t prot)
  1057. {
  1058. pgd_t *pgd;
  1059. unsigned long next;
  1060. unsigned long end = addr + size;
  1061. struct mm_struct *mm = vma->vm_mm;
  1062. int err;
  1063. BUG_ON(addr >= end);
  1064. pgd = pgd_offset(mm, addr);
  1065. flush_cache_range(vma, addr, end);
  1066. do {
  1067. next = pgd_addr_end(addr, end);
  1068. err = zeromap_pud_range(mm, pgd, addr, next, prot);
  1069. if (err)
  1070. break;
  1071. } while (pgd++, addr = next, addr != end);
  1072. return err;
  1073. }
  1074. pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
  1075. {
  1076. pgd_t * pgd = pgd_offset(mm, addr);
  1077. pud_t * pud = pud_alloc(mm, pgd, addr);
  1078. if (pud) {
  1079. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1080. if (pmd)
  1081. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1082. }
  1083. return NULL;
  1084. }
  1085. /*
  1086. * This is the old fallback for page remapping.
  1087. *
  1088. * For historical reasons, it only allows reserved pages. Only
  1089. * old drivers should use this, and they needed to mark their
  1090. * pages reserved for the old functions anyway.
  1091. */
  1092. static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
  1093. {
  1094. int retval;
  1095. pte_t *pte;
  1096. spinlock_t *ptl;
  1097. retval = -EINVAL;
  1098. if (PageAnon(page))
  1099. goto out;
  1100. retval = -ENOMEM;
  1101. flush_dcache_page(page);
  1102. pte = get_locked_pte(mm, addr, &ptl);
  1103. if (!pte)
  1104. goto out;
  1105. retval = -EBUSY;
  1106. if (!pte_none(*pte))
  1107. goto out_unlock;
  1108. /* Ok, finally just insert the thing.. */
  1109. get_page(page);
  1110. inc_mm_counter(mm, file_rss);
  1111. page_add_file_rmap(page);
  1112. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1113. retval = 0;
  1114. out_unlock:
  1115. pte_unmap_unlock(pte, ptl);
  1116. out:
  1117. return retval;
  1118. }
  1119. /**
  1120. * vm_insert_page - insert single page into user vma
  1121. * @vma: user vma to map to
  1122. * @addr: target user address of this page
  1123. * @page: source kernel page
  1124. *
  1125. * This allows drivers to insert individual pages they've allocated
  1126. * into a user vma.
  1127. *
  1128. * The page has to be a nice clean _individual_ kernel allocation.
  1129. * If you allocate a compound page, you need to have marked it as
  1130. * such (__GFP_COMP), or manually just split the page up yourself
  1131. * (see split_page()).
  1132. *
  1133. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1134. * took an arbitrary page protection parameter. This doesn't allow
  1135. * that. Your vma protection will have to be set up correctly, which
  1136. * means that if you want a shared writable mapping, you'd better
  1137. * ask for a shared writable mapping!
  1138. *
  1139. * The page does not need to be reserved.
  1140. */
  1141. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
  1142. {
  1143. if (addr < vma->vm_start || addr >= vma->vm_end)
  1144. return -EFAULT;
  1145. if (!page_count(page))
  1146. return -EINVAL;
  1147. vma->vm_flags |= VM_INSERTPAGE;
  1148. return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
  1149. }
  1150. EXPORT_SYMBOL(vm_insert_page);
  1151. /**
  1152. * vm_insert_pfn - insert single pfn into user vma
  1153. * @vma: user vma to map to
  1154. * @addr: target user address of this page
  1155. * @pfn: source kernel pfn
  1156. *
  1157. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1158. * they've allocated into a user vma. Same comments apply.
  1159. *
  1160. * This function should only be called from a vm_ops->fault handler, and
  1161. * in that case the handler should return NULL.
  1162. */
  1163. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1164. unsigned long pfn)
  1165. {
  1166. struct mm_struct *mm = vma->vm_mm;
  1167. int retval;
  1168. pte_t *pte, entry;
  1169. spinlock_t *ptl;
  1170. BUG_ON(!(vma->vm_flags & VM_PFNMAP));
  1171. BUG_ON(is_cow_mapping(vma->vm_flags));
  1172. retval = -ENOMEM;
  1173. pte = get_locked_pte(mm, addr, &ptl);
  1174. if (!pte)
  1175. goto out;
  1176. retval = -EBUSY;
  1177. if (!pte_none(*pte))
  1178. goto out_unlock;
  1179. /* Ok, finally just insert the thing.. */
  1180. entry = pfn_pte(pfn, vma->vm_page_prot);
  1181. set_pte_at(mm, addr, pte, entry);
  1182. update_mmu_cache(vma, addr, entry);
  1183. retval = 0;
  1184. out_unlock:
  1185. pte_unmap_unlock(pte, ptl);
  1186. out:
  1187. return retval;
  1188. }
  1189. EXPORT_SYMBOL(vm_insert_pfn);
  1190. /*
  1191. * maps a range of physical memory into the requested pages. the old
  1192. * mappings are removed. any references to nonexistent pages results
  1193. * in null mappings (currently treated as "copy-on-access")
  1194. */
  1195. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1196. unsigned long addr, unsigned long end,
  1197. unsigned long pfn, pgprot_t prot)
  1198. {
  1199. pte_t *pte;
  1200. spinlock_t *ptl;
  1201. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1202. if (!pte)
  1203. return -ENOMEM;
  1204. arch_enter_lazy_mmu_mode();
  1205. do {
  1206. BUG_ON(!pte_none(*pte));
  1207. set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
  1208. pfn++;
  1209. } while (pte++, addr += PAGE_SIZE, addr != end);
  1210. arch_leave_lazy_mmu_mode();
  1211. pte_unmap_unlock(pte - 1, ptl);
  1212. return 0;
  1213. }
  1214. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1215. unsigned long addr, unsigned long end,
  1216. unsigned long pfn, pgprot_t prot)
  1217. {
  1218. pmd_t *pmd;
  1219. unsigned long next;
  1220. pfn -= addr >> PAGE_SHIFT;
  1221. pmd = pmd_alloc(mm, pud, addr);
  1222. if (!pmd)
  1223. return -ENOMEM;
  1224. do {
  1225. next = pmd_addr_end(addr, end);
  1226. if (remap_pte_range(mm, pmd, addr, next,
  1227. pfn + (addr >> PAGE_SHIFT), prot))
  1228. return -ENOMEM;
  1229. } while (pmd++, addr = next, addr != end);
  1230. return 0;
  1231. }
  1232. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1233. unsigned long addr, unsigned long end,
  1234. unsigned long pfn, pgprot_t prot)
  1235. {
  1236. pud_t *pud;
  1237. unsigned long next;
  1238. pfn -= addr >> PAGE_SHIFT;
  1239. pud = pud_alloc(mm, pgd, addr);
  1240. if (!pud)
  1241. return -ENOMEM;
  1242. do {
  1243. next = pud_addr_end(addr, end);
  1244. if (remap_pmd_range(mm, pud, addr, next,
  1245. pfn + (addr >> PAGE_SHIFT), prot))
  1246. return -ENOMEM;
  1247. } while (pud++, addr = next, addr != end);
  1248. return 0;
  1249. }
  1250. /**
  1251. * remap_pfn_range - remap kernel memory to userspace
  1252. * @vma: user vma to map to
  1253. * @addr: target user address to start at
  1254. * @pfn: physical address of kernel memory
  1255. * @size: size of map area
  1256. * @prot: page protection flags for this mapping
  1257. *
  1258. * Note: this is only safe if the mm semaphore is held when called.
