snapshot.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953
  1. /*
  2. * linux/kernel/power/snapshot.c
  3. *
  4. * This file provides system snapshot/restore functionality for swsusp.
  5. *
  6. * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
  7. * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  8. *
  9. * This file is released under the GPLv2.
  10. *
  11. */
  12. #include <linux/version.h>
  13. #include <linux/module.h>
  14. #include <linux/mm.h>
  15. #include <linux/suspend.h>
  16. #include <linux/delay.h>
  17. #include <linux/bitops.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kernel.h>
  20. #include <linux/pm.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/syscalls.h>
  25. #include <linux/console.h>
  26. #include <linux/highmem.h>
  27. #include <asm/uaccess.h>
  28. #include <asm/mmu_context.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/io.h>
  32. #include "power.h"
  33. static int swsusp_page_is_free(struct page *);
  34. static void swsusp_set_page_forbidden(struct page *);
  35. static void swsusp_unset_page_forbidden(struct page *);
  36. /* List of PBEs needed for restoring the pages that were allocated before
  37. * the suspend and included in the suspend image, but have also been
  38. * allocated by the "resume" kernel, so their contents cannot be written
  39. * directly to their "original" page frames.
  40. */
  41. struct pbe *restore_pblist;
  42. /* Pointer to an auxiliary buffer (1 page) */
  43. static void *buffer;
  44. /**
  45. * @safe_needed - on resume, for storing the PBE list and the image,
  46. * we can only use memory pages that do not conflict with the pages
  47. * used before suspend. The unsafe pages have PageNosaveFree set
  48. * and we count them using unsafe_pages.
  49. *
  50. * Each allocated image page is marked as PageNosave and PageNosaveFree
  51. * so that swsusp_free() can release it.
  52. */
  53. #define PG_ANY 0
  54. #define PG_SAFE 1
  55. #define PG_UNSAFE_CLEAR 1
  56. #define PG_UNSAFE_KEEP 0
  57. static unsigned int allocated_unsafe_pages;
  58. static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  59. {
  60. void *res;
  61. res = (void *)get_zeroed_page(gfp_mask);
  62. if (safe_needed)
  63. while (res && swsusp_page_is_free(virt_to_page(res))) {
  64. /* The page is unsafe, mark it for swsusp_free() */
  65. swsusp_set_page_forbidden(virt_to_page(res));
  66. allocated_unsafe_pages++;
  67. res = (void *)get_zeroed_page(gfp_mask);
  68. }
  69. if (res) {
  70. swsusp_set_page_forbidden(virt_to_page(res));
  71. swsusp_set_page_free(virt_to_page(res));
  72. }
  73. return res;
  74. }
  75. unsigned long get_safe_page(gfp_t gfp_mask)
  76. {
  77. return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
  78. }
  79. static struct page *alloc_image_page(gfp_t gfp_mask)
  80. {
  81. struct page *page;
  82. page = alloc_page(gfp_mask);
  83. if (page) {
  84. swsusp_set_page_forbidden(page);
  85. swsusp_set_page_free(page);
  86. }
  87. return page;
  88. }
  89. /**
  90. * free_image_page - free page represented by @addr, allocated with
  91. * get_image_page (page flags set by it must be cleared)
  92. */
  93. static inline void free_image_page(void *addr, int clear_nosave_free)
  94. {
  95. struct page *page;
  96. BUG_ON(!virt_addr_valid(addr));
  97. page = virt_to_page(addr);
  98. swsusp_unset_page_forbidden(page);
  99. if (clear_nosave_free)
  100. swsusp_unset_page_free(page);
  101. __free_page(page);
  102. }
  103. /* struct linked_page is used to build chains of pages */
  104. #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
  105. struct linked_page {
  106. struct linked_page *next;
  107. char data[LINKED_PAGE_DATA_SIZE];
  108. } __attribute__((packed));
  109. static inline void
  110. free_list_of_pages(struct linked_page *list, int clear_page_nosave)
  111. {
  112. while (list) {
  113. struct linked_page *lp = list->next;
  114. free_image_page(list, clear_page_nosave);
  115. list = lp;
  116. }
  117. }
  118. /**
  119. * struct chain_allocator is used for allocating small objects out of
  120. * a linked list of pages called 'the chain'.
  121. *
  122. * The chain grows each time when there is no room for a new object in
  123. * the current page. The allocated objects cannot be freed individually.
  124. * It is only possible to free them all at once, by freeing the entire
  125. * chain.
  126. *
  127. * NOTE: The chain allocator may be inefficient if the allocated objects
  128. * are not much smaller than PAGE_SIZE.
  129. */
  130. struct chain_allocator {
  131. struct linked_page *chain; /* the chain */
  132. unsigned int used_space; /* total size of objects allocated out
  133. * of the current page
  134. */
  135. gfp_t gfp_mask; /* mask for allocating pages */
  136. int safe_needed; /* if set, only "safe" pages are allocated */
  137. };
  138. static void
  139. chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
  140. {
  141. ca->chain = NULL;
  142. ca->used_space = LINKED_PAGE_DATA_SIZE;
  143. ca->gfp_mask = gfp_mask;
  144. ca->safe_needed = safe_needed;
  145. }
  146. static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
  147. {
  148. void *ret;
  149. if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
  150. struct linked_page *lp;
  151. lp = get_image_page(ca->gfp_mask, ca->safe_needed);
  152. if (!lp)
  153. return NULL;
  154. lp->next = ca->chain;
  155. ca->chain = lp;
  156. ca->used_space = 0;
  157. }
  158. ret = ca->chain->data + ca->used_space;
  159. ca->used_space += size;
  160. return ret;
  161. }
  162. static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
  163. {
  164. free_list_of_pages(ca->chain, clear_page_nosave);
  165. memset(ca, 0, sizeof(struct chain_allocator));
  166. }
  167. /**
  168. * Data types related to memory bitmaps.
  169. *
  170. * Memory bitmap is a structure consiting of many linked lists of
  171. * objects. The main list's elements are of type struct zone_bitmap
  172. * and each of them corresonds to one zone. For each zone bitmap
  173. * object there is a list of objects of type struct bm_block that
  174. * represent each blocks of bit chunks in which information is
  175. * stored.
  176. *
  177. * struct memory_bitmap contains a pointer to the main list of zone
  178. * bitmap objects, a struct bm_position used for browsing the bitmap,
  179. * and a pointer to the list of pages used for allocating all of the
  180. * zone bitmap objects and bitmap block objects.
  181. *
  182. * NOTE: It has to be possible to lay out the bitmap in memory
  183. * using only allocations of order 0. Additionally, the bitmap is
  184. * designed to work with arbitrary number of zones (this is over the
  185. * top for now, but let's avoid making unnecessary assumptions ;-).
  186. *
  187. * struct zone_bitmap contains a pointer to a list of bitmap block
  188. * objects and a pointer to the bitmap block object that has been
  189. * most recently used for setting bits. Additionally, it contains the
  190. * pfns that correspond to the start and end of the represented zone.
  191. *
  192. * struct bm_block contains a pointer to the memory page in which
  193. * information is stored (in the form of a block of bit chunks
  194. * of type unsigned long each). It also contains the pfns that
  195. * correspond to the start and end of the represented memory area and
  196. * the number of bit chunks in the block.
