spi.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670
  1. /*
  2. * spi.c - SPI init/core code
  3. *
  4. * Copyright (C) 2005 David Brownell
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/autoconf.h>
  21. #include <linux/kernel.h>
  22. #include <linux/device.h>
  23. #include <linux/init.h>
  24. #include <linux/cache.h>
  25. #include <linux/mutex.h>
  26. #include <linux/spi/spi.h>
  27. /* SPI bustype and spi_master class are registered after board init code
  28. * provides the SPI device tables, ensuring that both are present by the
  29. * time controller driver registration causes spi_devices to "enumerate".
  30. */
  31. static void spidev_release(struct device *dev)
  32. {
  33. struct spi_device *spi = to_spi_device(dev);
  34. /* spi masters may cleanup for released devices */
  35. if (spi->master->cleanup)
  36. spi->master->cleanup(spi);
  37. spi_master_put(spi->master);
  38. kfree(dev);
  39. }
  40. static ssize_t
  41. modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  42. {
  43. const struct spi_device *spi = to_spi_device(dev);
  44. return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
  45. }
  46. static struct device_attribute spi_dev_attrs[] = {
  47. __ATTR_RO(modalias),
  48. __ATTR_NULL,
  49. };
  50. /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  51. * and the sysfs version makes coldplug work too.
  52. */
  53. static int spi_match_device(struct device *dev, struct device_driver *drv)
  54. {
  55. const struct spi_device *spi = to_spi_device(dev);
  56. return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
  57. }
  58. static int spi_uevent(struct device *dev, char **envp, int num_envp,
  59. char *buffer, int buffer_size)
  60. {
  61. const struct spi_device *spi = to_spi_device(dev);
  62. envp[0] = buffer;
  63. snprintf(buffer, buffer_size, "MODALIAS=%s", spi->modalias);
  64. envp[1] = NULL;
  65. return 0;
  66. }
  67. #ifdef CONFIG_PM
  68. /*
  69. * NOTE: the suspend() method for an spi_master controller driver
  70. * should verify that all its child devices are marked as suspended;
  71. * suspend requests delivered through sysfs power/state files don't
  72. * enforce such constraints.
  73. */
  74. static int spi_suspend(struct device *dev, pm_message_t message)
  75. {
  76. int value;
  77. struct spi_driver *drv = to_spi_driver(dev->driver);
  78. if (!drv || !drv->suspend)
  79. return 0;
  80. /* suspend will stop irqs and dma; no more i/o */
  81. value = drv->suspend(to_spi_device(dev), message);
  82. if (value == 0)
  83. dev->power.power_state = message;
  84. return value;
  85. }
  86. static int spi_resume(struct device *dev)
  87. {
  88. int value;
  89. struct spi_driver *drv = to_spi_driver(dev->driver);
  90. if (!drv || !drv->resume)
  91. return 0;
  92. /* resume may restart the i/o queue */
  93. value = drv->resume(to_spi_device(dev));
  94. if (value == 0)
  95. dev->power.power_state = PMSG_ON;
  96. return value;
  97. }
  98. #else
  99. #define spi_suspend NULL
  100. #define spi_resume NULL
  101. #endif
  102. struct bus_type spi_bus_type = {
  103. .name = "spi",
  104. .dev_attrs = spi_dev_attrs,
  105. .match = spi_match_device,
  106. .uevent = spi_uevent,
  107. .suspend = spi_suspend,
  108. .resume = spi_resume,
  109. };
  110. EXPORT_SYMBOL_GPL(spi_bus_type);
  111. static int spi_drv_probe(struct device *dev)
  112. {
  113. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  114. return sdrv->probe(to_spi_device(dev));
  115. }
  116. static int spi_drv_remove(struct device *dev)
  117. {
  118. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  119. return sdrv->remove(to_spi_device(dev));
  120. }
  121. static void spi_drv_shutdown(struct device *dev)
  122. {
  123. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  124. sdrv->shutdown(to_spi_device(dev));
  125. }
  126. /**
  127. * spi_register_driver - register a SPI driver
  128. * @sdrv: the driver to register
  129. * Context: can sleep
  130. */
  131. int spi_register_driver(struct spi_driver *sdrv)
  132. {
  133. sdrv->driver.bus = &spi_bus_type;
  134. if (sdrv->probe)
  135. sdrv->driver.probe = spi_drv_probe;
  136. if (sdrv->remove)
  137. sdrv->driver.remove = spi_drv_remove;
  138. if (sdrv->shutdown)
  139. sdrv->driver.shutdown = spi_drv_shutdown;
  140. return driver_register(&sdrv->driver);
  141. }
  142. EXPORT_SYMBOL_GPL(spi_register_driver);
  143. /*-------------------------------------------------------------------------*/
  144. /* SPI devices should normally not be created by SPI device drivers; that
  145. * would make them board-specific. Similarly with SPI master drivers.
