vmx.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/profile.h>
  25. #include <linux/sched.h>
  26. #include <asm/io.h>
  27. #include <asm/desc.h>
  28. MODULE_AUTHOR("Qumranet");
  29. MODULE_LICENSE("GPL");
  30. static int init_rmode_tss(struct kvm *kvm);
  31. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  32. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  33. static struct page *vmx_io_bitmap_a;
  34. static struct page *vmx_io_bitmap_b;
  35. #ifdef CONFIG_X86_64
  36. #define HOST_IS_64 1
  37. #else
  38. #define HOST_IS_64 0
  39. #endif
  40. #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
  41. static struct vmcs_descriptor {
  42. int size;
  43. int order;
  44. u32 revision_id;
  45. } vmcs_descriptor;
  46. #define VMX_SEGMENT_FIELD(seg) \
  47. [VCPU_SREG_##seg] = { \
  48. .selector = GUEST_##seg##_SELECTOR, \
  49. .base = GUEST_##seg##_BASE, \
  50. .limit = GUEST_##seg##_LIMIT, \
  51. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  52. }
  53. static struct kvm_vmx_segment_field {
  54. unsigned selector;
  55. unsigned base;
  56. unsigned limit;
  57. unsigned ar_bytes;
  58. } kvm_vmx_segment_fields[] = {
  59. VMX_SEGMENT_FIELD(CS),
  60. VMX_SEGMENT_FIELD(DS),
  61. VMX_SEGMENT_FIELD(ES),
  62. VMX_SEGMENT_FIELD(FS),
  63. VMX_SEGMENT_FIELD(GS),
  64. VMX_SEGMENT_FIELD(SS),
  65. VMX_SEGMENT_FIELD(TR),
  66. VMX_SEGMENT_FIELD(LDTR),
  67. };
  68. /*
  69. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  70. * away by decrementing the array size.
  71. */
  72. static const u32 vmx_msr_index[] = {
  73. #ifdef CONFIG_X86_64
  74. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  75. #endif
  76. MSR_EFER, MSR_K6_STAR,
  77. };
  78. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  79. static inline u64 msr_efer_save_restore_bits(struct vmx_msr_entry msr)
  80. {
  81. return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
  82. }
  83. static inline int msr_efer_need_save_restore(struct kvm_vcpu *vcpu)
  84. {
  85. int efer_offset = vcpu->msr_offset_efer;
  86. return msr_efer_save_restore_bits(vcpu->host_msrs[efer_offset]) !=
  87. msr_efer_save_restore_bits(vcpu->guest_msrs[efer_offset]);
  88. }
  89. static inline int is_page_fault(u32 intr_info)
  90. {
  91. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  92. INTR_INFO_VALID_MASK)) ==
  93. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  94. }
  95. static inline int is_no_device(u32 intr_info)
  96. {
  97. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  98. INTR_INFO_VALID_MASK)) ==
  99. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  100. }
  101. static inline int is_external_interrupt(u32 intr_info)
  102. {
  103. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  104. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  105. }
  106. static int __find_msr_index(struct kvm_vcpu *vcpu, u32 msr)
  107. {
  108. int i;
  109. for (i = 0; i < vcpu->nmsrs; ++i)
  110. if (vcpu->guest_msrs[i].index == msr)
  111. return i;
  112. return -1;
  113. }
  114. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  115. {
  116. int i;
  117. i = __find_msr_index(vcpu, msr);
  118. if (i >= 0)
  119. return &vcpu->guest_msrs[i];
  120. return NULL;
  121. }
  122. static void vmcs_clear(struct vmcs *vmcs)
  123. {
  124. u64 phys_addr = __pa(vmcs);
  125. u8 error;
  126. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  127. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  128. : "cc", "memory");
  129. if (error)
  130. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  131. vmcs, phys_addr);
  132. }
  133. static void __vcpu_clear(void *arg)
  134. {
  135. struct kvm_vcpu *vcpu = arg;
  136. int cpu = raw_smp_processor_id();
  137. if (vcpu->cpu == cpu)
  138. vmcs_clear(vcpu->vmcs);
  139. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  140. per_cpu(current_vmcs, cpu) = NULL;
  141. rdtscll(vcpu->host_tsc);
  142. }
  143. static void vcpu_clear(struct kvm_vcpu *vcpu)
  144. {
  145. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  146. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  147. else
  148. __vcpu_clear(vcpu);
  149. vcpu->launched = 0;
  150. }
  151. static unsigned long vmcs_readl(unsigned long field)
  152. {
  153. unsigned long value;
  154. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  155. : "=a"(value) : "d"(field) : "cc");
  156. return value;
  157. }
  158. static u16 vmcs_read16(unsigned long field)
  159. {
  160. return vmcs_readl(field);
  161. }
  162. static u32 vmcs_read32(unsigned long field)
  163. {
  164. return vmcs_readl(field);
  165. }
  166. static u64 vmcs_read64(unsigned long field)
  167. {
  168. #ifdef CONFIG_X86_64
  169. return vmcs_readl(field);
  170. #else
  171. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  172. #endif
  173. }
  174. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  175. {
  176. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  177. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  178. dump_stack();
  179. }
  180. static void vmcs_writel(unsigned long field, unsigned long value)
  181. {
  182. u8 error;
  183. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  184. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  185. if (unlikely(error))
  186. vmwrite_error(field, value);
  187. }
  188. static void vmcs_write16(unsigned long field, u16 value)
  189. {
  190. vmcs_writel(field, value);
  191. }
  192. static void vmcs_write32(unsigned long field, u32 value)
  193. {
  194. vmcs_writel(field, value);
  195. }
  196. static void vmcs_write64(unsigned long field, u64 value)
  197. {
  198. #ifdef CONFIG_X86_64
  199. vmcs_writel(field, value);
  200. #else
  201. vmcs_writel(field, value);
  202. asm volatile ("");
  203. vmcs_writel(field+1, value >> 32);
  204. #endif
  205. }
  206. static void vmcs_clear_bits(unsigned long field, u32 mask)
  207. {
  208. vmcs_writel(field, vmcs_readl(field) & ~mask);
  209. }
  210. static void vmcs_set_bits(unsigned long field, u32 mask)
  211. {
  212. vmcs_writel(field, vmcs_readl(field) | mask);
  213. }
  214. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  215. {
  216. u32 eb;
  217. eb = 1u << PF_VECTOR;
  218. if (!vcpu->fpu_active)
  219. eb |= 1u << NM_VECTOR;
  220. if (vcpu->guest_debug.enabled)
  221. eb |= 1u << 1;
  222. if (vcpu->rmode.active)
  223. eb = ~0;
  224. vmcs_write32(EXCEPTION_BITMAP, eb);
  225. }
  226. static void reload_tss(void)
  227. {
  228. #ifndef CONFIG_X86_64
  229. /*
  230. * VT restores TR but not its size. Useless.
  231. */
  232. struct descriptor_table gdt;
  233. struct segment_descriptor *descs;
  234. get_gdt(&gdt);
  235. descs = (void *)gdt.base;
  236. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  237. load_TR_desc();
  238. #endif
  239. }
  240. static void load_transition_efer(struct kvm_vcpu *vcpu)
  241. {
  242. u64 trans_efer;
  243. int efer_offset = vcpu->msr_offset_efer;
  244. trans_efer = vcpu->host_msrs[efer_offset].data;
  245. trans_efer &= ~EFER_SAVE_RESTORE_BITS;
  246. trans_efer |= msr_efer_save_restore_bits(
  247. vcpu->guest_msrs[efer_offset]);
  248. wrmsrl(MSR_EFER, trans_efer);
  249. vcpu->stat.efer_reload++;
  250. }
  251. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  252. {
  253. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  254. if (hs->loaded)
  255. return;
  256. hs->loaded = 1;
  257. /*
  258. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  259. * allow segment selectors with cpl > 0 or ti == 1.
