123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137 |
- /*
- * kexec.c - kexec system call
- * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
- *
- * This source code is licensed under the GNU General Public License,
- * Version 2. See the file COPYING for more details.
- */
- #include <linux/capability.h>
- #include <linux/mm.h>
- #include <linux/file.h>
- #include <linux/slab.h>
- #include <linux/fs.h>
- #include <linux/kexec.h>
- #include <linux/spinlock.h>
- #include <linux/list.h>
- #include <linux/highmem.h>
- #include <linux/syscalls.h>
- #include <linux/reboot.h>
- #include <linux/syscalls.h>
- #include <linux/ioport.h>
- #include <linux/hardirq.h>
- #include <linux/elf.h>
- #include <linux/elfcore.h>
- #include <asm/page.h>
- #include <asm/uaccess.h>
- #include <asm/io.h>
- #include <asm/system.h>
- #include <asm/semaphore.h>
- /* Per cpu memory for storing cpu states in case of system crash. */
- note_buf_t* crash_notes;
- /* Location of the reserved area for the crash kernel */
- struct resource crashk_res = {
- .name = "Crash kernel",
- .start = 0,
- .end = 0,
- .flags = IORESOURCE_BUSY | IORESOURCE_MEM
- };
- int kexec_should_crash(struct task_struct *p)
- {
- if (in_interrupt() || !p->pid || is_init(p) || panic_on_oops)
- return 1;
- return 0;
- }
- /*
- * When kexec transitions to the new kernel there is a one-to-one
- * mapping between physical and virtual addresses. On processors
- * where you can disable the MMU this is trivial, and easy. For
- * others it is still a simple predictable page table to setup.
- *
- * In that environment kexec copies the new kernel to its final
- * resting place. This means I can only support memory whose
- * physical address can fit in an unsigned long. In particular
- * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
- * If the assembly stub has more restrictive requirements
- * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
- * defined more restrictively in <asm/kexec.h>.
- *
- * The code for the transition from the current kernel to the
- * the new kernel is placed in the control_code_buffer, whose size
- * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single
- * page of memory is necessary, but some architectures require more.
- * Because this memory must be identity mapped in the transition from
- * virtual to physical addresses it must live in the range
- * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
- * modifiable.
- *
- * The assembly stub in the control code buffer is passed a linked list
- * of descriptor pages detailing the source pages of the new kernel,
- * and the destination addresses of those source pages. As this data
- * structure is not used in the context of the current OS, it must
- * be self-contained.
- *
- * The code has been made to work with highmem pages and will use a
- * destination page in its final resting place (if it happens
- * to allocate it). The end product of this is that most of the
- * physical address space, and most of RAM can be used.
- *
- * Future directions include:
- * - allocating a page table with the control code buffer identity
- * mapped, to simplify machine_kexec and make kexec_on_panic more
- * reliable.
- */
- /*
- * KIMAGE_NO_DEST is an impossible destination address..., for
- * allocating pages whose destination address we do not care about.
- */
- #define KIMAGE_NO_DEST (-1UL)
- static int kimage_is_destination_range(struct kimage *image,
- unsigned long start, unsigned long end);
- static struct page *kimage_alloc_page(struct kimage *image,
- gfp_t gfp_mask,
- unsigned long dest);
- static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
- unsigned long nr_segments,
- struct kexec_segment __user *segments)
- {
- size_t segment_bytes;
- struct kimage *image;
- unsigned long i;
- int result;
- /* Allocate a controlling structure */
- result = -ENOMEM;
- image = kzalloc(sizeof(*image), GFP_KERNEL);
- if (!image)
- goto out;
- image->head = 0;
- image->entry = &image->head;
- image->last_entry = &image->head;
- image->control_page = ~0; /* By default this does not apply */
- image->start = entry;
- image->type = KEXEC_TYPE_DEFAULT;
- /* Initialize the list of control pages */
- INIT_LIST_HEAD(&image->control_pages);
- /* Initialize the list of destination pages */
- INIT_LIST_HEAD(&image->dest_pages);
- /* Initialize the list of unuseable pages */
- INIT_LIST_HEAD(&image->unuseable_pages);
- /* Read in the segments */
- image->nr_segments = nr_segments;
- segment_bytes = nr_segments * sizeof(*segments);
- result = copy_from_user(image->segment, segments, segment_bytes);
- if (result)
- goto out;
- /*
- * Verify we have good destination addresses. The caller is
- * responsible for making certain we don't attempt to load
- * the new image into invalid or reserved areas of RAM. This
- * just verifies it is an address we can use.
