inode.c 94 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext4_jbd2.h>
  28. #include <linux/jbd2.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include "xattr.h"
  39. #include "acl.h"
  40. /*
  41. * Test whether an inode is a fast symlink.
  42. */
  43. static int ext4_inode_is_fast_symlink(struct inode *inode)
  44. {
  45. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  46. (inode->i_sb->s_blocksize >> 9) : 0;
  47. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  48. }
  49. /*
  50. * The ext4 forget function must perform a revoke if we are freeing data
  51. * which has been journaled. Metadata (eg. indirect blocks) must be
  52. * revoked in all cases.
  53. *
  54. * "bh" may be NULL: a metadata block may have been freed from memory
  55. * but there may still be a record of it in the journal, and that record
  56. * still needs to be revoked.
  57. */
  58. int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
  59. struct buffer_head *bh, ext4_fsblk_t blocknr)
  60. {
  61. int err;
  62. might_sleep();
  63. BUFFER_TRACE(bh, "enter");
  64. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  65. "data mode %lx\n",
  66. bh, is_metadata, inode->i_mode,
  67. test_opt(inode->i_sb, DATA_FLAGS));
  68. /* Never use the revoke function if we are doing full data
  69. * journaling: there is no need to, and a V1 superblock won't
  70. * support it. Otherwise, only skip the revoke on un-journaled
  71. * data blocks. */
  72. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
  73. (!is_metadata && !ext4_should_journal_data(inode))) {
  74. if (bh) {
  75. BUFFER_TRACE(bh, "call jbd2_journal_forget");
  76. return ext4_journal_forget(handle, bh);
  77. }
  78. return 0;
  79. }
  80. /*
  81. * data!=journal && (is_metadata || should_journal_data(inode))
  82. */
  83. BUFFER_TRACE(bh, "call ext4_journal_revoke");
  84. err = ext4_journal_revoke(handle, blocknr, bh);
  85. if (err)
  86. ext4_abort(inode->i_sb, __FUNCTION__,
  87. "error %d when attempting revoke", err);
  88. BUFFER_TRACE(bh, "exit");
  89. return err;
  90. }
  91. /*
  92. * Work out how many blocks we need to proceed with the next chunk of a
  93. * truncate transaction.
  94. */
  95. static unsigned long blocks_for_truncate(struct inode *inode)
  96. {
  97. unsigned long needed;
  98. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  99. /* Give ourselves just enough room to cope with inodes in which
  100. * i_blocks is corrupt: we've seen disk corruptions in the past
  101. * which resulted in random data in an inode which looked enough
  102. * like a regular file for ext4 to try to delete it. Things
  103. * will go a bit crazy if that happens, but at least we should
  104. * try not to panic the whole kernel. */
  105. if (needed < 2)
  106. needed = 2;
  107. /* But we need to bound the transaction so we don't overflow the
  108. * journal. */
  109. if (needed > EXT4_MAX_TRANS_DATA)
  110. needed = EXT4_MAX_TRANS_DATA;
  111. return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  112. }
  113. /*
  114. * Truncate transactions can be complex and absolutely huge. So we need to
  115. * be able to restart the transaction at a conventient checkpoint to make
  116. * sure we don't overflow the journal.
  117. *
  118. * start_transaction gets us a new handle for a truncate transaction,
  119. * and extend_transaction tries to extend the existing one a bit. If
  120. * extend fails, we need to propagate the failure up and restart the
  121. * transaction in the top-level truncate loop. --sct
  122. */
  123. static handle_t *start_transaction(struct inode *inode)
  124. {
  125. handle_t *result;
  126. result = ext4_journal_start(inode, blocks_for_truncate(inode));
  127. if (!IS_ERR(result))
  128. return result;
  129. ext4_std_error(inode->i_sb, PTR_ERR(result));
  130. return result;
  131. }
  132. /*
  133. * Try to extend this transaction for the purposes of truncation.
  134. *
  135. * Returns 0 if we managed to create more room. If we can't create more
  136. * room, and the transaction must be restarted we return 1.
  137. */
  138. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  139. {
  140. if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
  141. return 0;
  142. if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
  143. return 0;
  144. return 1;
  145. }
  146. /*
  147. * Restart the transaction associated with *handle. This does a commit,
  148. * so before we call here everything must be consistently dirtied against
  149. * this transaction.
  150. */
  151. static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
  152. {
  153. jbd_debug(2, "restarting handle %p\n", handle);
  154. return ext4_journal_restart(handle, blocks_for_truncate(inode));
  155. }
  156. /*
  157. * Called at the last iput() if i_nlink is zero.
  158. */
  159. void ext4_delete_inode (struct inode * inode)
  160. {
  161. handle_t *handle;
  162. truncate_inode_pages(&inode->i_data, 0);
  163. if (is_bad_inode(inode))
  164. goto no_delete;
  165. handle = start_transaction(inode);
  166. if (IS_ERR(handle)) {
  167. /*
  168. * If we're going to skip the normal cleanup, we still need to
  169. * make sure that the in-core orphan linked list is properly
  170. * cleaned up.
  171. */
  172. ext4_orphan_del(NULL, inode);
  173. goto no_delete;
  174. }
  175. if (IS_SYNC(inode))
  176. handle->h_sync = 1;
  177. inode->i_size = 0;
  178. if (inode->i_blocks)
  179. ext4_truncate(inode);
  180. /*
  181. * Kill off the orphan record which ext4_truncate created.
  182. * AKPM: I think this can be inside the above `if'.
  183. * Note that ext4_orphan_del() has to be able to cope with the
  184. * deletion of a non-existent orphan - this is because we don't
  185. * know if ext4_truncate() actually created an orphan record.
  186. * (Well, we could do this if we need to, but heck - it works)
  187. */
  188. ext4_orphan_del(handle, inode);
  189. EXT4_I(inode)->i_dtime = get_seconds();
  190. /*
  191. * One subtle ordering requirement: if anything has gone wrong
  192. * (transaction abort, IO errors, whatever), then we can still
  193. * do these next steps (the fs will already have been marked as
  194. * having errors), but we can't free the inode if the mark_dirty
  195. * fails.
  196. */
  197. if (ext4_mark_inode_dirty(handle, inode))
  198. /* If that failed, just do the required in-core inode clear. */
  199. clear_inode(inode);
  200. else
  201. ext4_free_inode(handle, inode);
  202. ext4_journal_stop(handle);
  203. return;
  204. no_delete:
  205. clear_inode(inode); /* We must guarantee clearing of inode... */
  206. }
  207. typedef struct {
  208. __le32 *p;
  209. __le32 key;
  210. struct buffer_head *bh;
  211. } Indirect;
  212. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  213. {
  214. p->key = *(p->p = v);
  215. p->bh = bh;
  216. }
  217. static int verify_chain(Indirect *from, Indirect *to)
  218. {
  219. while (from <= to && from->key == *from->p)
  220. from++;
  221. return (from > to);
  222. }
  223. /**
  224. * ext4_block_to_path - parse the block number into array of offsets
  225. * @inode: inode in question (we are only interested in its superblock)
  226. * @i_block: block number to be parsed
  227. * @offsets: array to store the offsets in
  228. * @boundary: set this non-zero if the referred-to block is likely to be
  229. * followed (on disk) by an indirect block.
  230. *
  231. * To store the locations of file's data ext4 uses a data structure common
  232. * for UNIX filesystems - tree of pointers anchored in the inode, with
  233. * data blocks at leaves and indirect blocks in intermediate nodes.
  234. * This function translates the block number into path in that tree -
  235. * return value is the path length and @offsets[n] is the offset of
  236. * pointer to (n+1)th node in the nth one. If @block is out of range
  237. * (negative or too large) warning is printed and zero returned.
  238. *
  239. * Note: function doesn't find node addresses, so no IO is needed. All
  240. * we need to know is the capacity of indirect blocks (taken from the
  241. * inode->i_sb).
  242. */
  243. /*
  244. * Portability note: the last comparison (check that we fit into triple
  245. * indirect block) is spelled differently, because otherwise on an
  246. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  247. * if our filesystem had 8Kb blocks. We might use long long, but that would
  248. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  249. * i_block would have to be negative in the very beginning, so we would not
  250. * get there at all.
  251. */
  252. static int ext4_block_to_path(struct inode *inode,
  253. long i_block, int offsets[4], int *boundary)
  254. {
  255. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  256. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  257. const long direct_blocks = EXT4_NDIR_BLOCKS,
  258. indirect_blocks = ptrs,
  259. double_blocks = (1 << (ptrs_bits * 2));
  260. int n = 0;
  261. int final = 0;
  262. if (i_block < 0) {
  263. ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
  264. } else if (i_block < direct_blocks) {
  265. offsets[n++] = i_block;
  266. final = direct_blocks;
  267. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  268. offsets[n++] = EXT4_IND_BLOCK;
  269. offsets[n++] = i_block;
  270. final = ptrs;
  271. } else if ((i_block -= indirect_blocks) < double_blocks) {
  272. offsets[n++] = EXT4_DIND_BLOCK;
  273. offsets[n++] = i_block >> ptrs_bits;
  274. offsets[n++] = i_block & (ptrs - 1);
  275. final = ptrs;
  276. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  277. offsets[n++] = EXT4_TIND_BLOCK;
  278. offsets[n++] = i_block >> (ptrs_bits * 2);
  279. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  280. offsets[n++] = i_block & (ptrs - 1);
  281. final = ptrs;
  282. } else {
  283. ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big");
  284. }
  285. if (boundary)
  286. *boundary = final - 1 - (i_block & (ptrs - 1));
  287. return n;
  288. }
  289. /**
  290. * ext4_get_branch - read the chain of indirect blocks leading to data
  291. * @inode: inode in question
  292. * @depth: depth of the chain (1 - direct pointer, etc.)
  293. * @offsets: offsets of pointers in inode/indirect blocks
  294. * @chain: place to store the result
  295. * @err: here we store the error value
  296. *
  297. * Function fills the array of triples <key, p, bh> and returns %NULL
  298. * if everything went OK or the pointer to the last filled triple
  299. * (incomplete one) otherwise. Upon the return chain[i].key contains
  300. * the number of (i+1)-th block in the chain (as it is stored in memory,
  301. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  302. * number (it points into struct inode for i==0 and into the bh->b_data
  303. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  304. * block for i>0 and NULL for i==0. In other words, it holds the block
  305. * numbers of the chain, addresses they were taken from (and where we can
  306. * verify that chain did not change) and buffer_heads hosting these
  307. * numbers.
  308. *
  309. * Function stops when it stumbles upon zero pointer (absent block)
  310. * (pointer to last triple returned, *@err == 0)
  311. * or when it gets an IO error reading an indirect block
  312. * (ditto, *@err == -EIO)
  313. * or when it notices that chain had been changed while it was reading
  314. * (ditto, *@err == -EAGAIN)
  315. * or when it reads all @depth-1 indirect blocks successfully and finds
  316. * the whole chain, all way to the data (returns %NULL, *err == 0).
  317. */
  318. static Indirect *ext4_get_branch(struct inode *inode, int depth, int *offsets,
  319. Indirect chain[4], int *err)
  320. {
  321. struct super_block *sb = inode->i_sb;
  322. Indirect *p = chain;
  323. struct buffer_head *bh;
  324. *err = 0;
  325. /* i_data is not going away, no lock needed */
  326. add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
  327. if (!p->key)
  328. goto no_block;
  329. while (--depth) {
  330. bh = sb_bread(sb, le32_to_cpu(p->key));
  331. if (!bh)
  332. goto failure;
  333. /* Reader: pointers */
  334. if (!verify_chain(chain, p))
  335. goto changed;
  336. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  337. /* Reader: end */
  338. if (!p->key)
  339. goto no_block;
  340. }
  341. return NULL;
  342. changed:
  343. brelse(bh);
  344. *err = -EAGAIN;
  345. goto no_block;
  346. failure:
  347. *err = -EIO;
  348. no_block:
  349. return p;
  350. }
  351. /**
  352. * ext4_find_near - find a place for allocation with sufficient locality
  353. * @inode: owner
  354. * @ind: descriptor of indirect block.
  355. *
  356. * This function returns the prefered place for block allocation.
  357. * It is used when heuristic for sequential allocation fails.
  358. * Rules are:
  359. * + if there is a block to the left of our position - allocate near it.
  360. * + if pointer will live in indirect block - allocate near that block.
  361. * + if pointer will live in inode - allocate in the same
  362. * cylinder group.
  363. *
  364. * In the latter case we colour the starting block by the callers PID to
  365. * prevent it from clashing with concurrent allocations for a different inode
  366. * in the same block group. The PID is used here so that functionally related
  367. * files will be close-by on-disk.
  368. *
  369. * Caller must make sure that @ind is valid and will stay that way.
  370. */
  371. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  372. {
  373. struct ext4_inode_info *ei = EXT4_I(inode);
  374. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  375. __le32 *p;
  376. ext4_fsblk_t bg_start;
  377. ext4_grpblk_t colour;
  378. /* Try to find previous block */
  379. for (p = ind->p - 1; p >= start; p--) {
  380. if (*p)
  381. return le32_to_cpu(*p);
  382. }
  383. /* No such thing, so let's try location of indirect block */
  384. if (ind->bh)
  385. return ind->bh->b_blocknr;
  386. /*
  387. * It is going to be referred to from the inode itself? OK, just put it
  388. * into the same cylinder group then.
  389. */
  390. bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
  391. colour = (current->pid % 16) *
  392. (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  393. return bg_start + colour;
  394. }
  395. /**
  396. * ext4_find_goal - find a prefered place for allocation.