  146. * Device registration normally goes into like arch/.../mach.../board-YYY.c
  147. * with other readonly (flashable) information about mainboard devices.
  148. */
  149. struct boardinfo {
  150. struct list_head list;
  151. unsigned n_board_info;
  152. struct spi_board_info board_info[0];
  153. };
  154. static LIST_HEAD(board_list);
  155. static DEFINE_MUTEX(board_lock);
  156. /**
  157. * spi_new_device - instantiate one new SPI device
  158. * @master: Controller to which device is connected
  159. * @chip: Describes the SPI device
  160. * Context: can sleep
  161. *
  162. * On typical mainboards, this is purely internal; and it's not needed
  163. * after board init creates the hard-wired devices. Some development
  164. * platforms may not be able to use spi_register_board_info though, and
  165. * this is exported so that for example a USB or parport based adapter
  166. * driver could add devices (which it would learn about out-of-band).
  167. */
  168. struct spi_device *spi_new_device(struct spi_master *master,
  169. struct spi_board_info *chip)
  170. {
  171. struct spi_device *proxy;
  172. struct device *dev = master->cdev.dev;
  173. int status;
  174. /* NOTE: caller did any chip->bus_num checks necessary */
  175. if (!spi_master_get(master))
  176. return NULL;
  177. proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
  178. if (!proxy) {
  179. dev_err(dev, "can't alloc dev for cs%d\n",
  180. chip->chip_select);
  181. goto fail;
  182. }
  183. proxy->master = master;
  184. proxy->chip_select = chip->chip_select;
  185. proxy->max_speed_hz = chip->max_speed_hz;
  186. proxy->mode = chip->mode;
  187. proxy->irq = chip->irq;
  188. proxy->modalias = chip->modalias;
  189. snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
  190. "%s.%u", master->cdev.class_id,
  191. chip->chip_select);
  192. proxy->dev.parent = dev;
  193. proxy->dev.bus = &spi_bus_type;
  194. proxy->dev.platform_data = (void *) chip->platform_data;
  195. proxy->controller_data = chip->controller_data;
  196. proxy->controller_state = NULL;
  197. proxy->dev.release = spidev_release;
  198. /* drivers may modify this default i/o setup */
  199. status = master->setup(proxy);
  200. if (status < 0) {
  201. dev_dbg(dev, "can't %s %s, status %d\n",
  202. "setup", proxy->dev.bus_id, status);
  203. goto fail;
  204. }
  205. /* driver core catches callers that misbehave by defining
  206. * devices that already exist.
  207. */
  208. status = device_register(&proxy->dev);
  209. if (status < 0) {
  210. dev_dbg(dev, "can't %s %s, status %d\n",
  211. "add", proxy->dev.bus_id, status);
  212. goto fail;
  213. }
  214. dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
  215. return proxy;
  216. fail:
  217. spi_master_put(master);
  218. kfree(proxy);
  219. return NULL;
  220. }
  221. EXPORT_SYMBOL_GPL(spi_new_device);
  222. /**
  223. * spi_register_board_info - register SPI devices for a given board
  224. * @info: array of chip descriptors
  225. * @n: how many descriptors are provided
  226. * Context: can sleep
  227. *
  228. * Board-specific early init code calls this (probably during arch_initcall)
  229. * with segments of the SPI device table. Any device nodes are created later,
  230. * after the relevant parent SPI controller (bus_num) is defined. We keep
  231. * this table of devices forever, so that reloading a controller driver will
  232. * not make Linux forget about these hard-wired devices.
  233. *
  234. * Other code can also call this, e.g. a particular add-on board might provide
  235. * SPI devices through its expansion connector, so code initializing that board
  236. * would naturally declare its SPI devices.
  237. *
  238. * The board info passed can safely be __initdata ... but be careful of
  239. * any embedded pointers (platform_data, etc), they're copied as-is.
