sched.c 159 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/syscalls.h>
  56. #include <linux/times.h>
  57. #include <linux/tsacct_kern.h>
  58. #include <linux/kprobes.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/reciprocal_div.h>
  61. #include <linux/unistd.h>
  62. #include <asm/tlb.h>
  63. /*
  64. * Scheduler clock - returns current time in nanosec units.
  65. * This is default implementation.
  66. * Architectures and sub-architectures can override this.
  67. */
  68. unsigned long long __attribute__((weak)) sched_clock(void)
  69. {
  70. return (unsigned long long)jiffies * (1000000000 / HZ);
  71. }
  72. /*
  73. * Convert user-nice values [ -20 ... 0 ... 19 ]
  74. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  75. * and back.
  76. */
  77. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  78. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  79. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  80. /*
  81. * 'User priority' is the nice value converted to something we
  82. * can work with better when scaling various scheduler parameters,
  83. * it's a [ 0 ... 39 ] range.
  84. */
  85. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  86. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  87. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  88. /*
  89. * Some helpers for converting nanosecond timing to jiffy resolution
  90. */
  91. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  92. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  93. #define NICE_0_LOAD SCHED_LOAD_SCALE
  94. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  95. /*
  96. * These are the 'tuning knobs' of the scheduler:
  97. *
  98. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  99. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  100. * Timeslices get refilled after they expire.
  101. */
  102. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. #ifdef CONFIG_SMP
  105. /*
  106. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  107. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  108. */
  109. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  110. {
  111. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  112. }
  113. /*
  114. * Each time a sched group cpu_power is changed,
  115. * we must compute its reciprocal value
  116. */
  117. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  118. {
  119. sg->__cpu_power += val;
  120. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  121. }
  122. #endif
  123. #define SCALE_PRIO(x, prio) \
  124. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  125. /*
  126. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  127. * to time slice values: [800ms ... 100ms ... 5ms]
  128. */
  129. static unsigned int static_prio_timeslice(int static_prio)
  130. {
  131. if (static_prio == NICE_TO_PRIO(19))
  132. return 1;
  133. if (static_prio < NICE_TO_PRIO(0))
  134. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  135. else
  136. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  137. }
  138. static inline int rt_policy(int policy)
  139. {
  140. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  141. return 1;
  142. return 0;
  143. }
  144. static inline int task_has_rt_policy(struct task_struct *p)
  145. {
  146. return rt_policy(p->policy);
  147. }
  148. /*
  149. * This is the priority-queue data structure of the RT scheduling class:
  150. */
  151. struct rt_prio_array {
  152. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  153. struct list_head queue[MAX_RT_PRIO];
  154. };
  155. struct load_stat {
  156. struct load_weight load;
  157. u64 load_update_start, load_update_last;
  158. unsigned long delta_fair, delta_exec, delta_stat;
  159. };
  160. /* CFS-related fields in a runqueue */
  161. struct cfs_rq {
  162. struct load_weight load;
  163. unsigned long nr_running;
  164. s64 fair_clock;
  165. u64 exec_clock;
  166. s64 wait_runtime;
  167. u64 sleeper_bonus;
  168. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  169. struct rb_root tasks_timeline;
  170. struct rb_node *rb_leftmost;
  171. struct rb_node *rb_load_balance_curr;
  172. #ifdef CONFIG_FAIR_GROUP_SCHED
  173. /* 'curr' points to currently running entity on this cfs_rq.
  174. * It is set to NULL otherwise (i.e when none are currently running).
  175. */
  176. struct sched_entity *curr;
  177. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  178. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  179. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  180. * (like users, containers etc.)
  181. *
  182. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  183. * list is used during load balance.
  184. */
  185. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  186. #endif
  187. };
  188. /* Real-Time classes' related field in a runqueue: */
  189. struct rt_rq {
  190. struct rt_prio_array active;
  191. int rt_load_balance_idx;
  192. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  193. };
  194. /*
  195. * This is the main, per-CPU runqueue data structure.
  196. *
  197. * Locking rule: those places that want to lock multiple runqueues
  198. * (such as the load balancing or the thread migration code), lock
  199. * acquire operations must be ordered by ascending &runqueue.
  200. */
  201. struct rq {
  202. spinlock_t lock; /* runqueue lock */
  203. /*
  204. * nr_running and cpu_load should be in the same cacheline because
  205. * remote CPUs use both these fields when doing load calculation.
  206. */
  207. unsigned long nr_running;
  208. #define CPU_LOAD_IDX_MAX 5
  209. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  210. unsigned char idle_at_tick;
  211. #ifdef CONFIG_NO_HZ
  212. unsigned char in_nohz_recently;
  213. #endif
  214. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  215. unsigned long nr_load_updates;
  216. u64 nr_switches;
  217. struct cfs_rq cfs;
  218. #ifdef CONFIG_FAIR_GROUP_SCHED
  219. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  220. #endif
  221. struct rt_rq rt;
  222. /*
  223. * This is part of a global counter where only the total sum
  224. * over all CPUs matters. A task can increase this counter on
  225. * one CPU and if it got migrated afterwards it may decrease
  226. * it on another CPU. Always updated under the runqueue lock:
  227. */
  228. unsigned long nr_uninterruptible;
  229. struct task_struct *curr, *idle;
  230. unsigned long next_balance;
  231. struct mm_struct *prev_mm;
  232. u64 clock, prev_clock_raw;
  233. s64 clock_max_delta;
  234. unsigned int clock_warps, clock_overflows;
  235. unsigned int clock_unstable_events;
  236. struct sched_class *load_balance_class;
  237. atomic_t nr_iowait;
  238. #ifdef CONFIG_SMP
  239. struct sched_domain *sd;
  240. /* For active balancing */
  241. int active_balance;
  242. int push_cpu;
  243. int cpu; /* cpu of this runqueue */
  244. struct task_struct *migration_thread;
  245. struct list_head migration_queue;
  246. #endif
  247. #ifdef CONFIG_SCHEDSTATS
  248. /* latency stats */
  249. struct sched_info rq_sched_info;
  250. /* sys_sched_yield() stats */
  251. unsigned long yld_exp_empty;
  252. unsigned long yld_act_empty;
  253. unsigned long yld_both_empty;
  254. unsigned long yld_cnt;
  255. /* schedule() stats */
  256. unsigned long sched_switch;
  257. unsigned long sched_cnt;
  258. unsigned long sched_goidle;
  259. /* try_to_wake_up() stats */
  260. unsigned long ttwu_cnt;
  261. unsigned long ttwu_local;
  262. #endif
  263. struct lock_class_key rq_lock_key;
  264. };
  265. static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
  266. static DEFINE_MUTEX(sched_hotcpu_mutex);
  267. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  268. {
  269. rq->curr->sched_class->check_preempt_curr(rq, p);
  270. }
  271. static inline int cpu_of(struct rq *rq)
  272. {
  273. #ifdef CONFIG_SMP
  274. return rq->cpu;
  275. #else
  276. return 0;
  277. #endif
  278. }
  279. /*
  280. * Per-runqueue clock, as finegrained as the platform can give us:
  281. */
  282. static unsigned long long __rq_clock(struct rq *rq)
  283. {
  284. u64 prev_raw = rq->prev_clock_raw;
  285. u64 now = sched_clock();
  286. s64 delta = now - prev_raw;
  287. u64 clock = rq->clock;
  288. /*
  289. * Protect against sched_clock() occasionally going backwards:
  290. */
  291. if (unlikely(delta < 0)) {
  292. clock++;
  293. rq->clock_warps++;
  294. } else {
  295. /*
  296. * Catch too large forward jumps too:
  297. */
  298. if (unlikely(delta > 2*TICK_NSEC)) {
  299. clock++;
  300. rq->clock_overflows++;
  301. } else {
  302. if (unlikely(delta > rq->clock_max_delta))
  303. rq->clock_max_delta = delta;
  304. clock += delta;
  305. }
  306. }
  307. rq->prev_clock_raw = now;
  308. rq->clock = clock;
  309. return clock;
  310. }
  311. static inline unsigned long long rq_clock(struct rq *rq)
  312. {
  313. int this_cpu = smp_processor_id();
  314. if (this_cpu == cpu_of(rq))
  315. return __rq_clock(rq);
  316. return rq->clock;
  317. }
  318. /*
  319. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  320. * See detach_destroy_domains: synchronize_sched for details.
  321. *
  322. * The domain tree of any CPU may only be accessed from within
  323. * preempt-disabled sections.
  324. */
  325. #define for_each_domain(cpu, __sd) \
  326. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  327. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  328. #define this_rq() (&__get_cpu_var(runqueues))
  329. #define task_rq(p) cpu_rq(task_cpu(p))
  330. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  331. #ifdef CONFIG_FAIR_GROUP_SCHED
  332. /* Change a task's ->cfs_rq if it moves across CPUs */
  333. static inline void set_task_cfs_rq(struct task_struct *p)
  334. {
  335. p->se.cfs_rq = &task_rq(p)->cfs;
  336. }
  337. #else
  338. static inline void set_task_cfs_rq(struct task_struct *p)
  339. {
  340. }
  341. #endif
  342. #ifndef prepare_arch_switch
  343. # define prepare_arch_switch(next) do { } while (0)
  344. #endif
  345. #ifndef finish_arch_switch
  346. # define finish_arch_switch(prev) do { } while (0)
  347. #endif
  348. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  349. static inline int task_running(struct rq *rq, struct task_struct *p)
  350. {
  351. return rq->curr == p;
  352. }
  353. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  354. {
  355. }
  356. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  357. {
  358. #ifdef CONFIG_DEBUG_SPINLOCK
  359. /* this is a valid case when another task releases the spinlock */
  360. rq->lock.owner = current;
  361. #endif
  362. /*
  363. * If we are tracking spinlock dependencies then we have to
  364. * fix up the runqueue lock - which gets 'carried over' from
  365. * prev into current:
  366. */
  367. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  368. spin_unlock_irq(&rq->lock);
  369. }
  370. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  371. static inline int task_running(struct rq *rq, struct task_struct *p)
  372. {
  373. #ifdef CONFIG_SMP
  374. return p->oncpu;
  375. #else
  376. return rq->curr == p;
  377. #endif
  378. }
  379. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  380. {
  381. #ifdef CONFIG_SMP
  382. /*
  383. * We can optimise this out completely for !SMP, because the
  384. * SMP rebalancing from interrupt is the only thing that cares
  385. * here.
  386. */
  387. next->oncpu = 1;
  388. #endif
  389. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  390. spin_unlock_irq(&rq->lock);
  391. #else
  392. spin_unlock(&rq->lock);
  393. #endif
  394. }
  395. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  396. {
  397. #ifdef CONFIG_SMP
  398. /*
  399. * After ->oncpu is cleared, the task can be moved to a different CPU.
  400. * We must ensure this doesn't happen until the switch is completely
  401. * finished.
  402. */
  403. smp_wmb();
  404. prev->oncpu = 0;
  405. #endif
  406. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  407. local_irq_enable();
  408. #endif
  409. }
  410. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  411. /*
  412. * __task_rq_lock - lock the runqueue a given task resides on.
  413. * Must be called interrupts disabled.
  414. */
  415. static inline struct rq *__task_rq_lock(struct task_struct *p)
  416. __acquires(rq->lock)
  417. {
  418. struct rq *rq;
  419. repeat_lock_task:
  420. rq = task_rq(p);
  421. spin_lock(&rq->lock);
  422. if (unlikely(rq != task_rq(p))) {
  423. spin_unlock(&rq->lock);
  424. goto repeat_lock_task;
  425. }
  426. return rq;
  427. }
  428. /*
  429. * task_rq_lock - lock the runqueue a given task resides on and disable
  430. * interrupts. Note the ordering: we can safely lookup the task_rq without
  431. * explicitly disabling preemption.
  432. */
  433. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  434. __acquires(rq->lock)
  435. {
  436. struct rq *rq;
  437. repeat_lock_task:
  438. local_irq_save(*flags);
  439. rq = task_rq(p);
  440. spin_lock(&rq->lock);
  441. if (unlikely(rq != task_rq(p))) {
  442. spin_unlock_irqrestore(&rq->lock, *flags);
  443. goto repeat_lock_task;
  444. }
  445. return rq;
  446. }
  447. static inline void __task_rq_unlock(struct rq *rq)
  448. __releases(rq->lock)
  449. {
  450. spin_unlock(&rq->lock);
  451. }
  452. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  453. __releases(rq->lock)
  454. {
  455. spin_unlock_irqrestore(&rq->lock, *flags);
  456. }
  457. /*
  458. * this_rq_lock - lock this runqueue and disable interrupts.
  459. */
  460. static inline struct rq *this_rq_lock(void)
  461. __acquires(rq->lock)
  462. {
  463. struct rq *rq;
  464. local_irq_disable();
  465. rq = this_rq();
  466. spin_lock(&rq->lock);
  467. return rq;
  468. }
  469. /*
  470. * CPU frequency is/was unstable - start new by setting prev_clock_raw:
  471. */
  472. void sched_clock_unstable_event(void)
  473. {
  474. unsigned long flags;
  475. struct rq *rq;
  476. rq = task_rq_lock(current, &flags);
  477. rq->prev_clock_raw = sched_clock();
  478. rq->clock_unstable_events++;
  479. task_rq_unlock(rq, &flags);
  480. }
  481. /*
  482. * resched_task - mark a task 'to be rescheduled now'.
  483. *
  484. * On UP this means the setting of the need_resched flag, on SMP it
  485. * might also involve a cross-CPU call to trigger the scheduler on
  486. * the target CPU.
  487. */
  488. #ifdef CONFIG_SMP
  489. #ifndef tsk_is_polling
  490. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  491. #endif
  492. static void resched_task(struct task_struct *p)
  493. {
  494. int cpu;
  495. assert_spin_locked(&task_rq(p)->lock);
  496. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  497. return;
  498. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  499. cpu = task_cpu(p);
  500. if (cpu == smp_processor_id())
  501. return;
  502. /* NEED_RESCHED must be visible before we test polling */
  503. smp_mb();
  504. if (!tsk_is_polling(p))
  505. smp_send_reschedule(cpu);
  506. }
  507. static void resched_cpu(int cpu)
  508. {
  509. struct rq *rq = cpu_rq(cpu);
  510. unsigned long flags;
  511. if (!spin_trylock_irqsave(&rq->lock, flags))
  512. return;
  513. resched_task(cpu_curr(cpu));
  514. spin_unlock_irqrestore(&rq->lock, flags);
  515. }
  516. #else
  517. static inline void resched_task(struct task_struct *p)
  518. {
  519. assert_spin_locked(&task_rq(p)->lock);
  520. set_tsk_need_resched(p);
  521. }
  522. #endif
  523. static u64 div64_likely32(u64 divident, unsigned long divisor)
  524. {
  525. #if BITS_PER_LONG == 32
  526. if (likely(divident <= 0xffffffffULL))
  527. return (u32)divident / divisor;
  528. do_div(divident, divisor);
  529. return divident;
  530. #else
  531. return divident / divisor;
  532. #endif
  533. }
  534. #if BITS_PER_LONG == 32
  535. # define WMULT_CONST (~0UL)
  536. #else
  537. # define WMULT_CONST (1UL << 32)
  538. #endif
  539. #define WMULT_SHIFT 32
  540. static inline unsigned long
  541. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  542. struct load_weight *lw)
  543. {
  544. u64 tmp;
  545. if (unlikely(!lw->inv_weight))
  546. lw->inv_weight = WMULT_CONST / lw->weight;
  547. tmp = (u64)delta_exec * weight;
  548. /*
  549. * Check whether we'd overflow the 64-bit multiplication:
  550. */
  551. if (unlikely(tmp > WMULT_CONST)) {
  552. tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
  553. >> (WMULT_SHIFT/2);
  554. } else {
  555. tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
  556. }
  557. return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
  558. }
  559. static inline unsigned long
  560. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  561. {
  562. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  563. }
  564. static void update_load_add(struct load_weight *lw, unsigned long inc)
  565. {
  566. lw->weight += inc;
  567. lw->inv_weight = 0;
  568. }
  569. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  570. {
  571. lw->weight -= dec;
  572. lw->inv_weight = 0;
  573. }
  574. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  575. {
  576. if (rq->curr != rq->idle && ls->load.weight) {
  577. ls->delta_exec += ls->delta_stat;
  578. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  579. ls->delta_stat = 0;
  580. }
  581. }
  582. /*
  583. * Update delta_exec, delta_fair fields for rq.
  584. *
  585. * delta_fair clock advances at a rate inversely proportional to
  586. * total load (rq->ls.load.weight) on the runqueue, while
  587. * delta_exec advances at the same rate as wall-clock (provided
  588. * cpu is not idle).
  589. *
  590. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  591. * runqueue over any given interval. This (smoothened) load is used
  592. * during load balance.
  593. *
  594. * This function is called /before/ updating rq->ls.load
  595. * and when switching tasks.
  596. */
  597. static void update_curr_load(struct rq *rq, u64 now)
  598. {
  599. struct load_stat *ls = &rq->ls;
  600. u64 start;
  601. start = ls->load_update_start;
  602. ls->load_update_start = now;
  603. ls->delta_stat += now - start;
  604. /*
  605. * Stagger updates to ls->delta_fair. Very frequent updates
  606. * can be expensive.
  607. */
  608. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  609. __update_curr_load(rq, ls);
  610. }
  611. /*
  612. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  613. * of tasks with abnormal "nice" values across CPUs the contribution that
  614. * each task makes to its run queue's load is weighted according to its
  615. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  616. * scaled version of the new time slice allocation that they receive on time
  617. * slice expiry etc.
  618. */
  619. /*
  620. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  621. * If static_prio_timeslice() is ever changed to break this assumption then
  622. * this code will need modification
  623. */
  624. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  625. #define load_weight(lp) \
  626. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  627. #define PRIO_TO_LOAD_WEIGHT(prio) \
  628. load_weight(static_prio_timeslice(prio))
  629. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  630. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
  631. #define WEIGHT_IDLEPRIO 2
  632. #define WMULT_IDLEPRIO (1 << 31)
  633. /*
  634. * Nice levels are multiplicative, with a gentle 10% change for every
  635. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  636. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  637. * that remained on nice 0.
  638. *
  639. * The "10% effect" is relative and cumulative: from _any_ nice level,
  640. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  641. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  642. * If a task goes up by ~10% and another task goes down by ~10% then
  643. * the relative distance between them is ~25%.)
  644. */
  645. static const int prio_to_weight[40] = {
  646. /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
  647. /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
  648. /* 0 */ NICE_0_LOAD /* 1024 */,
  649. /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
  650. /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
  651. };
  652. /*
  653. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  654. *
  655. * In cases where the weight does not change often, we can use the
  656. * precalculated inverse to speed up arithmetics by turning divisions
  657. * into multiplications:
  658. */
  659. static const u32 prio_to_wmult[40] = {
  660. /* -20 */ 48356, 60446, 75558, 94446, 118058,
  661. /* -15 */ 147573, 184467, 230589, 288233, 360285,
  662. /* -10 */ 450347, 562979, 703746, 879575, 1099582,
  663. /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
  664. /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
  665. /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
  666. /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
  667. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  668. };
  669. static inline void
  670. inc_load(struct rq *rq, const struct task_struct *p, u64 now)
  671. {
  672. update_curr_load(rq, now);
  673. update_load_add(&rq->ls.load, p->se.load.weight);
  674. }
  675. static inline void
  676. dec_load(struct rq *rq, const struct task_struct *p, u64 now)
  677. {
  678. update_curr_load(rq, now);
  679. update_load_sub(&rq->ls.load, p->se.load.weight);
  680. }
  681. static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  682. {
  683. rq->nr_running++;
  684. inc_load(rq, p, now);
  685. }
  686. static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  687. {
  688. rq->nr_running--;
  689. dec_load(rq, p, now);
  690. }
  691. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  692. /*
  693. * runqueue iterator, to support SMP load-balancing between different
  694. * scheduling classes, without having to expose their internal data
  695. * structures to the load-balancing proper:
  696. */
  697. struct rq_iterator {
  698. void *arg;
  699. struct task_struct *(*start)(void *);
  700. struct task_struct *(*next)(void *);
  701. };
  702. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  703. unsigned long max_nr_move, unsigned long max_load_move,
  704. struct sched_domain *sd, enum cpu_idle_type idle,
  705. int *all_pinned, unsigned long *load_moved,
  706. int this_best_prio, int best_prio, int best_prio_seen,
  707. struct rq_iterator *iterator);
  708. #include "sched_stats.h"
  709. #include "sched_rt.c"
  710. #include "sched_fair.c"
  711. #include "sched_idletask.c"
  712. #ifdef CONFIG_SCHED_DEBUG
  713. # include "sched_debug.c"
  714. #endif
  715. #define sched_class_highest (&rt_sched_class)
  716. static void set_load_weight(struct task_struct *p)
  717. {
  718. task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
  719. p->se.wait_runtime = 0;
  720. if (task_has_rt_policy(p)) {
  721. p->se.load.weight = prio_to_weight[0] * 2;
  722. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  723. return;
  724. }
  725. /*
  726. * SCHED_IDLE tasks get minimal weight:
  727. */
  728. if (p->policy == SCHED_IDLE) {
  729. p->se.load.weight = WEIGHT_IDLEPRIO;
  730. p->se.load.inv_weight = WMULT_IDLEPRIO;
  731. return;
  732. }
  733. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  734. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  735. }
  736. static void
  737. enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
  738. {
  739. sched_info_queued(p);
  740. p->sched_class->enqueue_task(rq, p, wakeup, now);
  741. p->se.on_rq = 1;
  742. }
  743. static void
  744. dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  745. {
  746. p->sched_class->dequeue_task(rq, p, sleep, now);
  747. p->se.on_rq = 0;
  748. }
  749. /*
  750. * __normal_prio - return the priority that is based on the static prio
  751. */
  752. static inline int __normal_prio(struct task_struct *p)
  753. {
  754. return p->static_prio;
  755. }
  756. /*
  757. * Calculate the expected normal priority: i.e. priority
  758. * without taking RT-inheritance into account. Might be
  759. * boosted by interactivity modifiers. Changes upon fork,
  760. * setprio syscalls, and whenever the interactivity
  761. * estimator recalculates.
  762. */
  763. static inline int normal_prio(struct task_struct *p)
  764. {
  765. int prio;
  766. if (task_has_rt_policy(p))
  767. prio = MAX_RT_PRIO-1 - p->rt_priority;
  768. else
  769. prio = __normal_prio(p);
  770. return prio;
  771. }
  772. /*
  773. * Calculate the current priority, i.e. the priority
  774. * taken into account by the scheduler. This value might
  775. * be boosted by RT tasks, or might be boosted by
  776. * interactivity modifiers. Will be RT if the task got
  777. * RT-boosted. If not then it returns p->normal_prio.
  778. */
  779. static int effective_prio(struct task_struct *p)
  780. {
  781. p->normal_prio = normal_prio(p);
  782. /*
  783. * If we are RT tasks or we were boosted to RT priority,
  784. * keep the priority unchanged. Otherwise, update priority
  785. * to the normal priority:
  786. */
  787. if (!rt_prio(p->prio))
  788. return p->normal_prio;
  789. return p->prio;
  790. }
  791. /*
  792. * activate_task - move a task to the runqueue.
  793. */
  794. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  795. {
  796. u64 now = rq_clock(rq);
  797. if (p->state == TASK_UNINTERRUPTIBLE)
  798. rq->nr_uninterruptible--;
  799. enqueue_task(rq, p, wakeup, now);
  800. inc_nr_running(p, rq, now);
  801. }
  802. /*
  803. * activate_idle_task - move idle task to the _front_ of runqueue.
  804. */
  805. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  806. {
  807. u64 now = rq_clock(rq);
  808. if (p->state == TASK_UNINTERRUPTIBLE)
  809. rq->nr_uninterruptible--;
  810. enqueue_task(rq, p, 0, now);
  811. inc_nr_running(p, rq, now);
  812. }
  813. /*
  814. * deactivate_task - remove a task from the runqueue.
  815. */
  816. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  817. {
  818. u64 now = rq_clock(rq);
  819. if (p->state == TASK_UNINTERRUPTIBLE)
  820. rq->nr_uninterruptible++;
  821. dequeue_task(rq, p, sleep, now);
  822. dec_nr_running(p, rq, now);
  823. }
  824. /**
  825. * task_curr - is this task currently executing on a CPU?
  826. * @p: the task in question.
