kvm_main.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <asm/processor.h>
  39. #include <asm/msr.h>
  40. #include <asm/io.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/desc.h>
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static DEFINE_SPINLOCK(kvm_lock);
  46. static LIST_HEAD(vm_list);
  47. static cpumask_t cpus_hardware_enabled;
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. static void hardware_disable(void *ignored);
  50. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  51. static struct kvm_stats_debugfs_item {
  52. const char *name;
  53. int offset;
  54. struct dentry *dentry;
  55. } debugfs_entries[] = {
  56. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  57. { "pf_guest", STAT_OFFSET(pf_guest) },
  58. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  59. { "invlpg", STAT_OFFSET(invlpg) },
  60. { "exits", STAT_OFFSET(exits) },
  61. { "io_exits", STAT_OFFSET(io_exits) },
  62. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  63. { "signal_exits", STAT_OFFSET(signal_exits) },
  64. { "irq_window", STAT_OFFSET(irq_window_exits) },
  65. { "halt_exits", STAT_OFFSET(halt_exits) },
  66. { "request_irq", STAT_OFFSET(request_irq_exits) },
  67. { "irq_exits", STAT_OFFSET(irq_exits) },
  68. { "light_exits", STAT_OFFSET(light_exits) },
  69. { "efer_reload", STAT_OFFSET(efer_reload) },
  70. { NULL }
  71. };
  72. static struct dentry *debugfs_dir;
  73. #define MAX_IO_MSRS 256
  74. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  75. #define LMSW_GUEST_MASK 0x0eULL
  76. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  77. #define CR8_RESEVED_BITS (~0x0fULL)
  78. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  79. #ifdef CONFIG_X86_64
  80. // LDT or TSS descriptor in the GDT. 16 bytes.
  81. struct segment_descriptor_64 {
  82. struct segment_descriptor s;
  83. u32 base_higher;
  84. u32 pad_zero;
  85. };
  86. #endif
  87. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  88. unsigned long arg);
  89. unsigned long segment_base(u16 selector)
  90. {
  91. struct descriptor_table gdt;
  92. struct segment_descriptor *d;
  93. unsigned long table_base;
  94. typedef unsigned long ul;
  95. unsigned long v;
  96. if (selector == 0)
  97. return 0;
  98. asm ("sgdt %0" : "=m"(gdt));
  99. table_base = gdt.base;
  100. if (selector & 4) { /* from ldt */
  101. u16 ldt_selector;
  102. asm ("sldt %0" : "=g"(ldt_selector));
  103. table_base = segment_base(ldt_selector);
  104. }
  105. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  106. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  107. #ifdef CONFIG_X86_64
  108. if (d->system == 0
  109. && (d->type == 2 || d->type == 9 || d->type == 11))
  110. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  111. #endif
  112. return v;
  113. }
  114. EXPORT_SYMBOL_GPL(segment_base);
  115. static inline int valid_vcpu(int n)
  116. {
  117. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  118. }
  119. int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  120. void *dest)
  121. {
  122. unsigned char *host_buf = dest;
  123. unsigned long req_size = size;
  124. while (size) {
  125. hpa_t paddr;
  126. unsigned now;
  127. unsigned offset;
  128. hva_t guest_buf;
  129. paddr = gva_to_hpa(vcpu, addr);
  130. if (is_error_hpa(paddr))
  131. break;
  132. guest_buf = (hva_t)kmap_atomic(
  133. pfn_to_page(paddr >> PAGE_SHIFT),
  134. KM_USER0);
  135. offset = addr & ~PAGE_MASK;
  136. guest_buf |= offset;
  137. now = min(size, PAGE_SIZE - offset);
  138. memcpy(host_buf, (void*)guest_buf, now);
  139. host_buf += now;
  140. addr += now;
  141. size -= now;
  142. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  143. }
  144. return req_size - size;
  145. }
  146. EXPORT_SYMBOL_GPL(kvm_read_guest);
  147. int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  148. void *data)
  149. {
  150. unsigned char *host_buf = data;
  151. unsigned long req_size = size;
  152. while (size) {
  153. hpa_t paddr;
  154. unsigned now;
  155. unsigned offset;
  156. hva_t guest_buf;
  157. gfn_t gfn;
  158. paddr = gva_to_hpa(vcpu, addr);
  159. if (is_error_hpa(paddr))
  160. break;
  161. gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
  162. mark_page_dirty(vcpu->kvm, gfn);
  163. guest_buf = (hva_t)kmap_atomic(
  164. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  165. offset = addr & ~PAGE_MASK;
  166. guest_buf |= offset;
  167. now = min(size, PAGE_SIZE - offset);
  168. memcpy((void*)guest_buf, host_buf, now);
  169. host_buf += now;
  170. addr += now;
  171. size -= now;
  172. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  173. }
  174. return req_size - size;
  175. }
  176. EXPORT_SYMBOL_GPL(kvm_write_guest);
  177. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  178. {
  179. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  180. return;
  181. vcpu->guest_fpu_loaded = 1;
  182. fx_save(vcpu->host_fx_image);
  183. fx_restore(vcpu->guest_fx_image);
  184. }
  185. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  186. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  187. {
  188. if (!vcpu->guest_fpu_loaded)
  189. return;
  190. vcpu->guest_fpu_loaded = 0;
  191. fx_save(vcpu->guest_fx_image);
  192. fx_restore(vcpu->host_fx_image);
  193. }
  194. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  195. /*
  196. * Switches to specified vcpu, until a matching vcpu_put()
  197. */
  198. static void vcpu_load(struct kvm_vcpu *vcpu)
  199. {
  200. mutex_lock(&vcpu->mutex);
  201. kvm_arch_ops->vcpu_load(vcpu);
  202. }
  203. /*
  204. * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
  205. * if the slot is not populated.
  206. */
  207. static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
  208. {
  209. struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
  210. mutex_lock(&vcpu->mutex);
  211. if (!vcpu->vmcs) {
  212. mutex_unlock(&vcpu->mutex);
  213. return NULL;
  214. }
  215. kvm_arch_ops->vcpu_load(vcpu);
  216. return vcpu;
  217. }
  218. static void vcpu_put(struct kvm_vcpu *vcpu)
  219. {
  220. kvm_arch_ops->vcpu_put(vcpu);
  221. mutex_unlock(&vcpu->mutex);
  222. }
  223. static void ack_flush(void *_completed)
  224. {
  225. atomic_t *completed = _completed;
  226. atomic_inc(completed);
  227. }
  228. void kvm_flush_remote_tlbs(struct kvm *kvm)
  229. {
  230. int i, cpu, needed;
  231. cpumask_t cpus;
  232. struct kvm_vcpu *vcpu;
  233. atomic_t completed;
  234. atomic_set(&completed, 0);
  235. cpus_clear(cpus);
  236. needed = 0;
  237. for (i = 0; i < kvm->nvcpus; ++i) {
  238. vcpu = &kvm->vcpus[i];
  239. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  240. continue;
  241. cpu = vcpu->cpu;
  242. if (cpu != -1 && cpu != raw_smp_processor_id())
  243. if (!cpu_isset(cpu, cpus)) {
  244. cpu_set(cpu, cpus);
  245. ++needed;
  246. }
  247. }
  248. /*
  249. * We really want smp_call_function_mask() here. But that's not
  250. * available, so ipi all cpus in parallel and wait for them
  251. * to complete.
  252. */
  253. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  254. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  255. while (atomic_read(&completed) != needed) {
  256. cpu_relax();
  257. barrier();
  258. }
  259. }
  260. static struct kvm *kvm_create_vm(void)
  261. {
  262. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  263. int i;
  264. if (!kvm)
  265. return ERR_PTR(-ENOMEM);
  266. kvm_io_bus_init(&kvm->pio_bus);
  267. spin_lock_init(&kvm->lock);
  268. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  269. spin_lock(&kvm_lock);
  270. list_add(&kvm->vm_list, &vm_list);
  271. spin_unlock(&kvm_lock);
  272. kvm_io_bus_init(&kvm->mmio_bus);
  273. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  274. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  275. mutex_init(&vcpu->mutex);
  276. vcpu->cpu = -1;
  277. vcpu->kvm = kvm;
  278. vcpu->mmu.root_hpa = INVALID_PAGE;
  279. }
  280. return kvm;
  281. }
  282. static int kvm_dev_open(struct inode *inode, struct file *filp)
  283. {
  284. return 0;
  285. }
  286. /*
  287. * Free any memory in @free but not in @dont.