  197. */
  198. #define BM_END_OF_MAP (~0UL)
  199. #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long))
  200. #define BM_BITS_PER_CHUNK (sizeof(long) << 3)
  201. #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
  202. struct bm_block {
  203. struct bm_block *next; /* next element of the list */
  204. unsigned long start_pfn; /* pfn represented by the first bit */
  205. unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
  206. unsigned int size; /* number of bit chunks */
  207. unsigned long *data; /* chunks of bits representing pages */
  208. };
  209. struct zone_bitmap {
  210. struct zone_bitmap *next; /* next element of the list */
  211. unsigned long start_pfn; /* minimal pfn in this zone */
  212. unsigned long end_pfn; /* maximal pfn in this zone plus 1 */
  213. struct bm_block *bm_blocks; /* list of bitmap blocks */
  214. struct bm_block *cur_block; /* recently used bitmap block */
  215. };
  216. /* strcut bm_position is used for browsing memory bitmaps */
  217. struct bm_position {
  218. struct zone_bitmap *zone_bm;
  219. struct bm_block *block;
  220. int chunk;
  221. int bit;
  222. };
  223. struct memory_bitmap {
  224. struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */
  225. struct linked_page *p_list; /* list of pages used to store zone
  226. * bitmap objects and bitmap block
  227. * objects
  228. */
  229. struct bm_position cur; /* most recently used bit position */
  230. };
  231. /* Functions that operate on memory bitmaps */
  232. static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
  233. {
  234. bm->cur.chunk = 0;
  235. bm->cur.bit = -1;
  236. }
  237. static void memory_bm_position_reset(struct memory_bitmap *bm)
  238. {
  239. struct zone_bitmap *zone_bm;
  240. zone_bm = bm->zone_bm_list;
  241. bm->cur.zone_bm = zone_bm;
  242. bm->cur.block = zone_bm->bm_blocks;
  243. memory_bm_reset_chunk(bm);
  244. }
  245. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
  246. /**
  247. * create_bm_block_list - create a list of block bitmap objects
  248. */
  249. static inline struct bm_block *
  250. create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
  251. {
  252. struct bm_block *bblist = NULL;
  253. while (nr_blocks-- > 0) {
  254. struct bm_block *bb;
  255. bb = chain_alloc(ca, sizeof(struct bm_block));
  256. if (!bb)
  257. return NULL;
  258. bb->next = bblist;
  259. bblist = bb;
  260. }
  261. return bblist;
  262. }
  263. /**
  264. * create_zone_bm_list - create a list of zone bitmap objects
  265. */
  266. static inline struct zone_bitmap *
  267. create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
  268. {
  269. struct zone_bitmap *zbmlist = NULL;
  270. while (nr_zones-- > 0) {
  271. struct zone_bitmap *zbm;
  272. zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
  273. if (!zbm)
  274. return NULL;
  275. zbm->next = zbmlist;
  276. zbmlist = zbm;
  277. }
  278. return zbmlist;
  279. }
  280. /**
  281. * memory_bm_create - allocate memory for a memory bitmap
  282. */
  283. static int
  284. memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
  285. {
  286. struct chain_allocator ca;
  287. struct zone *zone;
  288. struct zone_bitmap *zone_bm;
  289. struct bm_block *bb;
  290. unsigned int nr;
  291. chain_init(&ca, gfp_mask, safe_needed);
  292. /* Compute the number of zones */
  293. nr = 0;
  294. for_each_zone(zone)
  295. if (populated_zone(zone))
  296. nr++;
  297. /* Allocate the list of zones bitmap objects */
  298. zone_bm = create_zone_bm_list(nr, &ca);
  299. bm->zone_bm_list = zone_bm;
  300. if (!zone_bm) {
  301. chain_free(&ca, PG_UNSAFE_CLEAR);
  302. return -ENOMEM;
  303. }
  304. /* Initialize the zone bitmap objects */
  305. for_each_zone(zone) {
  306. unsigned long pfn;
  307. if (!populated_zone(zone))
  308. continue;
  309. zone_bm->start_pfn = zone->zone_start_pfn;
  310. zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
  311. /* Allocate the list of bitmap block objects */
  312. nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
  313. bb = create_bm_block_list(nr, &ca);
  314. zone_bm->bm_blocks = bb;
  315. zone_bm->cur_block = bb;
  316. if (!bb)
  317. goto Free;
  318. nr = zone->spanned_pages;
  319. pfn = zone->zone_start_pfn;
  320. /* Initialize the bitmap block objects */
  321. while (bb) {
  322. unsigned long *ptr;
  323. ptr = get_image_page(gfp_mask, safe_needed);
  324. bb->data = ptr;
  325. if (!ptr)
  326. goto Free;
  327. bb->start_pfn = pfn;
  328. if (nr >= BM_BITS_PER_BLOCK) {
  329. pfn += BM_BITS_PER_BLOCK;
  330. bb->size = BM_CHUNKS_PER_BLOCK;
  331. nr -= BM_BITS_PER_BLOCK;
  332. } else {
  333. /* This is executed only once in the loop */
  334. pfn += nr;
  335. bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
  336. }
  337. bb->end_pfn = pfn;
  338. bb = bb->next;
  339. }
  340. zone_bm = zone_bm->next;
  341. }
  342. bm->p_list = ca.chain;
  343. memory_bm_position_reset(bm);
  344. return 0;
  345. Free:
  346. bm->p_list = ca.chain;
  347. memory_bm_free(bm, PG_UNSAFE_CLEAR);
  348. return -ENOMEM;
  349. }
  350. /**
  351. * memory_bm_free - free memory occupied by the memory bitmap @bm
  352. */
  353. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
  354. {
  355. struct zone_bitmap *zone_bm;
  356. /* Free the list of bit blocks for each zone_bitmap object */
  357. zone_bm = bm->zone_bm_list;
  358. while (zone_bm) {
  359. struct bm_block *bb;
  360. bb = zone_bm->bm_blocks;
  361. while (bb) {
  362. if (bb->data)
  363. free_image_page(bb->data, clear_nosave_free);
  364. bb = bb->next;
  365. }
  366. zone_bm = zone_bm->next;
  367. }
  368. free_list_of_pages(bm->p_list, clear_nosave_free);
  369. bm->zone_bm_list = NULL;
  370. }
  371. /**
  372. * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
  373. * to given pfn. The cur_zone_bm member of @bm and the cur_block member
  374. * of @bm->cur_zone_bm are updated.
  375. */
  376. static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
  377. void **addr, unsigned int *bit_nr)
  378. {
  379. struct zone_bitmap *zone_bm;
  380. struct bm_block *bb;
  381. /* Check if the pfn is from the current zone */
  382. zone_bm = bm->cur.zone_bm;
  383. if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
  384. zone_bm = bm->zone_bm_list;
  385. /* We don't assume that the zones are sorted by pfns */
  386. while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
  387. zone_bm = zone_bm->next;
  388. BUG_ON(!zone_bm);
  389. }
  390. bm->cur.zone_bm = zone_bm;
  391. }
  392. /* Check if the pfn corresponds to the current bitmap block */
  393. bb = zone_bm->cur_block;
  394. if (pfn < bb->start_pfn)
  395. bb = zone_bm->bm_blocks;
  396. while (pfn >= bb->end_pfn) {
  397. bb = bb->next;
  398. BUG_ON(!bb);
  399. }
  400. zone_bm->cur_block = bb;
  401. pfn -= bb->start_pfn;
  402. *bit_nr = pfn % BM_BITS_PER_CHUNK;
  403. *addr = bb->data + pfn / BM_BITS_PER_CHUNK;
  404. }
  405. static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
  406. {
  407. void *addr;
  408. unsigned int bit;
  409. memory_bm_find_bit(bm, pfn, &addr, &bit);
  410. set_bit(bit, addr);
  411. }
  412. static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
  413. {
  414. void *addr;
  415. unsigned int bit;
  416. memory_bm_find_bit(bm, pfn, &addr, &bit);
  417. clear_bit(bit, addr);
  418. }
  419. static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
  420. {
  421. void *addr;
  422. unsigned int bit;
  423. memory_bm_find_bit(bm, pfn, &addr, &bit);
  424. return test_bit(bit, addr);
  425. }
  426. /* Two auxiliary functions for memory_bm_next_pfn */
  427. /* Find the first set bit in the given chunk, if there is one */
  428. static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
  429. {
  430. bit++;
  431. while (bit < BM_BITS_PER_CHUNK) {
  432. if (test_bit(bit, chunk_p))
  433. return bit;
  434. bit++;
  435. }
  436. return -1;
  437. }
  438. /* Find a chunk containing some bits set in given block of bits */
  439. static inline int next_chunk_in_block(int n, struct bm_block *bb)
  440. {
  441. n++;
  442. while (n < bb->size) {
  443. if (bb->data[n])
  444. return n;
  445. n++;
  446. }
  447. return -1;
  448. }
  449. /**
  450. * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
  451. * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
  452. * returned.
