forcedeth.c 166 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,5,6 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Changelog:
  33. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  34. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  35. * Check all PCI BARs for the register window.
  36. * udelay added to mii_rw.
  37. * 0.03: 06 Oct 2003: Initialize dev->irq.
  38. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  39. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  40. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  41. * irq mask updated
  42. * 0.07: 14 Oct 2003: Further irq mask updates.
  43. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  44. * added into irq handler, NULL check for drain_ring.
  45. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  46. * requested interrupt sources.
  47. * 0.10: 20 Oct 2003: First cleanup for release.
  48. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  49. * MAC Address init fix, set_multicast cleanup.
  50. * 0.12: 23 Oct 2003: Cleanups for release.
  51. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  52. * Set link speed correctly. start rx before starting
  53. * tx (nv_start_rx sets the link speed).
  54. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  55. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  56. * open.
  57. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  58. * increased to 1628 bytes.
  59. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  60. * the tx length.
  61. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  62. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  63. * addresses, really stop rx if already running
  64. * in nv_start_rx, clean up a bit.
  65. * 0.20: 07 Dec 2003: alloc fixes
  66. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  67. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  68. * on close.
  69. * 0.23: 26 Jan 2004: various small cleanups
  70. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  71. * 0.25: 09 Mar 2004: wol support
  72. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  73. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  74. * added CK804/MCP04 device IDs, code fixes
  75. * for registers, link status and other minor fixes.
  76. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  77. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  78. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  79. * into nv_close, otherwise reenabling for wol can
  80. * cause DMA to kfree'd memory.
  81. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  82. * capabilities.
  83. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  84. * 0.33: 16 May 2005: Support for MCP51 added.
  85. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  86. * 0.35: 26 Jun 2005: Support for MCP55 added.
  87. * 0.36: 28 Jun 2005: Add jumbo frame support.
  88. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  89. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  90. * per-packet flags.
  91. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  92. * 0.40: 19 Jul 2005: Add support for mac address change.
  93. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  94. * of nv_remove
  95. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  96. * in the second (and later) nv_open call
  97. * 0.43: 10 Aug 2005: Add support for tx checksum.
  98. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  99. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  100. * 0.46: 20 Oct 2005: Add irq optimization modes.
  101. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  102. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  103. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  104. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  105. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  106. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  107. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  108. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  109. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  110. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  111. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  112. * 0.58: 30 Oct 2006: Added support for sideband management unit.
  113. * 0.59: 30 Oct 2006: Added support for recoverable error.
  114. * 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
  115. *
  116. * Known bugs:
  117. * We suspect that on some hardware no TX done interrupts are generated.
  118. * This means recovery from netif_stop_queue only happens if the hw timer
  119. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  120. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  121. * If your hardware reliably generates tx done interrupts, then you can remove
  122. * DEV_NEED_TIMERIRQ from the driver_data flags.
  123. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  124. * superfluous timer interrupts from the nic.
  125. */
  126. #ifdef CONFIG_FORCEDETH_NAPI
  127. #define DRIVERNAPI "-NAPI"
  128. #else
  129. #define DRIVERNAPI
  130. #endif
  131. #define FORCEDETH_VERSION "0.60"
  132. #define DRV_NAME "forcedeth"
  133. #include <linux/module.h>
  134. #include <linux/types.h>
  135. #include <linux/pci.h>
  136. #include <linux/interrupt.h>
  137. #include <linux/netdevice.h>
  138. #include <linux/etherdevice.h>
  139. #include <linux/delay.h>
  140. #include <linux/spinlock.h>
  141. #include <linux/ethtool.h>
  142. #include <linux/timer.h>
  143. #include <linux/skbuff.h>
  144. #include <linux/mii.h>
  145. #include <linux/random.h>
  146. #include <linux/init.h>
  147. #include <linux/if_vlan.h>
  148. #include <linux/dma-mapping.h>
  149. #include <asm/irq.h>
  150. #include <asm/io.h>
  151. #include <asm/uaccess.h>
  152. #include <asm/system.h>
  153. #if 0
  154. #define dprintk printk
  155. #else
  156. #define dprintk(x...) do { } while (0)
  157. #endif
  158. /*
  159. * Hardware access:
  160. */
  161. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  162. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  163. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  164. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  165. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  166. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  167. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  168. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  169. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  170. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  171. #define DEV_HAS_STATISTICS_V1 0x0400 /* device supports hw statistics version 1 */
  172. #define DEV_HAS_STATISTICS_V2 0x0800 /* device supports hw statistics version 2 */
  173. #define DEV_HAS_TEST_EXTENDED 0x1000 /* device supports extended diagnostic test */
  174. #define DEV_HAS_MGMT_UNIT 0x2000 /* device supports management unit */
  175. enum {
  176. NvRegIrqStatus = 0x000,
  177. #define NVREG_IRQSTAT_MIIEVENT 0x040
  178. #define NVREG_IRQSTAT_MASK 0x81ff
  179. NvRegIrqMask = 0x004,
  180. #define NVREG_IRQ_RX_ERROR 0x0001
  181. #define NVREG_IRQ_RX 0x0002
  182. #define NVREG_IRQ_RX_NOBUF 0x0004
  183. #define NVREG_IRQ_TX_ERR 0x0008
  184. #define NVREG_IRQ_TX_OK 0x0010
  185. #define NVREG_IRQ_TIMER 0x0020
  186. #define NVREG_IRQ_LINK 0x0040
  187. #define NVREG_IRQ_RX_FORCED 0x0080
  188. #define NVREG_IRQ_TX_FORCED 0x0100
  189. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  190. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  191. #define NVREG_IRQMASK_CPU 0x0060
  192. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  193. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  194. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  195. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  196. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  197. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  198. NvRegUnknownSetupReg6 = 0x008,
  199. #define NVREG_UNKSETUP6_VAL 3
  200. /*
  201. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  202. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  203. */
  204. NvRegPollingInterval = 0x00c,
  205. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  206. #define NVREG_POLL_DEFAULT_CPU 13
  207. NvRegMSIMap0 = 0x020,
  208. NvRegMSIMap1 = 0x024,
  209. NvRegMSIIrqMask = 0x030,
  210. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  211. NvRegMisc1 = 0x080,
  212. #define NVREG_MISC1_PAUSE_TX 0x01
  213. #define NVREG_MISC1_HD 0x02
  214. #define NVREG_MISC1_FORCE 0x3b0f3c
  215. NvRegMacReset = 0x3c,
  216. #define NVREG_MAC_RESET_ASSERT 0x0F3
  217. NvRegTransmitterControl = 0x084,
  218. #define NVREG_XMITCTL_START 0x01
  219. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  220. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  221. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  222. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  223. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  224. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  225. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  226. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  227. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  228. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  229. NvRegTransmitterStatus = 0x088,
  230. #define NVREG_XMITSTAT_BUSY 0x01
  231. NvRegPacketFilterFlags = 0x8c,
  232. #define NVREG_PFF_PAUSE_RX 0x08
  233. #define NVREG_PFF_ALWAYS 0x7F0000
  234. #define NVREG_PFF_PROMISC 0x80
  235. #define NVREG_PFF_MYADDR 0x20
  236. #define NVREG_PFF_LOOPBACK 0x10
  237. NvRegOffloadConfig = 0x90,
  238. #define NVREG_OFFLOAD_HOMEPHY 0x601
  239. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  240. NvRegReceiverControl = 0x094,
  241. #define NVREG_RCVCTL_START 0x01
  242. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  243. NvRegReceiverStatus = 0x98,
  244. #define NVREG_RCVSTAT_BUSY 0x01
  245. NvRegRandomSeed = 0x9c,
  246. #define NVREG_RNDSEED_MASK 0x00ff
  247. #define NVREG_RNDSEED_FORCE 0x7f00
  248. #define NVREG_RNDSEED_FORCE2 0x2d00
  249. #define NVREG_RNDSEED_FORCE3 0x7400
  250. NvRegTxDeferral = 0xA0,
  251. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  252. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  253. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  254. NvRegRxDeferral = 0xA4,
  255. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  256. NvRegMacAddrA = 0xA8,
  257. NvRegMacAddrB = 0xAC,
  258. NvRegMulticastAddrA = 0xB0,
  259. #define NVREG_MCASTADDRA_FORCE 0x01
  260. NvRegMulticastAddrB = 0xB4,
  261. NvRegMulticastMaskA = 0xB8,
  262. NvRegMulticastMaskB = 0xBC,
  263. NvRegPhyInterface = 0xC0,
  264. #define PHY_RGMII 0x10000000
  265. NvRegTxRingPhysAddr = 0x100,
  266. NvRegRxRingPhysAddr = 0x104,
  267. NvRegRingSizes = 0x108,
  268. #define NVREG_RINGSZ_TXSHIFT 0
  269. #define NVREG_RINGSZ_RXSHIFT 16
  270. NvRegTransmitPoll = 0x10c,
  271. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  272. NvRegLinkSpeed = 0x110,
  273. #define NVREG_LINKSPEED_FORCE 0x10000
  274. #define NVREG_LINKSPEED_10 1000
  275. #define NVREG_LINKSPEED_100 100
  276. #define NVREG_LINKSPEED_1000 50
  277. #define NVREG_LINKSPEED_MASK (0xFFF)
  278. NvRegUnknownSetupReg5 = 0x130,
  279. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  280. NvRegTxWatermark = 0x13c,
  281. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  282. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  283. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  284. NvRegTxRxControl = 0x144,
  285. #define NVREG_TXRXCTL_KICK 0x0001
  286. #define NVREG_TXRXCTL_BIT1 0x0002
  287. #define NVREG_TXRXCTL_BIT2 0x0004
  288. #define NVREG_TXRXCTL_IDLE 0x0008
  289. #define NVREG_TXRXCTL_RESET 0x0010
  290. #define NVREG_TXRXCTL_RXCHECK 0x0400
  291. #define NVREG_TXRXCTL_DESC_1 0
  292. #define NVREG_TXRXCTL_DESC_2 0x002100
  293. #define NVREG_TXRXCTL_DESC_3 0xc02200
  294. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  295. #define NVREG_TXRXCTL_VLANINS 0x00080
  296. NvRegTxRingPhysAddrHigh = 0x148,
  297. NvRegRxRingPhysAddrHigh = 0x14C,
  298. NvRegTxPauseFrame = 0x170,
  299. #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
  300. #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
  301. NvRegMIIStatus = 0x180,
  302. #define NVREG_MIISTAT_ERROR 0x0001
  303. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  304. #define NVREG_MIISTAT_MASK 0x000f
  305. #define NVREG_MIISTAT_MASK2 0x000f
  306. NvRegMIIMask = 0x184,
  307. #define NVREG_MII_LINKCHANGE 0x0008
  308. NvRegAdapterControl = 0x188,
  309. #define NVREG_ADAPTCTL_START 0x02
  310. #define NVREG_ADAPTCTL_LINKUP 0x04
  311. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  312. #define NVREG_ADAPTCTL_RUNNING 0x100000
  313. #define NVREG_ADAPTCTL_PHYSHIFT 24
  314. NvRegMIISpeed = 0x18c,
  315. #define NVREG_MIISPEED_BIT8 (1<<8)
  316. #define NVREG_MIIDELAY 5
  317. NvRegMIIControl = 0x190,
  318. #define NVREG_MIICTL_INUSE 0x08000
  319. #define NVREG_MIICTL_WRITE 0x00400
  320. #define NVREG_MIICTL_ADDRSHIFT 5
  321. NvRegMIIData = 0x194,
  322. NvRegWakeUpFlags = 0x200,
  323. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  324. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  325. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  326. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  327. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  328. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  329. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  330. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  331. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  332. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  333. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  334. NvRegPatternCRC = 0x204,
  335. NvRegPatternMask = 0x208,
  336. NvRegPowerCap = 0x268,
  337. #define NVREG_POWERCAP_D3SUPP (1<<30)
  338. #define NVREG_POWERCAP_D2SUPP (1<<26)
  339. #define NVREG_POWERCAP_D1SUPP (1<<25)
  340. NvRegPowerState = 0x26c,
  341. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  342. #define NVREG_POWERSTATE_VALID 0x0100
  343. #define NVREG_POWERSTATE_MASK 0x0003
  344. #define NVREG_POWERSTATE_D0 0x0000
  345. #define NVREG_POWERSTATE_D1 0x0001
  346. #define NVREG_POWERSTATE_D2 0x0002
  347. #define NVREG_POWERSTATE_D3 0x0003
  348. NvRegTxCnt = 0x280,
  349. NvRegTxZeroReXmt = 0x284,
  350. NvRegTxOneReXmt = 0x288,
  351. NvRegTxManyReXmt = 0x28c,
  352. NvRegTxLateCol = 0x290,
  353. NvRegTxUnderflow = 0x294,
  354. NvRegTxLossCarrier = 0x298,
  355. NvRegTxExcessDef = 0x29c,
  356. NvRegTxRetryErr = 0x2a0,
  357. NvRegRxFrameErr = 0x2a4,
  358. NvRegRxExtraByte = 0x2a8,
  359. NvRegRxLateCol = 0x2ac,
  360. NvRegRxRunt = 0x2b0,
  361. NvRegRxFrameTooLong = 0x2b4,
  362. NvRegRxOverflow = 0x2b8,
  363. NvRegRxFCSErr = 0x2bc,
  364. NvRegRxFrameAlignErr = 0x2c0,
  365. NvRegRxLenErr = 0x2c4,
  366. NvRegRxUnicast = 0x2c8,
  367. NvRegRxMulticast = 0x2cc,
  368. NvRegRxBroadcast = 0x2d0,
  369. NvRegTxDef = 0x2d4,
  370. NvRegTxFrame = 0x2d8,
  371. NvRegRxCnt = 0x2dc,
  372. NvRegTxPause = 0x2e0,
  373. NvRegRxPause = 0x2e4,
  374. NvRegRxDropFrame = 0x2e8,
  375. NvRegVlanControl = 0x300,
  376. #define NVREG_VLANCONTROL_ENABLE 0x2000
  377. NvRegMSIXMap0 = 0x3e0,
  378. NvRegMSIXMap1 = 0x3e4,
  379. NvRegMSIXIrqStatus = 0x3f0,
  380. NvRegPowerState2 = 0x600,
  381. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  382. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  383. };
  384. /* Big endian: should work, but is untested */
  385. struct ring_desc {
  386. __le32 buf;
  387. __le32 flaglen;
  388. };
  389. struct ring_desc_ex {
  390. __le32 bufhigh;
  391. __le32 buflow;
  392. __le32 txvlan;
  393. __le32 flaglen;
  394. };
  395. union ring_type {
  396. struct ring_desc* orig;
  397. struct ring_desc_ex* ex;
  398. };
  399. #define FLAG_MASK_V1 0xffff0000
  400. #define FLAG_MASK_V2 0xffffc000
  401. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  402. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  403. #define NV_TX_LASTPACKET (1<<16)
  404. #define NV_TX_RETRYERROR (1<<19)
  405. #define NV_TX_FORCED_INTERRUPT (1<<24)
  406. #define NV_TX_DEFERRED (1<<26)
  407. #define NV_TX_CARRIERLOST (1<<27)
  408. #define NV_TX_LATECOLLISION (1<<28)
  409. #define NV_TX_UNDERFLOW (1<<29)
  410. #define NV_TX_ERROR (1<<30)
  411. #define NV_TX_VALID (1<<31)
  412. #define NV_TX2_LASTPACKET (1<<29)
  413. #define NV_TX2_RETRYERROR (1<<18)
  414. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  415. #define NV_TX2_DEFERRED (1<<25)
  416. #define NV_TX2_CARRIERLOST (1<<26)
  417. #define NV_TX2_LATECOLLISION (1<<27)
  418. #define NV_TX2_UNDERFLOW (1<<28)
  419. /* error and valid are the same for both */
  420. #define NV_TX2_ERROR (1<<30)
  421. #define NV_TX2_VALID (1<<31)
  422. #define NV_TX2_TSO (1<<28)
  423. #define NV_TX2_TSO_SHIFT 14
  424. #define NV_TX2_TSO_MAX_SHIFT 14
  425. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  426. #define NV_TX2_CHECKSUM_L3 (1<<27)
  427. #define NV_TX2_CHECKSUM_L4 (1<<26)
  428. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  429. #define NV_RX_DESCRIPTORVALID (1<<16)
  430. #define NV_RX_MISSEDFRAME (1<<17)
  431. #define NV_RX_SUBSTRACT1 (1<<18)
  432. #define NV_RX_ERROR1 (1<<23)
  433. #define NV_RX_ERROR2 (1<<24)
  434. #define NV_RX_ERROR3 (1<<25)
  435. #define NV_RX_ERROR4 (1<<26)
  436. #define NV_RX_CRCERR (1<<27)
  437. #define NV_RX_OVERFLOW (1<<28)
  438. #define NV_RX_FRAMINGERR (1<<29)
  439. #define NV_RX_ERROR (1<<30)
  440. #define NV_RX_AVAIL (1<<31)
  441. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  442. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  443. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  444. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  445. #define NV_RX2_DESCRIPTORVALID (1<<29)
  446. #define NV_RX2_SUBSTRACT1 (1<<25)
  447. #define NV_RX2_ERROR1 (1<<18)
  448. #define NV_RX2_ERROR2 (1<<19)
  449. #define NV_RX2_ERROR3 (1<<20)
  450. #define NV_RX2_ERROR4 (1<<21)
  451. #define NV_RX2_CRCERR (1<<22)
  452. #define NV_RX2_OVERFLOW (1<<23)
  453. #define NV_RX2_FRAMINGERR (1<<24)
  454. /* error and avail are the same for both */
  455. #define NV_RX2_ERROR (1<<30)
  456. #define NV_RX2_AVAIL (1<<31)
  457. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  458. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  459. /* Miscelaneous hardware related defines: */
  460. #define NV_PCI_REGSZ_VER1 0x270
  461. #define NV_PCI_REGSZ_VER2 0x2d4
  462. #define NV_PCI_REGSZ_VER3 0x604
  463. /* various timeout delays: all in usec */
  464. #define NV_TXRX_RESET_DELAY 4
  465. #define NV_TXSTOP_DELAY1 10
  466. #define NV_TXSTOP_DELAY1MAX 500000
  467. #define NV_TXSTOP_DELAY2 100
  468. #define NV_RXSTOP_DELAY1 10
  469. #define NV_RXSTOP_DELAY1MAX 500000
  470. #define NV_RXSTOP_DELAY2 100
  471. #define NV_SETUP5_DELAY 5
  472. #define NV_SETUP5_DELAYMAX 50000
  473. #define NV_POWERUP_DELAY 5
  474. #define NV_POWERUP_DELAYMAX 5000
  475. #define NV_MIIBUSY_DELAY 50
  476. #define NV_MIIPHY_DELAY 10
  477. #define NV_MIIPHY_DELAYMAX 10000
  478. #define NV_MAC_RESET_DELAY 64
  479. #define NV_WAKEUPPATTERNS 5
  480. #define NV_WAKEUPMASKENTRIES 4
  481. /* General driver defaults */
  482. #define NV_WATCHDOG_TIMEO (5*HZ)
  483. #define RX_RING_DEFAULT 128
  484. #define TX_RING_DEFAULT 256
  485. #define RX_RING_MIN 128
  486. #define TX_RING_MIN 64
  487. #define RING_MAX_DESC_VER_1 1024
  488. #define RING_MAX_DESC_VER_2_3 16384
  489. /* rx/tx mac addr + type + vlan + align + slack*/
  490. #define NV_RX_HEADERS (64)
  491. /* even more slack. */
  492. #define NV_RX_ALLOC_PAD (64)
  493. /* maximum mtu size */
  494. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  495. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  496. #define OOM_REFILL (1+HZ/20)
  497. #define POLL_WAIT (1+HZ/100)
  498. #define LINK_TIMEOUT (3*HZ)
  499. #define STATS_INTERVAL (10*HZ)
  500. /*
  501. * desc_ver values:
  502. * The nic supports three different descriptor types:
  503. * - DESC_VER_1: Original
  504. * - DESC_VER_2: support for jumbo frames.
  505. * - DESC_VER_3: 64-bit format.