  397. * @inode: owner
  398. * @block: block we want
  399. * @chain: chain of indirect blocks
  400. * @partial: pointer to the last triple within a chain
  401. * @goal: place to store the result.
  402. *
  403. * Normally this function find the prefered place for block allocation,
  404. * stores it in *@goal and returns zero.
  405. */
  406. static ext4_fsblk_t ext4_find_goal(struct inode *inode, long block,
  407. Indirect chain[4], Indirect *partial)
  408. {
  409. struct ext4_block_alloc_info *block_i;
  410. block_i = EXT4_I(inode)->i_block_alloc_info;
  411. /*
  412. * try the heuristic for sequential allocation,
  413. * failing that at least try to get decent locality.
  414. */
  415. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  416. && (block_i->last_alloc_physical_block != 0)) {
  417. return block_i->last_alloc_physical_block + 1;
  418. }
  419. return ext4_find_near(inode, partial);
  420. }
  421. /**
  422. * ext4_blks_to_allocate: Look up the block map and count the number
  423. * of direct blocks need to be allocated for the given branch.
  424. *
  425. * @branch: chain of indirect blocks
  426. * @k: number of blocks need for indirect blocks
  427. * @blks: number of data blocks to be mapped.
  428. * @blocks_to_boundary: the offset in the indirect block
  429. *
  430. * return the total number of blocks to be allocate, including the
  431. * direct and indirect blocks.
  432. */
  433. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  434. int blocks_to_boundary)
  435. {
  436. unsigned long count = 0;
  437. /*
  438. * Simple case, [t,d]Indirect block(s) has not allocated yet
  439. * then it's clear blocks on that path have not allocated
  440. */
  441. if (k > 0) {
  442. /* right now we don't handle cross boundary allocation */
  443. if (blks < blocks_to_boundary + 1)
  444. count += blks;
  445. else
  446. count += blocks_to_boundary + 1;
  447. return count;
  448. }
  449. count++;
  450. while (count < blks && count <= blocks_to_boundary &&
  451. le32_to_cpu(*(branch[0].p + count)) == 0) {
  452. count++;
  453. }
  454. return count;
  455. }
  456. /**
  457. * ext4_alloc_blocks: multiple allocate blocks needed for a branch
  458. * @indirect_blks: the number of blocks need to allocate for indirect
  459. * blocks
  460. *
  461. * @new_blocks: on return it will store the new block numbers for
  462. * the indirect blocks(if needed) and the first direct block,
  463. * @blks: on return it will store the total number of allocated
  464. * direct blocks
  465. */
  466. static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
  467. ext4_fsblk_t goal, int indirect_blks, int blks,
  468. ext4_fsblk_t new_blocks[4], int *err)
  469. {
  470. int target, i;
  471. unsigned long count = 0;
  472. int index = 0;
  473. ext4_fsblk_t current_block = 0;
  474. int ret = 0;
  475. /*
  476. * Here we try to allocate the requested multiple blocks at once,
  477. * on a best-effort basis.
  478. * To build a branch, we should allocate blocks for
  479. * the indirect blocks(if not allocated yet), and at least
  480. * the first direct block of this branch. That's the
  481. * minimum number of blocks need to allocate(required)
  482. */
  483. target = blks + indirect_blks;
  484. while (1) {
  485. count = target;
  486. /* allocating blocks for indirect blocks and direct blocks */
  487. current_block = ext4_new_blocks(handle,inode,goal,&count,err);
  488. if (*err)
  489. goto failed_out;
  490. target -= count;
  491. /* allocate blocks for indirect blocks */
  492. while (index < indirect_blks && count) {
  493. new_blocks[index++] = current_block++;
  494. count--;
  495. }
  496. if (count > 0)
  497. break;
  498. }
  499. /* save the new block number for the first direct block */
  500. new_blocks[index] = current_block;
  501. /* total number of blocks allocated for direct blocks */
  502. ret = count;
  503. *err = 0;
  504. return ret;
  505. failed_out:
  506. for (i = 0; i <index; i++)
  507. ext4_free_blocks(handle, inode, new_blocks[i], 1);
  508. return ret;
  509. }
  510. /**
  511. * ext4_alloc_branch - allocate and set up a chain of blocks.
  512. * @inode: owner
  513. * @indirect_blks: number of allocated indirect blocks
  514. * @blks: number of allocated direct blocks
  515. * @offsets: offsets (in the blocks) to store the pointers to next.
  516. * @branch: place to store the chain in.
  517. *
  518. * This function allocates blocks, zeroes out all but the last one,
  519. * links them into chain and (if we are synchronous) writes them to disk.
  520. * In other words, it prepares a branch that can be spliced onto the
  521. * inode. It stores the information about that chain in the branch[], in
  522. * the same format as ext4_get_branch() would do. We are calling it after
  523. * we had read the existing part of chain and partial points to the last
  524. * triple of that (one with zero ->key). Upon the exit we have the same
  525. * picture as after the successful ext4_get_block(), except that in one
  526. * place chain is disconnected - *branch->p is still zero (we did not
  527. * set the last link), but branch->key contains the number that should
  528. * be placed into *branch->p to fill that gap.
  529. *
  530. * If allocation fails we free all blocks we've allocated (and forget
  531. * their buffer_heads) and return the error value the from failed
  532. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  533. * as described above and return 0.
  534. */
  535. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  536. int indirect_blks, int *blks, ext4_fsblk_t goal,
  537. int *offsets, Indirect *branch)
  538. {
  539. int blocksize = inode->i_sb->s_blocksize;
  540. int i, n = 0;
  541. int err = 0;
  542. struct buffer_head *bh;
  543. int num;
  544. ext4_fsblk_t new_blocks[4];
  545. ext4_fsblk_t current_block;
  546. num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
  547. *blks, new_blocks, &err);
  548. if (err)
  549. return err;
  550. branch[0].key = cpu_to_le32(new_blocks[0]);
  551. /*
  552. * metadata blocks and data blocks are allocated.
  553. */
  554. for (n = 1; n <= indirect_blks; n++) {
  555. /*
  556. * Get buffer_head for parent block, zero it out
  557. * and set the pointer to new one, then send
  558. * parent to disk.
  559. */
  560. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  561. branch[n].bh = bh;
  562. lock_buffer(bh);
  563. BUFFER_TRACE(bh, "call get_create_access");
  564. err = ext4_journal_get_create_access(handle, bh);
  565. if (err) {
  566. unlock_buffer(bh);
  567. brelse(bh);
  568. goto failed;
  569. }
  570. memset(bh->b_data, 0, blocksize);
  571. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  572. branch[n].key = cpu_to_le32(new_blocks[n]);
  573. *branch[n].p = branch[n].key;
  574. if ( n == indirect_blks) {
  575. current_block = new_blocks[n];
  576. /*
  577. * End of chain, update the last new metablock of
  578. * the chain to point to the new allocated
  579. * data blocks numbers
  580. */
  581. for (i=1; i < num; i++)
  582. *(branch[n].p + i) = cpu_to_le32(++current_block);
  583. }
  584. BUFFER_TRACE(bh, "marking uptodate");
  585. set_buffer_uptodate(bh);
  586. unlock_buffer(bh);
  587. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  588. err = ext4_journal_dirty_metadata(handle, bh);
  589. if (err)
  590. goto failed;
  591. }
  592. *blks = num;
  593. return err;
  594. failed:
  595. /* Allocation failed, free what we already allocated */
  596. for (i = 1; i <= n ; i++) {
  597. BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
  598. ext4_journal_forget(handle, branch[i].bh);
  599. }
  600. for (i = 0; i <indirect_blks; i++)
  601. ext4_free_blocks(handle, inode, new_blocks[i], 1);
  602. ext4_free_blocks(handle, inode, new_blocks[i], num);
  603. return err;
  604. }
  605. /**
  606. * ext4_splice_branch - splice the allocated branch onto inode.
  607. * @inode: owner
  608. * @block: (logical) number of block we are adding
  609. * @chain: chain of indirect blocks (with a missing link - see
  610. * ext4_alloc_branch)
  611. * @where: location of missing link
  612. * @num: number of indirect blocks we are adding
  613. * @blks: number of direct blocks we are adding
  614. *
  615. * This function fills the missing link and does all housekeeping needed in
  616. * inode (->i_blocks, etc.). In case of success we end up with the full
  617. * chain to new block and return 0.
  618. */
  619. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  620. long block, Indirect *where, int num, int blks)
  621. {
  622. int i;
  623. int err = 0;
  624. struct ext4_block_alloc_info *block_i;
  625. ext4_fsblk_t current_block;
  626. block_i = EXT4_I(inode)->i_block_alloc_info;
  627. /*
  628. * If we're splicing into a [td]indirect block (as opposed to the
  629. * inode) then we need to get write access to the [td]indirect block
  630. * before the splice.
  631. */
  632. if (where->bh) {
  633. BUFFER_TRACE(where->bh, "get_write_access");
  634. err = ext4_journal_get_write_access(handle, where->bh);
  635. if (err)
  636. goto err_out;
  637. }
  638. /* That's it */
  639. *where->p = where->key;
  640. /*
  641. * Update the host buffer_head or inode to point to more just allocated
  642. * direct blocks blocks
  643. */
  644. if (num == 0 && blks > 1) {
  645. current_block = le32_to_cpu(where->key) + 1;
  646. for (i = 1; i < blks; i++)
  647. *(where->p + i ) = cpu_to_le32(current_block++);
  648. }
  649. /*
  650. * update the most recently allocated logical & physical block
  651. * in i_block_alloc_info, to assist find the proper goal block for next
  652. * allocation
  653. */
  654. if (block_i) {
  655. block_i->last_alloc_logical_block = block + blks - 1;
  656. block_i->last_alloc_physical_block =
  657. le32_to_cpu(where[num].key) + blks - 1;
  658. }
  659. /* We are done with atomic stuff, now do the rest of housekeeping */
  660. inode->i_ctime = CURRENT_TIME_SEC;
  661. ext4_mark_inode_dirty(handle, inode);
  662. /* had we spliced it onto indirect block? */
  663. if (where->bh) {
  664. /*
  665. * If we spliced it onto an indirect block, we haven't
  666. * altered the inode. Note however that if it is being spliced
  667. * onto an indirect block at the very end of the file (the
  668. * file is growing) then we *will* alter the inode to reflect
  669. * the new i_size. But that is not done here - it is done in
  670. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  671. */
  672. jbd_debug(5, "splicing indirect only\n");
  673. BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
  674. err = ext4_journal_dirty_metadata(handle, where->bh);
  675. if (err)
  676. goto err_out;
  677. } else {
  678. /*
  679. * OK, we spliced it into the inode itself on a direct block.
  680. * Inode was dirtied above.
  681. */
  682. jbd_debug(5, "splicing direct\n");
  683. }
  684. return err;
  685. err_out:
  686. for (i = 1; i <= num; i++) {
  687. BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
  688. ext4_journal_forget(handle, where[i].bh);
  689. ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  690. }
  691. ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  692. return err;
  693. }
  694. /*
  695. * Allocation strategy is simple: if we have to allocate something, we will
  696. * have to go the whole way to leaf. So let's do it before attaching anything
  697. * to tree, set linkage between the newborn blocks, write them if sync is
  698. * required, recheck the path, free and repeat if check fails, otherwise
  699. * set the last missing link (that will protect us from any truncate-generated
  700. * removals - all blocks on the path are immune now) and possibly force the
  701. * write on the parent block.
  702. * That has a nice additional property: no special recovery from the failed
  703. * allocations is needed - we simply release blocks and do not touch anything
  704. * reachable from inode.
  705. *
  706. * `handle' can be NULL if create == 0.
  707. *
  708. * The BKL may not be held on entry here. Be sure to take it early.
  709. * return > 0, # of blocks mapped or allocated.
  710. * return = 0, if plain lookup failed.
  711. * return < 0, error case.
  712. */
  713. int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
  714. sector_t iblock, unsigned long maxblocks,
  715. struct buffer_head *bh_result,
  716. int create, int extend_disksize)
  717. {
  718. int err = -EIO;
  719. int offsets[4];
  720. Indirect chain[4];
  721. Indirect *partial;
  722. ext4_fsblk_t goal;
  723. int indirect_blks;
  724. int blocks_to_boundary = 0;
  725. int depth;
  726. struct ext4_inode_info *ei = EXT4_I(inode);
  727. int count = 0;
  728. ext4_fsblk_t first_block = 0;
  729. J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
  730. J_ASSERT(handle != NULL || create == 0);
  731. depth = ext4_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  732. if (depth == 0)
  733. goto out;
  734. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  735. /* Simplest case - block found, no allocation needed */
  736. if (!partial) {
  737. first_block = le32_to_cpu(chain[depth - 1].key);
  738. clear_buffer_new(bh_result);
  739. count++;
  740. /*map more blocks*/
  741. while (count < maxblocks && count <= blocks_to_boundary) {
  742. ext4_fsblk_t blk;
  743. if (!verify_chain(chain, partial)) {
  744. /*
  745. * Indirect block might be removed by
  746. * truncate while we were reading it.
  747. * Handling of that case: forget what we've
  748. * got now. Flag the err as EAGAIN, so it
  749. * will reread.
  750. */
  751. err = -EAGAIN;
  752. count = 0;
  753. break;
  754. }
  755. blk = le32_to_cpu(*(chain[depth-1].p + count));
  756. if (blk == first_block + count)
  757. count++;
  758. else
  759. break;
  760. }
  761. if (err != -EAGAIN)
  762. goto got_it;
  763. }
  764. /* Next simple case - plain lookup or failed read of indirect block */
  765. if (!create || err == -EIO)
  766. goto cleanup;
  767. mutex_lock(&ei->truncate_mutex);
  768. /*
  769. * If the indirect block is missing while we are reading
  770. * the chain(ext4_get_branch() returns -EAGAIN err), or
  771. * if the chain has been changed after we grab the semaphore,
  772. * (either because another process truncated this branch, or
  773. * another get_block allocated this branch) re-grab the chain to see if
  774. * the request block has been allocated or not.
