urb.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587
  1. #include <linux/module.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/slab.h>
  5. #include <linux/init.h>
  6. #include <linux/usb.h>
  7. #include <linux/wait.h>
  8. #include "hcd.h"
  9. #define to_urb(d) container_of(d, struct urb, kref)
  10. static void urb_destroy(struct kref *kref)
  11. {
  12. struct urb *urb = to_urb(kref);
  13. if (urb->transfer_flags & URB_FREE_BUFFER)
  14. kfree(urb->transfer_buffer);
  15. kfree(urb);
  16. }
  17. /**
  18. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  19. * @urb: pointer to the urb to initialize
  20. *
  21. * Initializes a urb so that the USB subsystem can use it properly.
  22. *
  23. * If a urb is created with a call to usb_alloc_urb() it is not
  24. * necessary to call this function. Only use this if you allocate the
  25. * space for a struct urb on your own. If you call this function, be
  26. * careful when freeing the memory for your urb that it is no longer in
  27. * use by the USB core.
  28. *
  29. * Only use this function if you _really_ understand what you are doing.
  30. */
  31. void usb_init_urb(struct urb *urb)
  32. {
  33. if (urb) {
  34. memset(urb, 0, sizeof(*urb));
  35. kref_init(&urb->kref);
  36. spin_lock_init(&urb->lock);
  37. INIT_LIST_HEAD(&urb->anchor_list);
  38. }
  39. }
  40. /**
  41. * usb_alloc_urb - creates a new urb for a USB driver to use
  42. * @iso_packets: number of iso packets for this urb
  43. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  44. * valid options for this.
  45. *
  46. * Creates an urb for the USB driver to use, initializes a few internal
  47. * structures, incrementes the usage counter, and returns a pointer to it.
  48. *
  49. * If no memory is available, NULL is returned.
  50. *
  51. * If the driver want to use this urb for interrupt, control, or bulk
  52. * endpoints, pass '0' as the number of iso packets.
  53. *
  54. * The driver must call usb_free_urb() when it is finished with the urb.
  55. */
  56. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  57. {
  58. struct urb *urb;
  59. urb = kmalloc(sizeof(struct urb) +
  60. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  61. mem_flags);
  62. if (!urb) {
  63. err("alloc_urb: kmalloc failed");
  64. return NULL;
  65. }
  66. usb_init_urb(urb);
  67. return urb;
  68. }
  69. /**
  70. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  71. * @urb: pointer to the urb to free, may be NULL
  72. *
  73. * Must be called when a user of a urb is finished with it. When the last user
  74. * of the urb calls this function, the memory of the urb is freed.
  75. *
  76. * Note: The transfer buffer associated with the urb is not freed, that must be
  77. * done elsewhere.
  78. */
  79. void usb_free_urb(struct urb *urb)
  80. {
  81. if (urb)
  82. kref_put(&urb->kref, urb_destroy);
  83. }
  84. /**
  85. * usb_get_urb - increments the reference count of the urb
  86. * @urb: pointer to the urb to modify, may be NULL
  87. *
  88. * This must be called whenever a urb is transferred from a device driver to a
  89. * host controller driver. This allows proper reference counting to happen
  90. * for urbs.
  91. *
  92. * A pointer to the urb with the incremented reference counter is returned.
  93. */
  94. struct urb * usb_get_urb(struct urb *urb)
  95. {
  96. if (urb)
  97. kref_get(&urb->kref);
  98. return urb;
  99. }
  100. /**
  101. * usb_anchor_urb - anchors an URB while it is processed
  102. * @urb: pointer to the urb to anchor
  103. * @anchor: pointer to the anchor
  104. *
  105. * This can be called to have access to URBs which are to be executed
  106. * without bothering to track them
  107. */
  108. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  109. {
  110. unsigned long flags;
  111. spin_lock_irqsave(&anchor->lock, flags);
  112. usb_get_urb(urb);
  113. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  114. urb->anchor = anchor;
  115. spin_unlock_irqrestore(&anchor->lock, flags);
  116. }
  117. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  118. /**
  119. * usb_unanchor_urb - unanchors an URB
  120. * @urb: pointer to the urb to anchor
  121. *
  122. * Call this to stop the system keeping track of this URB
  123. */
  124. void usb_unanchor_urb(struct urb *urb)
  125. {
  126. unsigned long flags;
  127. struct usb_anchor *anchor;
  128. if (!urb)
  129. return;
  130. anchor = urb->anchor;
  131. if (!anchor)
  132. return;
  133. spin_lock_irqsave(&anchor->lock, flags);
  134. if (unlikely(anchor != urb->anchor)) {
  135. /* we've lost the race to another thread */
  136. spin_unlock_irqrestore(&anchor->lock, flags);
  137. return;
  138. }
  139. urb->anchor = NULL;
  140. list_del(&urb->anchor_list);
  141. spin_unlock_irqrestore(&anchor->lock, flags);
  142. usb_put_urb(urb);
  143. if (list_empty(&anchor->urb_list))
  144. wake_up(&anchor->wait);
  145. }
  146. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  147. /*-------------------------------------------------------------------*/
  148. /**
  149. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  150. * @urb: pointer to the urb describing the request
  151. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  152. * of valid options for this.