  506. */
  507. #define DESC_VER_1 1
  508. #define DESC_VER_2 2
  509. #define DESC_VER_3 3
  510. /* PHY defines */
  511. #define PHY_OUI_MARVELL 0x5043
  512. #define PHY_OUI_CICADA 0x03f1
  513. #define PHY_OUI_VITESSE 0x01c1
  514. #define PHY_OUI_REALTEK 0x01c1
  515. #define PHYID1_OUI_MASK 0x03ff
  516. #define PHYID1_OUI_SHFT 6
  517. #define PHYID2_OUI_MASK 0xfc00
  518. #define PHYID2_OUI_SHFT 10
  519. #define PHYID2_MODEL_MASK 0x03f0
  520. #define PHY_MODEL_MARVELL_E3016 0x220
  521. #define PHY_MARVELL_E3016_INITMASK 0x0300
  522. #define PHY_CICADA_INIT1 0x0f000
  523. #define PHY_CICADA_INIT2 0x0e00
  524. #define PHY_CICADA_INIT3 0x01000
  525. #define PHY_CICADA_INIT4 0x0200
  526. #define PHY_CICADA_INIT5 0x0004
  527. #define PHY_CICADA_INIT6 0x02000
  528. #define PHY_VITESSE_INIT_REG1 0x1f
  529. #define PHY_VITESSE_INIT_REG2 0x10
  530. #define PHY_VITESSE_INIT_REG3 0x11
  531. #define PHY_VITESSE_INIT_REG4 0x12
  532. #define PHY_VITESSE_INIT_MSK1 0xc
  533. #define PHY_VITESSE_INIT_MSK2 0x0180
  534. #define PHY_VITESSE_INIT1 0x52b5
  535. #define PHY_VITESSE_INIT2 0xaf8a
  536. #define PHY_VITESSE_INIT3 0x8
  537. #define PHY_VITESSE_INIT4 0x8f8a
  538. #define PHY_VITESSE_INIT5 0xaf86
  539. #define PHY_VITESSE_INIT6 0x8f86
  540. #define PHY_VITESSE_INIT7 0xaf82
  541. #define PHY_VITESSE_INIT8 0x0100
  542. #define PHY_VITESSE_INIT9 0x8f82
  543. #define PHY_VITESSE_INIT10 0x0
  544. #define PHY_REALTEK_INIT_REG1 0x1f
  545. #define PHY_REALTEK_INIT_REG2 0x19
  546. #define PHY_REALTEK_INIT_REG3 0x13
  547. #define PHY_REALTEK_INIT1 0x0000
  548. #define PHY_REALTEK_INIT2 0x8e00
  549. #define PHY_REALTEK_INIT3 0x0001
  550. #define PHY_REALTEK_INIT4 0xad17
  551. #define PHY_GIGABIT 0x0100
  552. #define PHY_TIMEOUT 0x1
  553. #define PHY_ERROR 0x2
  554. #define PHY_100 0x1
  555. #define PHY_1000 0x2
  556. #define PHY_HALF 0x100
  557. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  558. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  559. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  560. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  561. #define NV_PAUSEFRAME_RX_REQ 0x0010
  562. #define NV_PAUSEFRAME_TX_REQ 0x0020
  563. #define NV_PAUSEFRAME_AUTONEG 0x0040
  564. /* MSI/MSI-X defines */
  565. #define NV_MSI_X_MAX_VECTORS 8
  566. #define NV_MSI_X_VECTORS_MASK 0x000f
  567. #define NV_MSI_CAPABLE 0x0010
  568. #define NV_MSI_X_CAPABLE 0x0020
  569. #define NV_MSI_ENABLED 0x0040
  570. #define NV_MSI_X_ENABLED 0x0080
  571. #define NV_MSI_X_VECTOR_ALL 0x0
  572. #define NV_MSI_X_VECTOR_RX 0x0
  573. #define NV_MSI_X_VECTOR_TX 0x1
  574. #define NV_MSI_X_VECTOR_OTHER 0x2
  575. /* statistics */
  576. struct nv_ethtool_str {
  577. char name[ETH_GSTRING_LEN];
  578. };
  579. static const struct nv_ethtool_str nv_estats_str[] = {
  580. { "tx_bytes" },
  581. { "tx_zero_rexmt" },
  582. { "tx_one_rexmt" },
  583. { "tx_many_rexmt" },
  584. { "tx_late_collision" },
  585. { "tx_fifo_errors" },
  586. { "tx_carrier_errors" },
  587. { "tx_excess_deferral" },
  588. { "tx_retry_error" },
  589. { "rx_frame_error" },
  590. { "rx_extra_byte" },
  591. { "rx_late_collision" },
  592. { "rx_runt" },
  593. { "rx_frame_too_long" },
  594. { "rx_over_errors" },
  595. { "rx_crc_errors" },
  596. { "rx_frame_align_error" },
  597. { "rx_length_error" },
  598. { "rx_unicast" },
  599. { "rx_multicast" },
  600. { "rx_broadcast" },
  601. { "rx_packets" },
  602. { "rx_errors_total" },
  603. { "tx_errors_total" },
  604. /* version 2 stats */
  605. { "tx_deferral" },
  606. { "tx_packets" },
  607. { "rx_bytes" },
  608. { "tx_pause" },
  609. { "rx_pause" },
  610. { "rx_drop_frame" }
  611. };
  612. struct nv_ethtool_stats {
  613. u64 tx_bytes;
  614. u64 tx_zero_rexmt;
  615. u64 tx_one_rexmt;
  616. u64 tx_many_rexmt;
  617. u64 tx_late_collision;
  618. u64 tx_fifo_errors;
  619. u64 tx_carrier_errors;
  620. u64 tx_excess_deferral;
  621. u64 tx_retry_error;
  622. u64 rx_frame_error;
  623. u64 rx_extra_byte;
  624. u64 rx_late_collision;
  625. u64 rx_runt;
  626. u64 rx_frame_too_long;
  627. u64 rx_over_errors;
  628. u64 rx_crc_errors;
  629. u64 rx_frame_align_error;
  630. u64 rx_length_error;
  631. u64 rx_unicast;
  632. u64 rx_multicast;
  633. u64 rx_broadcast;
  634. u64 rx_packets;
  635. u64 rx_errors_total;
  636. u64 tx_errors_total;
  637. /* version 2 stats */
  638. u64 tx_deferral;
  639. u64 tx_packets;
  640. u64 rx_bytes;
  641. u64 tx_pause;
  642. u64 rx_pause;
  643. u64 rx_drop_frame;
  644. };
  645. #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  646. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  647. /* diagnostics */
  648. #define NV_TEST_COUNT_BASE 3
  649. #define NV_TEST_COUNT_EXTENDED 4
  650. static const struct nv_ethtool_str nv_etests_str[] = {
  651. { "link (online/offline)" },
  652. { "register (offline) " },
  653. { "interrupt (offline) " },
  654. { "loopback (offline) " }
  655. };
  656. struct register_test {
  657. __le32 reg;
  658. __le32 mask;
  659. };
  660. static const struct register_test nv_registers_test[] = {
  661. { NvRegUnknownSetupReg6, 0x01 },
  662. { NvRegMisc1, 0x03c },
  663. { NvRegOffloadConfig, 0x03ff },
  664. { NvRegMulticastAddrA, 0xffffffff },
  665. { NvRegTxWatermark, 0x0ff },
  666. { NvRegWakeUpFlags, 0x07777 },
  667. { 0,0 }
  668. };
  669. struct nv_skb_map {
  670. struct sk_buff *skb;
  671. dma_addr_t dma;
  672. unsigned int dma_len;
  673. };
  674. /*
  675. * SMP locking:
  676. * All hardware access under dev->priv->lock, except the performance
  677. * critical parts:
  678. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  679. * by the arch code for interrupts.
  680. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  681. * needs dev->priv->lock :-(
  682. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  683. */
  684. /* in dev: base, irq */
  685. struct fe_priv {
  686. spinlock_t lock;
  687. /* General data:
  688. * Locking: spin_lock(&np->lock); */
  689. struct net_device_stats stats;
  690. struct nv_ethtool_stats estats;
  691. int in_shutdown;
  692. u32 linkspeed;
  693. int duplex;
  694. int autoneg;
  695. int fixed_mode;
  696. int phyaddr;
  697. int wolenabled;
  698. unsigned int phy_oui;
  699. unsigned int phy_model;
  700. u16 gigabit;
  701. int intr_test;
  702. int recover_error;
  703. /* General data: RO fields */
  704. dma_addr_t ring_addr;
  705. struct pci_dev *pci_dev;
  706. u32 orig_mac[2];
  707. u32 irqmask;
  708. u32 desc_ver;
  709. u32 txrxctl_bits;
  710. u32 vlanctl_bits;
  711. u32 driver_data;
  712. u32 register_size;
  713. int rx_csum;
  714. u32 mac_in_use;
  715. void __iomem *base;
  716. /* rx specific fields.
  717. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  718. */
  719. union ring_type get_rx, put_rx, first_rx, last_rx;
  720. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  721. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  722. struct nv_skb_map *rx_skb;
  723. union ring_type rx_ring;
  724. unsigned int rx_buf_sz;
  725. unsigned int pkt_limit;
  726. struct timer_list oom_kick;
  727. struct timer_list nic_poll;
  728. struct timer_list stats_poll;
  729. u32 nic_poll_irq;
  730. int rx_ring_size;
  731. /* media detection workaround.
  732. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  733. */
  734. int need_linktimer;
  735. unsigned long link_timeout;
  736. /*
  737. * tx specific fields.
  738. */
  739. union ring_type get_tx, put_tx, first_tx, last_tx;
  740. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  741. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  742. struct nv_skb_map *tx_skb;
  743. union ring_type tx_ring;
  744. u32 tx_flags;
  745. int tx_ring_size;
  746. int tx_stop;
  747. /* vlan fields */
  748. struct vlan_group *vlangrp;
  749. /* msi/msi-x fields */
  750. u32 msi_flags;
  751. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  752. /* flow control */
  753. u32 pause_flags;
  754. };
  755. /*
  756. * Maximum number of loops until we assume that a bit in the irq mask
  757. * is stuck. Overridable with module param.
  758. */
  759. static int max_interrupt_work = 5;
  760. /*
  761. * Optimization can be either throuput mode or cpu mode
  762. *
  763. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  764. * CPU Mode: Interrupts are controlled by a timer.
  765. */
  766. enum {
  767. NV_OPTIMIZATION_MODE_THROUGHPUT,
  768. NV_OPTIMIZATION_MODE_CPU
  769. };
  770. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  771. /*
  772. * Poll interval for timer irq
  773. *
  774. * This interval determines how frequent an interrupt is generated.
  775. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  776. * Min = 0, and Max = 65535
  777. */
  778. static int poll_interval = -1;
  779. /*
  780. * MSI interrupts
  781. */
  782. enum {
  783. NV_MSI_INT_DISABLED,
  784. NV_MSI_INT_ENABLED
  785. };
  786. static int msi = NV_MSI_INT_ENABLED;
  787. /*
  788. * MSIX interrupts
  789. */
  790. enum {
  791. NV_MSIX_INT_DISABLED,
  792. NV_MSIX_INT_ENABLED
  793. };
  794. static int msix = NV_MSIX_INT_DISABLED;
  795. /*
  796. * DMA 64bit
  797. */
  798. enum {
  799. NV_DMA_64BIT_DISABLED,
  800. NV_DMA_64BIT_ENABLED
  801. };
  802. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  803. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  804. {
  805. return netdev_priv(dev);
  806. }
  807. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  808. {
  809. return ((struct fe_priv *)netdev_priv(dev))->base;
  810. }
  811. static inline void pci_push(u8 __iomem *base)
  812. {
  813. /* force out pending posted writes */
  814. readl(base);
  815. }
  816. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  817. {
  818. return le32_to_cpu(prd->flaglen)
  819. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  820. }
  821. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  822. {
  823. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  824. }
  825. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  826. int delay, int delaymax, const char *msg)
  827. {
  828. u8 __iomem *base = get_hwbase(dev);
  829. pci_push(base);
  830. do {
  831. udelay(delay);
  832. delaymax -= delay;
  833. if (delaymax < 0) {
  834. if (msg)
  835. printk(msg);
  836. return 1;
  837. }
  838. } while ((readl(base + offset) & mask) != target);
  839. return 0;
  840. }
  841. #define NV_SETUP_RX_RING 0x01
  842. #define NV_SETUP_TX_RING 0x02
  843. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  844. {
  845. struct fe_priv *np = get_nvpriv(dev);
  846. u8 __iomem *base = get_hwbase(dev);
  847. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  848. if (rxtx_flags & NV_SETUP_RX_RING) {
  849. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  850. }
  851. if (rxtx_flags & NV_SETUP_TX_RING) {
  852. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  853. }
  854. } else {
  855. if (rxtx_flags & NV_SETUP_RX_RING) {
  856. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  857. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  858. }
  859. if (rxtx_flags & NV_SETUP_TX_RING) {
  860. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  861. writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  862. }
  863. }
  864. }
  865. static void free_rings(struct net_device *dev)
  866. {
  867. struct fe_priv *np = get_nvpriv(dev);
  868. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  869. if (np->rx_ring.orig)
  870. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  871. np->rx_ring.orig, np->ring_addr);
  872. } else {
  873. if (np->rx_ring.ex)
  874. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  875. np->rx_ring.ex, np->ring_addr);
  876. }
  877. if (np->rx_skb)
  878. kfree(np->rx_skb);
  879. if (np->tx_skb)
  880. kfree(np->tx_skb);
  881. }
  882. static int using_multi_irqs(struct net_device *dev)
  883. {
  884. struct fe_priv *np = get_nvpriv(dev);
  885. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  886. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  887. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  888. return 0;
  889. else
  890. return 1;
  891. }
  892. static void nv_enable_irq(struct net_device *dev)
  893. {
  894. struct fe_priv *np = get_nvpriv(dev);
  895. if (!using_multi_irqs(dev)) {
  896. if (np->msi_flags & NV_MSI_X_ENABLED)
  897. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  898. else
  899. enable_irq(dev->irq);
  900. } else {
  901. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  902. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  903. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  904. }
  905. }
  906. static void nv_disable_irq(struct net_device *dev)
  907. {
  908. struct fe_priv *np = get_nvpriv(dev);
  909. if (!using_multi_irqs(dev)) {
  910. if (np->msi_flags & NV_MSI_X_ENABLED)
  911. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  912. else
  913. disable_irq(dev->irq);
  914. } else {
  915. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  916. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  917. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  918. }
  919. }
  920. /* In MSIX mode, a write to irqmask behaves as XOR */
  921. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  922. {
  923. u8 __iomem *base = get_hwbase(dev);
  924. writel(mask, base + NvRegIrqMask);
  925. }
  926. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  927. {
  928. struct fe_priv *np = get_nvpriv(dev);
  929. u8 __iomem *base = get_hwbase(dev);
  930. if (np->msi_flags & NV_MSI_X_ENABLED) {
  931. writel(mask, base + NvRegIrqMask);
  932. } else {
  933. if (np->msi_flags & NV_MSI_ENABLED)
  934. writel(0, base + NvRegMSIIrqMask);
  935. writel(0, base + NvRegIrqMask);
  936. }
  937. }
  938. #define MII_READ (-1)
  939. /* mii_rw: read/write a register on the PHY.
