s2io.c 230 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2007 Neterion Inc.
  4. * This software may be used and distributed according to the terms of
  5. * the GNU General Public License (GPL), incorporated herein by reference.
  6. * Drivers based on or derived from this code fall under the GPL and must
  7. * retain the authorship, copyright and license notice. This file is not
  8. * a complete program and may only be used when the entire operating
  9. * system is licensed under the GPL.
  10. * See the file COPYING in this distribution for more information.
  11. *
  12. * Credits:
  13. * Jeff Garzik : For pointing out the improper error condition
  14. * check in the s2io_xmit routine and also some
  15. * issues in the Tx watch dog function. Also for
  16. * patiently answering all those innumerable
  17. * questions regaring the 2.6 porting issues.
  18. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  19. * macros available only in 2.6 Kernel.
  20. * Francois Romieu : For pointing out all code part that were
  21. * deprecated and also styling related comments.
  22. * Grant Grundler : For helping me get rid of some Architecture
  23. * dependent code.
  24. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  25. *
  26. * The module loadable parameters that are supported by the driver and a brief
  27. * explaination of all the variables.
  28. *
  29. * rx_ring_num : This can be used to program the number of receive rings used
  30. * in the driver.
  31. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  32. * This is also an array of size 8.
  33. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  34. * values are 1, 2 and 3.
  35. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  36. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  37. * Tx descriptors that can be associated with each corresponding FIFO.
  38. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  39. * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
  40. * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
  41. * Possible values '1' for enable '0' for disable. Default is '0'
  42. * lro_max_pkts: This parameter defines maximum number of packets can be
  43. * aggregated as a single large packet
  44. * napi: This parameter used to enable/disable NAPI (polling Rx)
  45. * Possible values '1' for enable and '0' for disable. Default is '1'
  46. * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  47. * Possible values '1' for enable and '0' for disable. Default is '0'
  48. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  49. * Possible values '1' for enable , '0' for disable.
  50. * Default is '2' - which means disable in promisc mode
  51. * and enable in non-promiscuous mode.
  52. ************************************************************************/
  53. #include <linux/module.h>
  54. #include <linux/types.h>
  55. #include <linux/errno.h>
  56. #include <linux/ioport.h>
  57. #include <linux/pci.h>
  58. #include <linux/dma-mapping.h>
  59. #include <linux/kernel.h>
  60. #include <linux/netdevice.h>
  61. #include <linux/etherdevice.h>
  62. #include <linux/skbuff.h>
  63. #include <linux/init.h>
  64. #include <linux/delay.h>
  65. #include <linux/stddef.h>
  66. #include <linux/ioctl.h>
  67. #include <linux/timex.h>
  68. #include <linux/ethtool.h>
  69. #include <linux/workqueue.h>
  70. #include <linux/if_vlan.h>
  71. #include <linux/ip.h>
  72. #include <linux/tcp.h>
  73. #include <net/tcp.h>
  74. #include <asm/system.h>
  75. #include <asm/uaccess.h>
  76. #include <asm/io.h>
  77. #include <asm/div64.h>
  78. #include <asm/irq.h>
  79. /* local include */
  80. #include "s2io.h"
  81. #include "s2io-regs.h"
  82. #define DRV_VERSION "2.0.23.1"
  83. /* S2io Driver name & version. */
  84. static char s2io_driver_name[] = "Neterion";
  85. static char s2io_driver_version[] = DRV_VERSION;
  86. static int rxd_size[4] = {32,48,48,64};
  87. static int rxd_count[4] = {127,85,85,63};
  88. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  89. {
  90. int ret;
  91. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  92. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  93. return ret;
  94. }
  95. /*
  96. * Cards with following subsystem_id have a link state indication
  97. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  98. * macro below identifies these cards given the subsystem_id.
  99. */
  100. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  101. (dev_type == XFRAME_I_DEVICE) ? \
  102. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  103. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  104. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  105. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  106. #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
  107. #define PANIC 1
  108. #define LOW 2
  109. static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
  110. {
  111. struct mac_info *mac_control;
  112. mac_control = &sp->mac_control;
  113. if (rxb_size <= rxd_count[sp->rxd_mode])
  114. return PANIC;
  115. else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
  116. return LOW;
  117. return 0;
  118. }
  119. /* Ethtool related variables and Macros. */
  120. static char s2io_gstrings[][ETH_GSTRING_LEN] = {
  121. "Register test\t(offline)",
  122. "Eeprom test\t(offline)",
  123. "Link test\t(online)",
  124. "RLDRAM test\t(offline)",
  125. "BIST Test\t(offline)"
  126. };
  127. static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  128. {"tmac_frms"},
  129. {"tmac_data_octets"},
  130. {"tmac_drop_frms"},
  131. {"tmac_mcst_frms"},
  132. {"tmac_bcst_frms"},
  133. {"tmac_pause_ctrl_frms"},
  134. {"tmac_ttl_octets"},
  135. {"tmac_ucst_frms"},
  136. {"tmac_nucst_frms"},
  137. {"tmac_any_err_frms"},
  138. {"tmac_ttl_less_fb_octets"},
  139. {"tmac_vld_ip_octets"},
  140. {"tmac_vld_ip"},
  141. {"tmac_drop_ip"},
  142. {"tmac_icmp"},
  143. {"tmac_rst_tcp"},
  144. {"tmac_tcp"},
  145. {"tmac_udp"},
  146. {"rmac_vld_frms"},
  147. {"rmac_data_octets"},
  148. {"rmac_fcs_err_frms"},
  149. {"rmac_drop_frms"},
  150. {"rmac_vld_mcst_frms"},
  151. {"rmac_vld_bcst_frms"},
  152. {"rmac_in_rng_len_err_frms"},
  153. {"rmac_out_rng_len_err_frms"},
  154. {"rmac_long_frms"},
  155. {"rmac_pause_ctrl_frms"},
  156. {"rmac_unsup_ctrl_frms"},
  157. {"rmac_ttl_octets"},
  158. {"rmac_accepted_ucst_frms"},
  159. {"rmac_accepted_nucst_frms"},
  160. {"rmac_discarded_frms"},
  161. {"rmac_drop_events"},
  162. {"rmac_ttl_less_fb_octets"},
  163. {"rmac_ttl_frms"},
  164. {"rmac_usized_frms"},
  165. {"rmac_osized_frms"},
  166. {"rmac_frag_frms"},
  167. {"rmac_jabber_frms"},
  168. {"rmac_ttl_64_frms"},
  169. {"rmac_ttl_65_127_frms"},
  170. {"rmac_ttl_128_255_frms"},
  171. {"rmac_ttl_256_511_frms"},
  172. {"rmac_ttl_512_1023_frms"},
  173. {"rmac_ttl_1024_1518_frms"},
  174. {"rmac_ip"},
  175. {"rmac_ip_octets"},
  176. {"rmac_hdr_err_ip"},
  177. {"rmac_drop_ip"},
  178. {"rmac_icmp"},
  179. {"rmac_tcp"},
  180. {"rmac_udp"},
  181. {"rmac_err_drp_udp"},
  182. {"rmac_xgmii_err_sym"},
  183. {"rmac_frms_q0"},
  184. {"rmac_frms_q1"},
  185. {"rmac_frms_q2"},
  186. {"rmac_frms_q3"},
  187. {"rmac_frms_q4"},
  188. {"rmac_frms_q5"},
  189. {"rmac_frms_q6"},
  190. {"rmac_frms_q7"},
  191. {"rmac_full_q0"},
  192. {"rmac_full_q1"},
  193. {"rmac_full_q2"},
  194. {"rmac_full_q3"},
  195. {"rmac_full_q4"},
  196. {"rmac_full_q5"},
  197. {"rmac_full_q6"},
  198. {"rmac_full_q7"},
  199. {"rmac_pause_cnt"},
  200. {"rmac_xgmii_data_err_cnt"},
  201. {"rmac_xgmii_ctrl_err_cnt"},
  202. {"rmac_accepted_ip"},
  203. {"rmac_err_tcp"},
  204. {"rd_req_cnt"},
  205. {"new_rd_req_cnt"},
  206. {"new_rd_req_rtry_cnt"},
  207. {"rd_rtry_cnt"},
  208. {"wr_rtry_rd_ack_cnt"},
  209. {"wr_req_cnt"},
  210. {"new_wr_req_cnt"},
  211. {"new_wr_req_rtry_cnt"},
  212. {"wr_rtry_cnt"},
  213. {"wr_disc_cnt"},
  214. {"rd_rtry_wr_ack_cnt"},
  215. {"txp_wr_cnt"},
  216. {"txd_rd_cnt"},
  217. {"txd_wr_cnt"},
  218. {"rxd_rd_cnt"},
  219. {"rxd_wr_cnt"},
  220. {"txf_rd_cnt"},
  221. {"rxf_wr_cnt"}
  222. };
  223. static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  224. {"rmac_ttl_1519_4095_frms"},
  225. {"rmac_ttl_4096_8191_frms"},
  226. {"rmac_ttl_8192_max_frms"},
  227. {"rmac_ttl_gt_max_frms"},
  228. {"rmac_osized_alt_frms"},
  229. {"rmac_jabber_alt_frms"},
  230. {"rmac_gt_max_alt_frms"},
  231. {"rmac_vlan_frms"},
  232. {"rmac_len_discard"},
  233. {"rmac_fcs_discard"},
  234. {"rmac_pf_discard"},
  235. {"rmac_da_discard"},
  236. {"rmac_red_discard"},
  237. {"rmac_rts_discard"},
  238. {"rmac_ingm_full_discard"},
  239. {"link_fault_cnt"}
  240. };
  241. static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  242. {"\n DRIVER STATISTICS"},
  243. {"single_bit_ecc_errs"},
  244. {"double_bit_ecc_errs"},
  245. {"parity_err_cnt"},
  246. {"serious_err_cnt"},
  247. {"soft_reset_cnt"},
  248. {"fifo_full_cnt"},
  249. {"ring_full_cnt"},
  250. ("alarm_transceiver_temp_high"),
  251. ("alarm_transceiver_temp_low"),
  252. ("alarm_laser_bias_current_high"),
  253. ("alarm_laser_bias_current_low"),
  254. ("alarm_laser_output_power_high"),
  255. ("alarm_laser_output_power_low"),
  256. ("warn_transceiver_temp_high"),
  257. ("warn_transceiver_temp_low"),
  258. ("warn_laser_bias_current_high"),
  259. ("warn_laser_bias_current_low"),
  260. ("warn_laser_output_power_high"),
  261. ("warn_laser_output_power_low"),
  262. ("lro_aggregated_pkts"),
  263. ("lro_flush_both_count"),
  264. ("lro_out_of_sequence_pkts"),
  265. ("lro_flush_due_to_max_pkts"),
  266. ("lro_avg_aggr_pkts"),
  267. ("mem_alloc_fail_cnt"),
  268. ("watchdog_timer_cnt"),
  269. ("mem_allocated"),
  270. ("mem_freed"),
  271. ("link_up_cnt"),
  272. ("link_down_cnt"),
  273. ("link_up_time"),
  274. ("link_down_time"),
  275. ("tx_tcode_buf_abort_cnt"),
  276. ("tx_tcode_desc_abort_cnt"),
  277. ("tx_tcode_parity_err_cnt"),
  278. ("tx_tcode_link_loss_cnt"),
  279. ("tx_tcode_list_proc_err_cnt"),
  280. ("rx_tcode_parity_err_cnt"),
  281. ("rx_tcode_abort_cnt"),
  282. ("rx_tcode_parity_abort_cnt"),
  283. ("rx_tcode_rda_fail_cnt"),
  284. ("rx_tcode_unkn_prot_cnt"),
  285. ("rx_tcode_fcs_err_cnt"),
  286. ("rx_tcode_buf_size_err_cnt"),
  287. ("rx_tcode_rxd_corrupt_cnt"),
  288. ("rx_tcode_unkn_err_cnt")
  289. };
  290. #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
  291. #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
  292. ETH_GSTRING_LEN
  293. #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
  294. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
  295. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
  296. #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
  297. #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
  298. #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
  299. #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
  300. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  301. init_timer(&timer); \
  302. timer.function = handle; \
  303. timer.data = (unsigned long) arg; \
  304. mod_timer(&timer, (jiffies + exp)) \
  305. /* Add the vlan */
  306. static void s2io_vlan_rx_register(struct net_device *dev,
  307. struct vlan_group *grp)
  308. {
  309. struct s2io_nic *nic = dev->priv;
  310. unsigned long flags;
  311. spin_lock_irqsave(&nic->tx_lock, flags);
  312. nic->vlgrp = grp;
  313. spin_unlock_irqrestore(&nic->tx_lock, flags);
  314. }
  315. /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
  316. static int vlan_strip_flag;
  317. /*
  318. * Constants to be programmed into the Xena's registers, to configure
  319. * the XAUI.
  320. */
  321. #define END_SIGN 0x0
  322. static const u64 herc_act_dtx_cfg[] = {
  323. /* Set address */
  324. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  325. /* Write data */
  326. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  327. /* Set address */
  328. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  329. /* Write data */
  330. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  331. /* Set address */
  332. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  333. /* Write data */
  334. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  335. /* Set address */
  336. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  337. /* Write data */
  338. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  339. /* Done */
  340. END_SIGN
  341. };
  342. static const u64 xena_dtx_cfg[] = {
  343. /* Set address */
  344. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  345. /* Write data */
  346. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  347. /* Set address */
  348. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  349. /* Write data */
  350. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  351. /* Set address */
  352. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  353. /* Write data */
  354. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  355. END_SIGN
  356. };
  357. /*
  358. * Constants for Fixing the MacAddress problem seen mostly on
  359. * Alpha machines.
  360. */
  361. static const u64 fix_mac[] = {
  362. 0x0060000000000000ULL, 0x0060600000000000ULL,
  363. 0x0040600000000000ULL, 0x0000600000000000ULL,
  364. 0x0020600000000000ULL, 0x0060600000000000ULL,
  365. 0x0020600000000000ULL, 0x0060600000000000ULL,
  366. 0x0020600000000000ULL, 0x0060600000000000ULL,
  367. 0x0020600000000000ULL, 0x0060600000000000ULL,
  368. 0x0020600000000000ULL, 0x0060600000000000ULL,
  369. 0x0020600000000000ULL, 0x0060600000000000ULL,
  370. 0x0020600000000000ULL, 0x0060600000000000ULL,
  371. 0x0020600000000000ULL, 0x0060600000000000ULL,
  372. 0x0020600000000000ULL, 0x0060600000000000ULL,
  373. 0x0020600000000000ULL, 0x0060600000000000ULL,
  374. 0x0020600000000000ULL, 0x0000600000000000ULL,
  375. 0x0040600000000000ULL, 0x0060600000000000ULL,
  376. END_SIGN
  377. };
  378. MODULE_LICENSE("GPL");
  379. MODULE_VERSION(DRV_VERSION);
  380. /* Module Loadable parameters. */
  381. S2IO_PARM_INT(tx_fifo_num, 1);
  382. S2IO_PARM_INT(rx_ring_num, 1);
  383. S2IO_PARM_INT(rx_ring_mode, 1);
  384. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  385. S2IO_PARM_INT(rmac_pause_time, 0x100);
  386. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  387. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  388. S2IO_PARM_INT(shared_splits, 0);
  389. S2IO_PARM_INT(tmac_util_period, 5);
  390. S2IO_PARM_INT(rmac_util_period, 5);
  391. S2IO_PARM_INT(bimodal, 0);
  392. S2IO_PARM_INT(l3l4hdr_size, 128);
  393. /* Frequency of Rx desc syncs expressed as power of 2 */
  394. S2IO_PARM_INT(rxsync_frequency, 3);
  395. /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
  396. S2IO_PARM_INT(intr_type, 0);
  397. /* Large receive offload feature */
  398. S2IO_PARM_INT(lro, 0);
  399. /* Max pkts to be aggregated by LRO at one time. If not specified,
  400. * aggregation happens until we hit max IP pkt size(64K)
  401. */
  402. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  403. S2IO_PARM_INT(indicate_max_pkts, 0);
  404. S2IO_PARM_INT(napi, 1);
  405. S2IO_PARM_INT(ufo, 0);
  406. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  407. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  408. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  409. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  410. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  411. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  412. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  413. module_param_array(tx_fifo_len, uint, NULL, 0);
  414. module_param_array(rx_ring_sz, uint, NULL, 0);
  415. module_param_array(rts_frm_len, uint, NULL, 0);
  416. /*
  417. * S2IO device table.
  418. * This table lists all the devices that this driver supports.
  419. */
  420. static struct pci_device_id s2io_tbl[] __devinitdata = {
  421. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  422. PCI_ANY_ID, PCI_ANY_ID},
  423. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  424. PCI_ANY_ID, PCI_ANY_ID},
  425. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  426. PCI_ANY_ID, PCI_ANY_ID},
  427. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  428. PCI_ANY_ID, PCI_ANY_ID},
  429. {0,}
  430. };
  431. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  432. static struct pci_error_handlers s2io_err_handler = {
  433. .error_detected = s2io_io_error_detected,
  434. .slot_reset = s2io_io_slot_reset,
  435. .resume = s2io_io_resume,
  436. };
  437. static struct pci_driver s2io_driver = {
  438. .name = "S2IO",
  439. .id_table = s2io_tbl,
  440. .probe = s2io_init_nic,
  441. .remove = __devexit_p(s2io_rem_nic),
  442. .err_handler = &s2io_err_handler,
  443. };
  444. /* A simplifier macro used both by init and free shared_mem Fns(). */
  445. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  446. /**
  447. * init_shared_mem - Allocation and Initialization of Memory
  448. * @nic: Device private variable.
  449. * Description: The function allocates all the memory areas shared
  450. * between the NIC and the driver. This includes Tx descriptors,
  451. * Rx descriptors and the statistics block.
  452. */
  453. static int init_shared_mem(struct s2io_nic *nic)
  454. {
  455. u32 size;
  456. void *tmp_v_addr, *tmp_v_addr_next;
  457. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  458. struct RxD_block *pre_rxd_blk = NULL;
  459. int i, j, blk_cnt;
  460. int lst_size, lst_per_page;
  461. struct net_device *dev = nic->dev;
  462. unsigned long tmp;
  463. struct buffAdd *ba;
  464. struct mac_info *mac_control;
  465. struct config_param *config;
  466. unsigned long long mem_allocated = 0;
  467. mac_control = &nic->mac_control;
  468. config = &nic->config;
  469. /* Allocation and initialization of TXDLs in FIOFs */
  470. size = 0;
  471. for (i = 0; i < config->tx_fifo_num; i++) {
  472. size += config->tx_cfg[i].fifo_len;
  473. }
  474. if (size > MAX_AVAILABLE_TXDS) {
  475. DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
  476. DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
  477. return -EINVAL;
  478. }
  479. lst_size = (sizeof(struct TxD) * config->max_txds);
  480. lst_per_page = PAGE_SIZE / lst_size;
  481. for (i = 0; i < config->tx_fifo_num; i++) {
  482. int fifo_len = config->tx_cfg[i].fifo_len;
  483. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  484. mac_control->fifos[i].list_info = kmalloc(list_holder_size,
  485. GFP_KERNEL);
  486. if (!mac_control->fifos[i].list_info) {
  487. DBG_PRINT(INFO_DBG,
  488. "Malloc failed for list_info\n");
  489. return -ENOMEM;
  490. }
  491. mem_allocated += list_holder_size;
  492. memset(mac_control->fifos[i].list_info, 0, list_holder_size);
  493. }
  494. for (i = 0; i < config->tx_fifo_num; i++) {
  495. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  496. lst_per_page);
  497. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  498. mac_control->fifos[i].tx_curr_put_info.fifo_len =
  499. config->tx_cfg[i].fifo_len - 1;
  500. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  501. mac_control->fifos[i].tx_curr_get_info.fifo_len =
  502. config->tx_cfg[i].fifo_len - 1;
  503. mac_control->fifos[i].fifo_no = i;
  504. mac_control->fifos[i].nic = nic;
  505. mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
  506. for (j = 0; j < page_num; j++) {
  507. int k = 0;
  508. dma_addr_t tmp_p;
  509. void *tmp_v;
  510. tmp_v = pci_alloc_consistent(nic->pdev,
  511. PAGE_SIZE, &tmp_p);
  512. if (!tmp_v) {
  513. DBG_PRINT(INFO_DBG,
  514. "pci_alloc_consistent ");
  515. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  516. return -ENOMEM;
  517. }
  518. /* If we got a zero DMA address(can happen on
  519. * certain platforms like PPC), reallocate.
  520. * Store virtual address of page we don't want,
  521. * to be freed later.
  522. */
  523. if (!tmp_p) {
  524. mac_control->zerodma_virt_addr = tmp_v;
  525. DBG_PRINT(INIT_DBG,
  526. "%s: Zero DMA address for TxDL. ", dev->name);
  527. DBG_PRINT(INIT_DBG,
  528. "Virtual address %p\n", tmp_v);
  529. tmp_v = pci_alloc_consistent(nic->pdev,
  530. PAGE_SIZE, &tmp_p);
  531. if (!tmp_v) {
  532. DBG_PRINT(INFO_DBG,
  533. "pci_alloc_consistent ");
  534. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  535. return -ENOMEM;
  536. }
  537. mem_allocated += PAGE_SIZE;
  538. }
  539. while (k < lst_per_page) {
  540. int l = (j * lst_per_page) + k;
  541. if (l == config->tx_cfg[i].fifo_len)
  542. break;
  543. mac_control->fifos[i].list_info[l].list_virt_addr =
  544. tmp_v + (k * lst_size);
  545. mac_control->fifos[i].list_info[l].list_phy_addr =
  546. tmp_p + (k * lst_size);
  547. k++;
  548. }
  549. }
  550. }
  551. nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
  552. if (!nic->ufo_in_band_v)
  553. return -ENOMEM;
  554. mem_allocated += (size * sizeof(u64));
  555. /* Allocation and initialization of RXDs in Rings */
  556. size = 0;
  557. for (i = 0; i < config->rx_ring_num; i++) {
  558. if (config->rx_cfg[i].num_rxd %
  559. (rxd_count[nic->rxd_mode] + 1)) {
  560. DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
  561. DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
  562. i);
  563. DBG_PRINT(ERR_DBG, "RxDs per Block");
  564. return FAILURE;
  565. }
  566. size += config->rx_cfg[i].num_rxd;
  567. mac_control->rings[i].block_count =
  568. config->rx_cfg[i].num_rxd /
  569. (rxd_count[nic->rxd_mode] + 1 );
  570. mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
  571. mac_control->rings[i].block_count;
  572. }
  573. if (nic->rxd_mode == RXD_MODE_1)
  574. size = (size * (sizeof(struct RxD1)));
  575. else
  576. size = (size * (sizeof(struct RxD3)));
  577. for (i = 0; i < config->rx_ring_num; i++) {
  578. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  579. mac_control->rings[i].rx_curr_get_info.offset = 0;
  580. mac_control->rings[i].rx_curr_get_info.ring_len =
  581. config->rx_cfg[i].num_rxd - 1;
  582. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  583. mac_control->rings[i].rx_curr_put_info.offset = 0;
  584. mac_control->rings[i].rx_curr_put_info.ring_len =
  585. config->rx_cfg[i].num_rxd - 1;
  586. mac_control->rings[i].nic = nic;
  587. mac_control->rings[i].ring_no = i;
  588. blk_cnt = config->rx_cfg[i].num_rxd /
  589. (rxd_count[nic->rxd_mode] + 1);
  590. /* Allocating all the Rx blocks */
  591. for (j = 0; j < blk_cnt; j++) {
  592. struct rx_block_info *rx_blocks;
  593. int l;
  594. rx_blocks = &mac_control->rings[i].rx_blocks[j];
  595. size = SIZE_OF_BLOCK; //size is always page size
  596. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  597. &tmp_p_addr);
  598. if (tmp_v_addr == NULL) {
  599. /*
  600. * In case of failure, free_shared_mem()
  601. * is called, which should free any
  602. * memory that was alloced till the
  603. * failure happened.
  604. */
  605. rx_blocks->block_virt_addr = tmp_v_addr;
  606. return -ENOMEM;
  607. }
  608. mem_allocated += size;
  609. memset(tmp_v_addr, 0, size);
  610. rx_blocks->block_virt_addr = tmp_v_addr;
  611. rx_blocks->block_dma_addr = tmp_p_addr;
  612. rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
  613. rxd_count[nic->rxd_mode],
  614. GFP_KERNEL);
  615. if (!rx_blocks->rxds)
  616. return -ENOMEM;
  617. mem_allocated +=
  618. (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  619. for (l=0; l<rxd_count[nic->rxd_mode];l++) {
  620. rx_blocks->rxds[l].virt_addr =
  621. rx_blocks->block_virt_addr +
  622. (rxd_size[nic->rxd_mode] * l);
  623. rx_blocks->rxds[l].dma_addr =
  624. rx_blocks->block_dma_addr +
  625. (rxd_size[nic->rxd_mode] * l);
  626. }
  627. }
  628. /* Interlinking all Rx Blocks */
  629. for (j = 0; j < blk_cnt; j++) {
  630. tmp_v_addr =
  631. mac_control->rings[i].rx_blocks[j].block_virt_addr;
  632. tmp_v_addr_next =
  633. mac_control->rings[i].rx_blocks[(j + 1) %
  634. blk_cnt].block_virt_addr;
  635. tmp_p_addr =
  636. mac_control->rings[i].rx_blocks[j].block_dma_addr;
  637. tmp_p_addr_next =
  638. mac_control->rings[i].rx_blocks[(j + 1) %
  639. blk_cnt].block_dma_addr;
  640. pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
  641. pre_rxd_blk->reserved_2_pNext_RxD_block =
  642. (unsigned long) tmp_v_addr_next;
  643. pre_rxd_blk->pNext_RxD_Blk_physical =
  644. (u64) tmp_p_addr_next;
  645. }
  646. }
  647. if (nic->rxd_mode >= RXD_MODE_3A) {
  648. /*
  649. * Allocation of Storages for buffer addresses in 2BUFF mode
  650. * and the buffers as well.
  651. */
  652. for (i = 0; i < config->rx_ring_num; i++) {
  653. blk_cnt = config->rx_cfg[i].num_rxd /
  654. (rxd_count[nic->rxd_mode]+ 1);
  655. mac_control->rings[i].ba =
  656. kmalloc((sizeof(struct buffAdd *) * blk_cnt),
  657. GFP_KERNEL);
  658. if (!mac_control->rings[i].ba)
  659. return -ENOMEM;
  660. mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
  661. for (j = 0; j < blk_cnt; j++) {
  662. int k = 0;
  663. mac_control->rings[i].ba[j] =
  664. kmalloc((sizeof(struct buffAdd) *
  665. (rxd_count[nic->rxd_mode] + 1)),
  666. GFP_KERNEL);
  667. if (!mac_control->rings[i].ba[j])
  668. return -ENOMEM;
  669. mem_allocated += (sizeof(struct buffAdd) * \
  670. (rxd_count[nic->rxd_mode] + 1));
  671. while (k != rxd_count[nic->rxd_mode]) {
  672. ba = &mac_control->rings[i].ba[j][k];
  673. ba->ba_0_org = (void *) kmalloc
  674. (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
  675. if (!ba->ba_0_org)
  676. return -ENOMEM;
  677. mem_allocated +=
  678. (BUF0_LEN + ALIGN_SIZE);
  679. tmp = (unsigned long)ba->ba_0_org;
  680. tmp += ALIGN_SIZE;
  681. tmp &= ~((unsigned long) ALIGN_SIZE);
  682. ba->ba_0 = (void *) tmp;
  683. ba->ba_1_org = (void *) kmalloc
  684. (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
  685. if (!ba->ba_1_org)
  686. return -ENOMEM;
  687. mem_allocated
  688. += (BUF1_LEN + ALIGN_SIZE);
  689. tmp = (unsigned long) ba->ba_1_org;
  690. tmp += ALIGN_SIZE;
  691. tmp &= ~((unsigned long) ALIGN_SIZE);
  692. ba->ba_1 = (void *) tmp;
  693. k++;
  694. }
  695. }
  696. }
  697. }
  698. /* Allocation and initialization of Statistics block */
  699. size = sizeof(struct stat_block);
  700. mac_control->stats_mem = pci_alloc_consistent
  701. (nic->pdev, size, &mac_control->stats_mem_phy);
  702. if (!mac_control->stats_mem) {
  703. /*
  704. * In case of failure, free_shared_mem() is called, which
  705. * should free any memory that was alloced till the
  706. * failure happened.
  707. */
  708. return -ENOMEM;
  709. }
  710. mem_allocated += size;
  711. mac_control->stats_mem_sz = size;
  712. tmp_v_addr = mac_control->stats_mem;
  713. mac_control->stats_info = (struct stat_block *) tmp_v_addr;
  714. memset(tmp_v_addr, 0, size);
  715. DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
  716. (unsigned long long) tmp_p_addr);
  717. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  718. return SUCCESS;
  719. }
  720. /**
  721. * free_shared_mem - Free the allocated Memory
  722. * @nic: Device private variable.
  723. * Description: This function is to free all memory locations allocated by
  724. * the init_shared_mem() function and return it to the kernel.
  725. */
  726. static void free_shared_mem(struct s2io_nic *nic)
  727. {
  728. int i, j, blk_cnt, size;
  729. u32 ufo_size = 0;
  730. void *tmp_v_addr;
  731. dma_addr_t tmp_p_addr;
  732. struct mac_info *mac_control;
  733. struct config_param *config;
  734. int lst_size, lst_per_page;
  735. struct net_device *dev;
  736. int page_num = 0;
  737. if (!nic)
  738. return;
  739. dev = nic->dev;
  740. mac_control = &nic->mac_control;
  741. config = &nic->config;
  742. lst_size = (sizeof(struct TxD) * config->max_txds);
  743. lst_per_page = PAGE_SIZE / lst_size;
  744. for (i = 0; i < config->tx_fifo_num; i++) {
  745. ufo_size += config->tx_cfg[i].fifo_len;
  746. page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  747. lst_per_page);
  748. for (j = 0; j < page_num; j++) {
  749. int mem_blks = (j * lst_per_page);
  750. if (!mac_control->fifos[i].list_info)
  751. return;
  752. if (!mac_control->fifos[i].list_info[mem_blks].
  753. list_virt_addr)
  754. break;
  755. pci_free_consistent(nic->pdev, PAGE_SIZE,
  756. mac_control->fifos[i].
  757. list_info[mem_blks].
  758. list_virt_addr,
  759. mac_control->fifos[i].
  760. list_info[mem_blks].
  761. list_phy_addr);
  762. nic->mac_control.stats_info->sw_stat.mem_freed
  763. += PAGE_SIZE;
  764. }
  765. /* If we got a zero DMA address during allocation,
  766. * free the page now
  767. */
  768. if (mac_control->zerodma_virt_addr) {
  769. pci_free_consistent(nic->pdev, PAGE_SIZE,
  770. mac_control->zerodma_virt_addr,
  771. (dma_addr_t)0);
  772. DBG_PRINT(INIT_DBG,
  773. "%s: Freeing TxDL with zero DMA addr. ",
  774. dev->name);
  775. DBG_PRINT(INIT_DBG, "Virtual address %p\n",
  776. mac_control->zerodma_virt_addr);
  777. nic->mac_control.stats_info->sw_stat.mem_freed
  778. += PAGE_SIZE;
  779. }
  780. kfree(mac_control->fifos[i].list_info);
  781. nic->mac_control.stats_info->sw_stat.mem_freed +=
  782. (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
  783. }
  784. size = SIZE_OF_BLOCK;
  785. for (i = 0; i < config->rx_ring_num; i++) {
  786. blk_cnt = mac_control->rings[i].block_count;
  787. for (j = 0; j < blk_cnt; j++) {
  788. tmp_v_addr = mac_control->rings[i].rx_blocks[j].
  789. block_virt_addr;
  790. tmp_p_addr = mac_control->rings[i].rx_blocks[j].