- *
- * Since the kernel does everything in page size chunks ensure
- * the destination addreses are page aligned. Too many
- * special cases crop of when we don't do this. The most
- * insidious is getting overlapping destination addresses
- * simply because addresses are changed to page size
- * granularity.
- */
- result = -EADDRNOTAVAIL;
- for (i = 0; i < nr_segments; i++) {
- unsigned long mstart, mend;
- mstart = image->segment[i].mem;
- mend = mstart + image->segment[i].memsz;
- if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
- goto out;
- if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
- goto out;
- }
- /* Verify our destination addresses do not overlap.
- * If we alloed overlapping destination addresses
- * through very weird things can happen with no
- * easy explanation as one segment stops on another.
- */
- result = -EINVAL;
- for (i = 0; i < nr_segments; i++) {
- unsigned long mstart, mend;
- unsigned long j;
- mstart = image->segment[i].mem;
- mend = mstart + image->segment[i].memsz;
- for (j = 0; j < i; j++) {
- unsigned long pstart, pend;
- pstart = image->segment[j].mem;
- pend = pstart + image->segment[j].memsz;
- /* Do the segments overlap ? */
- if ((mend > pstart) && (mstart < pend))
- goto out;
- }
- }
- /* Ensure our buffer sizes are strictly less than
- * our memory sizes. This should always be the case,
- * and it is easier to check up front than to be surprised
- * later on.
- */
- result = -EINVAL;
- for (i = 0; i < nr_segments; i++) {
- if (image->segment[i].bufsz > image->segment[i].memsz)
- goto out;
- }
- result = 0;
- out:
- if (result == 0)
- *rimage = image;
- else
- kfree(image);
- return result;
- }
- static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
- unsigned long nr_segments,
- struct kexec_segment __user *segments)
- {
- int result;
- struct kimage *image;
- /* Allocate and initialize a controlling structure */
- image = NULL;
- result = do_kimage_alloc(&image, entry, nr_segments, segments);
- if (result)
- goto out;
- *rimage = image;
- /*
- * Find a location for the control code buffer, and add it
- * the vector of segments so that it's pages will also be
- * counted as destination pages.
- */
- result = -ENOMEM;
- image->control_code_page = kimage_alloc_control_pages(image,
- get_order(KEXEC_CONTROL_CODE_SIZE));
- if (!image->control_code_page) {
- printk(KERN_ERR "Could not allocate control_code_buffer\n");
- goto out;
- }
- result = 0;
- out:
- if (result == 0)
- *rimage = image;
- else
- kfree(image);
- return result;
- }
- static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
- unsigned long nr_segments,
- struct kexec_segment __user *segments)
- {
- int result;
- struct kimage *image;
- unsigned long i;
- image = NULL;
- /* Verify we have a valid entry point */
- if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
- result = -EADDRNOTAVAIL;
- goto out;
- }
- /* Allocate and initialize a controlling structure */
- result = do_kimage_alloc(&image, entry, nr_segments, segments);
- if (result)
- goto out;
- /* Enable the special crash kernel control page
- * allocation policy.
- */
- image->control_page = crashk_res.start;
- image->type = KEXEC_TYPE_CRASH;
- /*
- * Verify we have good destination addresses. Normally
- * the caller is responsible for making certain we don't
- * attempt to load the new image into invalid or reserved
- * areas of RAM. But crash kernels are preloaded into a
- * reserved area of ram. We must ensure the addresses
- * are in the reserved area otherwise preloading the
- * kernel could corrupt things.
- */
- result = -EADDRNOTAVAIL;
- for (i = 0; i < nr_segments; i++) {
- unsigned long mstart, mend;
- mstart = image->segment[i].mem;
- mend = mstart + image->segment[i].memsz - 1;
- /* Ensure we are within the crash kernel limits */
- if ((mstart < crashk_res.start) || (mend > crashk_res.end))
- goto out;
- }
- /*
- * Find a location for the control code buffer, and add
- * the vector of segments so that it's pages will also be
- * counted as destination pages.