  940. *
  941. * Caller must guarantee serialization
  942. */
  943. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  944. {
  945. u8 __iomem *base = get_hwbase(dev);
  946. u32 reg;
  947. int retval;
  948. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  949. reg = readl(base + NvRegMIIControl);
  950. if (reg & NVREG_MIICTL_INUSE) {
  951. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  952. udelay(NV_MIIBUSY_DELAY);
  953. }
  954. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  955. if (value != MII_READ) {
  956. writel(value, base + NvRegMIIData);
  957. reg |= NVREG_MIICTL_WRITE;
  958. }
  959. writel(reg, base + NvRegMIIControl);
  960. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  961. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  962. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  963. dev->name, miireg, addr);
  964. retval = -1;
  965. } else if (value != MII_READ) {
  966. /* it was a write operation - fewer failures are detectable */
  967. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  968. dev->name, value, miireg, addr);
  969. retval = 0;
  970. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  971. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  972. dev->name, miireg, addr);
  973. retval = -1;
  974. } else {
  975. retval = readl(base + NvRegMIIData);
  976. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  977. dev->name, miireg, addr, retval);
  978. }
  979. return retval;
  980. }
  981. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  982. {
  983. struct fe_priv *np = netdev_priv(dev);
  984. u32 miicontrol;
  985. unsigned int tries = 0;
  986. miicontrol = BMCR_RESET | bmcr_setup;
  987. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  988. return -1;
  989. }
  990. /* wait for 500ms */
  991. msleep(500);
  992. /* must wait till reset is deasserted */
  993. while (miicontrol & BMCR_RESET) {
  994. msleep(10);
  995. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  996. /* FIXME: 100 tries seem excessive */
  997. if (tries++ > 100)
  998. return -1;
  999. }
  1000. return 0;
  1001. }
  1002. static int phy_init(struct net_device *dev)
  1003. {
  1004. struct fe_priv *np = get_nvpriv(dev);
  1005. u8 __iomem *base = get_hwbase(dev);
  1006. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1007. /* phy errata for E3016 phy */
  1008. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1009. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1010. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1011. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1012. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1013. return PHY_ERROR;
  1014. }
  1015. }
  1016. if (np->phy_oui == PHY_OUI_REALTEK) {
  1017. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1018. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1019. return PHY_ERROR;
  1020. }
  1021. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1022. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1023. return PHY_ERROR;
  1024. }
  1025. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1026. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1027. return PHY_ERROR;
  1028. }
  1029. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1030. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1031. return PHY_ERROR;
  1032. }
  1033. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1034. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1035. return PHY_ERROR;
  1036. }
  1037. }
  1038. /* set advertise register */
  1039. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1040. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1041. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1042. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1043. return PHY_ERROR;
  1044. }
  1045. /* get phy interface type */
  1046. phyinterface = readl(base + NvRegPhyInterface);
  1047. /* see if gigabit phy */
  1048. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1049. if (mii_status & PHY_GIGABIT) {
  1050. np->gigabit = PHY_GIGABIT;
  1051. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1052. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1053. if (phyinterface & PHY_RGMII)
  1054. mii_control_1000 |= ADVERTISE_1000FULL;
  1055. else
  1056. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1057. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1058. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1059. return PHY_ERROR;
  1060. }
  1061. }
  1062. else
  1063. np->gigabit = 0;
  1064. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1065. mii_control |= BMCR_ANENABLE;
  1066. /* reset the phy
  1067. * (certain phys need bmcr to be setup with reset)
  1068. */
  1069. if (phy_reset(dev, mii_control)) {
  1070. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1071. return PHY_ERROR;
  1072. }
  1073. /* phy vendor specific configuration */
  1074. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1075. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1076. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1077. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1078. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1079. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1080. return PHY_ERROR;
  1081. }
  1082. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1083. phy_reserved |= PHY_CICADA_INIT5;
  1084. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1085. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1086. return PHY_ERROR;
  1087. }
  1088. }
  1089. if (np->phy_oui == PHY_OUI_CICADA) {
  1090. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1091. phy_reserved |= PHY_CICADA_INIT6;
  1092. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1093. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1094. return PHY_ERROR;
  1095. }
  1096. }
  1097. if (np->phy_oui == PHY_OUI_VITESSE) {
  1098. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1099. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1100. return PHY_ERROR;
  1101. }
  1102. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1103. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1104. return PHY_ERROR;
  1105. }
  1106. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1107. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1108. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1109. return PHY_ERROR;
  1110. }
  1111. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1112. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1113. phy_reserved |= PHY_VITESSE_INIT3;
  1114. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1115. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1116. return PHY_ERROR;
  1117. }
  1118. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1119. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1120. return PHY_ERROR;
  1121. }
  1122. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1123. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1124. return PHY_ERROR;
  1125. }
  1126. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1127. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1128. phy_reserved |= PHY_VITESSE_INIT3;
  1129. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1130. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1131. return PHY_ERROR;
  1132. }
  1133. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1134. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1135. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1136. return PHY_ERROR;
  1137. }
  1138. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1139. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1140. return PHY_ERROR;
  1141. }
  1142. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1143. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1144. return PHY_ERROR;
  1145. }
  1146. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1147. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1148. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1149. return PHY_ERROR;
  1150. }
  1151. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1152. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1153. phy_reserved |= PHY_VITESSE_INIT8;
  1154. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1155. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1156. return PHY_ERROR;
  1157. }
  1158. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1159. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1160. return PHY_ERROR;
  1161. }
  1162. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1163. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1164. return PHY_ERROR;
  1165. }
  1166. }
  1167. if (np->phy_oui == PHY_OUI_REALTEK) {
  1168. /* reset could have cleared these out, set them back */
  1169. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1170. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1171. return PHY_ERROR;
  1172. }
  1173. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1174. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1175. return PHY_ERROR;
  1176. }
  1177. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1178. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1179. return PHY_ERROR;
  1180. }
  1181. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1182. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1183. return PHY_ERROR;
  1184. }
  1185. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1186. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1187. return PHY_ERROR;
  1188. }
  1189. }
  1190. /* some phys clear out pause advertisment on reset, set it back */
  1191. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1192. /* restart auto negotiation */
  1193. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1194. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1195. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1196. return PHY_ERROR;
  1197. }
  1198. return 0;
  1199. }
  1200. static void nv_start_rx(struct net_device *dev)
  1201. {
  1202. struct fe_priv *np = netdev_priv(dev);
  1203. u8 __iomem *base = get_hwbase(dev);
  1204. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1205. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1206. /* Already running? Stop it. */
  1207. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1208. rx_ctrl &= ~NVREG_RCVCTL_START;
  1209. writel(rx_ctrl, base + NvRegReceiverControl);
  1210. pci_push(base);
  1211. }
  1212. writel(np->linkspeed, base + NvRegLinkSpeed);
  1213. pci_push(base);
  1214. rx_ctrl |= NVREG_RCVCTL_START;
  1215. if (np->mac_in_use)
  1216. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1217. writel(rx_ctrl, base + NvRegReceiverControl);
  1218. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1219. dev->name, np->duplex, np->linkspeed);
  1220. pci_push(base);
  1221. }
  1222. static void nv_stop_rx(struct net_device *dev)
  1223. {
  1224. struct fe_priv *np = netdev_priv(dev);
  1225. u8 __iomem *base = get_hwbase(dev);
  1226. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1227. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1228. if (!np->mac_in_use)
  1229. rx_ctrl &= ~NVREG_RCVCTL_START;
  1230. else
  1231. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1232. writel(rx_ctrl, base + NvRegReceiverControl);
  1233. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1234. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1235. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1236. udelay(NV_RXSTOP_DELAY2);
  1237. if (!np->mac_in_use)
  1238. writel(0, base + NvRegLinkSpeed);
  1239. }
  1240. static void nv_start_tx(struct net_device *dev)
  1241. {
  1242. struct fe_priv *np = netdev_priv(dev);
  1243. u8 __iomem *base = get_hwbase(dev);
  1244. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1245. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1246. tx_ctrl |= NVREG_XMITCTL_START;
  1247. if (np->mac_in_use)
  1248. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1249. writel(tx_ctrl, base + NvRegTransmitterControl);
  1250. pci_push(base);
  1251. }
  1252. static void nv_stop_tx(struct net_device *dev)
  1253. {
  1254. struct fe_priv *np = netdev_priv(dev);
  1255. u8 __iomem *base = get_hwbase(dev);
  1256. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1257. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1258. if (!np->mac_in_use)
  1259. tx_ctrl &= ~NVREG_XMITCTL_START;
  1260. else
  1261. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1262. writel(tx_ctrl, base + NvRegTransmitterControl);
  1263. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1264. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1265. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1266. udelay(NV_TXSTOP_DELAY2);
  1267. if (!np->mac_in_use)
  1268. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1269. base + NvRegTransmitPoll);
  1270. }
  1271. static void nv_txrx_reset(struct net_device *dev)
  1272. {
  1273. struct fe_priv *np = netdev_priv(dev);
  1274. u8 __iomem *base = get_hwbase(dev);
  1275. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1276. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1277. pci_push(base);
  1278. udelay(NV_TXRX_RESET_DELAY);
  1279. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1280. pci_push(base);
  1281. }
  1282. static void nv_mac_reset(struct net_device *dev)
  1283. {
  1284. struct fe_priv *np = netdev_priv(dev);
  1285. u8 __iomem *base = get_hwbase(dev);
  1286. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1287. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1288. pci_push(base);
  1289. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1290. pci_push(base);
  1291. udelay(NV_MAC_RESET_DELAY);
  1292. writel(0, base + NvRegMacReset);
  1293. pci_push(base);
  1294. udelay(NV_MAC_RESET_DELAY);
  1295. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1296. pci_push(base);
  1297. }
  1298. static void nv_get_hw_stats(struct net_device *dev)
  1299. {
  1300. struct fe_priv *np = netdev_priv(dev);
  1301. u8 __iomem *base = get_hwbase(dev);
  1302. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1303. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1304. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1305. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1306. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1307. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1308. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1309. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1310. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1311. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1312. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1313. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1314. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1315. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1316. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1317. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1318. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1319. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1320. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1321. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1322. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1323. np->estats.rx_packets =
  1324. np->estats.rx_unicast +
  1325. np->estats.rx_multicast +
  1326. np->estats.rx_broadcast;
  1327. np->estats.rx_errors_total =
  1328. np->estats.rx_crc_errors +
  1329. np->estats.rx_over_errors +
  1330. np->estats.rx_frame_error +
  1331. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1332. np->estats.rx_late_collision +
  1333. np->estats.rx_runt +
  1334. np->estats.rx_frame_too_long;
  1335. np->estats.tx_errors_total =
  1336. np->estats.tx_late_collision +
  1337. np->estats.tx_fifo_errors +
  1338. np->estats.tx_carrier_errors +
  1339. np->estats.tx_excess_deferral +
  1340. np->estats.tx_retry_error;
  1341. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1342. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1343. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1344. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1345. np->estats.tx_pause += readl(base + NvRegTxPause);
  1346. np->estats.rx_pause += readl(base + NvRegRxPause);
  1347. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1348. }
  1349. }
  1350. /*
  1351. * nv_get_stats: dev->get_stats function
  1352. * Get latest stats value from the nic.
  1353. * Called with read_lock(&dev_base_lock) held for read -
  1354. * only synchronized against unregister_netdevice.
  1355. */
  1356. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1357. {
  1358. struct fe_priv *np = netdev_priv(dev);
  1359. /* If the nic supports hw counters then retrieve latest values */
  1360. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
  1361. nv_get_hw_stats(dev);
  1362. /* copy to net_device stats */
  1363. np->stats.tx_bytes = np->estats.tx_bytes;
  1364. np->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1365. np->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1366. np->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1367. np->stats.rx_over_errors = np->estats.rx_over_errors;
  1368. np->stats.rx_errors = np->estats.rx_errors_total;
  1369. np->stats.tx_errors = np->estats.tx_errors_total;
  1370. }
  1371. return &np->stats;
  1372. }
  1373. /*
  1374. * nv_alloc_rx: fill rx ring entries.
  1375. * Return 1 if the allocations for the skbs failed and the
  1376. * rx engine is without Available descriptors
  1377. */
  1378. static int nv_alloc_rx(struct net_device *dev)
  1379. {
  1380. struct fe_priv *np = netdev_priv(dev);
  1381. struct ring_desc* less_rx;
  1382. less_rx = np->get_rx.orig;
  1383. if (less_rx-- == np->first_rx.orig)
  1384. less_rx = np->last_rx.orig;
  1385. while (np->put_rx.orig != less_rx) {
  1386. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1387. if (skb) {
  1388. np->put_rx_ctx->skb = skb;
  1389. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1390. skb->data,
  1391. skb_tailroom(skb),
  1392. PCI_DMA_FROMDEVICE);
  1393. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1394. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1395. wmb();
  1396. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1397. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1398. np->put_rx.orig = np->first_rx.orig;
  1399. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1400. np->put_rx_ctx = np->first_rx_ctx;
  1401. } else {
  1402. return 1;
  1403. }
  1404. }
  1405. return 0;
  1406. }
  1407. static int nv_alloc_rx_optimized(struct net_device *dev)
  1408. {
  1409. struct fe_priv *np = netdev_priv(dev);
  1410. struct ring_desc_ex* less_rx;
  1411. less_rx = np->get_rx.ex;
  1412. if (less_rx-- == np->first_rx.ex)
  1413. less_rx = np->last_rx.ex;
  1414. while (np->put_rx.ex != less_rx) {
  1415. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1416. if (skb) {
  1417. np->put_rx_ctx->skb = skb;
  1418. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1419. skb->data,
  1420. skb_tailroom(skb),
  1421. PCI_DMA_FROMDEVICE);
  1422. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1423. np->put_rx.ex->bufhigh = cpu_to_le64(np->put_rx_ctx->dma) >> 32;
  1424. np->put_rx.ex->buflow = cpu_to_le64(np->put_rx_ctx->dma) & 0x0FFFFFFFF;
  1425. wmb();
  1426. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1427. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1428. np->put_rx.ex = np->first_rx.ex;
  1429. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1430. np->put_rx_ctx = np->first_rx_ctx;
  1431. } else {
  1432. return 1;
  1433. }
  1434. }
  1435. return 0;
  1436. }
  1437. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1438. #ifdef CONFIG_FORCEDETH_NAPI
  1439. static void nv_do_rx_refill(unsigned long data)
  1440. {
  1441. struct net_device *dev = (struct net_device *) data;
  1442. /* Just reschedule NAPI rx processing */
  1443. netif_rx_schedule(dev);
  1444. }
  1445. #else
  1446. static void nv_do_rx_refill(unsigned long data)
  1447. {
  1448. struct net_device *dev = (struct net_device *) data;
  1449. struct fe_priv *np = netdev_priv(dev);
  1450. int retcode;
  1451. if (!using_multi_irqs(dev)) {
  1452. if (np->msi_flags & NV_MSI_X_ENABLED)
  1453. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1454. else
  1455. disable_irq(dev->irq);
  1456. } else {
  1457. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1458. }
  1459. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1460. retcode = nv_alloc_rx(dev);
  1461. else
  1462. retcode = nv_alloc_rx_optimized(dev);
  1463. if (retcode) {
  1464. spin_lock_irq(&np->lock);
  1465. if (!np->in_shutdown)
  1466. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1467. spin_unlock_irq(&np->lock);
  1468. }
  1469. if (!using_multi_irqs(dev)) {
  1470. if (np->msi_flags & NV_MSI_X_ENABLED)
  1471. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1472. else
  1473. enable_irq(dev->irq);
  1474. } else {
  1475. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1476. }
  1477. }
  1478. #endif
  1479. static void nv_init_rx(struct net_device *dev)
  1480. {
  1481. struct fe_priv *np = netdev_priv(dev);
  1482. int i;
  1483. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1484. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1485. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1486. else
  1487. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1488. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1489. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1490. for (i = 0; i < np->rx_ring_size; i++) {
  1491. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1492. np->rx_ring.orig[i].flaglen = 0;
  1493. np->rx_ring.orig[i].buf = 0;
  1494. } else {
  1495. np->rx_ring.ex[i].flaglen = 0;
  1496. np->rx_ring.ex[i].txvlan = 0;
  1497. np->rx_ring.ex[i].bufhigh = 0;
  1498. np->rx_ring.ex[i].buflow = 0;
  1499. }
  1500. np->rx_skb[i].skb = NULL;
  1501. np->rx_skb[i].dma = 0;
  1502. }
  1503. }
  1504. static void nv_init_tx(struct net_device *dev)
  1505. {
  1506. struct fe_priv *np = netdev_priv(dev);
  1507. int i;
  1508. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1509. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1510. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1511. else
  1512. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1513. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1514. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1515. for (i = 0; i < np->tx_ring_size; i++) {
  1516. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1517. np->tx_ring.orig[i].flaglen = 0;
  1518. np->tx_ring.orig[i].buf = 0;
  1519. } else {
  1520. np->tx_ring.ex[i].flaglen = 0;
  1521. np->tx_ring.ex[i].txvlan = 0;
  1522. np->tx_ring.ex[i].bufhigh = 0;
  1523. np->tx_ring.ex[i].buflow = 0;
  1524. }
  1525. np->tx_skb[i].skb = NULL;
  1526. np->tx_skb[i].dma = 0;
  1527. }
  1528. }
  1529. static int nv_init_ring(struct net_device *dev)
  1530. {
  1531. struct fe_priv *np = netdev_priv(dev);
  1532. nv_init_tx(dev);
  1533. nv_init_rx(dev);
  1534. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1535. return nv_alloc_rx(dev);
  1536. else
  1537. return nv_alloc_rx_optimized(dev);
  1538. }
  1539. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1540. {
  1541. struct fe_priv *np = netdev_priv(dev);
  1542. if (tx_skb->dma) {
  1543. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1544. tx_skb->dma_len,
  1545. PCI_DMA_TODEVICE);
  1546. tx_skb->dma = 0;
  1547. }
  1548. if (tx_skb->skb) {
  1549. dev_kfree_skb_any(tx_skb->skb);
  1550. tx_skb->skb = NULL;
  1551. return 1;
  1552. } else {
  1553. return 0;
  1554. }
  1555. }
  1556. static void nv_drain_tx(struct net_device *dev)
  1557. {
  1558. struct fe_priv *np = netdev_priv(dev);
  1559. unsigned int i;
  1560. for (i = 0; i < np->tx_ring_size; i++) {
  1561. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1562. np->tx_ring.orig[i].flaglen = 0;
  1563. np->tx_ring.orig[i].buf = 0;
  1564. } else {
  1565. np->tx_ring.ex[i].flaglen = 0;
  1566. np->tx_ring.ex[i].txvlan = 0;
  1567. np->tx_ring.ex[i].bufhigh = 0;
  1568. np->tx_ring.ex[i].buflow = 0;
  1569. }
  1570. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1571. np->stats.tx_dropped++;
  1572. }
  1573. }
  1574. static void nv_drain_rx(struct net_device *dev)
  1575. {
  1576. struct fe_priv *np = netdev_priv(dev);
  1577. int i;
  1578. for (i = 0; i < np->rx_ring_size; i++) {
  1579. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1580. np->rx_ring.orig[i].flaglen = 0;
  1581. np->rx_ring.orig[i].buf = 0;
  1582. } else {
  1583. np->rx_ring.ex[i].flaglen = 0;
  1584. np->rx_ring.ex[i].txvlan = 0;
  1585. np->rx_ring.ex[i].bufhigh = 0;
  1586. np->rx_ring.ex[i].buflow = 0;
  1587. }
  1588. wmb();
  1589. if (np->rx_skb[i].skb) {
  1590. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1591. (skb_end_pointer(np->rx_skb[i].skb) -
  1592. np->rx_skb[i].skb->data),
  1593. PCI_DMA_FROMDEVICE);
  1594. dev_kfree_skb(np->rx_skb[i].skb);
  1595. np->rx_skb[i].skb = NULL;
  1596. }
  1597. }
  1598. }
  1599. static void drain_ring(struct net_device *dev)
  1600. {
  1601. nv_drain_tx(dev);
  1602. nv_drain_rx(dev);
  1603. }
  1604. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1605. {
  1606. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1607. }
  1608. /*
  1609. * nv_start_xmit: dev->hard_start_xmit function
  1610. * Called with netif_tx_lock held.
  1611. */
  1612. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1613. {
  1614. struct fe_priv *np = netdev_priv(dev);
  1615. u32 tx_flags = 0;
  1616. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1617. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1618. unsigned int i;
  1619. u32 offset = 0;
  1620. u32 bcnt;
  1621. u32 size = skb->len-skb->data_len;
  1622. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1623. u32 empty_slots;
  1624. struct ring_desc* put_tx;
  1625. struct ring_desc* start_tx;
  1626. struct ring_desc* prev_tx;
  1627. struct nv_skb_map* prev_tx_ctx;
  1628. /* add fragments to entries count */
  1629. for (i = 0; i < fragments; i++) {
  1630. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1631. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1632. }
  1633. empty_slots = nv_get_empty_tx_slots(np);
  1634. if (unlikely(empty_slots <= entries)) {
  1635. spin_lock_irq(&np->lock);
  1636. netif_stop_queue(dev);
  1637. np->tx_stop = 1;
  1638. spin_unlock_irq(&np->lock);
  1639. return NETDEV_TX_BUSY;
  1640. }
  1641. start_tx = put_tx = np->put_tx.orig;
  1642. /* setup the header buffer */
  1643. do {
  1644. prev_tx = put_tx;
  1645. prev_tx_ctx = np->put_tx_ctx;
  1646. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1647. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1648. PCI_DMA_TODEVICE);
  1649. np->put_tx_ctx->dma_len = bcnt;
  1650. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1651. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1652. tx_flags = np->tx_flags;
  1653. offset += bcnt;
  1654. size -= bcnt;
  1655. if (unlikely(put_tx++ == np->last_tx.orig))
  1656. put_tx = np->first_tx.orig;
  1657. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1658. np->put_tx_ctx = np->first_tx_ctx;
  1659. } while (size);
  1660. /* setup the fragments */
  1661. for (i = 0; i < fragments; i++) {
  1662. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1663. u32 size = frag->size;
  1664. offset = 0;
  1665. do {
  1666. prev_tx = put_tx;
  1667. prev_tx_ctx = np->put_tx_ctx;
  1668. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1669. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1670. PCI_DMA_TODEVICE);
  1671. np->put_tx_ctx->dma_len = bcnt;
  1672. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1673. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1674. offset += bcnt;
  1675. size -= bcnt;
  1676. if (unlikely(put_tx++ == np->last_tx.orig))
  1677. put_tx = np->first_tx.orig;
  1678. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1679. np->put_tx_ctx = np->first_tx_ctx;
  1680. } while (size);
  1681. }
  1682. /* set last fragment flag */
  1683. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1684. /* save skb in this slot's context area */
  1685. prev_tx_ctx->skb = skb;
  1686. if (skb_is_gso(skb))
  1687. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1688. else
  1689. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1690. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1691. spin_lock_irq(&np->lock);
  1692. /* set tx flags */
  1693. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1694. np->put_tx.orig = put_tx;
  1695. spin_unlock_irq(&np->lock);
  1696. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1697. dev->name, entries, tx_flags_extra);
  1698. {
  1699. int j;
  1700. for (j=0; j<64; j++) {
  1701. if ((j%16) == 0)
  1702. dprintk("\n%03x:", j);
  1703. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1704. }
  1705. dprintk("\n");
  1706. }
  1707. dev->trans_start = jiffies;
  1708. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1709. return NETDEV_TX_OK;
  1710. }
  1711. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1712. {
  1713. struct fe_priv *np = netdev_priv(dev);
  1714. u32 tx_flags = 0;
  1715. u32 tx_flags_extra;
  1716. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1717. unsigned int i;
  1718. u32 offset = 0;
  1719. u32 bcnt;
  1720. u32 size = skb->len-skb->data_len;
  1721. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1722. u32 empty_slots;
  1723. struct ring_desc_ex* put_tx;
  1724. struct ring_desc_ex* start_tx;
  1725. struct ring_desc_ex* prev_tx;
  1726. struct nv_skb_map* prev_tx_ctx;
  1727. /* add fragments to entries count */
  1728. for (i = 0; i < fragments; i++) {
  1729. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1730. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1731. }
  1732. empty_slots = nv_get_empty_tx_slots(np);
  1733. if (unlikely(empty_slots <= entries)) {
  1734. spin_lock_irq(&np->lock);
  1735. netif_stop_queue(dev);
  1736. np->tx_stop = 1;
  1737. spin_unlock_irq(&np->lock);
  1738. return NETDEV_TX_BUSY;
  1739. }
  1740. start_tx = put_tx = np->put_tx.ex;
  1741. /* setup the header buffer */
  1742. do {
  1743. prev_tx = put_tx;
  1744. prev_tx_ctx = np->put_tx_ctx;
  1745. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1746. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1747. PCI_DMA_TODEVICE);
  1748. np->put_tx_ctx->dma_len = bcnt;
  1749. put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
  1750. put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
  1751. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1752. tx_flags = NV_TX2_VALID;
  1753. offset += bcnt;
  1754. size -= bcnt;
  1755. if (unlikely(put_tx++ == np->last_tx.ex))
  1756. put_tx = np->first_tx.ex;
  1757. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1758. np->put_tx_ctx = np->first_tx_ctx;
  1759. } while (size);
  1760. /* setup the fragments */
  1761. for (i = 0; i < fragments; i++) {
  1762. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1763. u32 size = frag->size;
  1764. offset = 0;
  1765. do {
  1766. prev_tx = put_tx;
  1767. prev_tx_ctx = np->put_tx_ctx;
  1768. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1769. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1770. PCI_DMA_TODEVICE);
  1771. np->put_tx_ctx->dma_len = bcnt;
  1772. put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
  1773. put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
  1774. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1775. offset += bcnt;
  1776. size -= bcnt;
  1777. if (unlikely(put_tx++ == np->last_tx.ex))
  1778. put_tx = np->first_tx.ex;
  1779. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1780. np->put_tx_ctx = np->first_tx_ctx;
  1781. } while (size);
  1782. }
  1783. /* set last fragment flag */
  1784. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  1785. /* save skb in this slot's context area */
  1786. prev_tx_ctx->skb = skb;
  1787. if (skb_is_gso(skb))
  1788. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1789. else
  1790. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1791. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1792. /* vlan tag */
  1793. if (likely(!np->vlangrp)) {
  1794. start_tx->txvlan = 0;
  1795. } else {
  1796. if (vlan_tx_tag_present(skb))
  1797. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  1798. else
  1799. start_tx->txvlan = 0;
  1800. }
  1801. spin_lock_irq(&np->lock);
  1802. /* set tx flags */
  1803. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1804. np->put_tx.ex = put_tx;
  1805. spin_unlock_irq(&np->lock);
  1806. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  1807. dev->name, entries, tx_flags_extra);
  1808. {
  1809. int j;
  1810. for (j=0; j<64; j++) {
  1811. if ((j%16) == 0)
  1812. dprintk("\n%03x:", j);
  1813. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1814. }
  1815. dprintk("\n");
  1816. }
  1817. dev->trans_start = jiffies;
  1818. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1819. return NETDEV_TX_OK;
  1820. }
  1821. /*
  1822. * nv_tx_done: check for completed packets, release the skbs.