  453. *
  454. * It is required to run memory_bm_position_reset() before the first call to
  455. * this function.
  456. */
  457. static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
  458. {
  459. struct zone_bitmap *zone_bm;
  460. struct bm_block *bb;
  461. int chunk;
  462. int bit;
  463. do {
  464. bb = bm->cur.block;
  465. do {
  466. chunk = bm->cur.chunk;
  467. bit = bm->cur.bit;
  468. do {
  469. bit = next_bit_in_chunk(bit, bb->data + chunk);
  470. if (bit >= 0)
  471. goto Return_pfn;
  472. chunk = next_chunk_in_block(chunk, bb);
  473. bit = -1;
  474. } while (chunk >= 0);
  475. bb = bb->next;
  476. bm->cur.block = bb;
  477. memory_bm_reset_chunk(bm);
  478. } while (bb);
  479. zone_bm = bm->cur.zone_bm->next;
  480. if (zone_bm) {
  481. bm->cur.zone_bm = zone_bm;
  482. bm->cur.block = zone_bm->bm_blocks;
  483. memory_bm_reset_chunk(bm);
  484. }
  485. } while (zone_bm);
  486. memory_bm_position_reset(bm);
  487. return BM_END_OF_MAP;
  488. Return_pfn:
  489. bm->cur.chunk = chunk;
  490. bm->cur.bit = bit;
  491. return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
  492. }
  493. /**
  494. * This structure represents a range of page frames the contents of which
  495. * should not be saved during the suspend.
  496. */
  497. struct nosave_region {
  498. struct list_head list;
  499. unsigned long start_pfn;
  500. unsigned long end_pfn;
  501. };
  502. static LIST_HEAD(nosave_regions);
  503. /**
  504. * register_nosave_region - register a range of page frames the contents
  505. * of which should not be saved during the suspend (to be used in the early
  506. * initialization code)
  507. */
  508. void __init
  509. __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
  510. int use_kmalloc)
  511. {
  512. struct nosave_region *region;
  513. if (start_pfn >= end_pfn)
  514. return;
  515. if (!list_empty(&nosave_regions)) {
  516. /* Try to extend the previous region (they should be sorted) */
  517. region = list_entry(nosave_regions.prev,
  518. struct nosave_region, list);
  519. if (region->end_pfn == start_pfn) {
  520. region->end_pfn = end_pfn;
  521. goto Report;
  522. }
  523. }
  524. if (use_kmalloc) {
  525. /* during init, this shouldn't fail */
  526. region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
  527. BUG_ON(!region);
  528. } else
  529. /* This allocation cannot fail */
  530. region = alloc_bootmem_low(sizeof(struct nosave_region));
  531. region->start_pfn = start_pfn;
  532. region->end_pfn = end_pfn;
  533. list_add_tail(&region->list, &nosave_regions);
  534. Report:
  535. printk("swsusp: Registered nosave memory region: %016lx - %016lx\n",
  536. start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
  537. }
  538. /*
  539. * Set bits in this map correspond to the page frames the contents of which
  540. * should not be saved during the suspend.
  541. */
  542. static struct memory_bitmap *forbidden_pages_map;
  543. /* Set bits in this map correspond to free page frames. */
  544. static struct memory_bitmap *free_pages_map;
  545. /*
  546. * Each page frame allocated for creating the image is marked by setting the
  547. * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
  548. */
  549. void swsusp_set_page_free(struct page *page)
  550. {
  551. if (free_pages_map)
  552. memory_bm_set_bit(free_pages_map, page_to_pfn(page));
  553. }
  554. static int swsusp_page_is_free(struct page *page)
  555. {
  556. return free_pages_map ?
  557. memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
  558. }
  559. void swsusp_unset_page_free(struct page *page)
  560. {
  561. if (free_pages_map)
  562. memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
  563. }
  564. static void swsusp_set_page_forbidden(struct page *page)
  565. {
  566. if (forbidden_pages_map)
  567. memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
  568. }
  569. int swsusp_page_is_forbidden(struct page *page)
  570. {
  571. return forbidden_pages_map ?
  572. memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
  573. }
  574. static void swsusp_unset_page_forbidden(struct page *page)
  575. {
  576. if (forbidden_pages_map)
  577. memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
  578. }
  579. /**
  580. * mark_nosave_pages - set bits corresponding to the page frames the
  581. * contents of which should not be saved in a given bitmap.
  582. */
  583. static void mark_nosave_pages(struct memory_bitmap *bm)
  584. {
  585. struct nosave_region *region;
  586. if (list_empty(&nosave_regions))
  587. return;
  588. list_for_each_entry(region, &nosave_regions, list) {
  589. unsigned long pfn;
  590. printk("swsusp: Marking nosave pages: %016lx - %016lx\n",
  591. region->start_pfn << PAGE_SHIFT,
  592. region->end_pfn << PAGE_SHIFT);
  593. for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
  594. memory_bm_set_bit(bm, pfn);
  595. }
  596. }
  597. /**
  598. * create_basic_memory_bitmaps - create bitmaps needed for marking page
  599. * frames that should not be saved and free page frames. The pointers
  600. * forbidden_pages_map and free_pages_map are only modified if everything
  601. * goes well, because we don't want the bits to be used before both bitmaps
  602. * are set up.
  603. */
  604. int create_basic_memory_bitmaps(void)
  605. {
  606. struct memory_bitmap *bm1, *bm2;
  607. int error = 0;
  608. BUG_ON(forbidden_pages_map || free_pages_map);
  609. bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  610. if (!bm1)
  611. return -ENOMEM;
  612. error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
  613. if (error)
  614. goto Free_first_object;
  615. bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  616. if (!bm2)
  617. goto Free_first_bitmap;
  618. error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
  619. if (error)
  620. goto Free_second_object;
  621. forbidden_pages_map = bm1;
  622. free_pages_map = bm2;
  623. mark_nosave_pages(forbidden_pages_map);
  624. printk("swsusp: Basic memory bitmaps created\n");
  625. return 0;
  626. Free_second_object:
  627. kfree(bm2);
  628. Free_first_bitmap:
  629. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  630. Free_first_object:
  631. kfree(bm1);
  632. return -ENOMEM;
  633. }
  634. /**
  635. * free_basic_memory_bitmaps - free memory bitmaps allocated by
  636. * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
  637. * so that the bitmaps themselves are not referred to while they are being
  638. * freed.