- */
- result = -ENOMEM;
- image->control_code_page = kimage_alloc_control_pages(image,
- get_order(KEXEC_CONTROL_CODE_SIZE));
- if (!image->control_code_page) {
- printk(KERN_ERR "Could not allocate control_code_buffer\n");
- goto out;
- }
- result = 0;
- out:
- if (result == 0)
- *rimage = image;
- else
- kfree(image);
- return result;
- }
- static int kimage_is_destination_range(struct kimage *image,
- unsigned long start,
- unsigned long end)
- {
- unsigned long i;
- for (i = 0; i < image->nr_segments; i++) {
- unsigned long mstart, mend;
- mstart = image->segment[i].mem;
- mend = mstart + image->segment[i].memsz;
- if ((end > mstart) && (start < mend))
- return 1;
- }
- return 0;
- }
- static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
- {
- struct page *pages;
- pages = alloc_pages(gfp_mask, order);
- if (pages) {
- unsigned int count, i;
- pages->mapping = NULL;
- set_page_private(pages, order);
- count = 1 << order;
- for (i = 0; i < count; i++)
- SetPageReserved(pages + i);
- }
- return pages;
- }
- static void kimage_free_pages(struct page *page)
- {
- unsigned int order, count, i;
- order = page_private(page);
- count = 1 << order;
- for (i = 0; i < count; i++)
- ClearPageReserved(page + i);
- __free_pages(page, order);
- }
- static void kimage_free_page_list(struct list_head *list)
- {
- struct list_head *pos, *next;
- list_for_each_safe(pos, next, list) {
- struct page *page;
- page = list_entry(pos, struct page, lru);
- list_del(&page->lru);
- kimage_free_pages(page);
- }
- }
- static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
- unsigned int order)
- {
- /* Control pages are special, they are the intermediaries
- * that are needed while we copy the rest of the pages
- * to their final resting place. As such they must
- * not conflict with either the destination addresses
- * or memory the kernel is already using.
- *
- * The only case where we really need more than one of
- * these are for architectures where we cannot disable
- * the MMU and must instead generate an identity mapped
- * page table for all of the memory.
- *
- * At worst this runs in O(N) of the image size.
- */
- struct list_head extra_pages;
- struct page *pages;
- unsigned int count;
- count = 1 << order;
- INIT_LIST_HEAD(&extra_pages);
- /* Loop while I can allocate a page and the page allocated
- * is a destination page.
- */
- do {
- unsigned long pfn, epfn, addr, eaddr;
- pages = kimage_alloc_pages(GFP_KERNEL, order);
- if (!pages)
- break;
- pfn = page_to_pfn(pages);
- epfn = pfn + count;
- addr = pfn << PAGE_SHIFT;
- eaddr = epfn << PAGE_SHIFT;
- if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
- kimage_is_destination_range(image, addr, eaddr)) {
- list_add(&pages->lru, &extra_pages);
- pages = NULL;
- }
- } while (!pages);
- if (pages) {
- /* Remember the allocated page... */
- list_add(&pages->lru, &image->control_pages);
- /* Because the page is already in it's destination
- * location we will never allocate another page at
- * that address. Therefore kimage_alloc_pages
- * will not return it (again) and we don't need
- * to give it an entry in image->segment[].
- */
- }
- /* Deal with the destination pages I have inadvertently allocated.
- *
- * Ideally I would convert multi-page allocations into single
- * page allocations, and add everyting to image->dest_pages.
- *
- * For now it is simpler to just free the pages.
- */
- kimage_free_page_list(&extra_pages);
- return pages;
- }
- static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
- unsigned int order)
- {
- /* Control pages are special, they are the intermediaries
- * that are needed while we copy the rest of the pages
- * to their final resting place. As such they must
- * not conflict with either the destination addresses
- * or memory the kernel is already using.
- *
- * Control pages are also the only pags we must allocate
- * when loading a crash kernel. All of the other pages
- * are specified by the segments and we just memcpy
- * into them directly.
- *
- * The only case where we really need more than one of
- * these are for architectures where we cannot disable
- * the MMU and must instead generate an identity mapped
- * page table for all of the memory.
- *
- * Given the low demand this implements a very simple
- * allocator that finds the first hole of the appropriate
- * size in the reserved memory region, and allocates all
- * of the memory up to and including the hole.