  791. block_dma_addr;
  792. if (tmp_v_addr == NULL)
  793. break;
  794. pci_free_consistent(nic->pdev, size,
  795. tmp_v_addr, tmp_p_addr);
  796. nic->mac_control.stats_info->sw_stat.mem_freed += size;
  797. kfree(mac_control->rings[i].rx_blocks[j].rxds);
  798. nic->mac_control.stats_info->sw_stat.mem_freed +=
  799. ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  800. }
  801. }
  802. if (nic->rxd_mode >= RXD_MODE_3A) {
  803. /* Freeing buffer storage addresses in 2BUFF mode. */
  804. for (i = 0; i < config->rx_ring_num; i++) {
  805. blk_cnt = config->rx_cfg[i].num_rxd /
  806. (rxd_count[nic->rxd_mode] + 1);
  807. for (j = 0; j < blk_cnt; j++) {
  808. int k = 0;
  809. if (!mac_control->rings[i].ba[j])
  810. continue;
  811. while (k != rxd_count[nic->rxd_mode]) {
  812. struct buffAdd *ba =
  813. &mac_control->rings[i].ba[j][k];
  814. kfree(ba->ba_0_org);
  815. nic->mac_control.stats_info->sw_stat.\
  816. mem_freed += (BUF0_LEN + ALIGN_SIZE);
  817. kfree(ba->ba_1_org);
  818. nic->mac_control.stats_info->sw_stat.\
  819. mem_freed += (BUF1_LEN + ALIGN_SIZE);
  820. k++;
  821. }
  822. kfree(mac_control->rings[i].ba[j]);
  823. nic->mac_control.stats_info->sw_stat.mem_freed += (sizeof(struct buffAdd) *
  824. (rxd_count[nic->rxd_mode] + 1));
  825. }
  826. kfree(mac_control->rings[i].ba);
  827. nic->mac_control.stats_info->sw_stat.mem_freed +=
  828. (sizeof(struct buffAdd *) * blk_cnt);
  829. }
  830. }
  831. if (mac_control->stats_mem) {
  832. pci_free_consistent(nic->pdev,
  833. mac_control->stats_mem_sz,
  834. mac_control->stats_mem,
  835. mac_control->stats_mem_phy);
  836. nic->mac_control.stats_info->sw_stat.mem_freed +=
  837. mac_control->stats_mem_sz;
  838. }
  839. if (nic->ufo_in_band_v) {
  840. kfree(nic->ufo_in_band_v);
  841. nic->mac_control.stats_info->sw_stat.mem_freed
  842. += (ufo_size * sizeof(u64));
  843. }
  844. }
  845. /**
  846. * s2io_verify_pci_mode -
  847. */
  848. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  849. {
  850. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  851. register u64 val64 = 0;
  852. int mode;
  853. val64 = readq(&bar0->pci_mode);
  854. mode = (u8)GET_PCI_MODE(val64);
  855. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  856. return -1; /* Unknown PCI mode */
  857. return mode;
  858. }
  859. #define NEC_VENID 0x1033
  860. #define NEC_DEVID 0x0125
  861. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  862. {
  863. struct pci_dev *tdev = NULL;
  864. while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  865. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  866. if (tdev->bus == s2io_pdev->bus->parent)
  867. pci_dev_put(tdev);
  868. return 1;
  869. }
  870. }
  871. return 0;
  872. }
  873. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  874. /**
  875. * s2io_print_pci_mode -
  876. */
  877. static int s2io_print_pci_mode(struct s2io_nic *nic)
  878. {
  879. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  880. register u64 val64 = 0;
  881. int mode;
  882. struct config_param *config = &nic->config;
  883. val64 = readq(&bar0->pci_mode);
  884. mode = (u8)GET_PCI_MODE(val64);
  885. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  886. return -1; /* Unknown PCI mode */
  887. config->bus_speed = bus_speed[mode];
  888. if (s2io_on_nec_bridge(nic->pdev)) {
  889. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  890. nic->dev->name);
  891. return mode;
  892. }
  893. if (val64 & PCI_MODE_32_BITS) {
  894. DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
  895. } else {
  896. DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
  897. }
  898. switch(mode) {
  899. case PCI_MODE_PCI_33:
  900. DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
  901. break;
  902. case PCI_MODE_PCI_66:
  903. DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
  904. break;
  905. case PCI_MODE_PCIX_M1_66:
  906. DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
  907. break;
  908. case PCI_MODE_PCIX_M1_100:
  909. DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
  910. break;
  911. case PCI_MODE_PCIX_M1_133:
  912. DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
  913. break;
  914. case PCI_MODE_PCIX_M2_66:
  915. DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
  916. break;
  917. case PCI_MODE_PCIX_M2_100:
  918. DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
  919. break;
  920. case PCI_MODE_PCIX_M2_133:
  921. DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
  922. break;
  923. default:
  924. return -1; /* Unsupported bus speed */
  925. }
  926. return mode;
  927. }
  928. /**
  929. * init_nic - Initialization of hardware
  930. * @nic: device peivate variable
  931. * Description: The function sequentially configures every block
  932. * of the H/W from their reset values.
  933. * Return Value: SUCCESS on success and
  934. * '-1' on failure (endian settings incorrect).
  935. */
  936. static int init_nic(struct s2io_nic *nic)
  937. {
  938. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  939. struct net_device *dev = nic->dev;
  940. register u64 val64 = 0;
  941. void __iomem *add;
  942. u32 time;
  943. int i, j;
  944. struct mac_info *mac_control;
  945. struct config_param *config;
  946. int dtx_cnt = 0;
  947. unsigned long long mem_share;
  948. int mem_size;
  949. mac_control = &nic->mac_control;
  950. config = &nic->config;
  951. /* to set the swapper controle on the card */
  952. if(s2io_set_swapper(nic)) {
  953. DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
  954. return -1;
  955. }
  956. /*
  957. * Herc requires EOI to be removed from reset before XGXS, so..
  958. */
  959. if (nic->device_type & XFRAME_II_DEVICE) {
  960. val64 = 0xA500000000ULL;
  961. writeq(val64, &bar0->sw_reset);
  962. msleep(500);
  963. val64 = readq(&bar0->sw_reset);
  964. }
  965. /* Remove XGXS from reset state */
  966. val64 = 0;
  967. writeq(val64, &bar0->sw_reset);
  968. msleep(500);
  969. val64 = readq(&bar0->sw_reset);
  970. /* Enable Receiving broadcasts */
  971. add = &bar0->mac_cfg;
  972. val64 = readq(&bar0->mac_cfg);
  973. val64 |= MAC_RMAC_BCAST_ENABLE;
  974. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  975. writel((u32) val64, add);
  976. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  977. writel((u32) (val64 >> 32), (add + 4));
  978. /* Read registers in all blocks */
  979. val64 = readq(&bar0->mac_int_mask);
  980. val64 = readq(&bar0->mc_int_mask);
  981. val64 = readq(&bar0->xgxs_int_mask);
  982. /* Set MTU */
  983. val64 = dev->mtu;
  984. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  985. if (nic->device_type & XFRAME_II_DEVICE) {
  986. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  987. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  988. &bar0->dtx_control, UF);
  989. if (dtx_cnt & 0x1)
  990. msleep(1); /* Necessary!! */
  991. dtx_cnt++;
  992. }
  993. } else {
  994. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  995. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  996. &bar0->dtx_control, UF);
  997. val64 = readq(&bar0->dtx_control);
  998. dtx_cnt++;
  999. }
  1000. }
  1001. /* Tx DMA Initialization */
  1002. val64 = 0;
  1003. writeq(val64, &bar0->tx_fifo_partition_0);
  1004. writeq(val64, &bar0->tx_fifo_partition_1);
  1005. writeq(val64, &bar0->tx_fifo_partition_2);
  1006. writeq(val64, &bar0->tx_fifo_partition_3);
  1007. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1008. val64 |=
  1009. vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
  1010. 13) | vBIT(config->tx_cfg[i].fifo_priority,
  1011. ((i * 32) + 5), 3);
  1012. if (i == (config->tx_fifo_num - 1)) {
  1013. if (i % 2 == 0)
  1014. i++;
  1015. }
  1016. switch (i) {
  1017. case 1:
  1018. writeq(val64, &bar0->tx_fifo_partition_0);
  1019. val64 = 0;
  1020. break;
  1021. case 3:
  1022. writeq(val64, &bar0->tx_fifo_partition_1);
  1023. val64 = 0;
  1024. break;
  1025. case 5:
  1026. writeq(val64, &bar0->tx_fifo_partition_2);
  1027. val64 = 0;
  1028. break;
  1029. case 7:
  1030. writeq(val64, &bar0->tx_fifo_partition_3);
  1031. break;
  1032. }
  1033. }
  1034. /*
  1035. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1036. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1037. */
  1038. if ((nic->device_type == XFRAME_I_DEVICE) &&
  1039. (nic->pdev->revision < 4))
  1040. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1041. val64 = readq(&bar0->tx_fifo_partition_0);
  1042. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1043. &bar0->tx_fifo_partition_0, (unsigned long long) val64);
  1044. /*
  1045. * Initialization of Tx_PA_CONFIG register to ignore packet
  1046. * integrity checking.
  1047. */
  1048. val64 = readq(&bar0->tx_pa_cfg);
  1049. val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
  1050. TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
  1051. writeq(val64, &bar0->tx_pa_cfg);
  1052. /* Rx DMA intialization. */
  1053. val64 = 0;
  1054. for (i = 0; i < config->rx_ring_num; i++) {
  1055. val64 |=
  1056. vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
  1057. 3);
  1058. }
  1059. writeq(val64, &bar0->rx_queue_priority);
  1060. /*
  1061. * Allocating equal share of memory to all the
  1062. * configured Rings.
  1063. */
  1064. val64 = 0;
  1065. if (nic->device_type & XFRAME_II_DEVICE)
  1066. mem_size = 32;
  1067. else
  1068. mem_size = 64;
  1069. for (i = 0; i < config->rx_ring_num; i++) {
  1070. switch (i) {
  1071. case 0:
  1072. mem_share = (mem_size / config->rx_ring_num +
  1073. mem_size % config->rx_ring_num);
  1074. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1075. continue;
  1076. case 1:
  1077. mem_share = (mem_size / config->rx_ring_num);
  1078. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1079. continue;
  1080. case 2:
  1081. mem_share = (mem_size / config->rx_ring_num);
  1082. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1083. continue;
  1084. case 3:
  1085. mem_share = (mem_size / config->rx_ring_num);
  1086. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1087. continue;
  1088. case 4:
  1089. mem_share = (mem_size / config->rx_ring_num);
  1090. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1091. continue;
  1092. case 5:
  1093. mem_share = (mem_size / config->rx_ring_num);
  1094. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1095. continue;
  1096. case 6:
  1097. mem_share = (mem_size / config->rx_ring_num);
  1098. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1099. continue;
  1100. case 7:
  1101. mem_share = (mem_size / config->rx_ring_num);
  1102. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1103. continue;
  1104. }
  1105. }
  1106. writeq(val64, &bar0->rx_queue_cfg);
  1107. /*
  1108. * Filling Tx round robin registers
  1109. * as per the number of FIFOs
  1110. */
  1111. switch (config->tx_fifo_num) {
  1112. case 1:
  1113. val64 = 0x0000000000000000ULL;
  1114. writeq(val64, &bar0->tx_w_round_robin_0);
  1115. writeq(val64, &bar0->tx_w_round_robin_1);
  1116. writeq(val64, &bar0->tx_w_round_robin_2);
  1117. writeq(val64, &bar0->tx_w_round_robin_3);
  1118. writeq(val64, &bar0->tx_w_round_robin_4);
  1119. break;
  1120. case 2:
  1121. val64 = 0x0000010000010000ULL;
  1122. writeq(val64, &bar0->tx_w_round_robin_0);
  1123. val64 = 0x0100000100000100ULL;
  1124. writeq(val64, &bar0->tx_w_round_robin_1);
  1125. val64 = 0x0001000001000001ULL;
  1126. writeq(val64, &bar0->tx_w_round_robin_2);
  1127. val64 = 0x0000010000010000ULL;
  1128. writeq(val64, &bar0->tx_w_round_robin_3);
  1129. val64 = 0x0100000000000000ULL;
  1130. writeq(val64, &bar0->tx_w_round_robin_4);
  1131. break;
  1132. case 3:
  1133. val64 = 0x0001000102000001ULL;
  1134. writeq(val64, &bar0->tx_w_round_robin_0);
  1135. val64 = 0x0001020000010001ULL;
  1136. writeq(val64, &bar0->tx_w_round_robin_1);
  1137. val64 = 0x0200000100010200ULL;
  1138. writeq(val64, &bar0->tx_w_round_robin_2);
  1139. val64 = 0x0001000102000001ULL;
  1140. writeq(val64, &bar0->tx_w_round_robin_3);
  1141. val64 = 0x0001020000000000ULL;
  1142. writeq(val64, &bar0->tx_w_round_robin_4);
  1143. break;
  1144. case 4:
  1145. val64 = 0x0001020300010200ULL;
  1146. writeq(val64, &bar0->tx_w_round_robin_0);
  1147. val64 = 0x0100000102030001ULL;
  1148. writeq(val64, &bar0->tx_w_round_robin_1);
  1149. val64 = 0x0200010000010203ULL;
  1150. writeq(val64, &bar0->tx_w_round_robin_2);
  1151. val64 = 0x0001020001000001ULL;
  1152. writeq(val64, &bar0->tx_w_round_robin_3);
  1153. val64 = 0x0203000100000000ULL;
  1154. writeq(val64, &bar0->tx_w_round_robin_4);
  1155. break;
  1156. case 5:
  1157. val64 = 0x0001000203000102ULL;
  1158. writeq(val64, &bar0->tx_w_round_robin_0);
  1159. val64 = 0x0001020001030004ULL;
  1160. writeq(val64, &bar0->tx_w_round_robin_1);
  1161. val64 = 0x0001000203000102ULL;
  1162. writeq(val64, &bar0->tx_w_round_robin_2);
  1163. val64 = 0x0001020001030004ULL;
  1164. writeq(val64, &bar0->tx_w_round_robin_3);
  1165. val64 = 0x0001000000000000ULL;
  1166. writeq(val64, &bar0->tx_w_round_robin_4);
  1167. break;
  1168. case 6:
  1169. val64 = 0x0001020304000102ULL;
  1170. writeq(val64, &bar0->tx_w_round_robin_0);
  1171. val64 = 0x0304050001020001ULL;
  1172. writeq(val64, &bar0->tx_w_round_robin_1);
  1173. val64 = 0x0203000100000102ULL;
  1174. writeq(val64, &bar0->tx_w_round_robin_2);
  1175. val64 = 0x0304000102030405ULL;
  1176. writeq(val64, &bar0->tx_w_round_robin_3);
  1177. val64 = 0x0001000200000000ULL;
  1178. writeq(val64, &bar0->tx_w_round_robin_4);
  1179. break;
  1180. case 7:
  1181. val64 = 0x0001020001020300ULL;
  1182. writeq(val64, &bar0->tx_w_round_robin_0);
  1183. val64 = 0x0102030400010203ULL;
  1184. writeq(val64, &bar0->tx_w_round_robin_1);
  1185. val64 = 0x0405060001020001ULL;
  1186. writeq(val64, &bar0->tx_w_round_robin_2);
  1187. val64 = 0x0304050000010200ULL;
  1188. writeq(val64, &bar0->tx_w_round_robin_3);
  1189. val64 = 0x0102030000000000ULL;
  1190. writeq(val64, &bar0->tx_w_round_robin_4);
  1191. break;
  1192. case 8:
  1193. val64 = 0x0001020300040105ULL;
  1194. writeq(val64, &bar0->tx_w_round_robin_0);
  1195. val64 = 0x0200030106000204ULL;
  1196. writeq(val64, &bar0->tx_w_round_robin_1);
  1197. val64 = 0x0103000502010007ULL;
  1198. writeq(val64, &bar0->tx_w_round_robin_2);
  1199. val64 = 0x0304010002060500ULL;
  1200. writeq(val64, &bar0->tx_w_round_robin_3);
  1201. val64 = 0x0103020400000000ULL;
  1202. writeq(val64, &bar0->tx_w_round_robin_4);
  1203. break;
  1204. }
  1205. /* Enable all configured Tx FIFO partitions */
  1206. val64 = readq(&bar0->tx_fifo_partition_0);
  1207. val64 |= (TX_FIFO_PARTITION_EN);
  1208. writeq(val64, &bar0->tx_fifo_partition_0);
  1209. /* Filling the Rx round robin registers as per the
  1210. * number of Rings and steering based on QoS.
  1211. */
  1212. switch (config->rx_ring_num) {
  1213. case 1:
  1214. val64 = 0x8080808080808080ULL;
  1215. writeq(val64, &bar0->rts_qos_steering);
  1216. break;
  1217. case 2:
  1218. val64 = 0x0000010000010000ULL;
  1219. writeq(val64, &bar0->rx_w_round_robin_0);
  1220. val64 = 0x0100000100000100ULL;
  1221. writeq(val64, &bar0->rx_w_round_robin_1);
  1222. val64 = 0x0001000001000001ULL;
  1223. writeq(val64, &bar0->rx_w_round_robin_2);
  1224. val64 = 0x0000010000010000ULL;
  1225. writeq(val64, &bar0->rx_w_round_robin_3);
  1226. val64 = 0x0100000000000000ULL;
  1227. writeq(val64, &bar0->rx_w_round_robin_4);
  1228. val64 = 0x8080808040404040ULL;
  1229. writeq(val64, &bar0->rts_qos_steering);
  1230. break;
  1231. case 3:
  1232. val64 = 0x0001000102000001ULL;
  1233. writeq(val64, &bar0->rx_w_round_robin_0);
  1234. val64 = 0x0001020000010001ULL;
  1235. writeq(val64, &bar0->rx_w_round_robin_1);
  1236. val64 = 0x0200000100010200ULL;
  1237. writeq(val64, &bar0->rx_w_round_robin_2);
  1238. val64 = 0x0001000102000001ULL;
  1239. writeq(val64, &bar0->rx_w_round_robin_3);
  1240. val64 = 0x0001020000000000ULL;
  1241. writeq(val64, &bar0->rx_w_round_robin_4);
  1242. val64 = 0x8080804040402020ULL;
  1243. writeq(val64, &bar0->rts_qos_steering);
  1244. break;
  1245. case 4:
  1246. val64 = 0x0001020300010200ULL;
  1247. writeq(val64, &bar0->rx_w_round_robin_0);
  1248. val64 = 0x0100000102030001ULL;
  1249. writeq(val64, &bar0->rx_w_round_robin_1);
  1250. val64 = 0x0200010000010203ULL;
  1251. writeq(val64, &bar0->rx_w_round_robin_2);
  1252. val64 = 0x0001020001000001ULL;
  1253. writeq(val64, &bar0->rx_w_round_robin_3);
  1254. val64 = 0x0203000100000000ULL;
  1255. writeq(val64, &bar0->rx_w_round_robin_4);
  1256. val64 = 0x8080404020201010ULL;
  1257. writeq(val64, &bar0->rts_qos_steering);
  1258. break;
  1259. case 5:
  1260. val64 = 0x0001000203000102ULL;
  1261. writeq(val64, &bar0->rx_w_round_robin_0);
  1262. val64 = 0x0001020001030004ULL;
  1263. writeq(val64, &bar0->rx_w_round_robin_1);
  1264. val64 = 0x0001000203000102ULL;
  1265. writeq(val64, &bar0->rx_w_round_robin_2);
  1266. val64 = 0x0001020001030004ULL;
  1267. writeq(val64, &bar0->rx_w_round_robin_3);
  1268. val64 = 0x0001000000000000ULL;
  1269. writeq(val64, &bar0->rx_w_round_robin_4);
  1270. val64 = 0x8080404020201008ULL;
  1271. writeq(val64, &bar0->rts_qos_steering);
  1272. break;
  1273. case 6:
  1274. val64 = 0x0001020304000102ULL;
  1275. writeq(val64, &bar0->rx_w_round_robin_0);
  1276. val64 = 0x0304050001020001ULL;
  1277. writeq(val64, &bar0->rx_w_round_robin_1);
  1278. val64 = 0x0203000100000102ULL;
  1279. writeq(val64, &bar0->rx_w_round_robin_2);
  1280. val64 = 0x0304000102030405ULL;
  1281. writeq(val64, &bar0->rx_w_round_robin_3);
  1282. val64 = 0x0001000200000000ULL;
  1283. writeq(val64, &bar0->rx_w_round_robin_4);
  1284. val64 = 0x8080404020100804ULL;
  1285. writeq(val64, &bar0->rts_qos_steering);
  1286. break;
  1287. case 7:
  1288. val64 = 0x0001020001020300ULL;
  1289. writeq(val64, &bar0->rx_w_round_robin_0);
  1290. val64 = 0x0102030400010203ULL;
  1291. writeq(val64, &bar0->rx_w_round_robin_1);
  1292. val64 = 0x0405060001020001ULL;
  1293. writeq(val64, &bar0->rx_w_round_robin_2);
  1294. val64 = 0x0304050000010200ULL;
  1295. writeq(val64, &bar0->rx_w_round_robin_3);
  1296. val64 = 0x0102030000000000ULL;
  1297. writeq(val64, &bar0->rx_w_round_robin_4);
  1298. val64 = 0x8080402010080402ULL;
  1299. writeq(val64, &bar0->rts_qos_steering);
  1300. break;
  1301. case 8:
  1302. val64 = 0x0001020300040105ULL;
  1303. writeq(val64, &bar0->rx_w_round_robin_0);
  1304. val64 = 0x0200030106000204ULL;
  1305. writeq(val64, &bar0->rx_w_round_robin_1);
  1306. val64 = 0x0103000502010007ULL;
  1307. writeq(val64, &bar0->rx_w_round_robin_2);
  1308. val64 = 0x0304010002060500ULL;
  1309. writeq(val64, &bar0->rx_w_round_robin_3);
  1310. val64 = 0x0103020400000000ULL;
  1311. writeq(val64, &bar0->rx_w_round_robin_4);
  1312. val64 = 0x8040201008040201ULL;
  1313. writeq(val64, &bar0->rts_qos_steering);
  1314. break;
  1315. }
  1316. /* UDP Fix */
  1317. val64 = 0;
  1318. for (i = 0; i < 8; i++)
  1319. writeq(val64, &bar0->rts_frm_len_n[i]);
  1320. /* Set the default rts frame length for the rings configured */
  1321. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1322. for (i = 0 ; i < config->rx_ring_num ; i++)
  1323. writeq(val64, &bar0->rts_frm_len_n[i]);
  1324. /* Set the frame length for the configured rings
  1325. * desired by the user
  1326. */
  1327. for (i = 0; i < config->rx_ring_num; i++) {
  1328. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1329. * specified frame length steering.
  1330. * If the user provides the frame length then program
  1331. * the rts_frm_len register for those values or else
  1332. * leave it as it is.
  1333. */
  1334. if (rts_frm_len[i] != 0) {
  1335. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1336. &bar0->rts_frm_len_n[i]);
  1337. }
  1338. }
  1339. /* Disable differentiated services steering logic */
  1340. for (i = 0; i < 64; i++) {
  1341. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1342. DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
  1343. dev->name);
  1344. DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
  1345. return FAILURE;
  1346. }
  1347. }
  1348. /* Program statistics memory */
  1349. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1350. if (nic->device_type == XFRAME_II_DEVICE) {
  1351. val64 = STAT_BC(0x320);
  1352. writeq(val64, &bar0->stat_byte_cnt);
  1353. }
  1354. /*
  1355. * Initializing the sampling rate for the device to calculate the
  1356. * bandwidth utilization.
  1357. */
  1358. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1359. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1360. writeq(val64, &bar0->mac_link_util);
  1361. /*
  1362. * Initializing the Transmit and Receive Traffic Interrupt
  1363. * Scheme.
  1364. */
  1365. /*
  1366. * TTI Initialization. Default Tx timer gets us about
  1367. * 250 interrupts per sec. Continuous interrupts are enabled
  1368. * by default.
  1369. */
  1370. if (nic->device_type == XFRAME_II_DEVICE) {
  1371. int count = (nic->config.bus_speed * 125)/2;
  1372. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1373. } else {
  1374. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1375. }
  1376. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1377. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1378. TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1379. if (use_continuous_tx_intrs)
  1380. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1381. writeq(val64, &bar0->tti_data1_mem);
  1382. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1383. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1384. TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
  1385. writeq(val64, &bar0->tti_data2_mem);
  1386. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1387. writeq(val64, &bar0->tti_command_mem);
  1388. /*
  1389. * Once the operation completes, the Strobe bit of the command
  1390. * register will be reset. We poll for this particular condition
  1391. * We wait for a maximum of 500ms for the operation to complete,
  1392. * if it's not complete by then we return error.
  1393. */
  1394. time = 0;
  1395. while (TRUE) {
  1396. val64 = readq(&bar0->tti_command_mem);
  1397. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1398. break;
  1399. }
  1400. if (time > 10) {
  1401. DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
  1402. dev->name);
  1403. return -1;
  1404. }
  1405. msleep(50);
  1406. time++;
  1407. }
  1408. if (nic->config.bimodal) {
  1409. int k = 0;
  1410. for (k = 0; k < config->rx_ring_num; k++) {
  1411. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1412. val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
  1413. writeq(val64, &bar0->tti_command_mem);
  1414. /*
  1415. * Once the operation completes, the Strobe bit of the command
  1416. * register will be reset. We poll for this particular condition
  1417. * We wait for a maximum of 500ms for the operation to complete,
  1418. * if it's not complete by then we return error.
  1419. */
  1420. time = 0;
  1421. while (TRUE) {
  1422. val64 = readq(&bar0->tti_command_mem);
  1423. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1424. break;
  1425. }
  1426. if (time > 10) {
  1427. DBG_PRINT(ERR_DBG,
  1428. "%s: TTI init Failed\n",
  1429. dev->name);
  1430. return -1;
  1431. }
  1432. time++;
  1433. msleep(50);
  1434. }
  1435. }
  1436. } else {
  1437. /* RTI Initialization */
  1438. if (nic->device_type == XFRAME_II_DEVICE) {
  1439. /*
  1440. * Programmed to generate Apprx 500 Intrs per
  1441. * second
  1442. */
  1443. int count = (nic->config.bus_speed * 125)/4;
  1444. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1445. } else {
  1446. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1447. }
  1448. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1449. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1450. RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1451. writeq(val64, &bar0->rti_data1_mem);
  1452. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1453. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1454. if (nic->intr_type == MSI_X)
  1455. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
  1456. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1457. else
  1458. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
  1459. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1460. writeq(val64, &bar0->rti_data2_mem);
  1461. for (i = 0; i < config->rx_ring_num; i++) {
  1462. val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
  1463. | RTI_CMD_MEM_OFFSET(i);
  1464. writeq(val64, &bar0->rti_command_mem);
  1465. /*
  1466. * Once the operation completes, the Strobe bit of the
  1467. * command register will be reset. We poll for this
  1468. * particular condition. We wait for a maximum of 500ms
  1469. * for the operation to complete, if it's not complete
  1470. * by then we return error.
  1471. */
  1472. time = 0;
  1473. while (TRUE) {
  1474. val64 = readq(&bar0->rti_command_mem);
  1475. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
  1476. break;
  1477. }
  1478. if (time > 10) {
  1479. DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
  1480. dev->name);
  1481. return -1;
  1482. }
  1483. time++;
  1484. msleep(50);
  1485. }
  1486. }
  1487. }
  1488. /*
  1489. * Initializing proper values as Pause threshold into all
  1490. * the 8 Queues on Rx side.
  1491. */
  1492. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1493. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1494. /* Disable RMAC PAD STRIPPING */
  1495. add = &bar0->mac_cfg;
  1496. val64 = readq(&bar0->mac_cfg);
  1497. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1498. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1499. writel((u32) (val64), add);
  1500. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1501. writel((u32) (val64 >> 32), (add + 4));
  1502. val64 = readq(&bar0->mac_cfg);
  1503. /* Enable FCS stripping by adapter */
  1504. add = &bar0->mac_cfg;
  1505. val64 = readq(&bar0->mac_cfg);
  1506. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1507. if (nic->device_type == XFRAME_II_DEVICE)
  1508. writeq(val64, &bar0->mac_cfg);
  1509. else {
  1510. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1511. writel((u32) (val64), add);
  1512. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1513. writel((u32) (val64 >> 32), (add + 4));
  1514. }
  1515. /*
  1516. * Set the time value to be inserted in the pause frame
  1517. * generated by xena.
  1518. */
  1519. val64 = readq(&bar0->rmac_pause_cfg);
  1520. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1521. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1522. writeq(val64, &bar0->rmac_pause_cfg);
  1523. /*
  1524. * Set the Threshold Limit for Generating the pause frame
  1525. * If the amount of data in any Queue exceeds ratio of
  1526. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1527. * pause frame is generated
  1528. */
  1529. val64 = 0;
  1530. for (i = 0; i < 4; i++) {
  1531. val64 |=
  1532. (((u64) 0xFF00 | nic->mac_control.
  1533. mc_pause_threshold_q0q3)
  1534. << (i * 2 * 8));
  1535. }
  1536. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1537. val64 = 0;
  1538. for (i = 0; i < 4; i++) {
  1539. val64 |=
  1540. (((u64) 0xFF00 | nic->mac_control.
  1541. mc_pause_threshold_q4q7)
  1542. << (i * 2 * 8));
  1543. }
  1544. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1545. /*
  1546. * TxDMA will stop Read request if the number of read split has
  1547. * exceeded the limit pointed by shared_splits
  1548. */
  1549. val64 = readq(&bar0->pic_control);
  1550. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1551. writeq(val64, &bar0->pic_control);
  1552. if (nic->config.bus_speed == 266) {
  1553. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1554. writeq(0x0, &bar0->read_retry_delay);
  1555. writeq(0x0, &bar0->write_retry_delay);
  1556. }
  1557. /*
  1558. * Programming the Herc to split every write transaction
  1559. * that does not start on an ADB to reduce disconnects.
  1560. */
  1561. if (nic->device_type == XFRAME_II_DEVICE) {
  1562. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1563. MISC_LINK_STABILITY_PRD(3);
  1564. writeq(val64, &bar0->misc_control);
  1565. val64 = readq(&bar0->pic_control2);
  1566. val64 &= ~(BIT(13)|BIT(14)|BIT(15));
  1567. writeq(val64, &bar0->pic_control2);
  1568. }
  1569. if (strstr(nic->product_name, "CX4")) {
  1570. val64 = TMAC_AVG_IPG(0x17);
  1571. writeq(val64, &bar0->tmac_avg_ipg);
  1572. }
  1573. return SUCCESS;
  1574. }
  1575. #define LINK_UP_DOWN_INTERRUPT 1
  1576. #define MAC_RMAC_ERR_TIMER 2
  1577. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1578. {
  1579. if (nic->intr_type != INTA)
  1580. return MAC_RMAC_ERR_TIMER;
  1581. if (nic->device_type == XFRAME_II_DEVICE)
  1582. return LINK_UP_DOWN_INTERRUPT;
  1583. else
  1584. return MAC_RMAC_ERR_TIMER;
  1585. }
  1586. /**
  1587. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1588. * @nic: device private variable,
  1589. * @mask: A mask indicating which Intr block must be modified and,
  1590. * @flag: A flag indicating whether to enable or disable the Intrs.
  1591. * Description: This function will either disable or enable the interrupts
  1592. * depending on the flag argument. The mask argument can be used to
  1593. * enable/disable any Intr block.
  1594. * Return Value: NONE.
  1595. */
  1596. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1597. {
  1598. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1599. register u64 val64 = 0, temp64 = 0;
  1600. /* Top level interrupt classification */
  1601. /* PIC Interrupts */
  1602. if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
  1603. /* Enable PIC Intrs in the general intr mask register */
  1604. val64 = TXPIC_INT_M;
  1605. if (flag == ENABLE_INTRS) {
  1606. temp64 = readq(&bar0->general_int_mask);
  1607. temp64 &= ~((u64) val64);
  1608. writeq(temp64, &bar0->general_int_mask);
  1609. /*
  1610. * If Hercules adapter enable GPIO otherwise
  1611. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1612. * interrupts for now.
  1613. * TODO
  1614. */
  1615. if (s2io_link_fault_indication(nic) ==
  1616. LINK_UP_DOWN_INTERRUPT ) {
  1617. temp64 = readq(&bar0->pic_int_mask);
  1618. temp64 &= ~((u64) PIC_INT_GPIO);
  1619. writeq(temp64, &bar0->pic_int_mask);
  1620. temp64 = readq(&bar0->gpio_int_mask);
  1621. temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
  1622. writeq(temp64, &bar0->gpio_int_mask);
  1623. } else {
  1624. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1625. }
  1626. /*
  1627. * No MSI Support is available presently, so TTI and
  1628. * RTI interrupts are also disabled.
  1629. */
  1630. } else if (flag == DISABLE_INTRS) {
  1631. /*
  1632. * Disable PIC Intrs in the general
  1633. * intr mask register
  1634. */
  1635. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1636. temp64 = readq(&bar0->general_int_mask);
  1637. val64 |= temp64;
  1638. writeq(val64, &bar0->general_int_mask);
  1639. }
  1640. }
  1641. /* MAC Interrupts */
  1642. /* Enabling/Disabling MAC interrupts */
  1643. if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
  1644. val64 = TXMAC_INT_M | RXMAC_INT_M;
  1645. if (flag == ENABLE_INTRS) {
  1646. temp64 = readq(&bar0->general_int_mask);
  1647. temp64 &= ~((u64) val64);
  1648. writeq(temp64, &bar0->general_int_mask);
  1649. /*
  1650. * All MAC block error interrupts are disabled for now
  1651. * TODO
  1652. */
  1653. } else if (flag == DISABLE_INTRS) {
  1654. /*
  1655. * Disable MAC Intrs in the general intr mask register
  1656. */
  1657. writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
  1658. writeq(DISABLE_ALL_INTRS,
  1659. &bar0->mac_rmac_err_mask);
  1660. temp64 = readq(&bar0->general_int_mask);
  1661. val64 |= temp64;
  1662. writeq(val64, &bar0->general_int_mask);
  1663. }
  1664. }
  1665. /* Tx traffic interrupts */
  1666. if (mask & TX_TRAFFIC_INTR) {
  1667. val64 = TXTRAFFIC_INT_M;
  1668. if (flag == ENABLE_INTRS) {
  1669. temp64 = readq(&bar0->general_int_mask);
  1670. temp64 &= ~((u64) val64);
  1671. writeq(temp64, &bar0->general_int_mask);
  1672. /*
  1673. * Enable all the Tx side interrupts
  1674. * writing 0 Enables all 64 TX interrupt levels
  1675. */
  1676. writeq(0x0, &bar0->tx_traffic_mask);
  1677. } else if (flag == DISABLE_INTRS) {
  1678. /*
  1679. * Disable Tx Traffic Intrs in the general intr mask
  1680. * register.