  153. *
  154. * This submits a transfer request, and transfers control of the URB
  155. * describing that request to the USB subsystem. Request completion will
  156. * be indicated later, asynchronously, by calling the completion handler.
  157. * The three types of completion are success, error, and unlink
  158. * (a software-induced fault, also called "request cancellation").
  159. *
  160. * URBs may be submitted in interrupt context.
  161. *
  162. * The caller must have correctly initialized the URB before submitting
  163. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  164. * available to ensure that most fields are correctly initialized, for
  165. * the particular kind of transfer, although they will not initialize
  166. * any transfer flags.
  167. *
  168. * Successful submissions return 0; otherwise this routine returns a
  169. * negative error number. If the submission is successful, the complete()
  170. * callback from the URB will be called exactly once, when the USB core and
  171. * Host Controller Driver (HCD) are finished with the URB. When the completion
  172. * function is called, control of the URB is returned to the device
  173. * driver which issued the request. The completion handler may then
  174. * immediately free or reuse that URB.
  175. *
  176. * With few exceptions, USB device drivers should never access URB fields
  177. * provided by usbcore or the HCD until its complete() is called.
  178. * The exceptions relate to periodic transfer scheduling. For both
  179. * interrupt and isochronous urbs, as part of successful URB submission
  180. * urb->interval is modified to reflect the actual transfer period used
  181. * (normally some power of two units). And for isochronous urbs,
  182. * urb->start_frame is modified to reflect when the URB's transfers were
  183. * scheduled to start. Not all isochronous transfer scheduling policies
  184. * will work, but most host controller drivers should easily handle ISO
  185. * queues going from now until 10-200 msec into the future.
  186. *
  187. * For control endpoints, the synchronous usb_control_msg() call is
  188. * often used (in non-interrupt context) instead of this call.
  189. * That is often used through convenience wrappers, for the requests
  190. * that are standardized in the USB 2.0 specification. For bulk
  191. * endpoints, a synchronous usb_bulk_msg() call is available.
  192. *
  193. * Request Queuing:
  194. *
  195. * URBs may be submitted to endpoints before previous ones complete, to
  196. * minimize the impact of interrupt latencies and system overhead on data
  197. * throughput. With that queuing policy, an endpoint's queue would never
  198. * be empty. This is required for continuous isochronous data streams,
  199. * and may also be required for some kinds of interrupt transfers. Such
  200. * queuing also maximizes bandwidth utilization by letting USB controllers
  201. * start work on later requests before driver software has finished the
  202. * completion processing for earlier (successful) requests.
  203. *
  204. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  205. * than one. This was previously a HCD-specific behavior, except for ISO
  206. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  207. * after faults (transfer errors or cancellation).
  208. *
  209. * Reserved Bandwidth Transfers:
  210. *
  211. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  212. * using the interval specified in the urb. Submitting the first urb to
  213. * the endpoint reserves the bandwidth necessary to make those transfers.
  214. * If the USB subsystem can't allocate sufficient bandwidth to perform
  215. * the periodic request, submitting such a periodic request should fail.
  216. *
  217. * Device drivers must explicitly request that repetition, by ensuring that
  218. * some URB is always on the endpoint's queue (except possibly for short
  219. * periods during completion callacks). When there is no longer an urb
  220. * queued, the endpoint's bandwidth reservation is canceled. This means
  221. * drivers can use their completion handlers to ensure they keep bandwidth
  222. * they need, by reinitializing and resubmitting the just-completed urb
  223. * until the driver longer needs that periodic bandwidth.
