ehci-q.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122
  1. /*
  2. * Copyright (C) 2001-2004 by David Brownell
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the
  6. * Free Software Foundation; either version 2 of the License, or (at your
  7. * option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  11. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  12. * for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software Foundation,
  16. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. /* this file is part of ehci-hcd.c */
  19. /*-------------------------------------------------------------------------*/
  20. /*
  21. * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
  22. *
  23. * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
  24. * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
  25. * buffers needed for the larger number). We use one QH per endpoint, queue
  26. * multiple urbs (all three types) per endpoint. URBs may need several qtds.
  27. *
  28. * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
  29. * interrupts) needs careful scheduling. Performance improvements can be
  30. * an ongoing challenge. That's in "ehci-sched.c".
  31. *
  32. * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
  33. * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
  34. * (b) special fields in qh entries or (c) split iso entries. TTs will
  35. * buffer low/full speed data so the host collects it at high speed.
  36. */
  37. /*-------------------------------------------------------------------------*/
  38. /* fill a qtd, returning how much of the buffer we were able to queue up */
  39. static int
  40. qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
  41. size_t len, int token, int maxpacket)
  42. {
  43. int i, count;
  44. u64 addr = buf;
  45. /* one buffer entry per 4K ... first might be short or unaligned */
  46. qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
  47. qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
  48. count = 0x1000 - (buf & 0x0fff); /* rest of that page */
  49. if (likely (len < count)) /* ... iff needed */
  50. count = len;
  51. else {
  52. buf += 0x1000;
  53. buf &= ~0x0fff;
  54. /* per-qtd limit: from 16K to 20K (best alignment) */
  55. for (i = 1; count < len && i < 5; i++) {
  56. addr = buf;
  57. qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
  58. qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
  59. (u32)(addr >> 32));
  60. buf += 0x1000;
  61. if ((count + 0x1000) < len)
  62. count += 0x1000;
  63. else
  64. count = len;
  65. }
  66. /* short packets may only terminate transfers */
  67. if (count != len)
  68. count -= (count % maxpacket);
  69. }
  70. qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
  71. qtd->length = count;
  72. return count;
  73. }
  74. /*-------------------------------------------------------------------------*/
  75. static inline void
  76. qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
  77. {
  78. /* writes to an active overlay are unsafe */
  79. BUG_ON(qh->qh_state != QH_STATE_IDLE);
  80. qh->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
  81. qh->hw_alt_next = EHCI_LIST_END(ehci);
  82. /* Except for control endpoints, we make hardware maintain data
  83. * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
  84. * and set the pseudo-toggle in udev. Only usb_clear_halt() will
  85. * ever clear it.
  86. */
  87. if (!(qh->hw_info1 & cpu_to_hc32(ehci, 1 << 14))) {
  88. unsigned is_out, epnum;
  89. is_out = !(qtd->hw_token & cpu_to_hc32(ehci, 1 << 8));
  90. epnum = (hc32_to_cpup(ehci, &qh->hw_info1) >> 8) & 0x0f;
  91. if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
  92. qh->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
  93. usb_settoggle (qh->dev, epnum, is_out, 1);
  94. }
  95. }
  96. /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
  97. wmb ();
  98. qh->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
  99. }
  100. /* if it weren't for a common silicon quirk (writing the dummy into the qh
  101. * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
  102. * recovery (including urb dequeue) would need software changes to a QH...
  103. */
  104. static void
  105. qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
  106. {
  107. struct ehci_qtd *qtd;
  108. if (list_empty (&qh->qtd_list))
  109. qtd = qh->dummy;
  110. else {
  111. qtd = list_entry (qh->qtd_list.next,
  112. struct ehci_qtd, qtd_list);
  113. /* first qtd may already be partially processed */
  114. if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw_current)
  115. qtd = NULL;
  116. }
  117. if (qtd)
  118. qh_update (ehci, qh, qtd);
  119. }
  120. /*-------------------------------------------------------------------------*/
  121. static void qtd_copy_status (
  122. struct ehci_hcd *ehci,
  123. struct urb *urb,
  124. size_t length,
  125. u32 token
  126. )
  127. {
  128. /* count IN/OUT bytes, not SETUP (even short packets) */