  1259. */
  1260. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1261. unsigned long pfn, unsigned long size, pgprot_t prot)
  1262. {
  1263. pgd_t *pgd;
  1264. unsigned long next;
  1265. unsigned long end = addr + PAGE_ALIGN(size);
  1266. struct mm_struct *mm = vma->vm_mm;
  1267. int err;
  1268. /*
  1269. * Physically remapped pages are special. Tell the
  1270. * rest of the world about it:
  1271. * VM_IO tells people not to look at these pages
  1272. * (accesses can have side effects).
  1273. * VM_RESERVED is specified all over the place, because
  1274. * in 2.4 it kept swapout's vma scan off this vma; but
  1275. * in 2.6 the LRU scan won't even find its pages, so this
  1276. * flag means no more than count its pages in reserved_vm,
  1277. * and omit it from core dump, even when VM_IO turned off.
  1278. * VM_PFNMAP tells the core MM that the base pages are just
  1279. * raw PFN mappings, and do not have a "struct page" associated
  1280. * with them.
  1281. *
  1282. * There's a horrible special case to handle copy-on-write
  1283. * behaviour that some programs depend on. We mark the "original"
  1284. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1285. */
  1286. if (is_cow_mapping(vma->vm_flags)) {
  1287. if (addr != vma->vm_start || end != vma->vm_end)
  1288. return -EINVAL;
  1289. vma->vm_pgoff = pfn;
  1290. }
  1291. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1292. BUG_ON(addr >= end);
  1293. pfn -= addr >> PAGE_SHIFT;
  1294. pgd = pgd_offset(mm, addr);
  1295. flush_cache_range(vma, addr, end);
  1296. do {
  1297. next = pgd_addr_end(addr, end);
  1298. err = remap_pud_range(mm, pgd, addr, next,
  1299. pfn + (addr >> PAGE_SHIFT), prot);
  1300. if (err)
  1301. break;
  1302. } while (pgd++, addr = next, addr != end);
  1303. return err;
  1304. }
  1305. EXPORT_SYMBOL(remap_pfn_range);
  1306. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1307. unsigned long addr, unsigned long end,
  1308. pte_fn_t fn, void *data)
  1309. {
  1310. pte_t *pte;
  1311. int err;
  1312. struct page *pmd_page;
  1313. spinlock_t *uninitialized_var(ptl);
  1314. pte = (mm == &init_mm) ?
  1315. pte_alloc_kernel(pmd, addr) :
  1316. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1317. if (!pte)
  1318. return -ENOMEM;
  1319. BUG_ON(pmd_huge(*pmd));
  1320. pmd_page = pmd_page(*pmd);
  1321. do {
  1322. err = fn(pte, pmd_page, addr, data);
  1323. if (err)
  1324. break;
  1325. } while (pte++, addr += PAGE_SIZE, addr != end);
  1326. if (mm != &init_mm)
  1327. pte_unmap_unlock(pte-1, ptl);
  1328. return err;
  1329. }
  1330. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1331. unsigned long addr, unsigned long end,
  1332. pte_fn_t fn, void *data)
  1333. {
  1334. pmd_t *pmd;
  1335. unsigned long next;
  1336. int err;
  1337. pmd = pmd_alloc(mm, pud, addr);
  1338. if (!pmd)
  1339. return -ENOMEM;
  1340. do {
  1341. next = pmd_addr_end(addr, end);
  1342. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1343. if (err)
  1344. break;
  1345. } while (pmd++, addr = next, addr != end);
  1346. return err;
  1347. }
  1348. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1349. unsigned long addr, unsigned long end,
  1350. pte_fn_t fn, void *data)
  1351. {
  1352. pud_t *pud;
  1353. unsigned long next;
  1354. int err;
  1355. pud = pud_alloc(mm, pgd, addr);
  1356. if (!pud)
  1357. return -ENOMEM;
  1358. do {
  1359. next = pud_addr_end(addr, end);
  1360. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1361. if (err)
  1362. break;
  1363. } while (pud++, addr = next, addr != end);
  1364. return err;
  1365. }
  1366. /*
  1367. * Scan a region of virtual memory, filling in page tables as necessary
  1368. * and calling a provided function on each leaf page table.
  1369. */
  1370. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1371. unsigned long size, pte_fn_t fn, void *data)
  1372. {
  1373. pgd_t *pgd;
  1374. unsigned long next;
  1375. unsigned long end = addr + size;
  1376. int err;
  1377. BUG_ON(addr >= end);
  1378. pgd = pgd_offset(mm, addr);
  1379. do {
  1380. next = pgd_addr_end(addr, end);
  1381. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1382. if (err)
  1383. break;
  1384. } while (pgd++, addr = next, addr != end);
  1385. return err;
  1386. }
  1387. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1388. /*
  1389. * handle_pte_fault chooses page fault handler according to an entry
  1390. * which was read non-atomically. Before making any commitment, on
  1391. * those architectures or configurations (e.g. i386 with PAE) which
  1392. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1393. * must check under lock before unmapping the pte and proceeding
  1394. * (but do_wp_page is only called after already making such a check;
  1395. * and do_anonymous_page and do_no_page can safely check later on).
  1396. */
  1397. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1398. pte_t *page_table, pte_t orig_pte)
  1399. {
  1400. int same = 1;
  1401. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1402. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1403. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1404. spin_lock(ptl);
  1405. same = pte_same(*page_table, orig_pte);
  1406. spin_unlock(ptl);
  1407. }
  1408. #endif
  1409. pte_unmap(page_table);
  1410. return same;
  1411. }
  1412. /*
  1413. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1414. * servicing faults for write access. In the normal case, do always want
  1415. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1416. * that do not have writing enabled, when used by access_process_vm.
  1417. */
  1418. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1419. {
  1420. if (likely(vma->vm_flags & VM_WRITE))
  1421. pte = pte_mkwrite(pte);
  1422. return pte;
  1423. }
  1424. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1425. {
  1426. /*
  1427. * If the source page was a PFN mapping, we don't have
  1428. * a "struct page" for it. We do a best-effort copy by
  1429. * just copying from the original user address. If that
  1430. * fails, we just zero-fill it. Live with it.
  1431. */
  1432. if (unlikely(!src)) {
  1433. void *kaddr = kmap_atomic(dst, KM_USER0);
  1434. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1435. /*
  1436. * This really shouldn't fail, because the page is there
  1437. * in the page tables. But it might just be unreadable,
  1438. * in which case we just give up and fill the result with
  1439. * zeroes.