  288. */
  289. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  290. struct kvm_memory_slot *dont)
  291. {
  292. int i;
  293. if (!dont || free->phys_mem != dont->phys_mem)
  294. if (free->phys_mem) {
  295. for (i = 0; i < free->npages; ++i)
  296. if (free->phys_mem[i])
  297. __free_page(free->phys_mem[i]);
  298. vfree(free->phys_mem);
  299. }
  300. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  301. vfree(free->dirty_bitmap);
  302. free->phys_mem = NULL;
  303. free->npages = 0;
  304. free->dirty_bitmap = NULL;
  305. }
  306. static void kvm_free_physmem(struct kvm *kvm)
  307. {
  308. int i;
  309. for (i = 0; i < kvm->nmemslots; ++i)
  310. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  311. }
  312. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  313. {
  314. int i;
  315. for (i = 0; i < 2; ++i)
  316. if (vcpu->pio.guest_pages[i]) {
  317. __free_page(vcpu->pio.guest_pages[i]);
  318. vcpu->pio.guest_pages[i] = NULL;
  319. }
  320. }
  321. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  322. {
  323. if (!vcpu->vmcs)
  324. return;
  325. vcpu_load(vcpu);
  326. kvm_mmu_unload(vcpu);
  327. vcpu_put(vcpu);
  328. }
  329. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  330. {
  331. if (!vcpu->vmcs)
  332. return;
  333. vcpu_load(vcpu);
  334. kvm_mmu_destroy(vcpu);
  335. vcpu_put(vcpu);
  336. kvm_arch_ops->vcpu_free(vcpu);
  337. free_page((unsigned long)vcpu->run);
  338. vcpu->run = NULL;
  339. free_page((unsigned long)vcpu->pio_data);
  340. vcpu->pio_data = NULL;
  341. free_pio_guest_pages(vcpu);
  342. }
  343. static void kvm_free_vcpus(struct kvm *kvm)
  344. {
  345. unsigned int i;
  346. /*
  347. * Unpin any mmu pages first.
  348. */
  349. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  350. kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
  351. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  352. kvm_free_vcpu(&kvm->vcpus[i]);
  353. }
  354. static int kvm_dev_release(struct inode *inode, struct file *filp)
  355. {
  356. return 0;
  357. }
  358. static void kvm_destroy_vm(struct kvm *kvm)
  359. {
  360. spin_lock(&kvm_lock);
  361. list_del(&kvm->vm_list);
  362. spin_unlock(&kvm_lock);
  363. kvm_io_bus_destroy(&kvm->pio_bus);
  364. kvm_io_bus_destroy(&kvm->mmio_bus);
  365. kvm_free_vcpus(kvm);
  366. kvm_free_physmem(kvm);
  367. kfree(kvm);
  368. }
  369. static int kvm_vm_release(struct inode *inode, struct file *filp)
  370. {
  371. struct kvm *kvm = filp->private_data;
  372. kvm_destroy_vm(kvm);
  373. return 0;
  374. }
  375. static void inject_gp(struct kvm_vcpu *vcpu)
  376. {
  377. kvm_arch_ops->inject_gp(vcpu, 0);
  378. }
  379. /*
  380. * Load the pae pdptrs. Return true is they are all valid.
  381. */
  382. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  383. {
  384. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  385. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  386. int i;
  387. u64 pdpte;
  388. u64 *pdpt;
  389. int ret;
  390. struct page *page;
  391. spin_lock(&vcpu->kvm->lock);
  392. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  393. /* FIXME: !page - emulate? 0xff? */
  394. pdpt = kmap_atomic(page, KM_USER0);
  395. ret = 1;
  396. for (i = 0; i < 4; ++i) {
  397. pdpte = pdpt[offset + i];
  398. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  399. ret = 0;
  400. goto out;
  401. }
  402. }
  403. for (i = 0; i < 4; ++i)
  404. vcpu->pdptrs[i] = pdpt[offset + i];
  405. out:
  406. kunmap_atomic(pdpt, KM_USER0);
  407. spin_unlock(&vcpu->kvm->lock);
  408. return ret;
  409. }
  410. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  411. {
  412. if (cr0 & CR0_RESEVED_BITS) {
  413. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  414. cr0, vcpu->cr0);
  415. inject_gp(vcpu);
  416. return;
  417. }
  418. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  419. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  420. inject_gp(vcpu);
  421. return;
  422. }
  423. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  424. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  425. "and a clear PE flag\n");
  426. inject_gp(vcpu);
  427. return;
  428. }
  429. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  430. #ifdef CONFIG_X86_64
  431. if ((vcpu->shadow_efer & EFER_LME)) {
  432. int cs_db, cs_l;
  433. if (!is_pae(vcpu)) {
  434. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  435. "in long mode while PAE is disabled\n");
  436. inject_gp(vcpu);
  437. return;
  438. }
  439. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  440. if (cs_l) {
  441. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  442. "in long mode while CS.L == 1\n");
  443. inject_gp(vcpu);
  444. return;
  445. }
  446. } else
  447. #endif
  448. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  449. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  450. "reserved bits\n");
  451. inject_gp(vcpu);
  452. return;
  453. }
  454. }
  455. kvm_arch_ops->set_cr0(vcpu, cr0);
  456. vcpu->cr0 = cr0;
  457. spin_lock(&vcpu->kvm->lock);
  458. kvm_mmu_reset_context(vcpu);
  459. spin_unlock(&vcpu->kvm->lock);
  460. return;
  461. }
  462. EXPORT_SYMBOL_GPL(set_cr0);
  463. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  464. {
  465. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  466. }
  467. EXPORT_SYMBOL_GPL(lmsw);
  468. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  469. {
  470. if (cr4 & CR4_RESEVED_BITS) {
  471. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  472. inject_gp(vcpu);
  473. return;
  474. }
  475. if (is_long_mode(vcpu)) {
  476. if (!(cr4 & CR4_PAE_MASK)) {
  477. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  478. "in long mode\n");
  479. inject_gp(vcpu);
  480. return;
  481. }
  482. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  483. && !load_pdptrs(vcpu, vcpu->cr3)) {
  484. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  485. inject_gp(vcpu);
  486. }
  487. if (cr4 & CR4_VMXE_MASK) {
  488. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  489. inject_gp(vcpu);
  490. return;
  491. }
  492. kvm_arch_ops->set_cr4(vcpu, cr4);
  493. spin_lock(&vcpu->kvm->lock);
  494. kvm_mmu_reset_context(vcpu);
  495. spin_unlock(&vcpu->kvm->lock);
  496. }
  497. EXPORT_SYMBOL_GPL(set_cr4);
  498. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  499. {
  500. if (is_long_mode(vcpu)) {
  501. if (cr3 & CR3_L_MODE_RESEVED_BITS) {
  502. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  503. inject_gp(vcpu);
  504. return;
  505. }
  506. } else {
  507. if (cr3 & CR3_RESEVED_BITS) {
  508. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  509. inject_gp(vcpu);
  510. return;
  511. }
  512. if (is_paging(vcpu) && is_pae(vcpu) &&
  513. !load_pdptrs(vcpu, cr3)) {
  514. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  515. "reserved bits\n");
  516. inject_gp(vcpu);
  517. return;
  518. }
  519. }
  520. vcpu->cr3 = cr3;
  521. spin_lock(&vcpu->kvm->lock);
  522. /*
  523. * Does the new cr3 value map to physical memory? (Note, we
  524. * catch an invalid cr3 even in real-mode, because it would
  525. * cause trouble later on when we turn on paging anyway.)
  526. *
  527. * A real CPU would silently accept an invalid cr3 and would
  528. * attempt to use it - with largely undefined (and often hard
  529. * to debug) behavior on the guest side.
  530. */
  531. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  532. inject_gp(vcpu);
  533. else
  534. vcpu->mmu.new_cr3(vcpu);
  535. spin_unlock(&vcpu->kvm->lock);
  536. }
  537. EXPORT_SYMBOL_GPL(set_cr3);
  538. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  539. {
  540. if ( cr8 & CR8_RESEVED_BITS) {
  541. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  542. inject_gp(vcpu);
  543. return;
  544. }
  545. vcpu->cr8 = cr8;
  546. }
  547. EXPORT_SYMBOL_GPL(set_cr8);
  548. void fx_init(struct kvm_vcpu *vcpu)
  549. {
  550. struct __attribute__ ((__packed__)) fx_image_s {
  551. u16 control; //fcw
  552. u16 status; //fsw
  553. u16 tag; // ftw
  554. u16 opcode; //fop
  555. u64 ip; // fpu ip
  556. u64 operand;// fpu dp
  557. u32 mxcsr;
  558. u32 mxcsr_mask;
  559. } *fx_image;
  560. fx_save(vcpu->host_fx_image);
  561. fpu_init();
  562. fx_save(vcpu->guest_fx_image);
  563. fx_restore(vcpu->host_fx_image);
  564. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  565. fx_image->mxcsr = 0x1f80;
  566. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  567. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  568. }
  569. EXPORT_SYMBOL_GPL(fx_init);
  570. static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  571. {
  572. spin_lock(&vcpu->kvm->lock);
  573. kvm_mmu_slot_remove_write_access(vcpu, slot);
  574. spin_unlock(&vcpu->kvm->lock);
  575. }
  576. /*
  577. * Allocate some memory and give it an address in the guest physical address
  578. * space.