  129. if (likely (QTD_PID (token) != 2))
  130. urb->actual_length += length - QTD_LENGTH (token);
  131. /* don't modify error codes */
  132. if (unlikely (urb->status != -EINPROGRESS))
  133. return;
  134. /* force cleanup after short read; not always an error */
  135. if (unlikely (IS_SHORT_READ (token)))
  136. urb->status = -EREMOTEIO;
  137. /* serious "can't proceed" faults reported by the hardware */
  138. if (token & QTD_STS_HALT) {
  139. if (token & QTD_STS_BABBLE) {
  140. /* FIXME "must" disable babbling device's port too */
  141. urb->status = -EOVERFLOW;
  142. } else if (token & QTD_STS_MMF) {
  143. /* fs/ls interrupt xfer missed the complete-split */
  144. urb->status = -EPROTO;
  145. } else if (token & QTD_STS_DBE) {
  146. urb->status = (QTD_PID (token) == 1) /* IN ? */
  147. ? -ENOSR /* hc couldn't read data */
  148. : -ECOMM; /* hc couldn't write data */
  149. } else if (token & QTD_STS_XACT) {
  150. /* timeout, bad crc, wrong PID, etc; retried */
  151. if (QTD_CERR (token))
  152. urb->status = -EPIPE;
  153. else {
  154. ehci_dbg (ehci, "devpath %s ep%d%s 3strikes\n",
  155. urb->dev->devpath,
  156. usb_pipeendpoint (urb->pipe),
  157. usb_pipein (urb->pipe) ? "in" : "out");
  158. urb->status = -EPROTO;
  159. }
  160. /* CERR nonzero + no errors + halt --> stall */
  161. } else if (QTD_CERR (token))
  162. urb->status = -EPIPE;
  163. else /* unknown */
  164. urb->status = -EPROTO;
  165. ehci_vdbg (ehci,
  166. "dev%d ep%d%s qtd token %08x --> status %d\n",
  167. usb_pipedevice (urb->pipe),
  168. usb_pipeendpoint (urb->pipe),
  169. usb_pipein (urb->pipe) ? "in" : "out",
  170. token, urb->status);
  171. /* if async CSPLIT failed, try cleaning out the TT buffer */
  172. if (urb->status != -EPIPE
  173. && urb->dev->tt && !usb_pipeint (urb->pipe)
  174. && ((token & QTD_STS_MMF) != 0
  175. || QTD_CERR(token) == 0)
  176. && (!ehci_is_TDI(ehci)
  177. || urb->dev->tt->hub !=
  178. ehci_to_hcd(ehci)->self.root_hub)) {
  179. #ifdef DEBUG
  180. struct usb_device *tt = urb->dev->tt->hub;
  181. dev_dbg (&tt->dev,
  182. "clear tt buffer port %d, a%d ep%d t%08x\n",
  183. urb->dev->ttport, urb->dev->devnum,
  184. usb_pipeendpoint (urb->pipe), token);
  185. #endif /* DEBUG */
  186. usb_hub_tt_clear_buffer (urb->dev, urb->pipe);
  187. }
  188. }
  189. }
  190. static void
  191. ehci_urb_done (struct ehci_hcd *ehci, struct urb *urb)
  192. __releases(ehci->lock)
  193. __acquires(ehci->lock)
  194. {
  195. if (likely (urb->hcpriv != NULL)) {
  196. struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
  197. /* S-mask in a QH means it's an interrupt urb */
  198. if ((qh->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) {
  199. /* ... update hc-wide periodic stats (for usbfs) */
  200. ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
  201. }
  202. qh_put (qh);
  203. }
  204. spin_lock (&urb->lock);
  205. urb->hcpriv = NULL;
  206. switch (urb->status) {
  207. case -EINPROGRESS: /* success */
  208. urb->status = 0;
  209. default: /* fault */
  210. COUNT (ehci->stats.complete);
  211. break;
  212. case -EREMOTEIO: /* fault or normal */
  213. if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
  214. urb->status = 0;
  215. COUNT (ehci->stats.complete);
  216. break;
  217. case -ECONNRESET: /* canceled */
  218. case -ENOENT:
  219. COUNT (ehci->stats.unlink);
  220. break;
  221. }
  222. spin_unlock (&urb->lock);
  223. #ifdef EHCI_URB_TRACE
  224. ehci_dbg (ehci,
  225. "%s %s urb %p ep%d%s status %d len %d/%d\n",
  226. __FUNCTION__, urb->dev->devpath, urb,
  227. usb_pipeendpoint (urb->pipe),
  228. usb_pipein (urb->pipe) ? "in" : "out",
  229. urb->status,
  230. urb->actual_length, urb->transfer_buffer_length);
  231. #endif
  232. /* complete() can reenter this HCD */
  233. spin_unlock (&ehci->lock);
  234. usb_hcd_giveback_urb (ehci_to_hcd(ehci), urb);
  235. spin_lock (&ehci->lock);
  236. }
  237. static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
  238. static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
  239. static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
  240. static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
  241. /*
  242. * Process and free completed qtds for a qh, returning URBs to drivers.
  243. * Chases up to qh->hw_current. Returns number of completions called,
  244. * indicating how much "real" work we did.
  245. */
  246. static unsigned
  247. qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
  248. {
  249. struct ehci_qtd *last = NULL, *end = qh->dummy;
  250. struct list_head *entry, *tmp;
  251. int stopped;
  252. unsigned count = 0;
  253. int do_status = 0;
  254. u8 state;
  255. u32 halt = HALT_BIT(ehci);
  256. if (unlikely (list_empty (&qh->qtd_list)))
  257. return count;
  258. /* completions (or tasks on other cpus) must never clobber HALT
  259. * till we've gone through and cleaned everything up, even when
  260. * they add urbs to this qh's queue or mark them for unlinking.