  1823. *
  1824. * Caller must own np->lock.
  1825. */
  1826. static void nv_tx_done(struct net_device *dev)
  1827. {
  1828. struct fe_priv *np = netdev_priv(dev);
  1829. u32 flags;
  1830. struct ring_desc* orig_get_tx = np->get_tx.orig;
  1831. while ((np->get_tx.orig != np->put_tx.orig) &&
  1832. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  1833. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  1834. dev->name, flags);
  1835. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1836. np->get_tx_ctx->dma_len,
  1837. PCI_DMA_TODEVICE);
  1838. np->get_tx_ctx->dma = 0;
  1839. if (np->desc_ver == DESC_VER_1) {
  1840. if (flags & NV_TX_LASTPACKET) {
  1841. if (flags & NV_TX_ERROR) {
  1842. if (flags & NV_TX_UNDERFLOW)
  1843. np->stats.tx_fifo_errors++;
  1844. if (flags & NV_TX_CARRIERLOST)
  1845. np->stats.tx_carrier_errors++;
  1846. np->stats.tx_errors++;
  1847. } else {
  1848. np->stats.tx_packets++;
  1849. np->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1850. }
  1851. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1852. np->get_tx_ctx->skb = NULL;
  1853. }
  1854. } else {
  1855. if (flags & NV_TX2_LASTPACKET) {
  1856. if (flags & NV_TX2_ERROR) {
  1857. if (flags & NV_TX2_UNDERFLOW)
  1858. np->stats.tx_fifo_errors++;
  1859. if (flags & NV_TX2_CARRIERLOST)
  1860. np->stats.tx_carrier_errors++;
  1861. np->stats.tx_errors++;
  1862. } else {
  1863. np->stats.tx_packets++;
  1864. np->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1865. }
  1866. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1867. np->get_tx_ctx->skb = NULL;
  1868. }
  1869. }
  1870. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  1871. np->get_tx.orig = np->first_tx.orig;
  1872. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1873. np->get_tx_ctx = np->first_tx_ctx;
  1874. }
  1875. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  1876. np->tx_stop = 0;
  1877. netif_wake_queue(dev);
  1878. }
  1879. }
  1880. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  1881. {
  1882. struct fe_priv *np = netdev_priv(dev);
  1883. u32 flags;
  1884. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  1885. while ((np->get_tx.ex != np->put_tx.ex) &&
  1886. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  1887. (limit-- > 0)) {
  1888. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  1889. dev->name, flags);
  1890. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1891. np->get_tx_ctx->dma_len,
  1892. PCI_DMA_TODEVICE);
  1893. np->get_tx_ctx->dma = 0;
  1894. if (flags & NV_TX2_LASTPACKET) {
  1895. if (!(flags & NV_TX2_ERROR))
  1896. np->stats.tx_packets++;
  1897. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1898. np->get_tx_ctx->skb = NULL;
  1899. }
  1900. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  1901. np->get_tx.ex = np->first_tx.ex;
  1902. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1903. np->get_tx_ctx = np->first_tx_ctx;
  1904. }
  1905. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  1906. np->tx_stop = 0;
  1907. netif_wake_queue(dev);
  1908. }
  1909. }
  1910. /*
  1911. * nv_tx_timeout: dev->tx_timeout function
  1912. * Called with netif_tx_lock held.
  1913. */
  1914. static void nv_tx_timeout(struct net_device *dev)
  1915. {
  1916. struct fe_priv *np = netdev_priv(dev);
  1917. u8 __iomem *base = get_hwbase(dev);
  1918. u32 status;
  1919. if (np->msi_flags & NV_MSI_X_ENABLED)
  1920. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1921. else
  1922. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1923. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1924. {
  1925. int i;
  1926. printk(KERN_INFO "%s: Ring at %lx\n",
  1927. dev->name, (unsigned long)np->ring_addr);
  1928. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1929. for (i=0;i<=np->register_size;i+= 32) {
  1930. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1931. i,
  1932. readl(base + i + 0), readl(base + i + 4),
  1933. readl(base + i + 8), readl(base + i + 12),
  1934. readl(base + i + 16), readl(base + i + 20),
  1935. readl(base + i + 24), readl(base + i + 28));
  1936. }
  1937. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1938. for (i=0;i<np->tx_ring_size;i+= 4) {
  1939. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1940. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1941. i,
  1942. le32_to_cpu(np->tx_ring.orig[i].buf),
  1943. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  1944. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  1945. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  1946. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  1947. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  1948. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  1949. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  1950. } else {
  1951. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1952. i,
  1953. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  1954. le32_to_cpu(np->tx_ring.ex[i].buflow),
  1955. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  1956. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  1957. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  1958. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  1959. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  1960. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  1961. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  1962. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  1963. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  1964. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  1965. }
  1966. }
  1967. }
  1968. spin_lock_irq(&np->lock);
  1969. /* 1) stop tx engine */
  1970. nv_stop_tx(dev);
  1971. /* 2) check that the packets were not sent already: */
  1972. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1973. nv_tx_done(dev);
  1974. else
  1975. nv_tx_done_optimized(dev, np->tx_ring_size);
  1976. /* 3) if there are dead entries: clear everything */
  1977. if (np->get_tx_ctx != np->put_tx_ctx) {
  1978. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1979. nv_drain_tx(dev);
  1980. nv_init_tx(dev);
  1981. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1982. }
  1983. netif_wake_queue(dev);
  1984. /* 4) restart tx engine */
  1985. nv_start_tx(dev);
  1986. spin_unlock_irq(&np->lock);
  1987. }
  1988. /*
  1989. * Called when the nic notices a mismatch between the actual data len on the
  1990. * wire and the len indicated in the 802 header
  1991. */
  1992. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1993. {
  1994. int hdrlen; /* length of the 802 header */
  1995. int protolen; /* length as stored in the proto field */
  1996. /* 1) calculate len according to header */
  1997. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  1998. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1999. hdrlen = VLAN_HLEN;
  2000. } else {
  2001. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2002. hdrlen = ETH_HLEN;
  2003. }
  2004. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2005. dev->name, datalen, protolen, hdrlen);
  2006. if (protolen > ETH_DATA_LEN)
  2007. return datalen; /* Value in proto field not a len, no checks possible */
  2008. protolen += hdrlen;
  2009. /* consistency checks: */
  2010. if (datalen > ETH_ZLEN) {
  2011. if (datalen >= protolen) {
  2012. /* more data on wire than in 802 header, trim of
  2013. * additional data.
  2014. */
  2015. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2016. dev->name, protolen);
  2017. return protolen;
  2018. } else {
  2019. /* less data on wire than mentioned in header.
  2020. * Discard the packet.
  2021. */
  2022. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2023. dev->name);
  2024. return -1;
  2025. }
  2026. } else {
  2027. /* short packet. Accept only if 802 values are also short */
  2028. if (protolen > ETH_ZLEN) {
  2029. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2030. dev->name);
  2031. return -1;
  2032. }
  2033. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2034. dev->name, datalen);
  2035. return datalen;
  2036. }
  2037. }
  2038. static int nv_rx_process(struct net_device *dev, int limit)
  2039. {
  2040. struct fe_priv *np = netdev_priv(dev);
  2041. u32 flags;
  2042. u32 rx_processed_cnt = 0;
  2043. struct sk_buff *skb;
  2044. int len;
  2045. while((np->get_rx.orig != np->put_rx.orig) &&
  2046. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2047. (rx_processed_cnt++ < limit)) {
  2048. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2049. dev->name, flags);
  2050. /*
  2051. * the packet is for us - immediately tear down the pci mapping.
  2052. * TODO: check if a prefetch of the first cacheline improves
  2053. * the performance.
  2054. */
  2055. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2056. np->get_rx_ctx->dma_len,
  2057. PCI_DMA_FROMDEVICE);
  2058. skb = np->get_rx_ctx->skb;
  2059. np->get_rx_ctx->skb = NULL;
  2060. {
  2061. int j;
  2062. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2063. for (j=0; j<64; j++) {
  2064. if ((j%16) == 0)
  2065. dprintk("\n%03x:", j);
  2066. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2067. }
  2068. dprintk("\n");
  2069. }
  2070. /* look at what we actually got: */
  2071. if (np->desc_ver == DESC_VER_1) {
  2072. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2073. len = flags & LEN_MASK_V1;
  2074. if (unlikely(flags & NV_RX_ERROR)) {
  2075. if (flags & NV_RX_ERROR4) {
  2076. len = nv_getlen(dev, skb->data, len);
  2077. if (len < 0) {
  2078. np->stats.rx_errors++;
  2079. dev_kfree_skb(skb);
  2080. goto next_pkt;
  2081. }
  2082. }
  2083. /* framing errors are soft errors */
  2084. else if (flags & NV_RX_FRAMINGERR) {
  2085. if (flags & NV_RX_SUBSTRACT1) {
  2086. len--;
  2087. }
  2088. }
  2089. /* the rest are hard errors */
  2090. else {
  2091. if (flags & NV_RX_MISSEDFRAME)
  2092. np->stats.rx_missed_errors++;
  2093. if (flags & NV_RX_CRCERR)
  2094. np->stats.rx_crc_errors++;
  2095. if (flags & NV_RX_OVERFLOW)
  2096. np->stats.rx_over_errors++;
  2097. np->stats.rx_errors++;
  2098. dev_kfree_skb(skb);
  2099. goto next_pkt;
  2100. }
  2101. }
  2102. } else {
  2103. dev_kfree_skb(skb);
  2104. goto next_pkt;
  2105. }
  2106. } else {
  2107. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2108. len = flags & LEN_MASK_V2;
  2109. if (unlikely(flags & NV_RX2_ERROR)) {
  2110. if (flags & NV_RX2_ERROR4) {
  2111. len = nv_getlen(dev, skb->data, len);
  2112. if (len < 0) {
  2113. np->stats.rx_errors++;
  2114. dev_kfree_skb(skb);
  2115. goto next_pkt;
  2116. }
  2117. }
  2118. /* framing errors are soft errors */
  2119. else if (flags & NV_RX2_FRAMINGERR) {
  2120. if (flags & NV_RX2_SUBSTRACT1) {
  2121. len--;
  2122. }
  2123. }
  2124. /* the rest are hard errors */
  2125. else {
  2126. if (flags & NV_RX2_CRCERR)
  2127. np->stats.rx_crc_errors++;
  2128. if (flags & NV_RX2_OVERFLOW)
  2129. np->stats.rx_over_errors++;
  2130. np->stats.rx_errors++;
  2131. dev_kfree_skb(skb);
  2132. goto next_pkt;
  2133. }
  2134. }
  2135. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
  2136. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2137. } else {
  2138. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
  2139. (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
  2140. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2141. }
  2142. }
  2143. } else {
  2144. dev_kfree_skb(skb);
  2145. goto next_pkt;
  2146. }
  2147. }
  2148. /* got a valid packet - forward it to the network core */
  2149. skb_put(skb, len);
  2150. skb->protocol = eth_type_trans(skb, dev);
  2151. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2152. dev->name, len, skb->protocol);
  2153. #ifdef CONFIG_FORCEDETH_NAPI
  2154. netif_receive_skb(skb);
  2155. #else
  2156. netif_rx(skb);
  2157. #endif
  2158. dev->last_rx = jiffies;
  2159. np->stats.rx_packets++;
  2160. np->stats.rx_bytes += len;
  2161. next_pkt:
  2162. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2163. np->get_rx.orig = np->first_rx.orig;
  2164. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2165. np->get_rx_ctx = np->first_rx_ctx;
  2166. }
  2167. return rx_processed_cnt;
  2168. }
  2169. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2170. {
  2171. struct fe_priv *np = netdev_priv(dev);
  2172. u32 flags;
  2173. u32 vlanflags = 0;
  2174. u32 rx_processed_cnt = 0;
  2175. struct sk_buff *skb;
  2176. int len;
  2177. while((np->get_rx.ex != np->put_rx.ex) &&
  2178. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2179. (rx_processed_cnt++ < limit)) {
  2180. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2181. dev->name, flags);
  2182. /*
  2183. * the packet is for us - immediately tear down the pci mapping.
  2184. * TODO: check if a prefetch of the first cacheline improves
  2185. * the performance.
  2186. */
  2187. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2188. np->get_rx_ctx->dma_len,
  2189. PCI_DMA_FROMDEVICE);
  2190. skb = np->get_rx_ctx->skb;
  2191. np->get_rx_ctx->skb = NULL;
  2192. {
  2193. int j;
  2194. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2195. for (j=0; j<64; j++) {
  2196. if ((j%16) == 0)
  2197. dprintk("\n%03x:", j);
  2198. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2199. }
  2200. dprintk("\n");
  2201. }
  2202. /* look at what we actually got: */
  2203. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2204. len = flags & LEN_MASK_V2;
  2205. if (unlikely(flags & NV_RX2_ERROR)) {
  2206. if (flags & NV_RX2_ERROR4) {
  2207. len = nv_getlen(dev, skb->data, len);
  2208. if (len < 0) {
  2209. dev_kfree_skb(skb);
  2210. goto next_pkt;
  2211. }
  2212. }
  2213. /* framing errors are soft errors */
  2214. else if (flags & NV_RX2_FRAMINGERR) {
  2215. if (flags & NV_RX2_SUBSTRACT1) {
  2216. len--;
  2217. }
  2218. }
  2219. /* the rest are hard errors */
  2220. else {
  2221. dev_kfree_skb(skb);
  2222. goto next_pkt;
  2223. }
  2224. }
  2225. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
  2226. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2227. } else {
  2228. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
  2229. (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
  2230. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2231. }
  2232. }
  2233. /* got a valid packet - forward it to the network core */
  2234. skb_put(skb, len);
  2235. skb->protocol = eth_type_trans(skb, dev);
  2236. prefetch(skb->data);
  2237. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2238. dev->name, len, skb->protocol);
  2239. if (likely(!np->vlangrp)) {
  2240. #ifdef CONFIG_FORCEDETH_NAPI
  2241. netif_receive_skb(skb);
  2242. #else
  2243. netif_rx(skb);
  2244. #endif
  2245. } else {
  2246. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2247. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2248. #ifdef CONFIG_FORCEDETH_NAPI
  2249. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2250. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2251. #else
  2252. vlan_hwaccel_rx(skb, np->vlangrp,
  2253. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2254. #endif
  2255. } else {
  2256. #ifdef CONFIG_FORCEDETH_NAPI
  2257. netif_receive_skb(skb);
  2258. #else
  2259. netif_rx(skb);
  2260. #endif
  2261. }
  2262. }
  2263. dev->last_rx = jiffies;
  2264. np->stats.rx_packets++;
  2265. np->stats.rx_bytes += len;
  2266. } else {
  2267. dev_kfree_skb(skb);
  2268. }
  2269. next_pkt:
  2270. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2271. np->get_rx.ex = np->first_rx.ex;
  2272. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2273. np->get_rx_ctx = np->first_rx_ctx;
  2274. }
  2275. return rx_processed_cnt;
  2276. }
  2277. static void set_bufsize(struct net_device *dev)
  2278. {
  2279. struct fe_priv *np = netdev_priv(dev);
  2280. if (dev->mtu <= ETH_DATA_LEN)
  2281. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2282. else
  2283. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2284. }
  2285. /*
  2286. * nv_change_mtu: dev->change_mtu function
  2287. * Called with dev_base_lock held for read.
  2288. */
  2289. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2290. {
  2291. struct fe_priv *np = netdev_priv(dev);
  2292. int old_mtu;
  2293. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2294. return -EINVAL;
  2295. old_mtu = dev->mtu;
  2296. dev->mtu = new_mtu;
  2297. /* return early if the buffer sizes will not change */
  2298. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2299. return 0;
  2300. if (old_mtu == new_mtu)
  2301. return 0;
  2302. /* synchronized against open : rtnl_lock() held by caller */
  2303. if (netif_running(dev)) {
  2304. u8 __iomem *base = get_hwbase(dev);
  2305. /*
  2306. * It seems that the nic preloads valid ring entries into an
  2307. * internal buffer. The procedure for flushing everything is
  2308. * guessed, there is probably a simpler approach.
  2309. * Changing the MTU is a rare event, it shouldn't matter.
  2310. */
  2311. nv_disable_irq(dev);
  2312. netif_tx_lock_bh(dev);
  2313. spin_lock(&np->lock);
  2314. /* stop engines */
  2315. nv_stop_rx(dev);
  2316. nv_stop_tx(dev);
  2317. nv_txrx_reset(dev);
  2318. /* drain rx queue */
  2319. nv_drain_rx(dev);
  2320. nv_drain_tx(dev);
  2321. /* reinit driver view of the rx queue */
  2322. set_bufsize(dev);
  2323. if (nv_init_ring(dev)) {
  2324. if (!np->in_shutdown)
  2325. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2326. }
  2327. /* reinit nic view of the rx queue */
  2328. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2329. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2330. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2331. base + NvRegRingSizes);
  2332. pci_push(base);
  2333. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2334. pci_push(base);
  2335. /* restart rx engine */
  2336. nv_start_rx(dev);
  2337. nv_start_tx(dev);
  2338. spin_unlock(&np->lock);
  2339. netif_tx_unlock_bh(dev);
  2340. nv_enable_irq(dev);
  2341. }
  2342. return 0;
  2343. }
  2344. static void nv_copy_mac_to_hw(struct net_device *dev)
  2345. {
  2346. u8 __iomem *base = get_hwbase(dev);
  2347. u32 mac[2];
  2348. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2349. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2350. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2351. writel(mac[0], base + NvRegMacAddrA);
  2352. writel(mac[1], base + NvRegMacAddrB);
  2353. }
  2354. /*
  2355. * nv_set_mac_address: dev->set_mac_address function
  2356. * Called with rtnl_lock() held.
  2357. */
  2358. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2359. {
  2360. struct fe_priv *np = netdev_priv(dev);
  2361. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2362. if (!is_valid_ether_addr(macaddr->sa_data))
  2363. return -EADDRNOTAVAIL;
  2364. /* synchronized against open : rtnl_lock() held by caller */
  2365. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2366. if (netif_running(dev)) {
  2367. netif_tx_lock_bh(dev);
  2368. spin_lock_irq(&np->lock);
  2369. /* stop rx engine */
  2370. nv_stop_rx(dev);
  2371. /* set mac address */
  2372. nv_copy_mac_to_hw(dev);
  2373. /* restart rx engine */
  2374. nv_start_rx(dev);
  2375. spin_unlock_irq(&np->lock);
  2376. netif_tx_unlock_bh(dev);
  2377. } else {
  2378. nv_copy_mac_to_hw(dev);
  2379. }
  2380. return 0;
  2381. }
  2382. /*
  2383. * nv_set_multicast: dev->set_multicast function
  2384. * Called with netif_tx_lock held.