- */
- unsigned long hole_start, hole_end, size;
- struct page *pages;
- pages = NULL;
- size = (1 << order) << PAGE_SHIFT;
- hole_start = (image->control_page + (size - 1)) & ~(size - 1);
- hole_end = hole_start + size - 1;
- while (hole_end <= crashk_res.end) {
- unsigned long i;
- if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
- break;
- if (hole_end > crashk_res.end)
- break;
- /* See if I overlap any of the segments */
- for (i = 0; i < image->nr_segments; i++) {
- unsigned long mstart, mend;
- mstart = image->segment[i].mem;
- mend = mstart + image->segment[i].memsz - 1;
- if ((hole_end >= mstart) && (hole_start <= mend)) {
- /* Advance the hole to the end of the segment */
- hole_start = (mend + (size - 1)) & ~(size - 1);
- hole_end = hole_start + size - 1;
- break;
- }
- }
- /* If I don't overlap any segments I have found my hole! */
- if (i == image->nr_segments) {
- pages = pfn_to_page(hole_start >> PAGE_SHIFT);
- break;
- }
- }
- if (pages)
- image->control_page = hole_end;
- return pages;
- }
- struct page *kimage_alloc_control_pages(struct kimage *image,
- unsigned int order)
- {
- struct page *pages = NULL;
- switch (image->type) {
- case KEXEC_TYPE_DEFAULT:
- pages = kimage_alloc_normal_control_pages(image, order);
- break;
- case KEXEC_TYPE_CRASH:
- pages = kimage_alloc_crash_control_pages(image, order);
- break;
- }
- return pages;
- }
- static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
- {
- if (*image->entry != 0)
- image->entry++;
- if (image->entry == image->last_entry) {
- kimage_entry_t *ind_page;
- struct page *page;
- page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
- if (!page)
- return -ENOMEM;
- ind_page = page_address(page);
- *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
- image->entry = ind_page;
- image->last_entry = ind_page +
- ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
- }
- *image->entry = entry;
- image->entry++;
- *image->entry = 0;
- return 0;
- }
- static int kimage_set_destination(struct kimage *image,
- unsigned long destination)
- {
- int result;
- destination &= PAGE_MASK;
- result = kimage_add_entry(image, destination | IND_DESTINATION);
- if (result == 0)
- image->destination = destination;
- return result;
- }
- static int kimage_add_page(struct kimage *image, unsigned long page)
- {
- int result;
- page &= PAGE_MASK;
- result = kimage_add_entry(image, page | IND_SOURCE);
- if (result == 0)
- image->destination += PAGE_SIZE;
- return result;
- }
- static void kimage_free_extra_pages(struct kimage *image)
- {
- /* Walk through and free any extra destination pages I may have */
- kimage_free_page_list(&image->dest_pages);
- /* Walk through and free any unuseable pages I have cached */
- kimage_free_page_list(&image->unuseable_pages);
- }
- static int kimage_terminate(struct kimage *image)
- {
- if (*image->entry != 0)
- image->entry++;
- *image->entry = IND_DONE;
- return 0;
- }
- #define for_each_kimage_entry(image, ptr, entry) \
- for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
- ptr = (entry & IND_INDIRECTION)? \
- phys_to_virt((entry & PAGE_MASK)): ptr +1)
- static void kimage_free_entry(kimage_entry_t entry)
- {
- struct page *page;
- page = pfn_to_page(entry >> PAGE_SHIFT);
- kimage_free_pages(page);
- }
- static void kimage_free(struct kimage *image)
- {
- kimage_entry_t *ptr, entry;
- kimage_entry_t ind = 0;
- if (!image)
- return;
- kimage_free_extra_pages(image);
- for_each_kimage_entry(image, ptr, entry) {
- if (entry & IND_INDIRECTION) {
- /* Free the previous indirection page */
- if (ind & IND_INDIRECTION)
- kimage_free_entry(ind);
- /* Save this indirection page until we are
- * done with it.
- */
- ind = entry;
- }
- else if (entry & IND_SOURCE)
- kimage_free_entry(entry);
- }
- /* Free the final indirection page */
- if (ind & IND_INDIRECTION)
- kimage_free_entry(ind);
- /* Handle any machine specific cleanup */
- machine_kexec_cleanup(image);
- /* Free the kexec control pages... */
- kimage_free_page_list(&image->control_pages);
- kfree(image);
- }
- static kimage_entry_t *kimage_dst_used(struct kimage *image,
- unsigned long page)
- {
- kimage_entry_t *ptr, entry;
- unsigned long destination = 0;
- for_each_kimage_entry(image, ptr, entry) {
- if (entry & IND_DESTINATION)
- destination = entry & PAGE_MASK;
- else if (entry & IND_SOURCE) {
- if (page == destination)
- return ptr;
- destination += PAGE_SIZE;
- }
- }
- return NULL;
- }
- static struct page *kimage_alloc_page(struct kimage *image,
- gfp_t gfp_mask,
- unsigned long destination)
- {
- /*
- * Here we implement safeguards to ensure that a source page
- * is not copied to its destination page before the data on
- * the destination page is no longer useful.