  1681. */
  1682. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1683. temp64 = readq(&bar0->general_int_mask);
  1684. val64 |= temp64;
  1685. writeq(val64, &bar0->general_int_mask);
  1686. }
  1687. }
  1688. /* Rx traffic interrupts */
  1689. if (mask & RX_TRAFFIC_INTR) {
  1690. val64 = RXTRAFFIC_INT_M;
  1691. if (flag == ENABLE_INTRS) {
  1692. temp64 = readq(&bar0->general_int_mask);
  1693. temp64 &= ~((u64) val64);
  1694. writeq(temp64, &bar0->general_int_mask);
  1695. /* writing 0 Enables all 8 RX interrupt levels */
  1696. writeq(0x0, &bar0->rx_traffic_mask);
  1697. } else if (flag == DISABLE_INTRS) {
  1698. /*
  1699. * Disable Rx Traffic Intrs in the general intr mask
  1700. * register.
  1701. */
  1702. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1703. temp64 = readq(&bar0->general_int_mask);
  1704. val64 |= temp64;
  1705. writeq(val64, &bar0->general_int_mask);
  1706. }
  1707. }
  1708. }
  1709. /**
  1710. * verify_pcc_quiescent- Checks for PCC quiescent state
  1711. * Return: 1 If PCC is quiescence
  1712. * 0 If PCC is not quiescence
  1713. */
  1714. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1715. {
  1716. int ret = 0, herc;
  1717. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1718. u64 val64 = readq(&bar0->adapter_status);
  1719. herc = (sp->device_type == XFRAME_II_DEVICE);
  1720. if (flag == FALSE) {
  1721. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1722. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1723. ret = 1;
  1724. } else {
  1725. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1726. ret = 1;
  1727. }
  1728. } else {
  1729. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1730. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1731. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1732. ret = 1;
  1733. } else {
  1734. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1735. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1736. ret = 1;
  1737. }
  1738. }
  1739. return ret;
  1740. }
  1741. /**
  1742. * verify_xena_quiescence - Checks whether the H/W is ready
  1743. * Description: Returns whether the H/W is ready to go or not. Depending
  1744. * on whether adapter enable bit was written or not the comparison
  1745. * differs and the calling function passes the input argument flag to
  1746. * indicate this.
  1747. * Return: 1 If xena is quiescence
  1748. * 0 If Xena is not quiescence
  1749. */
  1750. static int verify_xena_quiescence(struct s2io_nic *sp)
  1751. {
  1752. int mode;
  1753. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1754. u64 val64 = readq(&bar0->adapter_status);
  1755. mode = s2io_verify_pci_mode(sp);
  1756. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1757. DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
  1758. return 0;
  1759. }
  1760. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1761. DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
  1762. return 0;
  1763. }
  1764. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1765. DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
  1766. return 0;
  1767. }
  1768. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1769. DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
  1770. return 0;
  1771. }
  1772. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1773. DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
  1774. return 0;
  1775. }
  1776. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1777. DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
  1778. return 0;
  1779. }
  1780. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1781. DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
  1782. return 0;
  1783. }
  1784. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1785. DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
  1786. return 0;
  1787. }
  1788. /*
  1789. * In PCI 33 mode, the P_PLL is not used, and therefore,
  1790. * the the P_PLL_LOCK bit in the adapter_status register will
  1791. * not be asserted.
  1792. */
  1793. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  1794. sp->device_type == XFRAME_II_DEVICE && mode !=
  1795. PCI_MODE_PCI_33) {
  1796. DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
  1797. return 0;
  1798. }
  1799. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1800. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1801. DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
  1802. return 0;
  1803. }
  1804. return 1;
  1805. }
  1806. /**
  1807. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  1808. * @sp: Pointer to device specifc structure
  1809. * Description :
  1810. * New procedure to clear mac address reading problems on Alpha platforms
  1811. *
  1812. */
  1813. static void fix_mac_address(struct s2io_nic * sp)
  1814. {
  1815. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1816. u64 val64;
  1817. int i = 0;
  1818. while (fix_mac[i] != END_SIGN) {
  1819. writeq(fix_mac[i++], &bar0->gpio_control);
  1820. udelay(10);
  1821. val64 = readq(&bar0->gpio_control);
  1822. }
  1823. }
  1824. /**
  1825. * start_nic - Turns the device on
  1826. * @nic : device private variable.
  1827. * Description:
  1828. * This function actually turns the device on. Before this function is
  1829. * called,all Registers are configured from their reset states
  1830. * and shared memory is allocated but the NIC is still quiescent. On
  1831. * calling this function, the device interrupts are cleared and the NIC is
  1832. * literally switched on by writing into the adapter control register.
  1833. * Return Value:
  1834. * SUCCESS on success and -1 on failure.
  1835. */
  1836. static int start_nic(struct s2io_nic *nic)
  1837. {
  1838. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1839. struct net_device *dev = nic->dev;
  1840. register u64 val64 = 0;
  1841. u16 subid, i;
  1842. struct mac_info *mac_control;
  1843. struct config_param *config;
  1844. mac_control = &nic->mac_control;
  1845. config = &nic->config;
  1846. /* PRC Initialization and configuration */
  1847. for (i = 0; i < config->rx_ring_num; i++) {
  1848. writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
  1849. &bar0->prc_rxd0_n[i]);
  1850. val64 = readq(&bar0->prc_ctrl_n[i]);
  1851. if (nic->config.bimodal)
  1852. val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
  1853. if (nic->rxd_mode == RXD_MODE_1)
  1854. val64 |= PRC_CTRL_RC_ENABLED;
  1855. else
  1856. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  1857. if (nic->device_type == XFRAME_II_DEVICE)
  1858. val64 |= PRC_CTRL_GROUP_READS;
  1859. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  1860. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  1861. writeq(val64, &bar0->prc_ctrl_n[i]);
  1862. }
  1863. if (nic->rxd_mode == RXD_MODE_3B) {
  1864. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  1865. val64 = readq(&bar0->rx_pa_cfg);
  1866. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  1867. writeq(val64, &bar0->rx_pa_cfg);
  1868. }
  1869. if (vlan_tag_strip == 0) {
  1870. val64 = readq(&bar0->rx_pa_cfg);
  1871. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  1872. writeq(val64, &bar0->rx_pa_cfg);
  1873. vlan_strip_flag = 0;
  1874. }
  1875. /*
  1876. * Enabling MC-RLDRAM. After enabling the device, we timeout
  1877. * for around 100ms, which is approximately the time required
  1878. * for the device to be ready for operation.
  1879. */
  1880. val64 = readq(&bar0->mc_rldram_mrs);
  1881. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  1882. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  1883. val64 = readq(&bar0->mc_rldram_mrs);
  1884. msleep(100); /* Delay by around 100 ms. */
  1885. /* Enabling ECC Protection. */
  1886. val64 = readq(&bar0->adapter_control);
  1887. val64 &= ~ADAPTER_ECC_EN;
  1888. writeq(val64, &bar0->adapter_control);
  1889. /*
  1890. * Clearing any possible Link state change interrupts that
  1891. * could have popped up just before Enabling the card.
  1892. */
  1893. val64 = readq(&bar0->mac_rmac_err_reg);
  1894. if (val64)
  1895. writeq(val64, &bar0->mac_rmac_err_reg);
  1896. /*
  1897. * Verify if the device is ready to be enabled, if so enable
  1898. * it.
  1899. */
  1900. val64 = readq(&bar0->adapter_status);
  1901. if (!verify_xena_quiescence(nic)) {
  1902. DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
  1903. DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
  1904. (unsigned long long) val64);
  1905. return FAILURE;
  1906. }
  1907. /*
  1908. * With some switches, link might be already up at this point.
  1909. * Because of this weird behavior, when we enable laser,
  1910. * we may not get link. We need to handle this. We cannot
  1911. * figure out which switch is misbehaving. So we are forced to
  1912. * make a global change.
  1913. */
  1914. /* Enabling Laser. */
  1915. val64 = readq(&bar0->adapter_control);
  1916. val64 |= ADAPTER_EOI_TX_ON;
  1917. writeq(val64, &bar0->adapter_control);
  1918. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  1919. /*
  1920. * Dont see link state interrupts initally on some switches,
  1921. * so directly scheduling the link state task here.
  1922. */
  1923. schedule_work(&nic->set_link_task);
  1924. }
  1925. /* SXE-002: Initialize link and activity LED */
  1926. subid = nic->pdev->subsystem_device;
  1927. if (((subid & 0xFF) >= 0x07) &&
  1928. (nic->device_type == XFRAME_I_DEVICE)) {
  1929. val64 = readq(&bar0->gpio_control);
  1930. val64 |= 0x0000800000000000ULL;
  1931. writeq(val64, &bar0->gpio_control);
  1932. val64 = 0x0411040400000000ULL;
  1933. writeq(val64, (void __iomem *)bar0 + 0x2700);
  1934. }
  1935. return SUCCESS;
  1936. }
  1937. /**
  1938. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  1939. */
  1940. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
  1941. TxD *txdlp, int get_off)
  1942. {
  1943. struct s2io_nic *nic = fifo_data->nic;
  1944. struct sk_buff *skb;
  1945. struct TxD *txds;
  1946. u16 j, frg_cnt;
  1947. txds = txdlp;
  1948. if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
  1949. pci_unmap_single(nic->pdev, (dma_addr_t)
  1950. txds->Buffer_Pointer, sizeof(u64),
  1951. PCI_DMA_TODEVICE);
  1952. txds++;
  1953. }
  1954. skb = (struct sk_buff *) ((unsigned long)
  1955. txds->Host_Control);
  1956. if (!skb) {
  1957. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  1958. return NULL;
  1959. }
  1960. pci_unmap_single(nic->pdev, (dma_addr_t)
  1961. txds->Buffer_Pointer,
  1962. skb->len - skb->data_len,
  1963. PCI_DMA_TODEVICE);
  1964. frg_cnt = skb_shinfo(skb)->nr_frags;
  1965. if (frg_cnt) {
  1966. txds++;
  1967. for (j = 0; j < frg_cnt; j++, txds++) {
  1968. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  1969. if (!txds->Buffer_Pointer)
  1970. break;
  1971. pci_unmap_page(nic->pdev, (dma_addr_t)
  1972. txds->Buffer_Pointer,
  1973. frag->size, PCI_DMA_TODEVICE);
  1974. }
  1975. }
  1976. memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
  1977. return(skb);
  1978. }
  1979. /**
  1980. * free_tx_buffers - Free all queued Tx buffers
  1981. * @nic : device private variable.
  1982. * Description:
  1983. * Free all queued Tx buffers.
  1984. * Return Value: void
  1985. */
  1986. static void free_tx_buffers(struct s2io_nic *nic)
  1987. {
  1988. struct net_device *dev = nic->dev;
  1989. struct sk_buff *skb;
  1990. struct TxD *txdp;
  1991. int i, j;
  1992. struct mac_info *mac_control;
  1993. struct config_param *config;
  1994. int cnt = 0;
  1995. mac_control = &nic->mac_control;
  1996. config = &nic->config;
  1997. for (i = 0; i < config->tx_fifo_num; i++) {
  1998. for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
  1999. txdp = (struct TxD *) \
  2000. mac_control->fifos[i].list_info[j].list_virt_addr;
  2001. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2002. if (skb) {
  2003. nic->mac_control.stats_info->sw_stat.mem_freed
  2004. += skb->truesize;
  2005. dev_kfree_skb(skb);
  2006. cnt++;
  2007. }
  2008. }
  2009. DBG_PRINT(INTR_DBG,
  2010. "%s:forcibly freeing %d skbs on FIFO%d\n",
  2011. dev->name, cnt, i);
  2012. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  2013. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  2014. }
  2015. }
  2016. /**
  2017. * stop_nic - To stop the nic
  2018. * @nic ; device private variable.
  2019. * Description:
  2020. * This function does exactly the opposite of what the start_nic()
  2021. * function does. This function is called to stop the device.
  2022. * Return Value:
  2023. * void.
  2024. */
  2025. static void stop_nic(struct s2io_nic *nic)
  2026. {
  2027. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2028. register u64 val64 = 0;
  2029. u16 interruptible;
  2030. struct mac_info *mac_control;
  2031. struct config_param *config;
  2032. mac_control = &nic->mac_control;
  2033. config = &nic->config;
  2034. /* Disable all interrupts */
  2035. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2036. interruptible |= TX_PIC_INTR | RX_PIC_INTR;
  2037. interruptible |= TX_MAC_INTR | RX_MAC_INTR;
  2038. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2039. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2040. val64 = readq(&bar0->adapter_control);
  2041. val64 &= ~(ADAPTER_CNTL_EN);
  2042. writeq(val64, &bar0->adapter_control);
  2043. }
  2044. static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
  2045. sk_buff *skb)
  2046. {
  2047. struct net_device *dev = nic->dev;
  2048. struct sk_buff *frag_list;
  2049. void *tmp;
  2050. /* Buffer-1 receives L3/L4 headers */
  2051. ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
  2052. (nic->pdev, skb->data, l3l4hdr_size + 4,
  2053. PCI_DMA_FROMDEVICE);
  2054. /* skb_shinfo(skb)->frag_list will have L4 data payload */
  2055. skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
  2056. if (skb_shinfo(skb)->frag_list == NULL) {
  2057. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  2058. DBG_PRINT(INFO_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
  2059. return -ENOMEM ;
  2060. }
  2061. frag_list = skb_shinfo(skb)->frag_list;
  2062. skb->truesize += frag_list->truesize;
  2063. nic->mac_control.stats_info->sw_stat.mem_allocated
  2064. += frag_list->truesize;
  2065. frag_list->next = NULL;
  2066. tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
  2067. frag_list->data = tmp;
  2068. skb_reset_tail_pointer(frag_list);
  2069. /* Buffer-2 receives L4 data payload */
  2070. ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
  2071. frag_list->data, dev->mtu,
  2072. PCI_DMA_FROMDEVICE);
  2073. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
  2074. rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
  2075. return SUCCESS;
  2076. }
  2077. /**
  2078. * fill_rx_buffers - Allocates the Rx side skbs
  2079. * @nic: device private variable
  2080. * @ring_no: ring number
  2081. * Description:
  2082. * The function allocates Rx side skbs and puts the physical
  2083. * address of these buffers into the RxD buffer pointers, so that the NIC
  2084. * can DMA the received frame into these locations.
  2085. * The NIC supports 3 receive modes, viz
  2086. * 1. single buffer,
  2087. * 2. three buffer and
  2088. * 3. Five buffer modes.
  2089. * Each mode defines how many fragments the received frame will be split
  2090. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2091. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2092. * is split into 3 fragments. As of now only single buffer mode is
  2093. * supported.
  2094. * Return Value:
  2095. * SUCCESS on success or an appropriate -ve value on failure.
  2096. */
  2097. static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
  2098. {
  2099. struct net_device *dev = nic->dev;
  2100. struct sk_buff *skb;
  2101. struct RxD_t *rxdp;
  2102. int off, off1, size, block_no, block_no1;
  2103. u32 alloc_tab = 0;
  2104. u32 alloc_cnt;
  2105. struct mac_info *mac_control;
  2106. struct config_param *config;
  2107. u64 tmp;
  2108. struct buffAdd *ba;
  2109. unsigned long flags;
  2110. struct RxD_t *first_rxdp = NULL;
  2111. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2112. mac_control = &nic->mac_control;
  2113. config = &nic->config;
  2114. alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
  2115. atomic_read(&nic->rx_bufs_left[ring_no]);
  2116. block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
  2117. off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
  2118. while (alloc_tab < alloc_cnt) {
  2119. block_no = mac_control->rings[ring_no].rx_curr_put_info.
  2120. block_index;
  2121. off = mac_control->rings[ring_no].rx_curr_put_info.offset;
  2122. rxdp = mac_control->rings[ring_no].
  2123. rx_blocks[block_no].rxds[off].virt_addr;
  2124. if ((block_no == block_no1) && (off == off1) &&
  2125. (rxdp->Host_Control)) {
  2126. DBG_PRINT(INTR_DBG, "%s: Get and Put",
  2127. dev->name);
  2128. DBG_PRINT(INTR_DBG, " info equated\n");
  2129. goto end;
  2130. }
  2131. if (off && (off == rxd_count[nic->rxd_mode])) {
  2132. mac_control->rings[ring_no].rx_curr_put_info.
  2133. block_index++;
  2134. if (mac_control->rings[ring_no].rx_curr_put_info.
  2135. block_index == mac_control->rings[ring_no].
  2136. block_count)
  2137. mac_control->rings[ring_no].rx_curr_put_info.
  2138. block_index = 0;
  2139. block_no = mac_control->rings[ring_no].
  2140. rx_curr_put_info.block_index;
  2141. if (off == rxd_count[nic->rxd_mode])
  2142. off = 0;
  2143. mac_control->rings[ring_no].rx_curr_put_info.
  2144. offset = off;
  2145. rxdp = mac_control->rings[ring_no].
  2146. rx_blocks[block_no].block_virt_addr;
  2147. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2148. dev->name, rxdp);
  2149. }
  2150. if(!napi) {
  2151. spin_lock_irqsave(&nic->put_lock, flags);
  2152. mac_control->rings[ring_no].put_pos =
  2153. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2154. spin_unlock_irqrestore(&nic->put_lock, flags);
  2155. } else {
  2156. mac_control->rings[ring_no].put_pos =
  2157. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2158. }
  2159. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2160. ((nic->rxd_mode >= RXD_MODE_3A) &&
  2161. (rxdp->Control_2 & BIT(0)))) {
  2162. mac_control->rings[ring_no].rx_curr_put_info.
  2163. offset = off;
  2164. goto end;
  2165. }
  2166. /* calculate size of skb based on ring mode */
  2167. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  2168. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2169. if (nic->rxd_mode == RXD_MODE_1)
  2170. size += NET_IP_ALIGN;
  2171. else if (nic->rxd_mode == RXD_MODE_3B)
  2172. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2173. else
  2174. size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
  2175. /* allocate skb */
  2176. skb = dev_alloc_skb(size);
  2177. if(!skb) {
  2178. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  2179. DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
  2180. if (first_rxdp) {
  2181. wmb();
  2182. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2183. }
  2184. nic->mac_control.stats_info->sw_stat. \
  2185. mem_alloc_fail_cnt++;
  2186. return -ENOMEM ;
  2187. }
  2188. nic->mac_control.stats_info->sw_stat.mem_allocated
  2189. += skb->truesize;
  2190. if (nic->rxd_mode == RXD_MODE_1) {
  2191. /* 1 buffer mode - normal operation mode */
  2192. memset(rxdp, 0, sizeof(struct RxD1));
  2193. skb_reserve(skb, NET_IP_ALIGN);
  2194. ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
  2195. (nic->pdev, skb->data, size - NET_IP_ALIGN,
  2196. PCI_DMA_FROMDEVICE);
  2197. rxdp->Control_2 =
  2198. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2199. } else if (nic->rxd_mode >= RXD_MODE_3A) {
  2200. /*
  2201. * 2 or 3 buffer mode -
  2202. * Both 2 buffer mode and 3 buffer mode provides 128
  2203. * byte aligned receive buffers.
  2204. *
  2205. * 3 buffer mode provides header separation where in
  2206. * skb->data will have L3/L4 headers where as
  2207. * skb_shinfo(skb)->frag_list will have the L4 data
  2208. * payload
  2209. */
  2210. /* save buffer pointers to avoid frequent dma mapping */
  2211. Buffer0_ptr = ((struct RxD3*)rxdp)->Buffer0_ptr;
  2212. Buffer1_ptr = ((struct RxD3*)rxdp)->Buffer1_ptr;
  2213. memset(rxdp, 0, sizeof(struct RxD3));
  2214. /* restore the buffer pointers for dma sync*/
  2215. ((struct RxD3*)rxdp)->Buffer0_ptr = Buffer0_ptr;
  2216. ((struct RxD3*)rxdp)->Buffer1_ptr = Buffer1_ptr;
  2217. ba = &mac_control->rings[ring_no].ba[block_no][off];
  2218. skb_reserve(skb, BUF0_LEN);
  2219. tmp = (u64)(unsigned long) skb->data;
  2220. tmp += ALIGN_SIZE;
  2221. tmp &= ~ALIGN_SIZE;
  2222. skb->data = (void *) (unsigned long)tmp;
  2223. skb_reset_tail_pointer(skb);
  2224. if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
  2225. ((struct RxD3*)rxdp)->Buffer0_ptr =
  2226. pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
  2227. PCI_DMA_FROMDEVICE);
  2228. else
  2229. pci_dma_sync_single_for_device(nic->pdev,
  2230. (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
  2231. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2232. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2233. if (nic->rxd_mode == RXD_MODE_3B) {
  2234. /* Two buffer mode */
  2235. /*
  2236. * Buffer2 will have L3/L4 header plus
  2237. * L4 payload
  2238. */
  2239. ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
  2240. (nic->pdev, skb->data, dev->mtu + 4,
  2241. PCI_DMA_FROMDEVICE);
  2242. /* Buffer-1 will be dummy buffer. Not used */
  2243. if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
  2244. ((struct RxD3*)rxdp)->Buffer1_ptr =
  2245. pci_map_single(nic->pdev,
  2246. ba->ba_1, BUF1_LEN,
  2247. PCI_DMA_FROMDEVICE);
  2248. }
  2249. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2250. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2251. (dev->mtu + 4);
  2252. } else {
  2253. /* 3 buffer mode */
  2254. if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
  2255. nic->mac_control.stats_info->sw_stat.\
  2256. mem_freed += skb->truesize;
  2257. dev_kfree_skb_irq(skb);
  2258. if (first_rxdp) {
  2259. wmb();
  2260. first_rxdp->Control_1 |=
  2261. RXD_OWN_XENA;
  2262. }
  2263. return -ENOMEM ;
  2264. }
  2265. }
  2266. rxdp->Control_2 |= BIT(0);
  2267. }
  2268. rxdp->Host_Control = (unsigned long) (skb);
  2269. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2270. rxdp->Control_1 |= RXD_OWN_XENA;
  2271. off++;
  2272. if (off == (rxd_count[nic->rxd_mode] + 1))
  2273. off = 0;
  2274. mac_control->rings[ring_no].rx_curr_put_info.offset = off;
  2275. rxdp->Control_2 |= SET_RXD_MARKER;
  2276. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2277. if (first_rxdp) {
  2278. wmb();
  2279. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2280. }
  2281. first_rxdp = rxdp;
  2282. }
  2283. atomic_inc(&nic->rx_bufs_left[ring_no]);
  2284. alloc_tab++;
  2285. }
  2286. end:
  2287. /* Transfer ownership of first descriptor to adapter just before
  2288. * exiting. Before that, use memory barrier so that ownership
  2289. * and other fields are seen by adapter correctly.
  2290. */
  2291. if (first_rxdp) {
  2292. wmb();
  2293. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2294. }
  2295. return SUCCESS;
  2296. }
  2297. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2298. {
  2299. struct net_device *dev = sp->dev;
  2300. int j;
  2301. struct sk_buff *skb;
  2302. struct RxD_t *rxdp;
  2303. struct mac_info *mac_control;
  2304. struct buffAdd *ba;
  2305. mac_control = &sp->mac_control;
  2306. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2307. rxdp = mac_control->rings[ring_no].
  2308. rx_blocks[blk].rxds[j].virt_addr;
  2309. skb = (struct sk_buff *)
  2310. ((unsigned long) rxdp->Host_Control);
  2311. if (!skb) {
  2312. continue;
  2313. }
  2314. if (sp->rxd_mode == RXD_MODE_1) {
  2315. pci_unmap_single(sp->pdev, (dma_addr_t)
  2316. ((struct RxD1*)rxdp)->Buffer0_ptr,
  2317. dev->mtu +
  2318. HEADER_ETHERNET_II_802_3_SIZE
  2319. + HEADER_802_2_SIZE +
  2320. HEADER_SNAP_SIZE,
  2321. PCI_DMA_FROMDEVICE);
  2322. memset(rxdp, 0, sizeof(struct RxD1));
  2323. } else if(sp->rxd_mode == RXD_MODE_3B) {
  2324. ba = &mac_control->rings[ring_no].
  2325. ba[blk][j];
  2326. pci_unmap_single(sp->pdev, (dma_addr_t)
  2327. ((struct RxD3*)rxdp)->Buffer0_ptr,
  2328. BUF0_LEN,
  2329. PCI_DMA_FROMDEVICE);
  2330. pci_unmap_single(sp->pdev, (dma_addr_t)
  2331. ((struct RxD3*)rxdp)->Buffer1_ptr,
  2332. BUF1_LEN,
  2333. PCI_DMA_FROMDEVICE);
  2334. pci_unmap_single(sp->pdev, (dma_addr_t)
  2335. ((struct RxD3*)rxdp)->Buffer2_ptr,
  2336. dev->mtu + 4,
  2337. PCI_DMA_FROMDEVICE);
  2338. memset(rxdp, 0, sizeof(struct RxD3));
  2339. } else {
  2340. pci_unmap_single(sp->pdev, (dma_addr_t)
  2341. ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
  2342. PCI_DMA_FROMDEVICE);
  2343. pci_unmap_single(sp->pdev, (dma_addr_t)
  2344. ((struct RxD3*)rxdp)->Buffer1_ptr,
  2345. l3l4hdr_size + 4,
  2346. PCI_DMA_FROMDEVICE);
  2347. pci_unmap_single(sp->pdev, (dma_addr_t)
  2348. ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
  2349. PCI_DMA_FROMDEVICE);
  2350. memset(rxdp, 0, sizeof(struct RxD3));
  2351. }
  2352. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2353. dev_kfree_skb(skb);
  2354. atomic_dec(&sp->rx_bufs_left[ring_no]);
  2355. }
  2356. }
  2357. /**
  2358. * free_rx_buffers - Frees all Rx buffers
  2359. * @sp: device private variable.
  2360. * Description:
  2361. * This function will free all Rx buffers allocated by host.
  2362. * Return Value:
  2363. * NONE.
  2364. */
  2365. static void free_rx_buffers(struct s2io_nic *sp)
  2366. {
  2367. struct net_device *dev = sp->dev;
  2368. int i, blk = 0, buf_cnt = 0;
  2369. struct mac_info *mac_control;
  2370. struct config_param *config;
  2371. mac_control = &sp->mac_control;
  2372. config = &sp->config;
  2373. for (i = 0; i < config->rx_ring_num; i++) {
  2374. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2375. free_rxd_blk(sp,i,blk);
  2376. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  2377. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  2378. mac_control->rings[i].rx_curr_put_info.offset = 0;
  2379. mac_control->rings[i].rx_curr_get_info.offset = 0;
  2380. atomic_set(&sp->rx_bufs_left[i], 0);
  2381. DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
  2382. dev->name, buf_cnt, i);
  2383. }
  2384. }
  2385. /**
  2386. * s2io_poll - Rx interrupt handler for NAPI support
  2387. * @dev : pointer to the device structure.
  2388. * @budget : The number of packets that were budgeted to be processed
  2389. * during one pass through the 'Poll" function.
  2390. * Description:
  2391. * Comes into picture only if NAPI support has been incorporated. It does
  2392. * the same thing that rx_intr_handler does, but not in a interrupt context
  2393. * also It will process only a given number of packets.
  2394. * Return value:
  2395. * 0 on success and 1 if there are No Rx packets to be processed.
  2396. */
  2397. static int s2io_poll(struct net_device *dev, int *budget)
  2398. {
  2399. struct s2io_nic *nic = dev->priv;
  2400. int pkt_cnt = 0, org_pkts_to_process;
  2401. struct mac_info *mac_control;
  2402. struct config_param *config;
  2403. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2404. int i;
  2405. atomic_inc(&nic->isr_cnt);
  2406. mac_control = &nic->mac_control;
  2407. config = &nic->config;
  2408. nic->pkts_to_process = *budget;
  2409. if (nic->pkts_to_process > dev->quota)
  2410. nic->pkts_to_process = dev->quota;
  2411. org_pkts_to_process = nic->pkts_to_process;
  2412. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  2413. readl(&bar0->rx_traffic_int);
  2414. for (i = 0; i < config->rx_ring_num; i++) {
  2415. rx_intr_handler(&mac_control->rings[i]);
  2416. pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
  2417. if (!nic->pkts_to_process) {
  2418. /* Quota for the current iteration has been met */
  2419. goto no_rx;
  2420. }
  2421. }
  2422. if (!pkt_cnt)
  2423. pkt_cnt = 1;
  2424. dev->quota -= pkt_cnt;
  2425. *budget -= pkt_cnt;
  2426. netif_rx_complete(dev);
  2427. for (i = 0; i < config->rx_ring_num; i++) {
  2428. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2429. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2430. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2431. break;
  2432. }
  2433. }
  2434. /* Re enable the Rx interrupts. */
  2435. writeq(0x0, &bar0->rx_traffic_mask);
  2436. readl(&bar0->rx_traffic_mask);
  2437. atomic_dec(&nic->isr_cnt);
  2438. return 0;
  2439. no_rx:
  2440. dev->quota -= pkt_cnt;
  2441. *budget -= pkt_cnt;
  2442. for (i = 0; i < config->rx_ring_num; i++) {
  2443. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2444. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2445. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2446. break;
  2447. }
  2448. }
  2449. atomic_dec(&nic->isr_cnt);
  2450. return 1;
  2451. }
  2452. #ifdef CONFIG_NET_POLL_CONTROLLER
  2453. /**
  2454. * s2io_netpoll - netpoll event handler entry point
  2455. * @dev : pointer to the device structure.
  2456. * Description:
  2457. * This function will be called by upper layer to check for events on the
  2458. * interface in situations where interrupts are disabled. It is used for
  2459. * specific in-kernel networking tasks, such as remote consoles and kernel
  2460. * debugging over the network (example netdump in RedHat).
  2461. */
  2462. static void s2io_netpoll(struct net_device *dev)
  2463. {
  2464. struct s2io_nic *nic = dev->priv;
  2465. struct mac_info *mac_control;
  2466. struct config_param *config;
  2467. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2468. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2469. int i;
  2470. if (pci_channel_offline(nic->pdev))
  2471. return;
  2472. disable_irq(dev->irq);
  2473. atomic_inc(&nic->isr_cnt);
  2474. mac_control = &nic->mac_control;
  2475. config = &nic->config;
  2476. writeq(val64, &bar0->rx_traffic_int);
  2477. writeq(val64, &bar0->tx_traffic_int);
  2478. /* we need to free up the transmitted skbufs or else netpoll will
  2479. * run out of skbs and will fail and eventually netpoll application such
  2480. * as netdump will fail.
  2481. */
  2482. for (i = 0; i < config->tx_fifo_num; i++)
  2483. tx_intr_handler(&mac_control->fifos[i]);
  2484. /* check for received packet and indicate up to network */
  2485. for (i = 0; i < config->rx_ring_num; i++)
  2486. rx_intr_handler(&mac_control->rings[i]);
  2487. for (i = 0; i < config->rx_ring_num; i++) {
  2488. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2489. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2490. DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
  2491. break;
  2492. }
  2493. }
  2494. atomic_dec(&nic->isr_cnt);
  2495. enable_irq(dev->irq);
  2496. return;
  2497. }
  2498. #endif
  2499. /**
  2500. * rx_intr_handler - Rx interrupt handler
  2501. * @nic: device private variable.
  2502. * Description:
  2503. * If the interrupt is because of a received frame or if the
  2504. * receive ring contains fresh as yet un-processed frames,this function is
  2505. * called. It picks out the RxD at which place the last Rx processing had
  2506. * stopped and sends the skb to the OSM's Rx handler and then increments
  2507. * the offset.
  2508. * Return Value:
  2509. * NONE.
  2510. */
  2511. static void rx_intr_handler(struct ring_info *ring_data)
  2512. {
  2513. struct s2io_nic *nic = ring_data->nic;
  2514. struct net_device *dev = (struct net_device *) nic->dev;
  2515. int get_block, put_block, put_offset;
  2516. struct rx_curr_get_info get_info, put_info;
  2517. struct RxD_t *rxdp;
  2518. struct sk_buff *skb;
  2519. int pkt_cnt = 0;
  2520. int i;
  2521. spin_lock(&nic->rx_lock);
  2522. if (atomic_read(&nic->card_state) == CARD_DOWN) {
  2523. DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
  2524. __FUNCTION__, dev->name);
  2525. spin_unlock(&nic->rx_lock);
  2526. return;
  2527. }
  2528. get_info = ring_data->rx_curr_get_info;
  2529. get_block = get_info.block_index;
  2530. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2531. put_block = put_info.block_index;
  2532. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2533. if (!napi) {
  2534. spin_lock(&nic->put_lock);
  2535. put_offset = ring_data->put_pos;
  2536. spin_unlock(&nic->put_lock);
  2537. } else
  2538. put_offset = ring_data->put_pos;
  2539. while (RXD_IS_UP2DT(rxdp)) {
  2540. /*
  2541. * If your are next to put index then it's
  2542. * FIFO full condition
  2543. */
  2544. if ((get_block == put_block) &&
  2545. (get_info.offset + 1) == put_info.offset) {
  2546. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
  2547. break;
  2548. }
  2549. skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
  2550. if (skb == NULL) {
  2551. DBG_PRINT(ERR_DBG, "%s: The skb is ",
  2552. dev->name);
  2553. DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
  2554. spin_unlock(&nic->rx_lock);
  2555. return;
  2556. }
  2557. if (nic->rxd_mode == RXD_MODE_1) {
  2558. pci_unmap_single(nic->pdev, (dma_addr_t)
  2559. ((struct RxD1*)rxdp)->Buffer0_ptr,
  2560. dev->mtu +
  2561. HEADER_ETHERNET_II_802_3_SIZE +
  2562. HEADER_802_2_SIZE +
  2563. HEADER_SNAP_SIZE,
  2564. PCI_DMA_FROMDEVICE);
  2565. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2566. pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
  2567. ((struct RxD3*)rxdp)->Buffer0_ptr,
  2568. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2569. pci_unmap_single(nic->pdev, (dma_addr_t)
  2570. ((struct RxD3*)rxdp)->Buffer2_ptr,
  2571. dev->mtu + 4,
  2572. PCI_DMA_FROMDEVICE);
  2573. } else {
  2574. pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
  2575. ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
  2576. PCI_DMA_FROMDEVICE);
  2577. pci_unmap_single(nic->pdev, (dma_addr_t)
  2578. ((struct RxD3*)rxdp)->Buffer1_ptr,
  2579. l3l4hdr_size + 4,
  2580. PCI_DMA_FROMDEVICE);
  2581. pci_unmap_single(nic->pdev, (dma_addr_t)
  2582. ((struct RxD3*)rxdp)->Buffer2_ptr,
  2583. dev->mtu, PCI_DMA_FROMDEVICE);
  2584. }
  2585. prefetch(skb->data);
  2586. rx_osm_handler(ring_data, rxdp);
  2587. get_info.offset++;
  2588. ring_data->rx_curr_get_info.offset = get_info.offset;
  2589. rxdp = ring_data->rx_blocks[get_block].