  827. */
  828. inline int task_curr(const struct task_struct *p)
  829. {
  830. return cpu_curr(task_cpu(p)) == p;
  831. }
  832. /* Used instead of source_load when we know the type == 0 */
  833. unsigned long weighted_cpuload(const int cpu)
  834. {
  835. return cpu_rq(cpu)->ls.load.weight;
  836. }
  837. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  838. {
  839. #ifdef CONFIG_SMP
  840. task_thread_info(p)->cpu = cpu;
  841. set_task_cfs_rq(p);
  842. #endif
  843. }
  844. #ifdef CONFIG_SMP
  845. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  846. {
  847. int old_cpu = task_cpu(p);
  848. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  849. u64 clock_offset, fair_clock_offset;
  850. clock_offset = old_rq->clock - new_rq->clock;
  851. fair_clock_offset = old_rq->cfs.fair_clock -
  852. new_rq->cfs.fair_clock;
  853. if (p->se.wait_start)
  854. p->se.wait_start -= clock_offset;
  855. if (p->se.wait_start_fair)
  856. p->se.wait_start_fair -= fair_clock_offset;
  857. if (p->se.sleep_start)
  858. p->se.sleep_start -= clock_offset;
  859. if (p->se.block_start)
  860. p->se.block_start -= clock_offset;
  861. if (p->se.sleep_start_fair)
  862. p->se.sleep_start_fair -= fair_clock_offset;
  863. __set_task_cpu(p, new_cpu);
  864. }
  865. struct migration_req {
  866. struct list_head list;
  867. struct task_struct *task;
  868. int dest_cpu;
  869. struct completion done;
  870. };
  871. /*
  872. * The task's runqueue lock must be held.
  873. * Returns true if you have to wait for migration thread.
  874. */
  875. static int
  876. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  877. {
  878. struct rq *rq = task_rq(p);
  879. /*
  880. * If the task is not on a runqueue (and not running), then
  881. * it is sufficient to simply update the task's cpu field.
  882. */
  883. if (!p->se.on_rq && !task_running(rq, p)) {
  884. set_task_cpu(p, dest_cpu);
  885. return 0;
  886. }
  887. init_completion(&req->done);
  888. req->task = p;
  889. req->dest_cpu = dest_cpu;
  890. list_add(&req->list, &rq->migration_queue);
  891. return 1;
  892. }
  893. /*
  894. * wait_task_inactive - wait for a thread to unschedule.
  895. *
  896. * The caller must ensure that the task *will* unschedule sometime soon,
  897. * else this function might spin for a *long* time. This function can't
  898. * be called with interrupts off, or it may introduce deadlock with
  899. * smp_call_function() if an IPI is sent by the same process we are
  900. * waiting to become inactive.
  901. */
  902. void wait_task_inactive(struct task_struct *p)
  903. {
  904. unsigned long flags;
  905. int running, on_rq;
  906. struct rq *rq;
  907. repeat:
  908. /*
  909. * We do the initial early heuristics without holding
  910. * any task-queue locks at all. We'll only try to get
  911. * the runqueue lock when things look like they will
  912. * work out!
  913. */
  914. rq = task_rq(p);
  915. /*
  916. * If the task is actively running on another CPU
  917. * still, just relax and busy-wait without holding
  918. * any locks.
  919. *
  920. * NOTE! Since we don't hold any locks, it's not
  921. * even sure that "rq" stays as the right runqueue!
  922. * But we don't care, since "task_running()" will
  923. * return false if the runqueue has changed and p
  924. * is actually now running somewhere else!
  925. */
  926. while (task_running(rq, p))
  927. cpu_relax();
  928. /*
  929. * Ok, time to look more closely! We need the rq
  930. * lock now, to be *sure*. If we're wrong, we'll
  931. * just go back and repeat.
  932. */
  933. rq = task_rq_lock(p, &flags);
  934. running = task_running(rq, p);
  935. on_rq = p->se.on_rq;
  936. task_rq_unlock(rq, &flags);
  937. /*
  938. * Was it really running after all now that we
  939. * checked with the proper locks actually held?
  940. *
  941. * Oops. Go back and try again..
  942. */
  943. if (unlikely(running)) {
  944. cpu_relax();
  945. goto repeat;
  946. }
  947. /*
  948. * It's not enough that it's not actively running,
  949. * it must be off the runqueue _entirely_, and not
  950. * preempted!
  951. *
  952. * So if it wa still runnable (but just not actively
  953. * running right now), it's preempted, and we should
  954. * yield - it could be a while.
  955. */
  956. if (unlikely(on_rq)) {
  957. yield();
  958. goto repeat;
  959. }
  960. /*
  961. * Ahh, all good. It wasn't running, and it wasn't
  962. * runnable, which means that it will never become
  963. * running in the future either. We're all done!
  964. */
  965. }
  966. /***
  967. * kick_process - kick a running thread to enter/exit the kernel
  968. * @p: the to-be-kicked thread
  969. *
  970. * Cause a process which is running on another CPU to enter
  971. * kernel-mode, without any delay. (to get signals handled.)
  972. *
  973. * NOTE: this function doesnt have to take the runqueue lock,
  974. * because all it wants to ensure is that the remote task enters
  975. * the kernel. If the IPI races and the task has been migrated
  976. * to another CPU then no harm is done and the purpose has been
  977. * achieved as well.
  978. */
  979. void kick_process(struct task_struct *p)
  980. {
  981. int cpu;
  982. preempt_disable();
  983. cpu = task_cpu(p);
  984. if ((cpu != smp_processor_id()) && task_curr(p))
  985. smp_send_reschedule(cpu);
  986. preempt_enable();
  987. }
  988. /*
  989. * Return a low guess at the load of a migration-source cpu weighted
  990. * according to the scheduling class and "nice" value.
  991. *
  992. * We want to under-estimate the load of migration sources, to
  993. * balance conservatively.
  994. */
  995. static inline unsigned long source_load(int cpu, int type)
  996. {
  997. struct rq *rq = cpu_rq(cpu);
  998. unsigned long total = weighted_cpuload(cpu);
  999. if (type == 0)
  1000. return total;
  1001. return min(rq->cpu_load[type-1], total);
  1002. }
  1003. /*
  1004. * Return a high guess at the load of a migration-target cpu weighted
  1005. * according to the scheduling class and "nice" value.
  1006. */
  1007. static inline unsigned long target_load(int cpu, int type)
  1008. {
  1009. struct rq *rq = cpu_rq(cpu);
  1010. unsigned long total = weighted_cpuload(cpu);
  1011. if (type == 0)
  1012. return total;
  1013. return max(rq->cpu_load[type-1], total);
  1014. }
  1015. /*
  1016. * Return the average load per task on the cpu's run queue
  1017. */
  1018. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1019. {
  1020. struct rq *rq = cpu_rq(cpu);
  1021. unsigned long total = weighted_cpuload(cpu);
  1022. unsigned long n = rq->nr_running;
  1023. return n ? total / n : SCHED_LOAD_SCALE;
  1024. }
  1025. /*
  1026. * find_idlest_group finds and returns the least busy CPU group within the
  1027. * domain.
  1028. */
  1029. static struct sched_group *
  1030. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1031. {
  1032. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1033. unsigned long min_load = ULONG_MAX, this_load = 0;
  1034. int load_idx = sd->forkexec_idx;
  1035. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1036. do {
  1037. unsigned long load, avg_load;
  1038. int local_group;
  1039. int i;
  1040. /* Skip over this group if it has no CPUs allowed */
  1041. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1042. goto nextgroup;
  1043. local_group = cpu_isset(this_cpu, group->cpumask);
  1044. /* Tally up the load of all CPUs in the group */
  1045. avg_load = 0;
  1046. for_each_cpu_mask(i, group->cpumask) {
  1047. /* Bias balancing toward cpus of our domain */
  1048. if (local_group)
  1049. load = source_load(i, load_idx);
  1050. else
  1051. load = target_load(i, load_idx);
  1052. avg_load += load;
  1053. }
  1054. /* Adjust by relative CPU power of the group */
  1055. avg_load = sg_div_cpu_power(group,
  1056. avg_load * SCHED_LOAD_SCALE);
  1057. if (local_group) {
  1058. this_load = avg_load;
  1059. this = group;
  1060. } else if (avg_load < min_load) {
  1061. min_load = avg_load;
  1062. idlest = group;
  1063. }
  1064. nextgroup:
  1065. group = group->next;
  1066. } while (group != sd->groups);
  1067. if (!idlest || 100*this_load < imbalance*min_load)
  1068. return NULL;
  1069. return idlest;
  1070. }
  1071. /*
  1072. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1073. */
  1074. static int
  1075. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1076. {
  1077. cpumask_t tmp;
  1078. unsigned long load, min_load = ULONG_MAX;
  1079. int idlest = -1;
  1080. int i;
  1081. /* Traverse only the allowed CPUs */
  1082. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1083. for_each_cpu_mask(i, tmp) {
  1084. load = weighted_cpuload(i);
  1085. if (load < min_load || (load == min_load && i == this_cpu)) {
  1086. min_load = load;
  1087. idlest = i;
  1088. }
  1089. }
  1090. return idlest;
  1091. }
  1092. /*
  1093. * sched_balance_self: balance the current task (running on cpu) in domains
  1094. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1095. * SD_BALANCE_EXEC.
  1096. *
  1097. * Balance, ie. select the least loaded group.
  1098. *
  1099. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1100. *
  1101. * preempt must be disabled.
  1102. */
  1103. static int sched_balance_self(int cpu, int flag)
  1104. {
  1105. struct task_struct *t = current;
  1106. struct sched_domain *tmp, *sd = NULL;
  1107. for_each_domain(cpu, tmp) {
  1108. /*
  1109. * If power savings logic is enabled for a domain, stop there.
  1110. */
  1111. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1112. break;
  1113. if (tmp->flags & flag)
  1114. sd = tmp;
  1115. }
  1116. while (sd) {
  1117. cpumask_t span;
  1118. struct sched_group *group;
  1119. int new_cpu, weight;
  1120. if (!(sd->flags & flag)) {
  1121. sd = sd->child;
  1122. continue;
  1123. }
  1124. span = sd->span;
  1125. group = find_idlest_group(sd, t, cpu);
  1126. if (!group) {
  1127. sd = sd->child;
  1128. continue;
  1129. }
  1130. new_cpu = find_idlest_cpu(group, t, cpu);
  1131. if (new_cpu == -1 || new_cpu == cpu) {
  1132. /* Now try balancing at a lower domain level of cpu */
  1133. sd = sd->child;
  1134. continue;
  1135. }
  1136. /* Now try balancing at a lower domain level of new_cpu */
  1137. cpu = new_cpu;
  1138. sd = NULL;
  1139. weight = cpus_weight(span);
  1140. for_each_domain(cpu, tmp) {
  1141. if (weight <= cpus_weight(tmp->span))
  1142. break;
  1143. if (tmp->flags & flag)
  1144. sd = tmp;
  1145. }
  1146. /* while loop will break here if sd == NULL */
  1147. }
  1148. return cpu;
  1149. }
  1150. #endif /* CONFIG_SMP */
  1151. /*
  1152. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1153. * not idle and an idle cpu is available. The span of cpus to
  1154. * search starts with cpus closest then further out as needed,
  1155. * so we always favor a closer, idle cpu.
  1156. *
  1157. * Returns the CPU we should wake onto.
  1158. */
  1159. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1160. static int wake_idle(int cpu, struct task_struct *p)
  1161. {
  1162. cpumask_t tmp;
  1163. struct sched_domain *sd;
  1164. int i;
  1165. /*
  1166. * If it is idle, then it is the best cpu to run this task.
  1167. *
  1168. * This cpu is also the best, if it has more than one task already.
  1169. * Siblings must be also busy(in most cases) as they didn't already
  1170. * pickup the extra load from this cpu and hence we need not check
  1171. * sibling runqueue info. This will avoid the checks and cache miss
  1172. * penalities associated with that.
  1173. */
  1174. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1175. return cpu;
  1176. for_each_domain(cpu, sd) {
  1177. if (sd->flags & SD_WAKE_IDLE) {
  1178. cpus_and(tmp, sd->span, p->cpus_allowed);
  1179. for_each_cpu_mask(i, tmp) {
  1180. if (idle_cpu(i))
  1181. return i;
  1182. }
  1183. } else {
  1184. break;
  1185. }
  1186. }
  1187. return cpu;
  1188. }
  1189. #else
  1190. static inline int wake_idle(int cpu, struct task_struct *p)
  1191. {
  1192. return cpu;
  1193. }
  1194. #endif
  1195. /***
  1196. * try_to_wake_up - wake up a thread
  1197. * @p: the to-be-woken-up thread
  1198. * @state: the mask of task states that can be woken
  1199. * @sync: do a synchronous wakeup?
  1200. *
  1201. * Put it on the run-queue if it's not already there. The "current"
  1202. * thread is always on the run-queue (except when the actual
  1203. * re-schedule is in progress), and as such you're allowed to do
  1204. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1205. * runnable without the overhead of this.
  1206. *
  1207. * returns failure only if the task is already active.
  1208. */
  1209. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1210. {
  1211. int cpu, this_cpu, success = 0;
  1212. unsigned long flags;
  1213. long old_state;
  1214. struct rq *rq;
  1215. #ifdef CONFIG_SMP
  1216. struct sched_domain *sd, *this_sd = NULL;
  1217. unsigned long load, this_load;
  1218. int new_cpu;
  1219. #endif
  1220. rq = task_rq_lock(p, &flags);
  1221. old_state = p->state;
  1222. if (!(old_state & state))
  1223. goto out;
  1224. if (p->se.on_rq)
  1225. goto out_running;
  1226. cpu = task_cpu(p);
  1227. this_cpu = smp_processor_id();
  1228. #ifdef CONFIG_SMP
  1229. if (unlikely(task_running(rq, p)))
  1230. goto out_activate;
  1231. new_cpu = cpu;
  1232. schedstat_inc(rq, ttwu_cnt);
  1233. if (cpu == this_cpu) {
  1234. schedstat_inc(rq, ttwu_local);
  1235. goto out_set_cpu;
  1236. }
  1237. for_each_domain(this_cpu, sd) {
  1238. if (cpu_isset(cpu, sd->span)) {
  1239. schedstat_inc(sd, ttwu_wake_remote);
  1240. this_sd = sd;
  1241. break;
  1242. }
  1243. }
  1244. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1245. goto out_set_cpu;
  1246. /*
  1247. * Check for affine wakeup and passive balancing possibilities.
  1248. */
  1249. if (this_sd) {
  1250. int idx = this_sd->wake_idx;
  1251. unsigned int imbalance;
  1252. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1253. load = source_load(cpu, idx);
  1254. this_load = target_load(this_cpu, idx);
  1255. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1256. if (this_sd->flags & SD_WAKE_AFFINE) {
  1257. unsigned long tl = this_load;
  1258. unsigned long tl_per_task;
  1259. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1260. /*
  1261. * If sync wakeup then subtract the (maximum possible)
  1262. * effect of the currently running task from the load
  1263. * of the current CPU:
  1264. */
  1265. if (sync)
  1266. tl -= current->se.load.weight;
  1267. if ((tl <= load &&
  1268. tl + target_load(cpu, idx) <= tl_per_task) ||
  1269. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1270. /*
  1271. * This domain has SD_WAKE_AFFINE and
  1272. * p is cache cold in this domain, and
  1273. * there is no bad imbalance.
  1274. */
  1275. schedstat_inc(this_sd, ttwu_move_affine);
  1276. goto out_set_cpu;
  1277. }
  1278. }
  1279. /*
  1280. * Start passive balancing when half the imbalance_pct
  1281. * limit is reached.
  1282. */
  1283. if (this_sd->flags & SD_WAKE_BALANCE) {
  1284. if (imbalance*this_load <= 100*load) {
  1285. schedstat_inc(this_sd, ttwu_move_balance);
  1286. goto out_set_cpu;
  1287. }
  1288. }
  1289. }
  1290. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1291. out_set_cpu:
  1292. new_cpu = wake_idle(new_cpu, p);
  1293. if (new_cpu != cpu) {
  1294. set_task_cpu(p, new_cpu);
  1295. task_rq_unlock(rq, &flags);
  1296. /* might preempt at this point */
  1297. rq = task_rq_lock(p, &flags);
  1298. old_state = p->state;
  1299. if (!(old_state & state))
  1300. goto out;
  1301. if (p->se.on_rq)
  1302. goto out_running;
  1303. this_cpu = smp_processor_id();
  1304. cpu = task_cpu(p);
  1305. }
  1306. out_activate:
  1307. #endif /* CONFIG_SMP */
  1308. activate_task(rq, p, 1);
  1309. /*
  1310. * Sync wakeups (i.e. those types of wakeups where the waker
  1311. * has indicated that it will leave the CPU in short order)
  1312. * don't trigger a preemption, if the woken up task will run on
  1313. * this cpu. (in this case the 'I will reschedule' promise of
  1314. * the waker guarantees that the freshly woken up task is going
  1315. * to be considered on this CPU.)
  1316. */
  1317. if (!sync || cpu != this_cpu)
  1318. check_preempt_curr(rq, p);
  1319. success = 1;
  1320. out_running:
  1321. p->state = TASK_RUNNING;
  1322. out:
  1323. task_rq_unlock(rq, &flags);
  1324. return success;
  1325. }
  1326. int fastcall wake_up_process(struct task_struct *p)
  1327. {
  1328. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1329. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1330. }
  1331. EXPORT_SYMBOL(wake_up_process);
  1332. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1333. {
  1334. return try_to_wake_up(p, state, 0);
  1335. }
  1336. /*
  1337. * Perform scheduler related setup for a newly forked process p.
  1338. * p is forked by current.
  1339. *
  1340. * __sched_fork() is basic setup used by init_idle() too:
  1341. */
  1342. static void __sched_fork(struct task_struct *p)
  1343. {
  1344. p->se.wait_start_fair = 0;
  1345. p->se.wait_start = 0;
  1346. p->se.exec_start = 0;
  1347. p->se.sum_exec_runtime = 0;
  1348. p->se.delta_exec = 0;
  1349. p->se.delta_fair_run = 0;
  1350. p->se.delta_fair_sleep = 0;
  1351. p->se.wait_runtime = 0;
  1352. p->se.sum_wait_runtime = 0;
  1353. p->se.sum_sleep_runtime = 0;
  1354. p->se.sleep_start = 0;
  1355. p->se.sleep_start_fair = 0;
  1356. p->se.block_start = 0;
  1357. p->se.sleep_max = 0;
  1358. p->se.block_max = 0;
  1359. p->se.exec_max = 0;
  1360. p->se.wait_max = 0;
  1361. p->se.wait_runtime_overruns = 0;
  1362. p->se.wait_runtime_underruns = 0;
  1363. INIT_LIST_HEAD(&p->run_list);
  1364. p->se.on_rq = 0;
  1365. /*
  1366. * We mark the process as running here, but have not actually
  1367. * inserted it onto the runqueue yet. This guarantees that
  1368. * nobody will actually run it, and a signal or other external
  1369. * event cannot wake it up and insert it on the runqueue either.
  1370. */
  1371. p->state = TASK_RUNNING;
  1372. }
  1373. /*
  1374. * fork()/clone()-time setup:
  1375. */
  1376. void sched_fork(struct task_struct *p, int clone_flags)
  1377. {
  1378. int cpu = get_cpu();
  1379. __sched_fork(p);
  1380. #ifdef CONFIG_SMP
  1381. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1382. #endif
  1383. __set_task_cpu(p, cpu);
  1384. /*
  1385. * Make sure we do not leak PI boosting priority to the child:
  1386. */
  1387. p->prio = current->normal_prio;
  1388. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1389. if (likely(sched_info_on()))
  1390. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1391. #endif
  1392. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1393. p->oncpu = 0;
  1394. #endif
  1395. #ifdef CONFIG_PREEMPT
  1396. /* Want to start with kernel preemption disabled. */
  1397. task_thread_info(p)->preempt_count = 1;
  1398. #endif
  1399. put_cpu();
  1400. }
  1401. /*
  1402. * After fork, child runs first. (default) If set to 0 then
  1403. * parent will (try to) run first.
  1404. */
  1405. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1406. /*
  1407. * wake_up_new_task - wake up a newly created task for the first time.
  1408. *
  1409. * This function will do some initial scheduler statistics housekeeping
  1410. * that must be done for every newly created context, then puts the task
  1411. * on the runqueue and wakes it.
  1412. */
  1413. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1414. {
  1415. unsigned long flags;
  1416. struct rq *rq;
  1417. int this_cpu;
  1418. rq = task_rq_lock(p, &flags);
  1419. BUG_ON(p->state != TASK_RUNNING);
  1420. this_cpu = smp_processor_id(); /* parent's CPU */
  1421. p->prio = effective_prio(p);
  1422. if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
  1423. task_cpu(p) != this_cpu || !current->se.on_rq) {
  1424. activate_task(rq, p, 0);
  1425. } else {
  1426. /*
  1427. * Let the scheduling class do new task startup
  1428. * management (if any):
  1429. */
  1430. p->sched_class->task_new(rq, p);
  1431. }
  1432. check_preempt_curr(rq, p);
  1433. task_rq_unlock(rq, &flags);
  1434. }
  1435. /**
  1436. * prepare_task_switch - prepare to switch tasks
  1437. * @rq: the runqueue preparing to switch
  1438. * @next: the task we are going to switch to.
  1439. *
  1440. * This is called with the rq lock held and interrupts off. It must
  1441. * be paired with a subsequent finish_task_switch after the context
  1442. * switch.
  1443. *
  1444. * prepare_task_switch sets up locking and calls architecture specific
  1445. * hooks.
  1446. */
  1447. static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
  1448. {
  1449. prepare_lock_switch(rq, next);
  1450. prepare_arch_switch(next);
  1451. }
  1452. /**
  1453. * finish_task_switch - clean up after a task-switch
  1454. * @rq: runqueue associated with task-switch
  1455. * @prev: the thread we just switched away from.
  1456. *
  1457. * finish_task_switch must be called after the context switch, paired
  1458. * with a prepare_task_switch call before the context switch.
  1459. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1460. * and do any other architecture-specific cleanup actions.
  1461. *
  1462. * Note that we may have delayed dropping an mm in context_switch(). If
  1463. * so, we finish that here outside of the runqueue lock. (Doing it
  1464. * with the lock held can cause deadlocks; see schedule() for
  1465. * details.)
  1466. */
  1467. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1468. __releases(rq->lock)
  1469. {
  1470. struct mm_struct *mm = rq->prev_mm;
  1471. long prev_state;
  1472. rq->prev_mm = NULL;
  1473. /*
  1474. * A task struct has one reference for the use as "current".
  1475. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1476. * schedule one last time. The schedule call will never return, and
  1477. * the scheduled task must drop that reference.
  1478. * The test for TASK_DEAD must occur while the runqueue locks are
  1479. * still held, otherwise prev could be scheduled on another cpu, die
  1480. * there before we look at prev->state, and then the reference would
  1481. * be dropped twice.
  1482. * Manfred Spraul <manfred@colorfullife.com>
  1483. */
  1484. prev_state = prev->state;
  1485. finish_arch_switch(prev);
  1486. finish_lock_switch(rq, prev);
  1487. if (mm)
  1488. mmdrop(mm);
  1489. if (unlikely(prev_state == TASK_DEAD)) {
  1490. /*
  1491. * Remove function-return probe instances associated with this
  1492. * task and put them back on the free list.
  1493. */
  1494. kprobe_flush_task(prev);
  1495. put_task_struct(prev);
  1496. }
  1497. }
  1498. /**
  1499. * schedule_tail - first thing a freshly forked thread must call.
  1500. * @prev: the thread we just switched away from.
  1501. */
  1502. asmlinkage void schedule_tail(struct task_struct *prev)
  1503. __releases(rq->lock)
  1504. {
  1505. struct rq *rq = this_rq();
  1506. finish_task_switch(rq, prev);
  1507. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1508. /* In this case, finish_task_switch does not reenable preemption */
  1509. preempt_enable();
  1510. #endif
  1511. if (current->set_child_tid)
  1512. put_user(current->pid, current->set_child_tid);
  1513. }
  1514. /*
  1515. * context_switch - switch to the new MM and the new
  1516. * thread's register state.
  1517. */
  1518. static inline void
  1519. context_switch(struct rq *rq, struct task_struct *prev,
  1520. struct task_struct *next)
  1521. {
  1522. struct mm_struct *mm, *oldmm;
  1523. prepare_task_switch(rq, next);
  1524. mm = next->mm;
  1525. oldmm = prev->active_mm;
  1526. /*
  1527. * For paravirt, this is coupled with an exit in switch_to to
  1528. * combine the page table reload and the switch backend into
  1529. * one hypercall.