  224. *
  225. * Memory Flags:
  226. *
  227. * The general rules for how to decide which mem_flags to use
  228. * are the same as for kmalloc. There are four
  229. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  230. * GFP_ATOMIC.
  231. *
  232. * GFP_NOFS is not ever used, as it has not been implemented yet.
  233. *
  234. * GFP_ATOMIC is used when
  235. * (a) you are inside a completion handler, an interrupt, bottom half,
  236. * tasklet or timer, or
  237. * (b) you are holding a spinlock or rwlock (does not apply to
  238. * semaphores), or
  239. * (c) current->state != TASK_RUNNING, this is the case only after
  240. * you've changed it.
  241. *
  242. * GFP_NOIO is used in the block io path and error handling of storage
  243. * devices.
  244. *
  245. * All other situations use GFP_KERNEL.
  246. *
  247. * Some more specific rules for mem_flags can be inferred, such as
  248. * (1) start_xmit, timeout, and receive methods of network drivers must
  249. * use GFP_ATOMIC (they are called with a spinlock held);
  250. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  251. * called with a spinlock held);
  252. * (3) If you use a kernel thread with a network driver you must use
  253. * GFP_NOIO, unless (b) or (c) apply;
  254. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  255. * apply or your are in a storage driver's block io path;
  256. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  257. * (6) changing firmware on a running storage or net device uses
  258. * GFP_NOIO, unless b) or c) apply
  259. *
  260. */
  261. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  262. {
  263. int pipe, temp, max;
  264. struct usb_device *dev;
  265. int is_out;
  266. if (!urb || urb->hcpriv || !urb->complete)
  267. return -EINVAL;
  268. if (!(dev = urb->dev) ||
  269. (dev->state < USB_STATE_DEFAULT) ||
  270. (!dev->bus) || (dev->devnum <= 0))
  271. return -ENODEV;
  272. if (dev->bus->controller->power.power_state.event != PM_EVENT_ON
  273. || dev->state == USB_STATE_SUSPENDED)
  274. return -EHOSTUNREACH;
  275. urb->status = -EINPROGRESS;
  276. urb->actual_length = 0;
  277. /* Lots of sanity checks, so HCDs can rely on clean data
  278. * and don't need to duplicate tests
  279. */
  280. pipe = urb->pipe;
  281. temp = usb_pipetype(pipe);
  282. is_out = usb_pipeout(pipe);
  283. if (!usb_pipecontrol(pipe) && dev->state < USB_STATE_CONFIGURED)
  284. return -ENODEV;
  285. /* FIXME there should be a sharable lock protecting us against
  286. * config/altsetting changes and disconnects, kicking in here.
  287. * (here == before maxpacket, and eventually endpoint type,
  288. * checks get made.)
  289. */
  290. max = usb_maxpacket(dev, pipe, is_out);
  291. if (max <= 0) {
  292. dev_dbg(&dev->dev,
  293. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  294. usb_pipeendpoint(pipe), is_out ? "out" : "in",
  295. __FUNCTION__, max);
  296. return -EMSGSIZE;
  297. }
  298. /* periodic transfers limit size per frame/uframe,
  299. * but drivers only control those sizes for ISO.
  300. * while we're checking, initialize return status.
  301. */
  302. if (temp == PIPE_ISOCHRONOUS) {
  303. int n, len;
  304. /* "high bandwidth" mode, 1-3 packets/uframe? */
  305. if (dev->speed == USB_SPEED_HIGH) {
  306. int mult = 1 + ((max >> 11) & 0x03);
  307. max &= 0x07ff;
  308. max *= mult;
  309. }
  310. if (urb->number_of_packets <= 0)
  311. return -EINVAL;
  312. for (n = 0; n < urb->number_of_packets; n++) {
  313. len = urb->iso_frame_desc[n].length;
  314. if (len < 0 || len > max)
  315. return -EMSGSIZE;
  316. urb->iso_frame_desc[n].status = -EXDEV;
  317. urb->iso_frame_desc[n].actual_length = 0;
  318. }
  319. }
  320. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  321. if (urb->transfer_buffer_length < 0)
  322. return -EMSGSIZE;
  323. #ifdef DEBUG
  324. /* stuff that drivers shouldn't do, but which shouldn't
  325. * cause problems in HCDs if they get it wrong.