  2590. rxds[get_info.offset].virt_addr;
  2591. if (get_info.offset == rxd_count[nic->rxd_mode]) {
  2592. get_info.offset = 0;
  2593. ring_data->rx_curr_get_info.offset = get_info.offset;
  2594. get_block++;
  2595. if (get_block == ring_data->block_count)
  2596. get_block = 0;
  2597. ring_data->rx_curr_get_info.block_index = get_block;
  2598. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2599. }
  2600. nic->pkts_to_process -= 1;
  2601. if ((napi) && (!nic->pkts_to_process))
  2602. break;
  2603. pkt_cnt++;
  2604. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2605. break;
  2606. }
  2607. if (nic->lro) {
  2608. /* Clear all LRO sessions before exiting */
  2609. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  2610. struct lro *lro = &nic->lro0_n[i];
  2611. if (lro->in_use) {
  2612. update_L3L4_header(nic, lro);
  2613. queue_rx_frame(lro->parent);
  2614. clear_lro_session(lro);
  2615. }
  2616. }
  2617. }
  2618. spin_unlock(&nic->rx_lock);
  2619. }
  2620. /**
  2621. * tx_intr_handler - Transmit interrupt handler
  2622. * @nic : device private variable
  2623. * Description:
  2624. * If an interrupt was raised to indicate DMA complete of the
  2625. * Tx packet, this function is called. It identifies the last TxD
  2626. * whose buffer was freed and frees all skbs whose data have already
  2627. * DMA'ed into the NICs internal memory.
  2628. * Return Value:
  2629. * NONE
  2630. */
  2631. static void tx_intr_handler(struct fifo_info *fifo_data)
  2632. {
  2633. struct s2io_nic *nic = fifo_data->nic;
  2634. struct net_device *dev = (struct net_device *) nic->dev;
  2635. struct tx_curr_get_info get_info, put_info;
  2636. struct sk_buff *skb;
  2637. struct TxD *txdlp;
  2638. u8 err_mask;
  2639. get_info = fifo_data->tx_curr_get_info;
  2640. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2641. txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
  2642. list_virt_addr;
  2643. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2644. (get_info.offset != put_info.offset) &&
  2645. (txdlp->Host_Control)) {
  2646. /* Check for TxD errors */
  2647. if (txdlp->Control_1 & TXD_T_CODE) {
  2648. unsigned long long err;
  2649. err = txdlp->Control_1 & TXD_T_CODE;
  2650. if (err & 0x1) {
  2651. nic->mac_control.stats_info->sw_stat.
  2652. parity_err_cnt++;
  2653. }
  2654. /* update t_code statistics */
  2655. err_mask = err >> 48;
  2656. switch(err_mask) {
  2657. case 2:
  2658. nic->mac_control.stats_info->sw_stat.
  2659. tx_buf_abort_cnt++;
  2660. break;
  2661. case 3:
  2662. nic->mac_control.stats_info->sw_stat.
  2663. tx_desc_abort_cnt++;
  2664. break;
  2665. case 7:
  2666. nic->mac_control.stats_info->sw_stat.
  2667. tx_parity_err_cnt++;
  2668. break;
  2669. case 10:
  2670. nic->mac_control.stats_info->sw_stat.
  2671. tx_link_loss_cnt++;
  2672. break;
  2673. case 15:
  2674. nic->mac_control.stats_info->sw_stat.
  2675. tx_list_proc_err_cnt++;
  2676. break;
  2677. }
  2678. }
  2679. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2680. if (skb == NULL) {
  2681. DBG_PRINT(ERR_DBG, "%s: Null skb ",
  2682. __FUNCTION__);
  2683. DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
  2684. return;
  2685. }
  2686. /* Updating the statistics block */
  2687. nic->stats.tx_bytes += skb->len;
  2688. nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2689. dev_kfree_skb_irq(skb);
  2690. get_info.offset++;
  2691. if (get_info.offset == get_info.fifo_len + 1)
  2692. get_info.offset = 0;
  2693. txdlp = (struct TxD *) fifo_data->list_info
  2694. [get_info.offset].list_virt_addr;
  2695. fifo_data->tx_curr_get_info.offset =
  2696. get_info.offset;
  2697. }
  2698. spin_lock(&nic->tx_lock);
  2699. if (netif_queue_stopped(dev))
  2700. netif_wake_queue(dev);
  2701. spin_unlock(&nic->tx_lock);
  2702. }
  2703. /**
  2704. * s2io_mdio_write - Function to write in to MDIO registers
  2705. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2706. * @addr : address value
  2707. * @value : data value
  2708. * @dev : pointer to net_device structure
  2709. * Description:
  2710. * This function is used to write values to the MDIO registers
  2711. * NONE
  2712. */
  2713. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
  2714. {
  2715. u64 val64 = 0x0;
  2716. struct s2io_nic *sp = dev->priv;
  2717. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2718. //address transaction
  2719. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2720. | MDIO_MMD_DEV_ADDR(mmd_type)
  2721. | MDIO_MMS_PRT_ADDR(0x0);
  2722. writeq(val64, &bar0->mdio_control);
  2723. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2724. writeq(val64, &bar0->mdio_control);
  2725. udelay(100);
  2726. //Data transaction
  2727. val64 = 0x0;
  2728. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2729. | MDIO_MMD_DEV_ADDR(mmd_type)
  2730. | MDIO_MMS_PRT_ADDR(0x0)
  2731. | MDIO_MDIO_DATA(value)
  2732. | MDIO_OP(MDIO_OP_WRITE_TRANS);
  2733. writeq(val64, &bar0->mdio_control);
  2734. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2735. writeq(val64, &bar0->mdio_control);
  2736. udelay(100);
  2737. val64 = 0x0;
  2738. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2739. | MDIO_MMD_DEV_ADDR(mmd_type)
  2740. | MDIO_MMS_PRT_ADDR(0x0)
  2741. | MDIO_OP(MDIO_OP_READ_TRANS);
  2742. writeq(val64, &bar0->mdio_control);
  2743. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2744. writeq(val64, &bar0->mdio_control);
  2745. udelay(100);
  2746. }
  2747. /**
  2748. * s2io_mdio_read - Function to write in to MDIO registers
  2749. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2750. * @addr : address value
  2751. * @dev : pointer to net_device structure
  2752. * Description:
  2753. * This function is used to read values to the MDIO registers
  2754. * NONE
  2755. */
  2756. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2757. {
  2758. u64 val64 = 0x0;
  2759. u64 rval64 = 0x0;
  2760. struct s2io_nic *sp = dev->priv;
  2761. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2762. /* address transaction */
  2763. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2764. | MDIO_MMD_DEV_ADDR(mmd_type)
  2765. | MDIO_MMS_PRT_ADDR(0x0);
  2766. writeq(val64, &bar0->mdio_control);
  2767. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2768. writeq(val64, &bar0->mdio_control);
  2769. udelay(100);
  2770. /* Data transaction */
  2771. val64 = 0x0;
  2772. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2773. | MDIO_MMD_DEV_ADDR(mmd_type)
  2774. | MDIO_MMS_PRT_ADDR(0x0)
  2775. | MDIO_OP(MDIO_OP_READ_TRANS);
  2776. writeq(val64, &bar0->mdio_control);
  2777. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2778. writeq(val64, &bar0->mdio_control);
  2779. udelay(100);
  2780. /* Read the value from regs */
  2781. rval64 = readq(&bar0->mdio_control);
  2782. rval64 = rval64 & 0xFFFF0000;
  2783. rval64 = rval64 >> 16;
  2784. return rval64;
  2785. }
  2786. /**
  2787. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2788. * @counter : couter value to be updated
  2789. * @flag : flag to indicate the status
  2790. * @type : counter type
  2791. * Description:
  2792. * This function is to check the status of the xpak counters value
  2793. * NONE
  2794. */
  2795. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
  2796. {
  2797. u64 mask = 0x3;
  2798. u64 val64;
  2799. int i;
  2800. for(i = 0; i <index; i++)
  2801. mask = mask << 0x2;
  2802. if(flag > 0)
  2803. {
  2804. *counter = *counter + 1;
  2805. val64 = *regs_stat & mask;
  2806. val64 = val64 >> (index * 0x2);
  2807. val64 = val64 + 1;
  2808. if(val64 == 3)
  2809. {
  2810. switch(type)
  2811. {
  2812. case 1:
  2813. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2814. "service. Excessive temperatures may "
  2815. "result in premature transceiver "
  2816. "failure \n");
  2817. break;
  2818. case 2:
  2819. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2820. "service Excessive bias currents may "
  2821. "indicate imminent laser diode "
  2822. "failure \n");
  2823. break;
  2824. case 3:
  2825. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2826. "service Excessive laser output "
  2827. "power may saturate far-end "
  2828. "receiver\n");
  2829. break;
  2830. default:
  2831. DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
  2832. "type \n");
  2833. }
  2834. val64 = 0x0;
  2835. }
  2836. val64 = val64 << (index * 0x2);
  2837. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2838. } else {
  2839. *regs_stat = *regs_stat & (~mask);
  2840. }
  2841. }
  2842. /**
  2843. * s2io_updt_xpak_counter - Function to update the xpak counters
  2844. * @dev : pointer to net_device struct
  2845. * Description:
  2846. * This function is to upate the status of the xpak counters value
  2847. * NONE
  2848. */
  2849. static void s2io_updt_xpak_counter(struct net_device *dev)
  2850. {
  2851. u16 flag = 0x0;
  2852. u16 type = 0x0;
  2853. u16 val16 = 0x0;
  2854. u64 val64 = 0x0;
  2855. u64 addr = 0x0;
  2856. struct s2io_nic *sp = dev->priv;
  2857. struct stat_block *stat_info = sp->mac_control.stats_info;
  2858. /* Check the communication with the MDIO slave */
  2859. addr = 0x0000;
  2860. val64 = 0x0;
  2861. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2862. if((val64 == 0xFFFF) || (val64 == 0x0000))
  2863. {
  2864. DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
  2865. "Returned %llx\n", (unsigned long long)val64);
  2866. return;
  2867. }
  2868. /* Check for the expecte value of 2040 at PMA address 0x0000 */
  2869. if(val64 != 0x2040)
  2870. {
  2871. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
  2872. DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
  2873. (unsigned long long)val64);
  2874. return;
  2875. }
  2876. /* Loading the DOM register to MDIO register */
  2877. addr = 0xA100;
  2878. s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
  2879. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2880. /* Reading the Alarm flags */
  2881. addr = 0xA070;
  2882. val64 = 0x0;
  2883. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2884. flag = CHECKBIT(val64, 0x7);
  2885. type = 1;
  2886. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
  2887. &stat_info->xpak_stat.xpak_regs_stat,
  2888. 0x0, flag, type);
  2889. if(CHECKBIT(val64, 0x6))
  2890. stat_info->xpak_stat.alarm_transceiver_temp_low++;
  2891. flag = CHECKBIT(val64, 0x3);
  2892. type = 2;
  2893. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
  2894. &stat_info->xpak_stat.xpak_regs_stat,
  2895. 0x2, flag, type);
  2896. if(CHECKBIT(val64, 0x2))
  2897. stat_info->xpak_stat.alarm_laser_bias_current_low++;
  2898. flag = CHECKBIT(val64, 0x1);
  2899. type = 3;
  2900. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
  2901. &stat_info->xpak_stat.xpak_regs_stat,
  2902. 0x4, flag, type);
  2903. if(CHECKBIT(val64, 0x0))
  2904. stat_info->xpak_stat.alarm_laser_output_power_low++;
  2905. /* Reading the Warning flags */
  2906. addr = 0xA074;
  2907. val64 = 0x0;
  2908. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2909. if(CHECKBIT(val64, 0x7))
  2910. stat_info->xpak_stat.warn_transceiver_temp_high++;
  2911. if(CHECKBIT(val64, 0x6))
  2912. stat_info->xpak_stat.warn_transceiver_temp_low++;
  2913. if(CHECKBIT(val64, 0x3))
  2914. stat_info->xpak_stat.warn_laser_bias_current_high++;
  2915. if(CHECKBIT(val64, 0x2))
  2916. stat_info->xpak_stat.warn_laser_bias_current_low++;
  2917. if(CHECKBIT(val64, 0x1))
  2918. stat_info->xpak_stat.warn_laser_output_power_high++;
  2919. if(CHECKBIT(val64, 0x0))
  2920. stat_info->xpak_stat.warn_laser_output_power_low++;
  2921. }
  2922. /**
  2923. * alarm_intr_handler - Alarm Interrrupt handler
  2924. * @nic: device private variable
  2925. * Description: If the interrupt was neither because of Rx packet or Tx
  2926. * complete, this function is called. If the interrupt was to indicate
  2927. * a loss of link, the OSM link status handler is invoked for any other
  2928. * alarm interrupt the block that raised the interrupt is displayed
  2929. * and a H/W reset is issued.
  2930. * Return Value:
  2931. * NONE
  2932. */
  2933. static void alarm_intr_handler(struct s2io_nic *nic)
  2934. {
  2935. struct net_device *dev = (struct net_device *) nic->dev;
  2936. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2937. register u64 val64 = 0, err_reg = 0;
  2938. u64 cnt;
  2939. int i;
  2940. if (atomic_read(&nic->card_state) == CARD_DOWN)
  2941. return;
  2942. if (pci_channel_offline(nic->pdev))
  2943. return;
  2944. nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
  2945. /* Handling the XPAK counters update */
  2946. if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
  2947. /* waiting for an hour */
  2948. nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
  2949. } else {
  2950. s2io_updt_xpak_counter(dev);
  2951. /* reset the count to zero */
  2952. nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
  2953. }
  2954. /* Handling link status change error Intr */
  2955. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2956. err_reg = readq(&bar0->mac_rmac_err_reg);
  2957. writeq(err_reg, &bar0->mac_rmac_err_reg);
  2958. if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
  2959. schedule_work(&nic->set_link_task);
  2960. }
  2961. }
  2962. /* Handling Ecc errors */
  2963. val64 = readq(&bar0->mc_err_reg);
  2964. writeq(val64, &bar0->mc_err_reg);
  2965. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  2966. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  2967. nic->mac_control.stats_info->sw_stat.
  2968. double_ecc_errs++;
  2969. DBG_PRINT(INIT_DBG, "%s: Device indicates ",
  2970. dev->name);
  2971. DBG_PRINT(INIT_DBG, "double ECC error!!\n");
  2972. if (nic->device_type != XFRAME_II_DEVICE) {
  2973. /* Reset XframeI only if critical error */
  2974. if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  2975. MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
  2976. netif_stop_queue(dev);
  2977. schedule_work(&nic->rst_timer_task);
  2978. nic->mac_control.stats_info->sw_stat.
  2979. soft_reset_cnt++;
  2980. }
  2981. }
  2982. } else {
  2983. nic->mac_control.stats_info->sw_stat.
  2984. single_ecc_errs++;
  2985. }
  2986. }
  2987. /* In case of a serious error, the device will be Reset. */
  2988. val64 = readq(&bar0->serr_source);
  2989. if (val64 & SERR_SOURCE_ANY) {
  2990. nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
  2991. DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
  2992. DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
  2993. (unsigned long long)val64);
  2994. netif_stop_queue(dev);
  2995. schedule_work(&nic->rst_timer_task);
  2996. nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  2997. }
  2998. /*
  2999. * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
  3000. * Error occurs, the adapter will be recycled by disabling the
  3001. * adapter enable bit and enabling it again after the device
  3002. * becomes Quiescent.
  3003. */
  3004. val64 = readq(&bar0->pcc_err_reg);
  3005. writeq(val64, &bar0->pcc_err_reg);
  3006. if (val64 & PCC_FB_ECC_DB_ERR) {
  3007. u64 ac = readq(&bar0->adapter_control);
  3008. ac &= ~(ADAPTER_CNTL_EN);
  3009. writeq(ac, &bar0->adapter_control);
  3010. ac = readq(&bar0->adapter_control);
  3011. schedule_work(&nic->set_link_task);
  3012. }
  3013. /* Check for data parity error */
  3014. val64 = readq(&bar0->pic_int_status);
  3015. if (val64 & PIC_INT_GPIO) {
  3016. val64 = readq(&bar0->gpio_int_reg);
  3017. if (val64 & GPIO_INT_REG_DP_ERR_INT) {
  3018. nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
  3019. schedule_work(&nic->rst_timer_task);
  3020. nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  3021. }
  3022. }
  3023. /* Check for ring full counter */
  3024. if (nic->device_type & XFRAME_II_DEVICE) {
  3025. val64 = readq(&bar0->ring_bump_counter1);
  3026. for (i=0; i<4; i++) {
  3027. cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
  3028. cnt >>= 64 - ((i+1)*16);
  3029. nic->mac_control.stats_info->sw_stat.ring_full_cnt
  3030. += cnt;
  3031. }
  3032. val64 = readq(&bar0->ring_bump_counter2);
  3033. for (i=0; i<4; i++) {
  3034. cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
  3035. cnt >>= 64 - ((i+1)*16);
  3036. nic->mac_control.stats_info->sw_stat.ring_full_cnt
  3037. += cnt;
  3038. }
  3039. }
  3040. /* Other type of interrupts are not being handled now, TODO */
  3041. }
  3042. /**
  3043. * wait_for_cmd_complete - waits for a command to complete.
  3044. * @sp : private member of the device structure, which is a pointer to the
  3045. * s2io_nic structure.
  3046. * Description: Function that waits for a command to Write into RMAC
  3047. * ADDR DATA registers to be completed and returns either success or
  3048. * error depending on whether the command was complete or not.
  3049. * Return value:
  3050. * SUCCESS on success and FAILURE on failure.
  3051. */
  3052. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  3053. int bit_state)
  3054. {
  3055. int ret = FAILURE, cnt = 0, delay = 1;
  3056. u64 val64;
  3057. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  3058. return FAILURE;
  3059. do {
  3060. val64 = readq(addr);
  3061. if (bit_state == S2IO_BIT_RESET) {
  3062. if (!(val64 & busy_bit)) {
  3063. ret = SUCCESS;
  3064. break;
  3065. }
  3066. } else {
  3067. if (!(val64 & busy_bit)) {
  3068. ret = SUCCESS;
  3069. break;
  3070. }
  3071. }
  3072. if(in_interrupt())
  3073. mdelay(delay);
  3074. else
  3075. msleep(delay);
  3076. if (++cnt >= 10)
  3077. delay = 50;
  3078. } while (cnt < 20);
  3079. return ret;
  3080. }
  3081. /*
  3082. * check_pci_device_id - Checks if the device id is supported
  3083. * @id : device id
  3084. * Description: Function to check if the pci device id is supported by driver.
  3085. * Return value: Actual device id if supported else PCI_ANY_ID
  3086. */
  3087. static u16 check_pci_device_id(u16 id)
  3088. {
  3089. switch (id) {
  3090. case PCI_DEVICE_ID_HERC_WIN:
  3091. case PCI_DEVICE_ID_HERC_UNI:
  3092. return XFRAME_II_DEVICE;
  3093. case PCI_DEVICE_ID_S2IO_UNI:
  3094. case PCI_DEVICE_ID_S2IO_WIN:
  3095. return XFRAME_I_DEVICE;
  3096. default:
  3097. return PCI_ANY_ID;
  3098. }
  3099. }
  3100. /**
  3101. * s2io_reset - Resets the card.
  3102. * @sp : private member of the device structure.
  3103. * Description: Function to Reset the card. This function then also
  3104. * restores the previously saved PCI configuration space registers as
  3105. * the card reset also resets the configuration space.
  3106. * Return value:
  3107. * void.
  3108. */
  3109. static void s2io_reset(struct s2io_nic * sp)
  3110. {
  3111. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3112. u64 val64;
  3113. u16 subid, pci_cmd;
  3114. int i;
  3115. u16 val16;
  3116. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3117. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3118. DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
  3119. __FUNCTION__, sp->dev->name);
  3120. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3121. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3122. if (sp->device_type == XFRAME_II_DEVICE) {
  3123. int ret;
  3124. ret = pci_set_power_state(sp->pdev, 3);
  3125. if (!ret)
  3126. ret = pci_set_power_state(sp->pdev, 0);
  3127. else {
  3128. DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
  3129. __FUNCTION__);
  3130. goto old_way;
  3131. }
  3132. msleep(20);
  3133. goto new_way;
  3134. }
  3135. old_way:
  3136. val64 = SW_RESET_ALL;
  3137. writeq(val64, &bar0->sw_reset);
  3138. new_way:
  3139. if (strstr(sp->product_name, "CX4")) {
  3140. msleep(750);
  3141. }
  3142. msleep(250);
  3143. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3144. /* Restore the PCI state saved during initialization. */
  3145. pci_restore_state(sp->pdev);
  3146. pci_read_config_word(sp->pdev, 0x2, &val16);
  3147. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3148. break;
  3149. msleep(200);
  3150. }
  3151. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
  3152. DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
  3153. }
  3154. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3155. s2io_init_pci(sp);
  3156. /* Set swapper to enable I/O register access */
  3157. s2io_set_swapper(sp);
  3158. /* Restore the MSIX table entries from local variables */
  3159. restore_xmsi_data(sp);
  3160. /* Clear certain PCI/PCI-X fields after reset */
  3161. if (sp->device_type == XFRAME_II_DEVICE) {
  3162. /* Clear "detected parity error" bit */
  3163. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3164. /* Clearing PCIX Ecc status register */
  3165. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3166. /* Clearing PCI_STATUS error reflected here */
  3167. writeq(BIT(62), &bar0->txpic_int_reg);
  3168. }
  3169. /* Reset device statistics maintained by OS */
  3170. memset(&sp->stats, 0, sizeof (struct net_device_stats));
  3171. up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
  3172. down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
  3173. up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
  3174. down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
  3175. reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
  3176. mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
  3177. mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
  3178. watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
  3179. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3180. memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
  3181. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3182. sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
  3183. sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
  3184. sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
  3185. sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
  3186. sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
  3187. sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
  3188. sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
  3189. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
  3190. /* SXE-002: Configure link and activity LED to turn it off */
  3191. subid = sp->pdev->subsystem_device;
  3192. if (((subid & 0xFF) >= 0x07) &&
  3193. (sp->device_type == XFRAME_I_DEVICE)) {
  3194. val64 = readq(&bar0->gpio_control);
  3195. val64 |= 0x0000800000000000ULL;
  3196. writeq(val64, &bar0->gpio_control);
  3197. val64 = 0x0411040400000000ULL;
  3198. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3199. }
  3200. /*
  3201. * Clear spurious ECC interrupts that would have occured on
  3202. * XFRAME II cards after reset.
  3203. */
  3204. if (sp->device_type == XFRAME_II_DEVICE) {
  3205. val64 = readq(&bar0->pcc_err_reg);
  3206. writeq(val64, &bar0->pcc_err_reg);
  3207. }
  3208. /* restore the previously assigned mac address */
  3209. s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
  3210. sp->device_enabled_once = FALSE;
  3211. }
  3212. /**
  3213. * s2io_set_swapper - to set the swapper controle on the card
  3214. * @sp : private member of the device structure,
  3215. * pointer to the s2io_nic structure.
  3216. * Description: Function to set the swapper control on the card
  3217. * correctly depending on the 'endianness' of the system.
  3218. * Return value:
  3219. * SUCCESS on success and FAILURE on failure.
  3220. */
  3221. static int s2io_set_swapper(struct s2io_nic * sp)
  3222. {
  3223. struct net_device *dev = sp->dev;
  3224. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3225. u64 val64, valt, valr;
  3226. /*
  3227. * Set proper endian settings and verify the same by reading
  3228. * the PIF Feed-back register.
  3229. */
  3230. val64 = readq(&bar0->pif_rd_swapper_fb);
  3231. if (val64 != 0x0123456789ABCDEFULL) {
  3232. int i = 0;
  3233. u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3234. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3235. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3236. 0}; /* FE=0, SE=0 */
  3237. while(i<4) {
  3238. writeq(value[i], &bar0->swapper_ctrl);
  3239. val64 = readq(&bar0->pif_rd_swapper_fb);
  3240. if (val64 == 0x0123456789ABCDEFULL)
  3241. break;
  3242. i++;
  3243. }
  3244. if (i == 4) {
  3245. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3246. dev->name);
  3247. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3248. (unsigned long long) val64);
  3249. return FAILURE;
  3250. }
  3251. valr = value[i];
  3252. } else {
  3253. valr = readq(&bar0->swapper_ctrl);
  3254. }
  3255. valt = 0x0123456789ABCDEFULL;
  3256. writeq(valt, &bar0->xmsi_address);
  3257. val64 = readq(&bar0->xmsi_address);
  3258. if(val64 != valt) {
  3259. int i = 0;
  3260. u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3261. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3262. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3263. 0}; /* FE=0, SE=0 */
  3264. while(i<4) {
  3265. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3266. writeq(valt, &bar0->xmsi_address);
  3267. val64 = readq(&bar0->xmsi_address);
  3268. if(val64 == valt)
  3269. break;
  3270. i++;
  3271. }
  3272. if(i == 4) {
  3273. unsigned long long x = val64;
  3274. DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
  3275. DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
  3276. return FAILURE;
  3277. }
  3278. }
  3279. val64 = readq(&bar0->swapper_ctrl);
  3280. val64 &= 0xFFFF000000000000ULL;
  3281. #ifdef __BIG_ENDIAN
  3282. /*
  3283. * The device by default set to a big endian format, so a
  3284. * big endian driver need not set anything.
  3285. */
  3286. val64 |= (SWAPPER_CTRL_TXP_FE |
  3287. SWAPPER_CTRL_TXP_SE |
  3288. SWAPPER_CTRL_TXD_R_FE |
  3289. SWAPPER_CTRL_TXD_W_FE |
  3290. SWAPPER_CTRL_TXF_R_FE |
  3291. SWAPPER_CTRL_RXD_R_FE |
  3292. SWAPPER_CTRL_RXD_W_FE |
  3293. SWAPPER_CTRL_RXF_W_FE |
  3294. SWAPPER_CTRL_XMSI_FE |
  3295. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3296. if (sp->intr_type == INTA)
  3297. val64 |= SWAPPER_CTRL_XMSI_SE;
  3298. writeq(val64, &bar0->swapper_ctrl);
  3299. #else
  3300. /*
  3301. * Initially we enable all bits to make it accessible by the
  3302. * driver, then we selectively enable only those bits that
  3303. * we want to set.
  3304. */
  3305. val64 |= (SWAPPER_CTRL_TXP_FE |
  3306. SWAPPER_CTRL_TXP_SE |
  3307. SWAPPER_CTRL_TXD_R_FE |
  3308. SWAPPER_CTRL_TXD_R_SE |
  3309. SWAPPER_CTRL_TXD_W_FE |
  3310. SWAPPER_CTRL_TXD_W_SE |
  3311. SWAPPER_CTRL_TXF_R_FE |
  3312. SWAPPER_CTRL_RXD_R_FE |
  3313. SWAPPER_CTRL_RXD_R_SE |
  3314. SWAPPER_CTRL_RXD_W_FE |
  3315. SWAPPER_CTRL_RXD_W_SE |
  3316. SWAPPER_CTRL_RXF_W_FE |
  3317. SWAPPER_CTRL_XMSI_FE |
  3318. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3319. if (sp->intr_type == INTA)
  3320. val64 |= SWAPPER_CTRL_XMSI_SE;
  3321. writeq(val64, &bar0->swapper_ctrl);
  3322. #endif
  3323. val64 = readq(&bar0->swapper_ctrl);
  3324. /*
  3325. * Verifying if endian settings are accurate by reading a
  3326. * feedback register.
  3327. */
  3328. val64 = readq(&bar0->pif_rd_swapper_fb);
  3329. if (val64 != 0x0123456789ABCDEFULL) {
  3330. /* Endian settings are incorrect, calls for another dekko. */
  3331. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3332. dev->name);
  3333. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3334. (unsigned long long) val64);
  3335. return FAILURE;
  3336. }
  3337. return SUCCESS;
  3338. }
  3339. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3340. {
  3341. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3342. u64 val64;
  3343. int ret = 0, cnt = 0;
  3344. do {
  3345. val64 = readq(&bar0->xmsi_access);
  3346. if (!(val64 & BIT(15)))
  3347. break;
  3348. mdelay(1);
  3349. cnt++;
  3350. } while(cnt < 5);
  3351. if (cnt == 5) {
  3352. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3353. ret = 1;
  3354. }
  3355. return ret;
  3356. }
  3357. static void restore_xmsi_data(struct s2io_nic *nic)
  3358. {
  3359. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3360. u64 val64;
  3361. int i;
  3362. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3363. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3364. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3365. val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
  3366. writeq(val64, &bar0->xmsi_access);
  3367. if (wait_for_msix_trans(nic, i)) {
  3368. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3369. continue;
  3370. }
  3371. }
  3372. }
  3373. static void store_xmsi_data(struct s2io_nic *nic)
  3374. {
  3375. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3376. u64 val64, addr, data;
  3377. int i;
  3378. /* Store and display */
  3379. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3380. val64 = (BIT(15) | vBIT(i, 26, 6));
  3381. writeq(val64, &bar0->xmsi_access);
  3382. if (wait_for_msix_trans(nic, i)) {
  3383. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3384. continue;
  3385. }
  3386. addr = readq(&bar0->xmsi_address);
  3387. data = readq(&bar0->xmsi_data);
  3388. if (addr && data) {
  3389. nic->msix_info[i].addr = addr;
  3390. nic->msix_info[i].data = data;
  3391. }
  3392. }
  3393. }
  3394. int s2io_enable_msi(struct s2io_nic *nic)
  3395. {
  3396. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3397. u16 msi_ctrl, msg_val;
  3398. struct config_param *config = &nic->config;
  3399. struct net_device *dev = nic->dev;
  3400. u64 val64, tx_mat, rx_mat;
  3401. int i, err;
  3402. val64 = readq(&bar0->pic_control);
  3403. val64 &= ~BIT(1);
  3404. writeq(val64, &bar0->pic_control);
  3405. err = pci_enable_msi(nic->pdev);
  3406. if (err) {
  3407. DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
  3408. nic->dev->name);
  3409. return err;
  3410. }
  3411. /*
  3412. * Enable MSI and use MSI-1 in stead of the standard MSI-0
  3413. * for interrupt handling.
  3414. */
  3415. pci_read_config_word(nic->pdev, 0x4c, &msg_val);
  3416. msg_val ^= 0x1;
  3417. pci_write_config_word(nic->pdev, 0x4c, msg_val);
  3418. pci_read_config_word(nic->pdev, 0x4c, &msg_val);
  3419. pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
  3420. msi_ctrl |= 0x10;
  3421. pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
  3422. /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
  3423. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3424. for (i=0; i<config->tx_fifo_num; i++) {
  3425. tx_mat |= TX_MAT_SET(i, 1);
  3426. }
  3427. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3428. rx_mat = readq(&bar0->rx_mat);
  3429. for (i=0; i<config->rx_ring_num; i++) {
  3430. rx_mat |= RX_MAT_SET(i, 1);
  3431. }
  3432. writeq(rx_mat, &bar0->rx_mat);
  3433. dev->irq = nic->pdev->irq;
  3434. return 0;
  3435. }
  3436. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3437. {
  3438. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3439. u64 tx_mat, rx_mat;
  3440. u16 msi_control; /* Temp variable */
  3441. int ret, i, j, msix_indx = 1;
  3442. nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
  3443. GFP_KERNEL);
  3444. if (nic->entries == NULL) {
  3445. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
  3446. __FUNCTION__);
  3447. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3448. return -ENOMEM;
  3449. }
  3450. nic->mac_control.stats_info->sw_stat.mem_allocated
  3451. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3452. memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3453. nic->s2io_entries =
  3454. kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
  3455. GFP_KERNEL);
  3456. if (nic->s2io_entries == NULL) {
  3457. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3458. __FUNCTION__);
  3459. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3460. kfree(nic->entries);
  3461. nic->mac_control.stats_info->sw_stat.mem_freed
  3462. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3463. return -ENOMEM;
  3464. }
  3465. nic->mac_control.stats_info->sw_stat.mem_allocated
  3466. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3467. memset(nic->s2io_entries, 0,
  3468. MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3469. for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
  3470. nic->entries[i].entry = i;
  3471. nic->s2io_entries[i].entry = i;
  3472. nic->s2io_entries[i].arg = NULL;
  3473. nic->s2io_entries[i].in_use = 0;
  3474. }
  3475. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3476. for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
  3477. tx_mat |= TX_MAT_SET(i, msix_indx);
  3478. nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
  3479. nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
  3480. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3481. }
  3482. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3483. if (!nic->config.bimodal) {
  3484. rx_mat = readq(&bar0->rx_mat);
  3485. for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
  3486. rx_mat |= RX_MAT_SET(j, msix_indx);
  3487. nic->s2io_entries[msix_indx].arg
  3488. = &nic->mac_control.rings[j];
  3489. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3490. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3491. }
  3492. writeq(rx_mat, &bar0->rx_mat);
  3493. } else {
  3494. tx_mat = readq(&bar0->tx_mat0_n[7]);
  3495. for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
  3496. tx_mat |= TX_MAT_SET(i, msix_indx);
  3497. nic->s2io_entries[msix_indx].arg
  3498. = &nic->mac_control.rings[j];
  3499. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3500. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3501. }
  3502. writeq(tx_mat, &bar0->tx_mat0_n[7]);
  3503. }
  3504. nic->avail_msix_vectors = 0;
  3505. ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
  3506. /* We fail init if error or we get less vectors than min required */
  3507. if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
  3508. nic->avail_msix_vectors = ret;
  3509. ret = pci_enable_msix(nic->pdev, nic->entries, ret);
  3510. }
  3511. if (ret) {
  3512. DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
  3513. kfree(nic->entries);
  3514. nic->mac_control.stats_info->sw_stat.mem_freed
  3515. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3516. kfree(nic->s2io_entries);
  3517. nic->mac_control.stats_info->sw_stat.mem_freed
  3518. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3519. nic->entries = NULL;
  3520. nic->s2io_entries = NULL;
  3521. nic->avail_msix_vectors = 0;
  3522. return -ENOMEM;
  3523. }
  3524. if (!nic->avail_msix_vectors)
  3525. nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
  3526. /*
  3527. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3528. * in the herc NIC. (Temp change, needs to be removed later)
  3529. */
  3530. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3531. msi_control |= 0x1; /* Enable MSI */
  3532. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3533. return 0;
  3534. }
  3535. /* ********************************************************* *
  3536. * Functions defined below concern the OS part of the driver *
  3537. * ********************************************************* */
  3538. /**
  3539. * s2io_open - open entry point of the driver
  3540. * @dev : pointer to the device structure.