  1440. */
  1441. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1442. memset(kaddr, 0, PAGE_SIZE);
  1443. kunmap_atomic(kaddr, KM_USER0);
  1444. flush_dcache_page(dst);
  1445. return;
  1446. }
  1447. copy_user_highpage(dst, src, va, vma);
  1448. }
  1449. /*
  1450. * This routine handles present pages, when users try to write
  1451. * to a shared page. It is done by copying the page to a new address
  1452. * and decrementing the shared-page counter for the old page.
  1453. *
  1454. * Note that this routine assumes that the protection checks have been
  1455. * done by the caller (the low-level page fault routine in most cases).
  1456. * Thus we can safely just mark it writable once we've done any necessary
  1457. * COW.
  1458. *
  1459. * We also mark the page dirty at this point even though the page will
  1460. * change only once the write actually happens. This avoids a few races,
  1461. * and potentially makes it more efficient.
  1462. *
  1463. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1464. * but allow concurrent faults), with pte both mapped and locked.
  1465. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1466. */
  1467. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1468. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1469. spinlock_t *ptl, pte_t orig_pte)
  1470. {
  1471. struct page *old_page, *new_page;
  1472. pte_t entry;
  1473. int reuse = 0, ret = VM_FAULT_MINOR;
  1474. struct page *dirty_page = NULL;
  1475. old_page = vm_normal_page(vma, address, orig_pte);
  1476. if (!old_page)
  1477. goto gotten;
  1478. /*
  1479. * Take out anonymous pages first, anonymous shared vmas are
  1480. * not dirty accountable.
  1481. */
  1482. if (PageAnon(old_page)) {
  1483. if (!TestSetPageLocked(old_page)) {
  1484. reuse = can_share_swap_page(old_page);
  1485. unlock_page(old_page);
  1486. }
  1487. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1488. (VM_WRITE|VM_SHARED))) {
  1489. /*
  1490. * Only catch write-faults on shared writable pages,
  1491. * read-only shared pages can get COWed by
  1492. * get_user_pages(.write=1, .force=1).
  1493. */
  1494. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1495. /*
  1496. * Notify the address space that the page is about to
  1497. * become writable so that it can prohibit this or wait
  1498. * for the page to get into an appropriate state.
  1499. *
  1500. * We do this without the lock held, so that it can
  1501. * sleep if it needs to.
  1502. */
  1503. page_cache_get(old_page);
  1504. pte_unmap_unlock(page_table, ptl);
  1505. if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
  1506. goto unwritable_page;
  1507. /*
  1508. * Since we dropped the lock we need to revalidate
  1509. * the PTE as someone else may have changed it. If
  1510. * they did, we just return, as we can count on the
  1511. * MMU to tell us if they didn't also make it writable.
  1512. */
  1513. page_table = pte_offset_map_lock(mm, pmd, address,
  1514. &ptl);
  1515. page_cache_release(old_page);
  1516. if (!pte_same(*page_table, orig_pte))
  1517. goto unlock;
  1518. }
  1519. dirty_page = old_page;
  1520. get_page(dirty_page);
  1521. reuse = 1;
  1522. }
  1523. if (reuse) {
  1524. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1525. entry = pte_mkyoung(orig_pte);
  1526. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1527. if (ptep_set_access_flags(vma, address, page_table, entry,1)) {
  1528. update_mmu_cache(vma, address, entry);
  1529. lazy_mmu_prot_update(entry);
  1530. }
  1531. ret |= VM_FAULT_WRITE;
  1532. goto unlock;
  1533. }
  1534. /*
  1535. * Ok, we need to copy. Oh, well..
  1536. */
  1537. page_cache_get(old_page);
  1538. gotten:
  1539. pte_unmap_unlock(page_table, ptl);
  1540. if (unlikely(anon_vma_prepare(vma)))
  1541. goto oom;
  1542. if (old_page == ZERO_PAGE(address)) {
  1543. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1544. if (!new_page)
  1545. goto oom;
  1546. } else {
  1547. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1548. if (!new_page)
  1549. goto oom;
  1550. cow_user_page(new_page, old_page, address, vma);
  1551. }
  1552. /*
  1553. * Re-check the pte - we dropped the lock
  1554. */
  1555. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1556. if (likely(pte_same(*page_table, orig_pte))) {
  1557. if (old_page) {
  1558. page_remove_rmap(old_page, vma);
  1559. if (!PageAnon(old_page)) {
  1560. dec_mm_counter(mm, file_rss);
  1561. inc_mm_counter(mm, anon_rss);
  1562. }
  1563. } else
  1564. inc_mm_counter(mm, anon_rss);
  1565. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1566. entry = mk_pte(new_page, vma->vm_page_prot);
  1567. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1568. lazy_mmu_prot_update(entry);
  1569. /*
  1570. * Clear the pte entry and flush it first, before updating the
  1571. * pte with the new entry. This will avoid a race condition
  1572. * seen in the presence of one thread doing SMC and another
  1573. * thread doing COW.
  1574. */
  1575. ptep_clear_flush(vma, address, page_table);
  1576. set_pte_at(mm, address, page_table, entry);
  1577. update_mmu_cache(vma, address, entry);
  1578. lru_cache_add_active(new_page);
  1579. page_add_new_anon_rmap(new_page, vma, address);
  1580. /* Free the old page.. */
  1581. new_page = old_page;
  1582. ret |= VM_FAULT_WRITE;
  1583. }
  1584. if (new_page)
  1585. page_cache_release(new_page);
  1586. if (old_page)
  1587. page_cache_release(old_page);
  1588. unlock:
  1589. pte_unmap_unlock(page_table, ptl);
  1590. if (dirty_page) {
  1591. set_page_dirty_balance(dirty_page);
  1592. put_page(dirty_page);
  1593. }
  1594. return ret;
  1595. oom:
  1596. if (old_page)
  1597. page_cache_release(old_page);
  1598. return VM_FAULT_OOM;
  1599. unwritable_page:
  1600. page_cache_release(old_page);
  1601. return VM_FAULT_SIGBUS;
  1602. }
  1603. /*
  1604. * Helper functions for unmap_mapping_range().
  1605. *
  1606. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1607. *
  1608. * We have to restart searching the prio_tree whenever we drop the lock,
  1609. * since the iterator is only valid while the lock is held, and anyway
  1610. * a later vma might be split and reinserted earlier while lock dropped.
  1611. *
  1612. * The list of nonlinear vmas could be handled more efficiently, using
  1613. * a placeholder, but handle it in the same way until a need is shown.
  1614. * It is important to search the prio_tree before nonlinear list: a vma
  1615. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1616. * while the lock is dropped; but never shifted from list to prio_tree.
  1617. *
  1618. * In order to make forward progress despite restarting the search,
  1619. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1620. * quickly skip it next time around. Since the prio_tree search only
  1621. * shows us those vmas affected by unmapping the range in question, we
  1622. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1623. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1624. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1625. * i_mmap_lock.