  240. */
  241. int __init
  242. spi_register_board_info(struct spi_board_info const *info, unsigned n)
  243. {
  244. struct boardinfo *bi;
  245. bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
  246. if (!bi)
  247. return -ENOMEM;
  248. bi->n_board_info = n;
  249. memcpy(bi->board_info, info, n * sizeof *info);
  250. mutex_lock(&board_lock);
  251. list_add_tail(&bi->list, &board_list);
  252. mutex_unlock(&board_lock);
  253. return 0;
  254. }
  255. /* FIXME someone should add support for a __setup("spi", ...) that
  256. * creates board info from kernel command lines
  257. */
  258. static void __init_or_module
  259. scan_boardinfo(struct spi_master *master)
  260. {
  261. struct boardinfo *bi;
  262. struct device *dev = master->cdev.dev;
  263. mutex_lock(&board_lock);
  264. list_for_each_entry(bi, &board_list, list) {
  265. struct spi_board_info *chip = bi->board_info;
  266. unsigned n;
  267. for (n = bi->n_board_info; n > 0; n--, chip++) {
  268. if (chip->bus_num != master->bus_num)
  269. continue;
  270. /* some controllers only have one chip, so they
  271. * might not use chipselects. otherwise, the
  272. * chipselects are numbered 0..max.
  273. */
  274. if (chip->chip_select >= master->num_chipselect
  275. && master->num_chipselect) {
  276. dev_dbg(dev, "cs%d > max %d\n",
  277. chip->chip_select,
  278. master->num_chipselect);
  279. continue;
  280. }
  281. (void) spi_new_device(master, chip);
  282. }
  283. }
  284. mutex_unlock(&board_lock);
  285. }
  286. /*-------------------------------------------------------------------------*/
  287. static void spi_master_release(struct class_device *cdev)
  288. {
  289. struct spi_master *master;
  290. master = container_of(cdev, struct spi_master, cdev);
  291. kfree(master);
  292. }
  293. static struct class spi_master_class = {
  294. .name = "spi_master",
  295. .owner = THIS_MODULE,
  296. .release = spi_master_release,
  297. };
  298. /**
  299. * spi_alloc_master - allocate SPI master controller
  300. * @dev: the controller, possibly using the platform_bus
  301. * @size: how much zeroed driver-private data to allocate; the pointer to this
  302. * memory is in the class_data field of the returned class_device,
  303. * accessible with spi_master_get_devdata().
  304. * Context: can sleep
  305. *
  306. * This call is used only by SPI master controller drivers, which are the
  307. * only ones directly touching chip registers. It's how they allocate
  308. * an spi_master structure, prior to calling spi_register_master().
  309. *
  310. * This must be called from context that can sleep. It returns the SPI
  311. * master structure on success, else NULL.
  312. *
  313. * The caller is responsible for assigning the bus number and initializing
  314. * the master's methods before calling spi_register_master(); and (after errors
  315. * adding the device) calling spi_master_put() to prevent a memory leak.
  316. */
  317. struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
  318. {
  319. struct spi_master *master;
  320. if (!dev)
  321. return NULL;
  322. master = kzalloc(size + sizeof *master, GFP_KERNEL);
  323. if (!master)
  324. return NULL;
  325. class_device_initialize(&master->cdev);
  326. master->cdev.class = &spi_master_class;
  327. master->cdev.dev = get_device(dev);
  328. spi_master_set_devdata(master, &master[1]);
  329. return master;
  330. }
  331. EXPORT_SYMBOL_GPL(spi_alloc_master);
  332. /**
  333. * spi_register_master - register SPI master controller
  334. * @master: initialized master, originally from spi_alloc_master()
  335. * Context: can sleep
  336. *
  337. * SPI master controllers connect to their drivers using some non-SPI bus,
  338. * such as the platform bus. The final stage of probe() in that code
  339. * includes calling spi_register_master() to hook up to this SPI bus glue.
  340. *
  341. * SPI controllers use board specific (often SOC specific) bus numbers,
  342. * and board-specific addressing for SPI devices combines those numbers
  343. * with chip select numbers. Since SPI does not directly support dynamic
  344. * device identification, boards need configuration tables telling which
  345. * chip is at which address.
  346. *
  347. * This must be called from context that can sleep. It returns zero on
  348. * success, else a negative error code (dropping the master's refcount).