  639. */
  640. void free_basic_memory_bitmaps(void)
  641. {
  642. struct memory_bitmap *bm1, *bm2;
  643. BUG_ON(!(forbidden_pages_map && free_pages_map));
  644. bm1 = forbidden_pages_map;
  645. bm2 = free_pages_map;
  646. forbidden_pages_map = NULL;
  647. free_pages_map = NULL;
  648. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  649. kfree(bm1);
  650. memory_bm_free(bm2, PG_UNSAFE_CLEAR);
  651. kfree(bm2);
  652. printk("swsusp: Basic memory bitmaps freed\n");
  653. }
  654. /**
  655. * snapshot_additional_pages - estimate the number of additional pages
  656. * be needed for setting up the suspend image data structures for given
  657. * zone (usually the returned value is greater than the exact number)
  658. */
  659. unsigned int snapshot_additional_pages(struct zone *zone)
  660. {
  661. unsigned int res;
  662. res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
  663. res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
  664. return 2 * res;
  665. }
  666. #ifdef CONFIG_HIGHMEM
  667. /**
  668. * count_free_highmem_pages - compute the total number of free highmem
  669. * pages, system-wide.
  670. */
  671. static unsigned int count_free_highmem_pages(void)
  672. {
  673. struct zone *zone;
  674. unsigned int cnt = 0;
  675. for_each_zone(zone)
  676. if (populated_zone(zone) && is_highmem(zone))
  677. cnt += zone_page_state(zone, NR_FREE_PAGES);
  678. return cnt;
  679. }
  680. /**
  681. * saveable_highmem_page - Determine whether a highmem page should be
  682. * included in the suspend image.
  683. *
  684. * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
  685. * and it isn't a part of a free chunk of pages.
  686. */
  687. static struct page *saveable_highmem_page(unsigned long pfn)
  688. {
  689. struct page *page;
  690. if (!pfn_valid(pfn))
  691. return NULL;
  692. page = pfn_to_page(pfn);
  693. BUG_ON(!PageHighMem(page));
  694. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
  695. PageReserved(page))
  696. return NULL;
  697. return page;
  698. }
  699. /**
  700. * count_highmem_pages - compute the total number of saveable highmem
  701. * pages.
  702. */
  703. unsigned int count_highmem_pages(void)
  704. {
  705. struct zone *zone;
  706. unsigned int n = 0;
  707. for_each_zone(zone) {
  708. unsigned long pfn, max_zone_pfn;
  709. if (!is_highmem(zone))
  710. continue;
  711. mark_free_pages(zone);
  712. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  713. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  714. if (saveable_highmem_page(pfn))
  715. n++;
  716. }
  717. return n;
  718. }
  719. #else
  720. static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
  721. static inline unsigned int count_highmem_pages(void) { return 0; }
  722. #endif /* CONFIG_HIGHMEM */
  723. /**
  724. * saveable - Determine whether a non-highmem page should be included in
  725. * the suspend image.
  726. *
  727. * We should save the page if it isn't Nosave, and is not in the range
  728. * of pages statically defined as 'unsaveable', and it isn't a part of
  729. * a free chunk of pages.
  730. */
  731. static struct page *saveable_page(unsigned long pfn)
  732. {
  733. struct page *page;
  734. if (!pfn_valid(pfn))
  735. return NULL;
  736. page = pfn_to_page(pfn);
  737. BUG_ON(PageHighMem(page));
  738. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
  739. return NULL;
  740. if (PageReserved(page) && pfn_is_nosave(pfn))
  741. return NULL;
  742. return page;
  743. }
  744. /**
  745. * count_data_pages - compute the total number of saveable non-highmem
  746. * pages.
  747. */
  748. unsigned int count_data_pages(void)
  749. {
  750. struct zone *zone;
  751. unsigned long pfn, max_zone_pfn;
  752. unsigned int n = 0;
  753. for_each_zone(zone) {
  754. if (is_highmem(zone))
  755. continue;
  756. mark_free_pages(zone);
  757. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  758. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  759. if(saveable_page(pfn))
  760. n++;
  761. }
  762. return n;
  763. }
  764. /* This is needed, because copy_page and memcpy are not usable for copying
  765. * task structs.
  766. */
  767. static inline void do_copy_page(long *dst, long *src)
  768. {
  769. int n;
  770. for (n = PAGE_SIZE / sizeof(long); n; n--)
  771. *dst++ = *src++;
  772. }
  773. #ifdef CONFIG_HIGHMEM
  774. static inline struct page *
  775. page_is_saveable(struct zone *zone, unsigned long pfn)
  776. {
  777. return is_highmem(zone) ?
  778. saveable_highmem_page(pfn) : saveable_page(pfn);
  779. }
  780. static inline void
  781. copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  782. {
  783. struct page *s_page, *d_page;
  784. void *src, *dst;
  785. s_page = pfn_to_page(src_pfn);
  786. d_page = pfn_to_page(dst_pfn);
  787. if (PageHighMem(s_page)) {
  788. src = kmap_atomic(s_page, KM_USER0);
  789. dst = kmap_atomic(d_page, KM_USER1);
  790. do_copy_page(dst, src);
  791. kunmap_atomic(src, KM_USER0);
  792. kunmap_atomic(dst, KM_USER1);
  793. } else {
  794. src = page_address(s_page);
  795. if (PageHighMem(d_page)) {
  796. /* Page pointed to by src may contain some kernel
  797. * data modified by kmap_atomic()
  798. */
  799. do_copy_page(buffer, src);
  800. dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
  801. memcpy(dst, buffer, PAGE_SIZE);
  802. kunmap_atomic(dst, KM_USER0);
  803. } else {
  804. dst = page_address(d_page);
  805. do_copy_page(dst, src);
  806. }
  807. }
  808. }
  809. #else
  810. #define page_is_saveable(zone, pfn) saveable_page(pfn)
  811. static inline void
  812. copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  813. {
  814. do_copy_page(page_address(pfn_to_page(dst_pfn)),
  815. page_address(pfn_to_page(src_pfn)));
  816. }
  817. #endif /* CONFIG_HIGHMEM */
  818. static void
  819. copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
  820. {
  821. struct zone *zone;
  822. unsigned long pfn;
  823. for_each_zone(zone) {
  824. unsigned long max_zone_pfn;
  825. mark_free_pages(zone);
  826. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  827. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  828. if (page_is_saveable(zone, pfn))
  829. memory_bm_set_bit(orig_bm, pfn);
  830. }
  831. memory_bm_position_reset(orig_bm);
  832. memory_bm_position_reset(copy_bm);
  833. do {
  834. pfn = memory_bm_next_pfn(orig_bm);
  835. if (likely(pfn != BM_END_OF_MAP))
  836. copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
  837. } while (pfn != BM_END_OF_MAP);
  838. }
  839. /* Total number of image pages */
  840. static unsigned int nr_copy_pages;
  841. /* Number of pages needed for saving the original pfns of the image pages */
  842. static unsigned int nr_meta_pages;
  843. /**
  844. * swsusp_free - free pages allocated for the suspend.
  845. *
  846. * Suspend pages are alocated before the atomic copy is made, so we
  847. * need to release them after the resume.