  261. *
  262. * NOTE: unlinking expects to be done in queue order.
  263. */
  264. state = qh->qh_state;
  265. qh->qh_state = QH_STATE_COMPLETING;
  266. stopped = (state == QH_STATE_IDLE);
  267. /* remove de-activated QTDs from front of queue.
  268. * after faults (including short reads), cleanup this urb
  269. * then let the queue advance.
  270. * if queue is stopped, handles unlinks.
  271. */
  272. list_for_each_safe (entry, tmp, &qh->qtd_list) {
  273. struct ehci_qtd *qtd;
  274. struct urb *urb;
  275. u32 token = 0;
  276. /* ignore QHs that are currently inactive */
  277. if (qh->hw_info1 & __constant_cpu_to_le32(QH_INACTIVATE))
  278. break;
  279. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  280. urb = qtd->urb;
  281. /* clean up any state from previous QTD ...*/
  282. if (last) {
  283. if (likely (last->urb != urb)) {
  284. ehci_urb_done (ehci, last->urb);
  285. count++;
  286. }
  287. ehci_qtd_free (ehci, last);
  288. last = NULL;
  289. }
  290. /* ignore urbs submitted during completions we reported */
  291. if (qtd == end)
  292. break;
  293. /* hardware copies qtd out of qh overlay */
  294. rmb ();
  295. token = hc32_to_cpu(ehci, qtd->hw_token);
  296. /* always clean up qtds the hc de-activated */
  297. if ((token & QTD_STS_ACTIVE) == 0) {
  298. if ((token & QTD_STS_HALT) != 0) {
  299. stopped = 1;
  300. /* magic dummy for some short reads; qh won't advance.
  301. * that silicon quirk can kick in with this dummy too.
  302. */
  303. } else if (IS_SHORT_READ (token)
  304. && !(qtd->hw_alt_next
  305. & EHCI_LIST_END(ehci))) {
  306. stopped = 1;
  307. goto halt;
  308. }
  309. /* stop scanning when we reach qtds the hc is using */
  310. } else if (likely (!stopped
  311. && HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) {
  312. break;
  313. } else {
  314. stopped = 1;
  315. if (unlikely (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)))
  316. urb->status = -ESHUTDOWN;
  317. /* ignore active urbs unless some previous qtd
  318. * for the urb faulted (including short read) or
  319. * its urb was canceled. we may patch qh or qtds.
  320. */
  321. if (likely (urb->status == -EINPROGRESS))
  322. continue;
  323. /* issue status after short control reads */
  324. if (unlikely (do_status != 0)
  325. && QTD_PID (token) == 0 /* OUT */) {
  326. do_status = 0;
  327. continue;
  328. }
  329. /* token in overlay may be most current */
  330. if (state == QH_STATE_IDLE
  331. && cpu_to_hc32(ehci, qtd->qtd_dma)
  332. == qh->hw_current)
  333. token = hc32_to_cpu(ehci, qh->hw_token);
  334. /* force halt for unlinked or blocked qh, so we'll
  335. * patch the qh later and so that completions can't
  336. * activate it while we "know" it's stopped.
  337. */
  338. if ((halt & qh->hw_token) == 0) {
  339. halt:
  340. qh->hw_token |= halt;
  341. wmb ();
  342. }
  343. }
  344. /* remove it from the queue */
  345. spin_lock (&urb->lock);
  346. qtd_copy_status (ehci, urb, qtd->length, token);
  347. do_status = (urb->status == -EREMOTEIO)
  348. && usb_pipecontrol (urb->pipe);
  349. spin_unlock (&urb->lock);
  350. if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
  351. last = list_entry (qtd->qtd_list.prev,
  352. struct ehci_qtd, qtd_list);
  353. last->hw_next = qtd->hw_next;
  354. }
  355. list_del (&qtd->qtd_list);
  356. last = qtd;
  357. }
  358. /* last urb's completion might still need calling */
  359. if (likely (last != NULL)) {
  360. ehci_urb_done (ehci, last->urb);
  361. count++;
  362. ehci_qtd_free (ehci, last);
  363. }
  364. /* restore original state; caller must unlink or relink */
  365. qh->qh_state = state;
  366. /* be sure the hardware's done with the qh before refreshing
  367. * it after fault cleanup, or recovering from silicon wrongly
  368. * overlaying the dummy qtd (which reduces DMA chatter).
  369. */
  370. if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END(ehci)) {
  371. switch (state) {
  372. case QH_STATE_IDLE:
  373. qh_refresh(ehci, qh);
  374. break;
  375. case QH_STATE_LINKED:
  376. /* should be rare for periodic transfers,
  377. * except maybe high bandwidth ...