- *
- * To do this we maintain the invariant that a source page is
- * either its own destination page, or it is not a
- * destination page at all.
- *
- * That is slightly stronger than required, but the proof
- * that no problems will not occur is trivial, and the
- * implementation is simply to verify.
- *
- * When allocating all pages normally this algorithm will run
- * in O(N) time, but in the worst case it will run in O(N^2)
- * time. If the runtime is a problem the data structures can
- * be fixed.
- */
- struct page *page;
- unsigned long addr;
- /*
- * Walk through the list of destination pages, and see if I
- * have a match.
- */
- list_for_each_entry(page, &image->dest_pages, lru) {
- addr = page_to_pfn(page) << PAGE_SHIFT;
- if (addr == destination) {
- list_del(&page->lru);
- return page;
- }
- }
- page = NULL;
- while (1) {
- kimage_entry_t *old;
- /* Allocate a page, if we run out of memory give up */
- page = kimage_alloc_pages(gfp_mask, 0);
- if (!page)
- return NULL;
- /* If the page cannot be used file it away */
- if (page_to_pfn(page) >
- (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
- list_add(&page->lru, &image->unuseable_pages);
- continue;
- }
- addr = page_to_pfn(page) << PAGE_SHIFT;
- /* If it is the destination page we want use it */
- if (addr == destination)
- break;
- /* If the page is not a destination page use it */
- if (!kimage_is_destination_range(image, addr,
- addr + PAGE_SIZE))
- break;
- /*
- * I know that the page is someones destination page.
- * See if there is already a source page for this
- * destination page. And if so swap the source pages.
- */
- old = kimage_dst_used(image, addr);
- if (old) {
- /* If so move it */
- unsigned long old_addr;
- struct page *old_page;
- old_addr = *old & PAGE_MASK;
- old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
- copy_highpage(page, old_page);
- *old = addr | (*old & ~PAGE_MASK);
- /* The old page I have found cannot be a
- * destination page, so return it.
- */
- addr = old_addr;
- page = old_page;
- break;
- }
- else {
- /* Place the page on the destination list I
- * will use it later.
- */
- list_add(&page->lru, &image->dest_pages);
- }
- }
- return page;
- }
- static int kimage_load_normal_segment(struct kimage *image,
- struct kexec_segment *segment)
- {
- unsigned long maddr;
- unsigned long ubytes, mbytes;
- int result;
- unsigned char __user *buf;
- result = 0;
- buf = segment->buf;
- ubytes = segment->bufsz;
- mbytes = segment->memsz;
- maddr = segment->mem;
- result = kimage_set_destination(image, maddr);
- if (result < 0)
- goto out;
- while (mbytes) {
- struct page *page;
- char *ptr;
- size_t uchunk, mchunk;
- page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
- if (page == 0) {
- result = -ENOMEM;
- goto out;
- }
- result = kimage_add_page(image, page_to_pfn(page)
- << PAGE_SHIFT);
- if (result < 0)
- goto out;
- ptr = kmap(page);
- /* Start with a clear page */
- memset(ptr, 0, PAGE_SIZE);
- ptr += maddr & ~PAGE_MASK;
- mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
- if (mchunk > mbytes)
- mchunk = mbytes;
- uchunk = mchunk;
- if (uchunk > ubytes)
- uchunk = ubytes;
- result = copy_from_user(ptr, buf, uchunk);
- kunmap(page);
- if (result) {
- result = (result < 0) ? result : -EIO;
- goto out;
- }
- ubytes -= uchunk;
- maddr += mchunk;
- buf += mchunk;
- mbytes -= mchunk;
- }
- out:
- return result;
- }
- static int kimage_load_crash_segment(struct kimage *image,
- struct kexec_segment *segment)
- {
- /* For crash dumps kernels we simply copy the data from
- * user space to it's destination.
- * We do things a page at a time for the sake of kmap.