  2385. */
  2386. static void nv_set_multicast(struct net_device *dev)
  2387. {
  2388. struct fe_priv *np = netdev_priv(dev);
  2389. u8 __iomem *base = get_hwbase(dev);
  2390. u32 addr[2];
  2391. u32 mask[2];
  2392. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2393. memset(addr, 0, sizeof(addr));
  2394. memset(mask, 0, sizeof(mask));
  2395. if (dev->flags & IFF_PROMISC) {
  2396. pff |= NVREG_PFF_PROMISC;
  2397. } else {
  2398. pff |= NVREG_PFF_MYADDR;
  2399. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2400. u32 alwaysOff[2];
  2401. u32 alwaysOn[2];
  2402. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2403. if (dev->flags & IFF_ALLMULTI) {
  2404. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2405. } else {
  2406. struct dev_mc_list *walk;
  2407. walk = dev->mc_list;
  2408. while (walk != NULL) {
  2409. u32 a, b;
  2410. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  2411. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  2412. alwaysOn[0] &= a;
  2413. alwaysOff[0] &= ~a;
  2414. alwaysOn[1] &= b;
  2415. alwaysOff[1] &= ~b;
  2416. walk = walk->next;
  2417. }
  2418. }
  2419. addr[0] = alwaysOn[0];
  2420. addr[1] = alwaysOn[1];
  2421. mask[0] = alwaysOn[0] | alwaysOff[0];
  2422. mask[1] = alwaysOn[1] | alwaysOff[1];
  2423. }
  2424. }
  2425. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2426. pff |= NVREG_PFF_ALWAYS;
  2427. spin_lock_irq(&np->lock);
  2428. nv_stop_rx(dev);
  2429. writel(addr[0], base + NvRegMulticastAddrA);
  2430. writel(addr[1], base + NvRegMulticastAddrB);
  2431. writel(mask[0], base + NvRegMulticastMaskA);
  2432. writel(mask[1], base + NvRegMulticastMaskB);
  2433. writel(pff, base + NvRegPacketFilterFlags);
  2434. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2435. dev->name);
  2436. nv_start_rx(dev);
  2437. spin_unlock_irq(&np->lock);
  2438. }
  2439. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2440. {
  2441. struct fe_priv *np = netdev_priv(dev);
  2442. u8 __iomem *base = get_hwbase(dev);
  2443. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2444. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2445. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2446. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2447. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2448. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2449. } else {
  2450. writel(pff, base + NvRegPacketFilterFlags);
  2451. }
  2452. }
  2453. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2454. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2455. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2456. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  2457. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2458. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2459. } else {
  2460. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2461. writel(regmisc, base + NvRegMisc1);
  2462. }
  2463. }
  2464. }
  2465. /**
  2466. * nv_update_linkspeed: Setup the MAC according to the link partner
  2467. * @dev: Network device to be configured
  2468. *
  2469. * The function queries the PHY and checks if there is a link partner.
  2470. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2471. * set to 10 MBit HD.
  2472. *
  2473. * The function returns 0 if there is no link partner and 1 if there is
  2474. * a good link partner.
  2475. */
  2476. static int nv_update_linkspeed(struct net_device *dev)
  2477. {
  2478. struct fe_priv *np = netdev_priv(dev);
  2479. u8 __iomem *base = get_hwbase(dev);
  2480. int adv = 0;
  2481. int lpa = 0;
  2482. int adv_lpa, adv_pause, lpa_pause;
  2483. int newls = np->linkspeed;
  2484. int newdup = np->duplex;
  2485. int mii_status;
  2486. int retval = 0;
  2487. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2488. /* BMSR_LSTATUS is latched, read it twice:
  2489. * we want the current value.
  2490. */
  2491. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2492. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2493. if (!(mii_status & BMSR_LSTATUS)) {
  2494. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2495. dev->name);
  2496. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2497. newdup = 0;
  2498. retval = 0;
  2499. goto set_speed;
  2500. }
  2501. if (np->autoneg == 0) {
  2502. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2503. dev->name, np->fixed_mode);
  2504. if (np->fixed_mode & LPA_100FULL) {
  2505. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2506. newdup = 1;
  2507. } else if (np->fixed_mode & LPA_100HALF) {
  2508. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2509. newdup = 0;
  2510. } else if (np->fixed_mode & LPA_10FULL) {
  2511. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2512. newdup = 1;
  2513. } else {
  2514. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2515. newdup = 0;
  2516. }
  2517. retval = 1;
  2518. goto set_speed;
  2519. }
  2520. /* check auto negotiation is complete */
  2521. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2522. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2523. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2524. newdup = 0;
  2525. retval = 0;
  2526. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2527. goto set_speed;
  2528. }
  2529. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2530. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2531. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2532. dev->name, adv, lpa);
  2533. retval = 1;
  2534. if (np->gigabit == PHY_GIGABIT) {
  2535. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2536. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2537. if ((control_1000 & ADVERTISE_1000FULL) &&
  2538. (status_1000 & LPA_1000FULL)) {
  2539. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2540. dev->name);
  2541. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2542. newdup = 1;
  2543. goto set_speed;
  2544. }
  2545. }
  2546. /* FIXME: handle parallel detection properly */
  2547. adv_lpa = lpa & adv;
  2548. if (adv_lpa & LPA_100FULL) {
  2549. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2550. newdup = 1;
  2551. } else if (adv_lpa & LPA_100HALF) {
  2552. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2553. newdup = 0;
  2554. } else if (adv_lpa & LPA_10FULL) {
  2555. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2556. newdup = 1;
  2557. } else if (adv_lpa & LPA_10HALF) {
  2558. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2559. newdup = 0;
  2560. } else {
  2561. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2562. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2563. newdup = 0;
  2564. }
  2565. set_speed:
  2566. if (np->duplex == newdup && np->linkspeed == newls)
  2567. return retval;
  2568. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2569. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2570. np->duplex = newdup;
  2571. np->linkspeed = newls;
  2572. if (np->gigabit == PHY_GIGABIT) {
  2573. phyreg = readl(base + NvRegRandomSeed);
  2574. phyreg &= ~(0x3FF00);
  2575. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2576. phyreg |= NVREG_RNDSEED_FORCE3;
  2577. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2578. phyreg |= NVREG_RNDSEED_FORCE2;
  2579. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2580. phyreg |= NVREG_RNDSEED_FORCE;
  2581. writel(phyreg, base + NvRegRandomSeed);
  2582. }
  2583. phyreg = readl(base + NvRegPhyInterface);
  2584. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2585. if (np->duplex == 0)
  2586. phyreg |= PHY_HALF;
  2587. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2588. phyreg |= PHY_100;
  2589. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2590. phyreg |= PHY_1000;
  2591. writel(phyreg, base + NvRegPhyInterface);
  2592. if (phyreg & PHY_RGMII) {
  2593. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2594. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2595. else
  2596. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2597. } else {
  2598. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2599. }
  2600. writel(txreg, base + NvRegTxDeferral);
  2601. if (np->desc_ver == DESC_VER_1) {
  2602. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2603. } else {
  2604. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2605. txreg = NVREG_TX_WM_DESC2_3_1000;
  2606. else
  2607. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2608. }
  2609. writel(txreg, base + NvRegTxWatermark);
  2610. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2611. base + NvRegMisc1);
  2612. pci_push(base);
  2613. writel(np->linkspeed, base + NvRegLinkSpeed);
  2614. pci_push(base);
  2615. pause_flags = 0;
  2616. /* setup pause frame */
  2617. if (np->duplex != 0) {
  2618. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2619. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2620. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2621. switch (adv_pause) {
  2622. case ADVERTISE_PAUSE_CAP:
  2623. if (lpa_pause & LPA_PAUSE_CAP) {
  2624. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2625. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2626. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2627. }
  2628. break;
  2629. case ADVERTISE_PAUSE_ASYM:
  2630. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2631. {
  2632. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2633. }
  2634. break;
  2635. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2636. if (lpa_pause & LPA_PAUSE_CAP)
  2637. {
  2638. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2639. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2640. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2641. }
  2642. if (lpa_pause == LPA_PAUSE_ASYM)
  2643. {
  2644. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2645. }
  2646. break;
  2647. }
  2648. } else {
  2649. pause_flags = np->pause_flags;
  2650. }
  2651. }
  2652. nv_update_pause(dev, pause_flags);
  2653. return retval;
  2654. }
  2655. static void nv_linkchange(struct net_device *dev)
  2656. {
  2657. if (nv_update_linkspeed(dev)) {
  2658. if (!netif_carrier_ok(dev)) {
  2659. netif_carrier_on(dev);
  2660. printk(KERN_INFO "%s: link up.\n", dev->name);
  2661. nv_start_rx(dev);
  2662. }
  2663. } else {
  2664. if (netif_carrier_ok(dev)) {
  2665. netif_carrier_off(dev);
  2666. printk(KERN_INFO "%s: link down.\n", dev->name);
  2667. nv_stop_rx(dev);
  2668. }
  2669. }
  2670. }
  2671. static void nv_link_irq(struct net_device *dev)
  2672. {
  2673. u8 __iomem *base = get_hwbase(dev);
  2674. u32 miistat;
  2675. miistat = readl(base + NvRegMIIStatus);
  2676. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2677. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2678. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2679. nv_linkchange(dev);
  2680. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2681. }
  2682. static irqreturn_t nv_nic_irq(int foo, void *data)
  2683. {
  2684. struct net_device *dev = (struct net_device *) data;
  2685. struct fe_priv *np = netdev_priv(dev);
  2686. u8 __iomem *base = get_hwbase(dev);
  2687. u32 events;
  2688. int i;
  2689. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2690. for (i=0; ; i++) {
  2691. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2692. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2693. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2694. } else {
  2695. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2696. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2697. }
  2698. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2699. if (!(events & np->irqmask))
  2700. break;
  2701. spin_lock(&np->lock);
  2702. nv_tx_done(dev);
  2703. spin_unlock(&np->lock);
  2704. #ifdef CONFIG_FORCEDETH_NAPI
  2705. if (events & NVREG_IRQ_RX_ALL) {
  2706. netif_rx_schedule(dev);
  2707. /* Disable furthur receive irq's */
  2708. spin_lock(&np->lock);
  2709. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2710. if (np->msi_flags & NV_MSI_X_ENABLED)
  2711. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2712. else
  2713. writel(np->irqmask, base + NvRegIrqMask);
  2714. spin_unlock(&np->lock);
  2715. }
  2716. #else
  2717. if (nv_rx_process(dev, dev->weight)) {
  2718. if (unlikely(nv_alloc_rx(dev))) {
  2719. spin_lock(&np->lock);
  2720. if (!np->in_shutdown)
  2721. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2722. spin_unlock(&np->lock);
  2723. }
  2724. }
  2725. #endif
  2726. if (unlikely(events & NVREG_IRQ_LINK)) {
  2727. spin_lock(&np->lock);
  2728. nv_link_irq(dev);
  2729. spin_unlock(&np->lock);
  2730. }
  2731. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2732. spin_lock(&np->lock);
  2733. nv_linkchange(dev);
  2734. spin_unlock(&np->lock);
  2735. np->link_timeout = jiffies + LINK_TIMEOUT;
  2736. }
  2737. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2738. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2739. dev->name, events);
  2740. }
  2741. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2742. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2743. dev->name, events);
  2744. }
  2745. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2746. spin_lock(&np->lock);
  2747. /* disable interrupts on the nic */
  2748. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2749. writel(0, base + NvRegIrqMask);
  2750. else
  2751. writel(np->irqmask, base + NvRegIrqMask);
  2752. pci_push(base);
  2753. if (!np->in_shutdown) {
  2754. np->nic_poll_irq = np->irqmask;
  2755. np->recover_error = 1;
  2756. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2757. }
  2758. spin_unlock(&np->lock);
  2759. break;
  2760. }
  2761. if (unlikely(i > max_interrupt_work)) {
  2762. spin_lock(&np->lock);
  2763. /* disable interrupts on the nic */
  2764. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2765. writel(0, base + NvRegIrqMask);
  2766. else
  2767. writel(np->irqmask, base + NvRegIrqMask);
  2768. pci_push(base);
  2769. if (!np->in_shutdown) {
  2770. np->nic_poll_irq = np->irqmask;
  2771. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2772. }
  2773. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2774. spin_unlock(&np->lock);
  2775. break;
  2776. }
  2777. }
  2778. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2779. return IRQ_RETVAL(i);
  2780. }
  2781. #define TX_WORK_PER_LOOP 64
  2782. #define RX_WORK_PER_LOOP 64
  2783. /**
  2784. * All _optimized functions are used to help increase performance
  2785. * (reduce CPU and increase throughput). They use descripter version 3,
  2786. * compiler directives, and reduce memory accesses.
  2787. */
  2788. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  2789. {
  2790. struct net_device *dev = (struct net_device *) data;
  2791. struct fe_priv *np = netdev_priv(dev);
  2792. u8 __iomem *base = get_hwbase(dev);
  2793. u32 events;
  2794. int i;
  2795. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  2796. for (i=0; ; i++) {
  2797. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2798. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2799. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2800. } else {
  2801. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2802. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2803. }
  2804. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2805. if (!(events & np->irqmask))
  2806. break;
  2807. spin_lock(&np->lock);
  2808. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2809. spin_unlock(&np->lock);
  2810. #ifdef CONFIG_FORCEDETH_NAPI
  2811. if (events & NVREG_IRQ_RX_ALL) {
  2812. netif_rx_schedule(dev);
  2813. /* Disable furthur receive irq's */
  2814. spin_lock(&np->lock);
  2815. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2816. if (np->msi_flags & NV_MSI_X_ENABLED)
  2817. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2818. else
  2819. writel(np->irqmask, base + NvRegIrqMask);
  2820. spin_unlock(&np->lock);
  2821. }
  2822. #else
  2823. if (nv_rx_process_optimized(dev, dev->weight)) {
  2824. if (unlikely(nv_alloc_rx_optimized(dev))) {
  2825. spin_lock(&np->lock);
  2826. if (!np->in_shutdown)
  2827. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2828. spin_unlock(&np->lock);
  2829. }
  2830. }
  2831. #endif
  2832. if (unlikely(events & NVREG_IRQ_LINK)) {
  2833. spin_lock(&np->lock);
  2834. nv_link_irq(dev);
  2835. spin_unlock(&np->lock);
  2836. }
  2837. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2838. spin_lock(&np->lock);
  2839. nv_linkchange(dev);
  2840. spin_unlock(&np->lock);
  2841. np->link_timeout = jiffies + LINK_TIMEOUT;
  2842. }
  2843. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2844. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2845. dev->name, events);
  2846. }
  2847. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2848. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2849. dev->name, events);
  2850. }
  2851. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2852. spin_lock(&np->lock);
  2853. /* disable interrupts on the nic */
  2854. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2855. writel(0, base + NvRegIrqMask);
  2856. else
  2857. writel(np->irqmask, base + NvRegIrqMask);
  2858. pci_push(base);
  2859. if (!np->in_shutdown) {
  2860. np->nic_poll_irq = np->irqmask;
  2861. np->recover_error = 1;
  2862. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2863. }
  2864. spin_unlock(&np->lock);
  2865. break;
  2866. }
  2867. if (unlikely(i > max_interrupt_work)) {
  2868. spin_lock(&np->lock);
  2869. /* disable interrupts on the nic */
  2870. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2871. writel(0, base + NvRegIrqMask);
  2872. else
  2873. writel(np->irqmask, base + NvRegIrqMask);
  2874. pci_push(base);
  2875. if (!np->in_shutdown) {
  2876. np->nic_poll_irq = np->irqmask;
  2877. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2878. }
  2879. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2880. spin_unlock(&np->lock);
  2881. break;
  2882. }
  2883. }
  2884. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  2885. return IRQ_RETVAL(i);
  2886. }
  2887. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  2888. {
  2889. struct net_device *dev = (struct net_device *) data;
  2890. struct fe_priv *np = netdev_priv(dev);
  2891. u8 __iomem *base = get_hwbase(dev);
  2892. u32 events;
  2893. int i;
  2894. unsigned long flags;
  2895. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2896. for (i=0; ; i++) {
  2897. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2898. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2899. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2900. if (!(events & np->irqmask))
  2901. break;
  2902. spin_lock_irqsave(&np->lock, flags);
  2903. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2904. spin_unlock_irqrestore(&np->lock, flags);
  2905. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2906. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2907. dev->name, events);
  2908. }
  2909. if (unlikely(i > max_interrupt_work)) {
  2910. spin_lock_irqsave(&np->lock, flags);
  2911. /* disable interrupts on the nic */
  2912. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2913. pci_push(base);
  2914. if (!np->in_shutdown) {
  2915. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2916. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2917. }
  2918. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2919. spin_unlock_irqrestore(&np->lock, flags);
  2920. break;
  2921. }
  2922. }
  2923. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2924. return IRQ_RETVAL(i);
  2925. }
  2926. #ifdef CONFIG_FORCEDETH_NAPI
  2927. static int nv_napi_poll(struct net_device *dev, int *budget)
  2928. {
  2929. int pkts, limit = min(*budget, dev->quota);
  2930. struct fe_priv *np = netdev_priv(dev);
  2931. u8 __iomem *base = get_hwbase(dev);
  2932. unsigned long flags;
  2933. int retcode;
  2934. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2935. pkts = nv_rx_process(dev, limit);
  2936. retcode = nv_alloc_rx(dev);
  2937. } else {
  2938. pkts = nv_rx_process_optimized(dev, limit);
  2939. retcode = nv_alloc_rx_optimized(dev);
  2940. }
  2941. if (retcode) {
  2942. spin_lock_irqsave(&np->lock, flags);
  2943. if (!np->in_shutdown)
  2944. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2945. spin_unlock_irqrestore(&np->lock, flags);
  2946. }
  2947. if (pkts < limit) {
  2948. /* all done, no more packets present */
  2949. netif_rx_complete(dev);
  2950. /* re-enable receive interrupts */
  2951. spin_lock_irqsave(&np->lock, flags);
  2952. np->irqmask |= NVREG_IRQ_RX_ALL;
  2953. if (np->msi_flags & NV_MSI_X_ENABLED)
  2954. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2955. else
  2956. writel(np->irqmask, base + NvRegIrqMask);
  2957. spin_unlock_irqrestore(&np->lock, flags);
  2958. return 0;
  2959. } else {
  2960. /* used up our quantum, so reschedule */
  2961. dev->quota -= pkts;
  2962. *budget -= pkts;
  2963. return 1;
  2964. }
  2965. }
  2966. #endif
  2967. #ifdef CONFIG_FORCEDETH_NAPI
  2968. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2969. {
  2970. struct net_device *dev = (struct net_device *) data;
  2971. u8 __iomem *base = get_hwbase(dev);
  2972. u32 events;
  2973. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2974. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2975. if (events) {
  2976. netif_rx_schedule(dev);
  2977. /* disable receive interrupts on the nic */
  2978. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2979. pci_push(base);
  2980. }
  2981. return IRQ_HANDLED;
  2982. }
  2983. #else
  2984. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2985. {
  2986. struct net_device *dev = (struct net_device *) data;
  2987. struct fe_priv *np = netdev_priv(dev);
  2988. u8 __iomem *base = get_hwbase(dev);
  2989. u32 events;
  2990. int i;
  2991. unsigned long flags;
  2992. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2993. for (i=0; ; i++) {
  2994. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2995. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2996. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  2997. if (!(events & np->irqmask))
  2998. break;
  2999. if (nv_rx_process_optimized(dev, dev->weight)) {
  3000. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3001. spin_lock_irqsave(&np->lock, flags);
  3002. if (!np->in_shutdown)
  3003. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3004. spin_unlock_irqrestore(&np->lock, flags);
  3005. }
  3006. }
  3007. if (unlikely(i > max_interrupt_work)) {
  3008. spin_lock_irqsave(&np->lock, flags);
  3009. /* disable interrupts on the nic */
  3010. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3011. pci_push(base);
  3012. if (!np->in_shutdown) {
  3013. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3014. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3015. }
  3016. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3017. spin_unlock_irqrestore(&np->lock, flags);
  3018. break;
  3019. }
  3020. }
  3021. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3022. return IRQ_RETVAL(i);
  3023. }
  3024. #endif
  3025. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3026. {
  3027. struct net_device *dev = (struct net_device *) data;
  3028. struct fe_priv *np = netdev_priv(dev);
  3029. u8 __iomem *base = get_hwbase(dev);
  3030. u32 events;
  3031. int i;
  3032. unsigned long flags;
  3033. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3034. for (i=0; ; i++) {
  3035. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3036. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3037. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3038. if (!(events & np->irqmask))
  3039. break;
  3040. /* check tx in case we reached max loop limit in tx isr */
  3041. spin_lock_irqsave(&np->lock, flags);
  3042. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3043. spin_unlock_irqrestore(&np->lock, flags);
  3044. if (events & NVREG_IRQ_LINK) {
  3045. spin_lock_irqsave(&np->lock, flags);
  3046. nv_link_irq(dev);
  3047. spin_unlock_irqrestore(&np->lock, flags);
  3048. }
  3049. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3050. spin_lock_irqsave(&np->lock, flags);
  3051. nv_linkchange(dev);
  3052. spin_unlock_irqrestore(&np->lock, flags);
  3053. np->link_timeout = jiffies + LINK_TIMEOUT;
  3054. }
  3055. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3056. spin_lock_irq(&np->lock);
  3057. /* disable interrupts on the nic */
  3058. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3059. pci_push(base);
  3060. if (!np->in_shutdown) {
  3061. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3062. np->recover_error = 1;
  3063. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3064. }
  3065. spin_unlock_irq(&np->lock);
  3066. break;
  3067. }
  3068. if (events & (NVREG_IRQ_UNKNOWN)) {
  3069. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3070. dev->name, events);
  3071. }
  3072. if (unlikely(i > max_interrupt_work)) {
  3073. spin_lock_irqsave(&np->lock, flags);
  3074. /* disable interrupts on the nic */
  3075. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3076. pci_push(base);
  3077. if (!np->in_shutdown) {
  3078. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3079. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3080. }
  3081. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3082. spin_unlock_irqrestore(&np->lock, flags);
  3083. break;
  3084. }
  3085. }
  3086. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3087. return IRQ_RETVAL(i);
  3088. }
  3089. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3090. {
  3091. struct net_device *dev = (struct net_device *) data;
  3092. struct fe_priv *np = netdev_priv(dev);
  3093. u8 __iomem *base = get_hwbase(dev);
  3094. u32 events;
  3095. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3096. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3097. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3098. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3099. } else {
  3100. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3101. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3102. }
  3103. pci_push(base);
  3104. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3105. if (!(events & NVREG_IRQ_TIMER))
  3106. return IRQ_RETVAL(0);
  3107. spin_lock(&np->lock);
  3108. np->intr_test = 1;
  3109. spin_unlock(&np->lock);
  3110. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3111. return IRQ_RETVAL(1);
  3112. }
  3113. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3114. {
  3115. u8 __iomem *base = get_hwbase(dev);
  3116. int i;
  3117. u32 msixmap = 0;
  3118. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3119. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3120. * the remaining 8 interrupts.