  848. */
  849. void swsusp_free(void)
  850. {
  851. struct zone *zone;
  852. unsigned long pfn, max_zone_pfn;
  853. for_each_zone(zone) {
  854. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  855. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  856. if (pfn_valid(pfn)) {
  857. struct page *page = pfn_to_page(pfn);
  858. if (swsusp_page_is_forbidden(page) &&
  859. swsusp_page_is_free(page)) {
  860. swsusp_unset_page_forbidden(page);
  861. swsusp_unset_page_free(page);
  862. __free_page(page);
  863. }
  864. }
  865. }
  866. nr_copy_pages = 0;
  867. nr_meta_pages = 0;
  868. restore_pblist = NULL;
  869. buffer = NULL;
  870. }
  871. #ifdef CONFIG_HIGHMEM
  872. /**
  873. * count_pages_for_highmem - compute the number of non-highmem pages
  874. * that will be necessary for creating copies of highmem pages.
  875. */
  876. static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
  877. {
  878. unsigned int free_highmem = count_free_highmem_pages();
  879. if (free_highmem >= nr_highmem)
  880. nr_highmem = 0;
  881. else
  882. nr_highmem -= free_highmem;
  883. return nr_highmem;
  884. }
  885. #else
  886. static unsigned int
  887. count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
  888. #endif /* CONFIG_HIGHMEM */
  889. /**
  890. * enough_free_mem - Make sure we have enough free memory for the
  891. * snapshot image.
  892. */
  893. static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
  894. {
  895. struct zone *zone;
  896. unsigned int free = 0, meta = 0;
  897. for_each_zone(zone) {
  898. meta += snapshot_additional_pages(zone);
  899. if (!is_highmem(zone))
  900. free += zone_page_state(zone, NR_FREE_PAGES);
  901. }
  902. nr_pages += count_pages_for_highmem(nr_highmem);
  903. pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
  904. nr_pages, PAGES_FOR_IO, meta, free);
  905. return free > nr_pages + PAGES_FOR_IO + meta;
  906. }
  907. #ifdef CONFIG_HIGHMEM
  908. /**
  909. * get_highmem_buffer - if there are some highmem pages in the suspend
  910. * image, we may need the buffer to copy them and/or load their data.
  911. */
  912. static inline int get_highmem_buffer(int safe_needed)
  913. {
  914. buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
  915. return buffer ? 0 : -ENOMEM;
  916. }
  917. /**
  918. * alloc_highmem_image_pages - allocate some highmem pages for the image.
  919. * Try to allocate as many pages as needed, but if the number of free
  920. * highmem pages is lesser than that, allocate them all.
  921. */
  922. static inline unsigned int
  923. alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
  924. {
  925. unsigned int to_alloc = count_free_highmem_pages();
  926. if (to_alloc > nr_highmem)
  927. to_alloc = nr_highmem;
  928. nr_highmem -= to_alloc;
  929. while (to_alloc-- > 0) {
  930. struct page *page;
  931. page = alloc_image_page(__GFP_HIGHMEM);
  932. memory_bm_set_bit(bm, page_to_pfn(page));
  933. }
  934. return nr_highmem;
  935. }
  936. #else
  937. static inline int get_highmem_buffer(int safe_needed) { return 0; }
  938. static inline unsigned int
  939. alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
  940. #endif /* CONFIG_HIGHMEM */
  941. /**
  942. * swsusp_alloc - allocate memory for the suspend image
  943. *
  944. * We first try to allocate as many highmem pages as there are
  945. * saveable highmem pages in the system. If that fails, we allocate
  946. * non-highmem pages for the copies of the remaining highmem ones.
  947. *
  948. * In this approach it is likely that the copies of highmem pages will
  949. * also be located in the high memory, because of the way in which
  950. * copy_data_pages() works.
  951. */
  952. static int
  953. swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
  954. unsigned int nr_pages, unsigned int nr_highmem)
  955. {
  956. int error;
  957. error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
  958. if (error)
  959. goto Free;
  960. error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
  961. if (error)
  962. goto Free;
  963. if (nr_highmem > 0) {
  964. error = get_highmem_buffer(PG_ANY);
  965. if (error)
  966. goto Free;
  967. nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
  968. }
  969. while (nr_pages-- > 0) {
  970. struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
  971. if (!page)
  972. goto Free;
  973. memory_bm_set_bit(copy_bm, page_to_pfn(page));
  974. }
  975. return 0;
  976. Free:
  977. swsusp_free();
  978. return -ENOMEM;
  979. }
  980. /* Memory bitmap used for marking saveable pages (during suspend) or the
  981. * suspend image pages (during resume)
  982. */
  983. static struct memory_bitmap orig_bm;
  984. /* Memory bitmap used on suspend for marking allocated pages that will contain
  985. * the copies of saveable pages. During resume it is initially used for
  986. * marking the suspend image pages, but then its set bits are duplicated in
  987. * @orig_bm and it is released. Next, on systems with high memory, it may be
  988. * used for marking "safe" highmem pages, but it has to be reinitialized for
  989. * this purpose.
  990. */
  991. static struct memory_bitmap copy_bm;
  992. asmlinkage int swsusp_save(void)
  993. {
  994. unsigned int nr_pages, nr_highmem;
  995. printk("swsusp: critical section: \n");
  996. drain_local_pages();
  997. nr_pages = count_data_pages();
  998. nr_highmem = count_highmem_pages();
  999. printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
  1000. if (!enough_free_mem(nr_pages, nr_highmem)) {
  1001. printk(KERN_ERR "swsusp: Not enough free memory\n");
  1002. return -ENOMEM;
  1003. }
  1004. if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
  1005. printk(KERN_ERR "swsusp: Memory allocation failed\n");
  1006. return -ENOMEM;
  1007. }
  1008. /* During allocating of suspend pagedir, new cold pages may appear.
  1009. * Kill them.
  1010. */
  1011. drain_local_pages();
  1012. copy_data_pages(&copy_bm, &orig_bm);
  1013. /*
  1014. * End of critical section. From now on, we can write to memory,
  1015. * but we should not touch disk. This specially means we must _not_
  1016. * touch swap space! Except we must write out our image of course.
  1017. */
  1018. nr_pages += nr_highmem;
  1019. nr_copy_pages = nr_pages;
  1020. nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
  1021. printk("swsusp: critical section: done (%d pages copied)\n", nr_pages);
  1022. return 0;
  1023. }
  1024. static void init_header(struct swsusp_info *info)
  1025. {
  1026. memset(info, 0, sizeof(struct swsusp_info));
  1027. info->version_code = LINUX_VERSION_CODE;
  1028. info->num_physpages = num_physpages;
  1029. memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
  1030. info->cpus = num_online_cpus();
  1031. info->image_pages = nr_copy_pages;
  1032. info->pages = nr_copy_pages + nr_meta_pages + 1;
  1033. info->size = info->pages;
  1034. info->size <<= PAGE_SHIFT;
  1035. }
  1036. /**
  1037. * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
  1038. * are stored in the array @buf[] (1 page at a time)
  1039. */
  1040. static inline void
  1041. pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1042. {
  1043. int j;
  1044. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1045. buf[j] = memory_bm_next_pfn(bm);
  1046. if (unlikely(buf[j] == BM_END_OF_MAP))
  1047. break;
  1048. }
  1049. }
  1050. /**
  1051. * snapshot_read_next - used for reading the system memory snapshot.
  1052. *
  1053. * On the first call to it @handle should point to a zeroed
  1054. * snapshot_handle structure. The structure gets updated and a pointer
  1055. * to it should be passed to this function every next time.
  1056. *
  1057. * The @count parameter should contain the number of bytes the caller
  1058. * wants to read from the snapshot. It must not be zero.
  1059. *
  1060. * On success the function returns a positive number. Then, the caller
  1061. * is allowed to read up to the returned number of bytes from the memory
  1062. * location computed by the data_of() macro. The number returned
  1063. * may be smaller than @count, but this only happens if the read would
  1064. * cross a page boundary otherwise.