  3541. * Description:
  3542. * This function is the open entry point of the driver. It mainly calls a
  3543. * function to allocate Rx buffers and inserts them into the buffer
  3544. * descriptors and then enables the Rx part of the NIC.
  3545. * Return value:
  3546. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3547. * file on failure.
  3548. */
  3549. static int s2io_open(struct net_device *dev)
  3550. {
  3551. struct s2io_nic *sp = dev->priv;
  3552. int err = 0;
  3553. /*
  3554. * Make sure you have link off by default every time
  3555. * Nic is initialized
  3556. */
  3557. netif_carrier_off(dev);
  3558. sp->last_link_state = 0;
  3559. /* Initialize H/W and enable interrupts */
  3560. err = s2io_card_up(sp);
  3561. if (err) {
  3562. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3563. dev->name);
  3564. goto hw_init_failed;
  3565. }
  3566. if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
  3567. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3568. s2io_card_down(sp);
  3569. err = -ENODEV;
  3570. goto hw_init_failed;
  3571. }
  3572. netif_start_queue(dev);
  3573. return 0;
  3574. hw_init_failed:
  3575. if (sp->intr_type == MSI_X) {
  3576. if (sp->entries) {
  3577. kfree(sp->entries);
  3578. sp->mac_control.stats_info->sw_stat.mem_freed
  3579. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3580. }
  3581. if (sp->s2io_entries) {
  3582. kfree(sp->s2io_entries);
  3583. sp->mac_control.stats_info->sw_stat.mem_freed
  3584. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3585. }
  3586. }
  3587. return err;
  3588. }
  3589. /**
  3590. * s2io_close -close entry point of the driver
  3591. * @dev : device pointer.
  3592. * Description:
  3593. * This is the stop entry point of the driver. It needs to undo exactly
  3594. * whatever was done by the open entry point,thus it's usually referred to
  3595. * as the close function.Among other things this function mainly stops the
  3596. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3597. * Return value:
  3598. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3599. * file on failure.
  3600. */
  3601. static int s2io_close(struct net_device *dev)
  3602. {
  3603. struct s2io_nic *sp = dev->priv;
  3604. netif_stop_queue(dev);
  3605. /* Reset card, kill tasklet and free Tx and Rx buffers. */
  3606. s2io_card_down(sp);
  3607. return 0;
  3608. }
  3609. /**
  3610. * s2io_xmit - Tx entry point of te driver
  3611. * @skb : the socket buffer containing the Tx data.
  3612. * @dev : device pointer.
  3613. * Description :
  3614. * This function is the Tx entry point of the driver. S2IO NIC supports
  3615. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3616. * NOTE: when device cant queue the pkt,just the trans_start variable will
  3617. * not be upadted.
  3618. * Return value:
  3619. * 0 on success & 1 on failure.
  3620. */
  3621. static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3622. {
  3623. struct s2io_nic *sp = dev->priv;
  3624. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3625. register u64 val64;
  3626. struct TxD *txdp;
  3627. struct TxFIFO_element __iomem *tx_fifo;
  3628. unsigned long flags;
  3629. u16 vlan_tag = 0;
  3630. int vlan_priority = 0;
  3631. struct mac_info *mac_control;
  3632. struct config_param *config;
  3633. int offload_type;
  3634. mac_control = &sp->mac_control;
  3635. config = &sp->config;
  3636. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3637. if (unlikely(skb->len <= 0)) {
  3638. DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
  3639. dev_kfree_skb_any(skb);
  3640. return 0;
  3641. }
  3642. spin_lock_irqsave(&sp->tx_lock, flags);
  3643. if (atomic_read(&sp->card_state) == CARD_DOWN) {
  3644. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3645. dev->name);
  3646. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3647. dev_kfree_skb(skb);
  3648. return 0;
  3649. }
  3650. queue = 0;
  3651. /* Get Fifo number to Transmit based on vlan priority */
  3652. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3653. vlan_tag = vlan_tx_tag_get(skb);
  3654. vlan_priority = vlan_tag >> 13;
  3655. queue = config->fifo_mapping[vlan_priority];
  3656. }
  3657. put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
  3658. get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
  3659. txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
  3660. list_virt_addr;
  3661. queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
  3662. /* Avoid "put" pointer going beyond "get" pointer */
  3663. if (txdp->Host_Control ||
  3664. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3665. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3666. netif_stop_queue(dev);
  3667. dev_kfree_skb(skb);
  3668. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3669. return 0;
  3670. }
  3671. offload_type = s2io_offload_type(skb);
  3672. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3673. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3674. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3675. }
  3676. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3677. txdp->Control_2 |=
  3678. (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
  3679. TXD_TX_CKO_UDP_EN);
  3680. }
  3681. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3682. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3683. txdp->Control_2 |= config->tx_intr_type;
  3684. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3685. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3686. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3687. }
  3688. frg_len = skb->len - skb->data_len;
  3689. if (offload_type == SKB_GSO_UDP) {
  3690. int ufo_size;
  3691. ufo_size = s2io_udp_mss(skb);
  3692. ufo_size &= ~7;
  3693. txdp->Control_1 |= TXD_UFO_EN;
  3694. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3695. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3696. #ifdef __BIG_ENDIAN
  3697. sp->ufo_in_band_v[put_off] =
  3698. (u64)skb_shinfo(skb)->ip6_frag_id;
  3699. #else
  3700. sp->ufo_in_band_v[put_off] =
  3701. (u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3702. #endif
  3703. txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
  3704. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3705. sp->ufo_in_band_v,
  3706. sizeof(u64), PCI_DMA_TODEVICE);
  3707. txdp++;
  3708. }
  3709. txdp->Buffer_Pointer = pci_map_single
  3710. (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
  3711. txdp->Host_Control = (unsigned long) skb;
  3712. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3713. if (offload_type == SKB_GSO_UDP)
  3714. txdp->Control_1 |= TXD_UFO_EN;
  3715. frg_cnt = skb_shinfo(skb)->nr_frags;
  3716. /* For fragmented SKB. */
  3717. for (i = 0; i < frg_cnt; i++) {
  3718. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3719. /* A '0' length fragment will be ignored */
  3720. if (!frag->size)
  3721. continue;
  3722. txdp++;
  3723. txdp->Buffer_Pointer = (u64) pci_map_page
  3724. (sp->pdev, frag->page, frag->page_offset,
  3725. frag->size, PCI_DMA_TODEVICE);
  3726. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3727. if (offload_type == SKB_GSO_UDP)
  3728. txdp->Control_1 |= TXD_UFO_EN;
  3729. }
  3730. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3731. if (offload_type == SKB_GSO_UDP)
  3732. frg_cnt++; /* as Txd0 was used for inband header */
  3733. tx_fifo = mac_control->tx_FIFO_start[queue];
  3734. val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
  3735. writeq(val64, &tx_fifo->TxDL_Pointer);
  3736. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3737. TX_FIFO_LAST_LIST);
  3738. if (offload_type)
  3739. val64 |= TX_FIFO_SPECIAL_FUNC;
  3740. writeq(val64, &tx_fifo->List_Control);
  3741. mmiowb();
  3742. put_off++;
  3743. if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
  3744. put_off = 0;
  3745. mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
  3746. /* Avoid "put" pointer going beyond "get" pointer */
  3747. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3748. sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
  3749. DBG_PRINT(TX_DBG,
  3750. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3751. put_off, get_off);
  3752. netif_stop_queue(dev);
  3753. }
  3754. mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
  3755. dev->trans_start = jiffies;
  3756. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3757. return 0;
  3758. }
  3759. static void
  3760. s2io_alarm_handle(unsigned long data)
  3761. {
  3762. struct s2io_nic *sp = (struct s2io_nic *)data;
  3763. alarm_intr_handler(sp);
  3764. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3765. }
  3766. static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
  3767. {
  3768. int rxb_size, level;
  3769. if (!sp->lro) {
  3770. rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
  3771. level = rx_buffer_level(sp, rxb_size, rng_n);
  3772. if ((level == PANIC) && (!TASKLET_IN_USE)) {
  3773. int ret;
  3774. DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
  3775. DBG_PRINT(INTR_DBG, "PANIC levels\n");
  3776. if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
  3777. DBG_PRINT(INFO_DBG, "Out of memory in %s",
  3778. __FUNCTION__);
  3779. clear_bit(0, (&sp->tasklet_status));
  3780. return -1;
  3781. }
  3782. clear_bit(0, (&sp->tasklet_status));
  3783. } else if (level == LOW)
  3784. tasklet_schedule(&sp->task);
  3785. } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
  3786. DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
  3787. DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
  3788. }
  3789. return 0;
  3790. }
  3791. static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
  3792. {
  3793. struct net_device *dev = (struct net_device *) dev_id;
  3794. struct s2io_nic *sp = dev->priv;
  3795. int i;
  3796. struct mac_info *mac_control;
  3797. struct config_param *config;
  3798. atomic_inc(&sp->isr_cnt);
  3799. mac_control = &sp->mac_control;
  3800. config = &sp->config;
  3801. DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
  3802. /* If Intr is because of Rx Traffic */
  3803. for (i = 0; i < config->rx_ring_num; i++)
  3804. rx_intr_handler(&mac_control->rings[i]);
  3805. /* If Intr is because of Tx Traffic */
  3806. for (i = 0; i < config->tx_fifo_num; i++)
  3807. tx_intr_handler(&mac_control->fifos[i]);
  3808. /*
  3809. * If the Rx buffer count is below the panic threshold then
  3810. * reallocate the buffers from the interrupt handler itself,
  3811. * else schedule a tasklet to reallocate the buffers.
  3812. */
  3813. for (i = 0; i < config->rx_ring_num; i++)
  3814. s2io_chk_rx_buffers(sp, i);
  3815. atomic_dec(&sp->isr_cnt);
  3816. return IRQ_HANDLED;
  3817. }
  3818. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3819. {
  3820. struct ring_info *ring = (struct ring_info *)dev_id;
  3821. struct s2io_nic *sp = ring->nic;
  3822. atomic_inc(&sp->isr_cnt);
  3823. rx_intr_handler(ring);
  3824. s2io_chk_rx_buffers(sp, ring->ring_no);
  3825. atomic_dec(&sp->isr_cnt);
  3826. return IRQ_HANDLED;
  3827. }
  3828. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3829. {
  3830. struct fifo_info *fifo = (struct fifo_info *)dev_id;
  3831. struct s2io_nic *sp = fifo->nic;
  3832. atomic_inc(&sp->isr_cnt);
  3833. tx_intr_handler(fifo);
  3834. atomic_dec(&sp->isr_cnt);
  3835. return IRQ_HANDLED;
  3836. }
  3837. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3838. {
  3839. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3840. u64 val64;
  3841. val64 = readq(&bar0->pic_int_status);
  3842. if (val64 & PIC_INT_GPIO) {
  3843. val64 = readq(&bar0->gpio_int_reg);
  3844. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3845. (val64 & GPIO_INT_REG_LINK_UP)) {
  3846. /*
  3847. * This is unstable state so clear both up/down
  3848. * interrupt and adapter to re-evaluate the link state.
  3849. */
  3850. val64 |= GPIO_INT_REG_LINK_DOWN;
  3851. val64 |= GPIO_INT_REG_LINK_UP;
  3852. writeq(val64, &bar0->gpio_int_reg);
  3853. val64 = readq(&bar0->gpio_int_mask);
  3854. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3855. GPIO_INT_MASK_LINK_DOWN);
  3856. writeq(val64, &bar0->gpio_int_mask);
  3857. }
  3858. else if (val64 & GPIO_INT_REG_LINK_UP) {
  3859. val64 = readq(&bar0->adapter_status);
  3860. /* Enable Adapter */
  3861. val64 = readq(&bar0->adapter_control);
  3862. val64 |= ADAPTER_CNTL_EN;
  3863. writeq(val64, &bar0->adapter_control);
  3864. val64 |= ADAPTER_LED_ON;
  3865. writeq(val64, &bar0->adapter_control);
  3866. if (!sp->device_enabled_once)
  3867. sp->device_enabled_once = 1;
  3868. s2io_link(sp, LINK_UP);
  3869. /*
  3870. * unmask link down interrupt and mask link-up
  3871. * intr
  3872. */
  3873. val64 = readq(&bar0->gpio_int_mask);
  3874. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3875. val64 |= GPIO_INT_MASK_LINK_UP;
  3876. writeq(val64, &bar0->gpio_int_mask);
  3877. }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3878. val64 = readq(&bar0->adapter_status);
  3879. s2io_link(sp, LINK_DOWN);
  3880. /* Link is down so unmaks link up interrupt */
  3881. val64 = readq(&bar0->gpio_int_mask);
  3882. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3883. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3884. writeq(val64, &bar0->gpio_int_mask);
  3885. /* turn off LED */
  3886. val64 = readq(&bar0->adapter_control);
  3887. val64 = val64 &(~ADAPTER_LED_ON);
  3888. writeq(val64, &bar0->adapter_control);
  3889. }
  3890. }
  3891. val64 = readq(&bar0->gpio_int_mask);
  3892. }
  3893. /**
  3894. * s2io_isr - ISR handler of the device .
  3895. * @irq: the irq of the device.
  3896. * @dev_id: a void pointer to the dev structure of the NIC.
  3897. * Description: This function is the ISR handler of the device. It
  3898. * identifies the reason for the interrupt and calls the relevant
  3899. * service routines. As a contongency measure, this ISR allocates the
  3900. * recv buffers, if their numbers are below the panic value which is
  3901. * presently set to 25% of the original number of rcv buffers allocated.
  3902. * Return value:
  3903. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  3904. * IRQ_NONE: will be returned if interrupt is not from our device
  3905. */
  3906. static irqreturn_t s2io_isr(int irq, void *dev_id)
  3907. {
  3908. struct net_device *dev = (struct net_device *) dev_id;
  3909. struct s2io_nic *sp = dev->priv;
  3910. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3911. int i;
  3912. u64 reason = 0;
  3913. struct mac_info *mac_control;
  3914. struct config_param *config;
  3915. /* Pretend we handled any irq's from a disconnected card */
  3916. if (pci_channel_offline(sp->pdev))
  3917. return IRQ_NONE;
  3918. atomic_inc(&sp->isr_cnt);
  3919. mac_control = &sp->mac_control;
  3920. config = &sp->config;
  3921. /*
  3922. * Identify the cause for interrupt and call the appropriate
  3923. * interrupt handler. Causes for the interrupt could be;
  3924. * 1. Rx of packet.
  3925. * 2. Tx complete.
  3926. * 3. Link down.
  3927. * 4. Error in any functional blocks of the NIC.
  3928. */
  3929. reason = readq(&bar0->general_int_status);
  3930. if (!reason) {
  3931. /* The interrupt was not raised by us. */
  3932. atomic_dec(&sp->isr_cnt);
  3933. return IRQ_NONE;
  3934. }
  3935. else if (unlikely(reason == S2IO_MINUS_ONE) ) {
  3936. /* Disable device and get out */
  3937. atomic_dec(&sp->isr_cnt);
  3938. return IRQ_NONE;
  3939. }
  3940. if (napi) {
  3941. if (reason & GEN_INTR_RXTRAFFIC) {
  3942. if ( likely ( netif_rx_schedule_prep(dev)) ) {
  3943. __netif_rx_schedule(dev);
  3944. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
  3945. }
  3946. else
  3947. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  3948. }
  3949. } else {
  3950. /*
  3951. * Rx handler is called by default, without checking for the
  3952. * cause of interrupt.
  3953. * rx_traffic_int reg is an R1 register, writing all 1's
  3954. * will ensure that the actual interrupt causing bit get's
  3955. * cleared and hence a read can be avoided.
  3956. */
  3957. if (reason & GEN_INTR_RXTRAFFIC)
  3958. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  3959. for (i = 0; i < config->rx_ring_num; i++) {
  3960. rx_intr_handler(&mac_control->rings[i]);
  3961. }
  3962. }
  3963. /*
  3964. * tx_traffic_int reg is an R1 register, writing all 1's
  3965. * will ensure that the actual interrupt causing bit get's
  3966. * cleared and hence a read can be avoided.
  3967. */
  3968. if (reason & GEN_INTR_TXTRAFFIC)
  3969. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  3970. for (i = 0; i < config->tx_fifo_num; i++)
  3971. tx_intr_handler(&mac_control->fifos[i]);
  3972. if (reason & GEN_INTR_TXPIC)
  3973. s2io_txpic_intr_handle(sp);
  3974. /*
  3975. * If the Rx buffer count is below the panic threshold then
  3976. * reallocate the buffers from the interrupt handler itself,
  3977. * else schedule a tasklet to reallocate the buffers.
  3978. */
  3979. if (!napi) {
  3980. for (i = 0; i < config->rx_ring_num; i++)
  3981. s2io_chk_rx_buffers(sp, i);
  3982. }
  3983. writeq(0, &bar0->general_int_mask);
  3984. readl(&bar0->general_int_status);
  3985. atomic_dec(&sp->isr_cnt);
  3986. return IRQ_HANDLED;
  3987. }
  3988. /**
  3989. * s2io_updt_stats -
  3990. */
  3991. static void s2io_updt_stats(struct s2io_nic *sp)
  3992. {
  3993. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3994. u64 val64;
  3995. int cnt = 0;
  3996. if (atomic_read(&sp->card_state) == CARD_UP) {
  3997. /* Apprx 30us on a 133 MHz bus */
  3998. val64 = SET_UPDT_CLICKS(10) |
  3999. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4000. writeq(val64, &bar0->stat_cfg);
  4001. do {
  4002. udelay(100);
  4003. val64 = readq(&bar0->stat_cfg);
  4004. if (!(val64 & BIT(0)))
  4005. break;
  4006. cnt++;
  4007. if (cnt == 5)
  4008. break; /* Updt failed */
  4009. } while(1);
  4010. }
  4011. }
  4012. /**
  4013. * s2io_get_stats - Updates the device statistics structure.
  4014. * @dev : pointer to the device structure.
  4015. * Description:
  4016. * This function updates the device statistics structure in the s2io_nic
  4017. * structure and returns a pointer to the same.
  4018. * Return value:
  4019. * pointer to the updated net_device_stats structure.
  4020. */
  4021. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4022. {
  4023. struct s2io_nic *sp = dev->priv;
  4024. struct mac_info *mac_control;
  4025. struct config_param *config;
  4026. mac_control = &sp->mac_control;
  4027. config = &sp->config;
  4028. /* Configure Stats for immediate updt */
  4029. s2io_updt_stats(sp);
  4030. sp->stats.tx_packets =
  4031. le32_to_cpu(mac_control->stats_info->tmac_frms);
  4032. sp->stats.tx_errors =
  4033. le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
  4034. sp->stats.rx_errors =
  4035. le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
  4036. sp->stats.multicast =
  4037. le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
  4038. sp->stats.rx_length_errors =
  4039. le64_to_cpu(mac_control->stats_info->rmac_long_frms);
  4040. return (&sp->stats);
  4041. }
  4042. /**
  4043. * s2io_set_multicast - entry point for multicast address enable/disable.
  4044. * @dev : pointer to the device structure
  4045. * Description:
  4046. * This function is a driver entry point which gets called by the kernel
  4047. * whenever multicast addresses must be enabled/disabled. This also gets
  4048. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4049. * determine, if multicast address must be enabled or if promiscuous mode
  4050. * is to be disabled etc.
  4051. * Return value:
  4052. * void.
  4053. */
  4054. static void s2io_set_multicast(struct net_device *dev)
  4055. {
  4056. int i, j, prev_cnt;
  4057. struct dev_mc_list *mclist;
  4058. struct s2io_nic *sp = dev->priv;
  4059. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4060. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4061. 0xfeffffffffffULL;
  4062. u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
  4063. void __iomem *add;
  4064. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4065. /* Enable all Multicast addresses */
  4066. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4067. &bar0->rmac_addr_data0_mem);
  4068. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4069. &bar0->rmac_addr_data1_mem);
  4070. val64 = RMAC_ADDR_CMD_MEM_WE |
  4071. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4072. RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
  4073. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4074. /* Wait till command completes */
  4075. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4076. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4077. S2IO_BIT_RESET);
  4078. sp->m_cast_flg = 1;
  4079. sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
  4080. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4081. /* Disable all Multicast addresses */
  4082. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4083. &bar0->rmac_addr_data0_mem);
  4084. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4085. &bar0->rmac_addr_data1_mem);
  4086. val64 = RMAC_ADDR_CMD_MEM_WE |
  4087. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4088. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4089. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4090. /* Wait till command completes */
  4091. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4092. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4093. S2IO_BIT_RESET);
  4094. sp->m_cast_flg = 0;
  4095. sp->all_multi_pos = 0;
  4096. }
  4097. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4098. /* Put the NIC into promiscuous mode */
  4099. add = &bar0->mac_cfg;
  4100. val64 = readq(&bar0->mac_cfg);
  4101. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4102. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4103. writel((u32) val64, add);
  4104. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4105. writel((u32) (val64 >> 32), (add + 4));
  4106. if (vlan_tag_strip != 1) {
  4107. val64 = readq(&bar0->rx_pa_cfg);
  4108. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4109. writeq(val64, &bar0->rx_pa_cfg);
  4110. vlan_strip_flag = 0;
  4111. }
  4112. val64 = readq(&bar0->mac_cfg);
  4113. sp->promisc_flg = 1;
  4114. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4115. dev->name);
  4116. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4117. /* Remove the NIC from promiscuous mode */
  4118. add = &bar0->mac_cfg;
  4119. val64 = readq(&bar0->mac_cfg);
  4120. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4121. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4122. writel((u32) val64, add);
  4123. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4124. writel((u32) (val64 >> 32), (add + 4));
  4125. if (vlan_tag_strip != 0) {
  4126. val64 = readq(&bar0->rx_pa_cfg);
  4127. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4128. writeq(val64, &bar0->rx_pa_cfg);
  4129. vlan_strip_flag = 1;
  4130. }
  4131. val64 = readq(&bar0->mac_cfg);
  4132. sp->promisc_flg = 0;
  4133. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
  4134. dev->name);
  4135. }
  4136. /* Update individual M_CAST address list */
  4137. if ((!sp->m_cast_flg) && dev->mc_count) {
  4138. if (dev->mc_count >
  4139. (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
  4140. DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
  4141. dev->name);
  4142. DBG_PRINT(ERR_DBG, "can be added, please enable ");
  4143. DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
  4144. return;
  4145. }
  4146. prev_cnt = sp->mc_addr_count;
  4147. sp->mc_addr_count = dev->mc_count;
  4148. /* Clear out the previous list of Mc in the H/W. */
  4149. for (i = 0; i < prev_cnt; i++) {
  4150. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4151. &bar0->rmac_addr_data0_mem);
  4152. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4153. &bar0->rmac_addr_data1_mem);
  4154. val64 = RMAC_ADDR_CMD_MEM_WE |
  4155. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4156. RMAC_ADDR_CMD_MEM_OFFSET
  4157. (MAC_MC_ADDR_START_OFFSET + i);
  4158. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4159. /* Wait for command completes */
  4160. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4161. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4162. S2IO_BIT_RESET)) {
  4163. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4164. dev->name);
  4165. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4166. return;
  4167. }
  4168. }
  4169. /* Create the new Rx filter list and update the same in H/W. */
  4170. for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
  4171. i++, mclist = mclist->next) {
  4172. memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
  4173. ETH_ALEN);
  4174. mac_addr = 0;
  4175. for (j = 0; j < ETH_ALEN; j++) {
  4176. mac_addr |= mclist->dmi_addr[j];
  4177. mac_addr <<= 8;
  4178. }
  4179. mac_addr >>= 8;
  4180. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4181. &bar0->rmac_addr_data0_mem);
  4182. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4183. &bar0->rmac_addr_data1_mem);
  4184. val64 = RMAC_ADDR_CMD_MEM_WE |
  4185. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4186. RMAC_ADDR_CMD_MEM_OFFSET
  4187. (i + MAC_MC_ADDR_START_OFFSET);
  4188. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4189. /* Wait for command completes */
  4190. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4191. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4192. S2IO_BIT_RESET)) {
  4193. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4194. dev->name);
  4195. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4196. return;
  4197. }
  4198. }
  4199. }
  4200. }
  4201. /**
  4202. * s2io_set_mac_addr - Programs the Xframe mac address
  4203. * @dev : pointer to the device structure.
  4204. * @addr: a uchar pointer to the new mac address which is to be set.
  4205. * Description : This procedure will program the Xframe to receive
  4206. * frames with new Mac Address
  4207. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4208. * as defined in errno.h file on failure.
  4209. */
  4210. static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
  4211. {
  4212. struct s2io_nic *sp = dev->priv;
  4213. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4214. register u64 val64, mac_addr = 0;
  4215. int i;
  4216. u64 old_mac_addr = 0;
  4217. /*
  4218. * Set the new MAC address as the new unicast filter and reflect this
  4219. * change on the device address registered with the OS. It will be
  4220. * at offset 0.
  4221. */
  4222. for (i = 0; i < ETH_ALEN; i++) {
  4223. mac_addr <<= 8;
  4224. mac_addr |= addr[i];
  4225. old_mac_addr <<= 8;
  4226. old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
  4227. }
  4228. if(0 == mac_addr)
  4229. return SUCCESS;
  4230. /* Update the internal structure with this new mac address */
  4231. if(mac_addr != old_mac_addr) {
  4232. memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
  4233. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
  4234. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
  4235. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
  4236. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
  4237. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
  4238. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
  4239. }
  4240. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4241. &bar0->rmac_addr_data0_mem);
  4242. val64 =
  4243. RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4244. RMAC_ADDR_CMD_MEM_OFFSET(0);
  4245. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4246. /* Wait till command completes */
  4247. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4248. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
  4249. DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
  4250. return FAILURE;
  4251. }
  4252. return SUCCESS;
  4253. }
  4254. /**
  4255. * s2io_ethtool_sset - Sets different link parameters.
  4256. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4257. * @info: pointer to the structure with parameters given by ethtool to set
  4258. * link information.
  4259. * Description:
  4260. * The function sets different link parameters provided by the user onto
  4261. * the NIC.
  4262. * Return value:
  4263. * 0 on success.
  4264. */
  4265. static int s2io_ethtool_sset(struct net_device *dev,
  4266. struct ethtool_cmd *info)
  4267. {
  4268. struct s2io_nic *sp = dev->priv;
  4269. if ((info->autoneg == AUTONEG_ENABLE) ||
  4270. (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
  4271. return -EINVAL;
  4272. else {
  4273. s2io_close(sp->dev);
  4274. s2io_open(sp->dev);
  4275. }
  4276. return 0;
  4277. }
  4278. /**
  4279. * s2io_ethtol_gset - Return link specific information.
  4280. * @sp : private member of the device structure, pointer to the
  4281. * s2io_nic structure.
  4282. * @info : pointer to the structure with parameters given by ethtool
  4283. * to return link information.
  4284. * Description:
  4285. * Returns link specific information like speed, duplex etc.. to ethtool.
  4286. * Return value :
  4287. * return 0 on success.
  4288. */
  4289. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4290. {
  4291. struct s2io_nic *sp = dev->priv;
  4292. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4293. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4294. info->port = PORT_FIBRE;
  4295. /* info->transceiver?? TODO */
  4296. if (netif_carrier_ok(sp->dev)) {
  4297. info->speed = 10000;
  4298. info->duplex = DUPLEX_FULL;
  4299. } else {
  4300. info->speed = -1;
  4301. info->duplex = -1;
  4302. }
  4303. info->autoneg = AUTONEG_DISABLE;
  4304. return 0;
  4305. }
  4306. /**
  4307. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4308. * @sp : private member of the device structure, which is a pointer to the
  4309. * s2io_nic structure.
  4310. * @info : pointer to the structure with parameters given by ethtool to
  4311. * return driver information.
  4312. * Description:
  4313. * Returns driver specefic information like name, version etc.. to ethtool.
  4314. * Return value:
  4315. * void
  4316. */
  4317. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4318. struct ethtool_drvinfo *info)
  4319. {
  4320. struct s2io_nic *sp = dev->priv;
  4321. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4322. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4323. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4324. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4325. info->regdump_len = XENA_REG_SPACE;
  4326. info->eedump_len = XENA_EEPROM_SPACE;
  4327. info->testinfo_len = S2IO_TEST_LEN;
  4328. if (sp->device_type == XFRAME_I_DEVICE)
  4329. info->n_stats = XFRAME_I_STAT_LEN;
  4330. else
  4331. info->n_stats = XFRAME_II_STAT_LEN;
  4332. }
  4333. /**
  4334. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4335. * @sp: private member of the device structure, which is a pointer to the
  4336. * s2io_nic structure.
  4337. * @regs : pointer to the structure with parameters given by ethtool for
  4338. * dumping the registers.
  4339. * @reg_space: The input argumnet into which all the registers are dumped.
  4340. * Description:
  4341. * Dumps the entire register space of xFrame NIC into the user given
  4342. * buffer area.
  4343. * Return value :
  4344. * void .
  4345. */
  4346. static void s2io_ethtool_gregs(struct net_device *dev,
  4347. struct ethtool_regs *regs, void *space)
  4348. {
  4349. int i;
  4350. u64 reg;
  4351. u8 *reg_space = (u8 *) space;
  4352. struct s2io_nic *sp = dev->priv;
  4353. regs->len = XENA_REG_SPACE;
  4354. regs->version = sp->pdev->subsystem_device;
  4355. for (i = 0; i < regs->len; i += 8) {
  4356. reg = readq(sp->bar0 + i);
  4357. memcpy((reg_space + i), &reg, 8);
  4358. }
  4359. }
  4360. /**
  4361. * s2io_phy_id - timer function that alternates adapter LED.
  4362. * @data : address of the private member of the device structure, which
  4363. * is a pointer to the s2io_nic structure, provided as an u32.
  4364. * Description: This is actually the timer function that alternates the
  4365. * adapter LED bit of the adapter control bit to set/reset every time on
  4366. * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
  4367. * once every second.
  4368. */
  4369. static void s2io_phy_id(unsigned long data)
  4370. {
  4371. struct s2io_nic *sp = (struct s2io_nic *) data;
  4372. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4373. u64 val64 = 0;
  4374. u16 subid;
  4375. subid = sp->pdev->subsystem_device;
  4376. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4377. ((subid & 0xFF) >= 0x07)) {
  4378. val64 = readq(&bar0->gpio_control);
  4379. val64 ^= GPIO_CTRL_GPIO_0;
  4380. writeq(val64, &bar0->gpio_control);
  4381. } else {
  4382. val64 = readq(&bar0->adapter_control);
  4383. val64 ^= ADAPTER_LED_ON;
  4384. writeq(val64, &bar0->adapter_control);
  4385. }
  4386. mod_timer(&sp->id_timer, jiffies + HZ / 2);
  4387. }
  4388. /**
  4389. * s2io_ethtool_idnic - To physically identify the nic on the system.
  4390. * @sp : private member of the device structure, which is a pointer to the
  4391. * s2io_nic structure.
  4392. * @id : pointer to the structure with identification parameters given by
  4393. * ethtool.
  4394. * Description: Used to physically identify the NIC on the system.
  4395. * The Link LED will blink for a time specified by the user for
  4396. * identification.
  4397. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4398. * identification is possible only if it's link is up.