  378. */
  379. if ((cpu_to_hc32(ehci, QH_SMASK)
  380. & qh->hw_info2) != 0) {
  381. intr_deschedule (ehci, qh);
  382. (void) qh_schedule (ehci, qh);
  383. } else
  384. unlink_async (ehci, qh);
  385. break;
  386. /* otherwise, unlink already started */
  387. }
  388. }
  389. return count;
  390. }
  391. /*-------------------------------------------------------------------------*/
  392. // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
  393. #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
  394. // ... and packet size, for any kind of endpoint descriptor
  395. #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
  396. /*
  397. * reverse of qh_urb_transaction: free a list of TDs.
  398. * used for cleanup after errors, before HC sees an URB's TDs.
  399. */
  400. static void qtd_list_free (
  401. struct ehci_hcd *ehci,
  402. struct urb *urb,
  403. struct list_head *qtd_list
  404. ) {
  405. struct list_head *entry, *temp;
  406. list_for_each_safe (entry, temp, qtd_list) {
  407. struct ehci_qtd *qtd;
  408. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  409. list_del (&qtd->qtd_list);
  410. ehci_qtd_free (ehci, qtd);
  411. }
  412. }
  413. /*
  414. * create a list of filled qtds for this URB; won't link into qh.
  415. */
  416. static struct list_head *
  417. qh_urb_transaction (
  418. struct ehci_hcd *ehci,
  419. struct urb *urb,
  420. struct list_head *head,
  421. gfp_t flags
  422. ) {
  423. struct ehci_qtd *qtd, *qtd_prev;
  424. dma_addr_t buf;
  425. int len, maxpacket;
  426. int is_input;
  427. u32 token;
  428. /*
  429. * URBs map to sequences of QTDs: one logical transaction
  430. */
  431. qtd = ehci_qtd_alloc (ehci, flags);
  432. if (unlikely (!qtd))
  433. return NULL;
  434. list_add_tail (&qtd->qtd_list, head);
  435. qtd->urb = urb;
  436. token = QTD_STS_ACTIVE;
  437. token |= (EHCI_TUNE_CERR << 10);
  438. /* for split transactions, SplitXState initialized to zero */
  439. len = urb->transfer_buffer_length;
  440. is_input = usb_pipein (urb->pipe);
  441. if (usb_pipecontrol (urb->pipe)) {
  442. /* SETUP pid */
  443. qtd_fill(ehci, qtd, urb->setup_dma,
  444. sizeof (struct usb_ctrlrequest),
  445. token | (2 /* "setup" */ << 8), 8);
  446. /* ... and always at least one more pid */
  447. token ^= QTD_TOGGLE;
  448. qtd_prev = qtd;
  449. qtd = ehci_qtd_alloc (ehci, flags);
  450. if (unlikely (!qtd))
  451. goto cleanup;
  452. qtd->urb = urb;
  453. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  454. list_add_tail (&qtd->qtd_list, head);
  455. /* for zero length DATA stages, STATUS is always IN */
  456. if (len == 0)
  457. token |= (1 /* "in" */ << 8);
  458. }
  459. /*
  460. * data transfer stage: buffer setup
  461. */
  462. buf = urb->transfer_dma;
  463. if (is_input)
  464. token |= (1 /* "in" */ << 8);
  465. /* else it's already initted to "out" pid (0 << 8) */
  466. maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
  467. /*
  468. * buffer gets wrapped in one or more qtds;
  469. * last one may be "short" (including zero len)
  470. * and may serve as a control status ack
  471. */
  472. for (;;) {
  473. int this_qtd_len;
  474. this_qtd_len = qtd_fill(ehci, qtd, buf, len, token, maxpacket);
  475. len -= this_qtd_len;
  476. buf += this_qtd_len;
  477. if (is_input)
  478. qtd->hw_alt_next = ehci->async->hw_alt_next;
  479. /* qh makes control packets use qtd toggle; maybe switch it */
  480. if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
  481. token ^= QTD_TOGGLE;
  482. if (likely (len <= 0))
  483. break;
  484. qtd_prev = qtd;
  485. qtd = ehci_qtd_alloc (ehci, flags);
  486. if (unlikely (!qtd))
  487. goto cleanup;
  488. qtd->urb = urb;
  489. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  490. list_add_tail (&qtd->qtd_list, head);
  491. }
  492. /* unless the bulk/interrupt caller wants a chance to clean
  493. * up after short reads, hc should advance qh past this urb
  494. */
  495. if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
  496. || usb_pipecontrol (urb->pipe)))
  497. qtd->hw_alt_next = EHCI_LIST_END(ehci);
  498. /*
  499. * control requests may need a terminating data "status" ack;
  500. * bulk ones may need a terminating short packet (zero length).