  1530. */
  1531. arch_enter_lazy_cpu_mode();
  1532. if (unlikely(!mm)) {
  1533. next->active_mm = oldmm;
  1534. atomic_inc(&oldmm->mm_count);
  1535. enter_lazy_tlb(oldmm, next);
  1536. } else
  1537. switch_mm(oldmm, mm, next);
  1538. if (unlikely(!prev->mm)) {
  1539. prev->active_mm = NULL;
  1540. rq->prev_mm = oldmm;
  1541. }
  1542. /*
  1543. * Since the runqueue lock will be released by the next
  1544. * task (which is an invalid locking op but in the case
  1545. * of the scheduler it's an obvious special-case), so we
  1546. * do an early lockdep release here:
  1547. */
  1548. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1549. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1550. #endif
  1551. /* Here we just switch the register state and the stack. */
  1552. switch_to(prev, next, prev);
  1553. barrier();
  1554. /*
  1555. * this_rq must be evaluated again because prev may have moved
  1556. * CPUs since it called schedule(), thus the 'rq' on its stack
  1557. * frame will be invalid.
  1558. */
  1559. finish_task_switch(this_rq(), prev);
  1560. }
  1561. /*
  1562. * nr_running, nr_uninterruptible and nr_context_switches:
  1563. *
  1564. * externally visible scheduler statistics: current number of runnable
  1565. * threads, current number of uninterruptible-sleeping threads, total
  1566. * number of context switches performed since bootup.
  1567. */
  1568. unsigned long nr_running(void)
  1569. {
  1570. unsigned long i, sum = 0;
  1571. for_each_online_cpu(i)
  1572. sum += cpu_rq(i)->nr_running;
  1573. return sum;
  1574. }
  1575. unsigned long nr_uninterruptible(void)
  1576. {
  1577. unsigned long i, sum = 0;
  1578. for_each_possible_cpu(i)
  1579. sum += cpu_rq(i)->nr_uninterruptible;
  1580. /*
  1581. * Since we read the counters lockless, it might be slightly
  1582. * inaccurate. Do not allow it to go below zero though:
  1583. */
  1584. if (unlikely((long)sum < 0))
  1585. sum = 0;
  1586. return sum;
  1587. }
  1588. unsigned long long nr_context_switches(void)
  1589. {
  1590. int i;
  1591. unsigned long long sum = 0;
  1592. for_each_possible_cpu(i)
  1593. sum += cpu_rq(i)->nr_switches;
  1594. return sum;
  1595. }
  1596. unsigned long nr_iowait(void)
  1597. {
  1598. unsigned long i, sum = 0;
  1599. for_each_possible_cpu(i)
  1600. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1601. return sum;
  1602. }
  1603. unsigned long nr_active(void)
  1604. {
  1605. unsigned long i, running = 0, uninterruptible = 0;
  1606. for_each_online_cpu(i) {
  1607. running += cpu_rq(i)->nr_running;
  1608. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1609. }
  1610. if (unlikely((long)uninterruptible < 0))
  1611. uninterruptible = 0;
  1612. return running + uninterruptible;
  1613. }
  1614. /*
  1615. * Update rq->cpu_load[] statistics. This function is usually called every
  1616. * scheduler tick (TICK_NSEC).
  1617. */
  1618. static void update_cpu_load(struct rq *this_rq)
  1619. {
  1620. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1621. unsigned long total_load = this_rq->ls.load.weight;
  1622. unsigned long this_load = total_load;
  1623. struct load_stat *ls = &this_rq->ls;
  1624. u64 now = __rq_clock(this_rq);
  1625. int i, scale;
  1626. this_rq->nr_load_updates++;
  1627. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1628. goto do_avg;
  1629. /* Update delta_fair/delta_exec fields first */
  1630. update_curr_load(this_rq, now);
  1631. fair_delta64 = ls->delta_fair + 1;
  1632. ls->delta_fair = 0;
  1633. exec_delta64 = ls->delta_exec + 1;
  1634. ls->delta_exec = 0;
  1635. sample_interval64 = now - ls->load_update_last;
  1636. ls->load_update_last = now;
  1637. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1638. sample_interval64 = TICK_NSEC;
  1639. if (exec_delta64 > sample_interval64)
  1640. exec_delta64 = sample_interval64;
  1641. idle_delta64 = sample_interval64 - exec_delta64;
  1642. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1643. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1644. this_load = (unsigned long)tmp64;
  1645. do_avg:
  1646. /* Update our load: */
  1647. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1648. unsigned long old_load, new_load;
  1649. /* scale is effectively 1 << i now, and >> i divides by scale */
  1650. old_load = this_rq->cpu_load[i];
  1651. new_load = this_load;
  1652. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1653. }
  1654. }
  1655. #ifdef CONFIG_SMP
  1656. /*
  1657. * double_rq_lock - safely lock two runqueues
  1658. *
  1659. * Note this does not disable interrupts like task_rq_lock,
  1660. * you need to do so manually before calling.
  1661. */
  1662. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1663. __acquires(rq1->lock)
  1664. __acquires(rq2->lock)
  1665. {
  1666. BUG_ON(!irqs_disabled());
  1667. if (rq1 == rq2) {
  1668. spin_lock(&rq1->lock);
  1669. __acquire(rq2->lock); /* Fake it out ;) */
  1670. } else {
  1671. if (rq1 < rq2) {
  1672. spin_lock(&rq1->lock);
  1673. spin_lock(&rq2->lock);
  1674. } else {
  1675. spin_lock(&rq2->lock);
  1676. spin_lock(&rq1->lock);
  1677. }
  1678. }
  1679. }
  1680. /*
  1681. * double_rq_unlock - safely unlock two runqueues
  1682. *
  1683. * Note this does not restore interrupts like task_rq_unlock,
  1684. * you need to do so manually after calling.
  1685. */
  1686. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1687. __releases(rq1->lock)
  1688. __releases(rq2->lock)
  1689. {
  1690. spin_unlock(&rq1->lock);
  1691. if (rq1 != rq2)
  1692. spin_unlock(&rq2->lock);
  1693. else
  1694. __release(rq2->lock);
  1695. }
  1696. /*
  1697. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1698. */
  1699. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1700. __releases(this_rq->lock)
  1701. __acquires(busiest->lock)
  1702. __acquires(this_rq->lock)
  1703. {
  1704. if (unlikely(!irqs_disabled())) {
  1705. /* printk() doesn't work good under rq->lock */
  1706. spin_unlock(&this_rq->lock);
  1707. BUG_ON(1);
  1708. }
  1709. if (unlikely(!spin_trylock(&busiest->lock))) {
  1710. if (busiest < this_rq) {
  1711. spin_unlock(&this_rq->lock);
  1712. spin_lock(&busiest->lock);
  1713. spin_lock(&this_rq->lock);
  1714. } else
  1715. spin_lock(&busiest->lock);
  1716. }
  1717. }
  1718. /*
  1719. * If dest_cpu is allowed for this process, migrate the task to it.
  1720. * This is accomplished by forcing the cpu_allowed mask to only
  1721. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1722. * the cpu_allowed mask is restored.
  1723. */
  1724. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1725. {
  1726. struct migration_req req;
  1727. unsigned long flags;
  1728. struct rq *rq;
  1729. rq = task_rq_lock(p, &flags);
  1730. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1731. || unlikely(cpu_is_offline(dest_cpu)))
  1732. goto out;
  1733. /* force the process onto the specified CPU */
  1734. if (migrate_task(p, dest_cpu, &req)) {
  1735. /* Need to wait for migration thread (might exit: take ref). */
  1736. struct task_struct *mt = rq->migration_thread;
  1737. get_task_struct(mt);
  1738. task_rq_unlock(rq, &flags);
  1739. wake_up_process(mt);
  1740. put_task_struct(mt);
  1741. wait_for_completion(&req.done);
  1742. return;
  1743. }
  1744. out:
  1745. task_rq_unlock(rq, &flags);
  1746. }
  1747. /*
  1748. * sched_exec - execve() is a valuable balancing opportunity, because at
  1749. * this point the task has the smallest effective memory and cache footprint.
  1750. */
  1751. void sched_exec(void)
  1752. {
  1753. int new_cpu, this_cpu = get_cpu();
  1754. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1755. put_cpu();
  1756. if (new_cpu != this_cpu)
  1757. sched_migrate_task(current, new_cpu);
  1758. }
  1759. /*
  1760. * pull_task - move a task from a remote runqueue to the local runqueue.
  1761. * Both runqueues must be locked.
  1762. */
  1763. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1764. struct rq *this_rq, int this_cpu)
  1765. {
  1766. deactivate_task(src_rq, p, 0);
  1767. set_task_cpu(p, this_cpu);
  1768. activate_task(this_rq, p, 0);
  1769. /*
  1770. * Note that idle threads have a prio of MAX_PRIO, for this test
  1771. * to be always true for them.
  1772. */
  1773. check_preempt_curr(this_rq, p);
  1774. }
  1775. /*
  1776. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1777. */
  1778. static
  1779. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1780. struct sched_domain *sd, enum cpu_idle_type idle,
  1781. int *all_pinned)
  1782. {
  1783. /*
  1784. * We do not migrate tasks that are:
  1785. * 1) running (obviously), or
  1786. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1787. * 3) are cache-hot on their current CPU.
  1788. */
  1789. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1790. return 0;
  1791. *all_pinned = 0;
  1792. if (task_running(rq, p))
  1793. return 0;
  1794. /*
  1795. * Aggressive migration if too many balance attempts have failed:
  1796. */
  1797. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1798. return 1;
  1799. return 1;
  1800. }
  1801. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1802. unsigned long max_nr_move, unsigned long max_load_move,
  1803. struct sched_domain *sd, enum cpu_idle_type idle,
  1804. int *all_pinned, unsigned long *load_moved,
  1805. int this_best_prio, int best_prio, int best_prio_seen,
  1806. struct rq_iterator *iterator)
  1807. {
  1808. int pulled = 0, pinned = 0, skip_for_load;
  1809. struct task_struct *p;
  1810. long rem_load_move = max_load_move;
  1811. if (max_nr_move == 0 || max_load_move == 0)
  1812. goto out;
  1813. pinned = 1;
  1814. /*
  1815. * Start the load-balancing iterator:
  1816. */
  1817. p = iterator->start(iterator->arg);
  1818. next:
  1819. if (!p)
  1820. goto out;
  1821. /*
  1822. * To help distribute high priority tasks accross CPUs we don't
  1823. * skip a task if it will be the highest priority task (i.e. smallest
  1824. * prio value) on its new queue regardless of its load weight
  1825. */
  1826. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1827. SCHED_LOAD_SCALE_FUZZ;
  1828. if (skip_for_load && p->prio < this_best_prio)
  1829. skip_for_load = !best_prio_seen && p->prio == best_prio;
  1830. if (skip_for_load ||
  1831. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1832. best_prio_seen |= p->prio == best_prio;
  1833. p = iterator->next(iterator->arg);
  1834. goto next;
  1835. }
  1836. pull_task(busiest, p, this_rq, this_cpu);
  1837. pulled++;
  1838. rem_load_move -= p->se.load.weight;
  1839. /*
  1840. * We only want to steal up to the prescribed number of tasks
  1841. * and the prescribed amount of weighted load.
  1842. */
  1843. if (pulled < max_nr_move && rem_load_move > 0) {
  1844. if (p->prio < this_best_prio)
  1845. this_best_prio = p->prio;
  1846. p = iterator->next(iterator->arg);
  1847. goto next;
  1848. }
  1849. out:
  1850. /*
  1851. * Right now, this is the only place pull_task() is called,
  1852. * so we can safely collect pull_task() stats here rather than
  1853. * inside pull_task().
  1854. */
  1855. schedstat_add(sd, lb_gained[idle], pulled);
  1856. if (all_pinned)
  1857. *all_pinned = pinned;
  1858. *load_moved = max_load_move - rem_load_move;
  1859. return pulled;
  1860. }
  1861. /*
  1862. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1863. * load from busiest to this_rq, as part of a balancing operation within
  1864. * "domain". Returns the number of tasks moved.
  1865. *
  1866. * Called with both runqueues locked.
  1867. */
  1868. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1869. unsigned long max_nr_move, unsigned long max_load_move,
  1870. struct sched_domain *sd, enum cpu_idle_type idle,
  1871. int *all_pinned)
  1872. {
  1873. struct sched_class *class = sched_class_highest;
  1874. unsigned long load_moved, total_nr_moved = 0, nr_moved;
  1875. long rem_load_move = max_load_move;
  1876. do {
  1877. nr_moved = class->load_balance(this_rq, this_cpu, busiest,
  1878. max_nr_move, (unsigned long)rem_load_move,
  1879. sd, idle, all_pinned, &load_moved);
  1880. total_nr_moved += nr_moved;
  1881. max_nr_move -= nr_moved;
  1882. rem_load_move -= load_moved;
  1883. class = class->next;
  1884. } while (class && max_nr_move && rem_load_move > 0);
  1885. return total_nr_moved;
  1886. }
  1887. /*
  1888. * find_busiest_group finds and returns the busiest CPU group within the
  1889. * domain. It calculates and returns the amount of weighted load which
  1890. * should be moved to restore balance via the imbalance parameter.
  1891. */
  1892. static struct sched_group *
  1893. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1894. unsigned long *imbalance, enum cpu_idle_type idle,
  1895. int *sd_idle, cpumask_t *cpus, int *balance)
  1896. {
  1897. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1898. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1899. unsigned long max_pull;
  1900. unsigned long busiest_load_per_task, busiest_nr_running;
  1901. unsigned long this_load_per_task, this_nr_running;
  1902. int load_idx;
  1903. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1904. int power_savings_balance = 1;
  1905. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1906. unsigned long min_nr_running = ULONG_MAX;
  1907. struct sched_group *group_min = NULL, *group_leader = NULL;
  1908. #endif
  1909. max_load = this_load = total_load = total_pwr = 0;
  1910. busiest_load_per_task = busiest_nr_running = 0;
  1911. this_load_per_task = this_nr_running = 0;
  1912. if (idle == CPU_NOT_IDLE)
  1913. load_idx = sd->busy_idx;
  1914. else if (idle == CPU_NEWLY_IDLE)
  1915. load_idx = sd->newidle_idx;
  1916. else
  1917. load_idx = sd->idle_idx;
  1918. do {
  1919. unsigned long load, group_capacity;
  1920. int local_group;
  1921. int i;
  1922. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  1923. unsigned long sum_nr_running, sum_weighted_load;
  1924. local_group = cpu_isset(this_cpu, group->cpumask);
  1925. if (local_group)
  1926. balance_cpu = first_cpu(group->cpumask);
  1927. /* Tally up the load of all CPUs in the group */
  1928. sum_weighted_load = sum_nr_running = avg_load = 0;
  1929. for_each_cpu_mask(i, group->cpumask) {
  1930. struct rq *rq;
  1931. if (!cpu_isset(i, *cpus))
  1932. continue;
  1933. rq = cpu_rq(i);
  1934. if (*sd_idle && !idle_cpu(i))
  1935. *sd_idle = 0;
  1936. /* Bias balancing toward cpus of our domain */
  1937. if (local_group) {
  1938. if (idle_cpu(i) && !first_idle_cpu) {
  1939. first_idle_cpu = 1;
  1940. balance_cpu = i;
  1941. }
  1942. load = target_load(i, load_idx);
  1943. } else
  1944. load = source_load(i, load_idx);
  1945. avg_load += load;
  1946. sum_nr_running += rq->nr_running;
  1947. sum_weighted_load += weighted_cpuload(i);
  1948. }
  1949. /*
  1950. * First idle cpu or the first cpu(busiest) in this sched group
  1951. * is eligible for doing load balancing at this and above
  1952. * domains.
  1953. */
  1954. if (local_group && balance_cpu != this_cpu && balance) {
  1955. *balance = 0;
  1956. goto ret;
  1957. }
  1958. total_load += avg_load;
  1959. total_pwr += group->__cpu_power;
  1960. /* Adjust by relative CPU power of the group */
  1961. avg_load = sg_div_cpu_power(group,
  1962. avg_load * SCHED_LOAD_SCALE);
  1963. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  1964. if (local_group) {
  1965. this_load = avg_load;
  1966. this = group;
  1967. this_nr_running = sum_nr_running;
  1968. this_load_per_task = sum_weighted_load;
  1969. } else if (avg_load > max_load &&
  1970. sum_nr_running > group_capacity) {
  1971. max_load = avg_load;
  1972. busiest = group;
  1973. busiest_nr_running = sum_nr_running;
  1974. busiest_load_per_task = sum_weighted_load;
  1975. }
  1976. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1977. /*
  1978. * Busy processors will not participate in power savings
  1979. * balance.
  1980. */
  1981. if (idle == CPU_NOT_IDLE ||
  1982. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1983. goto group_next;
  1984. /*
  1985. * If the local group is idle or completely loaded
  1986. * no need to do power savings balance at this domain
  1987. */
  1988. if (local_group && (this_nr_running >= group_capacity ||
  1989. !this_nr_running))
  1990. power_savings_balance = 0;
  1991. /*
  1992. * If a group is already running at full capacity or idle,
  1993. * don't include that group in power savings calculations
  1994. */
  1995. if (!power_savings_balance || sum_nr_running >= group_capacity
  1996. || !sum_nr_running)
  1997. goto group_next;
  1998. /*
  1999. * Calculate the group which has the least non-idle load.
  2000. * This is the group from where we need to pick up the load
  2001. * for saving power
  2002. */
  2003. if ((sum_nr_running < min_nr_running) ||
  2004. (sum_nr_running == min_nr_running &&
  2005. first_cpu(group->cpumask) <
  2006. first_cpu(group_min->cpumask))) {
  2007. group_min = group;
  2008. min_nr_running = sum_nr_running;
  2009. min_load_per_task = sum_weighted_load /
  2010. sum_nr_running;
  2011. }
  2012. /*
  2013. * Calculate the group which is almost near its
  2014. * capacity but still has some space to pick up some load
  2015. * from other group and save more power
  2016. */
  2017. if (sum_nr_running <= group_capacity - 1) {
  2018. if (sum_nr_running > leader_nr_running ||
  2019. (sum_nr_running == leader_nr_running &&
  2020. first_cpu(group->cpumask) >
  2021. first_cpu(group_leader->cpumask))) {
  2022. group_leader = group;
  2023. leader_nr_running = sum_nr_running;
  2024. }
  2025. }
  2026. group_next:
  2027. #endif
  2028. group = group->next;
  2029. } while (group != sd->groups);
  2030. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2031. goto out_balanced;
  2032. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2033. if (this_load >= avg_load ||
  2034. 100*max_load <= sd->imbalance_pct*this_load)
  2035. goto out_balanced;
  2036. busiest_load_per_task /= busiest_nr_running;
  2037. /*
  2038. * We're trying to get all the cpus to the average_load, so we don't
  2039. * want to push ourselves above the average load, nor do we wish to
  2040. * reduce the max loaded cpu below the average load, as either of these
  2041. * actions would just result in more rebalancing later, and ping-pong
  2042. * tasks around. Thus we look for the minimum possible imbalance.
  2043. * Negative imbalances (*we* are more loaded than anyone else) will
  2044. * be counted as no imbalance for these purposes -- we can't fix that
  2045. * by pulling tasks to us. Be careful of negative numbers as they'll
  2046. * appear as very large values with unsigned longs.
  2047. */
  2048. if (max_load <= busiest_load_per_task)
  2049. goto out_balanced;
  2050. /*
  2051. * In the presence of smp nice balancing, certain scenarios can have
  2052. * max load less than avg load(as we skip the groups at or below
  2053. * its cpu_power, while calculating max_load..)
  2054. */
  2055. if (max_load < avg_load) {
  2056. *imbalance = 0;
  2057. goto small_imbalance;
  2058. }
  2059. /* Don't want to pull so many tasks that a group would go idle */
  2060. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2061. /* How much load to actually move to equalise the imbalance */
  2062. *imbalance = min(max_pull * busiest->__cpu_power,
  2063. (avg_load - this_load) * this->__cpu_power)
  2064. / SCHED_LOAD_SCALE;
  2065. /*
  2066. * if *imbalance is less than the average load per runnable task
  2067. * there is no gaurantee that any tasks will be moved so we'll have
  2068. * a think about bumping its value to force at least one task to be
  2069. * moved
  2070. */
  2071. if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
  2072. unsigned long tmp, pwr_now, pwr_move;
  2073. unsigned int imbn;
  2074. small_imbalance:
  2075. pwr_move = pwr_now = 0;
  2076. imbn = 2;
  2077. if (this_nr_running) {
  2078. this_load_per_task /= this_nr_running;
  2079. if (busiest_load_per_task > this_load_per_task)
  2080. imbn = 1;
  2081. } else
  2082. this_load_per_task = SCHED_LOAD_SCALE;
  2083. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2084. busiest_load_per_task * imbn) {
  2085. *imbalance = busiest_load_per_task;
  2086. return busiest;
  2087. }
  2088. /*
  2089. * OK, we don't have enough imbalance to justify moving tasks,
  2090. * however we may be able to increase total CPU power used by
  2091. * moving them.
  2092. */
  2093. pwr_now += busiest->__cpu_power *
  2094. min(busiest_load_per_task, max_load);
  2095. pwr_now += this->__cpu_power *
  2096. min(this_load_per_task, this_load);
  2097. pwr_now /= SCHED_LOAD_SCALE;
  2098. /* Amount of load we'd subtract */
  2099. tmp = sg_div_cpu_power(busiest,
  2100. busiest_load_per_task * SCHED_LOAD_SCALE);
  2101. if (max_load > tmp)
  2102. pwr_move += busiest->__cpu_power *
  2103. min(busiest_load_per_task, max_load - tmp);
  2104. /* Amount of load we'd add */
  2105. if (max_load * busiest->__cpu_power <
  2106. busiest_load_per_task * SCHED_LOAD_SCALE)
  2107. tmp = sg_div_cpu_power(this,
  2108. max_load * busiest->__cpu_power);
  2109. else
  2110. tmp = sg_div_cpu_power(this,
  2111. busiest_load_per_task * SCHED_LOAD_SCALE);
  2112. pwr_move += this->__cpu_power *
  2113. min(this_load_per_task, this_load + tmp);
  2114. pwr_move /= SCHED_LOAD_SCALE;
  2115. /* Move if we gain throughput */
  2116. if (pwr_move <= pwr_now)
  2117. goto out_balanced;
  2118. *imbalance = busiest_load_per_task;
  2119. }
  2120. return busiest;
  2121. out_balanced:
  2122. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2123. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2124. goto ret;
  2125. if (this == group_leader && group_leader != group_min) {
  2126. *imbalance = min_load_per_task;
  2127. return group_min;
  2128. }
  2129. #endif
  2130. ret:
  2131. *imbalance = 0;
  2132. return NULL;
  2133. }
  2134. /*
  2135. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2136. */
  2137. static struct rq *
  2138. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2139. unsigned long imbalance, cpumask_t *cpus)
  2140. {
  2141. struct rq *busiest = NULL, *rq;
  2142. unsigned long max_load = 0;
  2143. int i;
  2144. for_each_cpu_mask(i, group->cpumask) {
  2145. unsigned long wl;
  2146. if (!cpu_isset(i, *cpus))
  2147. continue;
  2148. rq = cpu_rq(i);
  2149. wl = weighted_cpuload(i);
  2150. if (rq->nr_running == 1 && wl > imbalance)
  2151. continue;
  2152. if (wl > max_load) {
  2153. max_load = wl;
  2154. busiest = rq;
  2155. }
  2156. }
  2157. return busiest;
  2158. }
  2159. /*
  2160. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2161. * so long as it is large enough.
  2162. */
  2163. #define MAX_PINNED_INTERVAL 512
  2164. static inline unsigned long minus_1_or_zero(unsigned long n)
  2165. {
  2166. return n > 0 ? n - 1 : 0;
  2167. }
  2168. /*
  2169. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2170. * tasks if there is an imbalance.
  2171. */
  2172. static int load_balance(int this_cpu, struct rq *this_rq,
  2173. struct sched_domain *sd, enum cpu_idle_type idle,
  2174. int *balance)
  2175. {
  2176. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2177. struct sched_group *group;
  2178. unsigned long imbalance;
  2179. struct rq *busiest;
  2180. cpumask_t cpus = CPU_MASK_ALL;
  2181. unsigned long flags;
  2182. /*
  2183. * When power savings policy is enabled for the parent domain, idle
  2184. * sibling can pick up load irrespective of busy siblings. In this case,
  2185. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2186. * portraying it as CPU_NOT_IDLE.