  3121. */
  3122. for (i = 0; i < 8; i++) {
  3123. if ((irqmask >> i) & 0x1) {
  3124. msixmap |= vector << (i << 2);
  3125. }
  3126. }
  3127. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3128. msixmap = 0;
  3129. for (i = 0; i < 8; i++) {
  3130. if ((irqmask >> (i + 8)) & 0x1) {
  3131. msixmap |= vector << (i << 2);
  3132. }
  3133. }
  3134. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3135. }
  3136. static int nv_request_irq(struct net_device *dev, int intr_test)
  3137. {
  3138. struct fe_priv *np = get_nvpriv(dev);
  3139. u8 __iomem *base = get_hwbase(dev);
  3140. int ret = 1;
  3141. int i;
  3142. irqreturn_t (*handler)(int foo, void *data);
  3143. if (intr_test) {
  3144. handler = nv_nic_irq_test;
  3145. } else {
  3146. if (np->desc_ver == DESC_VER_3)
  3147. handler = nv_nic_irq_optimized;
  3148. else
  3149. handler = nv_nic_irq;
  3150. }
  3151. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3152. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3153. np->msi_x_entry[i].entry = i;
  3154. }
  3155. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3156. np->msi_flags |= NV_MSI_X_ENABLED;
  3157. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3158. /* Request irq for rx handling */
  3159. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  3160. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3161. pci_disable_msix(np->pci_dev);
  3162. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3163. goto out_err;
  3164. }
  3165. /* Request irq for tx handling */
  3166. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  3167. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3168. pci_disable_msix(np->pci_dev);
  3169. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3170. goto out_free_rx;
  3171. }
  3172. /* Request irq for link and timer handling */
  3173. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  3174. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3175. pci_disable_msix(np->pci_dev);
  3176. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3177. goto out_free_tx;
  3178. }
  3179. /* map interrupts to their respective vector */
  3180. writel(0, base + NvRegMSIXMap0);
  3181. writel(0, base + NvRegMSIXMap1);
  3182. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3183. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3184. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3185. } else {
  3186. /* Request irq for all interrupts */
  3187. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3188. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3189. pci_disable_msix(np->pci_dev);
  3190. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3191. goto out_err;
  3192. }
  3193. /* map interrupts to vector 0 */
  3194. writel(0, base + NvRegMSIXMap0);
  3195. writel(0, base + NvRegMSIXMap1);
  3196. }
  3197. }
  3198. }
  3199. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3200. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3201. np->msi_flags |= NV_MSI_ENABLED;
  3202. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3203. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3204. pci_disable_msi(np->pci_dev);
  3205. np->msi_flags &= ~NV_MSI_ENABLED;
  3206. goto out_err;
  3207. }
  3208. /* map interrupts to vector 0 */
  3209. writel(0, base + NvRegMSIMap0);
  3210. writel(0, base + NvRegMSIMap1);
  3211. /* enable msi vector 0 */
  3212. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3213. }
  3214. }
  3215. if (ret != 0) {
  3216. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3217. goto out_err;
  3218. }
  3219. return 0;
  3220. out_free_tx:
  3221. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3222. out_free_rx:
  3223. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3224. out_err:
  3225. return 1;
  3226. }
  3227. static void nv_free_irq(struct net_device *dev)
  3228. {
  3229. struct fe_priv *np = get_nvpriv(dev);
  3230. int i;
  3231. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3232. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3233. free_irq(np->msi_x_entry[i].vector, dev);
  3234. }
  3235. pci_disable_msix(np->pci_dev);
  3236. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3237. } else {
  3238. free_irq(np->pci_dev->irq, dev);
  3239. if (np->msi_flags & NV_MSI_ENABLED) {
  3240. pci_disable_msi(np->pci_dev);
  3241. np->msi_flags &= ~NV_MSI_ENABLED;
  3242. }
  3243. }
  3244. }
  3245. static void nv_do_nic_poll(unsigned long data)
  3246. {
  3247. struct net_device *dev = (struct net_device *) data;
  3248. struct fe_priv *np = netdev_priv(dev);
  3249. u8 __iomem *base = get_hwbase(dev);
  3250. u32 mask = 0;
  3251. /*
  3252. * First disable irq(s) and then
  3253. * reenable interrupts on the nic, we have to do this before calling
  3254. * nv_nic_irq because that may decide to do otherwise
  3255. */
  3256. if (!using_multi_irqs(dev)) {
  3257. if (np->msi_flags & NV_MSI_X_ENABLED)
  3258. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3259. else
  3260. disable_irq_lockdep(dev->irq);
  3261. mask = np->irqmask;
  3262. } else {
  3263. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3264. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3265. mask |= NVREG_IRQ_RX_ALL;
  3266. }
  3267. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3268. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3269. mask |= NVREG_IRQ_TX_ALL;
  3270. }
  3271. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3272. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3273. mask |= NVREG_IRQ_OTHER;
  3274. }
  3275. }
  3276. np->nic_poll_irq = 0;
  3277. if (np->recover_error) {
  3278. np->recover_error = 0;
  3279. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3280. if (netif_running(dev)) {
  3281. netif_tx_lock_bh(dev);
  3282. spin_lock(&np->lock);
  3283. /* stop engines */
  3284. nv_stop_rx(dev);
  3285. nv_stop_tx(dev);
  3286. nv_txrx_reset(dev);
  3287. /* drain rx queue */
  3288. nv_drain_rx(dev);
  3289. nv_drain_tx(dev);
  3290. /* reinit driver view of the rx queue */
  3291. set_bufsize(dev);
  3292. if (nv_init_ring(dev)) {
  3293. if (!np->in_shutdown)
  3294. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3295. }
  3296. /* reinit nic view of the rx queue */
  3297. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3298. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3299. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3300. base + NvRegRingSizes);
  3301. pci_push(base);
  3302. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3303. pci_push(base);
  3304. /* restart rx engine */
  3305. nv_start_rx(dev);
  3306. nv_start_tx(dev);
  3307. spin_unlock(&np->lock);
  3308. netif_tx_unlock_bh(dev);
  3309. }
  3310. }
  3311. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  3312. writel(mask, base + NvRegIrqMask);
  3313. pci_push(base);
  3314. if (!using_multi_irqs(dev)) {
  3315. if (np->desc_ver == DESC_VER_3)
  3316. nv_nic_irq_optimized(0, dev);
  3317. else
  3318. nv_nic_irq(0, dev);
  3319. if (np->msi_flags & NV_MSI_X_ENABLED)
  3320. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3321. else
  3322. enable_irq_lockdep(dev->irq);
  3323. } else {
  3324. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3325. nv_nic_irq_rx(0, dev);
  3326. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3327. }
  3328. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3329. nv_nic_irq_tx(0, dev);
  3330. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3331. }
  3332. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3333. nv_nic_irq_other(0, dev);
  3334. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3335. }
  3336. }
  3337. }
  3338. #ifdef CONFIG_NET_POLL_CONTROLLER
  3339. static void nv_poll_controller(struct net_device *dev)
  3340. {
  3341. nv_do_nic_poll((unsigned long) dev);
  3342. }
  3343. #endif
  3344. static void nv_do_stats_poll(unsigned long data)
  3345. {
  3346. struct net_device *dev = (struct net_device *) data;
  3347. struct fe_priv *np = netdev_priv(dev);
  3348. nv_get_hw_stats(dev);
  3349. if (!np->in_shutdown)
  3350. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3351. }
  3352. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3353. {
  3354. struct fe_priv *np = netdev_priv(dev);
  3355. strcpy(info->driver, "forcedeth");
  3356. strcpy(info->version, FORCEDETH_VERSION);
  3357. strcpy(info->bus_info, pci_name(np->pci_dev));
  3358. }
  3359. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3360. {
  3361. struct fe_priv *np = netdev_priv(dev);
  3362. wolinfo->supported = WAKE_MAGIC;
  3363. spin_lock_irq(&np->lock);
  3364. if (np->wolenabled)
  3365. wolinfo->wolopts = WAKE_MAGIC;
  3366. spin_unlock_irq(&np->lock);
  3367. }
  3368. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3369. {
  3370. struct fe_priv *np = netdev_priv(dev);
  3371. u8 __iomem *base = get_hwbase(dev);
  3372. u32 flags = 0;
  3373. if (wolinfo->wolopts == 0) {
  3374. np->wolenabled = 0;
  3375. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3376. np->wolenabled = 1;
  3377. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3378. }
  3379. if (netif_running(dev)) {
  3380. spin_lock_irq(&np->lock);
  3381. writel(flags, base + NvRegWakeUpFlags);
  3382. spin_unlock_irq(&np->lock);
  3383. }
  3384. return 0;
  3385. }
  3386. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3387. {
  3388. struct fe_priv *np = netdev_priv(dev);
  3389. int adv;
  3390. spin_lock_irq(&np->lock);
  3391. ecmd->port = PORT_MII;
  3392. if (!netif_running(dev)) {
  3393. /* We do not track link speed / duplex setting if the
  3394. * interface is disabled. Force a link check */
  3395. if (nv_update_linkspeed(dev)) {
  3396. if (!netif_carrier_ok(dev))
  3397. netif_carrier_on(dev);
  3398. } else {
  3399. if (netif_carrier_ok(dev))
  3400. netif_carrier_off(dev);
  3401. }
  3402. }
  3403. if (netif_carrier_ok(dev)) {
  3404. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3405. case NVREG_LINKSPEED_10:
  3406. ecmd->speed = SPEED_10;
  3407. break;
  3408. case NVREG_LINKSPEED_100:
  3409. ecmd->speed = SPEED_100;
  3410. break;
  3411. case NVREG_LINKSPEED_1000:
  3412. ecmd->speed = SPEED_1000;
  3413. break;
  3414. }
  3415. ecmd->duplex = DUPLEX_HALF;
  3416. if (np->duplex)
  3417. ecmd->duplex = DUPLEX_FULL;
  3418. } else {
  3419. ecmd->speed = -1;
  3420. ecmd->duplex = -1;
  3421. }
  3422. ecmd->autoneg = np->autoneg;
  3423. ecmd->advertising = ADVERTISED_MII;
  3424. if (np->autoneg) {
  3425. ecmd->advertising |= ADVERTISED_Autoneg;
  3426. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3427. if (adv & ADVERTISE_10HALF)
  3428. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3429. if (adv & ADVERTISE_10FULL)
  3430. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3431. if (adv & ADVERTISE_100HALF)
  3432. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3433. if (adv & ADVERTISE_100FULL)
  3434. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3435. if (np->gigabit == PHY_GIGABIT) {
  3436. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3437. if (adv & ADVERTISE_1000FULL)
  3438. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3439. }
  3440. }
  3441. ecmd->supported = (SUPPORTED_Autoneg |
  3442. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3443. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3444. SUPPORTED_MII);
  3445. if (np->gigabit == PHY_GIGABIT)
  3446. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3447. ecmd->phy_address = np->phyaddr;
  3448. ecmd->transceiver = XCVR_EXTERNAL;
  3449. /* ignore maxtxpkt, maxrxpkt for now */
  3450. spin_unlock_irq(&np->lock);
  3451. return 0;
  3452. }
  3453. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3454. {
  3455. struct fe_priv *np = netdev_priv(dev);
  3456. if (ecmd->port != PORT_MII)
  3457. return -EINVAL;
  3458. if (ecmd->transceiver != XCVR_EXTERNAL)
  3459. return -EINVAL;
  3460. if (ecmd->phy_address != np->phyaddr) {
  3461. /* TODO: support switching between multiple phys. Should be
  3462. * trivial, but not enabled due to lack of test hardware. */
  3463. return -EINVAL;
  3464. }
  3465. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3466. u32 mask;
  3467. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3468. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3469. if (np->gigabit == PHY_GIGABIT)
  3470. mask |= ADVERTISED_1000baseT_Full;
  3471. if ((ecmd->advertising & mask) == 0)
  3472. return -EINVAL;
  3473. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3474. /* Note: autonegotiation disable, speed 1000 intentionally
  3475. * forbidden - noone should need that. */
  3476. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3477. return -EINVAL;
  3478. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3479. return -EINVAL;
  3480. } else {
  3481. return -EINVAL;
  3482. }
  3483. netif_carrier_off(dev);
  3484. if (netif_running(dev)) {
  3485. nv_disable_irq(dev);
  3486. netif_tx_lock_bh(dev);
  3487. spin_lock(&np->lock);
  3488. /* stop engines */
  3489. nv_stop_rx(dev);
  3490. nv_stop_tx(dev);
  3491. spin_unlock(&np->lock);
  3492. netif_tx_unlock_bh(dev);
  3493. }
  3494. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3495. int adv, bmcr;
  3496. np->autoneg = 1;
  3497. /* advertise only what has been requested */
  3498. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3499. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3500. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3501. adv |= ADVERTISE_10HALF;
  3502. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3503. adv |= ADVERTISE_10FULL;
  3504. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3505. adv |= ADVERTISE_100HALF;
  3506. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3507. adv |= ADVERTISE_100FULL;
  3508. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3509. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3510. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3511. adv |= ADVERTISE_PAUSE_ASYM;
  3512. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3513. if (np->gigabit == PHY_GIGABIT) {
  3514. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3515. adv &= ~ADVERTISE_1000FULL;
  3516. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3517. adv |= ADVERTISE_1000FULL;
  3518. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3519. }
  3520. if (netif_running(dev))
  3521. printk(KERN_INFO "%s: link down.\n", dev->name);
  3522. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3523. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3524. bmcr |= BMCR_ANENABLE;
  3525. /* reset the phy in order for settings to stick,
  3526. * and cause autoneg to start */
  3527. if (phy_reset(dev, bmcr)) {
  3528. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3529. return -EINVAL;
  3530. }
  3531. } else {
  3532. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3533. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3534. }
  3535. } else {
  3536. int adv, bmcr;
  3537. np->autoneg = 0;
  3538. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3539. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3540. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3541. adv |= ADVERTISE_10HALF;
  3542. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3543. adv |= ADVERTISE_10FULL;
  3544. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3545. adv |= ADVERTISE_100HALF;
  3546. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3547. adv |= ADVERTISE_100FULL;
  3548. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3549. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3550. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3551. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3552. }
  3553. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3554. adv |= ADVERTISE_PAUSE_ASYM;
  3555. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3556. }
  3557. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3558. np->fixed_mode = adv;
  3559. if (np->gigabit == PHY_GIGABIT) {
  3560. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3561. adv &= ~ADVERTISE_1000FULL;
  3562. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3563. }
  3564. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3565. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3566. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3567. bmcr |= BMCR_FULLDPLX;
  3568. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3569. bmcr |= BMCR_SPEED100;
  3570. if (np->phy_oui == PHY_OUI_MARVELL) {
  3571. /* reset the phy in order for forced mode settings to stick */
  3572. if (phy_reset(dev, bmcr)) {
  3573. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3574. return -EINVAL;
  3575. }
  3576. } else {
  3577. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3578. if (netif_running(dev)) {
  3579. /* Wait a bit and then reconfigure the nic. */
  3580. udelay(10);
  3581. nv_linkchange(dev);
  3582. }
  3583. }
  3584. }
  3585. if (netif_running(dev)) {
  3586. nv_start_rx(dev);
  3587. nv_start_tx(dev);
  3588. nv_enable_irq(dev);
  3589. }
  3590. return 0;
  3591. }
  3592. #define FORCEDETH_REGS_VER 1
  3593. static int nv_get_regs_len(struct net_device *dev)
  3594. {
  3595. struct fe_priv *np = netdev_priv(dev);
  3596. return np->register_size;
  3597. }
  3598. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3599. {
  3600. struct fe_priv *np = netdev_priv(dev);
  3601. u8 __iomem *base = get_hwbase(dev);
  3602. u32 *rbuf = buf;
  3603. int i;
  3604. regs->version = FORCEDETH_REGS_VER;
  3605. spin_lock_irq(&np->lock);
  3606. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3607. rbuf[i] = readl(base + i*sizeof(u32));
  3608. spin_unlock_irq(&np->lock);
  3609. }
  3610. static int nv_nway_reset(struct net_device *dev)
  3611. {
  3612. struct fe_priv *np = netdev_priv(dev);
  3613. int ret;
  3614. if (np->autoneg) {
  3615. int bmcr;
  3616. netif_carrier_off(dev);
  3617. if (netif_running(dev)) {
  3618. nv_disable_irq(dev);
  3619. netif_tx_lock_bh(dev);
  3620. spin_lock(&np->lock);
  3621. /* stop engines */
  3622. nv_stop_rx(dev);
  3623. nv_stop_tx(dev);
  3624. spin_unlock(&np->lock);
  3625. netif_tx_unlock_bh(dev);
  3626. printk(KERN_INFO "%s: link down.\n", dev->name);
  3627. }
  3628. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3629. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3630. bmcr |= BMCR_ANENABLE;
  3631. /* reset the phy in order for settings to stick*/
  3632. if (phy_reset(dev, bmcr)) {
  3633. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3634. return -EINVAL;
  3635. }
  3636. } else {
  3637. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3638. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3639. }
  3640. if (netif_running(dev)) {
  3641. nv_start_rx(dev);
  3642. nv_start_tx(dev);
  3643. nv_enable_irq(dev);
  3644. }
  3645. ret = 0;
  3646. } else {
  3647. ret = -EINVAL;
  3648. }
  3649. return ret;
  3650. }
  3651. static int nv_set_tso(struct net_device *dev, u32 value)
  3652. {
  3653. struct fe_priv *np = netdev_priv(dev);
  3654. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3655. return ethtool_op_set_tso(dev, value);
  3656. else
  3657. return -EOPNOTSUPP;
  3658. }
  3659. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3660. {
  3661. struct fe_priv *np = netdev_priv(dev);
  3662. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3663. ring->rx_mini_max_pending = 0;
  3664. ring->rx_jumbo_max_pending = 0;
  3665. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3666. ring->rx_pending = np->rx_ring_size;
  3667. ring->rx_mini_pending = 0;
  3668. ring->rx_jumbo_pending = 0;
  3669. ring->tx_pending = np->tx_ring_size;
  3670. }
  3671. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3672. {
  3673. struct fe_priv *np = netdev_priv(dev);
  3674. u8 __iomem *base = get_hwbase(dev);
  3675. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3676. dma_addr_t ring_addr;
  3677. if (ring->rx_pending < RX_RING_MIN ||
  3678. ring->tx_pending < TX_RING_MIN ||
  3679. ring->rx_mini_pending != 0 ||
  3680. ring->rx_jumbo_pending != 0 ||
  3681. (np->desc_ver == DESC_VER_1 &&
  3682. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3683. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3684. (np->desc_ver != DESC_VER_1 &&
  3685. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3686. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3687. return -EINVAL;
  3688. }
  3689. /* allocate new rings */
  3690. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3691. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3692. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3693. &ring_addr);
  3694. } else {
  3695. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3696. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3697. &ring_addr);
  3698. }
  3699. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3700. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3701. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3702. /* fall back to old rings */
  3703. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3704. if (rxtx_ring)
  3705. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3706. rxtx_ring, ring_addr);
  3707. } else {
  3708. if (rxtx_ring)
  3709. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3710. rxtx_ring, ring_addr);
  3711. }
  3712. if (rx_skbuff)
  3713. kfree(rx_skbuff);
  3714. if (tx_skbuff)
  3715. kfree(tx_skbuff);
  3716. goto exit;
  3717. }
  3718. if (netif_running(dev)) {
  3719. nv_disable_irq(dev);
  3720. netif_tx_lock_bh(dev);
  3721. spin_lock(&np->lock);
  3722. /* stop engines */
  3723. nv_stop_rx(dev);
  3724. nv_stop_tx(dev);
  3725. nv_txrx_reset(dev);
  3726. /* drain queues */
  3727. nv_drain_rx(dev);
  3728. nv_drain_tx(dev);
  3729. /* delete queues */
  3730. free_rings(dev);
  3731. }
  3732. /* set new values */
  3733. np->rx_ring_size = ring->rx_pending;
  3734. np->tx_ring_size = ring->tx_pending;
  3735. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3736. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3737. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3738. } else {
  3739. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3740. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3741. }
  3742. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  3743. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  3744. np->ring_addr = ring_addr;