  501. */
  502. if (likely (urb->transfer_buffer_length != 0)) {
  503. int one_more = 0;
  504. if (usb_pipecontrol (urb->pipe)) {
  505. one_more = 1;
  506. token ^= 0x0100; /* "in" <--> "out" */
  507. token |= QTD_TOGGLE; /* force DATA1 */
  508. } else if (usb_pipebulk (urb->pipe)
  509. && (urb->transfer_flags & URB_ZERO_PACKET)
  510. && !(urb->transfer_buffer_length % maxpacket)) {
  511. one_more = 1;
  512. }
  513. if (one_more) {
  514. qtd_prev = qtd;
  515. qtd = ehci_qtd_alloc (ehci, flags);
  516. if (unlikely (!qtd))
  517. goto cleanup;
  518. qtd->urb = urb;
  519. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  520. list_add_tail (&qtd->qtd_list, head);
  521. /* never any data in such packets */
  522. qtd_fill(ehci, qtd, 0, 0, token, 0);
  523. }
  524. }
  525. /* by default, enable interrupt on urb completion */
  526. if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
  527. qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
  528. return head;
  529. cleanup:
  530. qtd_list_free (ehci, urb, head);
  531. return NULL;
  532. }
  533. /*-------------------------------------------------------------------------*/
  534. // Would be best to create all qh's from config descriptors,
  535. // when each interface/altsetting is established. Unlink
  536. // any previous qh and cancel its urbs first; endpoints are
  537. // implicitly reset then (data toggle too).
  538. // That'd mean updating how usbcore talks to HCDs. (2.7?)
  539. /*
  540. * Each QH holds a qtd list; a QH is used for everything except iso.
  541. *
  542. * For interrupt urbs, the scheduler must set the microframe scheduling
  543. * mask(s) each time the QH gets scheduled. For highspeed, that's
  544. * just one microframe in the s-mask. For split interrupt transactions
  545. * there are additional complications: c-mask, maybe FSTNs.
  546. */
  547. static struct ehci_qh *
  548. qh_make (
  549. struct ehci_hcd *ehci,
  550. struct urb *urb,
  551. gfp_t flags
  552. ) {
  553. struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
  554. u32 info1 = 0, info2 = 0;
  555. int is_input, type;
  556. int maxp = 0;
  557. if (!qh)
  558. return qh;
  559. /*
  560. * init endpoint/device data for this QH
  561. */
  562. info1 |= usb_pipeendpoint (urb->pipe) << 8;
  563. info1 |= usb_pipedevice (urb->pipe) << 0;
  564. is_input = usb_pipein (urb->pipe);
  565. type = usb_pipetype (urb->pipe);
  566. maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
  567. /* Compute interrupt scheduling parameters just once, and save.
  568. * - allowing for high bandwidth, how many nsec/uframe are used?
  569. * - split transactions need a second CSPLIT uframe; same question
  570. * - splits also need a schedule gap (for full/low speed I/O)
  571. * - qh has a polling interval
  572. *
  573. * For control/bulk requests, the HC or TT handles these.
  574. */
  575. if (type == PIPE_INTERRUPT) {
  576. qh->usecs = NS_TO_US (usb_calc_bus_time (USB_SPEED_HIGH, is_input, 0,
  577. hb_mult (maxp) * max_packet (maxp)));
  578. qh->start = NO_FRAME;
  579. if (urb->dev->speed == USB_SPEED_HIGH) {
  580. qh->c_usecs = 0;
  581. qh->gap_uf = 0;
  582. qh->period = urb->interval >> 3;
  583. if (qh->period == 0 && urb->interval != 1) {
  584. /* NOTE interval 2 or 4 uframes could work.
  585. * But interval 1 scheduling is simpler, and
  586. * includes high bandwidth.
  587. */
  588. dbg ("intr period %d uframes, NYET!",
  589. urb->interval);
  590. goto done;
  591. }
  592. } else {
  593. struct usb_tt *tt = urb->dev->tt;
  594. int think_time;
  595. /* gap is f(FS/LS transfer times) */
  596. qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
  597. is_input, 0, maxp) / (125 * 1000);
  598. /* FIXME this just approximates SPLIT/CSPLIT times */
  599. if (is_input) { // SPLIT, gap, CSPLIT+DATA
  600. qh->c_usecs = qh->usecs + HS_USECS (0);
  601. qh->usecs = HS_USECS (1);
  602. } else { // SPLIT+DATA, gap, CSPLIT
  603. qh->usecs += HS_USECS (1);
  604. qh->c_usecs = HS_USECS (0);
  605. }
  606. think_time = tt ? tt->think_time : 0;
  607. qh->tt_usecs = NS_TO_US (think_time +
  608. usb_calc_bus_time (urb->dev->speed,
  609. is_input, 0, max_packet (maxp)));
  610. qh->period = urb->interval;
  611. }
  612. }
  613. /* support for tt scheduling, and access to toggles */
  614. qh->dev = urb->dev;
  615. /* using TT? */
  616. switch (urb->dev->speed) {
  617. case USB_SPEED_LOW:
  618. info1 |= (1 << 12); /* EPS "low" */
  619. /* FALL THROUGH */
  620. case USB_SPEED_FULL:
  621. /* EPS 0 means "full" */
  622. if (type != PIPE_INTERRUPT)
  623. info1 |= (EHCI_TUNE_RL_TT << 28);
  624. if (type == PIPE_CONTROL) {
  625. info1 |= (1 << 27); /* for TT */
  626. info1 |= 1 << 14; /* toggle from qtd */
  627. }
  628. info1 |= maxp << 16;
  629. info2 |= (EHCI_TUNE_MULT_TT << 30);
  630. /* Some Freescale processors have an erratum in which the
  631. * port number in the queue head was 0..N-1 instead of 1..N.