  2187. */
  2188. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2189. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2190. sd_idle = 1;
  2191. schedstat_inc(sd, lb_cnt[idle]);
  2192. redo:
  2193. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2194. &cpus, balance);
  2195. if (*balance == 0)
  2196. goto out_balanced;
  2197. if (!group) {
  2198. schedstat_inc(sd, lb_nobusyg[idle]);
  2199. goto out_balanced;
  2200. }
  2201. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2202. if (!busiest) {
  2203. schedstat_inc(sd, lb_nobusyq[idle]);
  2204. goto out_balanced;
  2205. }
  2206. BUG_ON(busiest == this_rq);
  2207. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2208. nr_moved = 0;
  2209. if (busiest->nr_running > 1) {
  2210. /*
  2211. * Attempt to move tasks. If find_busiest_group has found
  2212. * an imbalance but busiest->nr_running <= 1, the group is
  2213. * still unbalanced. nr_moved simply stays zero, so it is
  2214. * correctly treated as an imbalance.
  2215. */
  2216. local_irq_save(flags);
  2217. double_rq_lock(this_rq, busiest);
  2218. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2219. minus_1_or_zero(busiest->nr_running),
  2220. imbalance, sd, idle, &all_pinned);
  2221. double_rq_unlock(this_rq, busiest);
  2222. local_irq_restore(flags);
  2223. /*
  2224. * some other cpu did the load balance for us.
  2225. */
  2226. if (nr_moved && this_cpu != smp_processor_id())
  2227. resched_cpu(this_cpu);
  2228. /* All tasks on this runqueue were pinned by CPU affinity */
  2229. if (unlikely(all_pinned)) {
  2230. cpu_clear(cpu_of(busiest), cpus);
  2231. if (!cpus_empty(cpus))
  2232. goto redo;
  2233. goto out_balanced;
  2234. }
  2235. }
  2236. if (!nr_moved) {
  2237. schedstat_inc(sd, lb_failed[idle]);
  2238. sd->nr_balance_failed++;
  2239. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2240. spin_lock_irqsave(&busiest->lock, flags);
  2241. /* don't kick the migration_thread, if the curr
  2242. * task on busiest cpu can't be moved to this_cpu
  2243. */
  2244. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2245. spin_unlock_irqrestore(&busiest->lock, flags);
  2246. all_pinned = 1;
  2247. goto out_one_pinned;
  2248. }
  2249. if (!busiest->active_balance) {
  2250. busiest->active_balance = 1;
  2251. busiest->push_cpu = this_cpu;
  2252. active_balance = 1;
  2253. }
  2254. spin_unlock_irqrestore(&busiest->lock, flags);
  2255. if (active_balance)
  2256. wake_up_process(busiest->migration_thread);
  2257. /*
  2258. * We've kicked active balancing, reset the failure
  2259. * counter.
  2260. */
  2261. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2262. }
  2263. } else
  2264. sd->nr_balance_failed = 0;
  2265. if (likely(!active_balance)) {
  2266. /* We were unbalanced, so reset the balancing interval */
  2267. sd->balance_interval = sd->min_interval;
  2268. } else {
  2269. /*
  2270. * If we've begun active balancing, start to back off. This
  2271. * case may not be covered by the all_pinned logic if there
  2272. * is only 1 task on the busy runqueue (because we don't call
  2273. * move_tasks).
  2274. */
  2275. if (sd->balance_interval < sd->max_interval)
  2276. sd->balance_interval *= 2;
  2277. }
  2278. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2279. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2280. return -1;
  2281. return nr_moved;
  2282. out_balanced:
  2283. schedstat_inc(sd, lb_balanced[idle]);
  2284. sd->nr_balance_failed = 0;
  2285. out_one_pinned:
  2286. /* tune up the balancing interval */
  2287. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2288. (sd->balance_interval < sd->max_interval))
  2289. sd->balance_interval *= 2;
  2290. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2291. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2292. return -1;
  2293. return 0;
  2294. }
  2295. /*
  2296. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2297. * tasks if there is an imbalance.
  2298. *
  2299. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2300. * this_rq is locked.
  2301. */
  2302. static int
  2303. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2304. {
  2305. struct sched_group *group;
  2306. struct rq *busiest = NULL;
  2307. unsigned long imbalance;
  2308. int nr_moved = 0;
  2309. int sd_idle = 0;
  2310. cpumask_t cpus = CPU_MASK_ALL;
  2311. /*
  2312. * When power savings policy is enabled for the parent domain, idle
  2313. * sibling can pick up load irrespective of busy siblings. In this case,
  2314. * let the state of idle sibling percolate up as IDLE, instead of
  2315. * portraying it as CPU_NOT_IDLE.
  2316. */
  2317. if (sd->flags & SD_SHARE_CPUPOWER &&
  2318. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2319. sd_idle = 1;
  2320. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2321. redo:
  2322. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2323. &sd_idle, &cpus, NULL);
  2324. if (!group) {
  2325. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2326. goto out_balanced;
  2327. }
  2328. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2329. &cpus);
  2330. if (!busiest) {
  2331. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2332. goto out_balanced;
  2333. }
  2334. BUG_ON(busiest == this_rq);
  2335. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2336. nr_moved = 0;
  2337. if (busiest->nr_running > 1) {
  2338. /* Attempt to move tasks */
  2339. double_lock_balance(this_rq, busiest);
  2340. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2341. minus_1_or_zero(busiest->nr_running),
  2342. imbalance, sd, CPU_NEWLY_IDLE, NULL);
  2343. spin_unlock(&busiest->lock);
  2344. if (!nr_moved) {
  2345. cpu_clear(cpu_of(busiest), cpus);
  2346. if (!cpus_empty(cpus))
  2347. goto redo;
  2348. }
  2349. }
  2350. if (!nr_moved) {
  2351. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2352. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2353. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2354. return -1;
  2355. } else
  2356. sd->nr_balance_failed = 0;
  2357. return nr_moved;
  2358. out_balanced:
  2359. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2360. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2361. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2362. return -1;
  2363. sd->nr_balance_failed = 0;
  2364. return 0;
  2365. }
  2366. /*
  2367. * idle_balance is called by schedule() if this_cpu is about to become
  2368. * idle. Attempts to pull tasks from other CPUs.
  2369. */
  2370. static void idle_balance(int this_cpu, struct rq *this_rq)
  2371. {
  2372. struct sched_domain *sd;
  2373. int pulled_task = -1;
  2374. unsigned long next_balance = jiffies + HZ;
  2375. for_each_domain(this_cpu, sd) {
  2376. unsigned long interval;
  2377. if (!(sd->flags & SD_LOAD_BALANCE))
  2378. continue;
  2379. if (sd->flags & SD_BALANCE_NEWIDLE)
  2380. /* If we've pulled tasks over stop searching: */
  2381. pulled_task = load_balance_newidle(this_cpu,
  2382. this_rq, sd);
  2383. interval = msecs_to_jiffies(sd->balance_interval);
  2384. if (time_after(next_balance, sd->last_balance + interval))
  2385. next_balance = sd->last_balance + interval;
  2386. if (pulled_task)
  2387. break;
  2388. }
  2389. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2390. /*
  2391. * We are going idle. next_balance may be set based on
  2392. * a busy processor. So reset next_balance.
  2393. */
  2394. this_rq->next_balance = next_balance;
  2395. }
  2396. }
  2397. /*
  2398. * active_load_balance is run by migration threads. It pushes running tasks
  2399. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2400. * running on each physical CPU where possible, and avoids physical /
  2401. * logical imbalances.
  2402. *
  2403. * Called with busiest_rq locked.
  2404. */
  2405. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2406. {
  2407. int target_cpu = busiest_rq->push_cpu;
  2408. struct sched_domain *sd;
  2409. struct rq *target_rq;
  2410. /* Is there any task to move? */
  2411. if (busiest_rq->nr_running <= 1)
  2412. return;
  2413. target_rq = cpu_rq(target_cpu);
  2414. /*
  2415. * This condition is "impossible", if it occurs
  2416. * we need to fix it. Originally reported by
  2417. * Bjorn Helgaas on a 128-cpu setup.
  2418. */
  2419. BUG_ON(busiest_rq == target_rq);
  2420. /* move a task from busiest_rq to target_rq */
  2421. double_lock_balance(busiest_rq, target_rq);
  2422. /* Search for an sd spanning us and the target CPU. */
  2423. for_each_domain(target_cpu, sd) {
  2424. if ((sd->flags & SD_LOAD_BALANCE) &&
  2425. cpu_isset(busiest_cpu, sd->span))
  2426. break;
  2427. }
  2428. if (likely(sd)) {
  2429. schedstat_inc(sd, alb_cnt);
  2430. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2431. RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
  2432. NULL))
  2433. schedstat_inc(sd, alb_pushed);
  2434. else
  2435. schedstat_inc(sd, alb_failed);
  2436. }
  2437. spin_unlock(&target_rq->lock);
  2438. }
  2439. #ifdef CONFIG_NO_HZ
  2440. static struct {
  2441. atomic_t load_balancer;
  2442. cpumask_t cpu_mask;
  2443. } nohz ____cacheline_aligned = {
  2444. .load_balancer = ATOMIC_INIT(-1),
  2445. .cpu_mask = CPU_MASK_NONE,
  2446. };
  2447. /*
  2448. * This routine will try to nominate the ilb (idle load balancing)
  2449. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2450. * load balancing on behalf of all those cpus. If all the cpus in the system
  2451. * go into this tickless mode, then there will be no ilb owner (as there is
  2452. * no need for one) and all the cpus will sleep till the next wakeup event
  2453. * arrives...
  2454. *
  2455. * For the ilb owner, tick is not stopped. And this tick will be used
  2456. * for idle load balancing. ilb owner will still be part of
  2457. * nohz.cpu_mask..
  2458. *
  2459. * While stopping the tick, this cpu will become the ilb owner if there
  2460. * is no other owner. And will be the owner till that cpu becomes busy
  2461. * or if all cpus in the system stop their ticks at which point
  2462. * there is no need for ilb owner.
  2463. *
  2464. * When the ilb owner becomes busy, it nominates another owner, during the
  2465. * next busy scheduler_tick()
  2466. */
  2467. int select_nohz_load_balancer(int stop_tick)
  2468. {
  2469. int cpu = smp_processor_id();
  2470. if (stop_tick) {
  2471. cpu_set(cpu, nohz.cpu_mask);
  2472. cpu_rq(cpu)->in_nohz_recently = 1;
  2473. /*
  2474. * If we are going offline and still the leader, give up!
  2475. */
  2476. if (cpu_is_offline(cpu) &&
  2477. atomic_read(&nohz.load_balancer) == cpu) {
  2478. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2479. BUG();
  2480. return 0;
  2481. }
  2482. /* time for ilb owner also to sleep */
  2483. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2484. if (atomic_read(&nohz.load_balancer) == cpu)
  2485. atomic_set(&nohz.load_balancer, -1);
  2486. return 0;
  2487. }
  2488. if (atomic_read(&nohz.load_balancer) == -1) {
  2489. /* make me the ilb owner */
  2490. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2491. return 1;
  2492. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2493. return 1;
  2494. } else {
  2495. if (!cpu_isset(cpu, nohz.cpu_mask))
  2496. return 0;
  2497. cpu_clear(cpu, nohz.cpu_mask);
  2498. if (atomic_read(&nohz.load_balancer) == cpu)
  2499. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2500. BUG();
  2501. }
  2502. return 0;
  2503. }
  2504. #endif
  2505. static DEFINE_SPINLOCK(balancing);
  2506. /*
  2507. * It checks each scheduling domain to see if it is due to be balanced,
  2508. * and initiates a balancing operation if so.
  2509. *
  2510. * Balancing parameters are set up in arch_init_sched_domains.
  2511. */
  2512. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2513. {
  2514. int balance = 1;
  2515. struct rq *rq = cpu_rq(cpu);
  2516. unsigned long interval;
  2517. struct sched_domain *sd;
  2518. /* Earliest time when we have to do rebalance again */
  2519. unsigned long next_balance = jiffies + 60*HZ;
  2520. for_each_domain(cpu, sd) {
  2521. if (!(sd->flags & SD_LOAD_BALANCE))
  2522. continue;
  2523. interval = sd->balance_interval;
  2524. if (idle != CPU_IDLE)
  2525. interval *= sd->busy_factor;
  2526. /* scale ms to jiffies */
  2527. interval = msecs_to_jiffies(interval);
  2528. if (unlikely(!interval))
  2529. interval = 1;
  2530. if (interval > HZ*NR_CPUS/10)
  2531. interval = HZ*NR_CPUS/10;
  2532. if (sd->flags & SD_SERIALIZE) {
  2533. if (!spin_trylock(&balancing))
  2534. goto out;
  2535. }
  2536. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2537. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2538. /*
  2539. * We've pulled tasks over so either we're no
  2540. * longer idle, or one of our SMT siblings is
  2541. * not idle.
  2542. */
  2543. idle = CPU_NOT_IDLE;
  2544. }
  2545. sd->last_balance = jiffies;
  2546. }
  2547. if (sd->flags & SD_SERIALIZE)
  2548. spin_unlock(&balancing);
  2549. out:
  2550. if (time_after(next_balance, sd->last_balance + interval))
  2551. next_balance = sd->last_balance + interval;
  2552. /*
  2553. * Stop the load balance at this level. There is another
  2554. * CPU in our sched group which is doing load balancing more
  2555. * actively.
  2556. */
  2557. if (!balance)
  2558. break;
  2559. }
  2560. rq->next_balance = next_balance;
  2561. }
  2562. /*
  2563. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2564. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2565. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2566. */
  2567. static void run_rebalance_domains(struct softirq_action *h)
  2568. {
  2569. int this_cpu = smp_processor_id();
  2570. struct rq *this_rq = cpu_rq(this_cpu);
  2571. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2572. CPU_IDLE : CPU_NOT_IDLE;
  2573. rebalance_domains(this_cpu, idle);
  2574. #ifdef CONFIG_NO_HZ
  2575. /*
  2576. * If this cpu is the owner for idle load balancing, then do the
  2577. * balancing on behalf of the other idle cpus whose ticks are
  2578. * stopped.
  2579. */
  2580. if (this_rq->idle_at_tick &&
  2581. atomic_read(&nohz.load_balancer) == this_cpu) {
  2582. cpumask_t cpus = nohz.cpu_mask;
  2583. struct rq *rq;
  2584. int balance_cpu;
  2585. cpu_clear(this_cpu, cpus);
  2586. for_each_cpu_mask(balance_cpu, cpus) {
  2587. /*
  2588. * If this cpu gets work to do, stop the load balancing
  2589. * work being done for other cpus. Next load
  2590. * balancing owner will pick it up.
  2591. */
  2592. if (need_resched())
  2593. break;
  2594. rebalance_domains(balance_cpu, SCHED_IDLE);
  2595. rq = cpu_rq(balance_cpu);
  2596. if (time_after(this_rq->next_balance, rq->next_balance))
  2597. this_rq->next_balance = rq->next_balance;
  2598. }
  2599. }
  2600. #endif
  2601. }
  2602. /*
  2603. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2604. *
  2605. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2606. * idle load balancing owner or decide to stop the periodic load balancing,
  2607. * if the whole system is idle.
  2608. */
  2609. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2610. {
  2611. #ifdef CONFIG_NO_HZ
  2612. /*
  2613. * If we were in the nohz mode recently and busy at the current
  2614. * scheduler tick, then check if we need to nominate new idle
  2615. * load balancer.
  2616. */
  2617. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2618. rq->in_nohz_recently = 0;
  2619. if (atomic_read(&nohz.load_balancer) == cpu) {
  2620. cpu_clear(cpu, nohz.cpu_mask);
  2621. atomic_set(&nohz.load_balancer, -1);
  2622. }
  2623. if (atomic_read(&nohz.load_balancer) == -1) {
  2624. /*
  2625. * simple selection for now: Nominate the
  2626. * first cpu in the nohz list to be the next
  2627. * ilb owner.
  2628. *
  2629. * TBD: Traverse the sched domains and nominate
  2630. * the nearest cpu in the nohz.cpu_mask.
  2631. */
  2632. int ilb = first_cpu(nohz.cpu_mask);
  2633. if (ilb != NR_CPUS)
  2634. resched_cpu(ilb);
  2635. }
  2636. }
  2637. /*
  2638. * If this cpu is idle and doing idle load balancing for all the
  2639. * cpus with ticks stopped, is it time for that to stop?
  2640. */
  2641. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2642. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2643. resched_cpu(cpu);
  2644. return;
  2645. }
  2646. /*
  2647. * If this cpu is idle and the idle load balancing is done by
  2648. * someone else, then no need raise the SCHED_SOFTIRQ
  2649. */
  2650. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2651. cpu_isset(cpu, nohz.cpu_mask))
  2652. return;
  2653. #endif
  2654. if (time_after_eq(jiffies, rq->next_balance))
  2655. raise_softirq(SCHED_SOFTIRQ);
  2656. }
  2657. #else /* CONFIG_SMP */
  2658. /*
  2659. * on UP we do not need to balance between CPUs:
  2660. */
  2661. static inline void idle_balance(int cpu, struct rq *rq)
  2662. {
  2663. }
  2664. /* Avoid "used but not defined" warning on UP */
  2665. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2666. unsigned long max_nr_move, unsigned long max_load_move,
  2667. struct sched_domain *sd, enum cpu_idle_type idle,
  2668. int *all_pinned, unsigned long *load_moved,
  2669. int this_best_prio, int best_prio, int best_prio_seen,
  2670. struct rq_iterator *iterator)
  2671. {
  2672. *load_moved = 0;
  2673. return 0;
  2674. }
  2675. #endif
  2676. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2677. EXPORT_PER_CPU_SYMBOL(kstat);
  2678. /*
  2679. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2680. * that have not yet been banked in case the task is currently running.
  2681. */
  2682. unsigned long long task_sched_runtime(struct task_struct *p)
  2683. {
  2684. unsigned long flags;
  2685. u64 ns, delta_exec;
  2686. struct rq *rq;
  2687. rq = task_rq_lock(p, &flags);
  2688. ns = p->se.sum_exec_runtime;
  2689. if (rq->curr == p) {
  2690. delta_exec = rq_clock(rq) - p->se.exec_start;
  2691. if ((s64)delta_exec > 0)
  2692. ns += delta_exec;
  2693. }
  2694. task_rq_unlock(rq, &flags);
  2695. return ns;
  2696. }
  2697. /*
  2698. * Account user cpu time to a process.
  2699. * @p: the process that the cpu time gets accounted to
  2700. * @hardirq_offset: the offset to subtract from hardirq_count()
  2701. * @cputime: the cpu time spent in user space since the last update
  2702. */
  2703. void account_user_time(struct task_struct *p, cputime_t cputime)
  2704. {
  2705. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2706. cputime64_t tmp;
  2707. p->utime = cputime_add(p->utime, cputime);
  2708. /* Add user time to cpustat. */
  2709. tmp = cputime_to_cputime64(cputime);
  2710. if (TASK_NICE(p) > 0)
  2711. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2712. else
  2713. cpustat->user = cputime64_add(cpustat->user, tmp);
  2714. }
  2715. /*
  2716. * Account system cpu time to a process.
  2717. * @p: the process that the cpu time gets accounted to
  2718. * @hardirq_offset: the offset to subtract from hardirq_count()
  2719. * @cputime: the cpu time spent in kernel space since the last update
  2720. */
  2721. void account_system_time(struct task_struct *p, int hardirq_offset,
  2722. cputime_t cputime)
  2723. {
  2724. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2725. struct rq *rq = this_rq();
  2726. cputime64_t tmp;
  2727. p->stime = cputime_add(p->stime, cputime);
  2728. /* Add system time to cpustat. */
  2729. tmp = cputime_to_cputime64(cputime);
  2730. if (hardirq_count() - hardirq_offset)
  2731. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2732. else if (softirq_count())
  2733. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2734. else if (p != rq->idle)
  2735. cpustat->system = cputime64_add(cpustat->system, tmp);
  2736. else if (atomic_read(&rq->nr_iowait) > 0)
  2737. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2738. else
  2739. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2740. /* Account for system time used */
  2741. acct_update_integrals(p);
  2742. }
  2743. /*
  2744. * Account for involuntary wait time.
  2745. * @p: the process from which the cpu time has been stolen
  2746. * @steal: the cpu time spent in involuntary wait
  2747. */
  2748. void account_steal_time(struct task_struct *p, cputime_t steal)
  2749. {
  2750. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2751. cputime64_t tmp = cputime_to_cputime64(steal);
  2752. struct rq *rq = this_rq();
  2753. if (p == rq->idle) {
  2754. p->stime = cputime_add(p->stime, steal);
  2755. if (atomic_read(&rq->nr_iowait) > 0)
  2756. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2757. else
  2758. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2759. } else
  2760. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2761. }
  2762. /*
  2763. * This function gets called by the timer code, with HZ frequency.
  2764. * We call it with interrupts disabled.
  2765. *
  2766. * It also gets called by the fork code, when changing the parent's
  2767. * timeslices.
  2768. */
  2769. void scheduler_tick(void)
  2770. {
  2771. int cpu = smp_processor_id();
  2772. struct rq *rq = cpu_rq(cpu);
  2773. struct task_struct *curr = rq->curr;
  2774. spin_lock(&rq->lock);
  2775. if (curr != rq->idle) /* FIXME: needed? */
  2776. curr->sched_class->task_tick(rq, curr);
  2777. update_cpu_load(rq);
  2778. spin_unlock(&rq->lock);
  2779. #ifdef CONFIG_SMP
  2780. rq->idle_at_tick = idle_cpu(cpu);
  2781. trigger_load_balance(rq, cpu);
  2782. #endif
  2783. }
  2784. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2785. void fastcall add_preempt_count(int val)
  2786. {
  2787. /*
  2788. * Underflow?
  2789. */
  2790. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2791. return;
  2792. preempt_count() += val;
  2793. /*
  2794. * Spinlock count overflowing soon?
  2795. */
  2796. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2797. PREEMPT_MASK - 10);
  2798. }
  2799. EXPORT_SYMBOL(add_preempt_count);
  2800. void fastcall sub_preempt_count(int val)
  2801. {
  2802. /*
  2803. * Underflow?
  2804. */
  2805. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2806. return;
  2807. /*
  2808. * Is the spinlock portion underflowing?
  2809. */
  2810. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2811. !(preempt_count() & PREEMPT_MASK)))
  2812. return;
  2813. preempt_count() -= val;
  2814. }
  2815. EXPORT_SYMBOL(sub_preempt_count);
  2816. #endif
  2817. /*
  2818. * Print scheduling while atomic bug:
  2819. */
  2820. static noinline void __schedule_bug(struct task_struct *prev)
  2821. {
  2822. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2823. prev->comm, preempt_count(), prev->pid);
  2824. debug_show_held_locks(prev);
  2825. if (irqs_disabled())
  2826. print_irqtrace_events(prev);
  2827. dump_stack();
  2828. }
  2829. /*
  2830. * Various schedule()-time debugging checks and statistics:
  2831. */
  2832. static inline void schedule_debug(struct task_struct *prev)
  2833. {
  2834. /*
  2835. * Test if we are atomic. Since do_exit() needs to call into
  2836. * schedule() atomically, we ignore that path for now.
  2837. * Otherwise, whine if we are scheduling when we should not be.
  2838. */
  2839. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2840. __schedule_bug(prev);
  2841. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2842. schedstat_inc(this_rq(), sched_cnt);
  2843. }
  2844. /*
  2845. * Pick up the highest-prio task:
  2846. */
  2847. static inline struct task_struct *
  2848. pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
  2849. {
  2850. struct sched_class *class;
  2851. struct task_struct *p;
  2852. /*
  2853. * Optimization: we know that if all tasks are in
  2854. * the fair class we can call that function directly:
  2855. */
  2856. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2857. p = fair_sched_class.pick_next_task(rq, now);
  2858. if (likely(p))
  2859. return p;
  2860. }
  2861. class = sched_class_highest;
  2862. for ( ; ; ) {
  2863. p = class->pick_next_task(rq, now);
  2864. if (p)
  2865. return p;
  2866. /*
  2867. * Will never be NULL as the idle class always
  2868. * returns a non-NULL p:
  2869. */
  2870. class = class->next;
  2871. }
  2872. }
  2873. /*
  2874. * schedule() is the main scheduler function.