  579. *
  580. * Discontiguous memory is allowed, mostly for framebuffers.
  581. */
  582. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  583. struct kvm_memory_region *mem)
  584. {
  585. int r;
  586. gfn_t base_gfn;
  587. unsigned long npages;
  588. unsigned long i;
  589. struct kvm_memory_slot *memslot;
  590. struct kvm_memory_slot old, new;
  591. int memory_config_version;
  592. r = -EINVAL;
  593. /* General sanity checks */
  594. if (mem->memory_size & (PAGE_SIZE - 1))
  595. goto out;
  596. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  597. goto out;
  598. if (mem->slot >= KVM_MEMORY_SLOTS)
  599. goto out;
  600. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  601. goto out;
  602. memslot = &kvm->memslots[mem->slot];
  603. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  604. npages = mem->memory_size >> PAGE_SHIFT;
  605. if (!npages)
  606. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  607. raced:
  608. spin_lock(&kvm->lock);
  609. memory_config_version = kvm->memory_config_version;
  610. new = old = *memslot;
  611. new.base_gfn = base_gfn;
  612. new.npages = npages;
  613. new.flags = mem->flags;
  614. /* Disallow changing a memory slot's size. */
  615. r = -EINVAL;
  616. if (npages && old.npages && npages != old.npages)
  617. goto out_unlock;
  618. /* Check for overlaps */
  619. r = -EEXIST;
  620. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  621. struct kvm_memory_slot *s = &kvm->memslots[i];
  622. if (s == memslot)
  623. continue;
  624. if (!((base_gfn + npages <= s->base_gfn) ||
  625. (base_gfn >= s->base_gfn + s->npages)))
  626. goto out_unlock;
  627. }
  628. /*
  629. * Do memory allocations outside lock. memory_config_version will
  630. * detect any races.
  631. */
  632. spin_unlock(&kvm->lock);
  633. /* Deallocate if slot is being removed */
  634. if (!npages)
  635. new.phys_mem = NULL;
  636. /* Free page dirty bitmap if unneeded */
  637. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  638. new.dirty_bitmap = NULL;
  639. r = -ENOMEM;
  640. /* Allocate if a slot is being created */
  641. if (npages && !new.phys_mem) {
  642. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  643. if (!new.phys_mem)
  644. goto out_free;
  645. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  646. for (i = 0; i < npages; ++i) {
  647. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  648. | __GFP_ZERO);
  649. if (!new.phys_mem[i])
  650. goto out_free;
  651. set_page_private(new.phys_mem[i],0);
  652. }
  653. }
  654. /* Allocate page dirty bitmap if needed */
  655. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  656. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  657. new.dirty_bitmap = vmalloc(dirty_bytes);
  658. if (!new.dirty_bitmap)
  659. goto out_free;
  660. memset(new.dirty_bitmap, 0, dirty_bytes);
  661. }
  662. spin_lock(&kvm->lock);
  663. if (memory_config_version != kvm->memory_config_version) {
  664. spin_unlock(&kvm->lock);
  665. kvm_free_physmem_slot(&new, &old);
  666. goto raced;
  667. }
  668. r = -EAGAIN;
  669. if (kvm->busy)
  670. goto out_unlock;
  671. if (mem->slot >= kvm->nmemslots)
  672. kvm->nmemslots = mem->slot + 1;
  673. *memslot = new;
  674. ++kvm->memory_config_version;
  675. spin_unlock(&kvm->lock);
  676. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  677. struct kvm_vcpu *vcpu;
  678. vcpu = vcpu_load_slot(kvm, i);
  679. if (!vcpu)
  680. continue;
  681. if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
  682. do_remove_write_access(vcpu, mem->slot);
  683. kvm_mmu_reset_context(vcpu);
  684. vcpu_put(vcpu);
  685. }
  686. kvm_free_physmem_slot(&old, &new);
  687. return 0;
  688. out_unlock:
  689. spin_unlock(&kvm->lock);
  690. out_free:
  691. kvm_free_physmem_slot(&new, &old);
  692. out:
  693. return r;
  694. }
  695. /*
  696. * Get (and clear) the dirty memory log for a memory slot.
  697. */
  698. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  699. struct kvm_dirty_log *log)
  700. {
  701. struct kvm_memory_slot *memslot;
  702. int r, i;
  703. int n;
  704. int cleared;
  705. unsigned long any = 0;
  706. spin_lock(&kvm->lock);
  707. /*
  708. * Prevent changes to guest memory configuration even while the lock
  709. * is not taken.
  710. */
  711. ++kvm->busy;
  712. spin_unlock(&kvm->lock);
  713. r = -EINVAL;
  714. if (log->slot >= KVM_MEMORY_SLOTS)
  715. goto out;
  716. memslot = &kvm->memslots[log->slot];
  717. r = -ENOENT;
  718. if (!memslot->dirty_bitmap)
  719. goto out;
  720. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  721. for (i = 0; !any && i < n/sizeof(long); ++i)
  722. any = memslot->dirty_bitmap[i];
  723. r = -EFAULT;
  724. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  725. goto out;
  726. if (any) {
  727. cleared = 0;
  728. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  729. struct kvm_vcpu *vcpu;
  730. vcpu = vcpu_load_slot(kvm, i);
  731. if (!vcpu)
  732. continue;
  733. if (!cleared) {
  734. do_remove_write_access(vcpu, log->slot);
  735. memset(memslot->dirty_bitmap, 0, n);
  736. cleared = 1;
  737. }
  738. kvm_arch_ops->tlb_flush(vcpu);
  739. vcpu_put(vcpu);
  740. }
  741. }
  742. r = 0;
  743. out:
  744. spin_lock(&kvm->lock);
  745. --kvm->busy;
  746. spin_unlock(&kvm->lock);
  747. return r;
  748. }
  749. /*
  750. * Set a new alias region. Aliases map a portion of physical memory into
  751. * another portion. This is useful for memory windows, for example the PC
  752. * VGA region.