  4399. * Return value:
  4400. * int , returns 0 on success
  4401. */
  4402. static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
  4403. {
  4404. u64 val64 = 0, last_gpio_ctrl_val;
  4405. struct s2io_nic *sp = dev->priv;
  4406. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4407. u16 subid;
  4408. subid = sp->pdev->subsystem_device;
  4409. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4410. if ((sp->device_type == XFRAME_I_DEVICE) &&
  4411. ((subid & 0xFF) < 0x07)) {
  4412. val64 = readq(&bar0->adapter_control);
  4413. if (!(val64 & ADAPTER_CNTL_EN)) {
  4414. printk(KERN_ERR
  4415. "Adapter Link down, cannot blink LED\n");
  4416. return -EFAULT;
  4417. }
  4418. }
  4419. if (sp->id_timer.function == NULL) {
  4420. init_timer(&sp->id_timer);
  4421. sp->id_timer.function = s2io_phy_id;
  4422. sp->id_timer.data = (unsigned long) sp;
  4423. }
  4424. mod_timer(&sp->id_timer, jiffies);
  4425. if (data)
  4426. msleep_interruptible(data * HZ);
  4427. else
  4428. msleep_interruptible(MAX_FLICKER_TIME);
  4429. del_timer_sync(&sp->id_timer);
  4430. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
  4431. writeq(last_gpio_ctrl_val, &bar0->gpio_control);
  4432. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4433. }
  4434. return 0;
  4435. }
  4436. static void s2io_ethtool_gringparam(struct net_device *dev,
  4437. struct ethtool_ringparam *ering)
  4438. {
  4439. struct s2io_nic *sp = dev->priv;
  4440. int i,tx_desc_count=0,rx_desc_count=0;
  4441. if (sp->rxd_mode == RXD_MODE_1)
  4442. ering->rx_max_pending = MAX_RX_DESC_1;
  4443. else if (sp->rxd_mode == RXD_MODE_3B)
  4444. ering->rx_max_pending = MAX_RX_DESC_2;
  4445. else if (sp->rxd_mode == RXD_MODE_3A)
  4446. ering->rx_max_pending = MAX_RX_DESC_3;
  4447. ering->tx_max_pending = MAX_TX_DESC;
  4448. for (i = 0 ; i < sp->config.tx_fifo_num ; i++) {
  4449. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4450. }
  4451. DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
  4452. ering->tx_pending = tx_desc_count;
  4453. rx_desc_count = 0;
  4454. for (i = 0 ; i < sp->config.rx_ring_num ; i++) {
  4455. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4456. }
  4457. ering->rx_pending = rx_desc_count;
  4458. ering->rx_mini_max_pending = 0;
  4459. ering->rx_mini_pending = 0;
  4460. if(sp->rxd_mode == RXD_MODE_1)
  4461. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4462. else if (sp->rxd_mode == RXD_MODE_3B)
  4463. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4464. ering->rx_jumbo_pending = rx_desc_count;
  4465. }
  4466. /**
  4467. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4468. * @sp : private member of the device structure, which is a pointer to the
  4469. * s2io_nic structure.
  4470. * @ep : pointer to the structure with pause parameters given by ethtool.
  4471. * Description:
  4472. * Returns the Pause frame generation and reception capability of the NIC.
  4473. * Return value:
  4474. * void
  4475. */
  4476. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4477. struct ethtool_pauseparam *ep)
  4478. {
  4479. u64 val64;
  4480. struct s2io_nic *sp = dev->priv;
  4481. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4482. val64 = readq(&bar0->rmac_pause_cfg);
  4483. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4484. ep->tx_pause = TRUE;
  4485. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4486. ep->rx_pause = TRUE;
  4487. ep->autoneg = FALSE;
  4488. }
  4489. /**
  4490. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4491. * @sp : private member of the device structure, which is a pointer to the
  4492. * s2io_nic structure.
  4493. * @ep : pointer to the structure with pause parameters given by ethtool.
  4494. * Description:
  4495. * It can be used to set or reset Pause frame generation or reception
  4496. * support of the NIC.
  4497. * Return value:
  4498. * int, returns 0 on Success
  4499. */
  4500. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4501. struct ethtool_pauseparam *ep)
  4502. {
  4503. u64 val64;
  4504. struct s2io_nic *sp = dev->priv;
  4505. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4506. val64 = readq(&bar0->rmac_pause_cfg);
  4507. if (ep->tx_pause)
  4508. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4509. else
  4510. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4511. if (ep->rx_pause)
  4512. val64 |= RMAC_PAUSE_RX_ENABLE;
  4513. else
  4514. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4515. writeq(val64, &bar0->rmac_pause_cfg);
  4516. return 0;
  4517. }
  4518. /**
  4519. * read_eeprom - reads 4 bytes of data from user given offset.
  4520. * @sp : private member of the device structure, which is a pointer to the
  4521. * s2io_nic structure.
  4522. * @off : offset at which the data must be written
  4523. * @data : Its an output parameter where the data read at the given
  4524. * offset is stored.
  4525. * Description:
  4526. * Will read 4 bytes of data from the user given offset and return the
  4527. * read data.
  4528. * NOTE: Will allow to read only part of the EEPROM visible through the
  4529. * I2C bus.
  4530. * Return value:
  4531. * -1 on failure and 0 on success.
  4532. */
  4533. #define S2IO_DEV_ID 5
  4534. static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
  4535. {
  4536. int ret = -1;
  4537. u32 exit_cnt = 0;
  4538. u64 val64;
  4539. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4540. if (sp->device_type == XFRAME_I_DEVICE) {
  4541. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4542. I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
  4543. I2C_CONTROL_CNTL_START;
  4544. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4545. while (exit_cnt < 5) {
  4546. val64 = readq(&bar0->i2c_control);
  4547. if (I2C_CONTROL_CNTL_END(val64)) {
  4548. *data = I2C_CONTROL_GET_DATA(val64);
  4549. ret = 0;
  4550. break;
  4551. }
  4552. msleep(50);
  4553. exit_cnt++;
  4554. }
  4555. }
  4556. if (sp->device_type == XFRAME_II_DEVICE) {
  4557. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4558. SPI_CONTROL_BYTECNT(0x3) |
  4559. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  4560. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4561. val64 |= SPI_CONTROL_REQ;
  4562. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4563. while (exit_cnt < 5) {
  4564. val64 = readq(&bar0->spi_control);
  4565. if (val64 & SPI_CONTROL_NACK) {
  4566. ret = 1;
  4567. break;
  4568. } else if (val64 & SPI_CONTROL_DONE) {
  4569. *data = readq(&bar0->spi_data);
  4570. *data &= 0xffffff;
  4571. ret = 0;
  4572. break;
  4573. }
  4574. msleep(50);
  4575. exit_cnt++;
  4576. }
  4577. }
  4578. return ret;
  4579. }
  4580. /**
  4581. * write_eeprom - actually writes the relevant part of the data value.
  4582. * @sp : private member of the device structure, which is a pointer to the
  4583. * s2io_nic structure.
  4584. * @off : offset at which the data must be written
  4585. * @data : The data that is to be written
  4586. * @cnt : Number of bytes of the data that are actually to be written into
  4587. * the Eeprom. (max of 3)
  4588. * Description:
  4589. * Actually writes the relevant part of the data value into the Eeprom
  4590. * through the I2C bus.
  4591. * Return value:
  4592. * 0 on success, -1 on failure.
  4593. */
  4594. static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
  4595. {
  4596. int exit_cnt = 0, ret = -1;
  4597. u64 val64;
  4598. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4599. if (sp->device_type == XFRAME_I_DEVICE) {
  4600. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4601. I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
  4602. I2C_CONTROL_CNTL_START;
  4603. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4604. while (exit_cnt < 5) {
  4605. val64 = readq(&bar0->i2c_control);
  4606. if (I2C_CONTROL_CNTL_END(val64)) {
  4607. if (!(val64 & I2C_CONTROL_NACK))
  4608. ret = 0;
  4609. break;
  4610. }
  4611. msleep(50);
  4612. exit_cnt++;
  4613. }
  4614. }
  4615. if (sp->device_type == XFRAME_II_DEVICE) {
  4616. int write_cnt = (cnt == 8) ? 0 : cnt;
  4617. writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
  4618. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4619. SPI_CONTROL_BYTECNT(write_cnt) |
  4620. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  4621. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4622. val64 |= SPI_CONTROL_REQ;
  4623. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4624. while (exit_cnt < 5) {
  4625. val64 = readq(&bar0->spi_control);
  4626. if (val64 & SPI_CONTROL_NACK) {
  4627. ret = 1;
  4628. break;
  4629. } else if (val64 & SPI_CONTROL_DONE) {
  4630. ret = 0;
  4631. break;
  4632. }
  4633. msleep(50);
  4634. exit_cnt++;
  4635. }
  4636. }
  4637. return ret;
  4638. }
  4639. static void s2io_vpd_read(struct s2io_nic *nic)
  4640. {
  4641. u8 *vpd_data;
  4642. u8 data;
  4643. int i=0, cnt, fail = 0;
  4644. int vpd_addr = 0x80;
  4645. if (nic->device_type == XFRAME_II_DEVICE) {
  4646. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  4647. vpd_addr = 0x80;
  4648. }
  4649. else {
  4650. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  4651. vpd_addr = 0x50;
  4652. }
  4653. strcpy(nic->serial_num, "NOT AVAILABLE");
  4654. vpd_data = kmalloc(256, GFP_KERNEL);
  4655. if (!vpd_data) {
  4656. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  4657. return;
  4658. }
  4659. nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
  4660. for (i = 0; i < 256; i +=4 ) {
  4661. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  4662. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  4663. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  4664. for (cnt = 0; cnt <5; cnt++) {
  4665. msleep(2);
  4666. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  4667. if (data == 0x80)
  4668. break;
  4669. }
  4670. if (cnt >= 5) {
  4671. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  4672. fail = 1;
  4673. break;
  4674. }
  4675. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  4676. (u32 *)&vpd_data[i]);
  4677. }
  4678. if(!fail) {
  4679. /* read serial number of adapter */
  4680. for (cnt = 0; cnt < 256; cnt++) {
  4681. if ((vpd_data[cnt] == 'S') &&
  4682. (vpd_data[cnt+1] == 'N') &&
  4683. (vpd_data[cnt+2] < VPD_STRING_LEN)) {
  4684. memset(nic->serial_num, 0, VPD_STRING_LEN);
  4685. memcpy(nic->serial_num, &vpd_data[cnt + 3],
  4686. vpd_data[cnt+2]);
  4687. break;
  4688. }
  4689. }
  4690. }
  4691. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  4692. memset(nic->product_name, 0, vpd_data[1]);
  4693. memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
  4694. }
  4695. kfree(vpd_data);
  4696. nic->mac_control.stats_info->sw_stat.mem_freed += 256;
  4697. }
  4698. /**
  4699. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  4700. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4701. * @eeprom : pointer to the user level structure provided by ethtool,
  4702. * containing all relevant information.
  4703. * @data_buf : user defined value to be written into Eeprom.
  4704. * Description: Reads the values stored in the Eeprom at given offset
  4705. * for a given length. Stores these values int the input argument data
  4706. * buffer 'data_buf' and returns these to the caller (ethtool.)
  4707. * Return value:
  4708. * int 0 on success
  4709. */
  4710. static int s2io_ethtool_geeprom(struct net_device *dev,
  4711. struct ethtool_eeprom *eeprom, u8 * data_buf)
  4712. {
  4713. u32 i, valid;
  4714. u64 data;
  4715. struct s2io_nic *sp = dev->priv;
  4716. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  4717. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  4718. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  4719. for (i = 0; i < eeprom->len; i += 4) {
  4720. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  4721. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  4722. return -EFAULT;
  4723. }
  4724. valid = INV(data);
  4725. memcpy((data_buf + i), &valid, 4);
  4726. }
  4727. return 0;
  4728. }
  4729. /**
  4730. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  4731. * @sp : private member of the device structure, which is a pointer to the
  4732. * s2io_nic structure.
  4733. * @eeprom : pointer to the user level structure provided by ethtool,
  4734. * containing all relevant information.
  4735. * @data_buf ; user defined value to be written into Eeprom.
  4736. * Description:
  4737. * Tries to write the user provided value in the Eeprom, at the offset
  4738. * given by the user.
  4739. * Return value:
  4740. * 0 on success, -EFAULT on failure.
  4741. */
  4742. static int s2io_ethtool_seeprom(struct net_device *dev,
  4743. struct ethtool_eeprom *eeprom,
  4744. u8 * data_buf)
  4745. {
  4746. int len = eeprom->len, cnt = 0;
  4747. u64 valid = 0, data;
  4748. struct s2io_nic *sp = dev->priv;
  4749. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  4750. DBG_PRINT(ERR_DBG,
  4751. "ETHTOOL_WRITE_EEPROM Err: Magic value ");
  4752. DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
  4753. eeprom->magic);
  4754. return -EFAULT;
  4755. }
  4756. while (len) {
  4757. data = (u32) data_buf[cnt] & 0x000000FF;
  4758. if (data) {
  4759. valid = (u32) (data << 24);
  4760. } else
  4761. valid = data;
  4762. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  4763. DBG_PRINT(ERR_DBG,
  4764. "ETHTOOL_WRITE_EEPROM Err: Cannot ");
  4765. DBG_PRINT(ERR_DBG,
  4766. "write into the specified offset\n");
  4767. return -EFAULT;
  4768. }
  4769. cnt++;
  4770. len--;
  4771. }
  4772. return 0;
  4773. }
  4774. /**
  4775. * s2io_register_test - reads and writes into all clock domains.
  4776. * @sp : private member of the device structure, which is a pointer to the
  4777. * s2io_nic structure.
  4778. * @data : variable that returns the result of each of the test conducted b
  4779. * by the driver.
  4780. * Description:
  4781. * Read and write into all clock domains. The NIC has 3 clock domains,
  4782. * see that registers in all the three regions are accessible.
  4783. * Return value:
  4784. * 0 on success.
  4785. */
  4786. static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
  4787. {
  4788. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4789. u64 val64 = 0, exp_val;
  4790. int fail = 0;
  4791. val64 = readq(&bar0->pif_rd_swapper_fb);
  4792. if (val64 != 0x123456789abcdefULL) {
  4793. fail = 1;
  4794. DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
  4795. }
  4796. val64 = readq(&bar0->rmac_pause_cfg);
  4797. if (val64 != 0xc000ffff00000000ULL) {
  4798. fail = 1;
  4799. DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
  4800. }
  4801. val64 = readq(&bar0->rx_queue_cfg);
  4802. if (sp->device_type == XFRAME_II_DEVICE)
  4803. exp_val = 0x0404040404040404ULL;
  4804. else
  4805. exp_val = 0x0808080808080808ULL;
  4806. if (val64 != exp_val) {
  4807. fail = 1;
  4808. DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
  4809. }
  4810. val64 = readq(&bar0->xgxs_efifo_cfg);
  4811. if (val64 != 0x000000001923141EULL) {
  4812. fail = 1;
  4813. DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
  4814. }
  4815. val64 = 0x5A5A5A5A5A5A5A5AULL;
  4816. writeq(val64, &bar0->xmsi_data);
  4817. val64 = readq(&bar0->xmsi_data);
  4818. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  4819. fail = 1;
  4820. DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
  4821. }
  4822. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  4823. writeq(val64, &bar0->xmsi_data);
  4824. val64 = readq(&bar0->xmsi_data);
  4825. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  4826. fail = 1;
  4827. DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
  4828. }
  4829. *data = fail;
  4830. return fail;
  4831. }
  4832. /**
  4833. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  4834. * @sp : private member of the device structure, which is a pointer to the
  4835. * s2io_nic structure.
  4836. * @data:variable that returns the result of each of the test conducted by
  4837. * the driver.
  4838. * Description:
  4839. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  4840. * register.
  4841. * Return value:
  4842. * 0 on success.
  4843. */
  4844. static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
  4845. {
  4846. int fail = 0;
  4847. u64 ret_data, org_4F0, org_7F0;
  4848. u8 saved_4F0 = 0, saved_7F0 = 0;
  4849. struct net_device *dev = sp->dev;
  4850. /* Test Write Error at offset 0 */
  4851. /* Note that SPI interface allows write access to all areas
  4852. * of EEPROM. Hence doing all negative testing only for Xframe I.
  4853. */
  4854. if (sp->device_type == XFRAME_I_DEVICE)
  4855. if (!write_eeprom(sp, 0, 0, 3))
  4856. fail = 1;
  4857. /* Save current values at offsets 0x4F0 and 0x7F0 */
  4858. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  4859. saved_4F0 = 1;
  4860. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  4861. saved_7F0 = 1;
  4862. /* Test Write at offset 4f0 */
  4863. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  4864. fail = 1;
  4865. if (read_eeprom(sp, 0x4F0, &ret_data))
  4866. fail = 1;
  4867. if (ret_data != 0x012345) {
  4868. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  4869. "Data written %llx Data read %llx\n",
  4870. dev->name, (unsigned long long)0x12345,
  4871. (unsigned long long)ret_data);
  4872. fail = 1;
  4873. }
  4874. /* Reset the EEPROM data go FFFF */
  4875. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  4876. /* Test Write Request Error at offset 0x7c */
  4877. if (sp->device_type == XFRAME_I_DEVICE)
  4878. if (!write_eeprom(sp, 0x07C, 0, 3))
  4879. fail = 1;
  4880. /* Test Write Request at offset 0x7f0 */
  4881. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  4882. fail = 1;
  4883. if (read_eeprom(sp, 0x7F0, &ret_data))
  4884. fail = 1;
  4885. if (ret_data != 0x012345) {
  4886. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  4887. "Data written %llx Data read %llx\n",
  4888. dev->name, (unsigned long long)0x12345,
  4889. (unsigned long long)ret_data);
  4890. fail = 1;
  4891. }
  4892. /* Reset the EEPROM data go FFFF */
  4893. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  4894. if (sp->device_type == XFRAME_I_DEVICE) {
  4895. /* Test Write Error at offset 0x80 */
  4896. if (!write_eeprom(sp, 0x080, 0, 3))
  4897. fail = 1;
  4898. /* Test Write Error at offset 0xfc */
  4899. if (!write_eeprom(sp, 0x0FC, 0, 3))
  4900. fail = 1;
  4901. /* Test Write Error at offset 0x100 */
  4902. if (!write_eeprom(sp, 0x100, 0, 3))
  4903. fail = 1;
  4904. /* Test Write Error at offset 4ec */
  4905. if (!write_eeprom(sp, 0x4EC, 0, 3))
  4906. fail = 1;
  4907. }
  4908. /* Restore values at offsets 0x4F0 and 0x7F0 */
  4909. if (saved_4F0)
  4910. write_eeprom(sp, 0x4F0, org_4F0, 3);
  4911. if (saved_7F0)
  4912. write_eeprom(sp, 0x7F0, org_7F0, 3);
  4913. *data = fail;
  4914. return fail;
  4915. }
  4916. /**
  4917. * s2io_bist_test - invokes the MemBist test of the card .
  4918. * @sp : private member of the device structure, which is a pointer to the
  4919. * s2io_nic structure.
  4920. * @data:variable that returns the result of each of the test conducted by
  4921. * the driver.
  4922. * Description:
  4923. * This invokes the MemBist test of the card. We give around
  4924. * 2 secs time for the Test to complete. If it's still not complete
  4925. * within this peiod, we consider that the test failed.
  4926. * Return value:
  4927. * 0 on success and -1 on failure.
  4928. */
  4929. static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
  4930. {
  4931. u8 bist = 0;
  4932. int cnt = 0, ret = -1;
  4933. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  4934. bist |= PCI_BIST_START;
  4935. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  4936. while (cnt < 20) {
  4937. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  4938. if (!(bist & PCI_BIST_START)) {
  4939. *data = (bist & PCI_BIST_CODE_MASK);
  4940. ret = 0;
  4941. break;
  4942. }
  4943. msleep(100);
  4944. cnt++;
  4945. }
  4946. return ret;
  4947. }
  4948. /**
  4949. * s2io-link_test - verifies the link state of the nic
  4950. * @sp ; private member of the device structure, which is a pointer to the
  4951. * s2io_nic structure.
  4952. * @data: variable that returns the result of each of the test conducted by
  4953. * the driver.
  4954. * Description:
  4955. * The function verifies the link state of the NIC and updates the input
  4956. * argument 'data' appropriately.
  4957. * Return value:
  4958. * 0 on success.
  4959. */
  4960. static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
  4961. {
  4962. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4963. u64 val64;
  4964. val64 = readq(&bar0->adapter_status);
  4965. if(!(LINK_IS_UP(val64)))
  4966. *data = 1;
  4967. else
  4968. *data = 0;
  4969. return *data;
  4970. }
  4971. /**
  4972. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  4973. * @sp - private member of the device structure, which is a pointer to the
  4974. * s2io_nic structure.
  4975. * @data - variable that returns the result of each of the test
  4976. * conducted by the driver.
  4977. * Description:
  4978. * This is one of the offline test that tests the read and write
  4979. * access to the RldRam chip on the NIC.
  4980. * Return value:
  4981. * 0 on success.
  4982. */
  4983. static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
  4984. {
  4985. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4986. u64 val64;
  4987. int cnt, iteration = 0, test_fail = 0;
  4988. val64 = readq(&bar0->adapter_control);
  4989. val64 &= ~ADAPTER_ECC_EN;
  4990. writeq(val64, &bar0->adapter_control);
  4991. val64 = readq(&bar0->mc_rldram_test_ctrl);
  4992. val64 |= MC_RLDRAM_TEST_MODE;
  4993. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  4994. val64 = readq(&bar0->mc_rldram_mrs);
  4995. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  4996. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  4997. val64 |= MC_RLDRAM_MRS_ENABLE;
  4998. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  4999. while (iteration < 2) {
  5000. val64 = 0x55555555aaaa0000ULL;
  5001. if (iteration == 1) {
  5002. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5003. }
  5004. writeq(val64, &bar0->mc_rldram_test_d0);
  5005. val64 = 0xaaaa5a5555550000ULL;
  5006. if (iteration == 1) {
  5007. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5008. }
  5009. writeq(val64, &bar0->mc_rldram_test_d1);
  5010. val64 = 0x55aaaaaaaa5a0000ULL;
  5011. if (iteration == 1) {
  5012. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5013. }
  5014. writeq(val64, &bar0->mc_rldram_test_d2);
  5015. val64 = (u64) (0x0000003ffffe0100ULL);
  5016. writeq(val64, &bar0->mc_rldram_test_add);
  5017. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
  5018. MC_RLDRAM_TEST_GO;
  5019. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5020. for (cnt = 0; cnt < 5; cnt++) {
  5021. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5022. if (val64 & MC_RLDRAM_TEST_DONE)
  5023. break;
  5024. msleep(200);
  5025. }
  5026. if (cnt == 5)
  5027. break;
  5028. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5029. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5030. for (cnt = 0; cnt < 5; cnt++) {
  5031. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5032. if (val64 & MC_RLDRAM_TEST_DONE)
  5033. break;
  5034. msleep(500);
  5035. }
  5036. if (cnt == 5)
  5037. break;
  5038. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5039. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5040. test_fail = 1;
  5041. iteration++;
  5042. }
  5043. *data = test_fail;
  5044. /* Bring the adapter out of test mode */
  5045. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5046. return test_fail;
  5047. }
  5048. /**
  5049. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5050. * @sp : private member of the device structure, which is a pointer to the
  5051. * s2io_nic structure.
  5052. * @ethtest : pointer to a ethtool command specific structure that will be
  5053. * returned to the user.
  5054. * @data : variable that returns the result of each of the test
  5055. * conducted by the driver.
  5056. * Description:
  5057. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5058. * the health of the card.
  5059. * Return value:
  5060. * void
  5061. */
  5062. static void s2io_ethtool_test(struct net_device *dev,
  5063. struct ethtool_test *ethtest,
  5064. uint64_t * data)
  5065. {
  5066. struct s2io_nic *sp = dev->priv;
  5067. int orig_state = netif_running(sp->dev);
  5068. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5069. /* Offline Tests. */
  5070. if (orig_state)
  5071. s2io_close(sp->dev);
  5072. if (s2io_register_test(sp, &data[0]))
  5073. ethtest->flags |= ETH_TEST_FL_FAILED;
  5074. s2io_reset(sp);
  5075. if (s2io_rldram_test(sp, &data[3]))
  5076. ethtest->flags |= ETH_TEST_FL_FAILED;
  5077. s2io_reset(sp);
  5078. if (s2io_eeprom_test(sp, &data[1]))
  5079. ethtest->flags |= ETH_TEST_FL_FAILED;
  5080. if (s2io_bist_test(sp, &data[4]))
  5081. ethtest->flags |= ETH_TEST_FL_FAILED;
  5082. if (orig_state)
  5083. s2io_open(sp->dev);
  5084. data[2] = 0;
  5085. } else {
  5086. /* Online Tests. */
  5087. if (!orig_state) {
  5088. DBG_PRINT(ERR_DBG,
  5089. "%s: is not up, cannot run test\n",
  5090. dev->name);
  5091. data[0] = -1;
  5092. data[1] = -1;
  5093. data[2] = -1;
  5094. data[3] = -1;
  5095. data[4] = -1;
  5096. }
  5097. if (s2io_link_test(sp, &data[2]))
  5098. ethtest->flags |= ETH_TEST_FL_FAILED;
  5099. data[0] = 0;
  5100. data[1] = 0;
  5101. data[3] = 0;
  5102. data[4] = 0;
  5103. }
  5104. }
  5105. static void s2io_get_ethtool_stats(struct net_device *dev,
  5106. struct ethtool_stats *estats,
  5107. u64 * tmp_stats)
  5108. {
  5109. int i = 0;
  5110. struct s2io_nic *sp = dev->priv;
  5111. struct stat_block *stat_info = sp->mac_control.stats_info;
  5112. s2io_updt_stats(sp);
  5113. tmp_stats[i++] =
  5114. (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
  5115. le32_to_cpu(stat_info->tmac_frms);
  5116. tmp_stats[i++] =
  5117. (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
  5118. le32_to_cpu(stat_info->tmac_data_octets);
  5119. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
  5120. tmp_stats[i++] =
  5121. (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
  5122. le32_to_cpu(stat_info->tmac_mcst_frms);
  5123. tmp_stats[i++] =
  5124. (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
  5125. le32_to_cpu(stat_info->tmac_bcst_frms);
  5126. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
  5127. tmp_stats[i++] =
  5128. (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
  5129. le32_to_cpu(stat_info->tmac_ttl_octets);
  5130. tmp_stats[i++] =
  5131. (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
  5132. le32_to_cpu(stat_info->tmac_ucst_frms);
  5133. tmp_stats[i++] =
  5134. (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
  5135. le32_to_cpu(stat_info->tmac_nucst_frms);
  5136. tmp_stats[i++] =
  5137. (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
  5138. le32_to_cpu(stat_info->tmac_any_err_frms);
  5139. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
  5140. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
  5141. tmp_stats[i++] =
  5142. (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
  5143. le32_to_cpu(stat_info->tmac_vld_ip);
  5144. tmp_stats[i++] =
  5145. (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
  5146. le32_to_cpu(stat_info->tmac_drop_ip);
  5147. tmp_stats[i++] =
  5148. (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
  5149. le32_to_cpu(stat_info->tmac_icmp);
  5150. tmp_stats[i++] =
  5151. (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
  5152. le32_to_cpu(stat_info->tmac_rst_tcp);
  5153. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
  5154. tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
  5155. le32_to_cpu(stat_info->tmac_udp);
  5156. tmp_stats[i++] =
  5157. (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
  5158. le32_to_cpu(stat_info->rmac_vld_frms);
  5159. tmp_stats[i++] =
  5160. (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
  5161. le32_to_cpu(stat_info->rmac_data_octets);
  5162. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
  5163. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
  5164. tmp_stats[i++] =
  5165. (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
  5166. le32_to_cpu(stat_info->rmac_vld_mcst_frms);
  5167. tmp_stats[i++] =
  5168. (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
  5169. le32_to_cpu(stat_info->rmac_vld_bcst_frms);
  5170. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
  5171. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
  5172. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
  5173. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
  5174. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
  5175. tmp_stats[i++] =
  5176. (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
  5177. le32_to_cpu(stat_info->rmac_ttl_octets);
  5178. tmp_stats[i++] =
  5179. (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
  5180. << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
  5181. tmp_stats[i++] =
  5182. (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
  5183. << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
  5184. tmp_stats[i++] =
  5185. (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
  5186. le32_to_cpu(stat_info->rmac_discarded_frms);
  5187. tmp_stats[i++] =
  5188. (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
  5189. << 32 | le32_to_cpu(stat_info->rmac_drop_events);
  5190. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
  5191. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
  5192. tmp_stats[i++] =
  5193. (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
  5194. le32_to_cpu(stat_info->rmac_usized_frms);
  5195. tmp_stats[i++] =
  5196. (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
  5197. le32_to_cpu(stat_info->rmac_osized_frms);
  5198. tmp_stats[i++] =
  5199. (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
  5200. le32_to_cpu(stat_info->rmac_frag_frms);
  5201. tmp_stats[i++] =
  5202. (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
  5203. le32_to_cpu(stat_info->rmac_jabber_frms);
  5204. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
  5205. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
  5206. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
  5207. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
  5208. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
  5209. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
  5210. tmp_stats[i++] =
  5211. (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
  5212. le32_to_cpu(stat_info->rmac_ip);
  5213. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
  5214. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
  5215. tmp_stats[i++] =
  5216. (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
  5217. le32_to_cpu(stat_info->rmac_drop_ip);
  5218. tmp_stats[i++] =
  5219. (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
  5220. le32_to_cpu(stat_info->rmac_icmp);
  5221. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
  5222. tmp_stats[i++] =
  5223. (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
  5224. le32_to_cpu(stat_info->rmac_udp);
  5225. tmp_stats[i++] =
  5226. (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
  5227. le32_to_cpu(stat_info->rmac_err_drp_udp);
  5228. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
  5229. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
  5230. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
  5231. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
  5232. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
  5233. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
  5234. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
  5235. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
  5236. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
  5237. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
  5238. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
  5239. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
  5240. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
  5241. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
  5242. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
  5243. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
  5244. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
  5245. tmp_stats[i++] =
  5246. (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
  5247. le32_to_cpu(stat_info->rmac_pause_cnt);
  5248. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
  5249. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
  5250. tmp_stats[i++] =
  5251. (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
  5252. le32_to_cpu(stat_info->rmac_accepted_ip);
  5253. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
  5254. tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
  5255. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
  5256. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
  5257. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
  5258. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
  5259. tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
  5260. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
  5261. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
  5262. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
  5263. tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
  5264. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
  5265. tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
  5266. tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
  5267. tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
  5268. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
  5269. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
  5270. tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
  5271. tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
  5272. /* Enhanced statistics exist only for Hercules */
  5273. if(sp->device_type == XFRAME_II_DEVICE) {
  5274. tmp_stats[i++] =
  5275. le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
  5276. tmp_stats[i++] =
  5277. le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
  5278. tmp_stats[i++] =
  5279. le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
  5280. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
  5281. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
  5282. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
  5283. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
  5284. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
  5285. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
  5286. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
  5287. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
  5288. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
  5289. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
  5290. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
  5291. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
  5292. tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
  5293. }
  5294. tmp_stats[i++] = 0;
  5295. tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
  5296. tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
  5297. tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
  5298. tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
  5299. tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
  5300. tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
  5301. tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
  5302. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
  5303. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
  5304. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
  5305. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
  5306. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
  5307. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
  5308. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
  5309. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
  5310. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
  5311. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
  5312. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
  5313. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
  5314. tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
  5315. tmp_stats[i++] = stat_info->sw_stat.sending_both;
  5316. tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
  5317. tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
  5318. if (stat_info->sw_stat.num_aggregations) {
  5319. u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
  5320. int count = 0;
  5321. /*
  5322. * Since 64-bit divide does not work on all platforms,
  5323. * do repeated subtraction.