  2875. */
  2876. asmlinkage void __sched schedule(void)
  2877. {
  2878. struct task_struct *prev, *next;
  2879. long *switch_count;
  2880. struct rq *rq;
  2881. u64 now;
  2882. int cpu;
  2883. need_resched:
  2884. preempt_disable();
  2885. cpu = smp_processor_id();
  2886. rq = cpu_rq(cpu);
  2887. rcu_qsctr_inc(cpu);
  2888. prev = rq->curr;
  2889. switch_count = &prev->nivcsw;
  2890. release_kernel_lock(prev);
  2891. need_resched_nonpreemptible:
  2892. schedule_debug(prev);
  2893. spin_lock_irq(&rq->lock);
  2894. clear_tsk_need_resched(prev);
  2895. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2896. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2897. unlikely(signal_pending(prev)))) {
  2898. prev->state = TASK_RUNNING;
  2899. } else {
  2900. deactivate_task(rq, prev, 1);
  2901. }
  2902. switch_count = &prev->nvcsw;
  2903. }
  2904. if (unlikely(!rq->nr_running))
  2905. idle_balance(cpu, rq);
  2906. now = __rq_clock(rq);
  2907. prev->sched_class->put_prev_task(rq, prev, now);
  2908. next = pick_next_task(rq, prev, now);
  2909. sched_info_switch(prev, next);
  2910. if (likely(prev != next)) {
  2911. rq->nr_switches++;
  2912. rq->curr = next;
  2913. ++*switch_count;
  2914. context_switch(rq, prev, next); /* unlocks the rq */
  2915. } else
  2916. spin_unlock_irq(&rq->lock);
  2917. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  2918. cpu = smp_processor_id();
  2919. rq = cpu_rq(cpu);
  2920. goto need_resched_nonpreemptible;
  2921. }
  2922. preempt_enable_no_resched();
  2923. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2924. goto need_resched;
  2925. }
  2926. EXPORT_SYMBOL(schedule);
  2927. #ifdef CONFIG_PREEMPT
  2928. /*
  2929. * this is the entry point to schedule() from in-kernel preemption
  2930. * off of preempt_enable. Kernel preemptions off return from interrupt
  2931. * occur there and call schedule directly.
  2932. */
  2933. asmlinkage void __sched preempt_schedule(void)
  2934. {
  2935. struct thread_info *ti = current_thread_info();
  2936. #ifdef CONFIG_PREEMPT_BKL
  2937. struct task_struct *task = current;
  2938. int saved_lock_depth;
  2939. #endif
  2940. /*
  2941. * If there is a non-zero preempt_count or interrupts are disabled,
  2942. * we do not want to preempt the current task. Just return..
  2943. */
  2944. if (likely(ti->preempt_count || irqs_disabled()))
  2945. return;
  2946. need_resched:
  2947. add_preempt_count(PREEMPT_ACTIVE);
  2948. /*
  2949. * We keep the big kernel semaphore locked, but we
  2950. * clear ->lock_depth so that schedule() doesnt
  2951. * auto-release the semaphore:
  2952. */
  2953. #ifdef CONFIG_PREEMPT_BKL
  2954. saved_lock_depth = task->lock_depth;
  2955. task->lock_depth = -1;
  2956. #endif
  2957. schedule();
  2958. #ifdef CONFIG_PREEMPT_BKL
  2959. task->lock_depth = saved_lock_depth;
  2960. #endif
  2961. sub_preempt_count(PREEMPT_ACTIVE);
  2962. /* we could miss a preemption opportunity between schedule and now */
  2963. barrier();
  2964. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2965. goto need_resched;
  2966. }
  2967. EXPORT_SYMBOL(preempt_schedule);
  2968. /*
  2969. * this is the entry point to schedule() from kernel preemption
  2970. * off of irq context.
  2971. * Note, that this is called and return with irqs disabled. This will
  2972. * protect us against recursive calling from irq.
  2973. */
  2974. asmlinkage void __sched preempt_schedule_irq(void)
  2975. {
  2976. struct thread_info *ti = current_thread_info();
  2977. #ifdef CONFIG_PREEMPT_BKL
  2978. struct task_struct *task = current;
  2979. int saved_lock_depth;
  2980. #endif
  2981. /* Catch callers which need to be fixed */
  2982. BUG_ON(ti->preempt_count || !irqs_disabled());
  2983. need_resched:
  2984. add_preempt_count(PREEMPT_ACTIVE);
  2985. /*
  2986. * We keep the big kernel semaphore locked, but we
  2987. * clear ->lock_depth so that schedule() doesnt
  2988. * auto-release the semaphore:
  2989. */
  2990. #ifdef CONFIG_PREEMPT_BKL
  2991. saved_lock_depth = task->lock_depth;
  2992. task->lock_depth = -1;
  2993. #endif
  2994. local_irq_enable();
  2995. schedule();
  2996. local_irq_disable();
  2997. #ifdef CONFIG_PREEMPT_BKL
  2998. task->lock_depth = saved_lock_depth;
  2999. #endif
  3000. sub_preempt_count(PREEMPT_ACTIVE);
  3001. /* we could miss a preemption opportunity between schedule and now */
  3002. barrier();
  3003. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3004. goto need_resched;
  3005. }
  3006. #endif /* CONFIG_PREEMPT */
  3007. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3008. void *key)
  3009. {
  3010. return try_to_wake_up(curr->private, mode, sync);
  3011. }
  3012. EXPORT_SYMBOL(default_wake_function);
  3013. /*
  3014. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3015. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3016. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3017. *
  3018. * There are circumstances in which we can try to wake a task which has already
  3019. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3020. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3021. */
  3022. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3023. int nr_exclusive, int sync, void *key)
  3024. {
  3025. struct list_head *tmp, *next;
  3026. list_for_each_safe(tmp, next, &q->task_list) {
  3027. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3028. unsigned flags = curr->flags;
  3029. if (curr->func(curr, mode, sync, key) &&
  3030. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3031. break;
  3032. }
  3033. }
  3034. /**
  3035. * __wake_up - wake up threads blocked on a waitqueue.
  3036. * @q: the waitqueue
  3037. * @mode: which threads
  3038. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3039. * @key: is directly passed to the wakeup function
  3040. */
  3041. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3042. int nr_exclusive, void *key)
  3043. {
  3044. unsigned long flags;
  3045. spin_lock_irqsave(&q->lock, flags);
  3046. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3047. spin_unlock_irqrestore(&q->lock, flags);
  3048. }
  3049. EXPORT_SYMBOL(__wake_up);
  3050. /*
  3051. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3052. */
  3053. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3054. {
  3055. __wake_up_common(q, mode, 1, 0, NULL);
  3056. }
  3057. /**
  3058. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3059. * @q: the waitqueue
  3060. * @mode: which threads
  3061. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3062. *
  3063. * The sync wakeup differs that the waker knows that it will schedule
  3064. * away soon, so while the target thread will be woken up, it will not
  3065. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3066. * with each other. This can prevent needless bouncing between CPUs.
  3067. *
  3068. * On UP it can prevent extra preemption.
  3069. */
  3070. void fastcall
  3071. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3072. {
  3073. unsigned long flags;
  3074. int sync = 1;
  3075. if (unlikely(!q))
  3076. return;
  3077. if (unlikely(!nr_exclusive))
  3078. sync = 0;
  3079. spin_lock_irqsave(&q->lock, flags);
  3080. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3081. spin_unlock_irqrestore(&q->lock, flags);
  3082. }
  3083. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3084. void fastcall complete(struct completion *x)
  3085. {
  3086. unsigned long flags;
  3087. spin_lock_irqsave(&x->wait.lock, flags);
  3088. x->done++;
  3089. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3090. 1, 0, NULL);
  3091. spin_unlock_irqrestore(&x->wait.lock, flags);
  3092. }
  3093. EXPORT_SYMBOL(complete);
  3094. void fastcall complete_all(struct completion *x)
  3095. {
  3096. unsigned long flags;
  3097. spin_lock_irqsave(&x->wait.lock, flags);
  3098. x->done += UINT_MAX/2;
  3099. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3100. 0, 0, NULL);
  3101. spin_unlock_irqrestore(&x->wait.lock, flags);
  3102. }
  3103. EXPORT_SYMBOL(complete_all);
  3104. void fastcall __sched wait_for_completion(struct completion *x)
  3105. {
  3106. might_sleep();
  3107. spin_lock_irq(&x->wait.lock);
  3108. if (!x->done) {
  3109. DECLARE_WAITQUEUE(wait, current);
  3110. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3111. __add_wait_queue_tail(&x->wait, &wait);
  3112. do {
  3113. __set_current_state(TASK_UNINTERRUPTIBLE);
  3114. spin_unlock_irq(&x->wait.lock);
  3115. schedule();
  3116. spin_lock_irq(&x->wait.lock);
  3117. } while (!x->done);
  3118. __remove_wait_queue(&x->wait, &wait);
  3119. }
  3120. x->done--;
  3121. spin_unlock_irq(&x->wait.lock);
  3122. }
  3123. EXPORT_SYMBOL(wait_for_completion);
  3124. unsigned long fastcall __sched
  3125. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3126. {
  3127. might_sleep();
  3128. spin_lock_irq(&x->wait.lock);
  3129. if (!x->done) {
  3130. DECLARE_WAITQUEUE(wait, current);
  3131. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3132. __add_wait_queue_tail(&x->wait, &wait);
  3133. do {
  3134. __set_current_state(TASK_UNINTERRUPTIBLE);
  3135. spin_unlock_irq(&x->wait.lock);
  3136. timeout = schedule_timeout(timeout);
  3137. spin_lock_irq(&x->wait.lock);
  3138. if (!timeout) {
  3139. __remove_wait_queue(&x->wait, &wait);
  3140. goto out;
  3141. }
  3142. } while (!x->done);
  3143. __remove_wait_queue(&x->wait, &wait);
  3144. }
  3145. x->done--;
  3146. out:
  3147. spin_unlock_irq(&x->wait.lock);
  3148. return timeout;
  3149. }
  3150. EXPORT_SYMBOL(wait_for_completion_timeout);
  3151. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3152. {
  3153. int ret = 0;
  3154. might_sleep();
  3155. spin_lock_irq(&x->wait.lock);
  3156. if (!x->done) {
  3157. DECLARE_WAITQUEUE(wait, current);
  3158. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3159. __add_wait_queue_tail(&x->wait, &wait);
  3160. do {
  3161. if (signal_pending(current)) {
  3162. ret = -ERESTARTSYS;
  3163. __remove_wait_queue(&x->wait, &wait);
  3164. goto out;
  3165. }
  3166. __set_current_state(TASK_INTERRUPTIBLE);
  3167. spin_unlock_irq(&x->wait.lock);
  3168. schedule();
  3169. spin_lock_irq(&x->wait.lock);
  3170. } while (!x->done);
  3171. __remove_wait_queue(&x->wait, &wait);
  3172. }
  3173. x->done--;
  3174. out:
  3175. spin_unlock_irq(&x->wait.lock);
  3176. return ret;
  3177. }
  3178. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3179. unsigned long fastcall __sched
  3180. wait_for_completion_interruptible_timeout(struct completion *x,
  3181. unsigned long timeout)
  3182. {
  3183. might_sleep();
  3184. spin_lock_irq(&x->wait.lock);
  3185. if (!x->done) {
  3186. DECLARE_WAITQUEUE(wait, current);
  3187. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3188. __add_wait_queue_tail(&x->wait, &wait);
  3189. do {
  3190. if (signal_pending(current)) {
  3191. timeout = -ERESTARTSYS;
  3192. __remove_wait_queue(&x->wait, &wait);
  3193. goto out;
  3194. }
  3195. __set_current_state(TASK_INTERRUPTIBLE);
  3196. spin_unlock_irq(&x->wait.lock);
  3197. timeout = schedule_timeout(timeout);
  3198. spin_lock_irq(&x->wait.lock);
  3199. if (!timeout) {
  3200. __remove_wait_queue(&x->wait, &wait);
  3201. goto out;
  3202. }
  3203. } while (!x->done);
  3204. __remove_wait_queue(&x->wait, &wait);
  3205. }
  3206. x->done--;
  3207. out:
  3208. spin_unlock_irq(&x->wait.lock);
  3209. return timeout;
  3210. }
  3211. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3212. static inline void
  3213. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3214. {
  3215. spin_lock_irqsave(&q->lock, *flags);
  3216. __add_wait_queue(q, wait);
  3217. spin_unlock(&q->lock);
  3218. }
  3219. static inline void
  3220. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3221. {
  3222. spin_lock_irq(&q->lock);
  3223. __remove_wait_queue(q, wait);
  3224. spin_unlock_irqrestore(&q->lock, *flags);
  3225. }
  3226. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3227. {
  3228. unsigned long flags;
  3229. wait_queue_t wait;
  3230. init_waitqueue_entry(&wait, current);
  3231. current->state = TASK_INTERRUPTIBLE;
  3232. sleep_on_head(q, &wait, &flags);
  3233. schedule();
  3234. sleep_on_tail(q, &wait, &flags);
  3235. }
  3236. EXPORT_SYMBOL(interruptible_sleep_on);
  3237. long __sched
  3238. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3239. {
  3240. unsigned long flags;
  3241. wait_queue_t wait;
  3242. init_waitqueue_entry(&wait, current);
  3243. current->state = TASK_INTERRUPTIBLE;
  3244. sleep_on_head(q, &wait, &flags);
  3245. timeout = schedule_timeout(timeout);
  3246. sleep_on_tail(q, &wait, &flags);
  3247. return timeout;
  3248. }
  3249. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3250. void __sched sleep_on(wait_queue_head_t *q)
  3251. {
  3252. unsigned long flags;
  3253. wait_queue_t wait;
  3254. init_waitqueue_entry(&wait, current);
  3255. current->state = TASK_UNINTERRUPTIBLE;
  3256. sleep_on_head(q, &wait, &flags);
  3257. schedule();
  3258. sleep_on_tail(q, &wait, &flags);
  3259. }
  3260. EXPORT_SYMBOL(sleep_on);
  3261. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3262. {
  3263. unsigned long flags;
  3264. wait_queue_t wait;
  3265. init_waitqueue_entry(&wait, current);
  3266. current->state = TASK_UNINTERRUPTIBLE;
  3267. sleep_on_head(q, &wait, &flags);
  3268. timeout = schedule_timeout(timeout);
  3269. sleep_on_tail(q, &wait, &flags);
  3270. return timeout;
  3271. }
  3272. EXPORT_SYMBOL(sleep_on_timeout);
  3273. #ifdef CONFIG_RT_MUTEXES
  3274. /*
  3275. * rt_mutex_setprio - set the current priority of a task
  3276. * @p: task
  3277. * @prio: prio value (kernel-internal form)
  3278. *
  3279. * This function changes the 'effective' priority of a task. It does
  3280. * not touch ->normal_prio like __setscheduler().
  3281. *
  3282. * Used by the rt_mutex code to implement priority inheritance logic.
  3283. */
  3284. void rt_mutex_setprio(struct task_struct *p, int prio)
  3285. {
  3286. unsigned long flags;
  3287. int oldprio, on_rq;
  3288. struct rq *rq;
  3289. u64 now;
  3290. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3291. rq = task_rq_lock(p, &flags);
  3292. now = rq_clock(rq);
  3293. oldprio = p->prio;
  3294. on_rq = p->se.on_rq;
  3295. if (on_rq)
  3296. dequeue_task(rq, p, 0, now);
  3297. if (rt_prio(prio))
  3298. p->sched_class = &rt_sched_class;
  3299. else
  3300. p->sched_class = &fair_sched_class;
  3301. p->prio = prio;
  3302. if (on_rq) {
  3303. enqueue_task(rq, p, 0, now);
  3304. /*
  3305. * Reschedule if we are currently running on this runqueue and
  3306. * our priority decreased, or if we are not currently running on
  3307. * this runqueue and our priority is higher than the current's
  3308. */
  3309. if (task_running(rq, p)) {
  3310. if (p->prio > oldprio)
  3311. resched_task(rq->curr);
  3312. } else {
  3313. check_preempt_curr(rq, p);
  3314. }
  3315. }
  3316. task_rq_unlock(rq, &flags);
  3317. }
  3318. #endif
  3319. void set_user_nice(struct task_struct *p, long nice)
  3320. {
  3321. int old_prio, delta, on_rq;
  3322. unsigned long flags;
  3323. struct rq *rq;
  3324. u64 now;
  3325. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3326. return;
  3327. /*
  3328. * We have to be careful, if called from sys_setpriority(),
  3329. * the task might be in the middle of scheduling on another CPU.
  3330. */
  3331. rq = task_rq_lock(p, &flags);
  3332. now = rq_clock(rq);
  3333. /*
  3334. * The RT priorities are set via sched_setscheduler(), but we still
  3335. * allow the 'normal' nice value to be set - but as expected
  3336. * it wont have any effect on scheduling until the task is
  3337. * SCHED_FIFO/SCHED_RR:
  3338. */
  3339. if (task_has_rt_policy(p)) {
  3340. p->static_prio = NICE_TO_PRIO(nice);
  3341. goto out_unlock;
  3342. }
  3343. on_rq = p->se.on_rq;
  3344. if (on_rq) {
  3345. dequeue_task(rq, p, 0, now);
  3346. dec_load(rq, p, now);
  3347. }
  3348. p->static_prio = NICE_TO_PRIO(nice);
  3349. set_load_weight(p);
  3350. old_prio = p->prio;
  3351. p->prio = effective_prio(p);
  3352. delta = p->prio - old_prio;
  3353. if (on_rq) {
  3354. enqueue_task(rq, p, 0, now);
  3355. inc_load(rq, p, now);
  3356. /*
  3357. * If the task increased its priority or is running and
  3358. * lowered its priority, then reschedule its CPU:
  3359. */
  3360. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3361. resched_task(rq->curr);
  3362. }
  3363. out_unlock:
  3364. task_rq_unlock(rq, &flags);
  3365. }
  3366. EXPORT_SYMBOL(set_user_nice);
  3367. /*
  3368. * can_nice - check if a task can reduce its nice value
  3369. * @p: task
  3370. * @nice: nice value
  3371. */
  3372. int can_nice(const struct task_struct *p, const int nice)
  3373. {
  3374. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3375. int nice_rlim = 20 - nice;
  3376. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3377. capable(CAP_SYS_NICE));
  3378. }
  3379. #ifdef __ARCH_WANT_SYS_NICE
  3380. /*
  3381. * sys_nice - change the priority of the current process.
  3382. * @increment: priority increment
  3383. *
  3384. * sys_setpriority is a more generic, but much slower function that
  3385. * does similar things.
  3386. */
  3387. asmlinkage long sys_nice(int increment)
  3388. {
  3389. long nice, retval;
  3390. /*
  3391. * Setpriority might change our priority at the same moment.
  3392. * We don't have to worry. Conceptually one call occurs first
  3393. * and we have a single winner.
  3394. */
  3395. if (increment < -40)
  3396. increment = -40;
  3397. if (increment > 40)
  3398. increment = 40;
  3399. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3400. if (nice < -20)
  3401. nice = -20;
  3402. if (nice > 19)
  3403. nice = 19;
  3404. if (increment < 0 && !can_nice(current, nice))
  3405. return -EPERM;
  3406. retval = security_task_setnice(current, nice);
  3407. if (retval)
  3408. return retval;
  3409. set_user_nice(current, nice);
  3410. return 0;
  3411. }
  3412. #endif
  3413. /**
  3414. * task_prio - return the priority value of a given task.
  3415. * @p: the task in question.
  3416. *
  3417. * This is the priority value as seen by users in /proc.
  3418. * RT tasks are offset by -200. Normal tasks are centered
  3419. * around 0, value goes from -16 to +15.
  3420. */
  3421. int task_prio(const struct task_struct *p)
  3422. {
  3423. return p->prio - MAX_RT_PRIO;
  3424. }
  3425. /**
  3426. * task_nice - return the nice value of a given task.
  3427. * @p: the task in question.
  3428. */
  3429. int task_nice(const struct task_struct *p)
  3430. {
  3431. return TASK_NICE(p);
  3432. }
  3433. EXPORT_SYMBOL_GPL(task_nice);
  3434. /**
  3435. * idle_cpu - is a given cpu idle currently?
  3436. * @cpu: the processor in question.
  3437. */
  3438. int idle_cpu(int cpu)
  3439. {
  3440. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3441. }
  3442. /**
  3443. * idle_task - return the idle task for a given cpu.
  3444. * @cpu: the processor in question.
  3445. */
  3446. struct task_struct *idle_task(int cpu)
  3447. {
  3448. return cpu_rq(cpu)->idle;
  3449. }
  3450. /**
  3451. * find_process_by_pid - find a process with a matching PID value.
  3452. * @pid: the pid in question.
  3453. */
  3454. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3455. {
  3456. return pid ? find_task_by_pid(pid) : current;
  3457. }
  3458. /* Actually do priority change: must hold rq lock. */
  3459. static void
  3460. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3461. {
  3462. BUG_ON(p->se.on_rq);
  3463. p->policy = policy;
  3464. switch (p->policy) {
  3465. case SCHED_NORMAL:
  3466. case SCHED_BATCH:
  3467. case SCHED_IDLE:
  3468. p->sched_class = &fair_sched_class;
  3469. break;
  3470. case SCHED_FIFO:
  3471. case SCHED_RR:
  3472. p->sched_class = &rt_sched_class;
  3473. break;
  3474. }
  3475. p->rt_priority = prio;
  3476. p->normal_prio = normal_prio(p);
  3477. /* we are holding p->pi_lock already */
  3478. p->prio = rt_mutex_getprio(p);
  3479. set_load_weight(p);
  3480. }
  3481. /**
  3482. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3483. * @p: the task in question.
  3484. * @policy: new policy.
  3485. * @param: structure containing the new RT priority.
  3486. *
  3487. * NOTE that the task may be already dead.
  3488. */
  3489. int sched_setscheduler(struct task_struct *p, int policy,
  3490. struct sched_param *param)
  3491. {
  3492. int retval, oldprio, oldpolicy = -1, on_rq;
  3493. unsigned long flags;
  3494. struct rq *rq;
  3495. /* may grab non-irq protected spin_locks */
  3496. BUG_ON(in_interrupt());
  3497. recheck:
  3498. /* double check policy once rq lock held */
  3499. if (policy < 0)
  3500. policy = oldpolicy = p->policy;
  3501. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3502. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3503. policy != SCHED_IDLE)
  3504. return -EINVAL;
  3505. /*
  3506. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3507. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3508. * SCHED_BATCH and SCHED_IDLE is 0.
  3509. */
  3510. if (param->sched_priority < 0 ||
  3511. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3512. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3513. return -EINVAL;
  3514. if (rt_policy(policy) != (param->sched_priority != 0))
  3515. return -EINVAL;
  3516. /*
  3517. * Allow unprivileged RT tasks to decrease priority:
  3518. */
  3519. if (!capable(CAP_SYS_NICE)) {
  3520. if (rt_policy(policy)) {
  3521. unsigned long rlim_rtprio;
  3522. if (!lock_task_sighand(p, &flags))
  3523. return -ESRCH;
  3524. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3525. unlock_task_sighand(p, &flags);
  3526. /* can't set/change the rt policy */
  3527. if (policy != p->policy && !rlim_rtprio)
  3528. return -EPERM;
  3529. /* can't increase priority */
  3530. if (param->sched_priority > p->rt_priority &&
  3531. param->sched_priority > rlim_rtprio)
  3532. return -EPERM;
  3533. }
  3534. /*
  3535. * Like positive nice levels, dont allow tasks to
  3536. * move out of SCHED_IDLE either:
  3537. */
  3538. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3539. return -EPERM;
  3540. /* can't change other user's priorities */
  3541. if ((current->euid != p->euid) &&
  3542. (current->euid != p->uid))
  3543. return -EPERM;
  3544. }
  3545. retval = security_task_setscheduler(p, policy, param);
  3546. if (retval)
  3547. return retval;
  3548. /*
  3549. * make sure no PI-waiters arrive (or leave) while we are
  3550. * changing the priority of the task:
  3551. */
  3552. spin_lock_irqsave(&p->pi_lock, flags);
  3553. /*
  3554. * To be able to change p->policy safely, the apropriate
  3555. * runqueue lock must be held.