- */
- unsigned long maddr;
- unsigned long ubytes, mbytes;
- int result;
- unsigned char __user *buf;
- result = 0;
- buf = segment->buf;
- ubytes = segment->bufsz;
- mbytes = segment->memsz;
- maddr = segment->mem;
- while (mbytes) {
- struct page *page;
- char *ptr;
- size_t uchunk, mchunk;
- page = pfn_to_page(maddr >> PAGE_SHIFT);
- if (page == 0) {
- result = -ENOMEM;
- goto out;
- }
- ptr = kmap(page);
- ptr += maddr & ~PAGE_MASK;
- mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
- if (mchunk > mbytes)
- mchunk = mbytes;
- uchunk = mchunk;
- if (uchunk > ubytes) {
- uchunk = ubytes;
- /* Zero the trailing part of the page */
- memset(ptr + uchunk, 0, mchunk - uchunk);
- }
- result = copy_from_user(ptr, buf, uchunk);
- kexec_flush_icache_page(page);
- kunmap(page);
- if (result) {
- result = (result < 0) ? result : -EIO;
- goto out;
- }
- ubytes -= uchunk;
- maddr += mchunk;
- buf += mchunk;
- mbytes -= mchunk;
- }
- out:
- return result;
- }
- static int kimage_load_segment(struct kimage *image,
- struct kexec_segment *segment)
- {
- int result = -ENOMEM;
- switch (image->type) {
- case KEXEC_TYPE_DEFAULT:
- result = kimage_load_normal_segment(image, segment);
- break;
- case KEXEC_TYPE_CRASH:
- result = kimage_load_crash_segment(image, segment);
- break;
- }
- return result;
- }
- /*
- * Exec Kernel system call: for obvious reasons only root may call it.
- *
- * This call breaks up into three pieces.
- * - A generic part which loads the new kernel from the current
- * address space, and very carefully places the data in the
- * allocated pages.
- *
- * - A generic part that interacts with the kernel and tells all of
- * the devices to shut down. Preventing on-going dmas, and placing
- * the devices in a consistent state so a later kernel can
- * reinitialize them.
- *
- * - A machine specific part that includes the syscall number
- * and the copies the image to it's final destination. And
- * jumps into the image at entry.
- *
- * kexec does not sync, or unmount filesystems so if you need
- * that to happen you need to do that yourself.
- */
- struct kimage *kexec_image;
- struct kimage *kexec_crash_image;
- /*
- * A home grown binary mutex.
- * Nothing can wait so this mutex is safe to use
- * in interrupt context :)
- */
- static int kexec_lock;
- asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
- struct kexec_segment __user *segments,
- unsigned long flags)
- {
- struct kimage **dest_image, *image;
- int locked;
- int result;
- /* We only trust the superuser with rebooting the system. */
- if (!capable(CAP_SYS_BOOT))
- return -EPERM;
- /*
- * Verify we have a legal set of flags
- * This leaves us room for future extensions.
- */
- if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
- return -EINVAL;
- /* Verify we are on the appropriate architecture */
- if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
- ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
- return -EINVAL;
- /* Put an artificial cap on the number
- * of segments passed to kexec_load.
- */
- if (nr_segments > KEXEC_SEGMENT_MAX)
- return -EINVAL;
- image = NULL;
- result = 0;
- /* Because we write directly to the reserved memory
- * region when loading crash kernels we need a mutex here to
- * prevent multiple crash kernels from attempting to load
- * simultaneously, and to prevent a crash kernel from loading
- * over the top of a in use crash kernel.
- *
- * KISS: always take the mutex.
- */
- locked = xchg(&kexec_lock, 1);
- if (locked)
- return -EBUSY;
- dest_image = &kexec_image;
- if (flags & KEXEC_ON_CRASH)
- dest_image = &kexec_crash_image;
- if (nr_segments > 0) {
- unsigned long i;
- /* Loading another kernel to reboot into */
- if ((flags & KEXEC_ON_CRASH) == 0)
- result = kimage_normal_alloc(&image, entry,
- nr_segments, segments);
- /* Loading another kernel to switch to if this one crashes */
- else if (flags & KEXEC_ON_CRASH) {
- /* Free any current crash dump kernel before
- * we corrupt it.