  753. */
  754. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  755. struct kvm_memory_alias *alias)
  756. {
  757. int r, n;
  758. struct kvm_mem_alias *p;
  759. r = -EINVAL;
  760. /* General sanity checks */
  761. if (alias->memory_size & (PAGE_SIZE - 1))
  762. goto out;
  763. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  764. goto out;
  765. if (alias->slot >= KVM_ALIAS_SLOTS)
  766. goto out;
  767. if (alias->guest_phys_addr + alias->memory_size
  768. < alias->guest_phys_addr)
  769. goto out;
  770. if (alias->target_phys_addr + alias->memory_size
  771. < alias->target_phys_addr)
  772. goto out;
  773. spin_lock(&kvm->lock);
  774. p = &kvm->aliases[alias->slot];
  775. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  776. p->npages = alias->memory_size >> PAGE_SHIFT;
  777. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  778. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  779. if (kvm->aliases[n - 1].npages)
  780. break;
  781. kvm->naliases = n;
  782. spin_unlock(&kvm->lock);
  783. vcpu_load(&kvm->vcpus[0]);
  784. spin_lock(&kvm->lock);
  785. kvm_mmu_zap_all(&kvm->vcpus[0]);
  786. spin_unlock(&kvm->lock);
  787. vcpu_put(&kvm->vcpus[0]);
  788. return 0;
  789. out:
  790. return r;
  791. }
  792. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  793. {
  794. int i;
  795. struct kvm_mem_alias *alias;
  796. for (i = 0; i < kvm->naliases; ++i) {
  797. alias = &kvm->aliases[i];
  798. if (gfn >= alias->base_gfn
  799. && gfn < alias->base_gfn + alias->npages)
  800. return alias->target_gfn + gfn - alias->base_gfn;
  801. }
  802. return gfn;
  803. }
  804. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  805. {
  806. int i;
  807. for (i = 0; i < kvm->nmemslots; ++i) {
  808. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  809. if (gfn >= memslot->base_gfn
  810. && gfn < memslot->base_gfn + memslot->npages)
  811. return memslot;
  812. }
  813. return NULL;
  814. }
  815. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  816. {
  817. gfn = unalias_gfn(kvm, gfn);
  818. return __gfn_to_memslot(kvm, gfn);
  819. }
  820. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  821. {
  822. struct kvm_memory_slot *slot;
  823. gfn = unalias_gfn(kvm, gfn);
  824. slot = __gfn_to_memslot(kvm, gfn);
  825. if (!slot)
  826. return NULL;
  827. return slot->phys_mem[gfn - slot->base_gfn];
  828. }
  829. EXPORT_SYMBOL_GPL(gfn_to_page);
  830. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  831. {
  832. int i;
  833. struct kvm_memory_slot *memslot;
  834. unsigned long rel_gfn;
  835. for (i = 0; i < kvm->nmemslots; ++i) {
  836. memslot = &kvm->memslots[i];
  837. if (gfn >= memslot->base_gfn
  838. && gfn < memslot->base_gfn + memslot->npages) {
  839. if (!memslot->dirty_bitmap)
  840. return;
  841. rel_gfn = gfn - memslot->base_gfn;
  842. /* avoid RMW */
  843. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  844. set_bit(rel_gfn, memslot->dirty_bitmap);
  845. return;
  846. }
  847. }
  848. }
  849. static int emulator_read_std(unsigned long addr,
  850. void *val,
  851. unsigned int bytes,
  852. struct x86_emulate_ctxt *ctxt)
  853. {
  854. struct kvm_vcpu *vcpu = ctxt->vcpu;
  855. void *data = val;
  856. while (bytes) {
  857. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  858. unsigned offset = addr & (PAGE_SIZE-1);
  859. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  860. unsigned long pfn;
  861. struct page *page;
  862. void *page_virt;
  863. if (gpa == UNMAPPED_GVA)
  864. return X86EMUL_PROPAGATE_FAULT;
  865. pfn = gpa >> PAGE_SHIFT;
  866. page = gfn_to_page(vcpu->kvm, pfn);
  867. if (!page)
  868. return X86EMUL_UNHANDLEABLE;
  869. page_virt = kmap_atomic(page, KM_USER0);
  870. memcpy(data, page_virt + offset, tocopy);
  871. kunmap_atomic(page_virt, KM_USER0);
  872. bytes -= tocopy;
  873. data += tocopy;
  874. addr += tocopy;
  875. }
  876. return X86EMUL_CONTINUE;
  877. }
  878. static int emulator_write_std(unsigned long addr,
  879. const void *val,
  880. unsigned int bytes,
  881. struct x86_emulate_ctxt *ctxt)
  882. {
  883. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  884. addr, bytes);
  885. return X86EMUL_UNHANDLEABLE;
  886. }
  887. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  888. gpa_t addr)
  889. {
  890. /*
  891. * Note that its important to have this wrapper function because
  892. * in the very near future we will be checking for MMIOs against
  893. * the LAPIC as well as the general MMIO bus
  894. */
  895. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  896. }
  897. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  898. gpa_t addr)
  899. {
  900. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  901. }
  902. static int emulator_read_emulated(unsigned long addr,
  903. void *val,
  904. unsigned int bytes,
  905. struct x86_emulate_ctxt *ctxt)
  906. {
  907. struct kvm_vcpu *vcpu = ctxt->vcpu;
  908. struct kvm_io_device *mmio_dev;
  909. gpa_t gpa;
  910. if (vcpu->mmio_read_completed) {
  911. memcpy(val, vcpu->mmio_data, bytes);
  912. vcpu->mmio_read_completed = 0;
  913. return X86EMUL_CONTINUE;
  914. } else if (emulator_read_std(addr, val, bytes, ctxt)
  915. == X86EMUL_CONTINUE)
  916. return X86EMUL_CONTINUE;
  917. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  918. if (gpa == UNMAPPED_GVA)
  919. return X86EMUL_PROPAGATE_FAULT;
  920. /*
  921. * Is this MMIO handled locally?
  922. */
  923. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  924. if (mmio_dev) {
  925. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  926. return X86EMUL_CONTINUE;
  927. }
  928. vcpu->mmio_needed = 1;
  929. vcpu->mmio_phys_addr = gpa;
  930. vcpu->mmio_size = bytes;
  931. vcpu->mmio_is_write = 0;
  932. return X86EMUL_UNHANDLEABLE;
  933. }
  934. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  935. const void *val, int bytes)
  936. {
  937. struct page *page;
  938. void *virt;
  939. unsigned offset = offset_in_page(gpa);
  940. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  941. return 0;
  942. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  943. if (!page)
  944. return 0;
  945. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  946. virt = kmap_atomic(page, KM_USER0);
  947. if (memcmp(virt + offset_in_page(gpa), val, bytes)) {
  948. kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
  949. memcpy(virt + offset_in_page(gpa), val, bytes);
  950. }
  951. kunmap_atomic(virt, KM_USER0);
  952. return 1;
  953. }
  954. static int emulator_write_emulated(unsigned long addr,
  955. const void *val,
  956. unsigned int bytes,
  957. struct x86_emulate_ctxt *ctxt)
  958. {
  959. struct kvm_vcpu *vcpu = ctxt->vcpu;
  960. struct kvm_io_device *mmio_dev;
  961. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  962. if (gpa == UNMAPPED_GVA) {
  963. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  964. return X86EMUL_PROPAGATE_FAULT;
  965. }
  966. if (emulator_write_phys(vcpu, gpa, val, bytes))
  967. return X86EMUL_CONTINUE;
  968. /*
  969. * Is this MMIO handled locally?
  970. */
  971. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  972. if (mmio_dev) {
  973. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  974. return X86EMUL_CONTINUE;
  975. }
  976. vcpu->mmio_needed = 1;
  977. vcpu->mmio_phys_addr = gpa;
  978. vcpu->mmio_size = bytes;
  979. vcpu->mmio_is_write = 1;
  980. memcpy(vcpu->mmio_data, val, bytes);
  981. return X86EMUL_CONTINUE;
  982. }
  983. static int emulator_cmpxchg_emulated(unsigned long addr,
  984. const void *old,
  985. const void *new,
  986. unsigned int bytes,
  987. struct x86_emulate_ctxt *ctxt)
  988. {
  989. static int reported;
  990. if (!reported) {
  991. reported = 1;
  992. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  993. }
  994. return emulator_write_emulated(addr, new, bytes, ctxt);
  995. }
  996. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  997. {
  998. return kvm_arch_ops->get_segment_base(vcpu, seg);
  999. }
  1000. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1001. {
  1002. return X86EMUL_CONTINUE;
  1003. }
  1004. int emulate_clts(struct kvm_vcpu *vcpu)
  1005. {
  1006. unsigned long cr0;
  1007. cr0 = vcpu->cr0 & ~CR0_TS_MASK;
  1008. kvm_arch_ops->set_cr0(vcpu, cr0);
  1009. return X86EMUL_CONTINUE;
  1010. }
  1011. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  1012. {
  1013. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1014. switch (dr) {
  1015. case 0 ... 3:
  1016. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  1017. return X86EMUL_CONTINUE;
  1018. default:
  1019. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  1020. __FUNCTION__, dr);
  1021. return X86EMUL_UNHANDLEABLE;
  1022. }
  1023. }
  1024. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1025. {
  1026. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1027. int exception;
  1028. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1029. if (exception) {
  1030. /* FIXME: better handling */
  1031. return X86EMUL_UNHANDLEABLE;
  1032. }
  1033. return X86EMUL_CONTINUE;
  1034. }
  1035. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1036. {
  1037. static int reported;
  1038. u8 opcodes[4];
  1039. unsigned long rip = ctxt->vcpu->rip;
  1040. unsigned long rip_linear;
  1041. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1042. if (reported)
  1043. return;
  1044. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  1045. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1046. " rip %lx %02x %02x %02x %02x\n",
  1047. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1048. reported = 1;
  1049. }
  1050. struct x86_emulate_ops emulate_ops = {