  260. */
  261. hs->ldt_sel = read_ldt();
  262. hs->fs_gs_ldt_reload_needed = hs->ldt_sel;
  263. hs->fs_sel = read_fs();
  264. if (!(hs->fs_sel & 7))
  265. vmcs_write16(HOST_FS_SELECTOR, hs->fs_sel);
  266. else {
  267. vmcs_write16(HOST_FS_SELECTOR, 0);
  268. hs->fs_gs_ldt_reload_needed = 1;
  269. }
  270. hs->gs_sel = read_gs();
  271. if (!(hs->gs_sel & 7))
  272. vmcs_write16(HOST_GS_SELECTOR, hs->gs_sel);
  273. else {
  274. vmcs_write16(HOST_GS_SELECTOR, 0);
  275. hs->fs_gs_ldt_reload_needed = 1;
  276. }
  277. #ifdef CONFIG_X86_64
  278. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  279. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  280. #else
  281. vmcs_writel(HOST_FS_BASE, segment_base(hs->fs_sel));
  282. vmcs_writel(HOST_GS_BASE, segment_base(hs->gs_sel));
  283. #endif
  284. #ifdef CONFIG_X86_64
  285. if (is_long_mode(vcpu)) {
  286. save_msrs(vcpu->host_msrs + vcpu->msr_offset_kernel_gs_base, 1);
  287. }
  288. #endif
  289. load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  290. if (msr_efer_need_save_restore(vcpu))
  291. load_transition_efer(vcpu);
  292. }
  293. static void vmx_load_host_state(struct kvm_vcpu *vcpu)
  294. {
  295. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  296. if (!hs->loaded)
  297. return;
  298. hs->loaded = 0;
  299. if (hs->fs_gs_ldt_reload_needed) {
  300. load_ldt(hs->ldt_sel);
  301. load_fs(hs->fs_sel);
  302. /*
  303. * If we have to reload gs, we must take care to
  304. * preserve our gs base.
  305. */
  306. local_irq_disable();
  307. load_gs(hs->gs_sel);
  308. #ifdef CONFIG_X86_64
  309. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  310. #endif
  311. local_irq_enable();
  312. reload_tss();
  313. }
  314. save_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  315. load_msrs(vcpu->host_msrs, vcpu->save_nmsrs);
  316. if (msr_efer_need_save_restore(vcpu))
  317. load_msrs(vcpu->host_msrs + vcpu->msr_offset_efer, 1);
  318. }
  319. /*
  320. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  321. * vcpu mutex is already taken.
  322. */
  323. static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
  324. {
  325. u64 phys_addr = __pa(vcpu->vmcs);
  326. int cpu;
  327. u64 tsc_this, delta;
  328. cpu = get_cpu();
  329. if (vcpu->cpu != cpu)
  330. vcpu_clear(vcpu);
  331. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  332. u8 error;
  333. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  334. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  335. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  336. : "cc");
  337. if (error)
  338. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  339. vcpu->vmcs, phys_addr);
  340. }
  341. if (vcpu->cpu != cpu) {
  342. struct descriptor_table dt;
  343. unsigned long sysenter_esp;
  344. vcpu->cpu = cpu;
  345. /*
  346. * Linux uses per-cpu TSS and GDT, so set these when switching
  347. * processors.
  348. */
  349. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  350. get_gdt(&dt);
  351. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  352. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  353. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  354. /*
  355. * Make sure the time stamp counter is monotonous.
  356. */
  357. rdtscll(tsc_this);
  358. delta = vcpu->host_tsc - tsc_this;
  359. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  360. }
  361. }
  362. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  363. {
  364. vmx_load_host_state(vcpu);
  365. kvm_put_guest_fpu(vcpu);
  366. put_cpu();
  367. }
  368. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  369. {
  370. if (vcpu->fpu_active)
  371. return;
  372. vcpu->fpu_active = 1;
  373. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  374. if (vcpu->cr0 & CR0_TS_MASK)
  375. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  376. update_exception_bitmap(vcpu);
  377. }
  378. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  379. {
  380. if (!vcpu->fpu_active)
  381. return;
  382. vcpu->fpu_active = 0;
  383. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  384. update_exception_bitmap(vcpu);
  385. }
  386. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  387. {
  388. vcpu_clear(vcpu);
  389. }
  390. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  391. {
  392. return vmcs_readl(GUEST_RFLAGS);
  393. }
  394. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  395. {
  396. vmcs_writel(GUEST_RFLAGS, rflags);
  397. }
  398. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  399. {
  400. unsigned long rip;
  401. u32 interruptibility;
  402. rip = vmcs_readl(GUEST_RIP);
  403. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  404. vmcs_writel(GUEST_RIP, rip);
  405. /*
  406. * We emulated an instruction, so temporary interrupt blocking
  407. * should be removed, if set.
  408. */
  409. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  410. if (interruptibility & 3)
  411. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  412. interruptibility & ~3);
  413. vcpu->interrupt_window_open = 1;
  414. }
  415. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  416. {
  417. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  418. vmcs_readl(GUEST_RIP));
  419. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  420. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  421. GP_VECTOR |
  422. INTR_TYPE_EXCEPTION |
  423. INTR_INFO_DELIEVER_CODE_MASK |
  424. INTR_INFO_VALID_MASK);
  425. }
  426. /*
  427. * Swap MSR entry in host/guest MSR entry array.
  428. */
  429. void move_msr_up(struct kvm_vcpu *vcpu, int from, int to)
  430. {
  431. struct vmx_msr_entry tmp;
  432. tmp = vcpu->guest_msrs[to];
  433. vcpu->guest_msrs[to] = vcpu->guest_msrs[from];
  434. vcpu->guest_msrs[from] = tmp;
  435. tmp = vcpu->host_msrs[to];
  436. vcpu->host_msrs[to] = vcpu->host_msrs[from];
  437. vcpu->host_msrs[from] = tmp;
  438. }
  439. /*
  440. * Set up the vmcs to automatically save and restore system
  441. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  442. * mode, as fiddling with msrs is very expensive.
  443. */
  444. static void setup_msrs(struct kvm_vcpu *vcpu)
  445. {
  446. int save_nmsrs;
  447. save_nmsrs = 0;
  448. #ifdef CONFIG_X86_64
  449. if (is_long_mode(vcpu)) {
  450. int index;
  451. index = __find_msr_index(vcpu, MSR_SYSCALL_MASK);
  452. if (index >= 0)
  453. move_msr_up(vcpu, index, save_nmsrs++);
  454. index = __find_msr_index(vcpu, MSR_LSTAR);
  455. if (index >= 0)
  456. move_msr_up(vcpu, index, save_nmsrs++);
  457. index = __find_msr_index(vcpu, MSR_CSTAR);
  458. if (index >= 0)
  459. move_msr_up(vcpu, index, save_nmsrs++);
  460. index = __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
  461. if (index >= 0)
  462. move_msr_up(vcpu, index, save_nmsrs++);
  463. /*
  464. * MSR_K6_STAR is only needed on long mode guests, and only
  465. * if efer.sce is enabled.
  466. */
  467. index = __find_msr_index(vcpu, MSR_K6_STAR);
  468. if ((index >= 0) && (vcpu->shadow_efer & EFER_SCE))
  469. move_msr_up(vcpu, index, save_nmsrs++);
  470. }
  471. #endif
  472. vcpu->save_nmsrs = save_nmsrs;
  473. #ifdef CONFIG_X86_64
  474. vcpu->msr_offset_kernel_gs_base =
  475. __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
  476. #endif
  477. vcpu->msr_offset_efer = __find_msr_index(vcpu, MSR_EFER);
  478. }
  479. /*
  480. * reads and returns guest's timestamp counter "register"
  481. * guest_tsc = host_tsc + tsc_offset -- 21.3
  482. */
  483. static u64 guest_read_tsc(void)
  484. {
  485. u64 host_tsc, tsc_offset;
  486. rdtscll(host_tsc);
  487. tsc_offset = vmcs_read64(TSC_OFFSET);
  488. return host_tsc + tsc_offset;
  489. }
  490. /*
  491. * writes 'guest_tsc' into guest's timestamp counter "register"
  492. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  493. */
  494. static void guest_write_tsc(u64 guest_tsc)
  495. {
  496. u64 host_tsc;
  497. rdtscll(host_tsc);
  498. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  499. }
  500. /*
  501. * Reads an msr value (of 'msr_index') into 'pdata'.
  502. * Returns 0 on success, non-0 otherwise.
  503. * Assumes vcpu_load() was already called.