  349. * After a successful return, the caller is responsible for calling
  350. * spi_unregister_master().
  351. */
  352. int spi_register_master(struct spi_master *master)
  353. {
  354. static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
  355. struct device *dev = master->cdev.dev;
  356. int status = -ENODEV;
  357. int dynamic = 0;
  358. if (!dev)
  359. return -ENODEV;
  360. /* convention: dynamically assigned bus IDs count down from the max */
  361. if (master->bus_num < 0) {
  362. master->bus_num = atomic_dec_return(&dyn_bus_id);
  363. dynamic = 1;
  364. }
  365. /* register the device, then userspace will see it.
  366. * registration fails if the bus ID is in use.
  367. */
  368. snprintf(master->cdev.class_id, sizeof master->cdev.class_id,
  369. "spi%u", master->bus_num);
  370. status = class_device_add(&master->cdev);
  371. if (status < 0)
  372. goto done;
  373. dev_dbg(dev, "registered master %s%s\n", master->cdev.class_id,
  374. dynamic ? " (dynamic)" : "");
  375. /* populate children from any spi device tables */
  376. scan_boardinfo(master);
  377. status = 0;
  378. done:
  379. return status;
  380. }
  381. EXPORT_SYMBOL_GPL(spi_register_master);
  382. static int __unregister(struct device *dev, void *unused)
  383. {
  384. /* note: before about 2.6.14-rc1 this would corrupt memory: */
  385. spi_unregister_device(to_spi_device(dev));
  386. return 0;
  387. }
  388. /**
  389. * spi_unregister_master - unregister SPI master controller
  390. * @master: the master being unregistered
  391. * Context: can sleep
  392. *
  393. * This call is used only by SPI master controller drivers, which are the
  394. * only ones directly touching chip registers.
  395. *
  396. * This must be called from context that can sleep.
  397. */
  398. void spi_unregister_master(struct spi_master *master)
  399. {
  400. int dummy;
  401. dummy = device_for_each_child(master->cdev.dev, NULL, __unregister);
  402. class_device_unregister(&master->cdev);
  403. }
  404. EXPORT_SYMBOL_GPL(spi_unregister_master);
  405. /**
  406. * spi_busnum_to_master - look up master associated with bus_num
  407. * @bus_num: the master's bus number
  408. * Context: can sleep
  409. *
  410. * This call may be used with devices that are registered after
  411. * arch init time. It returns a refcounted pointer to the relevant
  412. * spi_master (which the caller must release), or NULL if there is
  413. * no such master registered.
  414. */
  415. struct spi_master *spi_busnum_to_master(u16 bus_num)
  416. {
  417. struct class_device *cdev;
  418. struct spi_master *master = NULL;
  419. struct spi_master *m;
  420. down(&spi_master_class.sem);
  421. list_for_each_entry(cdev, &spi_master_class.children, node) {
  422. m = container_of(cdev, struct spi_master, cdev);
  423. if (m->bus_num == bus_num) {
  424. master = spi_master_get(m);
  425. break;
  426. }
  427. }
  428. up(&spi_master_class.sem);
  429. return master;
  430. }
  431. EXPORT_SYMBOL_GPL(spi_busnum_to_master);
  432. /*-------------------------------------------------------------------------*/
  433. static void spi_complete(void *arg)
  434. {
  435. complete(arg);
  436. }
  437. /**
  438. * spi_sync - blocking/synchronous SPI data transfers
  439. * @spi: device with which data will be exchanged
  440. * @message: describes the data transfers
  441. * Context: can sleep
  442. *
  443. * This call may only be used from a context that may sleep. The sleep
  444. * is non-interruptible, and has no timeout. Low-overhead controller
  445. * drivers may DMA directly into and out of the message buffers.
  446. *
  447. * Note that the SPI device's chip select is active during the message,
  448. * and then is normally disabled between messages. Drivers for some
  449. * frequently-used devices may want to minimize costs of selecting a chip,
  450. * by leaving it selected in anticipation that the next message will go
  451. * to the same chip. (That may increase power usage.)
  452. *
  453. * Also, the caller is guaranteeing that the memory associated with the
  454. * message will not be freed before this call returns.
  455. *
  456. * The return value is a negative error code if the message could not be
  457. * submitted, else zero. When the value is zero, then message->status is
  458. * also defined; it's the completion code for the transfer, either zero
  459. * or a negative error code from the controller driver.