  1051. .read_std = emulator_read_std,
  1052. .write_std = emulator_write_std,
  1053. .read_emulated = emulator_read_emulated,
  1054. .write_emulated = emulator_write_emulated,
  1055. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1056. };
  1057. int emulate_instruction(struct kvm_vcpu *vcpu,
  1058. struct kvm_run *run,
  1059. unsigned long cr2,
  1060. u16 error_code)
  1061. {
  1062. struct x86_emulate_ctxt emulate_ctxt;
  1063. int r;
  1064. int cs_db, cs_l;
  1065. vcpu->mmio_fault_cr2 = cr2;
  1066. kvm_arch_ops->cache_regs(vcpu);
  1067. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1068. emulate_ctxt.vcpu = vcpu;
  1069. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1070. emulate_ctxt.cr2 = cr2;
  1071. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1072. ? X86EMUL_MODE_REAL : cs_l
  1073. ? X86EMUL_MODE_PROT64 : cs_db
  1074. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1075. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1076. emulate_ctxt.cs_base = 0;
  1077. emulate_ctxt.ds_base = 0;
  1078. emulate_ctxt.es_base = 0;
  1079. emulate_ctxt.ss_base = 0;
  1080. } else {
  1081. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1082. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1083. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1084. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1085. }
  1086. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1087. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1088. vcpu->mmio_is_write = 0;
  1089. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1090. if ((r || vcpu->mmio_is_write) && run) {
  1091. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1092. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1093. run->mmio.len = vcpu->mmio_size;
  1094. run->mmio.is_write = vcpu->mmio_is_write;
  1095. }
  1096. if (r) {
  1097. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1098. return EMULATE_DONE;
  1099. if (!vcpu->mmio_needed) {
  1100. report_emulation_failure(&emulate_ctxt);
  1101. return EMULATE_FAIL;
  1102. }
  1103. return EMULATE_DO_MMIO;
  1104. }
  1105. kvm_arch_ops->decache_regs(vcpu);
  1106. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1107. if (vcpu->mmio_is_write) {
  1108. vcpu->mmio_needed = 0;
  1109. return EMULATE_DO_MMIO;
  1110. }
  1111. return EMULATE_DONE;
  1112. }
  1113. EXPORT_SYMBOL_GPL(emulate_instruction);
  1114. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1115. {
  1116. if (vcpu->irq_summary)
  1117. return 1;
  1118. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1119. ++vcpu->stat.halt_exits;
  1120. return 0;
  1121. }
  1122. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1123. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1124. {
  1125. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1126. kvm_arch_ops->cache_regs(vcpu);
  1127. ret = -KVM_EINVAL;
  1128. #ifdef CONFIG_X86_64
  1129. if (is_long_mode(vcpu)) {
  1130. nr = vcpu->regs[VCPU_REGS_RAX];
  1131. a0 = vcpu->regs[VCPU_REGS_RDI];
  1132. a1 = vcpu->regs[VCPU_REGS_RSI];
  1133. a2 = vcpu->regs[VCPU_REGS_RDX];
  1134. a3 = vcpu->regs[VCPU_REGS_RCX];
  1135. a4 = vcpu->regs[VCPU_REGS_R8];
  1136. a5 = vcpu->regs[VCPU_REGS_R9];
  1137. } else
  1138. #endif
  1139. {
  1140. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1141. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1142. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1143. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1144. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1145. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1146. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1147. }
  1148. switch (nr) {
  1149. default:
  1150. run->hypercall.args[0] = a0;
  1151. run->hypercall.args[1] = a1;
  1152. run->hypercall.args[2] = a2;
  1153. run->hypercall.args[3] = a3;
  1154. run->hypercall.args[4] = a4;
  1155. run->hypercall.args[5] = a5;
  1156. run->hypercall.ret = ret;
  1157. run->hypercall.longmode = is_long_mode(vcpu);
  1158. kvm_arch_ops->decache_regs(vcpu);
  1159. return 0;
  1160. }
  1161. vcpu->regs[VCPU_REGS_RAX] = ret;
  1162. kvm_arch_ops->decache_regs(vcpu);
  1163. return 1;
  1164. }
  1165. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1166. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1167. {
  1168. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1169. }
  1170. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1171. {
  1172. struct descriptor_table dt = { limit, base };
  1173. kvm_arch_ops->set_gdt(vcpu, &dt);
  1174. }
  1175. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1176. {
  1177. struct descriptor_table dt = { limit, base };
  1178. kvm_arch_ops->set_idt(vcpu, &dt);
  1179. }
  1180. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1181. unsigned long *rflags)
  1182. {
  1183. lmsw(vcpu, msw);
  1184. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1185. }
  1186. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1187. {
  1188. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1189. switch (cr) {
  1190. case 0:
  1191. return vcpu->cr0;
  1192. case 2:
  1193. return vcpu->cr2;
  1194. case 3:
  1195. return vcpu->cr3;
  1196. case 4:
  1197. return vcpu->cr4;
  1198. default:
  1199. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1200. return 0;
  1201. }
  1202. }
  1203. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1204. unsigned long *rflags)
  1205. {
  1206. switch (cr) {
  1207. case 0:
  1208. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1209. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1210. break;
  1211. case 2:
  1212. vcpu->cr2 = val;
  1213. break;
  1214. case 3:
  1215. set_cr3(vcpu, val);
  1216. break;
  1217. case 4:
  1218. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1219. break;
  1220. default:
  1221. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1222. }
  1223. }
  1224. /*
  1225. * Register the para guest with the host:
  1226. */
  1227. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1228. {
  1229. struct kvm_vcpu_para_state *para_state;
  1230. hpa_t para_state_hpa, hypercall_hpa;
  1231. struct page *para_state_page;
  1232. unsigned char *hypercall;
  1233. gpa_t hypercall_gpa;
  1234. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1235. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1236. /*
  1237. * Needs to be page aligned:
  1238. */
  1239. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1240. goto err_gp;
  1241. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1242. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1243. if (is_error_hpa(para_state_hpa))
  1244. goto err_gp;
  1245. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1246. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1247. para_state = kmap_atomic(para_state_page, KM_USER0);
  1248. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1249. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1250. para_state->host_version = KVM_PARA_API_VERSION;
  1251. /*
  1252. * We cannot support guests that try to register themselves
  1253. * with a newer API version than the host supports:
  1254. */
  1255. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1256. para_state->ret = -KVM_EINVAL;
  1257. goto err_kunmap_skip;
  1258. }
  1259. hypercall_gpa = para_state->hypercall_gpa;
  1260. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1261. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1262. if (is_error_hpa(hypercall_hpa)) {
  1263. para_state->ret = -KVM_EINVAL;
  1264. goto err_kunmap_skip;
  1265. }
  1266. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1267. vcpu->para_state_page = para_state_page;
  1268. vcpu->para_state_gpa = para_state_gpa;
  1269. vcpu->hypercall_gpa = hypercall_gpa;
  1270. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1271. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1272. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1273. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1274. kunmap_atomic(hypercall, KM_USER1);
  1275. para_state->ret = 0;
  1276. err_kunmap_skip:
  1277. kunmap_atomic(para_state, KM_USER0);
  1278. return 0;
  1279. err_gp:
  1280. return 1;
  1281. }
  1282. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1283. {
  1284. u64 data;
  1285. switch (msr) {
  1286. case 0xc0010010: /* SYSCFG */
  1287. case 0xc0010015: /* HWCR */
  1288. case MSR_IA32_PLATFORM_ID:
  1289. case MSR_IA32_P5_MC_ADDR:
  1290. case MSR_IA32_P5_MC_TYPE:
  1291. case MSR_IA32_MC0_CTL:
  1292. case MSR_IA32_MCG_STATUS:
  1293. case MSR_IA32_MCG_CAP:
  1294. case MSR_IA32_MC0_MISC:
  1295. case MSR_IA32_MC0_MISC+4:
  1296. case MSR_IA32_MC0_MISC+8:
  1297. case MSR_IA32_MC0_MISC+12:
  1298. case MSR_IA32_MC0_MISC+16:
  1299. case MSR_IA32_UCODE_REV:
  1300. case MSR_IA32_PERF_STATUS:
  1301. case MSR_IA32_EBL_CR_POWERON:
  1302. /* MTRR registers */
  1303. case 0xfe:
  1304. case 0x200 ... 0x2ff:
  1305. data = 0;
  1306. break;
  1307. case 0xcd: /* fsb frequency */
  1308. data = 3;
  1309. break;
  1310. case MSR_IA32_APICBASE:
  1311. data = vcpu->apic_base;
  1312. break;
  1313. case MSR_IA32_MISC_ENABLE:
  1314. data = vcpu->ia32_misc_enable_msr;
  1315. break;
  1316. #ifdef CONFIG_X86_64
  1317. case MSR_EFER:
  1318. data = vcpu->shadow_efer;
  1319. break;
  1320. #endif
  1321. default:
  1322. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1323. return 1;
  1324. }
  1325. *pdata = data;
  1326. return 0;
  1327. }
  1328. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1329. /*
  1330. * Reads an msr value (of 'msr_index') into 'pdata'.
  1331. * Returns 0 on success, non-0 otherwise.
  1332. * Assumes vcpu_load() was already called.