  504. */
  505. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  506. {
  507. u64 data;
  508. struct vmx_msr_entry *msr;
  509. if (!pdata) {
  510. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  511. return -EINVAL;
  512. }
  513. switch (msr_index) {
  514. #ifdef CONFIG_X86_64
  515. case MSR_FS_BASE:
  516. data = vmcs_readl(GUEST_FS_BASE);
  517. break;
  518. case MSR_GS_BASE:
  519. data = vmcs_readl(GUEST_GS_BASE);
  520. break;
  521. case MSR_EFER:
  522. return kvm_get_msr_common(vcpu, msr_index, pdata);
  523. #endif
  524. case MSR_IA32_TIME_STAMP_COUNTER:
  525. data = guest_read_tsc();
  526. break;
  527. case MSR_IA32_SYSENTER_CS:
  528. data = vmcs_read32(GUEST_SYSENTER_CS);
  529. break;
  530. case MSR_IA32_SYSENTER_EIP:
  531. data = vmcs_readl(GUEST_SYSENTER_EIP);
  532. break;
  533. case MSR_IA32_SYSENTER_ESP:
  534. data = vmcs_readl(GUEST_SYSENTER_ESP);
  535. break;
  536. default:
  537. msr = find_msr_entry(vcpu, msr_index);
  538. if (msr) {
  539. data = msr->data;
  540. break;
  541. }
  542. return kvm_get_msr_common(vcpu, msr_index, pdata);
  543. }
  544. *pdata = data;
  545. return 0;
  546. }
  547. /*
  548. * Writes msr value into into the appropriate "register".
  549. * Returns 0 on success, non-0 otherwise.
  550. * Assumes vcpu_load() was already called.
  551. */
  552. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  553. {
  554. struct vmx_msr_entry *msr;
  555. int ret = 0;
  556. switch (msr_index) {
  557. #ifdef CONFIG_X86_64
  558. case MSR_EFER:
  559. ret = kvm_set_msr_common(vcpu, msr_index, data);
  560. if (vcpu->vmx_host_state.loaded)
  561. load_transition_efer(vcpu);
  562. break;
  563. case MSR_FS_BASE:
  564. vmcs_writel(GUEST_FS_BASE, data);
  565. break;
  566. case MSR_GS_BASE:
  567. vmcs_writel(GUEST_GS_BASE, data);
  568. break;
  569. #endif
  570. case MSR_IA32_SYSENTER_CS:
  571. vmcs_write32(GUEST_SYSENTER_CS, data);
  572. break;
  573. case MSR_IA32_SYSENTER_EIP:
  574. vmcs_writel(GUEST_SYSENTER_EIP, data);
  575. break;
  576. case MSR_IA32_SYSENTER_ESP:
  577. vmcs_writel(GUEST_SYSENTER_ESP, data);
  578. break;
  579. case MSR_IA32_TIME_STAMP_COUNTER:
  580. guest_write_tsc(data);
  581. break;
  582. default:
  583. msr = find_msr_entry(vcpu, msr_index);
  584. if (msr) {
  585. msr->data = data;
  586. if (vcpu->vmx_host_state.loaded)
  587. load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  588. break;
  589. }
  590. ret = kvm_set_msr_common(vcpu, msr_index, data);
  591. }
  592. return ret;
  593. }
  594. /*
  595. * Sync the rsp and rip registers into the vcpu structure. This allows
  596. * registers to be accessed by indexing vcpu->regs.
  597. */
  598. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  599. {
  600. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  601. vcpu->rip = vmcs_readl(GUEST_RIP);
  602. }
  603. /*
  604. * Syncs rsp and rip back into the vmcs. Should be called after possible
  605. * modification.
  606. */
  607. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  608. {
  609. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  610. vmcs_writel(GUEST_RIP, vcpu->rip);
  611. }
  612. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  613. {
  614. unsigned long dr7 = 0x400;
  615. int old_singlestep;
  616. old_singlestep = vcpu->guest_debug.singlestep;
  617. vcpu->guest_debug.enabled = dbg->enabled;
  618. if (vcpu->guest_debug.enabled) {
  619. int i;
  620. dr7 |= 0x200; /* exact */
  621. for (i = 0; i < 4; ++i) {
  622. if (!dbg->breakpoints[i].enabled)
  623. continue;
  624. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  625. dr7 |= 2 << (i*2); /* global enable */
  626. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  627. }
  628. vcpu->guest_debug.singlestep = dbg->singlestep;
  629. } else
  630. vcpu->guest_debug.singlestep = 0;
  631. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  632. unsigned long flags;
  633. flags = vmcs_readl(GUEST_RFLAGS);
  634. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  635. vmcs_writel(GUEST_RFLAGS, flags);
  636. }
  637. update_exception_bitmap(vcpu);
  638. vmcs_writel(GUEST_DR7, dr7);
  639. return 0;
  640. }
  641. static __init int cpu_has_kvm_support(void)
  642. {
  643. unsigned long ecx = cpuid_ecx(1);
  644. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  645. }
  646. static __init int vmx_disabled_by_bios(void)
  647. {
  648. u64 msr;
  649. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  650. return (msr & 5) == 1; /* locked but not enabled */
  651. }
  652. static void hardware_enable(void *garbage)
  653. {
  654. int cpu = raw_smp_processor_id();
  655. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  656. u64 old;
  657. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  658. if ((old & 5) != 5)
  659. /* enable and lock */
  660. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  661. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  662. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  663. : "memory", "cc");
  664. }
  665. static void hardware_disable(void *garbage)
  666. {
  667. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  668. }
  669. static __init void setup_vmcs_descriptor(void)
  670. {
  671. u32 vmx_msr_low, vmx_msr_high;
  672. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  673. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  674. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  675. vmcs_descriptor.revision_id = vmx_msr_low;
  676. }
  677. static struct vmcs *alloc_vmcs_cpu(int cpu)
  678. {
  679. int node = cpu_to_node(cpu);
  680. struct page *pages;
  681. struct vmcs *vmcs;
  682. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  683. if (!pages)
  684. return NULL;
  685. vmcs = page_address(pages);
  686. memset(vmcs, 0, vmcs_descriptor.size);
  687. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  688. return vmcs;
  689. }
  690. static struct vmcs *alloc_vmcs(void)
  691. {
  692. return alloc_vmcs_cpu(raw_smp_processor_id());
  693. }
  694. static void free_vmcs(struct vmcs *vmcs)
  695. {
  696. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  697. }
  698. static void free_kvm_area(void)
  699. {
  700. int cpu;
  701. for_each_online_cpu(cpu)
  702. free_vmcs(per_cpu(vmxarea, cpu));
  703. }
  704. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  705. static __init int alloc_kvm_area(void)
  706. {
  707. int cpu;
  708. for_each_online_cpu(cpu) {
  709. struct vmcs *vmcs;
  710. vmcs = alloc_vmcs_cpu(cpu);
  711. if (!vmcs) {
  712. free_kvm_area();
  713. return -ENOMEM;
  714. }
  715. per_cpu(vmxarea, cpu) = vmcs;
  716. }
  717. return 0;
  718. }
  719. static __init int hardware_setup(void)
  720. {
  721. setup_vmcs_descriptor();
  722. return alloc_kvm_area();
  723. }
  724. static __exit void hardware_unsetup(void)
  725. {
  726. free_kvm_area();
  727. }
  728. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  729. {
  730. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  731. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  732. vmcs_write16(sf->selector, save->selector);
  733. vmcs_writel(sf->base, save->base);
  734. vmcs_write32(sf->limit, save->limit);
  735. vmcs_write32(sf->ar_bytes, save->ar);
  736. } else {
  737. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  738. << AR_DPL_SHIFT;
  739. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  740. }
  741. }
  742. static void enter_pmode(struct kvm_vcpu *vcpu)
  743. {
  744. unsigned long flags;
  745. vcpu->rmode.active = 0;
  746. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  747. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  748. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  749. flags = vmcs_readl(GUEST_RFLAGS);
  750. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  751. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  752. vmcs_writel(GUEST_RFLAGS, flags);
  753. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  754. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  755. update_exception_bitmap(vcpu);
  756. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  757. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  758. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  759. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  760. vmcs_write16(GUEST_SS_SELECTOR, 0);
  761. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  762. vmcs_write16(GUEST_CS_SELECTOR,
  763. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  764. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  765. }
  766. static int rmode_tss_base(struct kvm* kvm)
  767. {
  768. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  769. return base_gfn << PAGE_SHIFT;
  770. }
  771. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  772. {
  773. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  774. save->selector = vmcs_read16(sf->selector);
  775. save->base = vmcs_readl(sf->base);
  776. save->limit = vmcs_read32(sf->limit);
  777. save->ar = vmcs_read32(sf->ar_bytes);
  778. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  779. vmcs_write32(sf->limit, 0xffff);