  1626. *
  1627. * In order to make forward progress despite repeatedly restarting some
  1628. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1629. * and restart from that address when we reach that vma again. It might
  1630. * have been split or merged, shrunk or extended, but never shifted: so
  1631. * restart_addr remains valid so long as it remains in the vma's range.
  1632. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1633. * values so we can save vma's restart_addr in its truncate_count field.
  1634. */
  1635. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1636. static void reset_vma_truncate_counts(struct address_space *mapping)
  1637. {
  1638. struct vm_area_struct *vma;
  1639. struct prio_tree_iter iter;
  1640. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1641. vma->vm_truncate_count = 0;
  1642. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1643. vma->vm_truncate_count = 0;
  1644. }
  1645. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1646. unsigned long start_addr, unsigned long end_addr,
  1647. struct zap_details *details)
  1648. {
  1649. unsigned long restart_addr;
  1650. int need_break;
  1651. again:
  1652. restart_addr = vma->vm_truncate_count;
  1653. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1654. start_addr = restart_addr;
  1655. if (start_addr >= end_addr) {
  1656. /* Top of vma has been split off since last time */
  1657. vma->vm_truncate_count = details->truncate_count;
  1658. return 0;
  1659. }
  1660. }
  1661. restart_addr = zap_page_range(vma, start_addr,
  1662. end_addr - start_addr, details);
  1663. need_break = need_resched() ||
  1664. need_lockbreak(details->i_mmap_lock);
  1665. if (restart_addr >= end_addr) {
  1666. /* We have now completed this vma: mark it so */
  1667. vma->vm_truncate_count = details->truncate_count;
  1668. if (!need_break)
  1669. return 0;
  1670. } else {
  1671. /* Note restart_addr in vma's truncate_count field */
  1672. vma->vm_truncate_count = restart_addr;
  1673. if (!need_break)
  1674. goto again;
  1675. }
  1676. spin_unlock(details->i_mmap_lock);
  1677. cond_resched();
  1678. spin_lock(details->i_mmap_lock);
  1679. return -EINTR;
  1680. }
  1681. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1682. struct zap_details *details)
  1683. {
  1684. struct vm_area_struct *vma;
  1685. struct prio_tree_iter iter;
  1686. pgoff_t vba, vea, zba, zea;
  1687. restart:
  1688. vma_prio_tree_foreach(vma, &iter, root,
  1689. details->first_index, details->last_index) {
  1690. /* Skip quickly over those we have already dealt with */
  1691. if (vma->vm_truncate_count == details->truncate_count)
  1692. continue;
  1693. vba = vma->vm_pgoff;
  1694. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1695. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1696. zba = details->first_index;
  1697. if (zba < vba)
  1698. zba = vba;
  1699. zea = details->last_index;
  1700. if (zea > vea)
  1701. zea = vea;
  1702. if (unmap_mapping_range_vma(vma,
  1703. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1704. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1705. details) < 0)
  1706. goto restart;
  1707. }
  1708. }
  1709. static inline void unmap_mapping_range_list(struct list_head *head,
  1710. struct zap_details *details)
  1711. {
  1712. struct vm_area_struct *vma;
  1713. /*
  1714. * In nonlinear VMAs there is no correspondence between virtual address
  1715. * offset and file offset. So we must perform an exhaustive search
  1716. * across *all* the pages in each nonlinear VMA, not just the pages
  1717. * whose virtual address lies outside the file truncation point.
  1718. */
  1719. restart:
  1720. list_for_each_entry(vma, head, shared.vm_set.list) {
  1721. /* Skip quickly over those we have already dealt with */
  1722. if (vma->vm_truncate_count == details->truncate_count)
  1723. continue;
  1724. details->nonlinear_vma = vma;
  1725. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1726. vma->vm_end, details) < 0)
  1727. goto restart;
  1728. }
  1729. }
  1730. /**
  1731. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  1732. * @mapping: the address space containing mmaps to be unmapped.
  1733. * @holebegin: byte in first page to unmap, relative to the start of
  1734. * the underlying file. This will be rounded down to a PAGE_SIZE
  1735. * boundary. Note that this is different from vmtruncate(), which
  1736. * must keep the partial page. In contrast, we must get rid of
  1737. * partial pages.
  1738. * @holelen: size of prospective hole in bytes. This will be rounded
  1739. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1740. * end of the file.
  1741. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1742. * but 0 when invalidating pagecache, don't throw away private data.
  1743. */
  1744. void unmap_mapping_range(struct address_space *mapping,
  1745. loff_t const holebegin, loff_t const holelen, int even_cows)
  1746. {
  1747. struct zap_details details;
  1748. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1749. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1750. /* Check for overflow. */
  1751. if (sizeof(holelen) > sizeof(hlen)) {
  1752. long long holeend =
  1753. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1754. if (holeend & ~(long long)ULONG_MAX)
  1755. hlen = ULONG_MAX - hba + 1;
  1756. }
  1757. details.check_mapping = even_cows? NULL: mapping;
  1758. details.nonlinear_vma = NULL;
  1759. details.first_index = hba;
  1760. details.last_index = hba + hlen - 1;
  1761. if (details.last_index < details.first_index)
  1762. details.last_index = ULONG_MAX;
  1763. details.i_mmap_lock = &mapping->i_mmap_lock;
  1764. spin_lock(&mapping->i_mmap_lock);
  1765. /* serialize i_size write against truncate_count write */
  1766. smp_wmb();
  1767. /* Protect against page faults, and endless unmapping loops */
  1768. mapping->truncate_count++;
  1769. /*
  1770. * For archs where spin_lock has inclusive semantics like ia64
  1771. * this smp_mb() will prevent to read pagetable contents
  1772. * before the truncate_count increment is visible to
  1773. * other cpus.
  1774. */
  1775. smp_mb();
  1776. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1777. if (mapping->truncate_count == 0)
  1778. reset_vma_truncate_counts(mapping);
  1779. mapping->truncate_count++;
  1780. }
  1781. details.truncate_count = mapping->truncate_count;
  1782. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1783. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1784. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1785. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1786. spin_unlock(&mapping->i_mmap_lock);
  1787. }
  1788. EXPORT_SYMBOL(unmap_mapping_range);
  1789. /**
  1790. * vmtruncate - unmap mappings "freed" by truncate() syscall
  1791. * @inode: inode of the file used
  1792. * @offset: file offset to start truncating
  1793. *
  1794. * NOTE! We have to be ready to update the memory sharing
  1795. * between the file and the memory map for a potential last
  1796. * incomplete page. Ugly, but necessary.
  1797. */
  1798. int vmtruncate(struct inode * inode, loff_t offset)
  1799. {
  1800. struct address_space *mapping = inode->i_mapping;
  1801. unsigned long limit;
  1802. if (inode->i_size < offset)
  1803. goto do_expand;
  1804. /*
  1805. * truncation of in-use swapfiles is disallowed - it would cause
  1806. * subsequent swapout to scribble on the now-freed blocks.