  775. *
  776. * Since we already block the truncate/other get_block
  777. * at this point, we will have the current copy of the chain when we
  778. * splice the branch into the tree.
  779. */
  780. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  781. while (partial > chain) {
  782. brelse(partial->bh);
  783. partial--;
  784. }
  785. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  786. if (!partial) {
  787. count++;
  788. mutex_unlock(&ei->truncate_mutex);
  789. if (err)
  790. goto cleanup;
  791. clear_buffer_new(bh_result);
  792. goto got_it;
  793. }
  794. }
  795. /*
  796. * Okay, we need to do block allocation. Lazily initialize the block
  797. * allocation info here if necessary
  798. */
  799. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  800. ext4_init_block_alloc_info(inode);
  801. goal = ext4_find_goal(inode, iblock, chain, partial);
  802. /* the number of blocks need to allocate for [d,t]indirect blocks */
  803. indirect_blks = (chain + depth) - partial - 1;
  804. /*
  805. * Next look up the indirect map to count the totoal number of
  806. * direct blocks to allocate for this branch.
  807. */
  808. count = ext4_blks_to_allocate(partial, indirect_blks,
  809. maxblocks, blocks_to_boundary);
  810. /*
  811. * Block out ext4_truncate while we alter the tree
  812. */
  813. err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
  814. offsets + (partial - chain), partial);
  815. /*
  816. * The ext4_splice_branch call will free and forget any buffers
  817. * on the new chain if there is a failure, but that risks using
  818. * up transaction credits, especially for bitmaps where the
  819. * credits cannot be returned. Can we handle this somehow? We
  820. * may need to return -EAGAIN upwards in the worst case. --sct
  821. */
  822. if (!err)
  823. err = ext4_splice_branch(handle, inode, iblock,
  824. partial, indirect_blks, count);
  825. /*
  826. * i_disksize growing is protected by truncate_mutex. Don't forget to
  827. * protect it if you're about to implement concurrent
  828. * ext4_get_block() -bzzz
  829. */
  830. if (!err && extend_disksize && inode->i_size > ei->i_disksize)
  831. ei->i_disksize = inode->i_size;
  832. mutex_unlock(&ei->truncate_mutex);
  833. if (err)
  834. goto cleanup;
  835. set_buffer_new(bh_result);
  836. got_it:
  837. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  838. if (count > blocks_to_boundary)
  839. set_buffer_boundary(bh_result);
  840. err = count;
  841. /* Clean up and exit */
  842. partial = chain + depth - 1; /* the whole chain */
  843. cleanup:
  844. while (partial > chain) {
  845. BUFFER_TRACE(partial->bh, "call brelse");
  846. brelse(partial->bh);
  847. partial--;
  848. }
  849. BUFFER_TRACE(bh_result, "returned");
  850. out:
  851. return err;
  852. }
  853. #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
  854. static int ext4_get_block(struct inode *inode, sector_t iblock,
  855. struct buffer_head *bh_result, int create)
  856. {
  857. handle_t *handle = ext4_journal_current_handle();
  858. int ret = 0;
  859. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  860. if (!create)
  861. goto get_block; /* A read */
  862. if (max_blocks == 1)
  863. goto get_block; /* A single block get */
  864. if (handle->h_transaction->t_state == T_LOCKED) {
  865. /*
  866. * Huge direct-io writes can hold off commits for long
  867. * periods of time. Let this commit run.
  868. */
  869. ext4_journal_stop(handle);
  870. handle = ext4_journal_start(inode, DIO_CREDITS);
  871. if (IS_ERR(handle))
  872. ret = PTR_ERR(handle);
  873. goto get_block;
  874. }
  875. if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
  876. /*
  877. * Getting low on buffer credits...
  878. */
  879. ret = ext4_journal_extend(handle, DIO_CREDITS);
  880. if (ret > 0) {
  881. /*
  882. * Couldn't extend the transaction. Start a new one.
  883. */
  884. ret = ext4_journal_restart(handle, DIO_CREDITS);
  885. }
  886. }
  887. get_block:
  888. if (ret == 0) {
  889. ret = ext4_get_blocks_wrap(handle, inode, iblock,
  890. max_blocks, bh_result, create, 0);
  891. if (ret > 0) {
  892. bh_result->b_size = (ret << inode->i_blkbits);
  893. ret = 0;
  894. }
  895. }
  896. return ret;
  897. }
  898. /*
  899. * `handle' can be NULL if create is zero
  900. */
  901. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  902. long block, int create, int *errp)
  903. {
  904. struct buffer_head dummy;
  905. int fatal = 0, err;
  906. J_ASSERT(handle != NULL || create == 0);
  907. dummy.b_state = 0;
  908. dummy.b_blocknr = -1000;
  909. buffer_trace_init(&dummy.b_history);
  910. err = ext4_get_blocks_wrap(handle, inode, block, 1,
  911. &dummy, create, 1);
  912. /*
  913. * ext4_get_blocks_handle() returns number of blocks
  914. * mapped. 0 in case of a HOLE.
  915. */
  916. if (err > 0) {
  917. if (err > 1)
  918. WARN_ON(1);
  919. err = 0;
  920. }
  921. *errp = err;
  922. if (!err && buffer_mapped(&dummy)) {
  923. struct buffer_head *bh;
  924. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  925. if (!bh) {
  926. *errp = -EIO;
  927. goto err;
  928. }
  929. if (buffer_new(&dummy)) {
  930. J_ASSERT(create != 0);
  931. J_ASSERT(handle != 0);
  932. /*
  933. * Now that we do not always journal data, we should
  934. * keep in mind whether this should always journal the
  935. * new buffer as metadata. For now, regular file
  936. * writes use ext4_get_block instead, so it's not a
  937. * problem.
  938. */
  939. lock_buffer(bh);
  940. BUFFER_TRACE(bh, "call get_create_access");
  941. fatal = ext4_journal_get_create_access(handle, bh);
  942. if (!fatal && !buffer_uptodate(bh)) {
  943. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  944. set_buffer_uptodate(bh);
  945. }
  946. unlock_buffer(bh);
  947. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  948. err = ext4_journal_dirty_metadata(handle, bh);
  949. if (!fatal)
  950. fatal = err;
  951. } else {
  952. BUFFER_TRACE(bh, "not a new buffer");
  953. }
  954. if (fatal) {
  955. *errp = fatal;
  956. brelse(bh);
  957. bh = NULL;
  958. }
  959. return bh;
  960. }
  961. err:
  962. return NULL;
  963. }
  964. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  965. int block, int create, int *err)
  966. {
  967. struct buffer_head * bh;
  968. bh = ext4_getblk(handle, inode, block, create, err);
  969. if (!bh)
  970. return bh;
  971. if (buffer_uptodate(bh))
  972. return bh;
  973. ll_rw_block(READ_META, 1, &bh);
  974. wait_on_buffer(bh);
  975. if (buffer_uptodate(bh))
  976. return bh;
  977. put_bh(bh);
  978. *err = -EIO;
  979. return NULL;
  980. }
  981. static int walk_page_buffers( handle_t *handle,
  982. struct buffer_head *head,
  983. unsigned from,
  984. unsigned to,
  985. int *partial,
  986. int (*fn)( handle_t *handle,
  987. struct buffer_head *bh))
  988. {
  989. struct buffer_head *bh;
  990. unsigned block_start, block_end;
  991. unsigned blocksize = head->b_size;
  992. int err, ret = 0;
  993. struct buffer_head *next;
  994. for ( bh = head, block_start = 0;
  995. ret == 0 && (bh != head || !block_start);
  996. block_start = block_end, bh = next)
  997. {
  998. next = bh->b_this_page;
  999. block_end = block_start + blocksize;
  1000. if (block_end <= from || block_start >= to) {
  1001. if (partial && !buffer_uptodate(bh))
  1002. *partial = 1;
  1003. continue;
  1004. }
  1005. err = (*fn)(handle, bh);
  1006. if (!ret)
  1007. ret = err;
  1008. }
  1009. return ret;
  1010. }
  1011. /*
  1012. * To preserve ordering, it is essential that the hole instantiation and
  1013. * the data write be encapsulated in a single transaction. We cannot
  1014. * close off a transaction and start a new one between the ext4_get_block()
  1015. * and the commit_write(). So doing the jbd2_journal_start at the start of
  1016. * prepare_write() is the right place.
  1017. *
  1018. * Also, this function can nest inside ext4_writepage() ->
  1019. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  1020. * has generated enough buffer credits to do the whole page. So we won't
  1021. * block on the journal in that case, which is good, because the caller may
  1022. * be PF_MEMALLOC.
  1023. *
  1024. * By accident, ext4 can be reentered when a transaction is open via
  1025. * quota file writes. If we were to commit the transaction while thus
  1026. * reentered, there can be a deadlock - we would be holding a quota
  1027. * lock, and the commit would never complete if another thread had a
  1028. * transaction open and was blocking on the quota lock - a ranking
  1029. * violation.
  1030. *
  1031. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  1032. * will _not_ run commit under these circumstances because handle->h_ref
  1033. * is elevated. We'll still have enough credits for the tiny quotafile
  1034. * write.
  1035. */
  1036. static int do_journal_get_write_access(handle_t *handle,
  1037. struct buffer_head *bh)
  1038. {
  1039. if (!buffer_mapped(bh) || buffer_freed(bh))
  1040. return 0;
  1041. return ext4_journal_get_write_access(handle, bh);
  1042. }
  1043. static int ext4_prepare_write(struct file *file, struct page *page,
  1044. unsigned from, unsigned to)
  1045. {
  1046. struct inode *inode = page->mapping->host;
  1047. int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
  1048. handle_t *handle;
  1049. int retries = 0;
  1050. retry:
  1051. handle = ext4_journal_start(inode, needed_blocks);
  1052. if (IS_ERR(handle)) {
  1053. ret = PTR_ERR(handle);
  1054. goto out;
  1055. }
  1056. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  1057. ret = nobh_prepare_write(page, from, to, ext4_get_block);
  1058. else
  1059. ret = block_prepare_write(page, from, to, ext4_get_block);
  1060. if (ret)
  1061. goto prepare_write_failed;
  1062. if (ext4_should_journal_data(inode)) {
  1063. ret = walk_page_buffers(handle, page_buffers(page),
  1064. from, to, NULL, do_journal_get_write_access);
  1065. }
  1066. prepare_write_failed:
  1067. if (ret)
  1068. ext4_journal_stop(handle);
  1069. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  1070. goto retry;
  1071. out:
  1072. return ret;
  1073. }
  1074. int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1075. {
  1076. int err = jbd2_journal_dirty_data(handle, bh);
  1077. if (err)
  1078. ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
  1079. bh, handle,err);
  1080. return err;
  1081. }
  1082. /* For commit_write() in data=journal mode */
  1083. static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
  1084. {
  1085. if (!buffer_mapped(bh) || buffer_freed(bh))
  1086. return 0;
  1087. set_buffer_uptodate(bh);
  1088. return ext4_journal_dirty_metadata(handle, bh);
  1089. }
  1090. /*
  1091. * We need to pick up the new inode size which generic_commit_write gave us
  1092. * `file' can be NULL - eg, when called from page_symlink().
  1093. *
  1094. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  1095. * buffers are managed internally.
  1096. */
  1097. static int ext4_ordered_commit_write(struct file *file, struct page *page,
  1098. unsigned from, unsigned to)
  1099. {
  1100. handle_t *handle = ext4_journal_current_handle();
  1101. struct inode *inode = page->mapping->host;
  1102. int ret = 0, ret2;
  1103. ret = walk_page_buffers(handle, page_buffers(page),
  1104. from, to, NULL, ext4_journal_dirty_data);
  1105. if (ret == 0) {
  1106. /*
  1107. * generic_commit_write() will run mark_inode_dirty() if i_size
  1108. * changes. So let's piggyback the i_disksize mark_inode_dirty
  1109. * into that.
  1110. */
  1111. loff_t new_i_size;
  1112. new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1113. if (new_i_size > EXT4_I(inode)->i_disksize)
  1114. EXT4_I(inode)->i_disksize = new_i_size;
  1115. ret = generic_commit_write(file, page, from, to);
  1116. }
  1117. ret2 = ext4_journal_stop(handle);
  1118. if (!ret)
  1119. ret = ret2;
  1120. return ret;
  1121. }
  1122. static int ext4_writeback_commit_write(struct file *file, struct page *page,
  1123. unsigned from, unsigned to)
  1124. {
  1125. handle_t *handle = ext4_journal_current_handle();
  1126. struct inode *inode = page->mapping->host;
  1127. int ret = 0, ret2;
  1128. loff_t new_i_size;
  1129. new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1130. if (new_i_size > EXT4_I(inode)->i_disksize)
  1131. EXT4_I(inode)->i_disksize = new_i_size;
  1132. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  1133. ret = nobh_commit_write(file, page, from, to);
  1134. else
  1135. ret = generic_commit_write(file, page, from, to);
  1136. ret2 = ext4_journal_stop(handle);
  1137. if (!ret)
  1138. ret = ret2;
  1139. return ret;
  1140. }
  1141. static int ext4_journalled_commit_write(struct file *file,
  1142. struct page *page, unsigned from, unsigned to)
  1143. {
  1144. handle_t *handle = ext4_journal_current_handle();
  1145. struct inode *inode = page->mapping->host;
  1146. int ret = 0, ret2;
  1147. int partial = 0;
  1148. loff_t pos;
  1149. /*
  1150. * Here we duplicate the generic_commit_write() functionality
  1151. */
  1152. pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1153. ret = walk_page_buffers(handle, page_buffers(page), from,
  1154. to, &partial, commit_write_fn);
  1155. if (!partial)
  1156. SetPageUptodate(page);
  1157. if (pos > inode->i_size)
  1158. i_size_write(inode, pos);
  1159. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1160. if (inode->i_size > EXT4_I(inode)->i_disksize) {
  1161. EXT4_I(inode)->i_disksize = inode->i_size;
  1162. ret2 = ext4_mark_inode_dirty(handle, inode);
  1163. if (!ret)
  1164. ret = ret2;
  1165. }
  1166. ret2 = ext4_journal_stop(handle);
  1167. if (!ret)
  1168. ret = ret2;
  1169. return ret;
  1170. }
  1171. /*
  1172. * bmap() is special. It gets used by applications such as lilo and by
  1173. * the swapper to find the on-disk block of a specific piece of data.