  780. vmcs_write32(sf->ar_bytes, 0xf3);
  781. }
  782. static void enter_rmode(struct kvm_vcpu *vcpu)
  783. {
  784. unsigned long flags;
  785. vcpu->rmode.active = 1;
  786. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  787. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  788. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  789. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  790. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  791. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  792. flags = vmcs_readl(GUEST_RFLAGS);
  793. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  794. flags |= IOPL_MASK | X86_EFLAGS_VM;
  795. vmcs_writel(GUEST_RFLAGS, flags);
  796. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  797. update_exception_bitmap(vcpu);
  798. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  799. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  800. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  801. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  802. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  803. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  804. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  805. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  806. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  807. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  808. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  809. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  810. init_rmode_tss(vcpu->kvm);
  811. }
  812. #ifdef CONFIG_X86_64
  813. static void enter_lmode(struct kvm_vcpu *vcpu)
  814. {
  815. u32 guest_tr_ar;
  816. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  817. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  818. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  819. __FUNCTION__);
  820. vmcs_write32(GUEST_TR_AR_BYTES,
  821. (guest_tr_ar & ~AR_TYPE_MASK)
  822. | AR_TYPE_BUSY_64_TSS);
  823. }
  824. vcpu->shadow_efer |= EFER_LMA;
  825. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  826. vmcs_write32(VM_ENTRY_CONTROLS,
  827. vmcs_read32(VM_ENTRY_CONTROLS)
  828. | VM_ENTRY_CONTROLS_IA32E_MASK);
  829. }
  830. static void exit_lmode(struct kvm_vcpu *vcpu)
  831. {
  832. vcpu->shadow_efer &= ~EFER_LMA;
  833. vmcs_write32(VM_ENTRY_CONTROLS,
  834. vmcs_read32(VM_ENTRY_CONTROLS)
  835. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  836. }
  837. #endif
  838. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  839. {
  840. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  841. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  842. }
  843. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  844. {
  845. vmx_fpu_deactivate(vcpu);
  846. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  847. enter_pmode(vcpu);
  848. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  849. enter_rmode(vcpu);
  850. #ifdef CONFIG_X86_64
  851. if (vcpu->shadow_efer & EFER_LME) {
  852. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  853. enter_lmode(vcpu);
  854. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  855. exit_lmode(vcpu);
  856. }
  857. #endif
  858. vmcs_writel(CR0_READ_SHADOW, cr0);
  859. vmcs_writel(GUEST_CR0,
  860. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  861. vcpu->cr0 = cr0;
  862. if (!(cr0 & CR0_TS_MASK) || !(cr0 & CR0_PE_MASK))
  863. vmx_fpu_activate(vcpu);
  864. }
  865. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  866. {
  867. vmcs_writel(GUEST_CR3, cr3);
  868. if (vcpu->cr0 & CR0_PE_MASK)
  869. vmx_fpu_deactivate(vcpu);
  870. }
  871. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  872. {
  873. vmcs_writel(CR4_READ_SHADOW, cr4);
  874. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  875. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  876. vcpu->cr4 = cr4;
  877. }
  878. #ifdef CONFIG_X86_64
  879. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  880. {
  881. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  882. vcpu->shadow_efer = efer;
  883. if (efer & EFER_LMA) {
  884. vmcs_write32(VM_ENTRY_CONTROLS,
  885. vmcs_read32(VM_ENTRY_CONTROLS) |
  886. VM_ENTRY_CONTROLS_IA32E_MASK);
  887. msr->data = efer;
  888. } else {
  889. vmcs_write32(VM_ENTRY_CONTROLS,
  890. vmcs_read32(VM_ENTRY_CONTROLS) &
  891. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  892. msr->data = efer & ~EFER_LME;
  893. }
  894. setup_msrs(vcpu);
  895. }
  896. #endif
  897. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  898. {
  899. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  900. return vmcs_readl(sf->base);
  901. }
  902. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  903. struct kvm_segment *var, int seg)
  904. {
  905. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  906. u32 ar;
  907. var->base = vmcs_readl(sf->base);
  908. var->limit = vmcs_read32(sf->limit);
  909. var->selector = vmcs_read16(sf->selector);
  910. ar = vmcs_read32(sf->ar_bytes);
  911. if (ar & AR_UNUSABLE_MASK)
  912. ar = 0;
  913. var->type = ar & 15;
  914. var->s = (ar >> 4) & 1;
  915. var->dpl = (ar >> 5) & 3;
  916. var->present = (ar >> 7) & 1;
  917. var->avl = (ar >> 12) & 1;
  918. var->l = (ar >> 13) & 1;
  919. var->db = (ar >> 14) & 1;
  920. var->g = (ar >> 15) & 1;
  921. var->unusable = (ar >> 16) & 1;
  922. }
  923. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  924. {
  925. u32 ar;
  926. if (var->unusable)
  927. ar = 1 << 16;
  928. else {
  929. ar = var->type & 15;
  930. ar |= (var->s & 1) << 4;
  931. ar |= (var->dpl & 3) << 5;
  932. ar |= (var->present & 1) << 7;
  933. ar |= (var->avl & 1) << 12;
  934. ar |= (var->l & 1) << 13;
  935. ar |= (var->db & 1) << 14;
  936. ar |= (var->g & 1) << 15;
  937. }
  938. if (ar == 0) /* a 0 value means unusable */
  939. ar = AR_UNUSABLE_MASK;
  940. return ar;
  941. }
  942. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  943. struct kvm_segment *var, int seg)
  944. {
  945. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  946. u32 ar;
  947. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  948. vcpu->rmode.tr.selector = var->selector;
  949. vcpu->rmode.tr.base = var->base;
  950. vcpu->rmode.tr.limit = var->limit;
  951. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  952. return;
  953. }
  954. vmcs_writel(sf->base, var->base);
  955. vmcs_write32(sf->limit, var->limit);
  956. vmcs_write16(sf->selector, var->selector);
  957. if (vcpu->rmode.active && var->s) {
  958. /*
  959. * Hack real-mode segments into vm86 compatibility.
  960. */
  961. if (var->base == 0xffff0000 && var->selector == 0xf000)
  962. vmcs_writel(sf->base, 0xf0000);
  963. ar = 0xf3;
  964. } else
  965. ar = vmx_segment_access_rights(var);
  966. vmcs_write32(sf->ar_bytes, ar);
  967. }
  968. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  969. {
  970. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  971. *db = (ar >> 14) & 1;
  972. *l = (ar >> 13) & 1;
  973. }
  974. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  975. {
  976. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  977. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  978. }
  979. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  980. {
  981. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  982. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  983. }
  984. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  985. {
  986. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  987. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  988. }
  989. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  990. {
  991. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  992. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  993. }
  994. static int init_rmode_tss(struct kvm* kvm)
  995. {
  996. struct page *p1, *p2, *p3;
  997. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  998. char *page;
  999. p1 = gfn_to_page(kvm, fn++);
  1000. p2 = gfn_to_page(kvm, fn++);
  1001. p3 = gfn_to_page(kvm, fn);
  1002. if (!p1 || !p2 || !p3) {
  1003. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  1004. return 0;
  1005. }
  1006. page = kmap_atomic(p1, KM_USER0);
  1007. clear_page(page);
  1008. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1009. kunmap_atomic(page, KM_USER0);
  1010. page = kmap_atomic(p2, KM_USER0);
  1011. clear_page(page);
  1012. kunmap_atomic(page, KM_USER0);
  1013. page = kmap_atomic(p3, KM_USER0);
  1014. clear_page(page);
  1015. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  1016. kunmap_atomic(page, KM_USER0);
  1017. return 1;
  1018. }
  1019. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  1020. {
  1021. u32 msr_high, msr_low;
  1022. rdmsr(msr, msr_low, msr_high);
  1023. val &= msr_high;
  1024. val |= msr_low;
  1025. vmcs_write32(vmcs_field, val);
  1026. }
  1027. static void seg_setup(int seg)
  1028. {
  1029. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1030. vmcs_write16(sf->selector, 0);
  1031. vmcs_writel(sf->base, 0);
  1032. vmcs_write32(sf->limit, 0xffff);
  1033. vmcs_write32(sf->ar_bytes, 0x93);
  1034. }
  1035. /*
  1036. * Sets up the vmcs for emulated real mode.