  1807. */
  1808. if (IS_SWAPFILE(inode))
  1809. goto out_busy;
  1810. i_size_write(inode, offset);
  1811. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1812. truncate_inode_pages(mapping, offset);
  1813. goto out_truncate;
  1814. do_expand:
  1815. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1816. if (limit != RLIM_INFINITY && offset > limit)
  1817. goto out_sig;
  1818. if (offset > inode->i_sb->s_maxbytes)
  1819. goto out_big;
  1820. i_size_write(inode, offset);
  1821. out_truncate:
  1822. if (inode->i_op && inode->i_op->truncate)
  1823. inode->i_op->truncate(inode);
  1824. return 0;
  1825. out_sig:
  1826. send_sig(SIGXFSZ, current, 0);
  1827. out_big:
  1828. return -EFBIG;
  1829. out_busy:
  1830. return -ETXTBSY;
  1831. }
  1832. EXPORT_SYMBOL(vmtruncate);
  1833. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  1834. {
  1835. struct address_space *mapping = inode->i_mapping;
  1836. /*
  1837. * If the underlying filesystem is not going to provide
  1838. * a way to truncate a range of blocks (punch a hole) -
  1839. * we should return failure right now.
  1840. */
  1841. if (!inode->i_op || !inode->i_op->truncate_range)
  1842. return -ENOSYS;
  1843. mutex_lock(&inode->i_mutex);
  1844. down_write(&inode->i_alloc_sem);
  1845. unmap_mapping_range(mapping, offset, (end - offset), 1);
  1846. truncate_inode_pages_range(mapping, offset, end);
  1847. inode->i_op->truncate_range(inode, offset, end);
  1848. up_write(&inode->i_alloc_sem);
  1849. mutex_unlock(&inode->i_mutex);
  1850. return 0;
  1851. }
  1852. /**
  1853. * swapin_readahead - swap in pages in hope we need them soon
  1854. * @entry: swap entry of this memory
  1855. * @addr: address to start
  1856. * @vma: user vma this addresses belong to
  1857. *
  1858. * Primitive swap readahead code. We simply read an aligned block of
  1859. * (1 << page_cluster) entries in the swap area. This method is chosen
  1860. * because it doesn't cost us any seek time. We also make sure to queue
  1861. * the 'original' request together with the readahead ones...
  1862. *
  1863. * This has been extended to use the NUMA policies from the mm triggering
  1864. * the readahead.
  1865. *
  1866. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  1867. */
  1868. void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
  1869. {
  1870. #ifdef CONFIG_NUMA
  1871. struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
  1872. #endif
  1873. int i, num;
  1874. struct page *new_page;
  1875. unsigned long offset;
  1876. /*
  1877. * Get the number of handles we should do readahead io to.
  1878. */
  1879. num = valid_swaphandles(entry, &offset);
  1880. for (i = 0; i < num; offset++, i++) {
  1881. /* Ok, do the async read-ahead now */
  1882. new_page = read_swap_cache_async(swp_entry(swp_type(entry),
  1883. offset), vma, addr);
  1884. if (!new_page)
  1885. break;
  1886. page_cache_release(new_page);
  1887. #ifdef CONFIG_NUMA
  1888. /*
  1889. * Find the next applicable VMA for the NUMA policy.
  1890. */
  1891. addr += PAGE_SIZE;
  1892. if (addr == 0)
  1893. vma = NULL;
  1894. if (vma) {
  1895. if (addr >= vma->vm_end) {
  1896. vma = next_vma;
  1897. next_vma = vma ? vma->vm_next : NULL;
  1898. }
  1899. if (vma && addr < vma->vm_start)
  1900. vma = NULL;
  1901. } else {
  1902. if (next_vma && addr >= next_vma->vm_start) {
  1903. vma = next_vma;
  1904. next_vma = vma->vm_next;
  1905. }
  1906. }
  1907. #endif
  1908. }
  1909. lru_add_drain(); /* Push any new pages onto the LRU now */
  1910. }
  1911. /*
  1912. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1913. * but allow concurrent faults), and pte mapped but not yet locked.
  1914. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1915. */
  1916. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1917. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1918. int write_access, pte_t orig_pte)
  1919. {
  1920. spinlock_t *ptl;
  1921. struct page *page;
  1922. swp_entry_t entry;
  1923. pte_t pte;
  1924. int ret = VM_FAULT_MINOR;
  1925. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  1926. goto out;
  1927. entry = pte_to_swp_entry(orig_pte);
  1928. if (is_migration_entry(entry)) {
  1929. migration_entry_wait(mm, pmd, address);
  1930. goto out;
  1931. }
  1932. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  1933. page = lookup_swap_cache(entry);
  1934. if (!page) {
  1935. grab_swap_token(); /* Contend for token _before_ read-in */
  1936. swapin_readahead(entry, address, vma);
  1937. page = read_swap_cache_async(entry, vma, address);
  1938. if (!page) {
  1939. /*
  1940. * Back out if somebody else faulted in this pte
  1941. * while we released the pte lock.
  1942. */
  1943. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1944. if (likely(pte_same(*page_table, orig_pte)))
  1945. ret = VM_FAULT_OOM;
  1946. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1947. goto unlock;
  1948. }
  1949. /* Had to read the page from swap area: Major fault */
  1950. ret = VM_FAULT_MAJOR;
  1951. count_vm_event(PGMAJFAULT);
  1952. }
  1953. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1954. mark_page_accessed(page);
  1955. lock_page(page);
  1956. /*
  1957. * Back out if somebody else already faulted in this pte.
  1958. */
  1959. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1960. if (unlikely(!pte_same(*page_table, orig_pte)))
  1961. goto out_nomap;
  1962. if (unlikely(!PageUptodate(page))) {
  1963. ret = VM_FAULT_SIGBUS;
  1964. goto out_nomap;
  1965. }
  1966. /* The page isn't present yet, go ahead with the fault. */
  1967. inc_mm_counter(mm, anon_rss);
  1968. pte = mk_pte(page, vma->vm_page_prot);
  1969. if (write_access && can_share_swap_page(page)) {
  1970. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  1971. write_access = 0;
  1972. }
  1973. flush_icache_page(vma, page);
  1974. set_pte_at(mm, address, page_table, pte);
  1975. page_add_anon_rmap(page, vma, address);
  1976. swap_free(entry);
  1977. if (vm_swap_full())
  1978. remove_exclusive_swap_page(page);
  1979. unlock_page(page);
  1980. if (write_access) {
  1981. if (do_wp_page(mm, vma, address,
  1982. page_table, pmd, ptl, pte) == VM_FAULT_OOM)
  1983. ret = VM_FAULT_OOM;
  1984. goto out;
  1985. }
  1986. /* No need to invalidate - it was non-present before */
  1987. update_mmu_cache(vma, address, pte);
  1988. lazy_mmu_prot_update(pte);
  1989. unlock:
  1990. pte_unmap_unlock(page_table, ptl);
  1991. out:
  1992. return ret;
  1993. out_nomap:
  1994. pte_unmap_unlock(page_table, ptl);
  1995. unlock_page(page);
  1996. page_cache_release(page);
  1997. return ret;
  1998. }
  1999. /*
  2000. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2001. * but allow concurrent faults), and pte mapped but not yet locked.