  1333. */
  1334. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1335. {
  1336. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1337. }
  1338. #ifdef CONFIG_X86_64
  1339. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1340. {
  1341. if (efer & EFER_RESERVED_BITS) {
  1342. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1343. efer);
  1344. inject_gp(vcpu);
  1345. return;
  1346. }
  1347. if (is_paging(vcpu)
  1348. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1349. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1350. inject_gp(vcpu);
  1351. return;
  1352. }
  1353. kvm_arch_ops->set_efer(vcpu, efer);
  1354. efer &= ~EFER_LMA;
  1355. efer |= vcpu->shadow_efer & EFER_LMA;
  1356. vcpu->shadow_efer = efer;
  1357. }
  1358. #endif
  1359. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1360. {
  1361. switch (msr) {
  1362. #ifdef CONFIG_X86_64
  1363. case MSR_EFER:
  1364. set_efer(vcpu, data);
  1365. break;
  1366. #endif
  1367. case MSR_IA32_MC0_STATUS:
  1368. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1369. __FUNCTION__, data);
  1370. break;
  1371. case MSR_IA32_MCG_STATUS:
  1372. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1373. __FUNCTION__, data);
  1374. break;
  1375. case MSR_IA32_UCODE_REV:
  1376. case MSR_IA32_UCODE_WRITE:
  1377. case 0x200 ... 0x2ff: /* MTRRs */
  1378. break;
  1379. case MSR_IA32_APICBASE:
  1380. vcpu->apic_base = data;
  1381. break;
  1382. case MSR_IA32_MISC_ENABLE:
  1383. vcpu->ia32_misc_enable_msr = data;
  1384. break;
  1385. /*
  1386. * This is the 'probe whether the host is KVM' logic:
  1387. */
  1388. case MSR_KVM_API_MAGIC:
  1389. return vcpu_register_para(vcpu, data);
  1390. default:
  1391. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1392. return 1;
  1393. }
  1394. return 0;
  1395. }
  1396. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1397. /*
  1398. * Writes msr value into into the appropriate "register".
  1399. * Returns 0 on success, non-0 otherwise.
  1400. * Assumes vcpu_load() was already called.
  1401. */
  1402. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1403. {
  1404. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1405. }
  1406. void kvm_resched(struct kvm_vcpu *vcpu)
  1407. {
  1408. if (!need_resched())
  1409. return;
  1410. vcpu_put(vcpu);
  1411. cond_resched();
  1412. vcpu_load(vcpu);
  1413. }
  1414. EXPORT_SYMBOL_GPL(kvm_resched);
  1415. void load_msrs(struct vmx_msr_entry *e, int n)
  1416. {
  1417. int i;
  1418. for (i = 0; i < n; ++i)
  1419. wrmsrl(e[i].index, e[i].data);
  1420. }
  1421. EXPORT_SYMBOL_GPL(load_msrs);
  1422. void save_msrs(struct vmx_msr_entry *e, int n)
  1423. {
  1424. int i;
  1425. for (i = 0; i < n; ++i)
  1426. rdmsrl(e[i].index, e[i].data);
  1427. }
  1428. EXPORT_SYMBOL_GPL(save_msrs);
  1429. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1430. {
  1431. int i;
  1432. u32 function;
  1433. struct kvm_cpuid_entry *e, *best;
  1434. kvm_arch_ops->cache_regs(vcpu);
  1435. function = vcpu->regs[VCPU_REGS_RAX];
  1436. vcpu->regs[VCPU_REGS_RAX] = 0;
  1437. vcpu->regs[VCPU_REGS_RBX] = 0;
  1438. vcpu->regs[VCPU_REGS_RCX] = 0;
  1439. vcpu->regs[VCPU_REGS_RDX] = 0;
  1440. best = NULL;
  1441. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1442. e = &vcpu->cpuid_entries[i];
  1443. if (e->function == function) {
  1444. best = e;
  1445. break;
  1446. }
  1447. /*
  1448. * Both basic or both extended?
  1449. */
  1450. if (((e->function ^ function) & 0x80000000) == 0)
  1451. if (!best || e->function > best->function)
  1452. best = e;
  1453. }
  1454. if (best) {
  1455. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1456. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1457. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1458. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1459. }
  1460. kvm_arch_ops->decache_regs(vcpu);
  1461. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1462. }
  1463. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1464. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1465. {
  1466. void *p = vcpu->pio_data;
  1467. void *q;
  1468. unsigned bytes;
  1469. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1470. kvm_arch_ops->vcpu_put(vcpu);
  1471. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1472. PAGE_KERNEL);
  1473. if (!q) {
  1474. kvm_arch_ops->vcpu_load(vcpu);
  1475. free_pio_guest_pages(vcpu);
  1476. return -ENOMEM;
  1477. }
  1478. q += vcpu->pio.guest_page_offset;
  1479. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1480. if (vcpu->pio.in)
  1481. memcpy(q, p, bytes);
  1482. else
  1483. memcpy(p, q, bytes);
  1484. q -= vcpu->pio.guest_page_offset;
  1485. vunmap(q);
  1486. kvm_arch_ops->vcpu_load(vcpu);
  1487. free_pio_guest_pages(vcpu);
  1488. return 0;
  1489. }
  1490. static int complete_pio(struct kvm_vcpu *vcpu)
  1491. {
  1492. struct kvm_pio_request *io = &vcpu->pio;
  1493. long delta;
  1494. int r;
  1495. kvm_arch_ops->cache_regs(vcpu);
  1496. if (!io->string) {
  1497. if (io->in)
  1498. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1499. io->size);
  1500. } else {
  1501. if (io->in) {
  1502. r = pio_copy_data(vcpu);
  1503. if (r) {
  1504. kvm_arch_ops->cache_regs(vcpu);
  1505. return r;
  1506. }
  1507. }
  1508. delta = 1;
  1509. if (io->rep) {
  1510. delta *= io->cur_count;
  1511. /*
  1512. * The size of the register should really depend on
  1513. * current address size.
  1514. */
  1515. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1516. }
  1517. if (io->down)
  1518. delta = -delta;
  1519. delta *= io->size;
  1520. if (io->in)
  1521. vcpu->regs[VCPU_REGS_RDI] += delta;
  1522. else
  1523. vcpu->regs[VCPU_REGS_RSI] += delta;
  1524. }
  1525. kvm_arch_ops->decache_regs(vcpu);
  1526. io->count -= io->cur_count;
  1527. io->cur_count = 0;
  1528. if (!io->count)
  1529. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1530. return 0;
  1531. }
  1532. void kernel_pio(struct kvm_io_device *pio_dev, struct kvm_vcpu *vcpu)
  1533. {
  1534. /* TODO: String I/O for in kernel device */
  1535. if (vcpu->pio.in)
  1536. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1537. vcpu->pio.size,
  1538. vcpu->pio_data);
  1539. else
  1540. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1541. vcpu->pio.size,
  1542. vcpu->pio_data);
  1543. }
  1544. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1545. int size, unsigned long count, int string, int down,
  1546. gva_t address, int rep, unsigned port)
  1547. {
  1548. unsigned now, in_page;
  1549. int i;
  1550. int nr_pages = 1;
  1551. struct page *page;
  1552. struct kvm_io_device *pio_dev;
  1553. vcpu->run->exit_reason = KVM_EXIT_IO;
  1554. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1555. vcpu->run->io.size = size;
  1556. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1557. vcpu->run->io.count = count;
  1558. vcpu->run->io.port = port;
  1559. vcpu->pio.count = count;
  1560. vcpu->pio.cur_count = count;
  1561. vcpu->pio.size = size;
  1562. vcpu->pio.in = in;
  1563. vcpu->pio.port = port;
  1564. vcpu->pio.string = string;
  1565. vcpu->pio.down = down;
  1566. vcpu->pio.guest_page_offset = offset_in_page(address);
  1567. vcpu->pio.rep = rep;
  1568. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1569. if (!string) {
  1570. kvm_arch_ops->cache_regs(vcpu);
  1571. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1572. kvm_arch_ops->decache_regs(vcpu);
  1573. if (pio_dev) {
  1574. kernel_pio(pio_dev, vcpu);
  1575. complete_pio(vcpu);
  1576. return 1;
  1577. }
  1578. return 0;
  1579. }
  1580. /* TODO: String I/O for in kernel device */
  1581. if (pio_dev)
  1582. printk(KERN_ERR "kvm_setup_pio: no string io support\n");
  1583. if (!count) {
  1584. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1585. return 1;
  1586. }
  1587. now = min(count, PAGE_SIZE / size);
  1588. if (!down)
  1589. in_page = PAGE_SIZE - offset_in_page(address);
  1590. else
  1591. in_page = offset_in_page(address) + size;
  1592. now = min(count, (unsigned long)in_page / size);
  1593. if (!now) {
  1594. /*
  1595. * String I/O straddles page boundary. Pin two guest pages
  1596. * so that we satisfy atomicity constraints. Do just one
  1597. * transaction to avoid complexity.