  1174. *
  1175. * Naturally, this is dangerous if the block concerned is still in the
  1176. * journal. If somebody makes a swapfile on an ext4 data-journaling
  1177. * filesystem and enables swap, then they may get a nasty shock when the
  1178. * data getting swapped to that swapfile suddenly gets overwritten by
  1179. * the original zero's written out previously to the journal and
  1180. * awaiting writeback in the kernel's buffer cache.
  1181. *
  1182. * So, if we see any bmap calls here on a modified, data-journaled file,
  1183. * take extra steps to flush any blocks which might be in the cache.
  1184. */
  1185. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  1186. {
  1187. struct inode *inode = mapping->host;
  1188. journal_t *journal;
  1189. int err;
  1190. if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
  1191. /*
  1192. * This is a REALLY heavyweight approach, but the use of
  1193. * bmap on dirty files is expected to be extremely rare:
  1194. * only if we run lilo or swapon on a freshly made file
  1195. * do we expect this to happen.
  1196. *
  1197. * (bmap requires CAP_SYS_RAWIO so this does not
  1198. * represent an unprivileged user DOS attack --- we'd be
  1199. * in trouble if mortal users could trigger this path at
  1200. * will.)
  1201. *
  1202. * NB. EXT4_STATE_JDATA is not set on files other than
  1203. * regular files. If somebody wants to bmap a directory
  1204. * or symlink and gets confused because the buffer
  1205. * hasn't yet been flushed to disk, they deserve
  1206. * everything they get.
  1207. */
  1208. EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
  1209. journal = EXT4_JOURNAL(inode);
  1210. jbd2_journal_lock_updates(journal);
  1211. err = jbd2_journal_flush(journal);
  1212. jbd2_journal_unlock_updates(journal);
  1213. if (err)
  1214. return 0;
  1215. }
  1216. return generic_block_bmap(mapping,block,ext4_get_block);
  1217. }
  1218. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1219. {
  1220. get_bh(bh);
  1221. return 0;
  1222. }
  1223. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1224. {
  1225. put_bh(bh);
  1226. return 0;
  1227. }
  1228. static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1229. {
  1230. if (buffer_mapped(bh))
  1231. return ext4_journal_dirty_data(handle, bh);
  1232. return 0;
  1233. }
  1234. /*
  1235. * Note that we always start a transaction even if we're not journalling
  1236. * data. This is to preserve ordering: any hole instantiation within
  1237. * __block_write_full_page -> ext4_get_block() should be journalled
  1238. * along with the data so we don't crash and then get metadata which
  1239. * refers to old data.
  1240. *
  1241. * In all journalling modes block_write_full_page() will start the I/O.
  1242. *
  1243. * Problem:
  1244. *
  1245. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1246. * ext4_writepage()
  1247. *
  1248. * Similar for:
  1249. *
  1250. * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1251. *
  1252. * Same applies to ext4_get_block(). We will deadlock on various things like
  1253. * lock_journal and i_truncate_mutex.
  1254. *
  1255. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1256. * allocations fail.
  1257. *
  1258. * 16May01: If we're reentered then journal_current_handle() will be
  1259. * non-zero. We simply *return*.
  1260. *
  1261. * 1 July 2001: @@@ FIXME:
  1262. * In journalled data mode, a data buffer may be metadata against the
  1263. * current transaction. But the same file is part of a shared mapping
  1264. * and someone does a writepage() on it.
  1265. *
  1266. * We will move the buffer onto the async_data list, but *after* it has
  1267. * been dirtied. So there's a small window where we have dirty data on
  1268. * BJ_Metadata.
  1269. *
  1270. * Note that this only applies to the last partial page in the file. The
  1271. * bit which block_write_full_page() uses prepare/commit for. (That's
  1272. * broken code anyway: it's wrong for msync()).
  1273. *
  1274. * It's a rare case: affects the final partial page, for journalled data
  1275. * where the file is subject to bith write() and writepage() in the same
  1276. * transction. To fix it we'll need a custom block_write_full_page().
  1277. * We'll probably need that anyway for journalling writepage() output.
  1278. *
  1279. * We don't honour synchronous mounts for writepage(). That would be
  1280. * disastrous. Any write() or metadata operation will sync the fs for
  1281. * us.
  1282. *
  1283. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1284. * we don't need to open a transaction here.
  1285. */
  1286. static int ext4_ordered_writepage(struct page *page,
  1287. struct writeback_control *wbc)
  1288. {
  1289. struct inode *inode = page->mapping->host;
  1290. struct buffer_head *page_bufs;
  1291. handle_t *handle = NULL;
  1292. int ret = 0;
  1293. int err;
  1294. J_ASSERT(PageLocked(page));
  1295. /*
  1296. * We give up here if we're reentered, because it might be for a
  1297. * different filesystem.
  1298. */
  1299. if (ext4_journal_current_handle())
  1300. goto out_fail;
  1301. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1302. if (IS_ERR(handle)) {
  1303. ret = PTR_ERR(handle);
  1304. goto out_fail;
  1305. }
  1306. if (!page_has_buffers(page)) {
  1307. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1308. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1309. }
  1310. page_bufs = page_buffers(page);
  1311. walk_page_buffers(handle, page_bufs, 0,
  1312. PAGE_CACHE_SIZE, NULL, bget_one);
  1313. ret = block_write_full_page(page, ext4_get_block, wbc);
  1314. /*
  1315. * The page can become unlocked at any point now, and
  1316. * truncate can then come in and change things. So we
  1317. * can't touch *page from now on. But *page_bufs is
  1318. * safe due to elevated refcount.
  1319. */
  1320. /*
  1321. * And attach them to the current transaction. But only if
  1322. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1323. * and generally junk.
  1324. */
  1325. if (ret == 0) {
  1326. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1327. NULL, jbd2_journal_dirty_data_fn);
  1328. if (!ret)
  1329. ret = err;
  1330. }
  1331. walk_page_buffers(handle, page_bufs, 0,
  1332. PAGE_CACHE_SIZE, NULL, bput_one);
  1333. err = ext4_journal_stop(handle);
  1334. if (!ret)
  1335. ret = err;
  1336. return ret;
  1337. out_fail:
  1338. redirty_page_for_writepage(wbc, page);
  1339. unlock_page(page);
  1340. return ret;
  1341. }
  1342. static int ext4_writeback_writepage(struct page *page,
  1343. struct writeback_control *wbc)
  1344. {
  1345. struct inode *inode = page->mapping->host;
  1346. handle_t *handle = NULL;
  1347. int ret = 0;
  1348. int err;
  1349. if (ext4_journal_current_handle())
  1350. goto out_fail;
  1351. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1352. if (IS_ERR(handle)) {
  1353. ret = PTR_ERR(handle);
  1354. goto out_fail;
  1355. }
  1356. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  1357. ret = nobh_writepage(page, ext4_get_block, wbc);
  1358. else
  1359. ret = block_write_full_page(page, ext4_get_block, wbc);
  1360. err = ext4_journal_stop(handle);
  1361. if (!ret)
  1362. ret = err;
  1363. return ret;
  1364. out_fail:
  1365. redirty_page_for_writepage(wbc, page);
  1366. unlock_page(page);
  1367. return ret;
  1368. }
  1369. static int ext4_journalled_writepage(struct page *page,
  1370. struct writeback_control *wbc)
  1371. {
  1372. struct inode *inode = page->mapping->host;
  1373. handle_t *handle = NULL;
  1374. int ret = 0;
  1375. int err;
  1376. if (ext4_journal_current_handle())
  1377. goto no_write;
  1378. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1379. if (IS_ERR(handle)) {
  1380. ret = PTR_ERR(handle);
  1381. goto no_write;
  1382. }
  1383. if (!page_has_buffers(page) || PageChecked(page)) {
  1384. /*
  1385. * It's mmapped pagecache. Add buffers and journal it. There
  1386. * doesn't seem much point in redirtying the page here.
  1387. */
  1388. ClearPageChecked(page);
  1389. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1390. ext4_get_block);
  1391. if (ret != 0) {
  1392. ext4_journal_stop(handle);
  1393. goto out_unlock;
  1394. }
  1395. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1396. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1397. err = walk_page_buffers(handle, page_buffers(page), 0,
  1398. PAGE_CACHE_SIZE, NULL, commit_write_fn);
  1399. if (ret == 0)
  1400. ret = err;
  1401. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1402. unlock_page(page);
  1403. } else {
  1404. /*
  1405. * It may be a page full of checkpoint-mode buffers. We don't
  1406. * really know unless we go poke around in the buffer_heads.
  1407. * But block_write_full_page will do the right thing.
  1408. */
  1409. ret = block_write_full_page(page, ext4_get_block, wbc);
  1410. }
  1411. err = ext4_journal_stop(handle);
  1412. if (!ret)
  1413. ret = err;
  1414. out:
  1415. return ret;
  1416. no_write:
  1417. redirty_page_for_writepage(wbc, page);
  1418. out_unlock:
  1419. unlock_page(page);
  1420. goto out;
  1421. }
  1422. static int ext4_readpage(struct file *file, struct page *page)
  1423. {
  1424. return mpage_readpage(page, ext4_get_block);
  1425. }
  1426. static int
  1427. ext4_readpages(struct file *file, struct address_space *mapping,
  1428. struct list_head *pages, unsigned nr_pages)
  1429. {
  1430. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  1431. }
  1432. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  1433. {
  1434. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1435. /*
  1436. * If it's a full truncate we just forget about the pending dirtying
  1437. */
  1438. if (offset == 0)
  1439. ClearPageChecked(page);
  1440. jbd2_journal_invalidatepage(journal, page, offset);
  1441. }
  1442. static int ext4_releasepage(struct page *page, gfp_t wait)
  1443. {
  1444. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1445. WARN_ON(PageChecked(page));
  1446. if (!page_has_buffers(page))
  1447. return 0;
  1448. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  1449. }
  1450. /*
  1451. * If the O_DIRECT write will extend the file then add this inode to the
  1452. * orphan list. So recovery will truncate it back to the original size
  1453. * if the machine crashes during the write.
  1454. *
  1455. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1456. * crashes then stale disk data _may_ be exposed inside the file.
  1457. */
  1458. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  1459. const struct iovec *iov, loff_t offset,
  1460. unsigned long nr_segs)
  1461. {
  1462. struct file *file = iocb->ki_filp;
  1463. struct inode *inode = file->f_mapping->host;
  1464. struct ext4_inode_info *ei = EXT4_I(inode);
  1465. handle_t *handle = NULL;
  1466. ssize_t ret;
  1467. int orphan = 0;
  1468. size_t count = iov_length(iov, nr_segs);
  1469. if (rw == WRITE) {
  1470. loff_t final_size = offset + count;
  1471. handle = ext4_journal_start(inode, DIO_CREDITS);
  1472. if (IS_ERR(handle)) {
  1473. ret = PTR_ERR(handle);
  1474. goto out;
  1475. }
  1476. if (final_size > inode->i_size) {
  1477. ret = ext4_orphan_add(handle, inode);
  1478. if (ret)
  1479. goto out_stop;
  1480. orphan = 1;
  1481. ei->i_disksize = inode->i_size;
  1482. }
  1483. }
  1484. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1485. offset, nr_segs,
  1486. ext4_get_block, NULL);
  1487. /*
  1488. * Reacquire the handle: ext4_get_block() can restart the transaction
  1489. */
  1490. handle = ext4_journal_current_handle();
  1491. out_stop:
  1492. if (handle) {
  1493. int err;
  1494. if (orphan && inode->i_nlink)
  1495. ext4_orphan_del(handle, inode);
  1496. if (orphan && ret > 0) {
  1497. loff_t end = offset + ret;
  1498. if (end > inode->i_size) {
  1499. ei->i_disksize = end;
  1500. i_size_write(inode, end);
  1501. /*
  1502. * We're going to return a positive `ret'
  1503. * here due to non-zero-length I/O, so there's
  1504. * no way of reporting error returns from
  1505. * ext4_mark_inode_dirty() to userspace. So
  1506. * ignore it.
  1507. */
  1508. ext4_mark_inode_dirty(handle, inode);
  1509. }
  1510. }
  1511. err = ext4_journal_stop(handle);
  1512. if (ret == 0)
  1513. ret = err;
  1514. }
  1515. out:
  1516. return ret;
  1517. }
  1518. /*
  1519. * Pages can be marked dirty completely asynchronously from ext4's journalling
  1520. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1521. * much here because ->set_page_dirty is called under VFS locks. The page is
  1522. * not necessarily locked.