  1065. *
  1066. * The function returns 0 to indicate the end of data stream condition,
  1067. * and a negative number is returned on error. In such cases the
  1068. * structure pointed to by @handle is not updated and should not be used
  1069. * any more.
  1070. */
  1071. int snapshot_read_next(struct snapshot_handle *handle, size_t count)
  1072. {
  1073. if (handle->cur > nr_meta_pages + nr_copy_pages)
  1074. return 0;
  1075. if (!buffer) {
  1076. /* This makes the buffer be freed by swsusp_free() */
  1077. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1078. if (!buffer)
  1079. return -ENOMEM;
  1080. }
  1081. if (!handle->offset) {
  1082. init_header((struct swsusp_info *)buffer);
  1083. handle->buffer = buffer;
  1084. memory_bm_position_reset(&orig_bm);
  1085. memory_bm_position_reset(&copy_bm);
  1086. }
  1087. if (handle->prev < handle->cur) {
  1088. if (handle->cur <= nr_meta_pages) {
  1089. memset(buffer, 0, PAGE_SIZE);
  1090. pack_pfns(buffer, &orig_bm);
  1091. } else {
  1092. struct page *page;
  1093. page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
  1094. if (PageHighMem(page)) {
  1095. /* Highmem pages are copied to the buffer,
  1096. * because we can't return with a kmapped
  1097. * highmem page (we may not be called again).
  1098. */
  1099. void *kaddr;
  1100. kaddr = kmap_atomic(page, KM_USER0);
  1101. memcpy(buffer, kaddr, PAGE_SIZE);
  1102. kunmap_atomic(kaddr, KM_USER0);
  1103. handle->buffer = buffer;
  1104. } else {
  1105. handle->buffer = page_address(page);
  1106. }
  1107. }
  1108. handle->prev = handle->cur;
  1109. }
  1110. handle->buf_offset = handle->cur_offset;
  1111. if (handle->cur_offset + count >= PAGE_SIZE) {
  1112. count = PAGE_SIZE - handle->cur_offset;
  1113. handle->cur_offset = 0;
  1114. handle->cur++;
  1115. } else {
  1116. handle->cur_offset += count;
  1117. }
  1118. handle->offset += count;
  1119. return count;
  1120. }
  1121. /**
  1122. * mark_unsafe_pages - mark the pages that cannot be used for storing
  1123. * the image during resume, because they conflict with the pages that
  1124. * had been used before suspend
  1125. */
  1126. static int mark_unsafe_pages(struct memory_bitmap *bm)
  1127. {
  1128. struct zone *zone;
  1129. unsigned long pfn, max_zone_pfn;
  1130. /* Clear page flags */
  1131. for_each_zone(zone) {
  1132. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1133. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1134. if (pfn_valid(pfn))
  1135. swsusp_unset_page_free(pfn_to_page(pfn));
  1136. }
  1137. /* Mark pages that correspond to the "original" pfns as "unsafe" */
  1138. memory_bm_position_reset(bm);
  1139. do {
  1140. pfn = memory_bm_next_pfn(bm);
  1141. if (likely(pfn != BM_END_OF_MAP)) {
  1142. if (likely(pfn_valid(pfn)))
  1143. swsusp_set_page_free(pfn_to_page(pfn));
  1144. else
  1145. return -EFAULT;
  1146. }
  1147. } while (pfn != BM_END_OF_MAP);
  1148. allocated_unsafe_pages = 0;
  1149. return 0;
  1150. }
  1151. static void
  1152. duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
  1153. {
  1154. unsigned long pfn;
  1155. memory_bm_position_reset(src);
  1156. pfn = memory_bm_next_pfn(src);
  1157. while (pfn != BM_END_OF_MAP) {
  1158. memory_bm_set_bit(dst, pfn);
  1159. pfn = memory_bm_next_pfn(src);
  1160. }
  1161. }
  1162. static inline int check_header(struct swsusp_info *info)
  1163. {
  1164. char *reason = NULL;
  1165. if (info->version_code != LINUX_VERSION_CODE)
  1166. reason = "kernel version";
  1167. if (info->num_physpages != num_physpages)
  1168. reason = "memory size";
  1169. if (strcmp(info->uts.sysname,init_utsname()->sysname))
  1170. reason = "system type";
  1171. if (strcmp(info->uts.release,init_utsname()->release))
  1172. reason = "kernel release";
  1173. if (strcmp(info->uts.version,init_utsname()->version))
  1174. reason = "version";
  1175. if (strcmp(info->uts.machine,init_utsname()->machine))
  1176. reason = "machine";
  1177. if (reason) {
  1178. printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
  1179. return -EPERM;
  1180. }
  1181. return 0;
  1182. }
  1183. /**
  1184. * load header - check the image header and copy data from it
  1185. */
  1186. static int
  1187. load_header(struct swsusp_info *info)
  1188. {
  1189. int error;
  1190. restore_pblist = NULL;
  1191. error = check_header(info);
  1192. if (!error) {
  1193. nr_copy_pages = info->image_pages;
  1194. nr_meta_pages = info->pages - info->image_pages - 1;
  1195. }
  1196. return error;
  1197. }
  1198. /**
  1199. * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
  1200. * the corresponding bit in the memory bitmap @bm
  1201. */
  1202. static inline void
  1203. unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1204. {
  1205. int j;
  1206. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1207. if (unlikely(buf[j] == BM_END_OF_MAP))
  1208. break;
  1209. memory_bm_set_bit(bm, buf[j]);
  1210. }
  1211. }
  1212. /* List of "safe" pages that may be used to store data loaded from the suspend
  1213. * image
  1214. */
  1215. static struct linked_page *safe_pages_list;
  1216. #ifdef CONFIG_HIGHMEM
  1217. /* struct highmem_pbe is used for creating the list of highmem pages that
  1218. * should be restored atomically during the resume from disk, because the page
  1219. * frames they have occupied before the suspend are in use.
  1220. */
  1221. struct highmem_pbe {
  1222. struct page *copy_page; /* data is here now */
  1223. struct page *orig_page; /* data was here before the suspend */
  1224. struct highmem_pbe *next;
  1225. };
  1226. /* List of highmem PBEs needed for restoring the highmem pages that were
  1227. * allocated before the suspend and included in the suspend image, but have
  1228. * also been allocated by the "resume" kernel, so their contents cannot be
  1229. * written directly to their "original" page frames.
  1230. */
  1231. static struct highmem_pbe *highmem_pblist;
  1232. /**
  1233. * count_highmem_image_pages - compute the number of highmem pages in the
  1234. * suspend image. The bits in the memory bitmap @bm that correspond to the
  1235. * image pages are assumed to be set.
  1236. */
  1237. static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
  1238. {
  1239. unsigned long pfn;
  1240. unsigned int cnt = 0;
  1241. memory_bm_position_reset(bm);
  1242. pfn = memory_bm_next_pfn(bm);
  1243. while (pfn != BM_END_OF_MAP) {
  1244. if (PageHighMem(pfn_to_page(pfn)))
  1245. cnt++;
  1246. pfn = memory_bm_next_pfn(bm);
  1247. }
  1248. return cnt;
  1249. }
  1250. /**
  1251. * prepare_highmem_image - try to allocate as many highmem pages as
  1252. * there are highmem image pages (@nr_highmem_p points to the variable
  1253. * containing the number of highmem image pages). The pages that are
  1254. * "safe" (ie. will not be overwritten when the suspend image is
  1255. * restored) have the corresponding bits set in @bm (it must be
  1256. * unitialized).
  1257. *
  1258. * NOTE: This function should not be called if there are no highmem
  1259. * image pages.
