123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255 |
- /*
- * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
- * policies)
- */
- /*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
- */
- static inline void update_curr_rt(struct rq *rq, u64 now)
- {
- struct task_struct *curr = rq->curr;
- u64 delta_exec;
- if (!task_has_rt_policy(curr))
- return;
- delta_exec = now - curr->se.exec_start;
- if (unlikely((s64)delta_exec < 0))
- delta_exec = 0;
- if (unlikely(delta_exec > curr->se.exec_max))
- curr->se.exec_max = delta_exec;
- curr->se.sum_exec_runtime += delta_exec;
- curr->se.exec_start = now;
- }
- static void
- enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
- {
- struct rt_prio_array *array = &rq->rt.active;
- list_add_tail(&p->run_list, array->queue + p->prio);
- __set_bit(p->prio, array->bitmap);
- }
- /*
- * Adding/removing a task to/from a priority array:
- */
- static void
- dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep, u64 now)
- {
- struct rt_prio_array *array = &rq->rt.active;
- update_curr_rt(rq, now);
- list_del(&p->run_list);
- if (list_empty(array->queue + p->prio))
- __clear_bit(p->prio, array->bitmap);
- }
- /*
- * Put task to the end of the run list without the overhead of dequeue
- * followed by enqueue.
- */
- static void requeue_task_rt(struct rq *rq, struct task_struct *p)
- {
- struct rt_prio_array *array = &rq->rt.active;
- list_move_tail(&p->run_list, array->queue + p->prio);
- }
- static void
- yield_task_rt(struct rq *rq, struct task_struct *p)
- {
- requeue_task_rt(rq, p);
- }
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
- {
- if (p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
- static struct task_struct *pick_next_task_rt(struct rq *rq, u64 now)
- {
- struct rt_prio_array *array = &rq->rt.active;
- struct task_struct *next;
- struct list_head *queue;
- int idx;
- idx = sched_find_first_bit(array->bitmap);
- if (idx >= MAX_RT_PRIO)
- return NULL;
- queue = array->queue + idx;
- next = list_entry(queue->next, struct task_struct, run_list);
- next->se.exec_start = now;
- return next;
- }
- static void put_prev_task_rt(struct rq *rq, struct task_struct *p, u64 now)
- {
- update_curr_rt(rq, now);
- p->se.exec_start = 0;
- }
- /*
- * Load-balancing iterator. Note: while the runqueue stays locked
- * during the whole iteration, the current task might be
- * dequeued so the iterator has to be dequeue-safe. Here we
- * achieve that by always pre-iterating before returning
- * the current task:
- */
- static struct task_struct *load_balance_start_rt(void *arg)
- {
- struct rq *rq = arg;
- struct rt_prio_array *array = &rq->rt.active;
- struct list_head *head, *curr;
- struct task_struct *p;
- int idx;
- idx = sched_find_first_bit(array->bitmap);
- if (idx >= MAX_RT_PRIO)
- return NULL;
- head = array->queue + idx;
- curr = head->prev;
- p = list_entry(curr, struct task_struct, run_list);
- curr = curr->prev;
- rq->rt.rt_load_balance_idx = idx;
- rq->rt.rt_load_balance_head = head;
- rq->rt.rt_load_balance_curr = curr;
- return p;
- }
- static struct task_struct *load_balance_next_rt(void *arg)
- {
- struct rq *rq = arg;
- struct rt_prio_array *array = &rq->rt.active;
- struct list_head *head, *curr;
- struct task_struct *p;
- int idx;
- idx = rq->rt.rt_load_balance_idx;
- head = rq->rt.rt_load_balance_head;
- curr = rq->rt.rt_load_balance_curr;
- /*
- * If we arrived back to the head again then
- * iterate to the next queue (if any):
- */
- if (unlikely(head == curr)) {
- int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
- if (next_idx >= MAX_RT_PRIO)
- return NULL;
- idx = next_idx;
- head = array->queue + idx;
- curr = head->prev;
- rq->rt.rt_load_balance_idx = idx;
- rq->rt.rt_load_balance_head = head;
- }
- p = list_entry(curr, struct task_struct, run_list);
- curr = curr->prev;
- rq->rt.rt_load_balance_curr = curr;
- return p;
- }
- static int
- load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_nr_move, unsigned long max_load_move,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *all_pinned, unsigned long *load_moved)
- {
- int this_best_prio, best_prio, best_prio_seen = 0;
- int nr_moved;
- struct rq_iterator rt_rq_iterator;
- best_prio = sched_find_first_bit(busiest->rt.active.bitmap);
- this_best_prio = sched_find_first_bit(this_rq->rt.active.bitmap);
- /*
- * Enable handling of the case where there is more than one task
- * with the best priority. If the current running task is one
- * of those with prio==best_prio we know it won't be moved
- * and therefore it's safe to override the skip (based on load)
- * of any task we find with that prio.
- */
- if (busiest->curr->prio == best_prio)
- best_prio_seen = 1;
- rt_rq_iterator.start = load_balance_start_rt;
- rt_rq_iterator.next = load_balance_next_rt;
- /* pass 'busiest' rq argument into
- * load_balance_[start|next]_rt iterators
- */
- rt_rq_iterator.arg = busiest;
- nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move,
- max_load_move, sd, idle, all_pinned, load_moved,
- this_best_prio, best_prio, best_prio_seen,
- &rt_rq_iterator);
- return nr_moved;
- }
- static void task_tick_rt(struct rq *rq, struct task_struct *p)
- {
- /*
- * RR tasks need a special form of timeslice management.
- * FIFO tasks have no timeslices.
- */
- if (p->policy != SCHED_RR)
- return;
- if (--p->time_slice)
- return;
- p->time_slice = static_prio_timeslice(p->static_prio);
- set_tsk_need_resched(p);
- /* put it at the end of the queue: */
- requeue_task_rt(rq, p);
- }
- /*
- * No parent/child timeslice management necessary for RT tasks,
- * just activate them:
- */
- static void task_new_rt(struct rq *rq, struct task_struct *p)
- {
- activate_task(rq, p, 1);
- }
- static struct sched_class rt_sched_class __read_mostly = {
- .enqueue_task = enqueue_task_rt,
- .dequeue_task = dequeue_task_rt,
- .yield_task = yield_task_rt,
- .check_preempt_curr = check_preempt_curr_rt,
- .pick_next_task = pick_next_task_rt,
- .put_prev_task = put_prev_task_rt,
- .load_balance = load_balance_rt,
- .task_tick = task_tick_rt,
- .task_new = task_new_rt,
- };
|