  1523. *
  1524. * We cannot just dirty the page and leave attached buffers clean, because the
  1525. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1526. * or jbddirty because all the journalling code will explode.
  1527. *
  1528. * So what we do is to mark the page "pending dirty" and next time writepage
  1529. * is called, propagate that into the buffers appropriately.
  1530. */
  1531. static int ext4_journalled_set_page_dirty(struct page *page)
  1532. {
  1533. SetPageChecked(page);
  1534. return __set_page_dirty_nobuffers(page);
  1535. }
  1536. static const struct address_space_operations ext4_ordered_aops = {
  1537. .readpage = ext4_readpage,
  1538. .readpages = ext4_readpages,
  1539. .writepage = ext4_ordered_writepage,
  1540. .sync_page = block_sync_page,
  1541. .prepare_write = ext4_prepare_write,
  1542. .commit_write = ext4_ordered_commit_write,
  1543. .bmap = ext4_bmap,
  1544. .invalidatepage = ext4_invalidatepage,
  1545. .releasepage = ext4_releasepage,
  1546. .direct_IO = ext4_direct_IO,
  1547. .migratepage = buffer_migrate_page,
  1548. };
  1549. static const struct address_space_operations ext4_writeback_aops = {
  1550. .readpage = ext4_readpage,
  1551. .readpages = ext4_readpages,
  1552. .writepage = ext4_writeback_writepage,
  1553. .sync_page = block_sync_page,
  1554. .prepare_write = ext4_prepare_write,
  1555. .commit_write = ext4_writeback_commit_write,
  1556. .bmap = ext4_bmap,
  1557. .invalidatepage = ext4_invalidatepage,
  1558. .releasepage = ext4_releasepage,
  1559. .direct_IO = ext4_direct_IO,
  1560. .migratepage = buffer_migrate_page,
  1561. };
  1562. static const struct address_space_operations ext4_journalled_aops = {
  1563. .readpage = ext4_readpage,
  1564. .readpages = ext4_readpages,
  1565. .writepage = ext4_journalled_writepage,
  1566. .sync_page = block_sync_page,
  1567. .prepare_write = ext4_prepare_write,
  1568. .commit_write = ext4_journalled_commit_write,
  1569. .set_page_dirty = ext4_journalled_set_page_dirty,
  1570. .bmap = ext4_bmap,
  1571. .invalidatepage = ext4_invalidatepage,
  1572. .releasepage = ext4_releasepage,
  1573. };
  1574. void ext4_set_aops(struct inode *inode)
  1575. {
  1576. if (ext4_should_order_data(inode))
  1577. inode->i_mapping->a_ops = &ext4_ordered_aops;
  1578. else if (ext4_should_writeback_data(inode))
  1579. inode->i_mapping->a_ops = &ext4_writeback_aops;
  1580. else
  1581. inode->i_mapping->a_ops = &ext4_journalled_aops;
  1582. }
  1583. /*
  1584. * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
  1585. * up to the end of the block which corresponds to `from'.
  1586. * This required during truncate. We need to physically zero the tail end
  1587. * of that block so it doesn't yield old data if the file is later grown.
  1588. */
  1589. int ext4_block_truncate_page(handle_t *handle, struct page *page,
  1590. struct address_space *mapping, loff_t from)
  1591. {
  1592. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1593. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1594. unsigned blocksize, iblock, length, pos;
  1595. struct inode *inode = mapping->host;
  1596. struct buffer_head *bh;
  1597. int err = 0;
  1598. void *kaddr;
  1599. blocksize = inode->i_sb->s_blocksize;
  1600. length = blocksize - (offset & (blocksize - 1));
  1601. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1602. /*
  1603. * For "nobh" option, we can only work if we don't need to
  1604. * read-in the page - otherwise we create buffers to do the IO.
  1605. */
  1606. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1607. ext4_should_writeback_data(inode) && PageUptodate(page)) {
  1608. kaddr = kmap_atomic(page, KM_USER0);
  1609. memset(kaddr + offset, 0, length);
  1610. flush_dcache_page(page);
  1611. kunmap_atomic(kaddr, KM_USER0);
  1612. set_page_dirty(page);
  1613. goto unlock;
  1614. }
  1615. if (!page_has_buffers(page))
  1616. create_empty_buffers(page, blocksize, 0);
  1617. /* Find the buffer that contains "offset" */
  1618. bh = page_buffers(page);
  1619. pos = blocksize;
  1620. while (offset >= pos) {
  1621. bh = bh->b_this_page;
  1622. iblock++;
  1623. pos += blocksize;
  1624. }
  1625. err = 0;
  1626. if (buffer_freed(bh)) {
  1627. BUFFER_TRACE(bh, "freed: skip");
  1628. goto unlock;
  1629. }
  1630. if (!buffer_mapped(bh)) {
  1631. BUFFER_TRACE(bh, "unmapped");
  1632. ext4_get_block(inode, iblock, bh, 0);
  1633. /* unmapped? It's a hole - nothing to do */
  1634. if (!buffer_mapped(bh)) {
  1635. BUFFER_TRACE(bh, "still unmapped");
  1636. goto unlock;
  1637. }
  1638. }
  1639. /* Ok, it's mapped. Make sure it's up-to-date */
  1640. if (PageUptodate(page))
  1641. set_buffer_uptodate(bh);
  1642. if (!buffer_uptodate(bh)) {
  1643. err = -EIO;
  1644. ll_rw_block(READ, 1, &bh);
  1645. wait_on_buffer(bh);
  1646. /* Uhhuh. Read error. Complain and punt. */
  1647. if (!buffer_uptodate(bh))
  1648. goto unlock;
  1649. }
  1650. if (ext4_should_journal_data(inode)) {
  1651. BUFFER_TRACE(bh, "get write access");
  1652. err = ext4_journal_get_write_access(handle, bh);
  1653. if (err)
  1654. goto unlock;
  1655. }
  1656. kaddr = kmap_atomic(page, KM_USER0);
  1657. memset(kaddr + offset, 0, length);
  1658. flush_dcache_page(page);
  1659. kunmap_atomic(kaddr, KM_USER0);
  1660. BUFFER_TRACE(bh, "zeroed end of block");
  1661. err = 0;
  1662. if (ext4_should_journal_data(inode)) {
  1663. err = ext4_journal_dirty_metadata(handle, bh);
  1664. } else {
  1665. if (ext4_should_order_data(inode))
  1666. err = ext4_journal_dirty_data(handle, bh);
  1667. mark_buffer_dirty(bh);
  1668. }
  1669. unlock:
  1670. unlock_page(page);
  1671. page_cache_release(page);
  1672. return err;
  1673. }
  1674. /*
  1675. * Probably it should be a library function... search for first non-zero word
  1676. * or memcmp with zero_page, whatever is better for particular architecture.
  1677. * Linus?
  1678. */
  1679. static inline int all_zeroes(__le32 *p, __le32 *q)
  1680. {
  1681. while (p < q)
  1682. if (*p++)
  1683. return 0;
  1684. return 1;
  1685. }
  1686. /**
  1687. * ext4_find_shared - find the indirect blocks for partial truncation.
  1688. * @inode: inode in question
  1689. * @depth: depth of the affected branch
  1690. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  1691. * @chain: place to store the pointers to partial indirect blocks
  1692. * @top: place to the (detached) top of branch
  1693. *
  1694. * This is a helper function used by ext4_truncate().
  1695. *
  1696. * When we do truncate() we may have to clean the ends of several
  1697. * indirect blocks but leave the blocks themselves alive. Block is
  1698. * partially truncated if some data below the new i_size is refered
  1699. * from it (and it is on the path to the first completely truncated
  1700. * data block, indeed). We have to free the top of that path along
  1701. * with everything to the right of the path. Since no allocation
  1702. * past the truncation point is possible until ext4_truncate()
  1703. * finishes, we may safely do the latter, but top of branch may
  1704. * require special attention - pageout below the truncation point
  1705. * might try to populate it.
  1706. *
  1707. * We atomically detach the top of branch from the tree, store the
  1708. * block number of its root in *@top, pointers to buffer_heads of
  1709. * partially truncated blocks - in @chain[].bh and pointers to
  1710. * their last elements that should not be removed - in
  1711. * @chain[].p. Return value is the pointer to last filled element
  1712. * of @chain.
  1713. *
  1714. * The work left to caller to do the actual freeing of subtrees:
  1715. * a) free the subtree starting from *@top
  1716. * b) free the subtrees whose roots are stored in
  1717. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1718. * c) free the subtrees growing from the inode past the @chain[0].
  1719. * (no partially truncated stuff there). */
  1720. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  1721. int offsets[4], Indirect chain[4], __le32 *top)
  1722. {
  1723. Indirect *partial, *p;
  1724. int k, err;
  1725. *top = 0;
  1726. /* Make k index the deepest non-null offest + 1 */
  1727. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1728. ;
  1729. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  1730. /* Writer: pointers */
  1731. if (!partial)
  1732. partial = chain + k-1;
  1733. /*
  1734. * If the branch acquired continuation since we've looked at it -
  1735. * fine, it should all survive and (new) top doesn't belong to us.
  1736. */
  1737. if (!partial->key && *partial->p)
  1738. /* Writer: end */
  1739. goto no_top;
  1740. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1741. ;
  1742. /*
  1743. * OK, we've found the last block that must survive. The rest of our
  1744. * branch should be detached before unlocking. However, if that rest
  1745. * of branch is all ours and does not grow immediately from the inode
  1746. * it's easier to cheat and just decrement partial->p.
  1747. */
  1748. if (p == chain + k - 1 && p > chain) {
  1749. p->p--;
  1750. } else {
  1751. *top = *p->p;
  1752. /* Nope, don't do this in ext4. Must leave the tree intact */
  1753. #if 0
  1754. *p->p = 0;
  1755. #endif
  1756. }
  1757. /* Writer: end */
  1758. while(partial > p) {
  1759. brelse(partial->bh);
  1760. partial--;
  1761. }
  1762. no_top:
  1763. return partial;
  1764. }
  1765. /*
  1766. * Zero a number of block pointers in either an inode or an indirect block.
  1767. * If we restart the transaction we must again get write access to the
  1768. * indirect block for further modification.
  1769. *
  1770. * We release `count' blocks on disk, but (last - first) may be greater
  1771. * than `count' because there can be holes in there.
  1772. */
  1773. static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
  1774. struct buffer_head *bh, ext4_fsblk_t block_to_free,
  1775. unsigned long count, __le32 *first, __le32 *last)
  1776. {
  1777. __le32 *p;
  1778. if (try_to_extend_transaction(handle, inode)) {
  1779. if (bh) {
  1780. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  1781. ext4_journal_dirty_metadata(handle, bh);
  1782. }
  1783. ext4_mark_inode_dirty(handle, inode);
  1784. ext4_journal_test_restart(handle, inode);
  1785. if (bh) {
  1786. BUFFER_TRACE(bh, "retaking write access");
  1787. ext4_journal_get_write_access(handle, bh);
  1788. }
  1789. }
  1790. /*
  1791. * Any buffers which are on the journal will be in memory. We find
  1792. * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
  1793. * on them. We've already detached each block from the file, so
  1794. * bforget() in jbd2_journal_forget() should be safe.
  1795. *
  1796. * AKPM: turn on bforget in jbd2_journal_forget()!!!
  1797. */
  1798. for (p = first; p < last; p++) {
  1799. u32 nr = le32_to_cpu(*p);
  1800. if (nr) {
  1801. struct buffer_head *bh;
  1802. *p = 0;
  1803. bh = sb_find_get_block(inode->i_sb, nr);
  1804. ext4_forget(handle, 0, inode, bh, nr);
  1805. }
  1806. }
  1807. ext4_free_blocks(handle, inode, block_to_free, count);
  1808. }
  1809. /**
  1810. * ext4_free_data - free a list of data blocks
  1811. * @handle: handle for this transaction
  1812. * @inode: inode we are dealing with
  1813. * @this_bh: indirect buffer_head which contains *@first and *@last
  1814. * @first: array of block numbers
  1815. * @last: points immediately past the end of array
  1816. *
  1817. * We are freeing all blocks refered from that array (numbers are stored as
  1818. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1819. *
  1820. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1821. * blocks are contiguous then releasing them at one time will only affect one
  1822. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1823. * actually use a lot of journal space.
  1824. *
  1825. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1826. * block pointers.
  1827. */
  1828. static void ext4_free_data(handle_t *handle, struct inode *inode,
  1829. struct buffer_head *this_bh,
  1830. __le32 *first, __le32 *last)
  1831. {
  1832. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1833. unsigned long count = 0; /* Number of blocks in the run */
  1834. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1835. corresponding to
  1836. block_to_free */
  1837. ext4_fsblk_t nr; /* Current block # */
  1838. __le32 *p; /* Pointer into inode/ind
  1839. for current block */
  1840. int err;
  1841. if (this_bh) { /* For indirect block */
  1842. BUFFER_TRACE(this_bh, "get_write_access");
  1843. err = ext4_journal_get_write_access(handle, this_bh);
  1844. /* Important: if we can't update the indirect pointers
  1845. * to the blocks, we can't free them. */
  1846. if (err)
  1847. return;
  1848. }
  1849. for (p = first; p < last; p++) {
  1850. nr = le32_to_cpu(*p);
  1851. if (nr) {
  1852. /* accumulate blocks to free if they're contiguous */
  1853. if (count == 0) {
  1854. block_to_free = nr;
  1855. block_to_free_p = p;
  1856. count = 1;
  1857. } else if (nr == block_to_free + count) {
  1858. count++;
  1859. } else {
  1860. ext4_clear_blocks(handle, inode, this_bh,
  1861. block_to_free,
  1862. count, block_to_free_p, p);
  1863. block_to_free = nr;
  1864. block_to_free_p = p;
  1865. count = 1;
  1866. }
  1867. }
  1868. }
  1869. if (count > 0)
  1870. ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  1871. count, block_to_free_p, p);
  1872. if (this_bh) {
  1873. BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
  1874. ext4_journal_dirty_metadata(handle, this_bh);
  1875. }
  1876. }
  1877. /**
  1878. * ext4_free_branches - free an array of branches
  1879. * @handle: JBD handle for this transaction
  1880. * @inode: inode we are dealing with
  1881. * @parent_bh: the buffer_head which contains *@first and *@last
  1882. * @first: array of block numbers
  1883. * @last: pointer immediately past the end of array
  1884. * @depth: depth of the branches to free
  1885. *
  1886. * We are freeing all blocks refered from these branches (numbers are
  1887. * stored as little-endian 32-bit) and updating @inode->i_blocks
  1888. * appropriately.