  1260. */
  1261. static unsigned int safe_highmem_pages;
  1262. static struct memory_bitmap *safe_highmem_bm;
  1263. static int
  1264. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1265. {
  1266. unsigned int to_alloc;
  1267. if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
  1268. return -ENOMEM;
  1269. if (get_highmem_buffer(PG_SAFE))
  1270. return -ENOMEM;
  1271. to_alloc = count_free_highmem_pages();
  1272. if (to_alloc > *nr_highmem_p)
  1273. to_alloc = *nr_highmem_p;
  1274. else
  1275. *nr_highmem_p = to_alloc;
  1276. safe_highmem_pages = 0;
  1277. while (to_alloc-- > 0) {
  1278. struct page *page;
  1279. page = alloc_page(__GFP_HIGHMEM);
  1280. if (!swsusp_page_is_free(page)) {
  1281. /* The page is "safe", set its bit the bitmap */
  1282. memory_bm_set_bit(bm, page_to_pfn(page));
  1283. safe_highmem_pages++;
  1284. }
  1285. /* Mark the page as allocated */
  1286. swsusp_set_page_forbidden(page);
  1287. swsusp_set_page_free(page);
  1288. }
  1289. memory_bm_position_reset(bm);
  1290. safe_highmem_bm = bm;
  1291. return 0;
  1292. }
  1293. /**
  1294. * get_highmem_page_buffer - for given highmem image page find the buffer
  1295. * that suspend_write_next() should set for its caller to write to.
  1296. *
  1297. * If the page is to be saved to its "original" page frame or a copy of
  1298. * the page is to be made in the highmem, @buffer is returned. Otherwise,
  1299. * the copy of the page is to be made in normal memory, so the address of
  1300. * the copy is returned.
  1301. *
  1302. * If @buffer is returned, the caller of suspend_write_next() will write
  1303. * the page's contents to @buffer, so they will have to be copied to the
  1304. * right location on the next call to suspend_write_next() and it is done
  1305. * with the help of copy_last_highmem_page(). For this purpose, if
  1306. * @buffer is returned, @last_highmem page is set to the page to which
  1307. * the data will have to be copied from @buffer.
  1308. */
  1309. static struct page *last_highmem_page;
  1310. static void *
  1311. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1312. {
  1313. struct highmem_pbe *pbe;
  1314. void *kaddr;
  1315. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
  1316. /* We have allocated the "original" page frame and we can
  1317. * use it directly to store the loaded page.
  1318. */
  1319. last_highmem_page = page;
  1320. return buffer;
  1321. }
  1322. /* The "original" page frame has not been allocated and we have to
  1323. * use a "safe" page frame to store the loaded page.
  1324. */
  1325. pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
  1326. if (!pbe) {
  1327. swsusp_free();
  1328. return NULL;
  1329. }
  1330. pbe->orig_page = page;
  1331. if (safe_highmem_pages > 0) {
  1332. struct page *tmp;
  1333. /* Copy of the page will be stored in high memory */
  1334. kaddr = buffer;
  1335. tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
  1336. safe_highmem_pages--;
  1337. last_highmem_page = tmp;
  1338. pbe->copy_page = tmp;
  1339. } else {
  1340. /* Copy of the page will be stored in normal memory */
  1341. kaddr = safe_pages_list;
  1342. safe_pages_list = safe_pages_list->next;
  1343. pbe->copy_page = virt_to_page(kaddr);
  1344. }
  1345. pbe->next = highmem_pblist;
  1346. highmem_pblist = pbe;
  1347. return kaddr;
  1348. }
  1349. /**
  1350. * copy_last_highmem_page - copy the contents of a highmem image from
  1351. * @buffer, where the caller of snapshot_write_next() has place them,
  1352. * to the right location represented by @last_highmem_page .
  1353. */
  1354. static void copy_last_highmem_page(void)
  1355. {
  1356. if (last_highmem_page) {
  1357. void *dst;
  1358. dst = kmap_atomic(last_highmem_page, KM_USER0);
  1359. memcpy(dst, buffer, PAGE_SIZE);
  1360. kunmap_atomic(dst, KM_USER0);
  1361. last_highmem_page = NULL;
  1362. }
  1363. }
  1364. static inline int last_highmem_page_copied(void)
  1365. {
  1366. return !last_highmem_page;
  1367. }
  1368. static inline void free_highmem_data(void)
  1369. {
  1370. if (safe_highmem_bm)
  1371. memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
  1372. if (buffer)
  1373. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1374. }
  1375. #else
  1376. static inline int get_safe_write_buffer(void) { return 0; }
  1377. static unsigned int
  1378. count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
  1379. static inline int
  1380. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1381. {
  1382. return 0;
  1383. }
  1384. static inline void *
  1385. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1386. {
  1387. return NULL;
  1388. }
  1389. static inline void copy_last_highmem_page(void) {}
  1390. static inline int last_highmem_page_copied(void) { return 1; }
  1391. static inline void free_highmem_data(void) {}
  1392. #endif /* CONFIG_HIGHMEM */
  1393. /**
  1394. * prepare_image - use the memory bitmap @bm to mark the pages that will
  1395. * be overwritten in the process of restoring the system memory state
  1396. * from the suspend image ("unsafe" pages) and allocate memory for the
  1397. * image.
  1398. *
  1399. * The idea is to allocate a new memory bitmap first and then allocate
  1400. * as many pages as needed for the image data, but not to assign these
  1401. * pages to specific tasks initially. Instead, we just mark them as
  1402. * allocated and create a lists of "safe" pages that will be used
  1403. * later. On systems with high memory a list of "safe" highmem pages is
  1404. * also created.
  1405. */
  1406. #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
  1407. static int
  1408. prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
  1409. {
  1410. unsigned int nr_pages, nr_highmem;
  1411. struct linked_page *sp_list, *lp;
  1412. int error;
  1413. /* If there is no highmem, the buffer will not be necessary */
  1414. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1415. buffer = NULL;
  1416. nr_highmem = count_highmem_image_pages(bm);
  1417. error = mark_unsafe_pages(bm);
  1418. if (error)
  1419. goto Free;
  1420. error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
  1421. if (error)
  1422. goto Free;
  1423. duplicate_memory_bitmap(new_bm, bm);
  1424. memory_bm_free(bm, PG_UNSAFE_KEEP);
  1425. if (nr_highmem > 0) {
  1426. error = prepare_highmem_image(bm, &nr_highmem);
  1427. if (error)
  1428. goto Free;
  1429. }
  1430. /* Reserve some safe pages for potential later use.
  1431. *
  1432. * NOTE: This way we make sure there will be enough safe pages for the
  1433. * chain_alloc() in get_buffer(). It is a bit wasteful, but
  1434. * nr_copy_pages cannot be greater than 50% of the memory anyway.