  1037. */
  1038. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  1039. {
  1040. u32 host_sysenter_cs;
  1041. u32 junk;
  1042. unsigned long a;
  1043. struct descriptor_table dt;
  1044. int i;
  1045. int ret = 0;
  1046. unsigned long kvm_vmx_return;
  1047. if (!init_rmode_tss(vcpu->kvm)) {
  1048. ret = -ENOMEM;
  1049. goto out;
  1050. }
  1051. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  1052. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1053. vcpu->cr8 = 0;
  1054. vcpu->apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1055. if (vcpu == &vcpu->kvm->vcpus[0])
  1056. vcpu->apic_base |= MSR_IA32_APICBASE_BSP;
  1057. fx_init(vcpu);
  1058. /*
  1059. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1060. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1061. */
  1062. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1063. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1064. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1065. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1066. seg_setup(VCPU_SREG_DS);
  1067. seg_setup(VCPU_SREG_ES);
  1068. seg_setup(VCPU_SREG_FS);
  1069. seg_setup(VCPU_SREG_GS);
  1070. seg_setup(VCPU_SREG_SS);
  1071. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1072. vmcs_writel(GUEST_TR_BASE, 0);
  1073. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1074. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1075. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1076. vmcs_writel(GUEST_LDTR_BASE, 0);
  1077. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1078. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1079. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1080. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1081. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1082. vmcs_writel(GUEST_RFLAGS, 0x02);
  1083. vmcs_writel(GUEST_RIP, 0xfff0);
  1084. vmcs_writel(GUEST_RSP, 0);
  1085. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1086. vmcs_writel(GUEST_DR7, 0x400);
  1087. vmcs_writel(GUEST_GDTR_BASE, 0);
  1088. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1089. vmcs_writel(GUEST_IDTR_BASE, 0);
  1090. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1091. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1092. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1093. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1094. /* I/O */
  1095. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1096. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1097. guest_write_tsc(0);
  1098. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1099. /* Special registers */
  1100. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1101. /* Control */
  1102. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  1103. PIN_BASED_VM_EXEC_CONTROL,
  1104. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  1105. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  1106. );
  1107. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  1108. CPU_BASED_VM_EXEC_CONTROL,
  1109. CPU_BASED_HLT_EXITING /* 20.6.2 */
  1110. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  1111. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  1112. | CPU_BASED_ACTIVATE_IO_BITMAP /* 20.6.2 */
  1113. | CPU_BASED_MOV_DR_EXITING
  1114. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  1115. );
  1116. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1117. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1118. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1119. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1120. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1121. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1122. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1123. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1124. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1125. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1126. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1127. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1128. #ifdef CONFIG_X86_64
  1129. rdmsrl(MSR_FS_BASE, a);
  1130. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1131. rdmsrl(MSR_GS_BASE, a);
  1132. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1133. #else
  1134. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1135. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1136. #endif
  1137. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1138. get_idt(&dt);
  1139. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1140. asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1141. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1142. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1143. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1144. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1145. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1146. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1147. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1148. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1149. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1150. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1151. for (i = 0; i < NR_VMX_MSR; ++i) {
  1152. u32 index = vmx_msr_index[i];
  1153. u32 data_low, data_high;
  1154. u64 data;
  1155. int j = vcpu->nmsrs;
  1156. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1157. continue;
  1158. if (wrmsr_safe(index, data_low, data_high) < 0)
  1159. continue;
  1160. data = data_low | ((u64)data_high << 32);
  1161. vcpu->host_msrs[j].index = index;
  1162. vcpu->host_msrs[j].reserved = 0;
  1163. vcpu->host_msrs[j].data = data;
  1164. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  1165. ++vcpu->nmsrs;
  1166. }
  1167. setup_msrs(vcpu);
  1168. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  1169. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  1170. /* 22.2.1, 20.8.1 */
  1171. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  1172. VM_ENTRY_CONTROLS, 0);
  1173. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1174. #ifdef CONFIG_X86_64
  1175. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1176. vmcs_writel(TPR_THRESHOLD, 0);
  1177. #endif
  1178. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1179. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1180. vcpu->cr0 = 0x60000010;
  1181. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  1182. vmx_set_cr4(vcpu, 0);
  1183. #ifdef CONFIG_X86_64
  1184. vmx_set_efer(vcpu, 0);
  1185. #endif
  1186. vmx_fpu_activate(vcpu);
  1187. update_exception_bitmap(vcpu);
  1188. return 0;
  1189. out:
  1190. return ret;
  1191. }
  1192. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1193. {
  1194. u16 ent[2];
  1195. u16 cs;
  1196. u16 ip;
  1197. unsigned long flags;
  1198. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1199. u16 sp = vmcs_readl(GUEST_RSP);
  1200. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1201. if (sp > ss_limit || sp < 6 ) {
  1202. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1203. __FUNCTION__,
  1204. vmcs_readl(GUEST_RSP),
  1205. vmcs_readl(GUEST_SS_BASE),
  1206. vmcs_read32(GUEST_SS_LIMIT));
  1207. return;
  1208. }
  1209. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1210. sizeof(ent)) {
  1211. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1212. return;
  1213. }
  1214. flags = vmcs_readl(GUEST_RFLAGS);
  1215. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1216. ip = vmcs_readl(GUEST_RIP);
  1217. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1218. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1219. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1220. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1221. return;
  1222. }
  1223. vmcs_writel(GUEST_RFLAGS, flags &
  1224. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1225. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1226. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1227. vmcs_writel(GUEST_RIP, ent[0]);
  1228. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1229. }
  1230. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1231. {
  1232. int word_index = __ffs(vcpu->irq_summary);
  1233. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1234. int irq = word_index * BITS_PER_LONG + bit_index;
  1235. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1236. if (!vcpu->irq_pending[word_index])
  1237. clear_bit(word_index, &vcpu->irq_summary);
  1238. if (vcpu->rmode.active) {
  1239. inject_rmode_irq(vcpu, irq);
  1240. return;
  1241. }
  1242. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1243. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1244. }
  1245. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1246. struct kvm_run *kvm_run)
  1247. {
  1248. u32 cpu_based_vm_exec_control;
  1249. vcpu->interrupt_window_open =
  1250. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1251. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1252. if (vcpu->interrupt_window_open &&
  1253. vcpu->irq_summary &&
  1254. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1255. /*
  1256. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1257. */
  1258. kvm_do_inject_irq(vcpu);
  1259. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1260. if (!vcpu->interrupt_window_open &&
  1261. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1262. /*
  1263. * Interrupts blocked. Wait for unblock.
  1264. */
  1265. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1266. else
  1267. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1268. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1269. }
  1270. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1271. {
  1272. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1273. set_debugreg(dbg->bp[0], 0);
  1274. set_debugreg(dbg->bp[1], 1);
  1275. set_debugreg(dbg->bp[2], 2);
  1276. set_debugreg(dbg->bp[3], 3);
  1277. if (dbg->singlestep) {
  1278. unsigned long flags;
  1279. flags = vmcs_readl(GUEST_RFLAGS);
  1280. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1281. vmcs_writel(GUEST_RFLAGS, flags);
  1282. }
  1283. }
  1284. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1285. int vec, u32 err_code)
  1286. {
  1287. if (!vcpu->rmode.active)
  1288. return 0;
  1289. /*
  1290. * Instruction with address size override prefix opcode 0x67
  1291. * Cause the #SS fault with 0 error code in VM86 mode.