  1889. */
  1890. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  1891. struct buffer_head *parent_bh,
  1892. __le32 *first, __le32 *last, int depth)
  1893. {
  1894. ext4_fsblk_t nr;
  1895. __le32 *p;
  1896. if (is_handle_aborted(handle))
  1897. return;
  1898. if (depth--) {
  1899. struct buffer_head *bh;
  1900. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1901. p = last;
  1902. while (--p >= first) {
  1903. nr = le32_to_cpu(*p);
  1904. if (!nr)
  1905. continue; /* A hole */
  1906. /* Go read the buffer for the next level down */
  1907. bh = sb_bread(inode->i_sb, nr);
  1908. /*
  1909. * A read failure? Report error and clear slot
  1910. * (should be rare).
  1911. */
  1912. if (!bh) {
  1913. ext4_error(inode->i_sb, "ext4_free_branches",
  1914. "Read failure, inode=%lu, block=%llu",
  1915. inode->i_ino, nr);
  1916. continue;
  1917. }
  1918. /* This zaps the entire block. Bottom up. */
  1919. BUFFER_TRACE(bh, "free child branches");
  1920. ext4_free_branches(handle, inode, bh,
  1921. (__le32*)bh->b_data,
  1922. (__le32*)bh->b_data + addr_per_block,
  1923. depth);
  1924. /*
  1925. * We've probably journalled the indirect block several
  1926. * times during the truncate. But it's no longer
  1927. * needed and we now drop it from the transaction via
  1928. * jbd2_journal_revoke().
  1929. *
  1930. * That's easy if it's exclusively part of this
  1931. * transaction. But if it's part of the committing
  1932. * transaction then jbd2_journal_forget() will simply
  1933. * brelse() it. That means that if the underlying
  1934. * block is reallocated in ext4_get_block(),
  1935. * unmap_underlying_metadata() will find this block
  1936. * and will try to get rid of it. damn, damn.
  1937. *
  1938. * If this block has already been committed to the
  1939. * journal, a revoke record will be written. And
  1940. * revoke records must be emitted *before* clearing
  1941. * this block's bit in the bitmaps.
  1942. */
  1943. ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
  1944. /*
  1945. * Everything below this this pointer has been
  1946. * released. Now let this top-of-subtree go.
  1947. *
  1948. * We want the freeing of this indirect block to be
  1949. * atomic in the journal with the updating of the
  1950. * bitmap block which owns it. So make some room in
  1951. * the journal.
  1952. *
  1953. * We zero the parent pointer *after* freeing its
  1954. * pointee in the bitmaps, so if extend_transaction()
  1955. * for some reason fails to put the bitmap changes and
  1956. * the release into the same transaction, recovery
  1957. * will merely complain about releasing a free block,
  1958. * rather than leaking blocks.
  1959. */
  1960. if (is_handle_aborted(handle))
  1961. return;
  1962. if (try_to_extend_transaction(handle, inode)) {
  1963. ext4_mark_inode_dirty(handle, inode);
  1964. ext4_journal_test_restart(handle, inode);
  1965. }
  1966. ext4_free_blocks(handle, inode, nr, 1);
  1967. if (parent_bh) {
  1968. /*
  1969. * The block which we have just freed is
  1970. * pointed to by an indirect block: journal it
  1971. */
  1972. BUFFER_TRACE(parent_bh, "get_write_access");
  1973. if (!ext4_journal_get_write_access(handle,
  1974. parent_bh)){
  1975. *p = 0;
  1976. BUFFER_TRACE(parent_bh,
  1977. "call ext4_journal_dirty_metadata");
  1978. ext4_journal_dirty_metadata(handle,
  1979. parent_bh);
  1980. }
  1981. }
  1982. }
  1983. } else {
  1984. /* We have reached the bottom of the tree. */
  1985. BUFFER_TRACE(parent_bh, "free data blocks");
  1986. ext4_free_data(handle, inode, parent_bh, first, last);
  1987. }
  1988. }
  1989. /*
  1990. * ext4_truncate()
  1991. *
  1992. * We block out ext4_get_block() block instantiations across the entire
  1993. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  1994. * simultaneously on behalf of the same inode.
  1995. *
  1996. * As we work through the truncate and commmit bits of it to the journal there
  1997. * is one core, guiding principle: the file's tree must always be consistent on
  1998. * disk. We must be able to restart the truncate after a crash.
  1999. *
  2000. * The file's tree may be transiently inconsistent in memory (although it
  2001. * probably isn't), but whenever we close off and commit a journal transaction,
  2002. * the contents of (the filesystem + the journal) must be consistent and
  2003. * restartable. It's pretty simple, really: bottom up, right to left (although
  2004. * left-to-right works OK too).
  2005. *
  2006. * Note that at recovery time, journal replay occurs *before* the restart of
  2007. * truncate against the orphan inode list.
  2008. *
  2009. * The committed inode has the new, desired i_size (which is the same as
  2010. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  2011. * that this inode's truncate did not complete and it will again call
  2012. * ext4_truncate() to have another go. So there will be instantiated blocks
  2013. * to the right of the truncation point in a crashed ext4 filesystem. But
  2014. * that's fine - as long as they are linked from the inode, the post-crash
  2015. * ext4_truncate() run will find them and release them.
  2016. */
  2017. void ext4_truncate(struct inode *inode)
  2018. {
  2019. handle_t *handle;
  2020. struct ext4_inode_info *ei = EXT4_I(inode);
  2021. __le32 *i_data = ei->i_data;
  2022. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  2023. struct address_space *mapping = inode->i_mapping;
  2024. int offsets[4];
  2025. Indirect chain[4];
  2026. Indirect *partial;
  2027. __le32 nr = 0;
  2028. int n;
  2029. long last_block;
  2030. unsigned blocksize = inode->i_sb->s_blocksize;
  2031. struct page *page;
  2032. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  2033. S_ISLNK(inode->i_mode)))
  2034. return;
  2035. if (ext4_inode_is_fast_symlink(inode))
  2036. return;
  2037. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2038. return;
  2039. /*
  2040. * We have to lock the EOF page here, because lock_page() nests
  2041. * outside jbd2_journal_start().
  2042. */
  2043. if ((inode->i_size & (blocksize - 1)) == 0) {
  2044. /* Block boundary? Nothing to do */
  2045. page = NULL;
  2046. } else {
  2047. page = grab_cache_page(mapping,
  2048. inode->i_size >> PAGE_CACHE_SHIFT);
  2049. if (!page)
  2050. return;
  2051. }
  2052. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  2053. return ext4_ext_truncate(inode, page);
  2054. handle = start_transaction(inode);
  2055. if (IS_ERR(handle)) {
  2056. if (page) {
  2057. clear_highpage(page);
  2058. flush_dcache_page(page);
  2059. unlock_page(page);
  2060. page_cache_release(page);
  2061. }
  2062. return; /* AKPM: return what? */
  2063. }
  2064. last_block = (inode->i_size + blocksize-1)
  2065. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  2066. if (page)
  2067. ext4_block_truncate_page(handle, page, mapping, inode->i_size);
  2068. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  2069. if (n == 0)
  2070. goto out_stop; /* error */
  2071. /*
  2072. * OK. This truncate is going to happen. We add the inode to the
  2073. * orphan list, so that if this truncate spans multiple transactions,
  2074. * and we crash, we will resume the truncate when the filesystem
  2075. * recovers. It also marks the inode dirty, to catch the new size.
  2076. *
  2077. * Implication: the file must always be in a sane, consistent
  2078. * truncatable state while each transaction commits.
  2079. */
  2080. if (ext4_orphan_add(handle, inode))
  2081. goto out_stop;
  2082. /*
  2083. * The orphan list entry will now protect us from any crash which
  2084. * occurs before the truncate completes, so it is now safe to propagate
  2085. * the new, shorter inode size (held for now in i_size) into the
  2086. * on-disk inode. We do this via i_disksize, which is the value which
  2087. * ext4 *really* writes onto the disk inode.
  2088. */
  2089. ei->i_disksize = inode->i_size;
  2090. /*
  2091. * From here we block out all ext4_get_block() callers who want to
  2092. * modify the block allocation tree.
  2093. */
  2094. mutex_lock(&ei->truncate_mutex);
  2095. if (n == 1) { /* direct blocks */
  2096. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  2097. i_data + EXT4_NDIR_BLOCKS);
  2098. goto do_indirects;
  2099. }
  2100. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  2101. /* Kill the top of shared branch (not detached) */
  2102. if (nr) {
  2103. if (partial == chain) {
  2104. /* Shared branch grows from the inode */
  2105. ext4_free_branches(handle, inode, NULL,
  2106. &nr, &nr+1, (chain+n-1) - partial);
  2107. *partial->p = 0;
  2108. /*
  2109. * We mark the inode dirty prior to restart,
  2110. * and prior to stop. No need for it here.
  2111. */
  2112. } else {
  2113. /* Shared branch grows from an indirect block */
  2114. BUFFER_TRACE(partial->bh, "get_write_access");
  2115. ext4_free_branches(handle, inode, partial->bh,
  2116. partial->p,
  2117. partial->p+1, (chain+n-1) - partial);
  2118. }
  2119. }
  2120. /* Clear the ends of indirect blocks on the shared branch */
  2121. while (partial > chain) {
  2122. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  2123. (__le32*)partial->bh->b_data+addr_per_block,
  2124. (chain+n-1) - partial);
  2125. BUFFER_TRACE(partial->bh, "call brelse");
  2126. brelse (partial->bh);
  2127. partial--;
  2128. }
  2129. do_indirects:
  2130. /* Kill the remaining (whole) subtrees */
  2131. switch (offsets[0]) {
  2132. default:
  2133. nr = i_data[EXT4_IND_BLOCK];
  2134. if (nr) {
  2135. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2136. i_data[EXT4_IND_BLOCK] = 0;
  2137. }
  2138. case EXT4_IND_BLOCK:
  2139. nr = i_data[EXT4_DIND_BLOCK];
  2140. if (nr) {
  2141. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2142. i_data[EXT4_DIND_BLOCK] = 0;
  2143. }
  2144. case EXT4_DIND_BLOCK:
  2145. nr = i_data[EXT4_TIND_BLOCK];
  2146. if (nr) {
  2147. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2148. i_data[EXT4_TIND_BLOCK] = 0;
  2149. }
  2150. case EXT4_TIND_BLOCK:
  2151. ;
  2152. }
  2153. ext4_discard_reservation(inode);
  2154. mutex_unlock(&ei->truncate_mutex);
  2155. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2156. ext4_mark_inode_dirty(handle, inode);
  2157. /*
  2158. * In a multi-transaction truncate, we only make the final transaction
  2159. * synchronous
  2160. */
  2161. if (IS_SYNC(inode))
  2162. handle->h_sync = 1;
  2163. out_stop:
  2164. /*
  2165. * If this was a simple ftruncate(), and the file will remain alive
  2166. * then we need to clear up the orphan record which we created above.
  2167. * However, if this was a real unlink then we were called by
  2168. * ext4_delete_inode(), and we allow that function to clean up the
  2169. * orphan info for us.
  2170. */
  2171. if (inode->i_nlink)
  2172. ext4_orphan_del(handle, inode);
  2173. ext4_journal_stop(handle);
  2174. }
  2175. static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
  2176. unsigned long ino, struct ext4_iloc *iloc)
  2177. {
  2178. unsigned long desc, group_desc, block_group;
  2179. unsigned long offset;
  2180. ext4_fsblk_t block;
  2181. struct buffer_head *bh;
  2182. struct ext4_group_desc * gdp;
  2183. if (!ext4_valid_inum(sb, ino)) {
  2184. /*
  2185. * This error is already checked for in namei.c unless we are
  2186. * looking at an NFS filehandle, in which case no error
  2187. * report is needed
  2188. */
  2189. return 0;
  2190. }
  2191. block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
  2192. if (block_group >= EXT4_SB(sb)->s_groups_count) {
  2193. ext4_error(sb,"ext4_get_inode_block","group >= groups count");
  2194. return 0;
  2195. }
  2196. smp_rmb();
  2197. group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
  2198. desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
  2199. bh = EXT4_SB(sb)->s_group_desc[group_desc];
  2200. if (!bh) {
  2201. ext4_error (sb, "ext4_get_inode_block",
  2202. "Descriptor not loaded");
  2203. return 0;
  2204. }
  2205. gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
  2206. desc * EXT4_DESC_SIZE(sb));
  2207. /*
  2208. * Figure out the offset within the block group inode table
  2209. */
  2210. offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
  2211. EXT4_INODE_SIZE(sb);
  2212. block = ext4_inode_table(sb, gdp) +
  2213. (offset >> EXT4_BLOCK_SIZE_BITS(sb));
  2214. iloc->block_group = block_group;
  2215. iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
  2216. return block;
  2217. }
  2218. /*
  2219. * ext4_get_inode_loc returns with an extra refcount against the inode's
  2220. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2221. * data in memory that is needed to recreate the on-disk version of this
  2222. * inode.