  3556. */
  3557. rq = __task_rq_lock(p);
  3558. /* recheck policy now with rq lock held */
  3559. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3560. policy = oldpolicy = -1;
  3561. __task_rq_unlock(rq);
  3562. spin_unlock_irqrestore(&p->pi_lock, flags);
  3563. goto recheck;
  3564. }
  3565. on_rq = p->se.on_rq;
  3566. if (on_rq)
  3567. deactivate_task(rq, p, 0);
  3568. oldprio = p->prio;
  3569. __setscheduler(rq, p, policy, param->sched_priority);
  3570. if (on_rq) {
  3571. activate_task(rq, p, 0);
  3572. /*
  3573. * Reschedule if we are currently running on this runqueue and
  3574. * our priority decreased, or if we are not currently running on
  3575. * this runqueue and our priority is higher than the current's
  3576. */
  3577. if (task_running(rq, p)) {
  3578. if (p->prio > oldprio)
  3579. resched_task(rq->curr);
  3580. } else {
  3581. check_preempt_curr(rq, p);
  3582. }
  3583. }
  3584. __task_rq_unlock(rq);
  3585. spin_unlock_irqrestore(&p->pi_lock, flags);
  3586. rt_mutex_adjust_pi(p);
  3587. return 0;
  3588. }
  3589. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3590. static int
  3591. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3592. {
  3593. struct sched_param lparam;
  3594. struct task_struct *p;
  3595. int retval;
  3596. if (!param || pid < 0)
  3597. return -EINVAL;
  3598. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3599. return -EFAULT;
  3600. rcu_read_lock();
  3601. retval = -ESRCH;
  3602. p = find_process_by_pid(pid);
  3603. if (p != NULL)
  3604. retval = sched_setscheduler(p, policy, &lparam);
  3605. rcu_read_unlock();
  3606. return retval;
  3607. }
  3608. /**
  3609. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3610. * @pid: the pid in question.
  3611. * @policy: new policy.
  3612. * @param: structure containing the new RT priority.
  3613. */
  3614. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3615. struct sched_param __user *param)
  3616. {
  3617. /* negative values for policy are not valid */
  3618. if (policy < 0)
  3619. return -EINVAL;
  3620. return do_sched_setscheduler(pid, policy, param);
  3621. }
  3622. /**
  3623. * sys_sched_setparam - set/change the RT priority of a thread
  3624. * @pid: the pid in question.
  3625. * @param: structure containing the new RT priority.
  3626. */
  3627. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3628. {
  3629. return do_sched_setscheduler(pid, -1, param);
  3630. }
  3631. /**
  3632. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3633. * @pid: the pid in question.
  3634. */
  3635. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3636. {
  3637. struct task_struct *p;
  3638. int retval = -EINVAL;
  3639. if (pid < 0)
  3640. goto out_nounlock;
  3641. retval = -ESRCH;
  3642. read_lock(&tasklist_lock);
  3643. p = find_process_by_pid(pid);
  3644. if (p) {
  3645. retval = security_task_getscheduler(p);
  3646. if (!retval)
  3647. retval = p->policy;
  3648. }
  3649. read_unlock(&tasklist_lock);
  3650. out_nounlock:
  3651. return retval;
  3652. }
  3653. /**
  3654. * sys_sched_getscheduler - get the RT priority of a thread
  3655. * @pid: the pid in question.
  3656. * @param: structure containing the RT priority.
  3657. */
  3658. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3659. {
  3660. struct sched_param lp;
  3661. struct task_struct *p;
  3662. int retval = -EINVAL;
  3663. if (!param || pid < 0)
  3664. goto out_nounlock;
  3665. read_lock(&tasklist_lock);
  3666. p = find_process_by_pid(pid);
  3667. retval = -ESRCH;
  3668. if (!p)
  3669. goto out_unlock;
  3670. retval = security_task_getscheduler(p);
  3671. if (retval)
  3672. goto out_unlock;
  3673. lp.sched_priority = p->rt_priority;
  3674. read_unlock(&tasklist_lock);
  3675. /*
  3676. * This one might sleep, we cannot do it with a spinlock held ...
  3677. */
  3678. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3679. out_nounlock:
  3680. return retval;
  3681. out_unlock:
  3682. read_unlock(&tasklist_lock);
  3683. return retval;
  3684. }
  3685. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3686. {
  3687. cpumask_t cpus_allowed;
  3688. struct task_struct *p;
  3689. int retval;
  3690. mutex_lock(&sched_hotcpu_mutex);
  3691. read_lock(&tasklist_lock);
  3692. p = find_process_by_pid(pid);
  3693. if (!p) {
  3694. read_unlock(&tasklist_lock);
  3695. mutex_unlock(&sched_hotcpu_mutex);
  3696. return -ESRCH;
  3697. }
  3698. /*
  3699. * It is not safe to call set_cpus_allowed with the
  3700. * tasklist_lock held. We will bump the task_struct's
  3701. * usage count and then drop tasklist_lock.
  3702. */
  3703. get_task_struct(p);
  3704. read_unlock(&tasklist_lock);
  3705. retval = -EPERM;
  3706. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3707. !capable(CAP_SYS_NICE))
  3708. goto out_unlock;
  3709. retval = security_task_setscheduler(p, 0, NULL);
  3710. if (retval)
  3711. goto out_unlock;
  3712. cpus_allowed = cpuset_cpus_allowed(p);
  3713. cpus_and(new_mask, new_mask, cpus_allowed);
  3714. retval = set_cpus_allowed(p, new_mask);
  3715. out_unlock:
  3716. put_task_struct(p);
  3717. mutex_unlock(&sched_hotcpu_mutex);
  3718. return retval;
  3719. }
  3720. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3721. cpumask_t *new_mask)
  3722. {
  3723. if (len < sizeof(cpumask_t)) {
  3724. memset(new_mask, 0, sizeof(cpumask_t));
  3725. } else if (len > sizeof(cpumask_t)) {
  3726. len = sizeof(cpumask_t);
  3727. }
  3728. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3729. }
  3730. /**
  3731. * sys_sched_setaffinity - set the cpu affinity of a process
  3732. * @pid: pid of the process
  3733. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3734. * @user_mask_ptr: user-space pointer to the new cpu mask
  3735. */
  3736. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3737. unsigned long __user *user_mask_ptr)
  3738. {
  3739. cpumask_t new_mask;
  3740. int retval;
  3741. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3742. if (retval)
  3743. return retval;
  3744. return sched_setaffinity(pid, new_mask);
  3745. }
  3746. /*
  3747. * Represents all cpu's present in the system
  3748. * In systems capable of hotplug, this map could dynamically grow
  3749. * as new cpu's are detected in the system via any platform specific
  3750. * method, such as ACPI for e.g.
  3751. */
  3752. cpumask_t cpu_present_map __read_mostly;
  3753. EXPORT_SYMBOL(cpu_present_map);
  3754. #ifndef CONFIG_SMP
  3755. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3756. EXPORT_SYMBOL(cpu_online_map);
  3757. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3758. EXPORT_SYMBOL(cpu_possible_map);
  3759. #endif
  3760. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3761. {
  3762. struct task_struct *p;
  3763. int retval;
  3764. mutex_lock(&sched_hotcpu_mutex);
  3765. read_lock(&tasklist_lock);
  3766. retval = -ESRCH;
  3767. p = find_process_by_pid(pid);
  3768. if (!p)
  3769. goto out_unlock;
  3770. retval = security_task_getscheduler(p);
  3771. if (retval)
  3772. goto out_unlock;
  3773. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3774. out_unlock:
  3775. read_unlock(&tasklist_lock);
  3776. mutex_unlock(&sched_hotcpu_mutex);
  3777. if (retval)
  3778. return retval;
  3779. return 0;
  3780. }
  3781. /**
  3782. * sys_sched_getaffinity - get the cpu affinity of a process
  3783. * @pid: pid of the process
  3784. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3785. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3786. */
  3787. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3788. unsigned long __user *user_mask_ptr)
  3789. {
  3790. int ret;
  3791. cpumask_t mask;
  3792. if (len < sizeof(cpumask_t))
  3793. return -EINVAL;
  3794. ret = sched_getaffinity(pid, &mask);
  3795. if (ret < 0)
  3796. return ret;
  3797. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3798. return -EFAULT;
  3799. return sizeof(cpumask_t);
  3800. }
  3801. /**
  3802. * sys_sched_yield - yield the current processor to other threads.
  3803. *
  3804. * This function yields the current CPU to other tasks. If there are no
  3805. * other threads running on this CPU then this function will return.
  3806. */
  3807. asmlinkage long sys_sched_yield(void)
  3808. {
  3809. struct rq *rq = this_rq_lock();
  3810. schedstat_inc(rq, yld_cnt);
  3811. if (unlikely(rq->nr_running == 1))
  3812. schedstat_inc(rq, yld_act_empty);
  3813. else
  3814. current->sched_class->yield_task(rq, current);
  3815. /*
  3816. * Since we are going to call schedule() anyway, there's
  3817. * no need to preempt or enable interrupts:
  3818. */
  3819. __release(rq->lock);
  3820. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3821. _raw_spin_unlock(&rq->lock);
  3822. preempt_enable_no_resched();
  3823. schedule();
  3824. return 0;
  3825. }
  3826. static void __cond_resched(void)
  3827. {
  3828. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3829. __might_sleep(__FILE__, __LINE__);
  3830. #endif
  3831. /*
  3832. * The BKS might be reacquired before we have dropped
  3833. * PREEMPT_ACTIVE, which could trigger a second
  3834. * cond_resched() call.
  3835. */
  3836. do {
  3837. add_preempt_count(PREEMPT_ACTIVE);
  3838. schedule();
  3839. sub_preempt_count(PREEMPT_ACTIVE);
  3840. } while (need_resched());
  3841. }
  3842. int __sched cond_resched(void)
  3843. {
  3844. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3845. system_state == SYSTEM_RUNNING) {
  3846. __cond_resched();
  3847. return 1;
  3848. }
  3849. return 0;
  3850. }
  3851. EXPORT_SYMBOL(cond_resched);
  3852. /*
  3853. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3854. * call schedule, and on return reacquire the lock.
  3855. *
  3856. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3857. * operations here to prevent schedule() from being called twice (once via
  3858. * spin_unlock(), once by hand).
  3859. */
  3860. int cond_resched_lock(spinlock_t *lock)
  3861. {
  3862. int ret = 0;
  3863. if (need_lockbreak(lock)) {
  3864. spin_unlock(lock);
  3865. cpu_relax();
  3866. ret = 1;
  3867. spin_lock(lock);
  3868. }
  3869. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3870. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3871. _raw_spin_unlock(lock);
  3872. preempt_enable_no_resched();
  3873. __cond_resched();
  3874. ret = 1;
  3875. spin_lock(lock);
  3876. }
  3877. return ret;
  3878. }
  3879. EXPORT_SYMBOL(cond_resched_lock);
  3880. int __sched cond_resched_softirq(void)
  3881. {
  3882. BUG_ON(!in_softirq());
  3883. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3884. local_bh_enable();
  3885. __cond_resched();
  3886. local_bh_disable();
  3887. return 1;
  3888. }
  3889. return 0;
  3890. }
  3891. EXPORT_SYMBOL(cond_resched_softirq);
  3892. /**
  3893. * yield - yield the current processor to other threads.
  3894. *
  3895. * This is a shortcut for kernel-space yielding - it marks the
  3896. * thread runnable and calls sys_sched_yield().
  3897. */
  3898. void __sched yield(void)
  3899. {
  3900. set_current_state(TASK_RUNNING);
  3901. sys_sched_yield();
  3902. }
  3903. EXPORT_SYMBOL(yield);
  3904. /*
  3905. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3906. * that process accounting knows that this is a task in IO wait state.
  3907. *
  3908. * But don't do that if it is a deliberate, throttling IO wait (this task
  3909. * has set its backing_dev_info: the queue against which it should throttle)
  3910. */
  3911. void __sched io_schedule(void)
  3912. {
  3913. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3914. delayacct_blkio_start();
  3915. atomic_inc(&rq->nr_iowait);
  3916. schedule();
  3917. atomic_dec(&rq->nr_iowait);
  3918. delayacct_blkio_end();
  3919. }
  3920. EXPORT_SYMBOL(io_schedule);
  3921. long __sched io_schedule_timeout(long timeout)
  3922. {
  3923. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3924. long ret;
  3925. delayacct_blkio_start();
  3926. atomic_inc(&rq->nr_iowait);
  3927. ret = schedule_timeout(timeout);
  3928. atomic_dec(&rq->nr_iowait);
  3929. delayacct_blkio_end();
  3930. return ret;
  3931. }
  3932. /**
  3933. * sys_sched_get_priority_max - return maximum RT priority.
  3934. * @policy: scheduling class.
  3935. *
  3936. * this syscall returns the maximum rt_priority that can be used
  3937. * by a given scheduling class.
  3938. */
  3939. asmlinkage long sys_sched_get_priority_max(int policy)
  3940. {
  3941. int ret = -EINVAL;
  3942. switch (policy) {
  3943. case SCHED_FIFO:
  3944. case SCHED_RR:
  3945. ret = MAX_USER_RT_PRIO-1;
  3946. break;
  3947. case SCHED_NORMAL:
  3948. case SCHED_BATCH:
  3949. case SCHED_IDLE:
  3950. ret = 0;
  3951. break;
  3952. }
  3953. return ret;
  3954. }
  3955. /**
  3956. * sys_sched_get_priority_min - return minimum RT priority.
  3957. * @policy: scheduling class.
  3958. *
  3959. * this syscall returns the minimum rt_priority that can be used
  3960. * by a given scheduling class.
  3961. */
  3962. asmlinkage long sys_sched_get_priority_min(int policy)
  3963. {
  3964. int ret = -EINVAL;
  3965. switch (policy) {
  3966. case SCHED_FIFO:
  3967. case SCHED_RR:
  3968. ret = 1;
  3969. break;
  3970. case SCHED_NORMAL:
  3971. case SCHED_BATCH:
  3972. case SCHED_IDLE:
  3973. ret = 0;
  3974. }
  3975. return ret;
  3976. }
  3977. /**
  3978. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3979. * @pid: pid of the process.
  3980. * @interval: userspace pointer to the timeslice value.
  3981. *
  3982. * this syscall writes the default timeslice value of a given process
  3983. * into the user-space timespec buffer. A value of '0' means infinity.
  3984. */
  3985. asmlinkage
  3986. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  3987. {
  3988. struct task_struct *p;
  3989. int retval = -EINVAL;
  3990. struct timespec t;
  3991. if (pid < 0)
  3992. goto out_nounlock;
  3993. retval = -ESRCH;
  3994. read_lock(&tasklist_lock);
  3995. p = find_process_by_pid(pid);
  3996. if (!p)
  3997. goto out_unlock;
  3998. retval = security_task_getscheduler(p);
  3999. if (retval)
  4000. goto out_unlock;
  4001. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4002. 0 : static_prio_timeslice(p->static_prio), &t);
  4003. read_unlock(&tasklist_lock);
  4004. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4005. out_nounlock:
  4006. return retval;
  4007. out_unlock:
  4008. read_unlock(&tasklist_lock);
  4009. return retval;
  4010. }
  4011. static const char stat_nam[] = "RSDTtZX";
  4012. static void show_task(struct task_struct *p)
  4013. {
  4014. unsigned long free = 0;
  4015. unsigned state;
  4016. state = p->state ? __ffs(p->state) + 1 : 0;
  4017. printk("%-13.13s %c", p->comm,
  4018. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4019. #if BITS_PER_LONG == 32
  4020. if (state == TASK_RUNNING)
  4021. printk(" running ");
  4022. else
  4023. printk(" %08lx ", thread_saved_pc(p));
  4024. #else
  4025. if (state == TASK_RUNNING)
  4026. printk(" running task ");
  4027. else
  4028. printk(" %016lx ", thread_saved_pc(p));
  4029. #endif
  4030. #ifdef CONFIG_DEBUG_STACK_USAGE
  4031. {
  4032. unsigned long *n = end_of_stack(p);
  4033. while (!*n)
  4034. n++;
  4035. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4036. }
  4037. #endif
  4038. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4039. if (state != TASK_RUNNING)
  4040. show_stack(p, NULL);
  4041. }
  4042. void show_state_filter(unsigned long state_filter)
  4043. {
  4044. struct task_struct *g, *p;
  4045. #if BITS_PER_LONG == 32
  4046. printk(KERN_INFO
  4047. " task PC stack pid father\n");
  4048. #else
  4049. printk(KERN_INFO
  4050. " task PC stack pid father\n");
  4051. #endif
  4052. read_lock(&tasklist_lock);
  4053. do_each_thread(g, p) {
  4054. /*
  4055. * reset the NMI-timeout, listing all files on a slow
  4056. * console might take alot of time:
  4057. */
  4058. touch_nmi_watchdog();
  4059. if (!state_filter || (p->state & state_filter))
  4060. show_task(p);
  4061. } while_each_thread(g, p);
  4062. touch_all_softlockup_watchdogs();
  4063. #ifdef CONFIG_SCHED_DEBUG
  4064. sysrq_sched_debug_show();
  4065. #endif
  4066. read_unlock(&tasklist_lock);
  4067. /*
  4068. * Only show locks if all tasks are dumped:
  4069. */
  4070. if (state_filter == -1)
  4071. debug_show_all_locks();
  4072. }
  4073. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4074. {
  4075. idle->sched_class = &idle_sched_class;
  4076. }
  4077. /**
  4078. * init_idle - set up an idle thread for a given CPU
  4079. * @idle: task in question
  4080. * @cpu: cpu the idle task belongs to
  4081. *
  4082. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4083. * flag, to make booting more robust.
  4084. */
  4085. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4086. {
  4087. struct rq *rq = cpu_rq(cpu);
  4088. unsigned long flags;
  4089. __sched_fork(idle);
  4090. idle->se.exec_start = sched_clock();
  4091. idle->prio = idle->normal_prio = MAX_PRIO;
  4092. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4093. __set_task_cpu(idle, cpu);
  4094. spin_lock_irqsave(&rq->lock, flags);
  4095. rq->curr = rq->idle = idle;
  4096. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4097. idle->oncpu = 1;
  4098. #endif
  4099. spin_unlock_irqrestore(&rq->lock, flags);
  4100. /* Set the preempt count _outside_ the spinlocks! */
  4101. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4102. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4103. #else
  4104. task_thread_info(idle)->preempt_count = 0;
  4105. #endif
  4106. /*
  4107. * The idle tasks have their own, simple scheduling class:
  4108. */
  4109. idle->sched_class = &idle_sched_class;
  4110. }
  4111. /*
  4112. * In a system that switches off the HZ timer nohz_cpu_mask
  4113. * indicates which cpus entered this state. This is used
  4114. * in the rcu update to wait only for active cpus. For system
  4115. * which do not switch off the HZ timer nohz_cpu_mask should
  4116. * always be CPU_MASK_NONE.
  4117. */
  4118. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4119. /*
  4120. * Increase the granularity value when there are more CPUs,
  4121. * because with more CPUs the 'effective latency' as visible
  4122. * to users decreases. But the relationship is not linear,
  4123. * so pick a second-best guess by going with the log2 of the
  4124. * number of CPUs.
  4125. *
  4126. * This idea comes from the SD scheduler of Con Kolivas:
  4127. */
  4128. static inline void sched_init_granularity(void)
  4129. {
  4130. unsigned int factor = 1 + ilog2(num_online_cpus());
  4131. const unsigned long gran_limit = 100000000;
  4132. sysctl_sched_granularity *= factor;
  4133. if (sysctl_sched_granularity > gran_limit)
  4134. sysctl_sched_granularity = gran_limit;
  4135. sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
  4136. sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
  4137. }
  4138. #ifdef CONFIG_SMP
  4139. /*
  4140. * This is how migration works:
  4141. *
  4142. * 1) we queue a struct migration_req structure in the source CPU's
  4143. * runqueue and wake up that CPU's migration thread.
  4144. * 2) we down() the locked semaphore => thread blocks.
  4145. * 3) migration thread wakes up (implicitly it forces the migrated
  4146. * thread off the CPU)
  4147. * 4) it gets the migration request and checks whether the migrated
  4148. * task is still in the wrong runqueue.
  4149. * 5) if it's in the wrong runqueue then the migration thread removes
  4150. * it and puts it into the right queue.
  4151. * 6) migration thread up()s the semaphore.
  4152. * 7) we wake up and the migration is done.
  4153. */
  4154. /*
  4155. * Change a given task's CPU affinity. Migrate the thread to a
  4156. * proper CPU and schedule it away if the CPU it's executing on
  4157. * is removed from the allowed bitmask.
  4158. *
  4159. * NOTE: the caller must have a valid reference to the task, the
  4160. * task must not exit() & deallocate itself prematurely. The
  4161. * call is not atomic; no spinlocks may be held.
  4162. */
  4163. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4164. {
  4165. struct migration_req req;
  4166. unsigned long flags;
  4167. struct rq *rq;
  4168. int ret = 0;
  4169. rq = task_rq_lock(p, &flags);
  4170. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4171. ret = -EINVAL;
  4172. goto out;
  4173. }
  4174. p->cpus_allowed = new_mask;
  4175. /* Can the task run on the task's current CPU? If so, we're done */
  4176. if (cpu_isset(task_cpu(p), new_mask))
  4177. goto out;
  4178. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4179. /* Need help from migration thread: drop lock and wait. */
  4180. task_rq_unlock(rq, &flags);
  4181. wake_up_process(rq->migration_thread);
  4182. wait_for_completion(&req.done);
  4183. tlb_migrate_finish(p->mm);
  4184. return 0;
  4185. }
  4186. out:
  4187. task_rq_unlock(rq, &flags);
  4188. return ret;
  4189. }
  4190. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4191. /*
  4192. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4193. * this because either it can't run here any more (set_cpus_allowed()
  4194. * away from this CPU, or CPU going down), or because we're
  4195. * attempting to rebalance this task on exec (sched_exec).
  4196. *
  4197. * So we race with normal scheduler movements, but that's OK, as long
  4198. * as the task is no longer on this CPU.
  4199. *
  4200. * Returns non-zero if task was successfully migrated.
  4201. */
  4202. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4203. {
  4204. struct rq *rq_dest, *rq_src;
  4205. int ret = 0, on_rq;
  4206. if (unlikely(cpu_is_offline(dest_cpu)))
  4207. return ret;
  4208. rq_src = cpu_rq(src_cpu);
  4209. rq_dest = cpu_rq(dest_cpu);
  4210. double_rq_lock(rq_src, rq_dest);
  4211. /* Already moved. */
  4212. if (task_cpu(p) != src_cpu)
  4213. goto out;
  4214. /* Affinity changed (again). */
  4215. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4216. goto out;
  4217. on_rq = p->se.on_rq;
  4218. if (on_rq)
  4219. deactivate_task(rq_src, p, 0);
  4220. set_task_cpu(p, dest_cpu);
  4221. if (on_rq) {
  4222. activate_task(rq_dest, p, 0);
  4223. check_preempt_curr(rq_dest, p);
  4224. }
  4225. ret = 1;
  4226. out:
  4227. double_rq_unlock(rq_src, rq_dest);
  4228. return ret;
  4229. }
  4230. /*
  4231. * migration_thread - this is a highprio system thread that performs
  4232. * thread migration by bumping thread off CPU then 'pushing' onto
  4233. * another runqueue.
  4234. */
  4235. static int migration_thread(void *data)
  4236. {
  4237. int cpu = (long)data;
  4238. struct rq *rq;
  4239. rq = cpu_rq(cpu);
  4240. BUG_ON(rq->migration_thread != current);
  4241. set_current_state(TASK_INTERRUPTIBLE);
  4242. while (!kthread_should_stop()) {
  4243. struct migration_req *req;
  4244. struct list_head *head;
  4245. spin_lock_irq(&rq->lock);
  4246. if (cpu_is_offline(cpu)) {
  4247. spin_unlock_irq(&rq->lock);
  4248. goto wait_to_die;
  4249. }
  4250. if (rq->active_balance) {
  4251. active_load_balance(rq, cpu);
  4252. rq->active_balance = 0;
  4253. }
  4254. head = &rq->migration_queue;
  4255. if (list_empty(head)) {
  4256. spin_unlock_irq(&rq->lock);
  4257. schedule();
  4258. set_current_state(TASK_INTERRUPTIBLE);
  4259. continue;
  4260. }
  4261. req = list_entry(head->next, struct migration_req, list);
  4262. list_del_init(head->next);
  4263. spin_unlock(&rq->lock);
  4264. __migrate_task(req->task, cpu, req->dest_cpu);
  4265. local_irq_enable();
  4266. complete(&req->done);
  4267. }
  4268. __set_current_state(TASK_RUNNING);
  4269. return 0;
  4270. wait_to_die:
  4271. /* Wait for kthread_stop */
  4272. set_current_state(TASK_INTERRUPTIBLE);
  4273. while (!kthread_should_stop()) {
  4274. schedule();
  4275. set_current_state(TASK_INTERRUPTIBLE);
  4276. }
  4277. __set_current_state(TASK_RUNNING);
  4278. return 0;
  4279. }
  4280. #ifdef CONFIG_HOTPLUG_CPU
  4281. /*
  4282. * Figure out where task on dead CPU should go, use force if neccessary.