  1292. */
  1293. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1294. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1295. return 1;
  1296. return 0;
  1297. }
  1298. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1299. {
  1300. u32 intr_info, error_code;
  1301. unsigned long cr2, rip;
  1302. u32 vect_info;
  1303. enum emulation_result er;
  1304. int r;
  1305. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1306. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1307. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1308. !is_page_fault(intr_info)) {
  1309. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1310. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1311. }
  1312. if (is_external_interrupt(vect_info)) {
  1313. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1314. set_bit(irq, vcpu->irq_pending);
  1315. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1316. }
  1317. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1318. asm ("int $2");
  1319. return 1;
  1320. }
  1321. if (is_no_device(intr_info)) {
  1322. vmx_fpu_activate(vcpu);
  1323. return 1;
  1324. }
  1325. error_code = 0;
  1326. rip = vmcs_readl(GUEST_RIP);
  1327. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1328. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1329. if (is_page_fault(intr_info)) {
  1330. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1331. spin_lock(&vcpu->kvm->lock);
  1332. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1333. if (r < 0) {
  1334. spin_unlock(&vcpu->kvm->lock);
  1335. return r;
  1336. }
  1337. if (!r) {
  1338. spin_unlock(&vcpu->kvm->lock);
  1339. return 1;
  1340. }
  1341. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1342. spin_unlock(&vcpu->kvm->lock);
  1343. switch (er) {
  1344. case EMULATE_DONE:
  1345. return 1;
  1346. case EMULATE_DO_MMIO:
  1347. ++vcpu->stat.mmio_exits;
  1348. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1349. return 0;
  1350. case EMULATE_FAIL:
  1351. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1352. break;
  1353. default:
  1354. BUG();
  1355. }
  1356. }
  1357. if (vcpu->rmode.active &&
  1358. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1359. error_code)) {
  1360. if (vcpu->halt_request) {
  1361. vcpu->halt_request = 0;
  1362. return kvm_emulate_halt(vcpu);
  1363. }
  1364. return 1;
  1365. }
  1366. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1367. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1368. return 0;
  1369. }
  1370. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1371. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1372. kvm_run->ex.error_code = error_code;
  1373. return 0;
  1374. }
  1375. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1376. struct kvm_run *kvm_run)
  1377. {
  1378. ++vcpu->stat.irq_exits;
  1379. return 1;
  1380. }
  1381. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1382. {
  1383. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1384. return 0;
  1385. }
  1386. static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
  1387. {
  1388. u64 inst;
  1389. gva_t rip;
  1390. int countr_size;
  1391. int i, n;
  1392. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1393. countr_size = 2;
  1394. } else {
  1395. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1396. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1397. (cs_ar & AR_DB_MASK) ? 4: 2;
  1398. }
  1399. rip = vmcs_readl(GUEST_RIP);
  1400. if (countr_size != 8)
  1401. rip += vmcs_readl(GUEST_CS_BASE);
  1402. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1403. for (i = 0; i < n; i++) {
  1404. switch (((u8*)&inst)[i]) {
  1405. case 0xf0:
  1406. case 0xf2:
  1407. case 0xf3:
  1408. case 0x2e:
  1409. case 0x36:
  1410. case 0x3e:
  1411. case 0x26:
  1412. case 0x64:
  1413. case 0x65:
  1414. case 0x66:
  1415. break;
  1416. case 0x67:
  1417. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1418. default:
  1419. goto done;
  1420. }
  1421. }
  1422. return 0;
  1423. done:
  1424. countr_size *= 8;
  1425. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1426. //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
  1427. return 1;
  1428. }
  1429. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1430. {
  1431. u64 exit_qualification;
  1432. int size, down, in, string, rep;
  1433. unsigned port;
  1434. unsigned long count;
  1435. gva_t address;
  1436. ++vcpu->stat.io_exits;
  1437. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1438. in = (exit_qualification & 8) != 0;
  1439. size = (exit_qualification & 7) + 1;
  1440. string = (exit_qualification & 16) != 0;
  1441. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1442. count = 1;
  1443. rep = (exit_qualification & 32) != 0;
  1444. port = exit_qualification >> 16;
  1445. address = 0;
  1446. if (string) {
  1447. if (rep && !get_io_count(vcpu, &count))
  1448. return 1;
  1449. address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1450. }
  1451. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  1452. address, rep, port);
  1453. }
  1454. static void
  1455. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1456. {
  1457. /*
  1458. * Patch in the VMCALL instruction:
  1459. */
  1460. hypercall[0] = 0x0f;
  1461. hypercall[1] = 0x01;
  1462. hypercall[2] = 0xc1;
  1463. hypercall[3] = 0xc3;
  1464. }
  1465. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1466. {
  1467. u64 exit_qualification;
  1468. int cr;
  1469. int reg;
  1470. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1471. cr = exit_qualification & 15;
  1472. reg = (exit_qualification >> 8) & 15;
  1473. switch ((exit_qualification >> 4) & 3) {
  1474. case 0: /* mov to cr */
  1475. switch (cr) {
  1476. case 0:
  1477. vcpu_load_rsp_rip(vcpu);
  1478. set_cr0(vcpu, vcpu->regs[reg]);
  1479. skip_emulated_instruction(vcpu);
  1480. return 1;
  1481. case 3:
  1482. vcpu_load_rsp_rip(vcpu);
  1483. set_cr3(vcpu, vcpu->regs[reg]);
  1484. skip_emulated_instruction(vcpu);
  1485. return 1;
  1486. case 4:
  1487. vcpu_load_rsp_rip(vcpu);
  1488. set_cr4(vcpu, vcpu->regs[reg]);
  1489. skip_emulated_instruction(vcpu);
  1490. return 1;
  1491. case 8:
  1492. vcpu_load_rsp_rip(vcpu);
  1493. set_cr8(vcpu, vcpu->regs[reg]);
  1494. skip_emulated_instruction(vcpu);
  1495. return 1;
  1496. };
  1497. break;
  1498. case 2: /* clts */
  1499. vcpu_load_rsp_rip(vcpu);
  1500. vmx_fpu_deactivate(vcpu);
  1501. vcpu->cr0 &= ~CR0_TS_MASK;
  1502. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1503. vmx_fpu_activate(vcpu);
  1504. skip_emulated_instruction(vcpu);
  1505. return 1;
  1506. case 1: /*mov from cr*/
  1507. switch (cr) {
  1508. case 3:
  1509. vcpu_load_rsp_rip(vcpu);
  1510. vcpu->regs[reg] = vcpu->cr3;
  1511. vcpu_put_rsp_rip(vcpu);
  1512. skip_emulated_instruction(vcpu);
  1513. return 1;
  1514. case 8:
  1515. vcpu_load_rsp_rip(vcpu);
  1516. vcpu->regs[reg] = vcpu->cr8;
  1517. vcpu_put_rsp_rip(vcpu);
  1518. skip_emulated_instruction(vcpu);
  1519. return 1;
  1520. }
  1521. break;
  1522. case 3: /* lmsw */
  1523. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1524. skip_emulated_instruction(vcpu);
  1525. return 1;
  1526. default:
  1527. break;
  1528. }
  1529. kvm_run->exit_reason = 0;
  1530. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1531. (int)(exit_qualification >> 4) & 3, cr);
  1532. return 0;
  1533. }
  1534. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1535. {
  1536. u64 exit_qualification;
  1537. unsigned long val;
  1538. int dr, reg;
  1539. /*
  1540. * FIXME: this code assumes the host is debugging the guest.
  1541. * need to deal with guest debugging itself too.