  632. */
  633. if (ehci_has_fsl_portno_bug(ehci))
  634. info2 |= (urb->dev->ttport-1) << 23;
  635. else
  636. info2 |= urb->dev->ttport << 23;
  637. /* set the address of the TT; for TDI's integrated
  638. * root hub tt, leave it zeroed.
  639. */
  640. if (!ehci_is_TDI(ehci)
  641. || urb->dev->tt->hub !=
  642. ehci_to_hcd(ehci)->self.root_hub)
  643. info2 |= urb->dev->tt->hub->devnum << 16;
  644. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
  645. break;
  646. case USB_SPEED_HIGH: /* no TT involved */
  647. info1 |= (2 << 12); /* EPS "high" */
  648. if (type == PIPE_CONTROL) {
  649. info1 |= (EHCI_TUNE_RL_HS << 28);
  650. info1 |= 64 << 16; /* usb2 fixed maxpacket */
  651. info1 |= 1 << 14; /* toggle from qtd */
  652. info2 |= (EHCI_TUNE_MULT_HS << 30);
  653. } else if (type == PIPE_BULK) {
  654. info1 |= (EHCI_TUNE_RL_HS << 28);
  655. info1 |= 512 << 16; /* usb2 fixed maxpacket */
  656. info2 |= (EHCI_TUNE_MULT_HS << 30);
  657. } else { /* PIPE_INTERRUPT */
  658. info1 |= max_packet (maxp) << 16;
  659. info2 |= hb_mult (maxp) << 30;
  660. }
  661. break;
  662. default:
  663. dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed);
  664. done:
  665. qh_put (qh);
  666. return NULL;
  667. }
  668. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
  669. /* init as live, toggle clear, advance to dummy */
  670. qh->qh_state = QH_STATE_IDLE;
  671. qh->hw_info1 = cpu_to_hc32(ehci, info1);
  672. qh->hw_info2 = cpu_to_hc32(ehci, info2);
  673. usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
  674. qh_refresh (ehci, qh);
  675. return qh;
  676. }
  677. /*-------------------------------------------------------------------------*/
  678. /* move qh (and its qtds) onto async queue; maybe enable queue. */
  679. static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
  680. {
  681. __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
  682. struct ehci_qh *head;
  683. /* (re)start the async schedule? */
  684. head = ehci->async;
  685. timer_action_done (ehci, TIMER_ASYNC_OFF);
  686. if (!head->qh_next.qh) {
  687. u32 cmd = ehci_readl(ehci, &ehci->regs->command);
  688. if (!(cmd & CMD_ASE)) {
  689. /* in case a clear of CMD_ASE didn't take yet */
  690. (void)handshake(ehci, &ehci->regs->status,
  691. STS_ASS, 0, 150);
  692. cmd |= CMD_ASE | CMD_RUN;
  693. ehci_writel(ehci, cmd, &ehci->regs->command);
  694. ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
  695. /* posted write need not be known to HC yet ... */
  696. }
  697. }
  698. /* clear halt and/or toggle; and maybe recover from silicon quirk */
  699. if (qh->qh_state == QH_STATE_IDLE)
  700. qh_refresh (ehci, qh);
  701. /* splice right after start */
  702. qh->qh_next = head->qh_next;
  703. qh->hw_next = head->hw_next;
  704. wmb ();
  705. head->qh_next.qh = qh;
  706. head->hw_next = dma;
  707. qh->qh_state = QH_STATE_LINKED;
  708. /* qtd completions reported later by interrupt */
  709. }
  710. /*-------------------------------------------------------------------------*/
  711. /*
  712. * For control/bulk/interrupt, return QH with these TDs appended.
  713. * Allocates and initializes the QH if necessary.
  714. * Returns null if it can't allocate a QH it needs to.
  715. * If the QH has TDs (urbs) already, that's great.