  5324. */
  5325. while (tmp >= stat_info->sw_stat.num_aggregations) {
  5326. tmp -= stat_info->sw_stat.num_aggregations;
  5327. count++;
  5328. }
  5329. tmp_stats[i++] = count;
  5330. }
  5331. else
  5332. tmp_stats[i++] = 0;
  5333. tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
  5334. tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
  5335. tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
  5336. tmp_stats[i++] = stat_info->sw_stat.mem_freed;
  5337. tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
  5338. tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
  5339. tmp_stats[i++] = stat_info->sw_stat.link_up_time;
  5340. tmp_stats[i++] = stat_info->sw_stat.link_down_time;
  5341. tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
  5342. tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
  5343. tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
  5344. tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
  5345. tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
  5346. tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
  5347. tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
  5348. tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
  5349. tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
  5350. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
  5351. tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
  5352. tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
  5353. tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
  5354. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
  5355. }
  5356. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5357. {
  5358. return (XENA_REG_SPACE);
  5359. }
  5360. static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
  5361. {
  5362. struct s2io_nic *sp = dev->priv;
  5363. return (sp->rx_csum);
  5364. }
  5365. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5366. {
  5367. struct s2io_nic *sp = dev->priv;
  5368. if (data)
  5369. sp->rx_csum = 1;
  5370. else
  5371. sp->rx_csum = 0;
  5372. return 0;
  5373. }
  5374. static int s2io_get_eeprom_len(struct net_device *dev)
  5375. {
  5376. return (XENA_EEPROM_SPACE);
  5377. }
  5378. static int s2io_ethtool_self_test_count(struct net_device *dev)
  5379. {
  5380. return (S2IO_TEST_LEN);
  5381. }
  5382. static void s2io_ethtool_get_strings(struct net_device *dev,
  5383. u32 stringset, u8 * data)
  5384. {
  5385. int stat_size = 0;
  5386. struct s2io_nic *sp = dev->priv;
  5387. switch (stringset) {
  5388. case ETH_SS_TEST:
  5389. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5390. break;
  5391. case ETH_SS_STATS:
  5392. stat_size = sizeof(ethtool_xena_stats_keys);
  5393. memcpy(data, &ethtool_xena_stats_keys,stat_size);
  5394. if(sp->device_type == XFRAME_II_DEVICE) {
  5395. memcpy(data + stat_size,
  5396. &ethtool_enhanced_stats_keys,
  5397. sizeof(ethtool_enhanced_stats_keys));
  5398. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5399. }
  5400. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5401. sizeof(ethtool_driver_stats_keys));
  5402. }
  5403. }
  5404. static int s2io_ethtool_get_stats_count(struct net_device *dev)
  5405. {
  5406. struct s2io_nic *sp = dev->priv;
  5407. int stat_count = 0;
  5408. switch(sp->device_type) {
  5409. case XFRAME_I_DEVICE:
  5410. stat_count = XFRAME_I_STAT_LEN;
  5411. break;
  5412. case XFRAME_II_DEVICE:
  5413. stat_count = XFRAME_II_STAT_LEN;
  5414. break;
  5415. }
  5416. return stat_count;
  5417. }
  5418. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5419. {
  5420. if (data)
  5421. dev->features |= NETIF_F_IP_CSUM;
  5422. else
  5423. dev->features &= ~NETIF_F_IP_CSUM;
  5424. return 0;
  5425. }
  5426. static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
  5427. {
  5428. return (dev->features & NETIF_F_TSO) != 0;
  5429. }
  5430. static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
  5431. {
  5432. if (data)
  5433. dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
  5434. else
  5435. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  5436. return 0;
  5437. }
  5438. static const struct ethtool_ops netdev_ethtool_ops = {
  5439. .get_settings = s2io_ethtool_gset,
  5440. .set_settings = s2io_ethtool_sset,
  5441. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5442. .get_regs_len = s2io_ethtool_get_regs_len,
  5443. .get_regs = s2io_ethtool_gregs,
  5444. .get_link = ethtool_op_get_link,
  5445. .get_eeprom_len = s2io_get_eeprom_len,
  5446. .get_eeprom = s2io_ethtool_geeprom,
  5447. .set_eeprom = s2io_ethtool_seeprom,
  5448. .get_ringparam = s2io_ethtool_gringparam,
  5449. .get_pauseparam = s2io_ethtool_getpause_data,
  5450. .set_pauseparam = s2io_ethtool_setpause_data,
  5451. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5452. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5453. .get_tx_csum = ethtool_op_get_tx_csum,
  5454. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  5455. .get_sg = ethtool_op_get_sg,
  5456. .set_sg = ethtool_op_set_sg,
  5457. .get_tso = s2io_ethtool_op_get_tso,
  5458. .set_tso = s2io_ethtool_op_set_tso,
  5459. .get_ufo = ethtool_op_get_ufo,
  5460. .set_ufo = ethtool_op_set_ufo,
  5461. .self_test_count = s2io_ethtool_self_test_count,
  5462. .self_test = s2io_ethtool_test,
  5463. .get_strings = s2io_ethtool_get_strings,
  5464. .phys_id = s2io_ethtool_idnic,
  5465. .get_stats_count = s2io_ethtool_get_stats_count,
  5466. .get_ethtool_stats = s2io_get_ethtool_stats
  5467. };
  5468. /**
  5469. * s2io_ioctl - Entry point for the Ioctl
  5470. * @dev : Device pointer.
  5471. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5472. * a proprietary structure used to pass information to the driver.
  5473. * @cmd : This is used to distinguish between the different commands that
  5474. * can be passed to the IOCTL functions.
  5475. * Description:
  5476. * Currently there are no special functionality supported in IOCTL, hence
  5477. * function always return EOPNOTSUPPORTED
  5478. */
  5479. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5480. {
  5481. return -EOPNOTSUPP;
  5482. }
  5483. /**
  5484. * s2io_change_mtu - entry point to change MTU size for the device.
  5485. * @dev : device pointer.
  5486. * @new_mtu : the new MTU size for the device.
  5487. * Description: A driver entry point to change MTU size for the device.
  5488. * Before changing the MTU the device must be stopped.
  5489. * Return value:
  5490. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5491. * file on failure.
  5492. */
  5493. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5494. {
  5495. struct s2io_nic *sp = dev->priv;
  5496. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  5497. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
  5498. dev->name);
  5499. return -EPERM;
  5500. }
  5501. dev->mtu = new_mtu;
  5502. if (netif_running(dev)) {
  5503. s2io_card_down(sp);
  5504. netif_stop_queue(dev);
  5505. if (s2io_card_up(sp)) {
  5506. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5507. __FUNCTION__);
  5508. }
  5509. if (netif_queue_stopped(dev))
  5510. netif_wake_queue(dev);
  5511. } else { /* Device is down */
  5512. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5513. u64 val64 = new_mtu;
  5514. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5515. }
  5516. return 0;
  5517. }
  5518. /**
  5519. * s2io_tasklet - Bottom half of the ISR.
  5520. * @dev_adr : address of the device structure in dma_addr_t format.
  5521. * Description:
  5522. * This is the tasklet or the bottom half of the ISR. This is
  5523. * an extension of the ISR which is scheduled by the scheduler to be run
  5524. * when the load on the CPU is low. All low priority tasks of the ISR can
  5525. * be pushed into the tasklet. For now the tasklet is used only to
  5526. * replenish the Rx buffers in the Rx buffer descriptors.
  5527. * Return value:
  5528. * void.
  5529. */
  5530. static void s2io_tasklet(unsigned long dev_addr)
  5531. {
  5532. struct net_device *dev = (struct net_device *) dev_addr;
  5533. struct s2io_nic *sp = dev->priv;
  5534. int i, ret;
  5535. struct mac_info *mac_control;
  5536. struct config_param *config;
  5537. mac_control = &sp->mac_control;
  5538. config = &sp->config;
  5539. if (!TASKLET_IN_USE) {
  5540. for (i = 0; i < config->rx_ring_num; i++) {
  5541. ret = fill_rx_buffers(sp, i);
  5542. if (ret == -ENOMEM) {
  5543. DBG_PRINT(INFO_DBG, "%s: Out of ",
  5544. dev->name);
  5545. DBG_PRINT(INFO_DBG, "memory in tasklet\n");
  5546. break;
  5547. } else if (ret == -EFILL) {
  5548. DBG_PRINT(INFO_DBG,
  5549. "%s: Rx Ring %d is full\n",
  5550. dev->name, i);
  5551. break;
  5552. }
  5553. }
  5554. clear_bit(0, (&sp->tasklet_status));
  5555. }
  5556. }
  5557. /**
  5558. * s2io_set_link - Set the LInk status
  5559. * @data: long pointer to device private structue
  5560. * Description: Sets the link status for the adapter
  5561. */
  5562. static void s2io_set_link(struct work_struct *work)
  5563. {
  5564. struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
  5565. struct net_device *dev = nic->dev;
  5566. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  5567. register u64 val64;
  5568. u16 subid;
  5569. rtnl_lock();
  5570. if (!netif_running(dev))
  5571. goto out_unlock;
  5572. if (test_and_set_bit(0, &(nic->link_state))) {
  5573. /* The card is being reset, no point doing anything */
  5574. goto out_unlock;
  5575. }
  5576. subid = nic->pdev->subsystem_device;
  5577. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  5578. /*
  5579. * Allow a small delay for the NICs self initiated
  5580. * cleanup to complete.
  5581. */
  5582. msleep(100);
  5583. }
  5584. val64 = readq(&bar0->adapter_status);
  5585. if (LINK_IS_UP(val64)) {
  5586. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  5587. if (verify_xena_quiescence(nic)) {
  5588. val64 = readq(&bar0->adapter_control);
  5589. val64 |= ADAPTER_CNTL_EN;
  5590. writeq(val64, &bar0->adapter_control);
  5591. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  5592. nic->device_type, subid)) {
  5593. val64 = readq(&bar0->gpio_control);
  5594. val64 |= GPIO_CTRL_GPIO_0;
  5595. writeq(val64, &bar0->gpio_control);
  5596. val64 = readq(&bar0->gpio_control);
  5597. } else {
  5598. val64 |= ADAPTER_LED_ON;
  5599. writeq(val64, &bar0->adapter_control);
  5600. }
  5601. nic->device_enabled_once = TRUE;
  5602. } else {
  5603. DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
  5604. DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
  5605. netif_stop_queue(dev);
  5606. }
  5607. }
  5608. val64 = readq(&bar0->adapter_status);
  5609. if (!LINK_IS_UP(val64)) {
  5610. DBG_PRINT(ERR_DBG, "%s:", dev->name);
  5611. DBG_PRINT(ERR_DBG, " Link down after enabling ");
  5612. DBG_PRINT(ERR_DBG, "device \n");
  5613. } else
  5614. s2io_link(nic, LINK_UP);
  5615. } else {
  5616. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5617. subid)) {
  5618. val64 = readq(&bar0->gpio_control);
  5619. val64 &= ~GPIO_CTRL_GPIO_0;
  5620. writeq(val64, &bar0->gpio_control);
  5621. val64 = readq(&bar0->gpio_control);
  5622. }
  5623. s2io_link(nic, LINK_DOWN);
  5624. }
  5625. clear_bit(0, &(nic->link_state));
  5626. out_unlock:
  5627. rtnl_unlock();
  5628. }
  5629. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  5630. struct buffAdd *ba,
  5631. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  5632. u64 *temp2, int size)
  5633. {
  5634. struct net_device *dev = sp->dev;
  5635. struct sk_buff *frag_list;
  5636. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  5637. /* allocate skb */
  5638. if (*skb) {
  5639. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  5640. /*
  5641. * As Rx frame are not going to be processed,
  5642. * using same mapped address for the Rxd
  5643. * buffer pointer
  5644. */
  5645. ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
  5646. } else {
  5647. *skb = dev_alloc_skb(size);
  5648. if (!(*skb)) {
  5649. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5650. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5651. DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
  5652. sp->mac_control.stats_info->sw_stat. \
  5653. mem_alloc_fail_cnt++;
  5654. return -ENOMEM ;
  5655. }
  5656. sp->mac_control.stats_info->sw_stat.mem_allocated
  5657. += (*skb)->truesize;
  5658. /* storing the mapped addr in a temp variable
  5659. * such it will be used for next rxd whose
  5660. * Host Control is NULL
  5661. */
  5662. ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
  5663. pci_map_single( sp->pdev, (*skb)->data,
  5664. size - NET_IP_ALIGN,
  5665. PCI_DMA_FROMDEVICE);
  5666. rxdp->Host_Control = (unsigned long) (*skb);
  5667. }
  5668. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  5669. /* Two buffer Mode */
  5670. if (*skb) {
  5671. ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
  5672. ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
  5673. ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
  5674. } else {
  5675. *skb = dev_alloc_skb(size);
  5676. if (!(*skb)) {
  5677. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5678. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5679. DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
  5680. sp->mac_control.stats_info->sw_stat. \
  5681. mem_alloc_fail_cnt++;
  5682. return -ENOMEM;
  5683. }
  5684. sp->mac_control.stats_info->sw_stat.mem_allocated
  5685. += (*skb)->truesize;
  5686. ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
  5687. pci_map_single(sp->pdev, (*skb)->data,
  5688. dev->mtu + 4,
  5689. PCI_DMA_FROMDEVICE);
  5690. ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
  5691. pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
  5692. PCI_DMA_FROMDEVICE);
  5693. rxdp->Host_Control = (unsigned long) (*skb);
  5694. /* Buffer-1 will be dummy buffer not used */
  5695. ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
  5696. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  5697. PCI_DMA_FROMDEVICE);
  5698. }
  5699. } else if ((rxdp->Host_Control == 0)) {
  5700. /* Three buffer mode */
  5701. if (*skb) {
  5702. ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
  5703. ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
  5704. ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
  5705. } else {
  5706. *skb = dev_alloc_skb(size);
  5707. if (!(*skb)) {
  5708. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5709. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5710. DBG_PRINT(INFO_DBG, "3 buf mode SKBs\n");
  5711. sp->mac_control.stats_info->sw_stat. \
  5712. mem_alloc_fail_cnt++;
  5713. return -ENOMEM;
  5714. }
  5715. sp->mac_control.stats_info->sw_stat.mem_allocated
  5716. += (*skb)->truesize;
  5717. ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
  5718. pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
  5719. PCI_DMA_FROMDEVICE);
  5720. /* Buffer-1 receives L3/L4 headers */
  5721. ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
  5722. pci_map_single( sp->pdev, (*skb)->data,
  5723. l3l4hdr_size + 4,
  5724. PCI_DMA_FROMDEVICE);
  5725. /*
  5726. * skb_shinfo(skb)->frag_list will have L4
  5727. * data payload
  5728. */
  5729. skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
  5730. ALIGN_SIZE);
  5731. if (skb_shinfo(*skb)->frag_list == NULL) {
  5732. DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
  5733. failed\n ", dev->name);
  5734. sp->mac_control.stats_info->sw_stat. \
  5735. mem_alloc_fail_cnt++;
  5736. return -ENOMEM ;
  5737. }
  5738. frag_list = skb_shinfo(*skb)->frag_list;
  5739. frag_list->next = NULL;
  5740. sp->mac_control.stats_info->sw_stat.mem_allocated
  5741. += frag_list->truesize;
  5742. /*
  5743. * Buffer-2 receives L4 data payload
  5744. */
  5745. ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
  5746. pci_map_single( sp->pdev, frag_list->data,
  5747. dev->mtu, PCI_DMA_FROMDEVICE);
  5748. }
  5749. }
  5750. return 0;
  5751. }
  5752. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  5753. int size)
  5754. {
  5755. struct net_device *dev = sp->dev;
  5756. if (sp->rxd_mode == RXD_MODE_1) {
  5757. rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
  5758. } else if (sp->rxd_mode == RXD_MODE_3B) {
  5759. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  5760. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  5761. rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
  5762. } else {
  5763. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  5764. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
  5765. rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
  5766. }
  5767. }
  5768. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  5769. {
  5770. int i, j, k, blk_cnt = 0, size;
  5771. struct mac_info * mac_control = &sp->mac_control;
  5772. struct config_param *config = &sp->config;
  5773. struct net_device *dev = sp->dev;
  5774. struct RxD_t *rxdp = NULL;
  5775. struct sk_buff *skb = NULL;
  5776. struct buffAdd *ba = NULL;
  5777. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  5778. /* Calculate the size based on ring mode */
  5779. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  5780. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  5781. if (sp->rxd_mode == RXD_MODE_1)
  5782. size += NET_IP_ALIGN;
  5783. else if (sp->rxd_mode == RXD_MODE_3B)
  5784. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  5785. else
  5786. size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
  5787. for (i = 0; i < config->rx_ring_num; i++) {
  5788. blk_cnt = config->rx_cfg[i].num_rxd /
  5789. (rxd_count[sp->rxd_mode] +1);
  5790. for (j = 0; j < blk_cnt; j++) {
  5791. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  5792. rxdp = mac_control->rings[i].
  5793. rx_blocks[j].rxds[k].virt_addr;
  5794. if(sp->rxd_mode >= RXD_MODE_3A)
  5795. ba = &mac_control->rings[i].ba[j][k];
  5796. if (set_rxd_buffer_pointer(sp, rxdp, ba,
  5797. &skb,(u64 *)&temp0_64,
  5798. (u64 *)&temp1_64,
  5799. (u64 *)&temp2_64,
  5800. size) == ENOMEM) {
  5801. return 0;
  5802. }
  5803. set_rxd_buffer_size(sp, rxdp, size);
  5804. wmb();
  5805. /* flip the Ownership bit to Hardware */
  5806. rxdp->Control_1 |= RXD_OWN_XENA;
  5807. }
  5808. }
  5809. }
  5810. return 0;
  5811. }
  5812. static int s2io_add_isr(struct s2io_nic * sp)
  5813. {
  5814. int ret = 0;
  5815. struct net_device *dev = sp->dev;
  5816. int err = 0;
  5817. if (sp->intr_type == MSI)
  5818. ret = s2io_enable_msi(sp);
  5819. else if (sp->intr_type == MSI_X)
  5820. ret = s2io_enable_msi_x(sp);
  5821. if (ret) {
  5822. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  5823. sp->intr_type = INTA;
  5824. }
  5825. /* Store the values of the MSIX table in the struct s2io_nic structure */
  5826. store_xmsi_data(sp);
  5827. /* After proper initialization of H/W, register ISR */
  5828. if (sp->intr_type == MSI) {
  5829. err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
  5830. IRQF_SHARED, sp->name, dev);
  5831. if (err) {
  5832. pci_disable_msi(sp->pdev);
  5833. DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
  5834. dev->name);
  5835. return -1;
  5836. }
  5837. }
  5838. if (sp->intr_type == MSI_X) {
  5839. int i, msix_tx_cnt=0,msix_rx_cnt=0;
  5840. for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
  5841. if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
  5842. sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
  5843. dev->name, i);
  5844. err = request_irq(sp->entries[i].vector,
  5845. s2io_msix_fifo_handle, 0, sp->desc[i],
  5846. sp->s2io_entries[i].arg);
  5847. /* If either data or addr is zero print it */
  5848. if(!(sp->msix_info[i].addr &&
  5849. sp->msix_info[i].data)) {
  5850. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  5851. "Data:0x%lx\n",sp->desc[i],
  5852. (unsigned long long)
  5853. sp->msix_info[i].addr,
  5854. (unsigned long)
  5855. ntohl(sp->msix_info[i].data));
  5856. } else {
  5857. msix_tx_cnt++;
  5858. }
  5859. } else {
  5860. sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
  5861. dev->name, i);
  5862. err = request_irq(sp->entries[i].vector,
  5863. s2io_msix_ring_handle, 0, sp->desc[i],
  5864. sp->s2io_entries[i].arg);
  5865. /* If either data or addr is zero print it */
  5866. if(!(sp->msix_info[i].addr &&
  5867. sp->msix_info[i].data)) {
  5868. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  5869. "Data:0x%lx\n",sp->desc[i],
  5870. (unsigned long long)
  5871. sp->msix_info[i].addr,
  5872. (unsigned long)
  5873. ntohl(sp->msix_info[i].data));
  5874. } else {
  5875. msix_rx_cnt++;
  5876. }
  5877. }
  5878. if (err) {
  5879. DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
  5880. "failed\n", dev->name, i);
  5881. DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
  5882. return -1;
  5883. }
  5884. sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
  5885. }
  5886. printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
  5887. printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
  5888. }
  5889. if (sp->intr_type == INTA) {
  5890. err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
  5891. sp->name, dev);
  5892. if (err) {
  5893. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  5894. dev->name);
  5895. return -1;
  5896. }
  5897. }
  5898. return 0;
  5899. }
  5900. static void s2io_rem_isr(struct s2io_nic * sp)
  5901. {
  5902. int cnt = 0;
  5903. struct net_device *dev = sp->dev;
  5904. if (sp->intr_type == MSI_X) {
  5905. int i;
  5906. u16 msi_control;
  5907. for (i=1; (sp->s2io_entries[i].in_use ==
  5908. MSIX_REGISTERED_SUCCESS); i++) {
  5909. int vector = sp->entries[i].vector;
  5910. void *arg = sp->s2io_entries[i].arg;
  5911. free_irq(vector, arg);
  5912. }
  5913. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  5914. msi_control &= 0xFFFE; /* Disable MSI */
  5915. pci_write_config_word(sp->pdev, 0x42, msi_control);
  5916. pci_disable_msix(sp->pdev);
  5917. } else {
  5918. free_irq(sp->pdev->irq, dev);
  5919. if (sp->intr_type == MSI) {
  5920. u16 val;
  5921. pci_disable_msi(sp->pdev);
  5922. pci_read_config_word(sp->pdev, 0x4c, &val);
  5923. val ^= 0x1;
  5924. pci_write_config_word(sp->pdev, 0x4c, val);
  5925. }
  5926. }
  5927. /* Waiting till all Interrupt handlers are complete */
  5928. cnt = 0;
  5929. do {
  5930. msleep(10);
  5931. if (!atomic_read(&sp->isr_cnt))
  5932. break;
  5933. cnt++;
  5934. } while(cnt < 5);
  5935. }
  5936. static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
  5937. {
  5938. int cnt = 0;
  5939. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5940. unsigned long flags;
  5941. register u64 val64 = 0;
  5942. del_timer_sync(&sp->alarm_timer);
  5943. /* If s2io_set_link task is executing, wait till it completes. */
  5944. while (test_and_set_bit(0, &(sp->link_state))) {
  5945. msleep(50);
  5946. }
  5947. atomic_set(&sp->card_state, CARD_DOWN);
  5948. /* disable Tx and Rx traffic on the NIC */
  5949. if (do_io)
  5950. stop_nic(sp);
  5951. s2io_rem_isr(sp);
  5952. /* Kill tasklet. */
  5953. tasklet_kill(&sp->task);
  5954. /* Check if the device is Quiescent and then Reset the NIC */
  5955. while(do_io) {
  5956. /* As per the HW requirement we need to replenish the
  5957. * receive buffer to avoid the ring bump. Since there is
  5958. * no intention of processing the Rx frame at this pointwe are
  5959. * just settting the ownership bit of rxd in Each Rx
  5960. * ring to HW and set the appropriate buffer size
  5961. * based on the ring mode
  5962. */
  5963. rxd_owner_bit_reset(sp);
  5964. val64 = readq(&bar0->adapter_status);
  5965. if (verify_xena_quiescence(sp)) {
  5966. if(verify_pcc_quiescent(sp, sp->device_enabled_once))
  5967. break;
  5968. }
  5969. msleep(50);
  5970. cnt++;
  5971. if (cnt == 10) {
  5972. DBG_PRINT(ERR_DBG,
  5973. "s2io_close:Device not Quiescent ");
  5974. DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
  5975. (unsigned long long) val64);
  5976. break;
  5977. }
  5978. }
  5979. if (do_io)
  5980. s2io_reset(sp);
  5981. spin_lock_irqsave(&sp->tx_lock, flags);
  5982. /* Free all Tx buffers */
  5983. free_tx_buffers(sp);
  5984. spin_unlock_irqrestore(&sp->tx_lock, flags);
  5985. /* Free all Rx buffers */
  5986. spin_lock_irqsave(&sp->rx_lock, flags);
  5987. free_rx_buffers(sp);
  5988. spin_unlock_irqrestore(&sp->rx_lock, flags);
  5989. clear_bit(0, &(sp->link_state));
  5990. }
  5991. static void s2io_card_down(struct s2io_nic * sp)
  5992. {
  5993. do_s2io_card_down(sp, 1);
  5994. }
  5995. static int s2io_card_up(struct s2io_nic * sp)
  5996. {
  5997. int i, ret = 0;
  5998. struct mac_info *mac_control;
  5999. struct config_param *config;
  6000. struct net_device *dev = (struct net_device *) sp->dev;
  6001. u16 interruptible;
  6002. /* Initialize the H/W I/O registers */
  6003. if (init_nic(sp) != 0) {
  6004. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6005. dev->name);
  6006. s2io_reset(sp);
  6007. return -ENODEV;
  6008. }
  6009. /*
  6010. * Initializing the Rx buffers. For now we are considering only 1
  6011. * Rx ring and initializing buffers into 30 Rx blocks
  6012. */
  6013. mac_control = &sp->mac_control;
  6014. config = &sp->config;
  6015. for (i = 0; i < config->rx_ring_num; i++) {
  6016. if ((ret = fill_rx_buffers(sp, i))) {
  6017. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6018. dev->name);
  6019. s2io_reset(sp);
  6020. free_rx_buffers(sp);
  6021. return -ENOMEM;
  6022. }
  6023. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6024. atomic_read(&sp->rx_bufs_left[i]));
  6025. }
  6026. /* Maintain the state prior to the open */
  6027. if (sp->promisc_flg)
  6028. sp->promisc_flg = 0;
  6029. if (sp->m_cast_flg) {
  6030. sp->m_cast_flg = 0;
  6031. sp->all_multi_pos= 0;
  6032. }
  6033. /* Setting its receive mode */
  6034. s2io_set_multicast(dev);
  6035. if (sp->lro) {
  6036. /* Initialize max aggregatable pkts per session based on MTU */
  6037. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6038. /* Check if we can use(if specified) user provided value */
  6039. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6040. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6041. }
  6042. /* Enable Rx Traffic and interrupts on the NIC */
  6043. if (start_nic(sp)) {
  6044. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6045. s2io_reset(sp);
  6046. free_rx_buffers(sp);
  6047. return -ENODEV;
  6048. }
  6049. /* Add interrupt service routine */
  6050. if (s2io_add_isr(sp) != 0) {
  6051. if (sp->intr_type == MSI_X)
  6052. s2io_rem_isr(sp);
  6053. s2io_reset(sp);
  6054. free_rx_buffers(sp);
  6055. return -ENODEV;
  6056. }
  6057. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  6058. /* Enable tasklet for the device */
  6059. tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
  6060. /* Enable select interrupts */
  6061. if (sp->intr_type != INTA)
  6062. en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
  6063. else {
  6064. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6065. interruptible |= TX_PIC_INTR | RX_PIC_INTR;
  6066. interruptible |= TX_MAC_INTR | RX_MAC_INTR;
  6067. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6068. }
  6069. atomic_set(&sp->card_state, CARD_UP);
  6070. return 0;
  6071. }
  6072. /**
  6073. * s2io_restart_nic - Resets the NIC.
  6074. * @data : long pointer to the device private structure
  6075. * Description:
  6076. * This function is scheduled to be run by the s2io_tx_watchdog
  6077. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6078. * the run time of the watch dog routine which is run holding a
  6079. * spin lock.
  6080. */
  6081. static void s2io_restart_nic(struct work_struct *work)
  6082. {
  6083. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6084. struct net_device *dev = sp->dev;
  6085. rtnl_lock();
  6086. if (!netif_running(dev))
  6087. goto out_unlock;
  6088. s2io_card_down(sp);
  6089. if (s2io_card_up(sp)) {
  6090. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  6091. dev->name);
  6092. }
  6093. netif_wake_queue(dev);
  6094. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
  6095. dev->name);
  6096. out_unlock:
  6097. rtnl_unlock();
  6098. }
  6099. /**
  6100. * s2io_tx_watchdog - Watchdog for transmit side.
  6101. * @dev : Pointer to net device structure
  6102. * Description:
  6103. * This function is triggered if the Tx Queue is stopped
  6104. * for a pre-defined amount of time when the Interface is still up.
  6105. * If the Interface is jammed in such a situation, the hardware is
  6106. * reset (by s2io_close) and restarted again (by s2io_open) to
  6107. * overcome any problem that might have been caused in the hardware.
  6108. * Return value:
  6109. * void
  6110. */
  6111. static void s2io_tx_watchdog(struct net_device *dev)
  6112. {
  6113. struct s2io_nic *sp = dev->priv;
  6114. if (netif_carrier_ok(dev)) {
  6115. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
  6116. schedule_work(&sp->rst_timer_task);
  6117. sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  6118. }
  6119. }
  6120. /**
  6121. * rx_osm_handler - To perform some OS related operations on SKB.
  6122. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6123. * @skb : the socket buffer pointer.
  6124. * @len : length of the packet
  6125. * @cksum : FCS checksum of the frame.
  6126. * @ring_no : the ring from which this RxD was extracted.
  6127. * Description:
  6128. * This function is called by the Rx interrupt serivce routine to perform
  6129. * some OS related operations on the SKB before passing it to the upper
  6130. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6131. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6132. * to the upper layer. If the checksum is wrong, it increments the Rx
  6133. * packet error count, frees the SKB and returns error.
  6134. * Return value:
  6135. * SUCCESS on success and -1 on failure.
  6136. */
  6137. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6138. {
  6139. struct s2io_nic *sp = ring_data->nic;
  6140. struct net_device *dev = (struct net_device *) sp->dev;
  6141. struct sk_buff *skb = (struct sk_buff *)
  6142. ((unsigned long) rxdp->Host_Control);
  6143. int ring_no = ring_data->ring_no;
  6144. u16 l3_csum, l4_csum;
  6145. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6146. struct lro *lro;
  6147. u8 err_mask;
  6148. skb->dev = dev;
  6149. if (err) {
  6150. /* Check for parity error */
  6151. if (err & 0x1) {
  6152. sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
  6153. }
  6154. err_mask = err >> 48;
  6155. switch(err_mask) {
  6156. case 1:
  6157. sp->mac_control.stats_info->sw_stat.
  6158. rx_parity_err_cnt++;
  6159. break;
  6160. case 2:
  6161. sp->mac_control.stats_info->sw_stat.
  6162. rx_abort_cnt++;
  6163. break;
  6164. case 3:
  6165. sp->mac_control.stats_info->sw_stat.
  6166. rx_parity_abort_cnt++;
  6167. break;
  6168. case 4:
  6169. sp->mac_control.stats_info->sw_stat.
  6170. rx_rda_fail_cnt++;
  6171. break;
  6172. case 5:
  6173. sp->mac_control.stats_info->sw_stat.
  6174. rx_unkn_prot_cnt++;
  6175. break;
  6176. case 6:
  6177. sp->mac_control.stats_info->sw_stat.
  6178. rx_fcs_err_cnt++;
  6179. break;
  6180. case 7:
  6181. sp->mac_control.stats_info->sw_stat.
  6182. rx_buf_size_err_cnt++;
  6183. break;
  6184. case 8:
  6185. sp->mac_control.stats_info->sw_stat.
  6186. rx_rxd_corrupt_cnt++;
  6187. break;
  6188. case 15:
  6189. sp->mac_control.stats_info->sw_stat.
  6190. rx_unkn_err_cnt++;
  6191. break;
  6192. }
  6193. /*
  6194. * Drop the packet if bad transfer code. Exception being
  6195. * 0x5, which could be due to unsupported IPv6 extension header.
  6196. * In this case, we let stack handle the packet.
  6197. * Note that in this case, since checksum will be incorrect,
  6198. * stack will validate the same.
  6199. */
  6200. if (err_mask != 0x5) {
  6201. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6202. dev->name, err_mask);
  6203. sp->stats.rx_crc_errors++;
  6204. sp->mac_control.stats_info->sw_stat.mem_freed
  6205. += skb->truesize;
  6206. dev_kfree_skb(skb);
  6207. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6208. rxdp->Host_Control = 0;
  6209. return 0;
  6210. }
  6211. }
  6212. /* Updating statistics */
  6213. rxdp->Host_Control = 0;
  6214. if (sp->rxd_mode == RXD_MODE_1) {
  6215. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6216. sp->stats.rx_bytes += len;
  6217. skb_put(skb, len);
  6218. } else if (sp->rxd_mode >= RXD_MODE_3A) {
  6219. int get_block = ring_data->rx_curr_get_info.block_index;
  6220. int get_off = ring_data->rx_curr_get_info.offset;
  6221. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6222. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6223. unsigned char *buff = skb_push(skb, buf0_len);
  6224. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6225. sp->stats.rx_bytes += buf0_len + buf2_len;
  6226. memcpy(buff, ba->ba_0, buf0_len);
  6227. if (sp->rxd_mode == RXD_MODE_3A) {
  6228. int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
  6229. skb_put(skb, buf1_len);
  6230. skb->len += buf2_len;
  6231. skb->data_len += buf2_len;
  6232. skb_put(skb_shinfo(skb)->frag_list, buf2_len);
  6233. sp->stats.rx_bytes += buf1_len;
  6234. } else
  6235. skb_put(skb, buf2_len);
  6236. }
  6237. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
  6238. (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  6239. (sp->rx_csum)) {
  6240. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6241. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6242. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6243. /*
  6244. * NIC verifies if the Checksum of the received
  6245. * frame is Ok or not and accordingly returns
  6246. * a flag in the RxD.
  6247. */
  6248. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6249. if (sp->lro) {
  6250. u32 tcp_len;
  6251. u8 *tcp;
  6252. int ret = 0;
  6253. ret = s2io_club_tcp_session(skb->data, &tcp,
  6254. &tcp_len, &lro, rxdp, sp);
  6255. switch (ret) {
  6256. case 3: /* Begin anew */
  6257. lro->parent = skb;
  6258. goto aggregate;
  6259. case 1: /* Aggregate */
  6260. {
  6261. lro_append_pkt(sp, lro,
  6262. skb, tcp_len);
  6263. goto aggregate;
  6264. }
  6265. case 4: /* Flush session */
  6266. {
  6267. lro_append_pkt(sp, lro,
  6268. skb, tcp_len);
  6269. queue_rx_frame(lro->parent);
  6270. clear_lro_session(lro);
  6271. sp->mac_control.stats_info->
  6272. sw_stat.flush_max_pkts++;
  6273. goto aggregate;
  6274. }
  6275. case 2: /* Flush both */
  6276. lro->parent->data_len =
  6277. lro->frags_len;
  6278. sp->mac_control.stats_info->
  6279. sw_stat.sending_both++;
  6280. queue_rx_frame(lro->parent);
  6281. clear_lro_session(lro);
  6282. goto send_up;
  6283. case 0: /* sessions exceeded */
  6284. case -1: /* non-TCP or not
  6285. * L2 aggregatable
  6286. */
  6287. case 5: /*
  6288. * First pkt in session not
  6289. * L3/L4 aggregatable
  6290. */
  6291. break;
  6292. default:
  6293. DBG_PRINT(ERR_DBG,
  6294. "%s: Samadhana!!\n",
  6295. __FUNCTION__);
  6296. BUG();
  6297. }
  6298. }
  6299. } else {
  6300. /*
  6301. * Packet with erroneous checksum, let the
  6302. * upper layers deal with it.