  1598. */
  1599. nr_pages = 2;
  1600. now = 1;
  1601. }
  1602. if (down) {
  1603. /*
  1604. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1605. */
  1606. printk(KERN_ERR "kvm: guest string pio down\n");
  1607. inject_gp(vcpu);
  1608. return 1;
  1609. }
  1610. vcpu->run->io.count = now;
  1611. vcpu->pio.cur_count = now;
  1612. for (i = 0; i < nr_pages; ++i) {
  1613. spin_lock(&vcpu->kvm->lock);
  1614. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1615. if (page)
  1616. get_page(page);
  1617. vcpu->pio.guest_pages[i] = page;
  1618. spin_unlock(&vcpu->kvm->lock);
  1619. if (!page) {
  1620. inject_gp(vcpu);
  1621. free_pio_guest_pages(vcpu);
  1622. return 1;
  1623. }
  1624. }
  1625. if (!vcpu->pio.in)
  1626. return pio_copy_data(vcpu);
  1627. return 0;
  1628. }
  1629. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1630. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1631. {
  1632. int r;
  1633. sigset_t sigsaved;
  1634. vcpu_load(vcpu);
  1635. if (vcpu->sigset_active)
  1636. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1637. /* re-sync apic's tpr */
  1638. vcpu->cr8 = kvm_run->cr8;
  1639. if (vcpu->pio.cur_count) {
  1640. r = complete_pio(vcpu);
  1641. if (r)
  1642. goto out;
  1643. }
  1644. if (vcpu->mmio_needed) {
  1645. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1646. vcpu->mmio_read_completed = 1;
  1647. vcpu->mmio_needed = 0;
  1648. r = emulate_instruction(vcpu, kvm_run,
  1649. vcpu->mmio_fault_cr2, 0);
  1650. if (r == EMULATE_DO_MMIO) {
  1651. /*
  1652. * Read-modify-write. Back to userspace.
  1653. */
  1654. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1655. r = 0;
  1656. goto out;
  1657. }
  1658. }
  1659. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1660. kvm_arch_ops->cache_regs(vcpu);
  1661. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1662. kvm_arch_ops->decache_regs(vcpu);
  1663. }
  1664. r = kvm_arch_ops->run(vcpu, kvm_run);
  1665. out:
  1666. if (vcpu->sigset_active)
  1667. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1668. vcpu_put(vcpu);
  1669. return r;
  1670. }
  1671. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1672. struct kvm_regs *regs)
  1673. {
  1674. vcpu_load(vcpu);
  1675. kvm_arch_ops->cache_regs(vcpu);
  1676. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1677. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1678. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1679. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1680. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1681. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1682. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1683. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1684. #ifdef CONFIG_X86_64
  1685. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1686. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1687. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1688. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1689. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1690. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1691. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1692. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1693. #endif
  1694. regs->rip = vcpu->rip;
  1695. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1696. /*
  1697. * Don't leak debug flags in case they were set for guest debugging
  1698. */
  1699. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1700. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1701. vcpu_put(vcpu);
  1702. return 0;
  1703. }
  1704. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1705. struct kvm_regs *regs)
  1706. {
  1707. vcpu_load(vcpu);
  1708. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1709. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1710. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1711. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1712. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1713. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1714. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1715. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1716. #ifdef CONFIG_X86_64
  1717. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1718. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1719. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1720. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1721. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1722. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1723. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1724. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1725. #endif
  1726. vcpu->rip = regs->rip;
  1727. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1728. kvm_arch_ops->decache_regs(vcpu);
  1729. vcpu_put(vcpu);
  1730. return 0;
  1731. }
  1732. static void get_segment(struct kvm_vcpu *vcpu,
  1733. struct kvm_segment *var, int seg)
  1734. {
  1735. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1736. }
  1737. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1738. struct kvm_sregs *sregs)
  1739. {
  1740. struct descriptor_table dt;
  1741. vcpu_load(vcpu);
  1742. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1743. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1744. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1745. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1746. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1747. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1748. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1749. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1750. kvm_arch_ops->get_idt(vcpu, &dt);
  1751. sregs->idt.limit = dt.limit;
  1752. sregs->idt.base = dt.base;
  1753. kvm_arch_ops->get_gdt(vcpu, &dt);
  1754. sregs->gdt.limit = dt.limit;
  1755. sregs->gdt.base = dt.base;
  1756. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1757. sregs->cr0 = vcpu->cr0;
  1758. sregs->cr2 = vcpu->cr2;
  1759. sregs->cr3 = vcpu->cr3;
  1760. sregs->cr4 = vcpu->cr4;
  1761. sregs->cr8 = vcpu->cr8;
  1762. sregs->efer = vcpu->shadow_efer;
  1763. sregs->apic_base = vcpu->apic_base;
  1764. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1765. sizeof sregs->interrupt_bitmap);
  1766. vcpu_put(vcpu);
  1767. return 0;
  1768. }
  1769. static void set_segment(struct kvm_vcpu *vcpu,
  1770. struct kvm_segment *var, int seg)
  1771. {
  1772. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1773. }
  1774. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1775. struct kvm_sregs *sregs)
  1776. {
  1777. int mmu_reset_needed = 0;
  1778. int i;
  1779. struct descriptor_table dt;
  1780. vcpu_load(vcpu);
  1781. dt.limit = sregs->idt.limit;
  1782. dt.base = sregs->idt.base;
  1783. kvm_arch_ops->set_idt(vcpu, &dt);
  1784. dt.limit = sregs->gdt.limit;
  1785. dt.base = sregs->gdt.base;
  1786. kvm_arch_ops->set_gdt(vcpu, &dt);
  1787. vcpu->cr2 = sregs->cr2;
  1788. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1789. vcpu->cr3 = sregs->cr3;
  1790. vcpu->cr8 = sregs->cr8;
  1791. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1792. #ifdef CONFIG_X86_64
  1793. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1794. #endif
  1795. vcpu->apic_base = sregs->apic_base;
  1796. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1797. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1798. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1799. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1800. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1801. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1802. load_pdptrs(vcpu, vcpu->cr3);
  1803. if (mmu_reset_needed)
  1804. kvm_mmu_reset_context(vcpu);
  1805. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1806. sizeof vcpu->irq_pending);
  1807. vcpu->irq_summary = 0;
  1808. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1809. if (vcpu->irq_pending[i])
  1810. __set_bit(i, &vcpu->irq_summary);
  1811. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1812. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1813. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1814. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1815. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1816. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1817. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1818. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1819. vcpu_put(vcpu);
  1820. return 0;
  1821. }
  1822. /*
  1823. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1824. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1825. *
  1826. * This list is modified at module load time to reflect the
  1827. * capabilities of the host cpu.
  1828. */
  1829. static u32 msrs_to_save[] = {
  1830. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1831. MSR_K6_STAR,
  1832. #ifdef CONFIG_X86_64
  1833. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1834. #endif
  1835. MSR_IA32_TIME_STAMP_COUNTER,
  1836. };
  1837. static unsigned num_msrs_to_save;
  1838. static u32 emulated_msrs[] = {
  1839. MSR_IA32_MISC_ENABLE,
  1840. };
  1841. static __init void kvm_init_msr_list(void)
  1842. {
  1843. u32 dummy[2];
  1844. unsigned i, j;
  1845. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1846. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1847. continue;
  1848. if (j < i)
  1849. msrs_to_save[j] = msrs_to_save[i];
  1850. j++;
  1851. }
  1852. num_msrs_to_save = j;
  1853. }
  1854. /*
  1855. * Adapt set_msr() to msr_io()'s calling convention
  1856. */
  1857. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1858. {
  1859. return set_msr(vcpu, index, *data);
  1860. }
  1861. /*
  1862. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1863. *
  1864. * @return number of msrs set successfully.
  1865. */
  1866. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1867. struct kvm_msr_entry *entries,
  1868. int (*do_msr)(struct kvm_vcpu *vcpu,
  1869. unsigned index, u64 *data))
  1870. {
  1871. int i;
  1872. vcpu_load(vcpu);
  1873. for (i = 0; i < msrs->nmsrs; ++i)
  1874. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1875. break;
  1876. vcpu_put(vcpu);
  1877. return i;
  1878. }
  1879. /*
  1880. * Read or write a bunch of msrs. Parameters are user addresses.
  1881. *
  1882. * @return number of msrs set successfully.
  1883. */
  1884. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1885. int (*do_msr)(struct kvm_vcpu *vcpu,
  1886. unsigned index, u64 *data),
  1887. int writeback)
  1888. {
  1889. struct kvm_msrs msrs;
  1890. struct kvm_msr_entry *entries;
  1891. int r, n;
  1892. unsigned size;
  1893. r = -EFAULT;
  1894. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1895. goto out;
  1896. r = -E2BIG;
  1897. if (msrs.nmsrs >= MAX_IO_MSRS)
  1898. goto out;
  1899. r = -ENOMEM;
  1900. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1901. entries = vmalloc(size);
  1902. if (!entries)
  1903. goto out;
  1904. r = -EFAULT;
  1905. if (copy_from_user(entries, user_msrs->entries, size))
  1906. goto out_free;
  1907. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1908. if (r < 0)
  1909. goto out_free;
  1910. r = -EFAULT;
  1911. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1912. goto out_free;
  1913. r = n;
  1914. out_free:
  1915. vfree(entries);
  1916. out:
  1917. return r;
  1918. }
  1919. /*
  1920. * Translate a guest virtual address to a guest physical address.