  4283. * NOTE: interrupts should be disabled by the caller
  4284. */
  4285. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4286. {
  4287. unsigned long flags;
  4288. cpumask_t mask;
  4289. struct rq *rq;
  4290. int dest_cpu;
  4291. restart:
  4292. /* On same node? */
  4293. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4294. cpus_and(mask, mask, p->cpus_allowed);
  4295. dest_cpu = any_online_cpu(mask);
  4296. /* On any allowed CPU? */
  4297. if (dest_cpu == NR_CPUS)
  4298. dest_cpu = any_online_cpu(p->cpus_allowed);
  4299. /* No more Mr. Nice Guy. */
  4300. if (dest_cpu == NR_CPUS) {
  4301. rq = task_rq_lock(p, &flags);
  4302. cpus_setall(p->cpus_allowed);
  4303. dest_cpu = any_online_cpu(p->cpus_allowed);
  4304. task_rq_unlock(rq, &flags);
  4305. /*
  4306. * Don't tell them about moving exiting tasks or
  4307. * kernel threads (both mm NULL), since they never
  4308. * leave kernel.
  4309. */
  4310. if (p->mm && printk_ratelimit())
  4311. printk(KERN_INFO "process %d (%s) no "
  4312. "longer affine to cpu%d\n",
  4313. p->pid, p->comm, dead_cpu);
  4314. }
  4315. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4316. goto restart;
  4317. }
  4318. /*
  4319. * While a dead CPU has no uninterruptible tasks queued at this point,
  4320. * it might still have a nonzero ->nr_uninterruptible counter, because
  4321. * for performance reasons the counter is not stricly tracking tasks to
  4322. * their home CPUs. So we just add the counter to another CPU's counter,
  4323. * to keep the global sum constant after CPU-down:
  4324. */
  4325. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4326. {
  4327. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4328. unsigned long flags;
  4329. local_irq_save(flags);
  4330. double_rq_lock(rq_src, rq_dest);
  4331. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4332. rq_src->nr_uninterruptible = 0;
  4333. double_rq_unlock(rq_src, rq_dest);
  4334. local_irq_restore(flags);
  4335. }
  4336. /* Run through task list and migrate tasks from the dead cpu. */
  4337. static void migrate_live_tasks(int src_cpu)
  4338. {
  4339. struct task_struct *p, *t;
  4340. write_lock_irq(&tasklist_lock);
  4341. do_each_thread(t, p) {
  4342. if (p == current)
  4343. continue;
  4344. if (task_cpu(p) == src_cpu)
  4345. move_task_off_dead_cpu(src_cpu, p);
  4346. } while_each_thread(t, p);
  4347. write_unlock_irq(&tasklist_lock);
  4348. }
  4349. /*
  4350. * Schedules idle task to be the next runnable task on current CPU.
  4351. * It does so by boosting its priority to highest possible and adding it to
  4352. * the _front_ of the runqueue. Used by CPU offline code.
  4353. */
  4354. void sched_idle_next(void)
  4355. {
  4356. int this_cpu = smp_processor_id();
  4357. struct rq *rq = cpu_rq(this_cpu);
  4358. struct task_struct *p = rq->idle;
  4359. unsigned long flags;
  4360. /* cpu has to be offline */
  4361. BUG_ON(cpu_online(this_cpu));
  4362. /*
  4363. * Strictly not necessary since rest of the CPUs are stopped by now
  4364. * and interrupts disabled on the current cpu.
  4365. */
  4366. spin_lock_irqsave(&rq->lock, flags);
  4367. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4368. /* Add idle task to the _front_ of its priority queue: */
  4369. activate_idle_task(p, rq);
  4370. spin_unlock_irqrestore(&rq->lock, flags);
  4371. }
  4372. /*
  4373. * Ensures that the idle task is using init_mm right before its cpu goes
  4374. * offline.
  4375. */
  4376. void idle_task_exit(void)
  4377. {
  4378. struct mm_struct *mm = current->active_mm;
  4379. BUG_ON(cpu_online(smp_processor_id()));
  4380. if (mm != &init_mm)
  4381. switch_mm(mm, &init_mm, current);
  4382. mmdrop(mm);
  4383. }
  4384. /* called under rq->lock with disabled interrupts */
  4385. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4386. {
  4387. struct rq *rq = cpu_rq(dead_cpu);
  4388. /* Must be exiting, otherwise would be on tasklist. */
  4389. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4390. /* Cannot have done final schedule yet: would have vanished. */
  4391. BUG_ON(p->state == TASK_DEAD);
  4392. get_task_struct(p);
  4393. /*
  4394. * Drop lock around migration; if someone else moves it,
  4395. * that's OK. No task can be added to this CPU, so iteration is
  4396. * fine.
  4397. * NOTE: interrupts should be left disabled --dev@
  4398. */
  4399. spin_unlock(&rq->lock);
  4400. move_task_off_dead_cpu(dead_cpu, p);
  4401. spin_lock(&rq->lock);
  4402. put_task_struct(p);
  4403. }
  4404. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4405. static void migrate_dead_tasks(unsigned int dead_cpu)
  4406. {
  4407. struct rq *rq = cpu_rq(dead_cpu);
  4408. struct task_struct *next;
  4409. for ( ; ; ) {
  4410. if (!rq->nr_running)
  4411. break;
  4412. next = pick_next_task(rq, rq->curr, rq_clock(rq));
  4413. if (!next)
  4414. break;
  4415. migrate_dead(dead_cpu, next);
  4416. }
  4417. }
  4418. #endif /* CONFIG_HOTPLUG_CPU */
  4419. /*
  4420. * migration_call - callback that gets triggered when a CPU is added.
  4421. * Here we can start up the necessary migration thread for the new CPU.
  4422. */
  4423. static int __cpuinit
  4424. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4425. {
  4426. struct task_struct *p;
  4427. int cpu = (long)hcpu;
  4428. unsigned long flags;
  4429. struct rq *rq;
  4430. switch (action) {
  4431. case CPU_LOCK_ACQUIRE:
  4432. mutex_lock(&sched_hotcpu_mutex);
  4433. break;
  4434. case CPU_UP_PREPARE:
  4435. case CPU_UP_PREPARE_FROZEN:
  4436. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4437. if (IS_ERR(p))
  4438. return NOTIFY_BAD;
  4439. kthread_bind(p, cpu);
  4440. /* Must be high prio: stop_machine expects to yield to it. */
  4441. rq = task_rq_lock(p, &flags);
  4442. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4443. task_rq_unlock(rq, &flags);
  4444. cpu_rq(cpu)->migration_thread = p;
  4445. break;
  4446. case CPU_ONLINE:
  4447. case CPU_ONLINE_FROZEN:
  4448. /* Strictly unneccessary, as first user will wake it. */
  4449. wake_up_process(cpu_rq(cpu)->migration_thread);
  4450. break;
  4451. #ifdef CONFIG_HOTPLUG_CPU
  4452. case CPU_UP_CANCELED:
  4453. case CPU_UP_CANCELED_FROZEN:
  4454. if (!cpu_rq(cpu)->migration_thread)
  4455. break;
  4456. /* Unbind it from offline cpu so it can run. Fall thru. */
  4457. kthread_bind(cpu_rq(cpu)->migration_thread,
  4458. any_online_cpu(cpu_online_map));
  4459. kthread_stop(cpu_rq(cpu)->migration_thread);
  4460. cpu_rq(cpu)->migration_thread = NULL;
  4461. break;
  4462. case CPU_DEAD:
  4463. case CPU_DEAD_FROZEN:
  4464. migrate_live_tasks(cpu);
  4465. rq = cpu_rq(cpu);
  4466. kthread_stop(rq->migration_thread);
  4467. rq->migration_thread = NULL;
  4468. /* Idle task back to normal (off runqueue, low prio) */
  4469. rq = task_rq_lock(rq->idle, &flags);
  4470. deactivate_task(rq, rq->idle, 0);
  4471. rq->idle->static_prio = MAX_PRIO;
  4472. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4473. rq->idle->sched_class = &idle_sched_class;
  4474. migrate_dead_tasks(cpu);
  4475. task_rq_unlock(rq, &flags);
  4476. migrate_nr_uninterruptible(rq);
  4477. BUG_ON(rq->nr_running != 0);
  4478. /* No need to migrate the tasks: it was best-effort if
  4479. * they didn't take sched_hotcpu_mutex. Just wake up
  4480. * the requestors. */
  4481. spin_lock_irq(&rq->lock);
  4482. while (!list_empty(&rq->migration_queue)) {
  4483. struct migration_req *req;
  4484. req = list_entry(rq->migration_queue.next,
  4485. struct migration_req, list);
  4486. list_del_init(&req->list);
  4487. complete(&req->done);
  4488. }
  4489. spin_unlock_irq(&rq->lock);
  4490. break;
  4491. #endif
  4492. case CPU_LOCK_RELEASE:
  4493. mutex_unlock(&sched_hotcpu_mutex);
  4494. break;
  4495. }
  4496. return NOTIFY_OK;
  4497. }
  4498. /* Register at highest priority so that task migration (migrate_all_tasks)
  4499. * happens before everything else.
  4500. */
  4501. static struct notifier_block __cpuinitdata migration_notifier = {
  4502. .notifier_call = migration_call,
  4503. .priority = 10
  4504. };
  4505. int __init migration_init(void)
  4506. {
  4507. void *cpu = (void *)(long)smp_processor_id();
  4508. int err;
  4509. /* Start one for the boot CPU: */
  4510. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4511. BUG_ON(err == NOTIFY_BAD);
  4512. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4513. register_cpu_notifier(&migration_notifier);
  4514. return 0;
  4515. }
  4516. #endif
  4517. #ifdef CONFIG_SMP
  4518. /* Number of possible processor ids */
  4519. int nr_cpu_ids __read_mostly = NR_CPUS;
  4520. EXPORT_SYMBOL(nr_cpu_ids);
  4521. #undef SCHED_DOMAIN_DEBUG
  4522. #ifdef SCHED_DOMAIN_DEBUG
  4523. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4524. {
  4525. int level = 0;
  4526. if (!sd) {
  4527. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4528. return;
  4529. }
  4530. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4531. do {
  4532. int i;
  4533. char str[NR_CPUS];
  4534. struct sched_group *group = sd->groups;
  4535. cpumask_t groupmask;
  4536. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4537. cpus_clear(groupmask);
  4538. printk(KERN_DEBUG);
  4539. for (i = 0; i < level + 1; i++)
  4540. printk(" ");
  4541. printk("domain %d: ", level);
  4542. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4543. printk("does not load-balance\n");
  4544. if (sd->parent)
  4545. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4546. " has parent");
  4547. break;
  4548. }
  4549. printk("span %s\n", str);
  4550. if (!cpu_isset(cpu, sd->span))
  4551. printk(KERN_ERR "ERROR: domain->span does not contain "
  4552. "CPU%d\n", cpu);
  4553. if (!cpu_isset(cpu, group->cpumask))
  4554. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4555. " CPU%d\n", cpu);
  4556. printk(KERN_DEBUG);
  4557. for (i = 0; i < level + 2; i++)
  4558. printk(" ");
  4559. printk("groups:");
  4560. do {
  4561. if (!group) {
  4562. printk("\n");
  4563. printk(KERN_ERR "ERROR: group is NULL\n");
  4564. break;
  4565. }
  4566. if (!group->__cpu_power) {
  4567. printk("\n");
  4568. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4569. "set\n");
  4570. }
  4571. if (!cpus_weight(group->cpumask)) {
  4572. printk("\n");
  4573. printk(KERN_ERR "ERROR: empty group\n");
  4574. }
  4575. if (cpus_intersects(groupmask, group->cpumask)) {
  4576. printk("\n");
  4577. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4578. }
  4579. cpus_or(groupmask, groupmask, group->cpumask);
  4580. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4581. printk(" %s", str);
  4582. group = group->next;
  4583. } while (group != sd->groups);
  4584. printk("\n");
  4585. if (!cpus_equal(sd->span, groupmask))
  4586. printk(KERN_ERR "ERROR: groups don't span "
  4587. "domain->span\n");
  4588. level++;
  4589. sd = sd->parent;
  4590. if (!sd)
  4591. continue;
  4592. if (!cpus_subset(groupmask, sd->span))
  4593. printk(KERN_ERR "ERROR: parent span is not a superset "
  4594. "of domain->span\n");
  4595. } while (sd);
  4596. }
  4597. #else
  4598. # define sched_domain_debug(sd, cpu) do { } while (0)
  4599. #endif
  4600. static int sd_degenerate(struct sched_domain *sd)
  4601. {
  4602. if (cpus_weight(sd->span) == 1)
  4603. return 1;
  4604. /* Following flags need at least 2 groups */
  4605. if (sd->flags & (SD_LOAD_BALANCE |
  4606. SD_BALANCE_NEWIDLE |
  4607. SD_BALANCE_FORK |
  4608. SD_BALANCE_EXEC |
  4609. SD_SHARE_CPUPOWER |
  4610. SD_SHARE_PKG_RESOURCES)) {
  4611. if (sd->groups != sd->groups->next)
  4612. return 0;
  4613. }
  4614. /* Following flags don't use groups */
  4615. if (sd->flags & (SD_WAKE_IDLE |
  4616. SD_WAKE_AFFINE |
  4617. SD_WAKE_BALANCE))
  4618. return 0;
  4619. return 1;
  4620. }
  4621. static int
  4622. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4623. {
  4624. unsigned long cflags = sd->flags, pflags = parent->flags;
  4625. if (sd_degenerate(parent))
  4626. return 1;
  4627. if (!cpus_equal(sd->span, parent->span))
  4628. return 0;
  4629. /* Does parent contain flags not in child? */
  4630. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4631. if (cflags & SD_WAKE_AFFINE)
  4632. pflags &= ~SD_WAKE_BALANCE;
  4633. /* Flags needing groups don't count if only 1 group in parent */
  4634. if (parent->groups == parent->groups->next) {
  4635. pflags &= ~(SD_LOAD_BALANCE |
  4636. SD_BALANCE_NEWIDLE |
  4637. SD_BALANCE_FORK |
  4638. SD_BALANCE_EXEC |
  4639. SD_SHARE_CPUPOWER |
  4640. SD_SHARE_PKG_RESOURCES);
  4641. }
  4642. if (~cflags & pflags)
  4643. return 0;
  4644. return 1;
  4645. }
  4646. /*
  4647. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4648. * hold the hotplug lock.
  4649. */
  4650. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4651. {
  4652. struct rq *rq = cpu_rq(cpu);
  4653. struct sched_domain *tmp;
  4654. /* Remove the sched domains which do not contribute to scheduling. */
  4655. for (tmp = sd; tmp; tmp = tmp->parent) {
  4656. struct sched_domain *parent = tmp->parent;
  4657. if (!parent)
  4658. break;
  4659. if (sd_parent_degenerate(tmp, parent)) {
  4660. tmp->parent = parent->parent;
  4661. if (parent->parent)
  4662. parent->parent->child = tmp;
  4663. }
  4664. }
  4665. if (sd && sd_degenerate(sd)) {
  4666. sd = sd->parent;
  4667. if (sd)
  4668. sd->child = NULL;
  4669. }
  4670. sched_domain_debug(sd, cpu);
  4671. rcu_assign_pointer(rq->sd, sd);
  4672. }
  4673. /* cpus with isolated domains */
  4674. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4675. /* Setup the mask of cpus configured for isolated domains */
  4676. static int __init isolated_cpu_setup(char *str)
  4677. {
  4678. int ints[NR_CPUS], i;
  4679. str = get_options(str, ARRAY_SIZE(ints), ints);
  4680. cpus_clear(cpu_isolated_map);
  4681. for (i = 1; i <= ints[0]; i++)
  4682. if (ints[i] < NR_CPUS)
  4683. cpu_set(ints[i], cpu_isolated_map);
  4684. return 1;
  4685. }
  4686. __setup ("isolcpus=", isolated_cpu_setup);
  4687. /*
  4688. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4689. * to a function which identifies what group(along with sched group) a CPU
  4690. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4691. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4692. *
  4693. * init_sched_build_groups will build a circular linked list of the groups
  4694. * covered by the given span, and will set each group's ->cpumask correctly,
  4695. * and ->cpu_power to 0.
  4696. */
  4697. static void
  4698. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4699. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4700. struct sched_group **sg))
  4701. {
  4702. struct sched_group *first = NULL, *last = NULL;
  4703. cpumask_t covered = CPU_MASK_NONE;
  4704. int i;
  4705. for_each_cpu_mask(i, span) {
  4706. struct sched_group *sg;
  4707. int group = group_fn(i, cpu_map, &sg);
  4708. int j;
  4709. if (cpu_isset(i, covered))
  4710. continue;
  4711. sg->cpumask = CPU_MASK_NONE;
  4712. sg->__cpu_power = 0;
  4713. for_each_cpu_mask(j, span) {
  4714. if (group_fn(j, cpu_map, NULL) != group)
  4715. continue;
  4716. cpu_set(j, covered);
  4717. cpu_set(j, sg->cpumask);
  4718. }
  4719. if (!first)
  4720. first = sg;
  4721. if (last)
  4722. last->next = sg;
  4723. last = sg;
  4724. }
  4725. last->next = first;
  4726. }
  4727. #define SD_NODES_PER_DOMAIN 16
  4728. #ifdef CONFIG_NUMA
  4729. /**
  4730. * find_next_best_node - find the next node to include in a sched_domain
  4731. * @node: node whose sched_domain we're building
  4732. * @used_nodes: nodes already in the sched_domain
  4733. *
  4734. * Find the next node to include in a given scheduling domain. Simply
  4735. * finds the closest node not already in the @used_nodes map.
  4736. *
  4737. * Should use nodemask_t.
  4738. */
  4739. static int find_next_best_node(int node, unsigned long *used_nodes)
  4740. {
  4741. int i, n, val, min_val, best_node = 0;
  4742. min_val = INT_MAX;
  4743. for (i = 0; i < MAX_NUMNODES; i++) {
  4744. /* Start at @node */
  4745. n = (node + i) % MAX_NUMNODES;
  4746. if (!nr_cpus_node(n))
  4747. continue;
  4748. /* Skip already used nodes */
  4749. if (test_bit(n, used_nodes))
  4750. continue;
  4751. /* Simple min distance search */
  4752. val = node_distance(node, n);
  4753. if (val < min_val) {
  4754. min_val = val;
  4755. best_node = n;
  4756. }
  4757. }
  4758. set_bit(best_node, used_nodes);
  4759. return best_node;
  4760. }
  4761. /**
  4762. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4763. * @node: node whose cpumask we're constructing
  4764. * @size: number of nodes to include in this span
  4765. *
  4766. * Given a node, construct a good cpumask for its sched_domain to span. It
  4767. * should be one that prevents unnecessary balancing, but also spreads tasks
  4768. * out optimally.
  4769. */
  4770. static cpumask_t sched_domain_node_span(int node)
  4771. {
  4772. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4773. cpumask_t span, nodemask;
  4774. int i;
  4775. cpus_clear(span);
  4776. bitmap_zero(used_nodes, MAX_NUMNODES);
  4777. nodemask = node_to_cpumask(node);
  4778. cpus_or(span, span, nodemask);
  4779. set_bit(node, used_nodes);
  4780. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4781. int next_node = find_next_best_node(node, used_nodes);
  4782. nodemask = node_to_cpumask(next_node);
  4783. cpus_or(span, span, nodemask);
  4784. }
  4785. return span;
  4786. }
  4787. #endif
  4788. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4789. /*
  4790. * SMT sched-domains:
  4791. */
  4792. #ifdef CONFIG_SCHED_SMT
  4793. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4794. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4795. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4796. struct sched_group **sg)
  4797. {
  4798. if (sg)
  4799. *sg = &per_cpu(sched_group_cpus, cpu);
  4800. return cpu;
  4801. }
  4802. #endif
  4803. /*
  4804. * multi-core sched-domains:
  4805. */
  4806. #ifdef CONFIG_SCHED_MC
  4807. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  4808. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  4809. #endif
  4810. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  4811. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4812. struct sched_group **sg)
  4813. {
  4814. int group;
  4815. cpumask_t mask = cpu_sibling_map[cpu];
  4816. cpus_and(mask, mask, *cpu_map);
  4817. group = first_cpu(mask);
  4818. if (sg)
  4819. *sg = &per_cpu(sched_group_core, group);
  4820. return group;
  4821. }
  4822. #elif defined(CONFIG_SCHED_MC)
  4823. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4824. struct sched_group **sg)
  4825. {
  4826. if (sg)
  4827. *sg = &per_cpu(sched_group_core, cpu);
  4828. return cpu;
  4829. }
  4830. #endif
  4831. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  4832. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  4833. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  4834. struct sched_group **sg)
  4835. {
  4836. int group;
  4837. #ifdef CONFIG_SCHED_MC
  4838. cpumask_t mask = cpu_coregroup_map(cpu);
  4839. cpus_and(mask, mask, *cpu_map);
  4840. group = first_cpu(mask);
  4841. #elif defined(CONFIG_SCHED_SMT)
  4842. cpumask_t mask = cpu_sibling_map[cpu];
  4843. cpus_and(mask, mask, *cpu_map);
  4844. group = first_cpu(mask);
  4845. #else
  4846. group = cpu;
  4847. #endif
  4848. if (sg)
  4849. *sg = &per_cpu(sched_group_phys, group);
  4850. return group;
  4851. }
  4852. #ifdef CONFIG_NUMA
  4853. /*
  4854. * The init_sched_build_groups can't handle what we want to do with node
  4855. * groups, so roll our own. Now each node has its own list of groups which
  4856. * gets dynamically allocated.
  4857. */
  4858. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  4859. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  4860. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  4861. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  4862. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  4863. struct sched_group **sg)
  4864. {
  4865. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  4866. int group;
  4867. cpus_and(nodemask, nodemask, *cpu_map);
  4868. group = first_cpu(nodemask);
  4869. if (sg)
  4870. *sg = &per_cpu(sched_group_allnodes, group);
  4871. return group;
  4872. }
  4873. static void init_numa_sched_groups_power(struct sched_group *group_head)
  4874. {
  4875. struct sched_group *sg = group_head;
  4876. int j;
  4877. if (!sg)
  4878. return;
  4879. next_sg:
  4880. for_each_cpu_mask(j, sg->cpumask) {
  4881. struct sched_domain *sd;
  4882. sd = &per_cpu(phys_domains, j);
  4883. if (j != first_cpu(sd->groups->cpumask)) {
  4884. /*
  4885. * Only add "power" once for each
  4886. * physical package.
  4887. */
  4888. continue;
  4889. }
  4890. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  4891. }
  4892. sg = sg->next;
  4893. if (sg != group_head)
  4894. goto next_sg;
  4895. }
  4896. #endif
  4897. #ifdef CONFIG_NUMA
  4898. /* Free memory allocated for various sched_group structures */
  4899. static void free_sched_groups(const cpumask_t *cpu_map)
  4900. {
  4901. int cpu, i;
  4902. for_each_cpu_mask(cpu, *cpu_map) {
  4903. struct sched_group **sched_group_nodes
  4904. = sched_group_nodes_bycpu[cpu];
  4905. if (!sched_group_nodes)
  4906. continue;
  4907. for (i = 0; i < MAX_NUMNODES; i++) {
  4908. cpumask_t nodemask = node_to_cpumask(i);
  4909. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  4910. cpus_and(nodemask, nodemask, *cpu_map);
  4911. if (cpus_empty(nodemask))
  4912. continue;
  4913. if (sg == NULL)
  4914. continue;
  4915. sg = sg->next;
  4916. next_sg:
  4917. oldsg = sg;
  4918. sg = sg->next;
  4919. kfree(oldsg);
  4920. if (oldsg != sched_group_nodes[i])
  4921. goto next_sg;
  4922. }
  4923. kfree(sched_group_nodes);
  4924. sched_group_nodes_bycpu[cpu] = NULL;
  4925. }
  4926. }
  4927. #else
  4928. static void free_sched_groups(const cpumask_t *cpu_map)
  4929. {
  4930. }
  4931. #endif
  4932. /*
  4933. * Initialize sched groups cpu_power.