  2002. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2003. */
  2004. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2005. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2006. int write_access)
  2007. {
  2008. struct page *page;
  2009. spinlock_t *ptl;
  2010. pte_t entry;
  2011. if (write_access) {
  2012. /* Allocate our own private page. */
  2013. pte_unmap(page_table);
  2014. if (unlikely(anon_vma_prepare(vma)))
  2015. goto oom;
  2016. page = alloc_zeroed_user_highpage_movable(vma, address);
  2017. if (!page)
  2018. goto oom;
  2019. entry = mk_pte(page, vma->vm_page_prot);
  2020. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2021. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2022. if (!pte_none(*page_table))
  2023. goto release;
  2024. inc_mm_counter(mm, anon_rss);
  2025. lru_cache_add_active(page);
  2026. page_add_new_anon_rmap(page, vma, address);
  2027. } else {
  2028. /* Map the ZERO_PAGE - vm_page_prot is readonly */
  2029. page = ZERO_PAGE(address);
  2030. page_cache_get(page);
  2031. entry = mk_pte(page, vma->vm_page_prot);
  2032. ptl = pte_lockptr(mm, pmd);
  2033. spin_lock(ptl);
  2034. if (!pte_none(*page_table))
  2035. goto release;
  2036. inc_mm_counter(mm, file_rss);
  2037. page_add_file_rmap(page);
  2038. }
  2039. set_pte_at(mm, address, page_table, entry);
  2040. /* No need to invalidate - it was non-present before */
  2041. update_mmu_cache(vma, address, entry);
  2042. lazy_mmu_prot_update(entry);
  2043. unlock:
  2044. pte_unmap_unlock(page_table, ptl);
  2045. return VM_FAULT_MINOR;
  2046. release:
  2047. page_cache_release(page);
  2048. goto unlock;
  2049. oom:
  2050. return VM_FAULT_OOM;
  2051. }
  2052. /*
  2053. * do_no_page() tries to create a new page mapping. It aggressively
  2054. * tries to share with existing pages, but makes a separate copy if
  2055. * the "write_access" parameter is true in order to avoid the next
  2056. * page fault.
  2057. *
  2058. * As this is called only for pages that do not currently exist, we
  2059. * do not need to flush old virtual caches or the TLB.
  2060. *
  2061. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2062. * but allow concurrent faults), and pte mapped but not yet locked.
  2063. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2064. */
  2065. static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2066. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2067. int write_access)
  2068. {
  2069. spinlock_t *ptl;
  2070. struct page *new_page;
  2071. struct address_space *mapping = NULL;
  2072. pte_t entry;
  2073. unsigned int sequence = 0;
  2074. int ret = VM_FAULT_MINOR;
  2075. int anon = 0;
  2076. struct page *dirty_page = NULL;
  2077. pte_unmap(page_table);
  2078. BUG_ON(vma->vm_flags & VM_PFNMAP);
  2079. if (vma->vm_file) {
  2080. mapping = vma->vm_file->f_mapping;
  2081. sequence = mapping->truncate_count;
  2082. smp_rmb(); /* serializes i_size against truncate_count */
  2083. }
  2084. retry:
  2085. new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
  2086. /*
  2087. * No smp_rmb is needed here as long as there's a full
  2088. * spin_lock/unlock sequence inside the ->nopage callback
  2089. * (for the pagecache lookup) that acts as an implicit
  2090. * smp_mb() and prevents the i_size read to happen
  2091. * after the next truncate_count read.
  2092. */
  2093. /* no page was available -- either SIGBUS, OOM or REFAULT */
  2094. if (unlikely(new_page == NOPAGE_SIGBUS))
  2095. return VM_FAULT_SIGBUS;
  2096. else if (unlikely(new_page == NOPAGE_OOM))
  2097. return VM_FAULT_OOM;
  2098. else if (unlikely(new_page == NOPAGE_REFAULT))
  2099. return VM_FAULT_MINOR;
  2100. /*
  2101. * Should we do an early C-O-W break?
  2102. */
  2103. if (write_access) {
  2104. if (!(vma->vm_flags & VM_SHARED)) {
  2105. struct page *page;
  2106. if (unlikely(anon_vma_prepare(vma)))
  2107. goto oom;
  2108. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2109. vma, address);
  2110. if (!page)
  2111. goto oom;
  2112. copy_user_highpage(page, new_page, address, vma);
  2113. page_cache_release(new_page);
  2114. new_page = page;
  2115. anon = 1;
  2116. } else {
  2117. /* if the page will be shareable, see if the backing
  2118. * address space wants to know that the page is about
  2119. * to become writable */
  2120. if (vma->vm_ops->page_mkwrite &&
  2121. vma->vm_ops->page_mkwrite(vma, new_page) < 0
  2122. ) {
  2123. page_cache_release(new_page);
  2124. return VM_FAULT_SIGBUS;
  2125. }
  2126. }
  2127. }
  2128. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2129. /*
  2130. * For a file-backed vma, someone could have truncated or otherwise
  2131. * invalidated this page. If unmap_mapping_range got called,
  2132. * retry getting the page.
  2133. */
  2134. if (mapping && unlikely(sequence != mapping->truncate_count)) {
  2135. pte_unmap_unlock(page_table, ptl);
  2136. page_cache_release(new_page);
  2137. cond_resched();
  2138. sequence = mapping->truncate_count;
  2139. smp_rmb();
  2140. goto retry;
  2141. }
  2142. /*
  2143. * This silly early PAGE_DIRTY setting removes a race
  2144. * due to the bad i386 page protection. But it's valid
  2145. * for other architectures too.
  2146. *
  2147. * Note that if write_access is true, we either now have
  2148. * an exclusive copy of the page, or this is a shared mapping,
  2149. * so we can make it writable and dirty to avoid having to
  2150. * handle that later.
  2151. */
  2152. /* Only go through if we didn't race with anybody else... */
  2153. if (pte_none(*page_table)) {
  2154. flush_icache_page(vma, new_page);
  2155. entry = mk_pte(new_page, vma->vm_page_prot);
  2156. if (write_access)
  2157. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2158. set_pte_at(mm, address, page_table, entry);
  2159. if (anon) {
  2160. inc_mm_counter(mm, anon_rss);
  2161. lru_cache_add_active(new_page);
  2162. page_add_new_anon_rmap(new_page, vma, address);
  2163. } else {
  2164. inc_mm_counter(mm, file_rss);
  2165. page_add_file_rmap(new_page);
  2166. if (write_access) {
  2167. dirty_page = new_page;
  2168. get_page(dirty_page);
  2169. }
  2170. }
  2171. } else {
  2172. /* One of our sibling threads was faster, back out. */
  2173. page_cache_release(new_page);
  2174. goto unlock;
  2175. }
  2176. /* no need to invalidate: a not-present page shouldn't be cached */
  2177. update_mmu_cache(vma, address, entry);
  2178. lazy_mmu_prot_update(entry);
  2179. unlock:
  2180. pte_unmap_unlock(page_table, ptl);
  2181. if (dirty_page) {
  2182. set_page_dirty_balance(dirty_page);
  2183. put_page(dirty_page);
  2184. }
  2185. return ret;
  2186. oom:
  2187. page_cache_release(new_page);
  2188. return VM_FAULT_OOM;
  2189. }
  2190. /*
  2191. * do_no_pfn() tries to create a new page mapping for a page without
  2192. * a struct_page backing it
  2193. *
  2194. * As this is called only for pages that do not currently exist, we
  2195. * do not need to flush old virtual caches or the TLB.