- */
- kimage_free(xchg(&kexec_crash_image, NULL));
- result = kimage_crash_alloc(&image, entry,
- nr_segments, segments);
- }
- if (result)
- goto out;
- result = machine_kexec_prepare(image);
- if (result)
- goto out;
- for (i = 0; i < nr_segments; i++) {
- result = kimage_load_segment(image, &image->segment[i]);
- if (result)
- goto out;
- }
- result = kimage_terminate(image);
- if (result)
- goto out;
- }
- /* Install the new kernel, and Uninstall the old */
- image = xchg(dest_image, image);
- out:
- locked = xchg(&kexec_lock, 0); /* Release the mutex */
- BUG_ON(!locked);
- kimage_free(image);
- return result;
- }
- #ifdef CONFIG_COMPAT
- asmlinkage long compat_sys_kexec_load(unsigned long entry,
- unsigned long nr_segments,
- struct compat_kexec_segment __user *segments,
- unsigned long flags)
- {
- struct compat_kexec_segment in;
- struct kexec_segment out, __user *ksegments;
- unsigned long i, result;
- /* Don't allow clients that don't understand the native
- * architecture to do anything.
- */
- if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
- return -EINVAL;
- if (nr_segments > KEXEC_SEGMENT_MAX)
- return -EINVAL;
- ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
- for (i=0; i < nr_segments; i++) {
- result = copy_from_user(&in, &segments[i], sizeof(in));
- if (result)
- return -EFAULT;
- out.buf = compat_ptr(in.buf);
- out.bufsz = in.bufsz;
- out.mem = in.mem;
- out.memsz = in.memsz;
- result = copy_to_user(&ksegments[i], &out, sizeof(out));
- if (result)
- return -EFAULT;
- }
- return sys_kexec_load(entry, nr_segments, ksegments, flags);
- }
- #endif
- void crash_kexec(struct pt_regs *regs)
- {
- int locked;
- /* Take the kexec_lock here to prevent sys_kexec_load
- * running on one cpu from replacing the crash kernel
- * we are using after a panic on a different cpu.
- *
- * If the crash kernel was not located in a fixed area
- * of memory the xchg(&kexec_crash_image) would be
- * sufficient. But since I reuse the memory...
- */
- locked = xchg(&kexec_lock, 1);
- if (!locked) {
- if (kexec_crash_image) {
- struct pt_regs fixed_regs;
- crash_setup_regs(&fixed_regs, regs);
- machine_crash_shutdown(&fixed_regs);
- machine_kexec(kexec_crash_image);
- }
- locked = xchg(&kexec_lock, 0);
- BUG_ON(!locked);
- }
- }
- static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
- size_t data_len)
- {
- struct elf_note note;
- note.n_namesz = strlen(name) + 1;
- note.n_descsz = data_len;
- note.n_type = type;
- memcpy(buf, ¬e, sizeof(note));
- buf += (sizeof(note) + 3)/4;
- memcpy(buf, name, note.n_namesz);
- buf += (note.n_namesz + 3)/4;
- memcpy(buf, data, note.n_descsz);
- buf += (note.n_descsz + 3)/4;
- return buf;
- }
- static void final_note(u32 *buf)
- {
- struct elf_note note;
- note.n_namesz = 0;
- note.n_descsz = 0;
- note.n_type = 0;
- memcpy(buf, ¬e, sizeof(note));
- }
- void crash_save_cpu(struct pt_regs *regs, int cpu)
- {
- struct elf_prstatus prstatus;
- u32 *buf;
- if ((cpu < 0) || (cpu >= NR_CPUS))
- return;
- /* Using ELF notes here is opportunistic.
- * I need a well defined structure format
- * for the data I pass, and I need tags
- * on the data to indicate what information I have
- * squirrelled away. ELF notes happen to provide
- * all of that, so there is no need to invent something new.
- */
- buf = (u32*)per_cpu_ptr(crash_notes, cpu);
- if (!buf)
- return;
- memset(&prstatus, 0, sizeof(prstatus));
- prstatus.pr_pid = current->pid;
- elf_core_copy_regs(&prstatus.pr_reg, regs);
- buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
- &prstatus, sizeof(prstatus));
- final_note(buf);
- }
- static int __init crash_notes_memory_init(void)
- {
- /* Allocate memory for saving cpu registers. */
- crash_notes = alloc_percpu(note_buf_t);
- if (!crash_notes) {
- printk("Kexec: Memory allocation for saving cpu register"
- " states failed\n");
- return -ENOMEM;
- }
- return 0;
- }
- module_init(crash_notes_memory_init)
|