  716. */
  717. static struct ehci_qh *qh_append_tds (
  718. struct ehci_hcd *ehci,
  719. struct urb *urb,
  720. struct list_head *qtd_list,
  721. int epnum,
  722. void **ptr
  723. )
  724. {
  725. struct ehci_qh *qh = NULL;
  726. u32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
  727. qh = (struct ehci_qh *) *ptr;
  728. if (unlikely (qh == NULL)) {
  729. /* can't sleep here, we have ehci->lock... */
  730. qh = qh_make (ehci, urb, GFP_ATOMIC);
  731. *ptr = qh;
  732. }
  733. if (likely (qh != NULL)) {
  734. struct ehci_qtd *qtd;
  735. if (unlikely (list_empty (qtd_list)))
  736. qtd = NULL;
  737. else
  738. qtd = list_entry (qtd_list->next, struct ehci_qtd,
  739. qtd_list);
  740. /* control qh may need patching ... */
  741. if (unlikely (epnum == 0)) {
  742. /* usb_reset_device() briefly reverts to address 0 */
  743. if (usb_pipedevice (urb->pipe) == 0)
  744. qh->hw_info1 &= ~qh_addr_mask;
  745. }
  746. /* just one way to queue requests: swap with the dummy qtd.
  747. * only hc or qh_refresh() ever modify the overlay.
  748. */
  749. if (likely (qtd != NULL)) {
  750. struct ehci_qtd *dummy;
  751. dma_addr_t dma;
  752. __hc32 token;
  753. /* to avoid racing the HC, use the dummy td instead of
  754. * the first td of our list (becomes new dummy). both
  755. * tds stay deactivated until we're done, when the
  756. * HC is allowed to fetch the old dummy (4.10.2).
  757. */
  758. token = qtd->hw_token;
  759. qtd->hw_token = HALT_BIT(ehci);
  760. wmb ();
  761. dummy = qh->dummy;
  762. dma = dummy->qtd_dma;
  763. *dummy = *qtd;
  764. dummy->qtd_dma = dma;
  765. list_del (&qtd->qtd_list);
  766. list_add (&dummy->qtd_list, qtd_list);
  767. __list_splice (qtd_list, qh->qtd_list.prev);
  768. ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
  769. qh->dummy = qtd;
  770. /* hc must see the new dummy at list end */
  771. dma = qtd->qtd_dma;
  772. qtd = list_entry (qh->qtd_list.prev,
  773. struct ehci_qtd, qtd_list);
  774. qtd->hw_next = QTD_NEXT(ehci, dma);
  775. /* let the hc process these next qtds */
  776. wmb ();
  777. dummy->hw_token = token;
  778. urb->hcpriv = qh_get (qh);
  779. }
  780. }
  781. return qh;
  782. }
  783. /*-------------------------------------------------------------------------*/
  784. static int
  785. submit_async (
  786. struct ehci_hcd *ehci,
  787. struct usb_host_endpoint *ep,
  788. struct urb *urb,
  789. struct list_head *qtd_list,
  790. gfp_t mem_flags
  791. ) {
  792. struct ehci_qtd *qtd;
  793. int epnum;
  794. unsigned long flags;
  795. struct ehci_qh *qh = NULL;
  796. int rc = 0;
  797. qtd = list_entry (qtd_list->next, struct ehci_qtd, qtd_list);
  798. epnum = ep->desc.bEndpointAddress;
  799. #ifdef EHCI_URB_TRACE
  800. ehci_dbg (ehci,
  801. "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
  802. __FUNCTION__, urb->dev->devpath, urb,
  803. epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
  804. urb->transfer_buffer_length,
  805. qtd, ep->hcpriv);
  806. #endif
  807. spin_lock_irqsave (&ehci->lock, flags);
  808. if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
  809. &ehci_to_hcd(ehci)->flags))) {
  810. rc = -ESHUTDOWN;
  811. goto done;
  812. }
  813. qh = qh_append_tds (ehci, urb, qtd_list, epnum, &ep->hcpriv);
  814. if (unlikely(qh == NULL)) {
  815. rc = -ENOMEM;
  816. goto done;
  817. }
  818. /* Control/bulk operations through TTs don't need scheduling,
  819. * the HC and TT handle it when the TT has a buffer ready.
  820. */
  821. if (likely (qh->qh_state == QH_STATE_IDLE))
  822. qh_link_async (ehci, qh_get (qh));
  823. done:
  824. spin_unlock_irqrestore (&ehci->lock, flags);
  825. if (unlikely (qh == NULL))
  826. qtd_list_free (ehci, urb, qtd_list);
  827. return rc;
  828. }
  829. /*-------------------------------------------------------------------------*/
  830. /* the async qh for the qtds being reclaimed are now unlinked from the HC */
  831. static void end_unlink_async (struct ehci_hcd *ehci)
  832. {
  833. struct ehci_qh *qh = ehci->reclaim;
  834. struct ehci_qh *next;
  835. timer_action_done (ehci, TIMER_IAA_WATCHDOG);
  836. // qh->hw_next = cpu_to_hc32(qh->qh_dma);
  837. qh->qh_state = QH_STATE_IDLE;
  838. qh->qh_next.qh = NULL;
  839. qh_put (qh); // refcount from reclaim
  840. /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
  841. next = qh->reclaim;
  842. ehci->reclaim = next;
  843. ehci->reclaim_ready = 0;
  844. qh->reclaim = NULL;
  845. qh_completions (ehci, qh);
  846. if (!list_empty (&qh->qtd_list)
  847. && HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
  848. qh_link_async (ehci, qh);
  849. else {
  850. qh_put (qh); // refcount from async list
  851. /* it's not free to turn the async schedule on/off; leave it
  852. * active but idle for a while once it empties.