  326. */
  327. {
  328. unsigned int orig_flags = urb->transfer_flags;
  329. unsigned int allowed;
  330. /* enforce simple/standard policy */
  331. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP |
  332. URB_NO_INTERRUPT);
  333. switch (temp) {
  334. case PIPE_BULK:
  335. if (is_out)
  336. allowed |= URB_ZERO_PACKET;
  337. /* FALLTHROUGH */
  338. case PIPE_CONTROL:
  339. allowed |= URB_NO_FSBR; /* only affects UHCI */
  340. /* FALLTHROUGH */
  341. default: /* all non-iso endpoints */
  342. if (!is_out)
  343. allowed |= URB_SHORT_NOT_OK;
  344. break;
  345. case PIPE_ISOCHRONOUS:
  346. allowed |= URB_ISO_ASAP;
  347. break;
  348. }
  349. urb->transfer_flags &= allowed;
  350. /* fail if submitter gave bogus flags */
  351. if (urb->transfer_flags != orig_flags) {
  352. err("BOGUS urb flags, %x --> %x",
  353. orig_flags, urb->transfer_flags);
  354. return -EINVAL;
  355. }
  356. }
  357. #endif
  358. /*
  359. * Force periodic transfer intervals to be legal values that are
  360. * a power of two (so HCDs don't need to).
  361. *
  362. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  363. * supports different values... this uses EHCI/UHCI defaults (and
  364. * EHCI can use smaller non-default values).
  365. */
  366. switch (temp) {
  367. case PIPE_ISOCHRONOUS:
  368. case PIPE_INTERRUPT:
  369. /* too small? */
  370. if (urb->interval <= 0)
  371. return -EINVAL;
  372. /* too big? */
  373. switch (dev->speed) {
  374. case USB_SPEED_HIGH: /* units are microframes */
  375. // NOTE usb handles 2^15
  376. if (urb->interval > (1024 * 8))
  377. urb->interval = 1024 * 8;
  378. temp = 1024 * 8;
  379. break;
  380. case USB_SPEED_FULL: /* units are frames/msec */
  381. case USB_SPEED_LOW:
  382. if (temp == PIPE_INTERRUPT) {
  383. if (urb->interval > 255)
  384. return -EINVAL;
  385. // NOTE ohci only handles up to 32
  386. temp = 128;
  387. } else {
  388. if (urb->interval > 1024)
  389. urb->interval = 1024;
  390. // NOTE usb and ohci handle up to 2^15
  391. temp = 1024;
  392. }
  393. break;
  394. default:
  395. return -EINVAL;
  396. }
  397. /* power of two? */
  398. while (temp > urb->interval)
  399. temp >>= 1;
  400. urb->interval = temp;
  401. }
  402. return usb_hcd_submit_urb(urb, mem_flags);
  403. }
  404. /*-------------------------------------------------------------------*/
  405. /**
  406. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  407. * @urb: pointer to urb describing a previously submitted request,
  408. * may be NULL
  409. *
  410. * This routine cancels an in-progress request. URBs complete only
  411. * once per submission, and may be canceled only once per submission.
  412. * Successful cancellation means the requests's completion handler will
  413. * be called with a status code indicating that the request has been
  414. * canceled (rather than any other code) and will quickly be removed
  415. * from host controller data structures.
  416. *
  417. * This request is always asynchronous.
  418. * Success is indicated by returning -EINPROGRESS,
  419. * at which time the URB will normally have been unlinked but not yet
  420. * given back to the device driver. When it is called, the completion
  421. * function will see urb->status == -ECONNRESET. Failure is indicated
  422. * by any other return value. Unlinking will fail when the URB is not
  423. * currently "linked" (i.e., it was never submitted, or it was unlinked
  424. * before, or the hardware is already finished with it), even if the
  425. * completion handler has not yet run.
  426. *
  427. * Unlinking and Endpoint Queues:
  428. *
  429. * Host Controller Drivers (HCDs) place all the URBs for a particular
  430. * endpoint in a queue. Normally the queue advances as the controller
  431. * hardware processes each request. But when an URB terminates with an
  432. * error its queue stops, at least until that URB's completion routine
  433. * returns. It is guaranteed that the queue will not restart until all
  434. * its unlinked URBs have been fully retired, with their completion
  435. * routines run, even if that's not until some time after the original
  436. * completion handler returns. Normally the same behavior and guarantees
  437. * apply when an URB terminates because it was unlinked; however if an
  438. * URB is unlinked before the hardware has started to execute it, then
  439. * its queue is not guaranteed to stop until all the preceding URBs have
  440. * completed.