  3745. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3746. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3747. if (netif_running(dev)) {
  3748. /* reinit driver view of the queues */
  3749. set_bufsize(dev);
  3750. if (nv_init_ring(dev)) {
  3751. if (!np->in_shutdown)
  3752. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3753. }
  3754. /* reinit nic view of the queues */
  3755. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3756. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3757. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3758. base + NvRegRingSizes);
  3759. pci_push(base);
  3760. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3761. pci_push(base);
  3762. /* restart engines */
  3763. nv_start_rx(dev);
  3764. nv_start_tx(dev);
  3765. spin_unlock(&np->lock);
  3766. netif_tx_unlock_bh(dev);
  3767. nv_enable_irq(dev);
  3768. }
  3769. return 0;
  3770. exit:
  3771. return -ENOMEM;
  3772. }
  3773. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3774. {
  3775. struct fe_priv *np = netdev_priv(dev);
  3776. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3777. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3778. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3779. }
  3780. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3781. {
  3782. struct fe_priv *np = netdev_priv(dev);
  3783. int adv, bmcr;
  3784. if ((!np->autoneg && np->duplex == 0) ||
  3785. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3786. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3787. dev->name);
  3788. return -EINVAL;
  3789. }
  3790. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3791. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3792. return -EINVAL;
  3793. }
  3794. netif_carrier_off(dev);
  3795. if (netif_running(dev)) {
  3796. nv_disable_irq(dev);
  3797. netif_tx_lock_bh(dev);
  3798. spin_lock(&np->lock);
  3799. /* stop engines */
  3800. nv_stop_rx(dev);
  3801. nv_stop_tx(dev);
  3802. spin_unlock(&np->lock);
  3803. netif_tx_unlock_bh(dev);
  3804. }
  3805. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3806. if (pause->rx_pause)
  3807. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3808. if (pause->tx_pause)
  3809. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3810. if (np->autoneg && pause->autoneg) {
  3811. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3812. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3813. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3814. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3815. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3816. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3817. adv |= ADVERTISE_PAUSE_ASYM;
  3818. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3819. if (netif_running(dev))
  3820. printk(KERN_INFO "%s: link down.\n", dev->name);
  3821. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3822. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3823. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3824. } else {
  3825. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3826. if (pause->rx_pause)
  3827. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3828. if (pause->tx_pause)
  3829. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3830. if (!netif_running(dev))
  3831. nv_update_linkspeed(dev);
  3832. else
  3833. nv_update_pause(dev, np->pause_flags);
  3834. }
  3835. if (netif_running(dev)) {
  3836. nv_start_rx(dev);
  3837. nv_start_tx(dev);
  3838. nv_enable_irq(dev);
  3839. }
  3840. return 0;
  3841. }
  3842. static u32 nv_get_rx_csum(struct net_device *dev)
  3843. {
  3844. struct fe_priv *np = netdev_priv(dev);
  3845. return (np->rx_csum) != 0;
  3846. }
  3847. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3848. {
  3849. struct fe_priv *np = netdev_priv(dev);
  3850. u8 __iomem *base = get_hwbase(dev);
  3851. int retcode = 0;
  3852. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3853. if (data) {
  3854. np->rx_csum = 1;
  3855. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3856. } else {
  3857. np->rx_csum = 0;
  3858. /* vlan is dependent on rx checksum offload */
  3859. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3860. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3861. }
  3862. if (netif_running(dev)) {
  3863. spin_lock_irq(&np->lock);
  3864. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3865. spin_unlock_irq(&np->lock);
  3866. }
  3867. } else {
  3868. return -EINVAL;
  3869. }
  3870. return retcode;
  3871. }
  3872. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3873. {
  3874. struct fe_priv *np = netdev_priv(dev);
  3875. if (np->driver_data & DEV_HAS_CHECKSUM)
  3876. return ethtool_op_set_tx_hw_csum(dev, data);
  3877. else
  3878. return -EOPNOTSUPP;
  3879. }
  3880. static int nv_set_sg(struct net_device *dev, u32 data)
  3881. {
  3882. struct fe_priv *np = netdev_priv(dev);
  3883. if (np->driver_data & DEV_HAS_CHECKSUM)
  3884. return ethtool_op_set_sg(dev, data);
  3885. else
  3886. return -EOPNOTSUPP;
  3887. }
  3888. static int nv_get_stats_count(struct net_device *dev)
  3889. {
  3890. struct fe_priv *np = netdev_priv(dev);
  3891. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  3892. return NV_DEV_STATISTICS_V1_COUNT;
  3893. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  3894. return NV_DEV_STATISTICS_V2_COUNT;
  3895. else
  3896. return 0;
  3897. }
  3898. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3899. {
  3900. struct fe_priv *np = netdev_priv(dev);
  3901. /* update stats */
  3902. nv_do_stats_poll((unsigned long)dev);
  3903. memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
  3904. }
  3905. static int nv_self_test_count(struct net_device *dev)
  3906. {
  3907. struct fe_priv *np = netdev_priv(dev);
  3908. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3909. return NV_TEST_COUNT_EXTENDED;
  3910. else
  3911. return NV_TEST_COUNT_BASE;
  3912. }
  3913. static int nv_link_test(struct net_device *dev)
  3914. {
  3915. struct fe_priv *np = netdev_priv(dev);
  3916. int mii_status;
  3917. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3918. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3919. /* check phy link status */
  3920. if (!(mii_status & BMSR_LSTATUS))
  3921. return 0;
  3922. else
  3923. return 1;
  3924. }
  3925. static int nv_register_test(struct net_device *dev)
  3926. {
  3927. u8 __iomem *base = get_hwbase(dev);
  3928. int i = 0;
  3929. u32 orig_read, new_read;
  3930. do {
  3931. orig_read = readl(base + nv_registers_test[i].reg);
  3932. /* xor with mask to toggle bits */
  3933. orig_read ^= nv_registers_test[i].mask;
  3934. writel(orig_read, base + nv_registers_test[i].reg);
  3935. new_read = readl(base + nv_registers_test[i].reg);
  3936. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3937. return 0;
  3938. /* restore original value */
  3939. orig_read ^= nv_registers_test[i].mask;
  3940. writel(orig_read, base + nv_registers_test[i].reg);
  3941. } while (nv_registers_test[++i].reg != 0);
  3942. return 1;
  3943. }
  3944. static int nv_interrupt_test(struct net_device *dev)
  3945. {
  3946. struct fe_priv *np = netdev_priv(dev);
  3947. u8 __iomem *base = get_hwbase(dev);
  3948. int ret = 1;
  3949. int testcnt;
  3950. u32 save_msi_flags, save_poll_interval = 0;
  3951. if (netif_running(dev)) {
  3952. /* free current irq */
  3953. nv_free_irq(dev);
  3954. save_poll_interval = readl(base+NvRegPollingInterval);
  3955. }
  3956. /* flag to test interrupt handler */
  3957. np->intr_test = 0;
  3958. /* setup test irq */
  3959. save_msi_flags = np->msi_flags;
  3960. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  3961. np->msi_flags |= 0x001; /* setup 1 vector */
  3962. if (nv_request_irq(dev, 1))
  3963. return 0;
  3964. /* setup timer interrupt */
  3965. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3966. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3967. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3968. /* wait for at least one interrupt */
  3969. msleep(100);
  3970. spin_lock_irq(&np->lock);
  3971. /* flag should be set within ISR */
  3972. testcnt = np->intr_test;
  3973. if (!testcnt)
  3974. ret = 2;
  3975. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3976. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3977. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3978. else
  3979. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3980. spin_unlock_irq(&np->lock);
  3981. nv_free_irq(dev);
  3982. np->msi_flags = save_msi_flags;
  3983. if (netif_running(dev)) {
  3984. writel(save_poll_interval, base + NvRegPollingInterval);
  3985. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3986. /* restore original irq */
  3987. if (nv_request_irq(dev, 0))
  3988. return 0;
  3989. }
  3990. return ret;
  3991. }
  3992. static int nv_loopback_test(struct net_device *dev)
  3993. {
  3994. struct fe_priv *np = netdev_priv(dev);
  3995. u8 __iomem *base = get_hwbase(dev);
  3996. struct sk_buff *tx_skb, *rx_skb;
  3997. dma_addr_t test_dma_addr;
  3998. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  3999. u32 flags;
  4000. int len, i, pkt_len;
  4001. u8 *pkt_data;
  4002. u32 filter_flags = 0;
  4003. u32 misc1_flags = 0;
  4004. int ret = 1;
  4005. if (netif_running(dev)) {
  4006. nv_disable_irq(dev);
  4007. filter_flags = readl(base + NvRegPacketFilterFlags);
  4008. misc1_flags = readl(base + NvRegMisc1);
  4009. } else {
  4010. nv_txrx_reset(dev);
  4011. }
  4012. /* reinit driver view of the rx queue */
  4013. set_bufsize(dev);
  4014. nv_init_ring(dev);
  4015. /* setup hardware for loopback */
  4016. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4017. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4018. /* reinit nic view of the rx queue */
  4019. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4020. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4021. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4022. base + NvRegRingSizes);
  4023. pci_push(base);
  4024. /* restart rx engine */
  4025. nv_start_rx(dev);
  4026. nv_start_tx(dev);
  4027. /* setup packet for tx */
  4028. pkt_len = ETH_DATA_LEN;
  4029. tx_skb = dev_alloc_skb(pkt_len);
  4030. if (!tx_skb) {
  4031. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4032. " of %s\n", dev->name);
  4033. ret = 0;
  4034. goto out;
  4035. }
  4036. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4037. skb_tailroom(tx_skb),
  4038. PCI_DMA_FROMDEVICE);
  4039. pkt_data = skb_put(tx_skb, pkt_len);
  4040. for (i = 0; i < pkt_len; i++)
  4041. pkt_data[i] = (u8)(i & 0xff);
  4042. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4043. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4044. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4045. } else {
  4046. np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
  4047. np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
  4048. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4049. }
  4050. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4051. pci_push(get_hwbase(dev));
  4052. msleep(500);
  4053. /* check for rx of the packet */
  4054. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4055. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4056. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4057. } else {
  4058. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4059. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4060. }
  4061. if (flags & NV_RX_AVAIL) {
  4062. ret = 0;
  4063. } else if (np->desc_ver == DESC_VER_1) {
  4064. if (flags & NV_RX_ERROR)
  4065. ret = 0;
  4066. } else {
  4067. if (flags & NV_RX2_ERROR) {
  4068. ret = 0;
  4069. }
  4070. }
  4071. if (ret) {
  4072. if (len != pkt_len) {
  4073. ret = 0;
  4074. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4075. dev->name, len, pkt_len);
  4076. } else {
  4077. rx_skb = np->rx_skb[0].skb;
  4078. for (i = 0; i < pkt_len; i++) {
  4079. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4080. ret = 0;
  4081. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4082. dev->name, i);
  4083. break;
  4084. }
  4085. }
  4086. }
  4087. } else {
  4088. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4089. }
  4090. pci_unmap_page(np->pci_dev, test_dma_addr,
  4091. (skb_end_pointer(tx_skb) - tx_skb->data),
  4092. PCI_DMA_TODEVICE);
  4093. dev_kfree_skb_any(tx_skb);
  4094. out:
  4095. /* stop engines */
  4096. nv_stop_rx(dev);
  4097. nv_stop_tx(dev);
  4098. nv_txrx_reset(dev);
  4099. /* drain rx queue */
  4100. nv_drain_rx(dev);
  4101. nv_drain_tx(dev);
  4102. if (netif_running(dev)) {
  4103. writel(misc1_flags, base + NvRegMisc1);
  4104. writel(filter_flags, base + NvRegPacketFilterFlags);
  4105. nv_enable_irq(dev);
  4106. }
  4107. return ret;
  4108. }
  4109. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4110. {
  4111. struct fe_priv *np = netdev_priv(dev);
  4112. u8 __iomem *base = get_hwbase(dev);
  4113. int result;
  4114. memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
  4115. if (!nv_link_test(dev)) {
  4116. test->flags |= ETH_TEST_FL_FAILED;
  4117. buffer[0] = 1;
  4118. }
  4119. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4120. if (netif_running(dev)) {
  4121. netif_stop_queue(dev);
  4122. netif_poll_disable(dev);
  4123. netif_tx_lock_bh(dev);
  4124. spin_lock_irq(&np->lock);
  4125. nv_disable_hw_interrupts(dev, np->irqmask);
  4126. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4127. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4128. } else {
  4129. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4130. }
  4131. /* stop engines */
  4132. nv_stop_rx(dev);
  4133. nv_stop_tx(dev);
  4134. nv_txrx_reset(dev);
  4135. /* drain rx queue */
  4136. nv_drain_rx(dev);
  4137. nv_drain_tx(dev);
  4138. spin_unlock_irq(&np->lock);
  4139. netif_tx_unlock_bh(dev);
  4140. }
  4141. if (!nv_register_test(dev)) {
  4142. test->flags |= ETH_TEST_FL_FAILED;
  4143. buffer[1] = 1;
  4144. }
  4145. result = nv_interrupt_test(dev);
  4146. if (result != 1) {
  4147. test->flags |= ETH_TEST_FL_FAILED;
  4148. buffer[2] = 1;
  4149. }
  4150. if (result == 0) {
  4151. /* bail out */
  4152. return;
  4153. }
  4154. if (!nv_loopback_test(dev)) {
  4155. test->flags |= ETH_TEST_FL_FAILED;
  4156. buffer[3] = 1;
  4157. }
  4158. if (netif_running(dev)) {
  4159. /* reinit driver view of the rx queue */
  4160. set_bufsize(dev);
  4161. if (nv_init_ring(dev)) {
  4162. if (!np->in_shutdown)
  4163. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4164. }
  4165. /* reinit nic view of the rx queue */
  4166. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4167. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4168. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4169. base + NvRegRingSizes);
  4170. pci_push(base);
  4171. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4172. pci_push(base);
  4173. /* restart rx engine */
  4174. nv_start_rx(dev);
  4175. nv_start_tx(dev);
  4176. netif_start_queue(dev);
  4177. netif_poll_enable(dev);
  4178. nv_enable_hw_interrupts(dev, np->irqmask);
  4179. }
  4180. }
  4181. }
  4182. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4183. {
  4184. switch (stringset) {
  4185. case ETH_SS_STATS:
  4186. memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
  4187. break;
  4188. case ETH_SS_TEST:
  4189. memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
  4190. break;
  4191. }
  4192. }
  4193. static const struct ethtool_ops ops = {
  4194. .get_drvinfo = nv_get_drvinfo,
  4195. .get_link = ethtool_op_get_link,
  4196. .get_wol = nv_get_wol,
  4197. .set_wol = nv_set_wol,
  4198. .get_settings = nv_get_settings,
  4199. .set_settings = nv_set_settings,
  4200. .get_regs_len = nv_get_regs_len,
  4201. .get_regs = nv_get_regs,
  4202. .nway_reset = nv_nway_reset,
  4203. .get_perm_addr = ethtool_op_get_perm_addr,
  4204. .get_tso = ethtool_op_get_tso,
  4205. .set_tso = nv_set_tso,
  4206. .get_ringparam = nv_get_ringparam,
  4207. .set_ringparam = nv_set_ringparam,
  4208. .get_pauseparam = nv_get_pauseparam,
  4209. .set_pauseparam = nv_set_pauseparam,
  4210. .get_rx_csum = nv_get_rx_csum,
  4211. .set_rx_csum = nv_set_rx_csum,
  4212. .get_tx_csum = ethtool_op_get_tx_csum,
  4213. .set_tx_csum = nv_set_tx_csum,
  4214. .get_sg = ethtool_op_get_sg,
  4215. .set_sg = nv_set_sg,
  4216. .get_strings = nv_get_strings,
  4217. .get_stats_count = nv_get_stats_count,
  4218. .get_ethtool_stats = nv_get_ethtool_stats,
  4219. .self_test_count = nv_self_test_count,
  4220. .self_test = nv_self_test,
  4221. };
  4222. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4223. {
  4224. struct fe_priv *np = get_nvpriv(dev);
  4225. spin_lock_irq(&np->lock);
  4226. /* save vlan group */
  4227. np->vlangrp = grp;
  4228. if (grp) {
  4229. /* enable vlan on MAC */
  4230. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4231. } else {
  4232. /* disable vlan on MAC */
  4233. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4234. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4235. }
  4236. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4237. spin_unlock_irq(&np->lock);
  4238. }
  4239. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4240. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4241. {
  4242. u8 __iomem *base = get_hwbase(dev);
  4243. int i;
  4244. u32 tx_ctrl, mgmt_sema;
  4245. for (i = 0; i < 10; i++) {
  4246. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4247. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4248. break;
  4249. msleep(500);
  4250. }
  4251. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4252. return 0;
  4253. for (i = 0; i < 2; i++) {
  4254. tx_ctrl = readl(base + NvRegTransmitterControl);
  4255. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4256. writel(tx_ctrl, base + NvRegTransmitterControl);
  4257. /* verify that semaphore was acquired */
  4258. tx_ctrl = readl(base + NvRegTransmitterControl);
  4259. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4260. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4261. return 1;
  4262. else
  4263. udelay(50);
  4264. }
  4265. return 0;
  4266. }
  4267. static int nv_open(struct net_device *dev)
  4268. {
  4269. struct fe_priv *np = netdev_priv(dev);
  4270. u8 __iomem *base = get_hwbase(dev);
  4271. int ret = 1;
  4272. int oom, i;
  4273. dprintk(KERN_DEBUG "nv_open: begin\n");
  4274. /* erase previous misconfiguration */
  4275. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4276. nv_mac_reset(dev);
  4277. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4278. writel(0, base + NvRegMulticastAddrB);
  4279. writel(0, base + NvRegMulticastMaskA);
  4280. writel(0, base + NvRegMulticastMaskB);
  4281. writel(0, base + NvRegPacketFilterFlags);
  4282. writel(0, base + NvRegTransmitterControl);
  4283. writel(0, base + NvRegReceiverControl);
  4284. writel(0, base + NvRegAdapterControl);
  4285. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4286. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4287. /* initialize descriptor rings */
  4288. set_bufsize(dev);
  4289. oom = nv_init_ring(dev);
  4290. writel(0, base + NvRegLinkSpeed);
  4291. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4292. nv_txrx_reset(dev);
  4293. writel(0, base + NvRegUnknownSetupReg6);
  4294. np->in_shutdown = 0;
  4295. /* give hw rings */
  4296. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4297. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4298. base + NvRegRingSizes);
  4299. writel(np->linkspeed, base + NvRegLinkSpeed);
  4300. if (np->desc_ver == DESC_VER_1)
  4301. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4302. else
  4303. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4304. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4305. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4306. pci_push(base);
  4307. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4308. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4309. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4310. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4311. writel(0, base + NvRegMIIMask);
  4312. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4313. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  4314. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4315. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4316. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4317. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4318. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4319. get_random_bytes(&i, sizeof(i));
  4320. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  4321. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4322. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4323. if (poll_interval == -1) {
  4324. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4325. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4326. else
  4327. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4328. }
  4329. else
  4330. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4331. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4332. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4333. base + NvRegAdapterControl);
  4334. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4335. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4336. if (np->wolenabled)
  4337. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4338. i = readl(base + NvRegPowerState);
  4339. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4340. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4341. pci_push(base);
  4342. udelay(10);
  4343. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4344. nv_disable_hw_interrupts(dev, np->irqmask);
  4345. pci_push(base);
  4346. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  4347. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4348. pci_push(base);
  4349. if (nv_request_irq(dev, 0)) {
  4350. goto out_drain;
  4351. }
  4352. /* ask for interrupts */
  4353. nv_enable_hw_interrupts(dev, np->irqmask);
  4354. spin_lock_irq(&np->lock);
  4355. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4356. writel(0, base + NvRegMulticastAddrB);
  4357. writel(0, base + NvRegMulticastMaskA);
  4358. writel(0, base + NvRegMulticastMaskB);
  4359. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4360. /* One manual link speed update: Interrupts are enabled, future link
  4361. * speed changes cause interrupts and are handled by nv_link_irq().