  4934. *
  4935. * cpu_power indicates the capacity of sched group, which is used while
  4936. * distributing the load between different sched groups in a sched domain.
  4937. * Typically cpu_power for all the groups in a sched domain will be same unless
  4938. * there are asymmetries in the topology. If there are asymmetries, group
  4939. * having more cpu_power will pickup more load compared to the group having
  4940. * less cpu_power.
  4941. *
  4942. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  4943. * the maximum number of tasks a group can handle in the presence of other idle
  4944. * or lightly loaded groups in the same sched domain.
  4945. */
  4946. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4947. {
  4948. struct sched_domain *child;
  4949. struct sched_group *group;
  4950. WARN_ON(!sd || !sd->groups);
  4951. if (cpu != first_cpu(sd->groups->cpumask))
  4952. return;
  4953. child = sd->child;
  4954. sd->groups->__cpu_power = 0;
  4955. /*
  4956. * For perf policy, if the groups in child domain share resources
  4957. * (for example cores sharing some portions of the cache hierarchy
  4958. * or SMT), then set this domain groups cpu_power such that each group
  4959. * can handle only one task, when there are other idle groups in the
  4960. * same sched domain.
  4961. */
  4962. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  4963. (child->flags &
  4964. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  4965. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  4966. return;
  4967. }
  4968. /*
  4969. * add cpu_power of each child group to this groups cpu_power
  4970. */
  4971. group = child->groups;
  4972. do {
  4973. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  4974. group = group->next;
  4975. } while (group != child->groups);
  4976. }
  4977. /*
  4978. * Build sched domains for a given set of cpus and attach the sched domains
  4979. * to the individual cpus
  4980. */
  4981. static int build_sched_domains(const cpumask_t *cpu_map)
  4982. {
  4983. int i;
  4984. #ifdef CONFIG_NUMA
  4985. struct sched_group **sched_group_nodes = NULL;
  4986. int sd_allnodes = 0;
  4987. /*
  4988. * Allocate the per-node list of sched groups
  4989. */
  4990. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  4991. GFP_KERNEL);
  4992. if (!sched_group_nodes) {
  4993. printk(KERN_WARNING "Can not alloc sched group node list\n");
  4994. return -ENOMEM;
  4995. }
  4996. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  4997. #endif
  4998. /*
  4999. * Set up domains for cpus specified by the cpu_map.
  5000. */
  5001. for_each_cpu_mask(i, *cpu_map) {
  5002. struct sched_domain *sd = NULL, *p;
  5003. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5004. cpus_and(nodemask, nodemask, *cpu_map);
  5005. #ifdef CONFIG_NUMA
  5006. if (cpus_weight(*cpu_map) >
  5007. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5008. sd = &per_cpu(allnodes_domains, i);
  5009. *sd = SD_ALLNODES_INIT;
  5010. sd->span = *cpu_map;
  5011. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5012. p = sd;
  5013. sd_allnodes = 1;
  5014. } else
  5015. p = NULL;
  5016. sd = &per_cpu(node_domains, i);
  5017. *sd = SD_NODE_INIT;
  5018. sd->span = sched_domain_node_span(cpu_to_node(i));
  5019. sd->parent = p;
  5020. if (p)
  5021. p->child = sd;
  5022. cpus_and(sd->span, sd->span, *cpu_map);
  5023. #endif
  5024. p = sd;
  5025. sd = &per_cpu(phys_domains, i);
  5026. *sd = SD_CPU_INIT;
  5027. sd->span = nodemask;
  5028. sd->parent = p;
  5029. if (p)
  5030. p->child = sd;
  5031. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5032. #ifdef CONFIG_SCHED_MC
  5033. p = sd;
  5034. sd = &per_cpu(core_domains, i);
  5035. *sd = SD_MC_INIT;
  5036. sd->span = cpu_coregroup_map(i);
  5037. cpus_and(sd->span, sd->span, *cpu_map);
  5038. sd->parent = p;
  5039. p->child = sd;
  5040. cpu_to_core_group(i, cpu_map, &sd->groups);
  5041. #endif
  5042. #ifdef CONFIG_SCHED_SMT
  5043. p = sd;
  5044. sd = &per_cpu(cpu_domains, i);
  5045. *sd = SD_SIBLING_INIT;
  5046. sd->span = cpu_sibling_map[i];
  5047. cpus_and(sd->span, sd->span, *cpu_map);
  5048. sd->parent = p;
  5049. p->child = sd;
  5050. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5051. #endif
  5052. }
  5053. #ifdef CONFIG_SCHED_SMT
  5054. /* Set up CPU (sibling) groups */
  5055. for_each_cpu_mask(i, *cpu_map) {
  5056. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5057. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5058. if (i != first_cpu(this_sibling_map))
  5059. continue;
  5060. init_sched_build_groups(this_sibling_map, cpu_map,
  5061. &cpu_to_cpu_group);
  5062. }
  5063. #endif
  5064. #ifdef CONFIG_SCHED_MC
  5065. /* Set up multi-core groups */
  5066. for_each_cpu_mask(i, *cpu_map) {
  5067. cpumask_t this_core_map = cpu_coregroup_map(i);
  5068. cpus_and(this_core_map, this_core_map, *cpu_map);
  5069. if (i != first_cpu(this_core_map))
  5070. continue;
  5071. init_sched_build_groups(this_core_map, cpu_map,
  5072. &cpu_to_core_group);
  5073. }
  5074. #endif
  5075. /* Set up physical groups */
  5076. for (i = 0; i < MAX_NUMNODES; i++) {
  5077. cpumask_t nodemask = node_to_cpumask(i);
  5078. cpus_and(nodemask, nodemask, *cpu_map);
  5079. if (cpus_empty(nodemask))
  5080. continue;
  5081. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5082. }
  5083. #ifdef CONFIG_NUMA
  5084. /* Set up node groups */
  5085. if (sd_allnodes)
  5086. init_sched_build_groups(*cpu_map, cpu_map,
  5087. &cpu_to_allnodes_group);
  5088. for (i = 0; i < MAX_NUMNODES; i++) {
  5089. /* Set up node groups */
  5090. struct sched_group *sg, *prev;
  5091. cpumask_t nodemask = node_to_cpumask(i);
  5092. cpumask_t domainspan;
  5093. cpumask_t covered = CPU_MASK_NONE;
  5094. int j;
  5095. cpus_and(nodemask, nodemask, *cpu_map);
  5096. if (cpus_empty(nodemask)) {
  5097. sched_group_nodes[i] = NULL;
  5098. continue;
  5099. }
  5100. domainspan = sched_domain_node_span(i);
  5101. cpus_and(domainspan, domainspan, *cpu_map);
  5102. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5103. if (!sg) {
  5104. printk(KERN_WARNING "Can not alloc domain group for "
  5105. "node %d\n", i);
  5106. goto error;
  5107. }
  5108. sched_group_nodes[i] = sg;
  5109. for_each_cpu_mask(j, nodemask) {
  5110. struct sched_domain *sd;
  5111. sd = &per_cpu(node_domains, j);
  5112. sd->groups = sg;
  5113. }
  5114. sg->__cpu_power = 0;
  5115. sg->cpumask = nodemask;
  5116. sg->next = sg;
  5117. cpus_or(covered, covered, nodemask);
  5118. prev = sg;
  5119. for (j = 0; j < MAX_NUMNODES; j++) {
  5120. cpumask_t tmp, notcovered;
  5121. int n = (i + j) % MAX_NUMNODES;
  5122. cpus_complement(notcovered, covered);
  5123. cpus_and(tmp, notcovered, *cpu_map);
  5124. cpus_and(tmp, tmp, domainspan);
  5125. if (cpus_empty(tmp))
  5126. break;
  5127. nodemask = node_to_cpumask(n);
  5128. cpus_and(tmp, tmp, nodemask);
  5129. if (cpus_empty(tmp))
  5130. continue;
  5131. sg = kmalloc_node(sizeof(struct sched_group),
  5132. GFP_KERNEL, i);
  5133. if (!sg) {
  5134. printk(KERN_WARNING
  5135. "Can not alloc domain group for node %d\n", j);
  5136. goto error;
  5137. }
  5138. sg->__cpu_power = 0;
  5139. sg->cpumask = tmp;
  5140. sg->next = prev->next;
  5141. cpus_or(covered, covered, tmp);
  5142. prev->next = sg;
  5143. prev = sg;
  5144. }
  5145. }
  5146. #endif
  5147. /* Calculate CPU power for physical packages and nodes */
  5148. #ifdef CONFIG_SCHED_SMT
  5149. for_each_cpu_mask(i, *cpu_map) {
  5150. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5151. init_sched_groups_power(i, sd);
  5152. }
  5153. #endif
  5154. #ifdef CONFIG_SCHED_MC
  5155. for_each_cpu_mask(i, *cpu_map) {
  5156. struct sched_domain *sd = &per_cpu(core_domains, i);
  5157. init_sched_groups_power(i, sd);
  5158. }
  5159. #endif
  5160. for_each_cpu_mask(i, *cpu_map) {
  5161. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5162. init_sched_groups_power(i, sd);
  5163. }
  5164. #ifdef CONFIG_NUMA
  5165. for (i = 0; i < MAX_NUMNODES; i++)
  5166. init_numa_sched_groups_power(sched_group_nodes[i]);
  5167. if (sd_allnodes) {
  5168. struct sched_group *sg;
  5169. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5170. init_numa_sched_groups_power(sg);
  5171. }
  5172. #endif
  5173. /* Attach the domains */
  5174. for_each_cpu_mask(i, *cpu_map) {
  5175. struct sched_domain *sd;
  5176. #ifdef CONFIG_SCHED_SMT
  5177. sd = &per_cpu(cpu_domains, i);
  5178. #elif defined(CONFIG_SCHED_MC)
  5179. sd = &per_cpu(core_domains, i);
  5180. #else
  5181. sd = &per_cpu(phys_domains, i);
  5182. #endif
  5183. cpu_attach_domain(sd, i);
  5184. }
  5185. return 0;
  5186. #ifdef CONFIG_NUMA
  5187. error:
  5188. free_sched_groups(cpu_map);
  5189. return -ENOMEM;
  5190. #endif
  5191. }
  5192. /*
  5193. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5194. */
  5195. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5196. {
  5197. cpumask_t cpu_default_map;
  5198. int err;
  5199. /*
  5200. * Setup mask for cpus without special case scheduling requirements.
  5201. * For now this just excludes isolated cpus, but could be used to
  5202. * exclude other special cases in the future.
  5203. */
  5204. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5205. err = build_sched_domains(&cpu_default_map);
  5206. return err;
  5207. }
  5208. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5209. {
  5210. free_sched_groups(cpu_map);
  5211. }
  5212. /*
  5213. * Detach sched domains from a group of cpus specified in cpu_map
  5214. * These cpus will now be attached to the NULL domain
  5215. */
  5216. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5217. {
  5218. int i;
  5219. for_each_cpu_mask(i, *cpu_map)
  5220. cpu_attach_domain(NULL, i);
  5221. synchronize_sched();
  5222. arch_destroy_sched_domains(cpu_map);
  5223. }
  5224. /*
  5225. * Partition sched domains as specified by the cpumasks below.
  5226. * This attaches all cpus from the cpumasks to the NULL domain,
  5227. * waits for a RCU quiescent period, recalculates sched
  5228. * domain information and then attaches them back to the
  5229. * correct sched domains
  5230. * Call with hotplug lock held
  5231. */
  5232. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5233. {
  5234. cpumask_t change_map;
  5235. int err = 0;
  5236. cpus_and(*partition1, *partition1, cpu_online_map);
  5237. cpus_and(*partition2, *partition2, cpu_online_map);
  5238. cpus_or(change_map, *partition1, *partition2);
  5239. /* Detach sched domains from all of the affected cpus */
  5240. detach_destroy_domains(&change_map);
  5241. if (!cpus_empty(*partition1))
  5242. err = build_sched_domains(partition1);
  5243. if (!err && !cpus_empty(*partition2))
  5244. err = build_sched_domains(partition2);
  5245. return err;
  5246. }
  5247. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5248. int arch_reinit_sched_domains(void)
  5249. {
  5250. int err;
  5251. mutex_lock(&sched_hotcpu_mutex);
  5252. detach_destroy_domains(&cpu_online_map);
  5253. err = arch_init_sched_domains(&cpu_online_map);
  5254. mutex_unlock(&sched_hotcpu_mutex);
  5255. return err;
  5256. }
  5257. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5258. {
  5259. int ret;
  5260. if (buf[0] != '0' && buf[0] != '1')
  5261. return -EINVAL;
  5262. if (smt)
  5263. sched_smt_power_savings = (buf[0] == '1');
  5264. else
  5265. sched_mc_power_savings = (buf[0] == '1');
  5266. ret = arch_reinit_sched_domains();
  5267. return ret ? ret : count;
  5268. }
  5269. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5270. {
  5271. int err = 0;
  5272. #ifdef CONFIG_SCHED_SMT
  5273. if (smt_capable())
  5274. err = sysfs_create_file(&cls->kset.kobj,
  5275. &attr_sched_smt_power_savings.attr);
  5276. #endif
  5277. #ifdef CONFIG_SCHED_MC
  5278. if (!err && mc_capable())
  5279. err = sysfs_create_file(&cls->kset.kobj,
  5280. &attr_sched_mc_power_savings.attr);
  5281. #endif
  5282. return err;
  5283. }
  5284. #endif
  5285. #ifdef CONFIG_SCHED_MC
  5286. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5287. {
  5288. return sprintf(page, "%u\n", sched_mc_power_savings);
  5289. }
  5290. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5291. const char *buf, size_t count)
  5292. {
  5293. return sched_power_savings_store(buf, count, 0);
  5294. }
  5295. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5296. sched_mc_power_savings_store);
  5297. #endif
  5298. #ifdef CONFIG_SCHED_SMT
  5299. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5300. {
  5301. return sprintf(page, "%u\n", sched_smt_power_savings);
  5302. }
  5303. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5304. const char *buf, size_t count)
  5305. {
  5306. return sched_power_savings_store(buf, count, 1);
  5307. }
  5308. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5309. sched_smt_power_savings_store);
  5310. #endif
  5311. /*
  5312. * Force a reinitialization of the sched domains hierarchy. The domains
  5313. * and groups cannot be updated in place without racing with the balancing
  5314. * code, so we temporarily attach all running cpus to the NULL domain
  5315. * which will prevent rebalancing while the sched domains are recalculated.
  5316. */
  5317. static int update_sched_domains(struct notifier_block *nfb,
  5318. unsigned long action, void *hcpu)
  5319. {
  5320. switch (action) {
  5321. case CPU_UP_PREPARE:
  5322. case CPU_UP_PREPARE_FROZEN:
  5323. case CPU_DOWN_PREPARE:
  5324. case CPU_DOWN_PREPARE_FROZEN:
  5325. detach_destroy_domains(&cpu_online_map);
  5326. return NOTIFY_OK;
  5327. case CPU_UP_CANCELED:
  5328. case CPU_UP_CANCELED_FROZEN:
  5329. case CPU_DOWN_FAILED:
  5330. case CPU_DOWN_FAILED_FROZEN:
  5331. case CPU_ONLINE:
  5332. case CPU_ONLINE_FROZEN:
  5333. case CPU_DEAD:
  5334. case CPU_DEAD_FROZEN:
  5335. /*
  5336. * Fall through and re-initialise the domains.
  5337. */
  5338. break;
  5339. default:
  5340. return NOTIFY_DONE;
  5341. }
  5342. /* The hotplug lock is already held by cpu_up/cpu_down */
  5343. arch_init_sched_domains(&cpu_online_map);
  5344. return NOTIFY_OK;
  5345. }
  5346. void __init sched_init_smp(void)
  5347. {
  5348. cpumask_t non_isolated_cpus;
  5349. mutex_lock(&sched_hotcpu_mutex);
  5350. arch_init_sched_domains(&cpu_online_map);
  5351. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5352. if (cpus_empty(non_isolated_cpus))
  5353. cpu_set(smp_processor_id(), non_isolated_cpus);
  5354. mutex_unlock(&sched_hotcpu_mutex);
  5355. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5356. hotcpu_notifier(update_sched_domains, 0);
  5357. /* Move init over to a non-isolated CPU */
  5358. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5359. BUG();
  5360. sched_init_granularity();
  5361. }
  5362. #else
  5363. void __init sched_init_smp(void)
  5364. {
  5365. sched_init_granularity();
  5366. }
  5367. #endif /* CONFIG_SMP */
  5368. int in_sched_functions(unsigned long addr)
  5369. {
  5370. /* Linker adds these: start and end of __sched functions */
  5371. extern char __sched_text_start[], __sched_text_end[];
  5372. return in_lock_functions(addr) ||
  5373. (addr >= (unsigned long)__sched_text_start
  5374. && addr < (unsigned long)__sched_text_end);
  5375. }
  5376. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5377. {
  5378. cfs_rq->tasks_timeline = RB_ROOT;
  5379. cfs_rq->fair_clock = 1;
  5380. #ifdef CONFIG_FAIR_GROUP_SCHED
  5381. cfs_rq->rq = rq;
  5382. #endif
  5383. }
  5384. void __init sched_init(void)
  5385. {
  5386. u64 now = sched_clock();
  5387. int highest_cpu = 0;
  5388. int i, j;
  5389. /*
  5390. * Link up the scheduling class hierarchy:
  5391. */
  5392. rt_sched_class.next = &fair_sched_class;
  5393. fair_sched_class.next = &idle_sched_class;
  5394. idle_sched_class.next = NULL;
  5395. for_each_possible_cpu(i) {
  5396. struct rt_prio_array *array;
  5397. struct rq *rq;
  5398. rq = cpu_rq(i);
  5399. spin_lock_init(&rq->lock);
  5400. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5401. rq->nr_running = 0;
  5402. rq->clock = 1;
  5403. init_cfs_rq(&rq->cfs, rq);
  5404. #ifdef CONFIG_FAIR_GROUP_SCHED
  5405. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5406. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5407. #endif
  5408. rq->ls.load_update_last = now;
  5409. rq->ls.load_update_start = now;
  5410. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5411. rq->cpu_load[j] = 0;
  5412. #ifdef CONFIG_SMP
  5413. rq->sd = NULL;
  5414. rq->active_balance = 0;
  5415. rq->next_balance = jiffies;
  5416. rq->push_cpu = 0;
  5417. rq->cpu = i;
  5418. rq->migration_thread = NULL;
  5419. INIT_LIST_HEAD(&rq->migration_queue);
  5420. #endif
  5421. atomic_set(&rq->nr_iowait, 0);
  5422. array = &rq->rt.active;
  5423. for (j = 0; j < MAX_RT_PRIO; j++) {
  5424. INIT_LIST_HEAD(array->queue + j);
  5425. __clear_bit(j, array->bitmap);
  5426. }
  5427. highest_cpu = i;
  5428. /* delimiter for bitsearch: */
  5429. __set_bit(MAX_RT_PRIO, array->bitmap);
  5430. }
  5431. set_load_weight(&init_task);
  5432. #ifdef CONFIG_SMP
  5433. nr_cpu_ids = highest_cpu + 1;
  5434. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5435. #endif
  5436. #ifdef CONFIG_RT_MUTEXES
  5437. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5438. #endif
  5439. /*
  5440. * The boot idle thread does lazy MMU switching as well:
  5441. */
  5442. atomic_inc(&init_mm.mm_count);
  5443. enter_lazy_tlb(&init_mm, current);
  5444. /*
  5445. * Make us the idle thread. Technically, schedule() should not be
  5446. * called from this thread, however somewhere below it might be,
  5447. * but because we are the idle thread, we just pick up running again
  5448. * when this runqueue becomes "idle".
  5449. */
  5450. init_idle(current, smp_processor_id());
  5451. /*
  5452. * During early bootup we pretend to be a normal task:
  5453. */
  5454. current->sched_class = &fair_sched_class;
  5455. }
  5456. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5457. void __might_sleep(char *file, int line)
  5458. {
  5459. #ifdef in_atomic
  5460. static unsigned long prev_jiffy; /* ratelimiting */
  5461. if ((in_atomic() || irqs_disabled()) &&
  5462. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5463. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5464. return;
  5465. prev_jiffy = jiffies;
  5466. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5467. " context at %s:%d\n", file, line);
  5468. printk("in_atomic():%d, irqs_disabled():%d\n",
  5469. in_atomic(), irqs_disabled());
  5470. debug_show_held_locks(current);
  5471. if (irqs_disabled())
  5472. print_irqtrace_events(current);
  5473. dump_stack();
  5474. }
  5475. #endif
  5476. }
  5477. EXPORT_SYMBOL(__might_sleep);
  5478. #endif
  5479. #ifdef CONFIG_MAGIC_SYSRQ
  5480. void normalize_rt_tasks(void)
  5481. {
  5482. struct task_struct *g, *p;
  5483. unsigned long flags;
  5484. struct rq *rq;
  5485. int on_rq;
  5486. read_lock_irq(&tasklist_lock);
  5487. do_each_thread(g, p) {
  5488. p->se.fair_key = 0;
  5489. p->se.wait_runtime = 0;
  5490. p->se.wait_start_fair = 0;
  5491. p->se.wait_start = 0;
  5492. p->se.exec_start = 0;
  5493. p->se.sleep_start = 0;
  5494. p->se.sleep_start_fair = 0;
  5495. p->se.block_start = 0;
  5496. task_rq(p)->cfs.fair_clock = 0;
  5497. task_rq(p)->clock = 0;
  5498. if (!rt_task(p)) {
  5499. /*
  5500. * Renice negative nice level userspace
  5501. * tasks back to 0:
  5502. */
  5503. if (TASK_NICE(p) < 0 && p->mm)
  5504. set_user_nice(p, 0);
  5505. continue;
  5506. }
  5507. spin_lock_irqsave(&p->pi_lock, flags);
  5508. rq = __task_rq_lock(p);
  5509. #ifdef CONFIG_SMP
  5510. /*
  5511. * Do not touch the migration thread:
  5512. */
  5513. if (p == rq->migration_thread)
  5514. goto out_unlock;
  5515. #endif
  5516. on_rq = p->se.on_rq;
  5517. if (on_rq)
  5518. deactivate_task(task_rq(p), p, 0);
  5519. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5520. if (on_rq) {
  5521. activate_task(task_rq(p), p, 0);
  5522. resched_task(rq->curr);
  5523. }
  5524. #ifdef CONFIG_SMP
  5525. out_unlock:
  5526. #endif
  5527. __task_rq_unlock(rq);
  5528. spin_unlock_irqrestore(&p->pi_lock, flags);
  5529. } while_each_thread(g, p);
  5530. read_unlock_irq(&tasklist_lock);
  5531. }
  5532. #endif /* CONFIG_MAGIC_SYSRQ */
  5533. #ifdef CONFIG_IA64
  5534. /*
  5535. * These functions are only useful for the IA64 MCA handling.
  5536. *
  5537. * They can only be called when the whole system has been
  5538. * stopped - every CPU needs to be quiescent, and no scheduling
  5539. * activity can take place. Using them for anything else would
  5540. * be a serious bug, and as a result, they aren't even visible
  5541. * under any other configuration.
  5542. */
  5543. /**
  5544. * curr_task - return the current task for a given cpu.
  5545. * @cpu: the processor in question.
  5546. *
  5547. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5548. */
  5549. struct task_struct *curr_task(int cpu)
  5550. {
  5551. return cpu_curr(cpu);
  5552. }
  5553. /**
  5554. * set_curr_task - set the current task for a given cpu.
  5555. * @cpu: the processor in question.
  5556. * @p: the task pointer to set.
  5557. *
  5558. * Description: This function must only be used when non-maskable interrupts
  5559. * are serviced on a separate stack. It allows the architecture to switch the
  5560. * notion of the current task on a cpu in a non-blocking manner. This function
  5561. * must be called with all CPU's synchronized, and interrupts disabled, the
  5562. * and caller must save the original value of the current task (see
  5563. * curr_task() above) and restore that value before reenabling interrupts and
  5564. * re-starting the system.
  5565. *
  5566. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5567. */
  5568. void set_curr_task(int cpu, struct task_struct *p)
  5569. {
  5570. cpu_curr(cpu) = p;
  5571. }
  5572. #endif