  441. *
  442. * This means that USB device drivers can safely build deep queues for
  443. * large or complex transfers, and clean them up reliably after any sort
  444. * of aborted transfer by unlinking all pending URBs at the first fault.
  445. *
  446. * Note that an URB terminating early because a short packet was received
  447. * will count as an error if and only if the URB_SHORT_NOT_OK flag is set.
  448. * Also, that all unlinks performed in any URB completion handler must
  449. * be asynchronous.
  450. *
  451. * Queues for isochronous endpoints are treated differently, because they
  452. * advance at fixed rates. Such queues do not stop when an URB is unlinked.
  453. * An unlinked URB may leave a gap in the stream of packets. It is undefined
  454. * whether such gaps can be filled in.
  455. *
  456. * When a control URB terminates with an error, it is likely that the
  457. * status stage of the transfer will not take place, even if it is merely
  458. * a soft error resulting from a short-packet with URB_SHORT_NOT_OK set.
  459. */
  460. int usb_unlink_urb(struct urb *urb)
  461. {
  462. if (!urb)
  463. return -EINVAL;
  464. if (!(urb->dev && urb->dev->bus))
  465. return -ENODEV;
  466. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  467. }
  468. /**
  469. * usb_kill_urb - cancel a transfer request and wait for it to finish
  470. * @urb: pointer to URB describing a previously submitted request,
  471. * may be NULL
  472. *
  473. * This routine cancels an in-progress request. It is guaranteed that
  474. * upon return all completion handlers will have finished and the URB
  475. * will be totally idle and available for reuse. These features make
  476. * this an ideal way to stop I/O in a disconnect() callback or close()
  477. * function. If the request has not already finished or been unlinked
  478. * the completion handler will see urb->status == -ENOENT.
  479. *
  480. * While the routine is running, attempts to resubmit the URB will fail
  481. * with error -EPERM. Thus even if the URB's completion handler always
  482. * tries to resubmit, it will not succeed and the URB will become idle.
  483. *
  484. * This routine may not be used in an interrupt context (such as a bottom
  485. * half or a completion handler), or when holding a spinlock, or in other
  486. * situations where the caller can't schedule().
  487. */
  488. void usb_kill_urb(struct urb *urb)
  489. {
  490. might_sleep();
  491. if (!(urb && urb->dev && urb->dev->bus))
  492. return;
  493. spin_lock_irq(&urb->lock);
  494. ++urb->reject;
  495. spin_unlock_irq(&urb->lock);
  496. usb_hcd_unlink_urb(urb, -ENOENT);
  497. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  498. spin_lock_irq(&urb->lock);
  499. --urb->reject;
  500. spin_unlock_irq(&urb->lock);
  501. }
  502. /**
  503. * usb_kill_anchored_urbs - cancel transfer requests en masse
  504. * @anchor: anchor the requests are bound to
  505. *
  506. * this allows all outstanding URBs to be killed starting
  507. * from the back of the queue
  508. */
  509. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  510. {
  511. struct urb *victim;
  512. spin_lock_irq(&anchor->lock);
  513. while (!list_empty(&anchor->urb_list)) {
  514. victim = list_entry(anchor->urb_list.prev, struct urb, anchor_list);
  515. /* we must make sure the URB isn't freed before we kill it*/
  516. usb_get_urb(victim);
  517. spin_unlock_irq(&anchor->lock);
  518. /* this will unanchor the URB */
  519. usb_kill_urb(victim);
  520. usb_put_urb(victim);
  521. spin_lock_irq(&anchor->lock);
  522. }
  523. spin_unlock_irq(&anchor->lock);
  524. }
  525. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  526. /**
  527. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  528. * @anchor: the anchor you want to become unused
  529. * @timeout: how long you are willing to wait in milliseconds
  530. *
  531. * Call this is you want to be sure all an anchor's
  532. * URBs have finished
  533. */
  534. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  535. unsigned int timeout)
  536. {
  537. return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
  538. msecs_to_jiffies(timeout));
  539. }
  540. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  541. EXPORT_SYMBOL(usb_init_urb);
  542. EXPORT_SYMBOL(usb_alloc_urb);
  543. EXPORT_SYMBOL(usb_free_urb);
  544. EXPORT_SYMBOL(usb_get_urb);
  545. EXPORT_SYMBOL(usb_submit_urb);
  546. EXPORT_SYMBOL(usb_unlink_urb);
  547. EXPORT_SYMBOL(usb_kill_urb);