  460. */
  461. int spi_sync(struct spi_device *spi, struct spi_message *message)
  462. {
  463. DECLARE_COMPLETION_ONSTACK(done);
  464. int status;
  465. message->complete = spi_complete;
  466. message->context = &done;
  467. status = spi_async(spi, message);
  468. if (status == 0)
  469. wait_for_completion(&done);
  470. message->context = NULL;
  471. return status;
  472. }
  473. EXPORT_SYMBOL_GPL(spi_sync);
  474. /* portable code must never pass more than 32 bytes */
  475. #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
  476. static u8 *buf;
  477. /**
  478. * spi_write_then_read - SPI synchronous write followed by read
  479. * @spi: device with which data will be exchanged
  480. * @txbuf: data to be written (need not be dma-safe)
  481. * @n_tx: size of txbuf, in bytes
  482. * @rxbuf: buffer into which data will be read
  483. * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
  484. * Context: can sleep
  485. *
  486. * This performs a half duplex MicroWire style transaction with the
  487. * device, sending txbuf and then reading rxbuf. The return value
  488. * is zero for success, else a negative errno status code.
  489. * This call may only be used from a context that may sleep.
  490. *
  491. * Parameters to this routine are always copied using a small buffer;
  492. * portable code should never use this for more than 32 bytes.
  493. * Performance-sensitive or bulk transfer code should instead use
  494. * spi_{async,sync}() calls with dma-safe buffers.
  495. */
  496. int spi_write_then_read(struct spi_device *spi,
  497. const u8 *txbuf, unsigned n_tx,
  498. u8 *rxbuf, unsigned n_rx)
  499. {
  500. static DECLARE_MUTEX(lock);
  501. int status;
  502. struct spi_message message;
  503. struct spi_transfer x[2];
  504. u8 *local_buf;
  505. /* Use preallocated DMA-safe buffer. We can't avoid copying here,
  506. * (as a pure convenience thing), but we can keep heap costs
  507. * out of the hot path ...
  508. */
  509. if ((n_tx + n_rx) > SPI_BUFSIZ)
  510. return -EINVAL;
  511. spi_message_init(&message);
  512. memset(x, 0, sizeof x);
  513. if (n_tx) {
  514. x[0].len = n_tx;
  515. spi_message_add_tail(&x[0], &message);
  516. }
  517. if (n_rx) {
  518. x[1].len = n_rx;
  519. spi_message_add_tail(&x[1], &message);
  520. }
  521. /* ... unless someone else is using the pre-allocated buffer */
  522. if (down_trylock(&lock)) {
  523. local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  524. if (!local_buf)
  525. return -ENOMEM;
  526. } else
  527. local_buf = buf;
  528. memcpy(local_buf, txbuf, n_tx);
  529. x[0].tx_buf = local_buf;
  530. x[1].rx_buf = local_buf + n_tx;
  531. /* do the i/o */
  532. status = spi_sync(spi, &message);
  533. if (status == 0) {
  534. memcpy(rxbuf, x[1].rx_buf, n_rx);
  535. status = message.status;
  536. }
  537. if (x[0].tx_buf == buf)
  538. up(&lock);
  539. else
  540. kfree(local_buf);
  541. return status;
  542. }
  543. EXPORT_SYMBOL_GPL(spi_write_then_read);
  544. /*-------------------------------------------------------------------------*/
  545. static int __init spi_init(void)
  546. {
  547. int status;
  548. buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  549. if (!buf) {
  550. status = -ENOMEM;
  551. goto err0;
  552. }
  553. status = bus_register(&spi_bus_type);
  554. if (status < 0)
  555. goto err1;
  556. status = class_register(&spi_master_class);
  557. if (status < 0)
  558. goto err2;
  559. return 0;
  560. err2:
  561. bus_unregister(&spi_bus_type);
  562. err1:
  563. kfree(buf);
  564. buf = NULL;
  565. err0:
  566. return status;
  567. }
  568. /* board_info is normally registered in arch_initcall(),
  569. * but even essential drivers wait till later
  570. *
  571. * REVISIT only boardinfo really needs static linking. the rest (device and
  572. * driver registration) _could_ be dynamically linked (modular) ... costs
  573. * include needing to have boardinfo data structures be much more public.
  574. */
  575. subsys_initcall(spi_init);