  1542. */
  1543. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1544. dr = exit_qualification & 7;
  1545. reg = (exit_qualification >> 8) & 15;
  1546. vcpu_load_rsp_rip(vcpu);
  1547. if (exit_qualification & 16) {
  1548. /* mov from dr */
  1549. switch (dr) {
  1550. case 6:
  1551. val = 0xffff0ff0;
  1552. break;
  1553. case 7:
  1554. val = 0x400;
  1555. break;
  1556. default:
  1557. val = 0;
  1558. }
  1559. vcpu->regs[reg] = val;
  1560. } else {
  1561. /* mov to dr */
  1562. }
  1563. vcpu_put_rsp_rip(vcpu);
  1564. skip_emulated_instruction(vcpu);
  1565. return 1;
  1566. }
  1567. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1568. {
  1569. kvm_emulate_cpuid(vcpu);
  1570. return 1;
  1571. }
  1572. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1573. {
  1574. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1575. u64 data;
  1576. if (vmx_get_msr(vcpu, ecx, &data)) {
  1577. vmx_inject_gp(vcpu, 0);
  1578. return 1;
  1579. }
  1580. /* FIXME: handling of bits 32:63 of rax, rdx */
  1581. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1582. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1583. skip_emulated_instruction(vcpu);
  1584. return 1;
  1585. }
  1586. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1587. {
  1588. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1589. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1590. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1591. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1592. vmx_inject_gp(vcpu, 0);
  1593. return 1;
  1594. }
  1595. skip_emulated_instruction(vcpu);
  1596. return 1;
  1597. }
  1598. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1599. struct kvm_run *kvm_run)
  1600. {
  1601. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1602. kvm_run->cr8 = vcpu->cr8;
  1603. kvm_run->apic_base = vcpu->apic_base;
  1604. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1605. vcpu->irq_summary == 0);
  1606. }
  1607. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1608. struct kvm_run *kvm_run)
  1609. {
  1610. /*
  1611. * If the user space waits to inject interrupts, exit as soon as
  1612. * possible
  1613. */
  1614. if (kvm_run->request_interrupt_window &&
  1615. !vcpu->irq_summary) {
  1616. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1617. ++vcpu->stat.irq_window_exits;
  1618. return 0;
  1619. }
  1620. return 1;
  1621. }
  1622. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1623. {
  1624. skip_emulated_instruction(vcpu);
  1625. return kvm_emulate_halt(vcpu);
  1626. }
  1627. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1628. {
  1629. skip_emulated_instruction(vcpu);
  1630. return kvm_hypercall(vcpu, kvm_run);
  1631. }
  1632. /*
  1633. * The exit handlers return 1 if the exit was handled fully and guest execution
  1634. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1635. * to be done to userspace and return 0.
  1636. */
  1637. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1638. struct kvm_run *kvm_run) = {
  1639. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1640. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1641. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1642. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1643. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1644. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1645. [EXIT_REASON_CPUID] = handle_cpuid,
  1646. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1647. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1648. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1649. [EXIT_REASON_HLT] = handle_halt,
  1650. [EXIT_REASON_VMCALL] = handle_vmcall,
  1651. };
  1652. static const int kvm_vmx_max_exit_handlers =
  1653. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1654. /*
  1655. * The guest has exited. See if we can fix it or if we need userspace
  1656. * assistance.
  1657. */
  1658. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1659. {
  1660. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1661. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1662. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1663. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1664. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1665. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1666. if (exit_reason < kvm_vmx_max_exit_handlers
  1667. && kvm_vmx_exit_handlers[exit_reason])
  1668. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1669. else {
  1670. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1671. kvm_run->hw.hardware_exit_reason = exit_reason;
  1672. }
  1673. return 0;
  1674. }
  1675. /*
  1676. * Check if userspace requested an interrupt window, and that the
  1677. * interrupt window is open.
  1678. *
  1679. * No need to exit to userspace if we already have an interrupt queued.
  1680. */
  1681. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1682. struct kvm_run *kvm_run)
  1683. {
  1684. return (!vcpu->irq_summary &&
  1685. kvm_run->request_interrupt_window &&
  1686. vcpu->interrupt_window_open &&
  1687. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1688. }
  1689. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1690. {
  1691. }
  1692. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1693. {
  1694. u8 fail;
  1695. int r;
  1696. preempted:
  1697. if (vcpu->guest_debug.enabled)
  1698. kvm_guest_debug_pre(vcpu);
  1699. again:
  1700. if (!vcpu->mmio_read_completed)
  1701. do_interrupt_requests(vcpu, kvm_run);
  1702. vmx_save_host_state(vcpu);
  1703. kvm_load_guest_fpu(vcpu);
  1704. r = kvm_mmu_reload(vcpu);
  1705. if (unlikely(r))
  1706. goto out;
  1707. /*
  1708. * Loading guest fpu may have cleared host cr0.ts
  1709. */
  1710. vmcs_writel(HOST_CR0, read_cr0());
  1711. local_irq_disable();
  1712. vcpu->guest_mode = 1;
  1713. if (vcpu->requests)
  1714. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1715. vmx_flush_tlb(vcpu);
  1716. asm (
  1717. /* Store host registers */
  1718. #ifdef CONFIG_X86_64
  1719. "push %%rax; push %%rbx; push %%rdx;"
  1720. "push %%rsi; push %%rdi; push %%rbp;"
  1721. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1722. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1723. "push %%rcx \n\t"
  1724. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1725. #else
  1726. "pusha; push %%ecx \n\t"
  1727. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1728. #endif
  1729. /* Check if vmlaunch of vmresume is needed */
  1730. "cmp $0, %1 \n\t"
  1731. /* Load guest registers. Don't clobber flags. */
  1732. #ifdef CONFIG_X86_64
  1733. "mov %c[cr2](%3), %%rax \n\t"
  1734. "mov %%rax, %%cr2 \n\t"
  1735. "mov %c[rax](%3), %%rax \n\t"
  1736. "mov %c[rbx](%3), %%rbx \n\t"
  1737. "mov %c[rdx](%3), %%rdx \n\t"
  1738. "mov %c[rsi](%3), %%rsi \n\t"
  1739. "mov %c[rdi](%3), %%rdi \n\t"
  1740. "mov %c[rbp](%3), %%rbp \n\t"
  1741. "mov %c[r8](%3), %%r8 \n\t"
  1742. "mov %c[r9](%3), %%r9 \n\t"
  1743. "mov %c[r10](%3), %%r10 \n\t"
  1744. "mov %c[r11](%3), %%r11 \n\t"
  1745. "mov %c[r12](%3), %%r12 \n\t"
  1746. "mov %c[r13](%3), %%r13 \n\t"
  1747. "mov %c[r14](%3), %%r14 \n\t"
  1748. "mov %c[r15](%3), %%r15 \n\t"
  1749. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1750. #else
  1751. "mov %c[cr2](%3), %%eax \n\t"
  1752. "mov %%eax, %%cr2 \n\t"
  1753. "mov %c[rax](%3), %%eax \n\t"
  1754. "mov %c[rbx](%3), %%ebx \n\t"
  1755. "mov %c[rdx](%3), %%edx \n\t"
  1756. "mov %c[rsi](%3), %%esi \n\t"
  1757. "mov %c[rdi](%3), %%edi \n\t"
  1758. "mov %c[rbp](%3), %%ebp \n\t"
  1759. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1760. #endif
  1761. /* Enter guest mode */
  1762. "jne .Llaunched \n\t"
  1763. ASM_VMX_VMLAUNCH "\n\t"
  1764. "jmp .Lkvm_vmx_return \n\t"
  1765. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  1766. ".Lkvm_vmx_return: "
  1767. /* Save guest registers, load host registers, keep flags */
  1768. #ifdef CONFIG_X86_64
  1769. "xchg %3, (%%rsp) \n\t"
  1770. "mov %%rax, %c[rax](%3) \n\t"
  1771. "mov %%rbx, %c[rbx](%3) \n\t"
  1772. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1773. "mov %%rdx, %c[rdx](%3) \n\t"
  1774. "mov %%rsi, %c[rsi](%3) \n\t"
  1775. "mov %%rdi, %c[rdi](%3) \n\t"
  1776. "mov %%rbp, %c[rbp](%3) \n\t"
  1777. "mov %%r8, %c[r8](%3) \n\t"