  2223. */
  2224. static int __ext4_get_inode_loc(struct inode *inode,
  2225. struct ext4_iloc *iloc, int in_mem)
  2226. {
  2227. ext4_fsblk_t block;
  2228. struct buffer_head *bh;
  2229. block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2230. if (!block)
  2231. return -EIO;
  2232. bh = sb_getblk(inode->i_sb, block);
  2233. if (!bh) {
  2234. ext4_error (inode->i_sb, "ext4_get_inode_loc",
  2235. "unable to read inode block - "
  2236. "inode=%lu, block=%llu",
  2237. inode->i_ino, block);
  2238. return -EIO;
  2239. }
  2240. if (!buffer_uptodate(bh)) {
  2241. lock_buffer(bh);
  2242. if (buffer_uptodate(bh)) {
  2243. /* someone brought it uptodate while we waited */
  2244. unlock_buffer(bh);
  2245. goto has_buffer;
  2246. }
  2247. /*
  2248. * If we have all information of the inode in memory and this
  2249. * is the only valid inode in the block, we need not read the
  2250. * block.
  2251. */
  2252. if (in_mem) {
  2253. struct buffer_head *bitmap_bh;
  2254. struct ext4_group_desc *desc;
  2255. int inodes_per_buffer;
  2256. int inode_offset, i;
  2257. int block_group;
  2258. int start;
  2259. block_group = (inode->i_ino - 1) /
  2260. EXT4_INODES_PER_GROUP(inode->i_sb);
  2261. inodes_per_buffer = bh->b_size /
  2262. EXT4_INODE_SIZE(inode->i_sb);
  2263. inode_offset = ((inode->i_ino - 1) %
  2264. EXT4_INODES_PER_GROUP(inode->i_sb));
  2265. start = inode_offset & ~(inodes_per_buffer - 1);
  2266. /* Is the inode bitmap in cache? */
  2267. desc = ext4_get_group_desc(inode->i_sb,
  2268. block_group, NULL);
  2269. if (!desc)
  2270. goto make_io;
  2271. bitmap_bh = sb_getblk(inode->i_sb,
  2272. ext4_inode_bitmap(inode->i_sb, desc));
  2273. if (!bitmap_bh)
  2274. goto make_io;
  2275. /*
  2276. * If the inode bitmap isn't in cache then the
  2277. * optimisation may end up performing two reads instead
  2278. * of one, so skip it.
  2279. */
  2280. if (!buffer_uptodate(bitmap_bh)) {
  2281. brelse(bitmap_bh);
  2282. goto make_io;
  2283. }
  2284. for (i = start; i < start + inodes_per_buffer; i++) {
  2285. if (i == inode_offset)
  2286. continue;
  2287. if (ext4_test_bit(i, bitmap_bh->b_data))
  2288. break;
  2289. }
  2290. brelse(bitmap_bh);
  2291. if (i == start + inodes_per_buffer) {
  2292. /* all other inodes are free, so skip I/O */
  2293. memset(bh->b_data, 0, bh->b_size);
  2294. set_buffer_uptodate(bh);
  2295. unlock_buffer(bh);
  2296. goto has_buffer;
  2297. }
  2298. }
  2299. make_io:
  2300. /*
  2301. * There are other valid inodes in the buffer, this inode
  2302. * has in-inode xattrs, or we don't have this inode in memory.
  2303. * Read the block from disk.
  2304. */
  2305. get_bh(bh);
  2306. bh->b_end_io = end_buffer_read_sync;
  2307. submit_bh(READ_META, bh);
  2308. wait_on_buffer(bh);
  2309. if (!buffer_uptodate(bh)) {
  2310. ext4_error(inode->i_sb, "ext4_get_inode_loc",
  2311. "unable to read inode block - "
  2312. "inode=%lu, block=%llu",
  2313. inode->i_ino, block);
  2314. brelse(bh);
  2315. return -EIO;
  2316. }
  2317. }
  2318. has_buffer:
  2319. iloc->bh = bh;
  2320. return 0;
  2321. }
  2322. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  2323. {
  2324. /* We have all inode data except xattrs in memory here. */
  2325. return __ext4_get_inode_loc(inode, iloc,
  2326. !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
  2327. }
  2328. void ext4_set_inode_flags(struct inode *inode)
  2329. {
  2330. unsigned int flags = EXT4_I(inode)->i_flags;
  2331. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2332. if (flags & EXT4_SYNC_FL)
  2333. inode->i_flags |= S_SYNC;
  2334. if (flags & EXT4_APPEND_FL)
  2335. inode->i_flags |= S_APPEND;
  2336. if (flags & EXT4_IMMUTABLE_FL)
  2337. inode->i_flags |= S_IMMUTABLE;
  2338. if (flags & EXT4_NOATIME_FL)
  2339. inode->i_flags |= S_NOATIME;
  2340. if (flags & EXT4_DIRSYNC_FL)
  2341. inode->i_flags |= S_DIRSYNC;
  2342. }
  2343. void ext4_read_inode(struct inode * inode)
  2344. {
  2345. struct ext4_iloc iloc;
  2346. struct ext4_inode *raw_inode;
  2347. struct ext4_inode_info *ei = EXT4_I(inode);
  2348. struct buffer_head *bh;
  2349. int block;
  2350. #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
  2351. ei->i_acl = EXT4_ACL_NOT_CACHED;
  2352. ei->i_default_acl = EXT4_ACL_NOT_CACHED;
  2353. #endif
  2354. ei->i_block_alloc_info = NULL;
  2355. if (__ext4_get_inode_loc(inode, &iloc, 0))
  2356. goto bad_inode;
  2357. bh = iloc.bh;
  2358. raw_inode = ext4_raw_inode(&iloc);
  2359. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2360. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2361. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2362. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2363. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2364. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2365. }
  2366. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2367. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2368. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2369. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2370. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2371. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2372. ei->i_state = 0;
  2373. ei->i_dir_start_lookup = 0;
  2374. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2375. /* We now have enough fields to check if the inode was active or not.
  2376. * This is needed because nfsd might try to access dead inodes
  2377. * the test is that same one that e2fsck uses
  2378. * NeilBrown 1999oct15
  2379. */
  2380. if (inode->i_nlink == 0) {
  2381. if (inode->i_mode == 0 ||
  2382. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  2383. /* this inode is deleted */
  2384. brelse (bh);
  2385. goto bad_inode;
  2386. }
  2387. /* The only unlinked inodes we let through here have
  2388. * valid i_mode and are being read by the orphan
  2389. * recovery code: that's fine, we're about to complete
  2390. * the process of deleting those. */
  2391. }
  2392. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2393. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2394. #ifdef EXT4_FRAGMENTS
  2395. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2396. ei->i_frag_no = raw_inode->i_frag;
  2397. ei->i_frag_size = raw_inode->i_fsize;
  2398. #endif
  2399. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2400. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2401. cpu_to_le32(EXT4_OS_HURD))
  2402. ei->i_file_acl |=
  2403. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  2404. if (!S_ISREG(inode->i_mode)) {
  2405. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2406. } else {
  2407. inode->i_size |=
  2408. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2409. }
  2410. ei->i_disksize = inode->i_size;
  2411. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2412. ei->i_block_group = iloc.block_group;
  2413. /*
  2414. * NOTE! The in-memory inode i_data array is in little-endian order
  2415. * even on big-endian machines: we do NOT byteswap the block numbers!
  2416. */
  2417. for (block = 0; block < EXT4_N_BLOCKS; block++)
  2418. ei->i_data[block] = raw_inode->i_block[block];
  2419. INIT_LIST_HEAD(&ei->i_orphan);
  2420. if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
  2421. EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  2422. /*
  2423. * When mke2fs creates big inodes it does not zero out
  2424. * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
  2425. * so ignore those first few inodes.
  2426. */
  2427. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2428. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2429. EXT4_INODE_SIZE(inode->i_sb)) {
  2430. brelse (bh);
  2431. goto bad_inode;
  2432. }
  2433. if (ei->i_extra_isize == 0) {
  2434. /* The extra space is currently unused. Use it. */
  2435. ei->i_extra_isize = sizeof(struct ext4_inode) -
  2436. EXT4_GOOD_OLD_INODE_SIZE;
  2437. } else {
  2438. __le32 *magic = (void *)raw_inode +
  2439. EXT4_GOOD_OLD_INODE_SIZE +
  2440. ei->i_extra_isize;
  2441. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
  2442. ei->i_state |= EXT4_STATE_XATTR;
  2443. }
  2444. } else
  2445. ei->i_extra_isize = 0;
  2446. if (S_ISREG(inode->i_mode)) {
  2447. inode->i_op = &ext4_file_inode_operations;
  2448. inode->i_fop = &ext4_file_operations;
  2449. ext4_set_aops(inode);
  2450. } else if (S_ISDIR(inode->i_mode)) {
  2451. inode->i_op = &ext4_dir_inode_operations;
  2452. inode->i_fop = &ext4_dir_operations;
  2453. } else if (S_ISLNK(inode->i_mode)) {
  2454. if (ext4_inode_is_fast_symlink(inode))
  2455. inode->i_op = &ext4_fast_symlink_inode_operations;
  2456. else {
  2457. inode->i_op = &ext4_symlink_inode_operations;
  2458. ext4_set_aops(inode);
  2459. }
  2460. } else {
  2461. inode->i_op = &ext4_special_inode_operations;
  2462. if (raw_inode->i_block[0])
  2463. init_special_inode(inode, inode->i_mode,
  2464. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2465. else
  2466. init_special_inode(inode, inode->i_mode,
  2467. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2468. }
  2469. brelse (iloc.bh);
  2470. ext4_set_inode_flags(inode);
  2471. return;
  2472. bad_inode:
  2473. make_bad_inode(inode);
  2474. return;
  2475. }
  2476. /*
  2477. * Post the struct inode info into an on-disk inode location in the
  2478. * buffer-cache. This gobbles the caller's reference to the
  2479. * buffer_head in the inode location struct.
  2480. *
  2481. * The caller must have write access to iloc->bh.
  2482. */
  2483. static int ext4_do_update_inode(handle_t *handle,
  2484. struct inode *inode,
  2485. struct ext4_iloc *iloc)
  2486. {
  2487. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  2488. struct ext4_inode_info *ei = EXT4_I(inode);
  2489. struct buffer_head *bh = iloc->bh;
  2490. int err = 0, rc, block;
  2491. /* For fields not not tracking in the in-memory inode,
  2492. * initialise them to zero for new inodes. */
  2493. if (ei->i_state & EXT4_STATE_NEW)
  2494. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  2495. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2496. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2497. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2498. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2499. /*
  2500. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2501. * re-used with the upper 16 bits of the uid/gid intact
  2502. */
  2503. if(!ei->i_dtime) {
  2504. raw_inode->i_uid_high =
  2505. cpu_to_le16(high_16_bits(inode->i_uid));
  2506. raw_inode->i_gid_high =
  2507. cpu_to_le16(high_16_bits(inode->i_gid));
  2508. } else {
  2509. raw_inode->i_uid_high = 0;
  2510. raw_inode->i_gid_high = 0;
  2511. }
  2512. } else {
  2513. raw_inode->i_uid_low =
  2514. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2515. raw_inode->i_gid_low =
  2516. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2517. raw_inode->i_uid_high = 0;
  2518. raw_inode->i_gid_high = 0;
  2519. }
  2520. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2521. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2522. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2523. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2524. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2525. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2526. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2527. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2528. #ifdef EXT4_FRAGMENTS
  2529. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2530. raw_inode->i_frag = ei->i_frag_no;
  2531. raw_inode->i_fsize = ei->i_frag_size;
  2532. #endif
  2533. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2534. cpu_to_le32(EXT4_OS_HURD))
  2535. raw_inode->i_file_acl_high =
  2536. cpu_to_le16(ei->i_file_acl >> 32);
  2537. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2538. if (!S_ISREG(inode->i_mode)) {
  2539. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2540. } else {
  2541. raw_inode->i_size_high =
  2542. cpu_to_le32(ei->i_disksize >> 32);
  2543. if (ei->i_disksize > 0x7fffffffULL) {
  2544. struct super_block *sb = inode->i_sb;
  2545. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  2546. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2547. EXT4_SB(sb)->s_es->s_rev_level ==
  2548. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  2549. /* If this is the first large file
  2550. * created, add a flag to the superblock.
  2551. */
  2552. err = ext4_journal_get_write_access(handle,
  2553. EXT4_SB(sb)->s_sbh);
  2554. if (err)
  2555. goto out_brelse;
  2556. ext4_update_dynamic_rev(sb);
  2557. EXT4_SET_RO_COMPAT_FEATURE(sb,
  2558. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  2559. sb->s_dirt = 1;
  2560. handle->h_sync = 1;
  2561. err = ext4_journal_dirty_metadata(handle,
  2562. EXT4_SB(sb)->s_sbh);
  2563. }
  2564. }
  2565. }
  2566. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2567. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2568. if (old_valid_dev(inode->i_rdev)) {
  2569. raw_inode->i_block[0] =
  2570. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2571. raw_inode->i_block[1] = 0;
  2572. } else {
  2573. raw_inode->i_block[0] = 0;
  2574. raw_inode->i_block[1] =
  2575. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2576. raw_inode->i_block[2] = 0;
  2577. }
  2578. } else for (block = 0; block < EXT4_N_BLOCKS; block++)
  2579. raw_inode->i_block[block] = ei->i_data[block];
  2580. if (ei->i_extra_isize)
  2581. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2582. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  2583. rc = ext4_journal_dirty_metadata(handle, bh);
  2584. if (!err)
  2585. err = rc;
  2586. ei->i_state &= ~EXT4_STATE_NEW;
  2587. out_brelse:
  2588. brelse (bh);
  2589. ext4_std_error(inode->i_sb, err);
  2590. return err;
  2591. }
  2592. /*
  2593. * ext4_write_inode()
  2594. *
  2595. * We are called from a few places:
  2596. *
  2597. * - Within generic_file_write() for O_SYNC files.