  2196. *
  2197. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2198. * but allow concurrent faults), and pte mapped but not yet locked.
  2199. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2200. *
  2201. * It is expected that the ->nopfn handler always returns the same pfn
  2202. * for a given virtual mapping.
  2203. *
  2204. * Mark this `noinline' to prevent it from bloating the main pagefault code.
  2205. */
  2206. static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
  2207. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2208. int write_access)
  2209. {
  2210. spinlock_t *ptl;
  2211. pte_t entry;
  2212. unsigned long pfn;
  2213. int ret = VM_FAULT_MINOR;
  2214. pte_unmap(page_table);
  2215. BUG_ON(!(vma->vm_flags & VM_PFNMAP));
  2216. BUG_ON(is_cow_mapping(vma->vm_flags));
  2217. pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
  2218. if (unlikely(pfn == NOPFN_OOM))
  2219. return VM_FAULT_OOM;
  2220. else if (unlikely(pfn == NOPFN_SIGBUS))
  2221. return VM_FAULT_SIGBUS;
  2222. else if (unlikely(pfn == NOPFN_REFAULT))
  2223. return VM_FAULT_MINOR;
  2224. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2225. /* Only go through if we didn't race with anybody else... */
  2226. if (pte_none(*page_table)) {
  2227. entry = pfn_pte(pfn, vma->vm_page_prot);
  2228. if (write_access)
  2229. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2230. set_pte_at(mm, address, page_table, entry);
  2231. }
  2232. pte_unmap_unlock(page_table, ptl);
  2233. return ret;
  2234. }
  2235. /*
  2236. * Fault of a previously existing named mapping. Repopulate the pte
  2237. * from the encoded file_pte if possible. This enables swappable
  2238. * nonlinear vmas.
  2239. *
  2240. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2241. * but allow concurrent faults), and pte mapped but not yet locked.
  2242. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2243. */
  2244. static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2245. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2246. int write_access, pte_t orig_pte)
  2247. {
  2248. pgoff_t pgoff;
  2249. int err;
  2250. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2251. return VM_FAULT_MINOR;
  2252. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2253. /*
  2254. * Page table corrupted: show pte and kill process.
  2255. */
  2256. print_bad_pte(vma, orig_pte, address);
  2257. return VM_FAULT_OOM;
  2258. }
  2259. /* We can then assume vm->vm_ops && vma->vm_ops->populate */
  2260. pgoff = pte_to_pgoff(orig_pte);
  2261. err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
  2262. vma->vm_page_prot, pgoff, 0);
  2263. if (err == -ENOMEM)
  2264. return VM_FAULT_OOM;
  2265. if (err)
  2266. return VM_FAULT_SIGBUS;
  2267. return VM_FAULT_MAJOR;
  2268. }
  2269. /*
  2270. * These routines also need to handle stuff like marking pages dirty
  2271. * and/or accessed for architectures that don't do it in hardware (most
  2272. * RISC architectures). The early dirtying is also good on the i386.
  2273. *
  2274. * There is also a hook called "update_mmu_cache()" that architectures
  2275. * with external mmu caches can use to update those (ie the Sparc or
  2276. * PowerPC hashed page tables that act as extended TLBs).
  2277. *
  2278. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2279. * but allow concurrent faults), and pte mapped but not yet locked.
  2280. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2281. */
  2282. static inline int handle_pte_fault(struct mm_struct *mm,
  2283. struct vm_area_struct *vma, unsigned long address,
  2284. pte_t *pte, pmd_t *pmd, int write_access)
  2285. {
  2286. pte_t entry;
  2287. spinlock_t *ptl;
  2288. entry = *pte;
  2289. if (!pte_present(entry)) {
  2290. if (pte_none(entry)) {
  2291. if (vma->vm_ops) {
  2292. if (vma->vm_ops->nopage)
  2293. return do_no_page(mm, vma, address,
  2294. pte, pmd,
  2295. write_access);
  2296. if (unlikely(vma->vm_ops->nopfn))
  2297. return do_no_pfn(mm, vma, address, pte,
  2298. pmd, write_access);
  2299. }
  2300. return do_anonymous_page(mm, vma, address,
  2301. pte, pmd, write_access);
  2302. }
  2303. if (pte_file(entry))
  2304. return do_file_page(mm, vma, address,
  2305. pte, pmd, write_access, entry);
  2306. return do_swap_page(mm, vma, address,
  2307. pte, pmd, write_access, entry);
  2308. }
  2309. ptl = pte_lockptr(mm, pmd);
  2310. spin_lock(ptl);
  2311. if (unlikely(!pte_same(*pte, entry)))
  2312. goto unlock;
  2313. if (write_access) {
  2314. if (!pte_write(entry))
  2315. return do_wp_page(mm, vma, address,
  2316. pte, pmd, ptl, entry);
  2317. entry = pte_mkdirty(entry);
  2318. }
  2319. entry = pte_mkyoung(entry);
  2320. if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
  2321. update_mmu_cache(vma, address, entry);
  2322. lazy_mmu_prot_update(entry);
  2323. } else {
  2324. /*
  2325. * This is needed only for protection faults but the arch code
  2326. * is not yet telling us if this is a protection fault or not.
  2327. * This still avoids useless tlb flushes for .text page faults
  2328. * with threads.
  2329. */
  2330. if (write_access)
  2331. flush_tlb_page(vma, address);
  2332. }
  2333. unlock:
  2334. pte_unmap_unlock(pte, ptl);
  2335. return VM_FAULT_MINOR;
  2336. }
  2337. /*
  2338. * By the time we get here, we already hold the mm semaphore
  2339. */
  2340. int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2341. unsigned long address, int write_access)
  2342. {
  2343. pgd_t *pgd;
  2344. pud_t *pud;
  2345. pmd_t *pmd;
  2346. pte_t *pte;
  2347. __set_current_state(TASK_RUNNING);
  2348. count_vm_event(PGFAULT);
  2349. if (unlikely(is_vm_hugetlb_page(vma)))
  2350. return hugetlb_fault(mm, vma, address, write_access);
  2351. pgd = pgd_offset(mm, address);
  2352. pud = pud_alloc(mm, pgd, address);
  2353. if (!pud)
  2354. return VM_FAULT_OOM;
  2355. pmd = pmd_alloc(mm, pud, address);
  2356. if (!pmd)
  2357. return VM_FAULT_OOM;
  2358. pte = pte_alloc_map(mm, pmd, address);
  2359. if (!pte)
  2360. return VM_FAULT_OOM;
  2361. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2362. }
  2363. EXPORT_SYMBOL_GPL(__handle_mm_fault);
  2364. #ifndef __PAGETABLE_PUD_FOLDED
  2365. /*
  2366. * Allocate page upper directory.