  1778. "mov %%r9, %c[r9](%3) \n\t"
  1779. "mov %%r10, %c[r10](%3) \n\t"
  1780. "mov %%r11, %c[r11](%3) \n\t"
  1781. "mov %%r12, %c[r12](%3) \n\t"
  1782. "mov %%r13, %c[r13](%3) \n\t"
  1783. "mov %%r14, %c[r14](%3) \n\t"
  1784. "mov %%r15, %c[r15](%3) \n\t"
  1785. "mov %%cr2, %%rax \n\t"
  1786. "mov %%rax, %c[cr2](%3) \n\t"
  1787. "mov (%%rsp), %3 \n\t"
  1788. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1789. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1790. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1791. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1792. #else
  1793. "xchg %3, (%%esp) \n\t"
  1794. "mov %%eax, %c[rax](%3) \n\t"
  1795. "mov %%ebx, %c[rbx](%3) \n\t"
  1796. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1797. "mov %%edx, %c[rdx](%3) \n\t"
  1798. "mov %%esi, %c[rsi](%3) \n\t"
  1799. "mov %%edi, %c[rdi](%3) \n\t"
  1800. "mov %%ebp, %c[rbp](%3) \n\t"
  1801. "mov %%cr2, %%eax \n\t"
  1802. "mov %%eax, %c[cr2](%3) \n\t"
  1803. "mov (%%esp), %3 \n\t"
  1804. "pop %%ecx; popa \n\t"
  1805. #endif
  1806. "setbe %0 \n\t"
  1807. : "=q" (fail)
  1808. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1809. "c"(vcpu),
  1810. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1811. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1812. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1813. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1814. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1815. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1816. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1817. #ifdef CONFIG_X86_64
  1818. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1819. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1820. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1821. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1822. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1823. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1824. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1825. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1826. #endif
  1827. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1828. : "cc", "memory" );
  1829. vcpu->guest_mode = 0;
  1830. local_irq_enable();
  1831. ++vcpu->stat.exits;
  1832. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1833. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1834. if (unlikely(fail)) {
  1835. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1836. kvm_run->fail_entry.hardware_entry_failure_reason
  1837. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1838. r = 0;
  1839. goto out;
  1840. }
  1841. /*
  1842. * Profile KVM exit RIPs:
  1843. */
  1844. if (unlikely(prof_on == KVM_PROFILING))
  1845. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1846. vcpu->launched = 1;
  1847. r = kvm_handle_exit(kvm_run, vcpu);
  1848. if (r > 0) {
  1849. /* Give scheduler a change to reschedule. */
  1850. if (signal_pending(current)) {
  1851. r = -EINTR;
  1852. kvm_run->exit_reason = KVM_EXIT_INTR;
  1853. ++vcpu->stat.signal_exits;
  1854. goto out;
  1855. }
  1856. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1857. r = -EINTR;
  1858. kvm_run->exit_reason = KVM_EXIT_INTR;
  1859. ++vcpu->stat.request_irq_exits;
  1860. goto out;
  1861. }
  1862. if (!need_resched()) {
  1863. ++vcpu->stat.light_exits;
  1864. goto again;
  1865. }
  1866. }
  1867. out:
  1868. if (r > 0) {
  1869. kvm_resched(vcpu);
  1870. goto preempted;
  1871. }
  1872. post_kvm_run_save(vcpu, kvm_run);
  1873. return r;
  1874. }
  1875. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1876. unsigned long addr,
  1877. u32 err_code)
  1878. {
  1879. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1880. ++vcpu->stat.pf_guest;
  1881. if (is_page_fault(vect_info)) {
  1882. printk(KERN_DEBUG "inject_page_fault: "
  1883. "double fault 0x%lx @ 0x%lx\n",
  1884. addr, vmcs_readl(GUEST_RIP));
  1885. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1886. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1887. DF_VECTOR |
  1888. INTR_TYPE_EXCEPTION |
  1889. INTR_INFO_DELIEVER_CODE_MASK |
  1890. INTR_INFO_VALID_MASK);
  1891. return;
  1892. }
  1893. vcpu->cr2 = addr;
  1894. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1895. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1896. PF_VECTOR |
  1897. INTR_TYPE_EXCEPTION |
  1898. INTR_INFO_DELIEVER_CODE_MASK |
  1899. INTR_INFO_VALID_MASK);
  1900. }
  1901. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1902. {
  1903. if (vcpu->vmcs) {
  1904. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1905. free_vmcs(vcpu->vmcs);
  1906. vcpu->vmcs = NULL;
  1907. }
  1908. }
  1909. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1910. {
  1911. vmx_free_vmcs(vcpu);
  1912. }
  1913. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1914. {
  1915. struct vmcs *vmcs;
  1916. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1917. if (!vcpu->guest_msrs)
  1918. return -ENOMEM;
  1919. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1920. if (!vcpu->host_msrs)
  1921. goto out_free_guest_msrs;
  1922. vmcs = alloc_vmcs();
  1923. if (!vmcs)
  1924. goto out_free_msrs;
  1925. vmcs_clear(vmcs);
  1926. vcpu->vmcs = vmcs;
  1927. vcpu->launched = 0;
  1928. return 0;
  1929. out_free_msrs:
  1930. kfree(vcpu->host_msrs);
  1931. vcpu->host_msrs = NULL;
  1932. out_free_guest_msrs:
  1933. kfree(vcpu->guest_msrs);
  1934. vcpu->guest_msrs = NULL;
  1935. return -ENOMEM;
  1936. }
  1937. static struct kvm_arch_ops vmx_arch_ops = {
  1938. .cpu_has_kvm_support = cpu_has_kvm_support,
  1939. .disabled_by_bios = vmx_disabled_by_bios,
  1940. .hardware_setup = hardware_setup,
  1941. .hardware_unsetup = hardware_unsetup,
  1942. .hardware_enable = hardware_enable,
  1943. .hardware_disable = hardware_disable,
  1944. .vcpu_create = vmx_create_vcpu,
  1945. .vcpu_free = vmx_free_vcpu,
  1946. .vcpu_load = vmx_vcpu_load,
  1947. .vcpu_put = vmx_vcpu_put,
  1948. .vcpu_decache = vmx_vcpu_decache,
  1949. .set_guest_debug = set_guest_debug,
  1950. .get_msr = vmx_get_msr,
  1951. .set_msr = vmx_set_msr,
  1952. .get_segment_base = vmx_get_segment_base,
  1953. .get_segment = vmx_get_segment,
  1954. .set_segment = vmx_set_segment,
  1955. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1956. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  1957. .set_cr0 = vmx_set_cr0,
  1958. .set_cr3 = vmx_set_cr3,
  1959. .set_cr4 = vmx_set_cr4,
  1960. #ifdef CONFIG_X86_64
  1961. .set_efer = vmx_set_efer,
  1962. #endif
  1963. .get_idt = vmx_get_idt,
  1964. .set_idt = vmx_set_idt,
  1965. .get_gdt = vmx_get_gdt,
  1966. .set_gdt = vmx_set_gdt,
  1967. .cache_regs = vcpu_load_rsp_rip,
  1968. .decache_regs = vcpu_put_rsp_rip,
  1969. .get_rflags = vmx_get_rflags,
  1970. .set_rflags = vmx_set_rflags,
  1971. .tlb_flush = vmx_flush_tlb,
  1972. .inject_page_fault = vmx_inject_page_fault,
  1973. .inject_gp = vmx_inject_gp,
  1974. .run = vmx_vcpu_run,
  1975. .skip_emulated_instruction = skip_emulated_instruction,
  1976. .vcpu_setup = vmx_vcpu_setup,
  1977. .patch_hypercall = vmx_patch_hypercall,
  1978. };
  1979. static int __init vmx_init(void)
  1980. {
  1981. void *iova;
  1982. int r;
  1983. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1984. if (!vmx_io_bitmap_a)
  1985. return -ENOMEM;
  1986. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1987. if (!vmx_io_bitmap_b) {
  1988. r = -ENOMEM;
  1989. goto out;
  1990. }
  1991. /*
  1992. * Allow direct access to the PC debug port (it is often used for I/O
  1993. * delays, but the vmexits simply slow things down).
  1994. */
  1995. iova = kmap(vmx_io_bitmap_a);
  1996. memset(iova, 0xff, PAGE_SIZE);
  1997. clear_bit(0x80, iova);
  1998. kunmap(vmx_io_bitmap_a);
  1999. iova = kmap(vmx_io_bitmap_b);
  2000. memset(iova, 0xff, PAGE_SIZE);
  2001. kunmap(vmx_io_bitmap_b);
  2002. r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  2003. if (r)
  2004. goto out1;
  2005. return 0;
  2006. out1:
  2007. __free_page(vmx_io_bitmap_b);
  2008. out:
  2009. __free_page(vmx_io_bitmap_a);
  2010. return r;
  2011. }
  2012. static void __exit vmx_exit(void)
  2013. {
  2014. __free_page(vmx_io_bitmap_b);
  2015. __free_page(vmx_io_bitmap_a);
  2016. kvm_exit_arch();
  2017. }
  2018. module_init(vmx_init)
  2019. module_exit(vmx_exit)