  2598. * Here, there will be no transaction running. We wait for any running
  2599. * trasnaction to commit.
  2600. *
  2601. * - Within sys_sync(), kupdate and such.
  2602. * We wait on commit, if tol to.
  2603. *
  2604. * - Within prune_icache() (PF_MEMALLOC == true)
  2605. * Here we simply return. We can't afford to block kswapd on the
  2606. * journal commit.
  2607. *
  2608. * In all cases it is actually safe for us to return without doing anything,
  2609. * because the inode has been copied into a raw inode buffer in
  2610. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2611. * knfsd.
  2612. *
  2613. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2614. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2615. * which we are interested.
  2616. *
  2617. * It would be a bug for them to not do this. The code:
  2618. *
  2619. * mark_inode_dirty(inode)
  2620. * stuff();
  2621. * inode->i_size = expr;
  2622. *
  2623. * is in error because a kswapd-driven write_inode() could occur while
  2624. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2625. * will no longer be on the superblock's dirty inode list.
  2626. */
  2627. int ext4_write_inode(struct inode *inode, int wait)
  2628. {
  2629. if (current->flags & PF_MEMALLOC)
  2630. return 0;
  2631. if (ext4_journal_current_handle()) {
  2632. jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
  2633. dump_stack();
  2634. return -EIO;
  2635. }
  2636. if (!wait)
  2637. return 0;
  2638. return ext4_force_commit(inode->i_sb);
  2639. }
  2640. /*
  2641. * ext4_setattr()
  2642. *
  2643. * Called from notify_change.
  2644. *
  2645. * We want to trap VFS attempts to truncate the file as soon as
  2646. * possible. In particular, we want to make sure that when the VFS
  2647. * shrinks i_size, we put the inode on the orphan list and modify
  2648. * i_disksize immediately, so that during the subsequent flushing of
  2649. * dirty pages and freeing of disk blocks, we can guarantee that any
  2650. * commit will leave the blocks being flushed in an unused state on
  2651. * disk. (On recovery, the inode will get truncated and the blocks will
  2652. * be freed, so we have a strong guarantee that no future commit will
  2653. * leave these blocks visible to the user.)
  2654. *
  2655. * Called with inode->sem down.
  2656. */
  2657. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  2658. {
  2659. struct inode *inode = dentry->d_inode;
  2660. int error, rc = 0;
  2661. const unsigned int ia_valid = attr->ia_valid;
  2662. error = inode_change_ok(inode, attr);
  2663. if (error)
  2664. return error;
  2665. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2666. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2667. handle_t *handle;
  2668. /* (user+group)*(old+new) structure, inode write (sb,
  2669. * inode block, ? - but truncate inode update has it) */
  2670. handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2671. EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2672. if (IS_ERR(handle)) {
  2673. error = PTR_ERR(handle);
  2674. goto err_out;
  2675. }
  2676. error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
  2677. if (error) {
  2678. ext4_journal_stop(handle);
  2679. return error;
  2680. }
  2681. /* Update corresponding info in inode so that everything is in
  2682. * one transaction */
  2683. if (attr->ia_valid & ATTR_UID)
  2684. inode->i_uid = attr->ia_uid;
  2685. if (attr->ia_valid & ATTR_GID)
  2686. inode->i_gid = attr->ia_gid;
  2687. error = ext4_mark_inode_dirty(handle, inode);
  2688. ext4_journal_stop(handle);
  2689. }
  2690. if (S_ISREG(inode->i_mode) &&
  2691. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2692. handle_t *handle;
  2693. handle = ext4_journal_start(inode, 3);
  2694. if (IS_ERR(handle)) {
  2695. error = PTR_ERR(handle);
  2696. goto err_out;
  2697. }
  2698. error = ext4_orphan_add(handle, inode);
  2699. EXT4_I(inode)->i_disksize = attr->ia_size;
  2700. rc = ext4_mark_inode_dirty(handle, inode);
  2701. if (!error)
  2702. error = rc;
  2703. ext4_journal_stop(handle);
  2704. }
  2705. rc = inode_setattr(inode, attr);
  2706. /* If inode_setattr's call to ext4_truncate failed to get a
  2707. * transaction handle at all, we need to clean up the in-core
  2708. * orphan list manually. */
  2709. if (inode->i_nlink)
  2710. ext4_orphan_del(NULL, inode);
  2711. if (!rc && (ia_valid & ATTR_MODE))
  2712. rc = ext4_acl_chmod(inode);
  2713. err_out:
  2714. ext4_std_error(inode->i_sb, error);
  2715. if (!error)
  2716. error = rc;
  2717. return error;
  2718. }
  2719. /*
  2720. * How many blocks doth make a writepage()?
  2721. *
  2722. * With N blocks per page, it may be:
  2723. * N data blocks
  2724. * 2 indirect block
  2725. * 2 dindirect
  2726. * 1 tindirect
  2727. * N+5 bitmap blocks (from the above)
  2728. * N+5 group descriptor summary blocks
  2729. * 1 inode block
  2730. * 1 superblock.
  2731. * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
  2732. *
  2733. * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
  2734. *
  2735. * With ordered or writeback data it's the same, less the N data blocks.
  2736. *
  2737. * If the inode's direct blocks can hold an integral number of pages then a
  2738. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2739. * and dindirect block, and the "5" above becomes "3".
  2740. *
  2741. * This still overestimates under most circumstances. If we were to pass the
  2742. * start and end offsets in here as well we could do block_to_path() on each
  2743. * block and work out the exact number of indirects which are touched. Pah.
  2744. */
  2745. int ext4_writepage_trans_blocks(struct inode *inode)
  2746. {
  2747. int bpp = ext4_journal_blocks_per_page(inode);
  2748. int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
  2749. int ret;
  2750. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  2751. return ext4_ext_writepage_trans_blocks(inode, bpp);
  2752. if (ext4_should_journal_data(inode))
  2753. ret = 3 * (bpp + indirects) + 2;
  2754. else
  2755. ret = 2 * (bpp + indirects) + 2;
  2756. #ifdef CONFIG_QUOTA
  2757. /* We know that structure was already allocated during DQUOT_INIT so
  2758. * we will be updating only the data blocks + inodes */
  2759. ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2760. #endif
  2761. return ret;
  2762. }
  2763. /*
  2764. * The caller must have previously called ext4_reserve_inode_write().
  2765. * Give this, we know that the caller already has write access to iloc->bh.
  2766. */
  2767. int ext4_mark_iloc_dirty(handle_t *handle,
  2768. struct inode *inode, struct ext4_iloc *iloc)
  2769. {
  2770. int err = 0;
  2771. /* the do_update_inode consumes one bh->b_count */
  2772. get_bh(iloc->bh);
  2773. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  2774. err = ext4_do_update_inode(handle, inode, iloc);
  2775. put_bh(iloc->bh);
  2776. return err;
  2777. }
  2778. /*
  2779. * On success, We end up with an outstanding reference count against
  2780. * iloc->bh. This _must_ be cleaned up later.
  2781. */
  2782. int
  2783. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  2784. struct ext4_iloc *iloc)
  2785. {
  2786. int err = 0;
  2787. if (handle) {
  2788. err = ext4_get_inode_loc(inode, iloc);
  2789. if (!err) {
  2790. BUFFER_TRACE(iloc->bh, "get_write_access");
  2791. err = ext4_journal_get_write_access(handle, iloc->bh);
  2792. if (err) {
  2793. brelse(iloc->bh);
  2794. iloc->bh = NULL;
  2795. }
  2796. }
  2797. }
  2798. ext4_std_error(inode->i_sb, err);
  2799. return err;
  2800. }
  2801. /*
  2802. * What we do here is to mark the in-core inode as clean with respect to inode
  2803. * dirtiness (it may still be data-dirty).
  2804. * This means that the in-core inode may be reaped by prune_icache
  2805. * without having to perform any I/O. This is a very good thing,
  2806. * because *any* task may call prune_icache - even ones which
  2807. * have a transaction open against a different journal.
  2808. *
  2809. * Is this cheating? Not really. Sure, we haven't written the
  2810. * inode out, but prune_icache isn't a user-visible syncing function.
  2811. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  2812. * we start and wait on commits.
  2813. *
  2814. * Is this efficient/effective? Well, we're being nice to the system
  2815. * by cleaning up our inodes proactively so they can be reaped
  2816. * without I/O. But we are potentially leaving up to five seconds'
  2817. * worth of inodes floating about which prune_icache wants us to
  2818. * write out. One way to fix that would be to get prune_icache()
  2819. * to do a write_super() to free up some memory. It has the desired
  2820. * effect.
  2821. */
  2822. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  2823. {
  2824. struct ext4_iloc iloc;
  2825. int err;
  2826. might_sleep();
  2827. err = ext4_reserve_inode_write(handle, inode, &iloc);
  2828. if (!err)
  2829. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  2830. return err;
  2831. }
  2832. /*
  2833. * ext4_dirty_inode() is called from __mark_inode_dirty()
  2834. *
  2835. * We're really interested in the case where a file is being extended.
  2836. * i_size has been changed by generic_commit_write() and we thus need
  2837. * to include the updated inode in the current transaction.
  2838. *
  2839. * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
  2840. * are allocated to the file.
  2841. *
  2842. * If the inode is marked synchronous, we don't honour that here - doing
  2843. * so would cause a commit on atime updates, which we don't bother doing.
  2844. * We handle synchronous inodes at the highest possible level.
  2845. */
  2846. void ext4_dirty_inode(struct inode *inode)
  2847. {
  2848. handle_t *current_handle = ext4_journal_current_handle();
  2849. handle_t *handle;
  2850. handle = ext4_journal_start(inode, 2);
  2851. if (IS_ERR(handle))
  2852. goto out;
  2853. if (current_handle &&
  2854. current_handle->h_transaction != handle->h_transaction) {
  2855. /* This task has a transaction open against a different fs */
  2856. printk(KERN_EMERG "%s: transactions do not match!\n",
  2857. __FUNCTION__);
  2858. } else {
  2859. jbd_debug(5, "marking dirty. outer handle=%p\n",
  2860. current_handle);
  2861. ext4_mark_inode_dirty(handle, inode);
  2862. }
  2863. ext4_journal_stop(handle);
  2864. out:
  2865. return;
  2866. }
  2867. #if 0
  2868. /*
  2869. * Bind an inode's backing buffer_head into this transaction, to prevent
  2870. * it from being flushed to disk early. Unlike
  2871. * ext4_reserve_inode_write, this leaves behind no bh reference and
  2872. * returns no iloc structure, so the caller needs to repeat the iloc
  2873. * lookup to mark the inode dirty later.
  2874. */
  2875. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  2876. {
  2877. struct ext4_iloc iloc;
  2878. int err = 0;
  2879. if (handle) {
  2880. err = ext4_get_inode_loc(inode, &iloc);
  2881. if (!err) {
  2882. BUFFER_TRACE(iloc.bh, "get_write_access");
  2883. err = jbd2_journal_get_write_access(handle, iloc.bh);
  2884. if (!err)
  2885. err = ext4_journal_dirty_metadata(handle,
  2886. iloc.bh);
  2887. brelse(iloc.bh);
  2888. }
  2889. }
  2890. ext4_std_error(inode->i_sb, err);
  2891. return err;
  2892. }
  2893. #endif
  2894. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  2895. {
  2896. journal_t *journal;
  2897. handle_t *handle;
  2898. int err;
  2899. /*
  2900. * We have to be very careful here: changing a data block's
  2901. * journaling status dynamically is dangerous. If we write a
  2902. * data block to the journal, change the status and then delete
  2903. * that block, we risk forgetting to revoke the old log record
  2904. * from the journal and so a subsequent replay can corrupt data.
  2905. * So, first we make sure that the journal is empty and that
  2906. * nobody is changing anything.
  2907. */
  2908. journal = EXT4_JOURNAL(inode);
  2909. if (is_journal_aborted(journal) || IS_RDONLY(inode))
  2910. return -EROFS;
  2911. jbd2_journal_lock_updates(journal);
  2912. jbd2_journal_flush(journal);
  2913. /*
  2914. * OK, there are no updates running now, and all cached data is
  2915. * synced to disk. We are now in a completely consistent state
  2916. * which doesn't have anything in the journal, and we know that
  2917. * no filesystem updates are running, so it is safe to modify
  2918. * the inode's in-core data-journaling state flag now.
  2919. */
  2920. if (val)
  2921. EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
  2922. else
  2923. EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
  2924. ext4_set_aops(inode);
  2925. jbd2_journal_unlock_updates(journal);
  2926. /* Finally we can mark the inode as dirty. */
  2927. handle = ext4_journal_start(inode, 1);
  2928. if (IS_ERR(handle))
  2929. return PTR_ERR(handle);
  2930. err = ext4_mark_inode_dirty(handle, inode);
  2931. handle->h_sync = 1;
  2932. ext4_journal_stop(handle);
  2933. ext4_std_error(inode->i_sb, err);
  2934. return err;
  2935. }