  2367. * We've already handled the fast-path in-line.
  2368. */
  2369. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2370. {
  2371. pud_t *new = pud_alloc_one(mm, address);
  2372. if (!new)
  2373. return -ENOMEM;
  2374. spin_lock(&mm->page_table_lock);
  2375. if (pgd_present(*pgd)) /* Another has populated it */
  2376. pud_free(new);
  2377. else
  2378. pgd_populate(mm, pgd, new);
  2379. spin_unlock(&mm->page_table_lock);
  2380. return 0;
  2381. }
  2382. #endif /* __PAGETABLE_PUD_FOLDED */
  2383. #ifndef __PAGETABLE_PMD_FOLDED
  2384. /*
  2385. * Allocate page middle directory.
  2386. * We've already handled the fast-path in-line.
  2387. */
  2388. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2389. {
  2390. pmd_t *new = pmd_alloc_one(mm, address);
  2391. if (!new)
  2392. return -ENOMEM;
  2393. spin_lock(&mm->page_table_lock);
  2394. #ifndef __ARCH_HAS_4LEVEL_HACK
  2395. if (pud_present(*pud)) /* Another has populated it */
  2396. pmd_free(new);
  2397. else
  2398. pud_populate(mm, pud, new);
  2399. #else
  2400. if (pgd_present(*pud)) /* Another has populated it */
  2401. pmd_free(new);
  2402. else
  2403. pgd_populate(mm, pud, new);
  2404. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2405. spin_unlock(&mm->page_table_lock);
  2406. return 0;
  2407. }
  2408. #endif /* __PAGETABLE_PMD_FOLDED */
  2409. int make_pages_present(unsigned long addr, unsigned long end)
  2410. {
  2411. int ret, len, write;
  2412. struct vm_area_struct * vma;
  2413. vma = find_vma(current->mm, addr);
  2414. if (!vma)
  2415. return -1;
  2416. write = (vma->vm_flags & VM_WRITE) != 0;
  2417. BUG_ON(addr >= end);
  2418. BUG_ON(end > vma->vm_end);
  2419. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2420. ret = get_user_pages(current, current->mm, addr,
  2421. len, write, 0, NULL, NULL);
  2422. if (ret < 0)
  2423. return ret;
  2424. return ret == len ? 0 : -1;
  2425. }
  2426. /*
  2427. * Map a vmalloc()-space virtual address to the physical page.
  2428. */
  2429. struct page * vmalloc_to_page(void * vmalloc_addr)
  2430. {
  2431. unsigned long addr = (unsigned long) vmalloc_addr;
  2432. struct page *page = NULL;
  2433. pgd_t *pgd = pgd_offset_k(addr);
  2434. pud_t *pud;
  2435. pmd_t *pmd;
  2436. pte_t *ptep, pte;
  2437. if (!pgd_none(*pgd)) {
  2438. pud = pud_offset(pgd, addr);
  2439. if (!pud_none(*pud)) {
  2440. pmd = pmd_offset(pud, addr);
  2441. if (!pmd_none(*pmd)) {
  2442. ptep = pte_offset_map(pmd, addr);
  2443. pte = *ptep;
  2444. if (pte_present(pte))
  2445. page = pte_page(pte);
  2446. pte_unmap(ptep);
  2447. }
  2448. }
  2449. }
  2450. return page;
  2451. }
  2452. EXPORT_SYMBOL(vmalloc_to_page);
  2453. /*
  2454. * Map a vmalloc()-space virtual address to the physical page frame number.
  2455. */
  2456. unsigned long vmalloc_to_pfn(void * vmalloc_addr)
  2457. {
  2458. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  2459. }
  2460. EXPORT_SYMBOL(vmalloc_to_pfn);
  2461. #if !defined(__HAVE_ARCH_GATE_AREA)
  2462. #if defined(AT_SYSINFO_EHDR)
  2463. static struct vm_area_struct gate_vma;
  2464. static int __init gate_vma_init(void)
  2465. {
  2466. gate_vma.vm_mm = NULL;
  2467. gate_vma.vm_start = FIXADDR_USER_START;
  2468. gate_vma.vm_end = FIXADDR_USER_END;
  2469. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2470. gate_vma.vm_page_prot = __P101;
  2471. /*
  2472. * Make sure the vDSO gets into every core dump.
  2473. * Dumping its contents makes post-mortem fully interpretable later
  2474. * without matching up the same kernel and hardware config to see
  2475. * what PC values meant.
  2476. */
  2477. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2478. return 0;
  2479. }
  2480. __initcall(gate_vma_init);
  2481. #endif
  2482. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2483. {
  2484. #ifdef AT_SYSINFO_EHDR
  2485. return &gate_vma;
  2486. #else
  2487. return NULL;
  2488. #endif
  2489. }
  2490. int in_gate_area_no_task(unsigned long addr)
  2491. {
  2492. #ifdef AT_SYSINFO_EHDR
  2493. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2494. return 1;
  2495. #endif
  2496. return 0;
  2497. }
  2498. #endif /* __HAVE_ARCH_GATE_AREA */
  2499. /*
  2500. * Access another process' address space.
  2501. * Source/target buffer must be kernel space,
  2502. * Do not walk the page table directly, use get_user_pages
  2503. */
  2504. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2505. {
  2506. struct mm_struct *mm;
  2507. struct vm_area_struct *vma;
  2508. struct page *page;
  2509. void *old_buf = buf;
  2510. mm = get_task_mm(tsk);
  2511. if (!mm)
  2512. return 0;
  2513. down_read(&mm->mmap_sem);
  2514. /* ignore errors, just check how much was sucessfully transfered */
  2515. while (len) {
  2516. int bytes, ret, offset;
  2517. void *maddr;
  2518. ret = get_user_pages(tsk, mm, addr, 1,
  2519. write, 1, &page, &vma);
  2520. if (ret <= 0)
  2521. break;
  2522. bytes = len;
  2523. offset = addr & (PAGE_SIZE-1);
  2524. if (bytes > PAGE_SIZE-offset)
  2525. bytes = PAGE_SIZE-offset;
  2526. maddr = kmap(page);
  2527. if (write) {
  2528. copy_to_user_page(vma, page, addr,
  2529. maddr + offset, buf, bytes);
  2530. set_page_dirty_lock(page);
  2531. } else {
  2532. copy_from_user_page(vma, page, addr,
  2533. buf, maddr + offset, bytes);
  2534. }
  2535. kunmap(page);
  2536. page_cache_release(page);
  2537. len -= bytes;
  2538. buf += bytes;
  2539. addr += bytes;
  2540. }
  2541. up_read(&mm->mmap_sem);
  2542. mmput(mm);
  2543. return buf - old_buf;
  2544. }