  6303. */
  6304. skb->ip_summed = CHECKSUM_NONE;
  6305. }
  6306. } else {
  6307. skb->ip_summed = CHECKSUM_NONE;
  6308. }
  6309. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  6310. if (!sp->lro) {
  6311. skb->protocol = eth_type_trans(skb, dev);
  6312. if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
  6313. vlan_strip_flag)) {
  6314. /* Queueing the vlan frame to the upper layer */
  6315. if (napi)
  6316. vlan_hwaccel_receive_skb(skb, sp->vlgrp,
  6317. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6318. else
  6319. vlan_hwaccel_rx(skb, sp->vlgrp,
  6320. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6321. } else {
  6322. if (napi)
  6323. netif_receive_skb(skb);
  6324. else
  6325. netif_rx(skb);
  6326. }
  6327. } else {
  6328. send_up:
  6329. queue_rx_frame(skb);
  6330. }
  6331. dev->last_rx = jiffies;
  6332. aggregate:
  6333. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6334. return SUCCESS;
  6335. }
  6336. /**
  6337. * s2io_link - stops/starts the Tx queue.
  6338. * @sp : private member of the device structure, which is a pointer to the
  6339. * s2io_nic structure.
  6340. * @link : inidicates whether link is UP/DOWN.
  6341. * Description:
  6342. * This function stops/starts the Tx queue depending on whether the link
  6343. * status of the NIC is is down or up. This is called by the Alarm
  6344. * interrupt handler whenever a link change interrupt comes up.
  6345. * Return value:
  6346. * void.
  6347. */
  6348. static void s2io_link(struct s2io_nic * sp, int link)
  6349. {
  6350. struct net_device *dev = (struct net_device *) sp->dev;
  6351. if (link != sp->last_link_state) {
  6352. if (link == LINK_DOWN) {
  6353. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6354. netif_carrier_off(dev);
  6355. if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
  6356. sp->mac_control.stats_info->sw_stat.link_up_time =
  6357. jiffies - sp->start_time;
  6358. sp->mac_control.stats_info->sw_stat.link_down_cnt++;
  6359. } else {
  6360. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6361. if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
  6362. sp->mac_control.stats_info->sw_stat.link_down_time =
  6363. jiffies - sp->start_time;
  6364. sp->mac_control.stats_info->sw_stat.link_up_cnt++;
  6365. netif_carrier_on(dev);
  6366. }
  6367. }
  6368. sp->last_link_state = link;
  6369. sp->start_time = jiffies;
  6370. }
  6371. /**
  6372. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6373. * @sp : private member of the device structure, which is a pointer to the
  6374. * s2io_nic structure.
  6375. * Description:
  6376. * This function initializes a few of the PCI and PCI-X configuration registers
  6377. * with recommended values.
  6378. * Return value:
  6379. * void
  6380. */
  6381. static void s2io_init_pci(struct s2io_nic * sp)
  6382. {
  6383. u16 pci_cmd = 0, pcix_cmd = 0;
  6384. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6385. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6386. &(pcix_cmd));
  6387. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6388. (pcix_cmd | 1));
  6389. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6390. &(pcix_cmd));
  6391. /* Set the PErr Response bit in PCI command register. */
  6392. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6393. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6394. (pci_cmd | PCI_COMMAND_PARITY));
  6395. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6396. }
  6397. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
  6398. {
  6399. if ( tx_fifo_num > 8) {
  6400. DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
  6401. "supported\n");
  6402. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
  6403. tx_fifo_num = 8;
  6404. }
  6405. if ( rx_ring_num > 8) {
  6406. DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
  6407. "supported\n");
  6408. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
  6409. rx_ring_num = 8;
  6410. }
  6411. if (*dev_intr_type != INTA)
  6412. napi = 0;
  6413. #ifndef CONFIG_PCI_MSI
  6414. if (*dev_intr_type != INTA) {
  6415. DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
  6416. "MSI/MSI-X. Defaulting to INTA\n");
  6417. *dev_intr_type = INTA;
  6418. }
  6419. #else
  6420. if (*dev_intr_type > MSI_X) {
  6421. DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
  6422. "Defaulting to INTA\n");
  6423. *dev_intr_type = INTA;
  6424. }
  6425. #endif
  6426. if ((*dev_intr_type == MSI_X) &&
  6427. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6428. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6429. DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
  6430. "Defaulting to INTA\n");
  6431. *dev_intr_type = INTA;
  6432. }
  6433. if (rx_ring_mode > 3) {
  6434. DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
  6435. DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
  6436. rx_ring_mode = 3;
  6437. }
  6438. return SUCCESS;
  6439. }
  6440. /**
  6441. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6442. * or Traffic class respectively.
  6443. * @nic: device peivate variable
  6444. * Description: The function configures the receive steering to
  6445. * desired receive ring.
  6446. * Return Value: SUCCESS on success and
  6447. * '-1' on failure (endian settings incorrect).
  6448. */
  6449. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6450. {
  6451. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6452. register u64 val64 = 0;
  6453. if (ds_codepoint > 63)
  6454. return FAILURE;
  6455. val64 = RTS_DS_MEM_DATA(ring);
  6456. writeq(val64, &bar0->rts_ds_mem_data);
  6457. val64 = RTS_DS_MEM_CTRL_WE |
  6458. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6459. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6460. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6461. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6462. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6463. S2IO_BIT_RESET);
  6464. }
  6465. /**
  6466. * s2io_init_nic - Initialization of the adapter .
  6467. * @pdev : structure containing the PCI related information of the device.
  6468. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6469. * Description:
  6470. * The function initializes an adapter identified by the pci_dec structure.
  6471. * All OS related initialization including memory and device structure and
  6472. * initlaization of the device private variable is done. Also the swapper
  6473. * control register is initialized to enable read and write into the I/O
  6474. * registers of the device.
  6475. * Return value:
  6476. * returns 0 on success and negative on failure.
  6477. */
  6478. static int __devinit
  6479. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6480. {
  6481. struct s2io_nic *sp;
  6482. struct net_device *dev;
  6483. int i, j, ret;
  6484. int dma_flag = FALSE;
  6485. u32 mac_up, mac_down;
  6486. u64 val64 = 0, tmp64 = 0;
  6487. struct XENA_dev_config __iomem *bar0 = NULL;
  6488. u16 subid;
  6489. struct mac_info *mac_control;
  6490. struct config_param *config;
  6491. int mode;
  6492. u8 dev_intr_type = intr_type;
  6493. if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
  6494. return ret;
  6495. if ((ret = pci_enable_device(pdev))) {
  6496. DBG_PRINT(ERR_DBG,
  6497. "s2io_init_nic: pci_enable_device failed\n");
  6498. return ret;
  6499. }
  6500. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  6501. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
  6502. dma_flag = TRUE;
  6503. if (pci_set_consistent_dma_mask
  6504. (pdev, DMA_64BIT_MASK)) {
  6505. DBG_PRINT(ERR_DBG,
  6506. "Unable to obtain 64bit DMA for \
  6507. consistent allocations\n");
  6508. pci_disable_device(pdev);
  6509. return -ENOMEM;
  6510. }
  6511. } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  6512. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
  6513. } else {
  6514. pci_disable_device(pdev);
  6515. return -ENOMEM;
  6516. }
  6517. if (dev_intr_type != MSI_X) {
  6518. if (pci_request_regions(pdev, s2io_driver_name)) {
  6519. DBG_PRINT(ERR_DBG, "Request Regions failed\n");
  6520. pci_disable_device(pdev);
  6521. return -ENODEV;
  6522. }
  6523. }
  6524. else {
  6525. if (!(request_mem_region(pci_resource_start(pdev, 0),
  6526. pci_resource_len(pdev, 0), s2io_driver_name))) {
  6527. DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
  6528. pci_disable_device(pdev);
  6529. return -ENODEV;
  6530. }
  6531. if (!(request_mem_region(pci_resource_start(pdev, 2),
  6532. pci_resource_len(pdev, 2), s2io_driver_name))) {
  6533. DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
  6534. release_mem_region(pci_resource_start(pdev, 0),
  6535. pci_resource_len(pdev, 0));
  6536. pci_disable_device(pdev);
  6537. return -ENODEV;
  6538. }
  6539. }
  6540. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6541. if (dev == NULL) {
  6542. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6543. pci_disable_device(pdev);
  6544. pci_release_regions(pdev);
  6545. return -ENODEV;
  6546. }
  6547. pci_set_master(pdev);
  6548. pci_set_drvdata(pdev, dev);
  6549. SET_MODULE_OWNER(dev);
  6550. SET_NETDEV_DEV(dev, &pdev->dev);
  6551. /* Private member variable initialized to s2io NIC structure */
  6552. sp = dev->priv;
  6553. memset(sp, 0, sizeof(struct s2io_nic));
  6554. sp->dev = dev;
  6555. sp->pdev = pdev;
  6556. sp->high_dma_flag = dma_flag;
  6557. sp->device_enabled_once = FALSE;
  6558. if (rx_ring_mode == 1)
  6559. sp->rxd_mode = RXD_MODE_1;
  6560. if (rx_ring_mode == 2)
  6561. sp->rxd_mode = RXD_MODE_3B;
  6562. if (rx_ring_mode == 3)
  6563. sp->rxd_mode = RXD_MODE_3A;
  6564. sp->intr_type = dev_intr_type;
  6565. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6566. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6567. sp->device_type = XFRAME_II_DEVICE;
  6568. else
  6569. sp->device_type = XFRAME_I_DEVICE;
  6570. sp->lro = lro;
  6571. /* Initialize some PCI/PCI-X fields of the NIC. */
  6572. s2io_init_pci(sp);
  6573. /*
  6574. * Setting the device configuration parameters.
  6575. * Most of these parameters can be specified by the user during
  6576. * module insertion as they are module loadable parameters. If
  6577. * these parameters are not not specified during load time, they
  6578. * are initialized with default values.
  6579. */
  6580. mac_control = &sp->mac_control;
  6581. config = &sp->config;
  6582. /* Tx side parameters. */
  6583. config->tx_fifo_num = tx_fifo_num;
  6584. for (i = 0; i < MAX_TX_FIFOS; i++) {
  6585. config->tx_cfg[i].fifo_len = tx_fifo_len[i];
  6586. config->tx_cfg[i].fifo_priority = i;
  6587. }
  6588. /* mapping the QoS priority to the configured fifos */
  6589. for (i = 0; i < MAX_TX_FIFOS; i++)
  6590. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
  6591. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6592. for (i = 0; i < config->tx_fifo_num; i++) {
  6593. config->tx_cfg[i].f_no_snoop =
  6594. (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6595. if (config->tx_cfg[i].fifo_len < 65) {
  6596. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6597. break;
  6598. }
  6599. }
  6600. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6601. config->max_txds = MAX_SKB_FRAGS + 2;
  6602. /* Rx side parameters. */
  6603. config->rx_ring_num = rx_ring_num;
  6604. for (i = 0; i < MAX_RX_RINGS; i++) {
  6605. config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
  6606. (rxd_count[sp->rxd_mode] + 1);
  6607. config->rx_cfg[i].ring_priority = i;
  6608. }
  6609. for (i = 0; i < rx_ring_num; i++) {
  6610. config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
  6611. config->rx_cfg[i].f_no_snoop =
  6612. (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  6613. }
  6614. /* Setting Mac Control parameters */
  6615. mac_control->rmac_pause_time = rmac_pause_time;
  6616. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  6617. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  6618. /* Initialize Ring buffer parameters. */
  6619. for (i = 0; i < config->rx_ring_num; i++)
  6620. atomic_set(&sp->rx_bufs_left[i], 0);
  6621. /* Initialize the number of ISRs currently running */
  6622. atomic_set(&sp->isr_cnt, 0);
  6623. /* initialize the shared memory used by the NIC and the host */
  6624. if (init_shared_mem(sp)) {
  6625. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
  6626. dev->name);
  6627. ret = -ENOMEM;
  6628. goto mem_alloc_failed;
  6629. }
  6630. sp->bar0 = ioremap(pci_resource_start(pdev, 0),
  6631. pci_resource_len(pdev, 0));
  6632. if (!sp->bar0) {
  6633. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  6634. dev->name);
  6635. ret = -ENOMEM;
  6636. goto bar0_remap_failed;
  6637. }
  6638. sp->bar1 = ioremap(pci_resource_start(pdev, 2),
  6639. pci_resource_len(pdev, 2));
  6640. if (!sp->bar1) {
  6641. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  6642. dev->name);
  6643. ret = -ENOMEM;
  6644. goto bar1_remap_failed;
  6645. }
  6646. dev->irq = pdev->irq;
  6647. dev->base_addr = (unsigned long) sp->bar0;
  6648. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  6649. for (j = 0; j < MAX_TX_FIFOS; j++) {
  6650. mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
  6651. (sp->bar1 + (j * 0x00020000));
  6652. }
  6653. /* Driver entry points */
  6654. dev->open = &s2io_open;
  6655. dev->stop = &s2io_close;
  6656. dev->hard_start_xmit = &s2io_xmit;
  6657. dev->get_stats = &s2io_get_stats;
  6658. dev->set_multicast_list = &s2io_set_multicast;
  6659. dev->do_ioctl = &s2io_ioctl;
  6660. dev->change_mtu = &s2io_change_mtu;
  6661. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  6662. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6663. dev->vlan_rx_register = s2io_vlan_rx_register;
  6664. /*
  6665. * will use eth_mac_addr() for dev->set_mac_address
  6666. * mac address will be set every time dev->open() is called
  6667. */
  6668. dev->poll = s2io_poll;
  6669. dev->weight = 32;
  6670. #ifdef CONFIG_NET_POLL_CONTROLLER
  6671. dev->poll_controller = s2io_netpoll;
  6672. #endif
  6673. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  6674. if (sp->high_dma_flag == TRUE)
  6675. dev->features |= NETIF_F_HIGHDMA;
  6676. dev->features |= NETIF_F_TSO;
  6677. dev->features |= NETIF_F_TSO6;
  6678. if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
  6679. dev->features |= NETIF_F_UFO;
  6680. dev->features |= NETIF_F_HW_CSUM;
  6681. }
  6682. dev->tx_timeout = &s2io_tx_watchdog;
  6683. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  6684. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  6685. INIT_WORK(&sp->set_link_task, s2io_set_link);
  6686. pci_save_state(sp->pdev);
  6687. /* Setting swapper control on the NIC, for proper reset operation */
  6688. if (s2io_set_swapper(sp)) {
  6689. DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
  6690. dev->name);
  6691. ret = -EAGAIN;
  6692. goto set_swap_failed;
  6693. }
  6694. /* Verify if the Herc works on the slot its placed into */
  6695. if (sp->device_type & XFRAME_II_DEVICE) {
  6696. mode = s2io_verify_pci_mode(sp);
  6697. if (mode < 0) {
  6698. DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
  6699. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6700. ret = -EBADSLT;
  6701. goto set_swap_failed;
  6702. }
  6703. }
  6704. /* Not needed for Herc */
  6705. if (sp->device_type & XFRAME_I_DEVICE) {
  6706. /*
  6707. * Fix for all "FFs" MAC address problems observed on
  6708. * Alpha platforms
  6709. */
  6710. fix_mac_address(sp);
  6711. s2io_reset(sp);
  6712. }
  6713. /*
  6714. * MAC address initialization.
  6715. * For now only one mac address will be read and used.
  6716. */
  6717. bar0 = sp->bar0;
  6718. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  6719. RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
  6720. writeq(val64, &bar0->rmac_addr_cmd_mem);
  6721. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  6722. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
  6723. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  6724. mac_down = (u32) tmp64;
  6725. mac_up = (u32) (tmp64 >> 32);
  6726. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  6727. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  6728. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  6729. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  6730. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  6731. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  6732. /* Set the factory defined MAC address initially */
  6733. dev->addr_len = ETH_ALEN;
  6734. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  6735. /* reset Nic and bring it to known state */
  6736. s2io_reset(sp);
  6737. /*
  6738. * Initialize the tasklet status and link state flags
  6739. * and the card state parameter
  6740. */
  6741. atomic_set(&(sp->card_state), 0);
  6742. sp->tasklet_status = 0;
  6743. sp->link_state = 0;
  6744. /* Initialize spinlocks */
  6745. spin_lock_init(&sp->tx_lock);
  6746. if (!napi)
  6747. spin_lock_init(&sp->put_lock);
  6748. spin_lock_init(&sp->rx_lock);
  6749. /*
  6750. * SXE-002: Configure link and activity LED to init state
  6751. * on driver load.
  6752. */
  6753. subid = sp->pdev->subsystem_device;
  6754. if ((subid & 0xFF) >= 0x07) {
  6755. val64 = readq(&bar0->gpio_control);
  6756. val64 |= 0x0000800000000000ULL;
  6757. writeq(val64, &bar0->gpio_control);
  6758. val64 = 0x0411040400000000ULL;
  6759. writeq(val64, (void __iomem *) bar0 + 0x2700);
  6760. val64 = readq(&bar0->gpio_control);
  6761. }
  6762. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  6763. if (register_netdev(dev)) {
  6764. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  6765. ret = -ENODEV;
  6766. goto register_failed;
  6767. }
  6768. s2io_vpd_read(sp);
  6769. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
  6770. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
  6771. sp->product_name, pdev->revision);
  6772. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  6773. s2io_driver_version);
  6774. DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
  6775. "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
  6776. sp->def_mac_addr[0].mac_addr[0],
  6777. sp->def_mac_addr[0].mac_addr[1],
  6778. sp->def_mac_addr[0].mac_addr[2],
  6779. sp->def_mac_addr[0].mac_addr[3],
  6780. sp->def_mac_addr[0].mac_addr[4],
  6781. sp->def_mac_addr[0].mac_addr[5]);
  6782. DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
  6783. if (sp->device_type & XFRAME_II_DEVICE) {
  6784. mode = s2io_print_pci_mode(sp);
  6785. if (mode < 0) {
  6786. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6787. ret = -EBADSLT;
  6788. unregister_netdev(dev);
  6789. goto set_swap_failed;
  6790. }
  6791. }
  6792. switch(sp->rxd_mode) {
  6793. case RXD_MODE_1:
  6794. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  6795. dev->name);
  6796. break;
  6797. case RXD_MODE_3B:
  6798. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  6799. dev->name);
  6800. break;
  6801. case RXD_MODE_3A:
  6802. DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
  6803. dev->name);
  6804. break;
  6805. }
  6806. if (napi)
  6807. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  6808. switch(sp->intr_type) {
  6809. case INTA:
  6810. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  6811. break;
  6812. case MSI:
  6813. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
  6814. break;
  6815. case MSI_X:
  6816. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  6817. break;
  6818. }
  6819. if (sp->lro)
  6820. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  6821. dev->name);
  6822. if (ufo)
  6823. DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
  6824. " enabled\n", dev->name);
  6825. /* Initialize device name */
  6826. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  6827. /* Initialize bimodal Interrupts */
  6828. sp->config.bimodal = bimodal;
  6829. if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
  6830. sp->config.bimodal = 0;
  6831. DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
  6832. dev->name);
  6833. }
  6834. /*
  6835. * Make Link state as off at this point, when the Link change
  6836. * interrupt comes the state will be automatically changed to
  6837. * the right state.
  6838. */
  6839. netif_carrier_off(dev);
  6840. return 0;
  6841. register_failed:
  6842. set_swap_failed:
  6843. iounmap(sp->bar1);
  6844. bar1_remap_failed:
  6845. iounmap(sp->bar0);
  6846. bar0_remap_failed:
  6847. mem_alloc_failed:
  6848. free_shared_mem(sp);
  6849. pci_disable_device(pdev);
  6850. if (dev_intr_type != MSI_X)
  6851. pci_release_regions(pdev);
  6852. else {
  6853. release_mem_region(pci_resource_start(pdev, 0),
  6854. pci_resource_len(pdev, 0));
  6855. release_mem_region(pci_resource_start(pdev, 2),
  6856. pci_resource_len(pdev, 2));
  6857. }
  6858. pci_set_drvdata(pdev, NULL);
  6859. free_netdev(dev);
  6860. return ret;
  6861. }
  6862. /**
  6863. * s2io_rem_nic - Free the PCI device
  6864. * @pdev: structure containing the PCI related information of the device.
  6865. * Description: This function is called by the Pci subsystem to release a
  6866. * PCI device and free up all resource held up by the device. This could
  6867. * be in response to a Hot plug event or when the driver is to be removed
  6868. * from memory.
  6869. */
  6870. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  6871. {
  6872. struct net_device *dev =
  6873. (struct net_device *) pci_get_drvdata(pdev);
  6874. struct s2io_nic *sp;
  6875. if (dev == NULL) {
  6876. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  6877. return;
  6878. }
  6879. flush_scheduled_work();
  6880. sp = dev->priv;
  6881. unregister_netdev(dev);
  6882. free_shared_mem(sp);
  6883. iounmap(sp->bar0);
  6884. iounmap(sp->bar1);
  6885. if (sp->intr_type != MSI_X)
  6886. pci_release_regions(pdev);
  6887. else {
  6888. release_mem_region(pci_resource_start(pdev, 0),
  6889. pci_resource_len(pdev, 0));
  6890. release_mem_region(pci_resource_start(pdev, 2),
  6891. pci_resource_len(pdev, 2));
  6892. }
  6893. pci_set_drvdata(pdev, NULL);
  6894. free_netdev(dev);
  6895. pci_disable_device(pdev);
  6896. }
  6897. /**
  6898. * s2io_starter - Entry point for the driver
  6899. * Description: This function is the entry point for the driver. It verifies
  6900. * the module loadable parameters and initializes PCI configuration space.
  6901. */
  6902. int __init s2io_starter(void)
  6903. {
  6904. return pci_register_driver(&s2io_driver);
  6905. }
  6906. /**
  6907. * s2io_closer - Cleanup routine for the driver
  6908. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  6909. */
  6910. static __exit void s2io_closer(void)
  6911. {
  6912. pci_unregister_driver(&s2io_driver);
  6913. DBG_PRINT(INIT_DBG, "cleanup done\n");
  6914. }
  6915. module_init(s2io_starter);
  6916. module_exit(s2io_closer);
  6917. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  6918. struct tcphdr **tcp, struct RxD_t *rxdp)
  6919. {
  6920. int ip_off;
  6921. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  6922. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  6923. DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
  6924. __FUNCTION__);
  6925. return -1;
  6926. }
  6927. /* TODO:
  6928. * By default the VLAN field in the MAC is stripped by the card, if this
  6929. * feature is turned off in rx_pa_cfg register, then the ip_off field
  6930. * has to be shifted by a further 2 bytes
  6931. */
  6932. switch (l2_type) {
  6933. case 0: /* DIX type */
  6934. case 4: /* DIX type with VLAN */
  6935. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  6936. break;
  6937. /* LLC, SNAP etc are considered non-mergeable */
  6938. default:
  6939. return -1;
  6940. }
  6941. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  6942. ip_len = (u8)((*ip)->ihl);
  6943. ip_len <<= 2;
  6944. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  6945. return 0;
  6946. }
  6947. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  6948. struct tcphdr *tcp)
  6949. {
  6950. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  6951. if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
  6952. (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
  6953. return -1;
  6954. return 0;
  6955. }
  6956. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  6957. {
  6958. return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
  6959. }
  6960. static void initiate_new_session(struct lro *lro, u8 *l2h,
  6961. struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
  6962. {
  6963. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  6964. lro->l2h = l2h;
  6965. lro->iph = ip;
  6966. lro->tcph = tcp;
  6967. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  6968. lro->tcp_ack = ntohl(tcp->ack_seq);
  6969. lro->sg_num = 1;
  6970. lro->total_len = ntohs(ip->tot_len);
  6971. lro->frags_len = 0;
  6972. /*
  6973. * check if we saw TCP timestamp. Other consistency checks have
  6974. * already been done.
  6975. */
  6976. if (tcp->doff == 8) {
  6977. u32 *ptr;
  6978. ptr = (u32 *)(tcp+1);
  6979. lro->saw_ts = 1;
  6980. lro->cur_tsval = *(ptr+1);
  6981. lro->cur_tsecr = *(ptr+2);
  6982. }
  6983. lro->in_use = 1;
  6984. }
  6985. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  6986. {
  6987. struct iphdr *ip = lro->iph;
  6988. struct tcphdr *tcp = lro->tcph;
  6989. __sum16 nchk;
  6990. struct stat_block *statinfo = sp->mac_control.stats_info;
  6991. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  6992. /* Update L3 header */
  6993. ip->tot_len = htons(lro->total_len);
  6994. ip->check = 0;
  6995. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  6996. ip->check = nchk;
  6997. /* Update L4 header */
  6998. tcp->ack_seq = lro->tcp_ack;
  6999. tcp->window = lro->window;
  7000. /* Update tsecr field if this session has timestamps enabled */
  7001. if (lro->saw_ts) {
  7002. u32 *ptr = (u32 *)(tcp + 1);
  7003. *(ptr+2) = lro->cur_tsecr;
  7004. }
  7005. /* Update counters required for calculation of
  7006. * average no. of packets aggregated.
  7007. */
  7008. statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
  7009. statinfo->sw_stat.num_aggregations++;
  7010. }
  7011. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7012. struct tcphdr *tcp, u32 l4_pyld)
  7013. {
  7014. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7015. lro->total_len += l4_pyld;
  7016. lro->frags_len += l4_pyld;
  7017. lro->tcp_next_seq += l4_pyld;
  7018. lro->sg_num++;
  7019. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7020. lro->tcp_ack = tcp->ack_seq;
  7021. lro->window = tcp->window;
  7022. if (lro->saw_ts) {
  7023. u32 *ptr;
  7024. /* Update tsecr and tsval from this packet */
  7025. ptr = (u32 *) (tcp + 1);
  7026. lro->cur_tsval = *(ptr + 1);
  7027. lro->cur_tsecr = *(ptr + 2);
  7028. }
  7029. }
  7030. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7031. struct tcphdr *tcp, u32 tcp_pyld_len)
  7032. {
  7033. u8 *ptr;
  7034. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7035. if (!tcp_pyld_len) {
  7036. /* Runt frame or a pure ack */
  7037. return -1;
  7038. }
  7039. if (ip->ihl != 5) /* IP has options */
  7040. return -1;
  7041. /* If we see CE codepoint in IP header, packet is not mergeable */
  7042. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7043. return -1;
  7044. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7045. if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
  7046. tcp->ece || tcp->cwr || !tcp->ack) {
  7047. /*
  7048. * Currently recognize only the ack control word and
  7049. * any other control field being set would result in
  7050. * flushing the LRO session
  7051. */
  7052. return -1;
  7053. }
  7054. /*
  7055. * Allow only one TCP timestamp option. Don't aggregate if
  7056. * any other options are detected.
  7057. */
  7058. if (tcp->doff != 5 && tcp->doff != 8)
  7059. return -1;
  7060. if (tcp->doff == 8) {
  7061. ptr = (u8 *)(tcp + 1);
  7062. while (*ptr == TCPOPT_NOP)
  7063. ptr++;
  7064. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7065. return -1;
  7066. /* Ensure timestamp value increases monotonically */
  7067. if (l_lro)
  7068. if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
  7069. return -1;
  7070. /* timestamp echo reply should be non-zero */
  7071. if (*((u32 *)(ptr+6)) == 0)
  7072. return -1;
  7073. }
  7074. return 0;
  7075. }
  7076. static int
  7077. s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
  7078. struct RxD_t *rxdp, struct s2io_nic *sp)
  7079. {
  7080. struct iphdr *ip;
  7081. struct tcphdr *tcph;
  7082. int ret = 0, i;
  7083. if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7084. rxdp))) {
  7085. DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
  7086. ip->saddr, ip->daddr);
  7087. } else {
  7088. return ret;
  7089. }
  7090. tcph = (struct tcphdr *)*tcp;
  7091. *tcp_len = get_l4_pyld_length(ip, tcph);
  7092. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7093. struct lro *l_lro = &sp->lro0_n[i];
  7094. if (l_lro->in_use) {
  7095. if (check_for_socket_match(l_lro, ip, tcph))
  7096. continue;
  7097. /* Sock pair matched */
  7098. *lro = l_lro;
  7099. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7100. DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
  7101. "0x%x, actual 0x%x\n", __FUNCTION__,
  7102. (*lro)->tcp_next_seq,
  7103. ntohl(tcph->seq));
  7104. sp->mac_control.stats_info->
  7105. sw_stat.outof_sequence_pkts++;
  7106. ret = 2;
  7107. break;
  7108. }
  7109. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
  7110. ret = 1; /* Aggregate */
  7111. else
  7112. ret = 2; /* Flush both */
  7113. break;
  7114. }
  7115. }
  7116. if (ret == 0) {
  7117. /* Before searching for available LRO objects,
  7118. * check if the pkt is L3/L4 aggregatable. If not
  7119. * don't create new LRO session. Just send this
  7120. * packet up.
  7121. */
  7122. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
  7123. return 5;
  7124. }
  7125. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7126. struct lro *l_lro = &sp->lro0_n[i];
  7127. if (!(l_lro->in_use)) {
  7128. *lro = l_lro;
  7129. ret = 3; /* Begin anew */
  7130. break;
  7131. }
  7132. }
  7133. }
  7134. if (ret == 0) { /* sessions exceeded */
  7135. DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
  7136. __FUNCTION__);
  7137. *lro = NULL;
  7138. return ret;
  7139. }
  7140. switch (ret) {
  7141. case 3:
  7142. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
  7143. break;
  7144. case 2:
  7145. update_L3L4_header(sp, *lro);
  7146. break;
  7147. case 1:
  7148. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7149. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7150. update_L3L4_header(sp, *lro);
  7151. ret = 4; /* Flush the LRO */
  7152. }
  7153. break;
  7154. default:
  7155. DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
  7156. __FUNCTION__);
  7157. break;
  7158. }
  7159. return ret;
  7160. }
  7161. static void clear_lro_session(struct lro *lro)
  7162. {
  7163. static u16 lro_struct_size = sizeof(struct lro);
  7164. memset(lro, 0, lro_struct_size);
  7165. }
  7166. static void queue_rx_frame(struct sk_buff *skb)
  7167. {
  7168. struct net_device *dev = skb->dev;
  7169. skb->protocol = eth_type_trans(skb, dev);
  7170. if (napi)
  7171. netif_receive_skb(skb);
  7172. else
  7173. netif_rx(skb);
  7174. }
  7175. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7176. struct sk_buff *skb,
  7177. u32 tcp_len)
  7178. {
  7179. struct sk_buff *first = lro->parent;
  7180. first->len += tcp_len;
  7181. first->data_len = lro->frags_len;
  7182. skb_pull(skb, (skb->len - tcp_len));
  7183. if (skb_shinfo(first)->frag_list)
  7184. lro->last_frag->next = skb;
  7185. else
  7186. skb_shinfo(first)->frag_list = skb;
  7187. first->truesize += skb->truesize;
  7188. lro->last_frag = skb;
  7189. sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
  7190. return;
  7191. }
  7192. /**
  7193. * s2io_io_error_detected - called when PCI error is detected
  7194. * @pdev: Pointer to PCI device
  7195. * @state: The current pci connection state
  7196. *
  7197. * This function is called after a PCI bus error affecting
  7198. * this device has been detected.
  7199. */
  7200. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7201. pci_channel_state_t state)
  7202. {
  7203. struct net_device *netdev = pci_get_drvdata(pdev);
  7204. struct s2io_nic *sp = netdev->priv;
  7205. netif_device_detach(netdev);
  7206. if (netif_running(netdev)) {
  7207. /* Bring down the card, while avoiding PCI I/O */
  7208. do_s2io_card_down(sp, 0);
  7209. }
  7210. pci_disable_device(pdev);
  7211. return PCI_ERS_RESULT_NEED_RESET;
  7212. }
  7213. /**
  7214. * s2io_io_slot_reset - called after the pci bus has been reset.
  7215. * @pdev: Pointer to PCI device
  7216. *
  7217. * Restart the card from scratch, as if from a cold-boot.
  7218. * At this point, the card has exprienced a hard reset,
  7219. * followed by fixups by BIOS, and has its config space
  7220. * set up identically to what it was at cold boot.
  7221. */
  7222. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7223. {
  7224. struct net_device *netdev = pci_get_drvdata(pdev);
  7225. struct s2io_nic *sp = netdev->priv;
  7226. if (pci_enable_device(pdev)) {
  7227. printk(KERN_ERR "s2io: "
  7228. "Cannot re-enable PCI device after reset.\n");
  7229. return PCI_ERS_RESULT_DISCONNECT;
  7230. }
  7231. pci_set_master(pdev);
  7232. s2io_reset(sp);
  7233. return PCI_ERS_RESULT_RECOVERED;
  7234. }
  7235. /**
  7236. * s2io_io_resume - called when traffic can start flowing again.
  7237. * @pdev: Pointer to PCI device
  7238. *
  7239. * This callback is called when the error recovery driver tells
  7240. * us that its OK to resume normal operation.
  7241. */
  7242. static void s2io_io_resume(struct pci_dev *pdev)
  7243. {
  7244. struct net_device *netdev = pci_get_drvdata(pdev);
  7245. struct s2io_nic *sp = netdev->priv;
  7246. if (netif_running(netdev)) {
  7247. if (s2io_card_up(sp)) {
  7248. printk(KERN_ERR "s2io: "
  7249. "Can't bring device back up after reset.\n");
  7250. return;
  7251. }
  7252. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7253. s2io_card_down(sp);
  7254. printk(KERN_ERR "s2io: "
  7255. "Can't resetore mac addr after reset.\n");
  7256. return;
  7257. }
  7258. }
  7259. netif_device_attach(netdev);
  7260. netif_wake_queue(netdev);
  7261. }