  1435. */
  1436. sp_list = NULL;
  1437. /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
  1438. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1439. nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
  1440. while (nr_pages > 0) {
  1441. lp = get_image_page(GFP_ATOMIC, PG_SAFE);
  1442. if (!lp) {
  1443. error = -ENOMEM;
  1444. goto Free;
  1445. }
  1446. lp->next = sp_list;
  1447. sp_list = lp;
  1448. nr_pages--;
  1449. }
  1450. /* Preallocate memory for the image */
  1451. safe_pages_list = NULL;
  1452. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1453. while (nr_pages > 0) {
  1454. lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
  1455. if (!lp) {
  1456. error = -ENOMEM;
  1457. goto Free;
  1458. }
  1459. if (!swsusp_page_is_free(virt_to_page(lp))) {
  1460. /* The page is "safe", add it to the list */
  1461. lp->next = safe_pages_list;
  1462. safe_pages_list = lp;
  1463. }
  1464. /* Mark the page as allocated */
  1465. swsusp_set_page_forbidden(virt_to_page(lp));
  1466. swsusp_set_page_free(virt_to_page(lp));
  1467. nr_pages--;
  1468. }
  1469. /* Free the reserved safe pages so that chain_alloc() can use them */
  1470. while (sp_list) {
  1471. lp = sp_list->next;
  1472. free_image_page(sp_list, PG_UNSAFE_CLEAR);
  1473. sp_list = lp;
  1474. }
  1475. return 0;
  1476. Free:
  1477. swsusp_free();
  1478. return error;
  1479. }
  1480. /**
  1481. * get_buffer - compute the address that snapshot_write_next() should
  1482. * set for its caller to write to.
  1483. */
  1484. static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
  1485. {
  1486. struct pbe *pbe;
  1487. struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
  1488. if (PageHighMem(page))
  1489. return get_highmem_page_buffer(page, ca);
  1490. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
  1491. /* We have allocated the "original" page frame and we can
  1492. * use it directly to store the loaded page.
  1493. */
  1494. return page_address(page);
  1495. /* The "original" page frame has not been allocated and we have to
  1496. * use a "safe" page frame to store the loaded page.
  1497. */
  1498. pbe = chain_alloc(ca, sizeof(struct pbe));
  1499. if (!pbe) {
  1500. swsusp_free();
  1501. return NULL;
  1502. }
  1503. pbe->orig_address = page_address(page);
  1504. pbe->address = safe_pages_list;
  1505. safe_pages_list = safe_pages_list->next;
  1506. pbe->next = restore_pblist;
  1507. restore_pblist = pbe;
  1508. return pbe->address;
  1509. }
  1510. /**
  1511. * snapshot_write_next - used for writing the system memory snapshot.
  1512. *
  1513. * On the first call to it @handle should point to a zeroed
  1514. * snapshot_handle structure. The structure gets updated and a pointer
  1515. * to it should be passed to this function every next time.
  1516. *
  1517. * The @count parameter should contain the number of bytes the caller
  1518. * wants to write to the image. It must not be zero.
  1519. *
  1520. * On success the function returns a positive number. Then, the caller
  1521. * is allowed to write up to the returned number of bytes to the memory
  1522. * location computed by the data_of() macro. The number returned
  1523. * may be smaller than @count, but this only happens if the write would
  1524. * cross a page boundary otherwise.
  1525. *
  1526. * The function returns 0 to indicate the "end of file" condition,
  1527. * and a negative number is returned on error. In such cases the
  1528. * structure pointed to by @handle is not updated and should not be used
  1529. * any more.
  1530. */
  1531. int snapshot_write_next(struct snapshot_handle *handle, size_t count)
  1532. {
  1533. static struct chain_allocator ca;
  1534. int error = 0;
  1535. /* Check if we have already loaded the entire image */
  1536. if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
  1537. return 0;
  1538. if (handle->offset == 0) {
  1539. if (!buffer)
  1540. /* This makes the buffer be freed by swsusp_free() */
  1541. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1542. if (!buffer)
  1543. return -ENOMEM;
  1544. handle->buffer = buffer;
  1545. }
  1546. handle->sync_read = 1;
  1547. if (handle->prev < handle->cur) {
  1548. if (handle->prev == 0) {
  1549. error = load_header(buffer);
  1550. if (error)
  1551. return error;
  1552. error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
  1553. if (error)
  1554. return error;
  1555. } else if (handle->prev <= nr_meta_pages) {
  1556. unpack_orig_pfns(buffer, &copy_bm);
  1557. if (handle->prev == nr_meta_pages) {
  1558. error = prepare_image(&orig_bm, &copy_bm);
  1559. if (error)
  1560. return error;
  1561. chain_init(&ca, GFP_ATOMIC, PG_SAFE);
  1562. memory_bm_position_reset(&orig_bm);
  1563. restore_pblist = NULL;
  1564. handle->buffer = get_buffer(&orig_bm, &ca);
  1565. handle->sync_read = 0;
  1566. if (!handle->buffer)
  1567. return -ENOMEM;
  1568. }
  1569. } else {
  1570. copy_last_highmem_page();
  1571. handle->buffer = get_buffer(&orig_bm, &ca);
  1572. if (handle->buffer != buffer)
  1573. handle->sync_read = 0;
  1574. }
  1575. handle->prev = handle->cur;
  1576. }
  1577. handle->buf_offset = handle->cur_offset;
  1578. if (handle->cur_offset + count >= PAGE_SIZE) {
  1579. count = PAGE_SIZE - handle->cur_offset;
  1580. handle->cur_offset = 0;
  1581. handle->cur++;
  1582. } else {
  1583. handle->cur_offset += count;
  1584. }
  1585. handle->offset += count;
  1586. return count;
  1587. }
  1588. /**
  1589. * snapshot_write_finalize - must be called after the last call to
  1590. * snapshot_write_next() in case the last page in the image happens
  1591. * to be a highmem page and its contents should be stored in the
  1592. * highmem. Additionally, it releases the memory that will not be
  1593. * used any more.
  1594. */
  1595. void snapshot_write_finalize(struct snapshot_handle *handle)
  1596. {
  1597. copy_last_highmem_page();
  1598. /* Free only if we have loaded the image entirely */
  1599. if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
  1600. memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
  1601. free_highmem_data();
  1602. }
  1603. }
  1604. int snapshot_image_loaded(struct snapshot_handle *handle)
  1605. {
  1606. return !(!nr_copy_pages || !last_highmem_page_copied() ||
  1607. handle->cur <= nr_meta_pages + nr_copy_pages);
  1608. }
  1609. #ifdef CONFIG_HIGHMEM
  1610. /* Assumes that @buf is ready and points to a "safe" page */
  1611. static inline void
  1612. swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
  1613. {
  1614. void *kaddr1, *kaddr2;
  1615. kaddr1 = kmap_atomic(p1, KM_USER0);
  1616. kaddr2 = kmap_atomic(p2, KM_USER1);
  1617. memcpy(buf, kaddr1, PAGE_SIZE);
  1618. memcpy(kaddr1, kaddr2, PAGE_SIZE);
  1619. memcpy(kaddr2, buf, PAGE_SIZE);
  1620. kunmap_atomic(kaddr1, KM_USER0);
  1621. kunmap_atomic(kaddr2, KM_USER1);
  1622. }
  1623. /**
  1624. * restore_highmem - for each highmem page that was allocated before
  1625. * the suspend and included in the suspend image, and also has been
  1626. * allocated by the "resume" kernel swap its current (ie. "before
  1627. * resume") contents with the previous (ie. "before suspend") one.
  1628. *
  1629. * If the resume eventually fails, we can call this function once
  1630. * again and restore the "before resume" highmem state.
  1631. */
  1632. int restore_highmem(void)
  1633. {
  1634. struct highmem_pbe *pbe = highmem_pblist;
  1635. void *buf;
  1636. if (!pbe)
  1637. return 0;
  1638. buf = get_image_page(GFP_ATOMIC, PG_SAFE);
  1639. if (!buf)
  1640. return -ENOMEM;
  1641. while (pbe) {
  1642. swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
  1643. pbe = pbe->next;
  1644. }
  1645. free_image_page(buf, PG_UNSAFE_CLEAR);
  1646. return 0;
  1647. }
  1648. #endif /* CONFIG_HIGHMEM */