  853. */
  854. if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
  855. && ehci->async->qh_next.qh == NULL)
  856. timer_action (ehci, TIMER_ASYNC_OFF);
  857. }
  858. if (next) {
  859. ehci->reclaim = NULL;
  860. start_unlink_async (ehci, next);
  861. }
  862. }
  863. /* makes sure the async qh will become idle */
  864. /* caller must own ehci->lock */
  865. static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
  866. {
  867. int cmd = ehci_readl(ehci, &ehci->regs->command);
  868. struct ehci_qh *prev;
  869. #ifdef DEBUG
  870. assert_spin_locked(&ehci->lock);
  871. if (ehci->reclaim
  872. || (qh->qh_state != QH_STATE_LINKED
  873. && qh->qh_state != QH_STATE_UNLINK_WAIT)
  874. )
  875. BUG ();
  876. #endif
  877. /* stop async schedule right now? */
  878. if (unlikely (qh == ehci->async)) {
  879. /* can't get here without STS_ASS set */
  880. if (ehci_to_hcd(ehci)->state != HC_STATE_HALT
  881. && !ehci->reclaim) {
  882. /* ... and CMD_IAAD clear */
  883. ehci_writel(ehci, cmd & ~CMD_ASE,
  884. &ehci->regs->command);
  885. wmb ();
  886. // handshake later, if we need to
  887. timer_action_done (ehci, TIMER_ASYNC_OFF);
  888. }
  889. return;
  890. }
  891. qh->qh_state = QH_STATE_UNLINK;
  892. ehci->reclaim = qh = qh_get (qh);
  893. prev = ehci->async;
  894. while (prev->qh_next.qh != qh)
  895. prev = prev->qh_next.qh;
  896. prev->hw_next = qh->hw_next;
  897. prev->qh_next = qh->qh_next;
  898. wmb ();
  899. if (unlikely (ehci_to_hcd(ehci)->state == HC_STATE_HALT)) {
  900. /* if (unlikely (qh->reclaim != 0))
  901. * this will recurse, probably not much
  902. */
  903. end_unlink_async (ehci);
  904. return;
  905. }
  906. ehci->reclaim_ready = 0;
  907. cmd |= CMD_IAAD;
  908. ehci_writel(ehci, cmd, &ehci->regs->command);
  909. (void)ehci_readl(ehci, &ehci->regs->command);
  910. timer_action (ehci, TIMER_IAA_WATCHDOG);
  911. }
  912. /*-------------------------------------------------------------------------*/
  913. static void scan_async (struct ehci_hcd *ehci)
  914. {
  915. struct ehci_qh *qh;
  916. enum ehci_timer_action action = TIMER_IO_WATCHDOG;
  917. if (!++(ehci->stamp))
  918. ehci->stamp++;
  919. timer_action_done (ehci, TIMER_ASYNC_SHRINK);
  920. rescan:
  921. qh = ehci->async->qh_next.qh;
  922. if (likely (qh != NULL)) {
  923. do {
  924. /* clean any finished work for this qh */
  925. if (!list_empty (&qh->qtd_list)
  926. && qh->stamp != ehci->stamp) {
  927. int temp;
  928. /* unlinks could happen here; completion
  929. * reporting drops the lock. rescan using
  930. * the latest schedule, but don't rescan
  931. * qhs we already finished (no looping).
  932. */
  933. qh = qh_get (qh);
  934. qh->stamp = ehci->stamp;
  935. temp = qh_completions (ehci, qh);
  936. qh_put (qh);
  937. if (temp != 0) {
  938. goto rescan;
  939. }
  940. }
  941. /* unlink idle entries, reducing HC PCI usage as well
  942. * as HCD schedule-scanning costs. delay for any qh
  943. * we just scanned, there's a not-unusual case that it
  944. * doesn't stay idle for long.
  945. * (plus, avoids some kind of re-activation race.)
  946. */
  947. if (list_empty (&qh->qtd_list)) {
  948. if (qh->stamp == ehci->stamp)
  949. action = TIMER_ASYNC_SHRINK;
  950. else if (!ehci->reclaim
  951. && qh->qh_state == QH_STATE_LINKED)
  952. start_unlink_async (ehci, qh);
  953. }
  954. qh = qh->qh_next.qh;
  955. } while (qh);
  956. }
  957. if (action == TIMER_ASYNC_SHRINK)
  958. timer_action (ehci, TIMER_ASYNC_SHRINK);
  959. }