  4362. */
  4363. {
  4364. u32 miistat;
  4365. miistat = readl(base + NvRegMIIStatus);
  4366. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4367. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4368. }
  4369. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4370. * to init hw */
  4371. np->linkspeed = 0;
  4372. ret = nv_update_linkspeed(dev);
  4373. nv_start_rx(dev);
  4374. nv_start_tx(dev);
  4375. netif_start_queue(dev);
  4376. netif_poll_enable(dev);
  4377. if (ret) {
  4378. netif_carrier_on(dev);
  4379. } else {
  4380. printk("%s: no link during initialization.\n", dev->name);
  4381. netif_carrier_off(dev);
  4382. }
  4383. if (oom)
  4384. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4385. /* start statistics timer */
  4386. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
  4387. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  4388. spin_unlock_irq(&np->lock);
  4389. return 0;
  4390. out_drain:
  4391. drain_ring(dev);
  4392. return ret;
  4393. }
  4394. static int nv_close(struct net_device *dev)
  4395. {
  4396. struct fe_priv *np = netdev_priv(dev);
  4397. u8 __iomem *base;
  4398. spin_lock_irq(&np->lock);
  4399. np->in_shutdown = 1;
  4400. spin_unlock_irq(&np->lock);
  4401. netif_poll_disable(dev);
  4402. synchronize_irq(dev->irq);
  4403. del_timer_sync(&np->oom_kick);
  4404. del_timer_sync(&np->nic_poll);
  4405. del_timer_sync(&np->stats_poll);
  4406. netif_stop_queue(dev);
  4407. spin_lock_irq(&np->lock);
  4408. nv_stop_tx(dev);
  4409. nv_stop_rx(dev);
  4410. nv_txrx_reset(dev);
  4411. /* disable interrupts on the nic or we will lock up */
  4412. base = get_hwbase(dev);
  4413. nv_disable_hw_interrupts(dev, np->irqmask);
  4414. pci_push(base);
  4415. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4416. spin_unlock_irq(&np->lock);
  4417. nv_free_irq(dev);
  4418. drain_ring(dev);
  4419. if (np->wolenabled) {
  4420. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4421. nv_start_rx(dev);
  4422. }
  4423. /* FIXME: power down nic */
  4424. return 0;
  4425. }
  4426. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4427. {
  4428. struct net_device *dev;
  4429. struct fe_priv *np;
  4430. unsigned long addr;
  4431. u8 __iomem *base;
  4432. int err, i;
  4433. u32 powerstate, txreg;
  4434. u32 phystate_orig = 0, phystate;
  4435. int phyinitialized = 0;
  4436. dev = alloc_etherdev(sizeof(struct fe_priv));
  4437. err = -ENOMEM;
  4438. if (!dev)
  4439. goto out;
  4440. np = netdev_priv(dev);
  4441. np->pci_dev = pci_dev;
  4442. spin_lock_init(&np->lock);
  4443. SET_MODULE_OWNER(dev);
  4444. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4445. init_timer(&np->oom_kick);
  4446. np->oom_kick.data = (unsigned long) dev;
  4447. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4448. init_timer(&np->nic_poll);
  4449. np->nic_poll.data = (unsigned long) dev;
  4450. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4451. init_timer(&np->stats_poll);
  4452. np->stats_poll.data = (unsigned long) dev;
  4453. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4454. err = pci_enable_device(pci_dev);
  4455. if (err) {
  4456. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  4457. err, pci_name(pci_dev));
  4458. goto out_free;
  4459. }
  4460. pci_set_master(pci_dev);
  4461. err = pci_request_regions(pci_dev, DRV_NAME);
  4462. if (err < 0)
  4463. goto out_disable;
  4464. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
  4465. np->register_size = NV_PCI_REGSZ_VER3;
  4466. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4467. np->register_size = NV_PCI_REGSZ_VER2;
  4468. else
  4469. np->register_size = NV_PCI_REGSZ_VER1;
  4470. err = -EINVAL;
  4471. addr = 0;
  4472. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4473. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4474. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4475. pci_resource_len(pci_dev, i),
  4476. pci_resource_flags(pci_dev, i));
  4477. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4478. pci_resource_len(pci_dev, i) >= np->register_size) {
  4479. addr = pci_resource_start(pci_dev, i);
  4480. break;
  4481. }
  4482. }
  4483. if (i == DEVICE_COUNT_RESOURCE) {
  4484. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  4485. pci_name(pci_dev));
  4486. goto out_relreg;
  4487. }
  4488. /* copy of driver data */
  4489. np->driver_data = id->driver_data;
  4490. /* handle different descriptor versions */
  4491. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4492. /* packet format 3: supports 40-bit addressing */
  4493. np->desc_ver = DESC_VER_3;
  4494. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4495. if (dma_64bit) {
  4496. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4497. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  4498. pci_name(pci_dev));
  4499. } else {
  4500. dev->features |= NETIF_F_HIGHDMA;
  4501. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  4502. }
  4503. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4504. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
  4505. pci_name(pci_dev));
  4506. }
  4507. }
  4508. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4509. /* packet format 2: supports jumbo frames */
  4510. np->desc_ver = DESC_VER_2;
  4511. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4512. } else {
  4513. /* original packet format */
  4514. np->desc_ver = DESC_VER_1;
  4515. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4516. }
  4517. np->pkt_limit = NV_PKTLIMIT_1;
  4518. if (id->driver_data & DEV_HAS_LARGEDESC)
  4519. np->pkt_limit = NV_PKTLIMIT_2;
  4520. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4521. np->rx_csum = 1;
  4522. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4523. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4524. dev->features |= NETIF_F_TSO;
  4525. }
  4526. np->vlanctl_bits = 0;
  4527. if (id->driver_data & DEV_HAS_VLAN) {
  4528. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4529. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4530. dev->vlan_rx_register = nv_vlan_rx_register;
  4531. }
  4532. np->msi_flags = 0;
  4533. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4534. np->msi_flags |= NV_MSI_CAPABLE;
  4535. }
  4536. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4537. np->msi_flags |= NV_MSI_X_CAPABLE;
  4538. }
  4539. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4540. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  4541. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4542. }
  4543. err = -ENOMEM;
  4544. np->base = ioremap(addr, np->register_size);
  4545. if (!np->base)
  4546. goto out_relreg;
  4547. dev->base_addr = (unsigned long)np->base;
  4548. dev->irq = pci_dev->irq;
  4549. np->rx_ring_size = RX_RING_DEFAULT;
  4550. np->tx_ring_size = TX_RING_DEFAULT;
  4551. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4552. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4553. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4554. &np->ring_addr);
  4555. if (!np->rx_ring.orig)
  4556. goto out_unmap;
  4557. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4558. } else {
  4559. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4560. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4561. &np->ring_addr);
  4562. if (!np->rx_ring.ex)
  4563. goto out_unmap;
  4564. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4565. }
  4566. np->rx_skb = kmalloc(sizeof(struct nv_skb_map) * np->rx_ring_size, GFP_KERNEL);
  4567. np->tx_skb = kmalloc(sizeof(struct nv_skb_map) * np->tx_ring_size, GFP_KERNEL);
  4568. if (!np->rx_skb || !np->tx_skb)
  4569. goto out_freering;
  4570. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4571. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4572. dev->open = nv_open;
  4573. dev->stop = nv_close;
  4574. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  4575. dev->hard_start_xmit = nv_start_xmit;
  4576. else
  4577. dev->hard_start_xmit = nv_start_xmit_optimized;
  4578. dev->get_stats = nv_get_stats;
  4579. dev->change_mtu = nv_change_mtu;
  4580. dev->set_mac_address = nv_set_mac_address;
  4581. dev->set_multicast_list = nv_set_multicast;
  4582. #ifdef CONFIG_NET_POLL_CONTROLLER
  4583. dev->poll_controller = nv_poll_controller;
  4584. #endif
  4585. dev->weight = RX_WORK_PER_LOOP;
  4586. #ifdef CONFIG_FORCEDETH_NAPI
  4587. dev->poll = nv_napi_poll;
  4588. #endif
  4589. SET_ETHTOOL_OPS(dev, &ops);
  4590. dev->tx_timeout = nv_tx_timeout;
  4591. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4592. pci_set_drvdata(pci_dev, dev);
  4593. /* read the mac address */
  4594. base = get_hwbase(dev);
  4595. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4596. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4597. /* check the workaround bit for correct mac address order */
  4598. txreg = readl(base + NvRegTransmitPoll);
  4599. if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  4600. /* mac address is already in correct order */
  4601. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4602. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4603. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4604. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4605. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4606. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4607. } else {
  4608. /* need to reverse mac address to correct order */
  4609. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4610. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4611. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4612. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4613. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4614. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4615. /* set permanent address to be correct aswell */
  4616. np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  4617. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  4618. np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  4619. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4620. }
  4621. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4622. if (!is_valid_ether_addr(dev->perm_addr)) {
  4623. /*
  4624. * Bad mac address. At least one bios sets the mac address
  4625. * to 01:23:45:67:89:ab
  4626. */
  4627. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  4628. pci_name(pci_dev),
  4629. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  4630. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  4631. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4632. dev->dev_addr[0] = 0x00;
  4633. dev->dev_addr[1] = 0x00;
  4634. dev->dev_addr[2] = 0x6c;
  4635. get_random_bytes(&dev->dev_addr[3], 3);
  4636. }
  4637. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  4638. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  4639. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  4640. /* set mac address */
  4641. nv_copy_mac_to_hw(dev);
  4642. /* disable WOL */
  4643. writel(0, base + NvRegWakeUpFlags);
  4644. np->wolenabled = 0;
  4645. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4646. /* take phy and nic out of low power mode */
  4647. powerstate = readl(base + NvRegPowerState2);
  4648. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4649. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4650. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4651. pci_dev->revision >= 0xA3)
  4652. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4653. writel(powerstate, base + NvRegPowerState2);
  4654. }
  4655. if (np->desc_ver == DESC_VER_1) {
  4656. np->tx_flags = NV_TX_VALID;
  4657. } else {
  4658. np->tx_flags = NV_TX2_VALID;
  4659. }
  4660. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4661. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4662. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4663. np->msi_flags |= 0x0003;
  4664. } else {
  4665. np->irqmask = NVREG_IRQMASK_CPU;
  4666. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4667. np->msi_flags |= 0x0001;
  4668. }
  4669. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4670. np->irqmask |= NVREG_IRQ_TIMER;
  4671. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4672. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4673. np->need_linktimer = 1;
  4674. np->link_timeout = jiffies + LINK_TIMEOUT;
  4675. } else {
  4676. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4677. np->need_linktimer = 0;
  4678. }
  4679. /* clear phy state and temporarily halt phy interrupts */
  4680. writel(0, base + NvRegMIIMask);
  4681. phystate = readl(base + NvRegAdapterControl);
  4682. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4683. phystate_orig = 1;
  4684. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4685. writel(phystate, base + NvRegAdapterControl);
  4686. }
  4687. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4688. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4689. /* management unit running on the mac? */
  4690. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  4691. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4692. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  4693. for (i = 0; i < 5000; i++) {
  4694. msleep(1);
  4695. if (nv_mgmt_acquire_sema(dev)) {
  4696. /* management unit setup the phy already? */
  4697. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  4698. NVREG_XMITCTL_SYNC_PHY_INIT) {
  4699. /* phy is inited by mgmt unit */
  4700. phyinitialized = 1;
  4701. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  4702. } else {
  4703. /* we need to init the phy */
  4704. }
  4705. break;
  4706. }
  4707. }
  4708. }
  4709. }
  4710. /* find a suitable phy */
  4711. for (i = 1; i <= 32; i++) {
  4712. int id1, id2;
  4713. int phyaddr = i & 0x1F;
  4714. spin_lock_irq(&np->lock);
  4715. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4716. spin_unlock_irq(&np->lock);
  4717. if (id1 < 0 || id1 == 0xffff)
  4718. continue;
  4719. spin_lock_irq(&np->lock);
  4720. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4721. spin_unlock_irq(&np->lock);
  4722. if (id2 < 0 || id2 == 0xffff)
  4723. continue;
  4724. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4725. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4726. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4727. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4728. pci_name(pci_dev), id1, id2, phyaddr);
  4729. np->phyaddr = phyaddr;
  4730. np->phy_oui = id1 | id2;
  4731. break;
  4732. }
  4733. if (i == 33) {
  4734. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  4735. pci_name(pci_dev));
  4736. goto out_error;
  4737. }
  4738. if (!phyinitialized) {
  4739. /* reset it */
  4740. phy_init(dev);
  4741. } else {
  4742. /* see if it is a gigabit phy */
  4743. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4744. if (mii_status & PHY_GIGABIT) {
  4745. np->gigabit = PHY_GIGABIT;
  4746. }
  4747. }
  4748. /* set default link speed settings */
  4749. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4750. np->duplex = 0;
  4751. np->autoneg = 1;
  4752. err = register_netdev(dev);
  4753. if (err) {
  4754. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  4755. goto out_error;
  4756. }
  4757. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  4758. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  4759. pci_name(pci_dev));
  4760. return 0;
  4761. out_error:
  4762. if (phystate_orig)
  4763. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  4764. pci_set_drvdata(pci_dev, NULL);
  4765. out_freering:
  4766. free_rings(dev);
  4767. out_unmap:
  4768. iounmap(get_hwbase(dev));
  4769. out_relreg:
  4770. pci_release_regions(pci_dev);
  4771. out_disable:
  4772. pci_disable_device(pci_dev);
  4773. out_free:
  4774. free_netdev(dev);
  4775. out:
  4776. return err;
  4777. }
  4778. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4779. {
  4780. struct net_device *dev = pci_get_drvdata(pci_dev);
  4781. struct fe_priv *np = netdev_priv(dev);
  4782. u8 __iomem *base = get_hwbase(dev);
  4783. unregister_netdev(dev);
  4784. /* special op: write back the misordered MAC address - otherwise
  4785. * the next nv_probe would see a wrong address.
  4786. */
  4787. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4788. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4789. /* free all structures */
  4790. free_rings(dev);
  4791. iounmap(get_hwbase(dev));
  4792. pci_release_regions(pci_dev);
  4793. pci_disable_device(pci_dev);
  4794. free_netdev(dev);
  4795. pci_set_drvdata(pci_dev, NULL);
  4796. }
  4797. #ifdef CONFIG_PM
  4798. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  4799. {
  4800. struct net_device *dev = pci_get_drvdata(pdev);
  4801. struct fe_priv *np = netdev_priv(dev);
  4802. if (!netif_running(dev))
  4803. goto out;
  4804. netif_device_detach(dev);
  4805. // Gross.
  4806. nv_close(dev);
  4807. pci_save_state(pdev);
  4808. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  4809. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4810. out:
  4811. return 0;
  4812. }
  4813. static int nv_resume(struct pci_dev *pdev)
  4814. {
  4815. struct net_device *dev = pci_get_drvdata(pdev);
  4816. int rc = 0;
  4817. if (!netif_running(dev))
  4818. goto out;
  4819. netif_device_attach(dev);
  4820. pci_set_power_state(pdev, PCI_D0);
  4821. pci_restore_state(pdev);
  4822. pci_enable_wake(pdev, PCI_D0, 0);
  4823. rc = nv_open(dev);
  4824. out:
  4825. return rc;
  4826. }
  4827. #else
  4828. #define nv_suspend NULL
  4829. #define nv_resume NULL
  4830. #endif /* CONFIG_PM */
  4831. static struct pci_device_id pci_tbl[] = {
  4832. { /* nForce Ethernet Controller */
  4833. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4834. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4835. },
  4836. { /* nForce2 Ethernet Controller */
  4837. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4838. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4839. },
  4840. { /* nForce3 Ethernet Controller */
  4841. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4842. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4843. },
  4844. { /* nForce3 Ethernet Controller */
  4845. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4846. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4847. },
  4848. { /* nForce3 Ethernet Controller */
  4849. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4850. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4851. },
  4852. { /* nForce3 Ethernet Controller */
  4853. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  4854. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4855. },
  4856. { /* nForce3 Ethernet Controller */
  4857. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  4858. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4859. },
  4860. { /* CK804 Ethernet Controller */
  4861. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  4862. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4863. },
  4864. { /* CK804 Ethernet Controller */
  4865. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  4866. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4867. },
  4868. { /* MCP04 Ethernet Controller */
  4869. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  4870. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4871. },
  4872. { /* MCP04 Ethernet Controller */
  4873. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  4874. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4875. },
  4876. { /* MCP51 Ethernet Controller */
  4877. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  4878. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4879. },
  4880. { /* MCP51 Ethernet Controller */
  4881. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  4882. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4883. },
  4884. { /* MCP55 Ethernet Controller */
  4885. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  4886. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4887. },
  4888. { /* MCP55 Ethernet Controller */
  4889. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  4890. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4891. },
  4892. { /* MCP61 Ethernet Controller */
  4893. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  4894. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4895. },
  4896. { /* MCP61 Ethernet Controller */
  4897. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  4898. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4899. },
  4900. { /* MCP61 Ethernet Controller */
  4901. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  4902. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4903. },
  4904. { /* MCP61 Ethernet Controller */
  4905. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  4906. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4907. },
  4908. { /* MCP65 Ethernet Controller */
  4909. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  4910. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4911. },
  4912. { /* MCP65 Ethernet Controller */
  4913. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  4914. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4915. },
  4916. { /* MCP65 Ethernet Controller */
  4917. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4918. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4919. },
  4920. { /* MCP65 Ethernet Controller */
  4921. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4922. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4923. },
  4924. { /* MCP67 Ethernet Controller */
  4925. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  4926. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4927. },
  4928. { /* MCP67 Ethernet Controller */
  4929. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  4930. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4931. },
  4932. { /* MCP67 Ethernet Controller */
  4933. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  4934. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4935. },
  4936. { /* MCP67 Ethernet Controller */
  4937. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  4938. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4939. },
  4940. {0,},
  4941. };
  4942. static struct pci_driver driver = {
  4943. .name = "forcedeth",
  4944. .id_table = pci_tbl,
  4945. .probe = nv_probe,
  4946. .remove = __devexit_p(nv_remove),
  4947. .suspend = nv_suspend,
  4948. .resume = nv_resume,
  4949. };
  4950. static int __init init_nic(void)
  4951. {
  4952. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  4953. return pci_register_driver(&driver);
  4954. }
  4955. static void __exit exit_nic(void)
  4956. {
  4957. pci_unregister_driver(&driver);
  4958. }
  4959. module_param(max_interrupt_work, int, 0);
  4960. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  4961. module_param(optimization_mode, int, 0);
  4962. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  4963. module_param(poll_interval, int, 0);
  4964. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  4965. module_param(msi, int, 0);
  4966. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4967. module_param(msix, int, 0);
  4968. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4969. module_param(dma_64bit, int, 0);
  4970. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  4971. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  4972. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  4973. MODULE_LICENSE("GPL");
  4974. MODULE_DEVICE_TABLE(pci, pci_tbl);
  4975. module_init(init_nic);
  4976. module_exit(exit_nic);