  1921. */
  1922. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1923. struct kvm_translation *tr)
  1924. {
  1925. unsigned long vaddr = tr->linear_address;
  1926. gpa_t gpa;
  1927. vcpu_load(vcpu);
  1928. spin_lock(&vcpu->kvm->lock);
  1929. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1930. tr->physical_address = gpa;
  1931. tr->valid = gpa != UNMAPPED_GVA;
  1932. tr->writeable = 1;
  1933. tr->usermode = 0;
  1934. spin_unlock(&vcpu->kvm->lock);
  1935. vcpu_put(vcpu);
  1936. return 0;
  1937. }
  1938. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1939. struct kvm_interrupt *irq)
  1940. {
  1941. if (irq->irq < 0 || irq->irq >= 256)
  1942. return -EINVAL;
  1943. vcpu_load(vcpu);
  1944. set_bit(irq->irq, vcpu->irq_pending);
  1945. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1946. vcpu_put(vcpu);
  1947. return 0;
  1948. }
  1949. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1950. struct kvm_debug_guest *dbg)
  1951. {
  1952. int r;
  1953. vcpu_load(vcpu);
  1954. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1955. vcpu_put(vcpu);
  1956. return r;
  1957. }
  1958. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1959. unsigned long address,
  1960. int *type)
  1961. {
  1962. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1963. unsigned long pgoff;
  1964. struct page *page;
  1965. *type = VM_FAULT_MINOR;
  1966. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1967. if (pgoff == 0)
  1968. page = virt_to_page(vcpu->run);
  1969. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1970. page = virt_to_page(vcpu->pio_data);
  1971. else
  1972. return NOPAGE_SIGBUS;
  1973. get_page(page);
  1974. return page;
  1975. }
  1976. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1977. .nopage = kvm_vcpu_nopage,
  1978. };
  1979. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1980. {
  1981. vma->vm_ops = &kvm_vcpu_vm_ops;
  1982. return 0;
  1983. }
  1984. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1985. {
  1986. struct kvm_vcpu *vcpu = filp->private_data;
  1987. fput(vcpu->kvm->filp);
  1988. return 0;
  1989. }
  1990. static struct file_operations kvm_vcpu_fops = {
  1991. .release = kvm_vcpu_release,
  1992. .unlocked_ioctl = kvm_vcpu_ioctl,
  1993. .compat_ioctl = kvm_vcpu_ioctl,
  1994. .mmap = kvm_vcpu_mmap,
  1995. };
  1996. /*
  1997. * Allocates an inode for the vcpu.
  1998. */
  1999. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2000. {
  2001. int fd, r;
  2002. struct inode *inode;
  2003. struct file *file;
  2004. r = anon_inode_getfd(&fd, &inode, &file,
  2005. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2006. if (r)
  2007. return r;
  2008. atomic_inc(&vcpu->kvm->filp->f_count);
  2009. return fd;
  2010. }
  2011. /*
  2012. * Creates some virtual cpus. Good luck creating more than one.
  2013. */
  2014. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2015. {
  2016. int r;
  2017. struct kvm_vcpu *vcpu;
  2018. struct page *page;
  2019. r = -EINVAL;
  2020. if (!valid_vcpu(n))
  2021. goto out;
  2022. vcpu = &kvm->vcpus[n];
  2023. mutex_lock(&vcpu->mutex);
  2024. if (vcpu->vmcs) {
  2025. mutex_unlock(&vcpu->mutex);
  2026. return -EEXIST;
  2027. }
  2028. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2029. r = -ENOMEM;
  2030. if (!page)
  2031. goto out_unlock;
  2032. vcpu->run = page_address(page);
  2033. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2034. r = -ENOMEM;
  2035. if (!page)
  2036. goto out_free_run;
  2037. vcpu->pio_data = page_address(page);
  2038. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  2039. FX_IMAGE_ALIGN);
  2040. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  2041. vcpu->cr0 = 0x10;
  2042. r = kvm_arch_ops->vcpu_create(vcpu);
  2043. if (r < 0)
  2044. goto out_free_vcpus;
  2045. r = kvm_mmu_create(vcpu);
  2046. if (r < 0)
  2047. goto out_free_vcpus;
  2048. kvm_arch_ops->vcpu_load(vcpu);
  2049. r = kvm_mmu_setup(vcpu);
  2050. if (r >= 0)
  2051. r = kvm_arch_ops->vcpu_setup(vcpu);
  2052. vcpu_put(vcpu);
  2053. if (r < 0)
  2054. goto out_free_vcpus;
  2055. r = create_vcpu_fd(vcpu);
  2056. if (r < 0)
  2057. goto out_free_vcpus;
  2058. spin_lock(&kvm_lock);
  2059. if (n >= kvm->nvcpus)
  2060. kvm->nvcpus = n + 1;
  2061. spin_unlock(&kvm_lock);
  2062. return r;
  2063. out_free_vcpus:
  2064. kvm_free_vcpu(vcpu);
  2065. out_free_run:
  2066. free_page((unsigned long)vcpu->run);
  2067. vcpu->run = NULL;
  2068. out_unlock:
  2069. mutex_unlock(&vcpu->mutex);
  2070. out:
  2071. return r;
  2072. }
  2073. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2074. {
  2075. u64 efer;
  2076. int i;
  2077. struct kvm_cpuid_entry *e, *entry;
  2078. rdmsrl(MSR_EFER, efer);
  2079. entry = NULL;
  2080. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2081. e = &vcpu->cpuid_entries[i];
  2082. if (e->function == 0x80000001) {
  2083. entry = e;
  2084. break;
  2085. }
  2086. }
  2087. if (entry && (entry->edx & EFER_NX) && !(efer & EFER_NX)) {
  2088. entry->edx &= ~(1 << 20);
  2089. printk(KERN_INFO ": guest NX capability removed\n");
  2090. }
  2091. }
  2092. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2093. struct kvm_cpuid *cpuid,
  2094. struct kvm_cpuid_entry __user *entries)
  2095. {
  2096. int r;
  2097. r = -E2BIG;
  2098. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2099. goto out;
  2100. r = -EFAULT;
  2101. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2102. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2103. goto out;
  2104. vcpu->cpuid_nent = cpuid->nent;
  2105. cpuid_fix_nx_cap(vcpu);
  2106. return 0;
  2107. out:
  2108. return r;
  2109. }
  2110. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2111. {
  2112. if (sigset) {
  2113. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2114. vcpu->sigset_active = 1;
  2115. vcpu->sigset = *sigset;
  2116. } else
  2117. vcpu->sigset_active = 0;
  2118. return 0;
  2119. }
  2120. /*
  2121. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2122. * we have asm/x86/processor.h
  2123. */
  2124. struct fxsave {
  2125. u16 cwd;
  2126. u16 swd;
  2127. u16 twd;
  2128. u16 fop;
  2129. u64 rip;
  2130. u64 rdp;
  2131. u32 mxcsr;
  2132. u32 mxcsr_mask;
  2133. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2134. #ifdef CONFIG_X86_64
  2135. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2136. #else
  2137. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2138. #endif
  2139. };
  2140. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2141. {
  2142. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2143. vcpu_load(vcpu);
  2144. memcpy(fpu->fpr, fxsave->st_space, 128);
  2145. fpu->fcw = fxsave->cwd;
  2146. fpu->fsw = fxsave->swd;
  2147. fpu->ftwx = fxsave->twd;
  2148. fpu->last_opcode = fxsave->fop;
  2149. fpu->last_ip = fxsave->rip;
  2150. fpu->last_dp = fxsave->rdp;
  2151. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2152. vcpu_put(vcpu);
  2153. return 0;
  2154. }
  2155. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2156. {
  2157. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2158. vcpu_load(vcpu);
  2159. memcpy(fxsave->st_space, fpu->fpr, 128);
  2160. fxsave->cwd = fpu->fcw;
  2161. fxsave->swd = fpu->fsw;
  2162. fxsave->twd = fpu->ftwx;
  2163. fxsave->fop = fpu->last_opcode;
  2164. fxsave->rip = fpu->last_ip;
  2165. fxsave->rdp = fpu->last_dp;
  2166. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2167. vcpu_put(vcpu);
  2168. return 0;
  2169. }
  2170. static long kvm_vcpu_ioctl(struct file *filp,
  2171. unsigned int ioctl, unsigned long arg)
  2172. {
  2173. struct kvm_vcpu *vcpu = filp->private_data;
  2174. void __user *argp = (void __user *)arg;
  2175. int r = -EINVAL;
  2176. switch (ioctl) {
  2177. case KVM_RUN:
  2178. r = -EINVAL;
  2179. if (arg)
  2180. goto out;
  2181. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2182. break;
  2183. case KVM_GET_REGS: {
  2184. struct kvm_regs kvm_regs;
  2185. memset(&kvm_regs, 0, sizeof kvm_regs);
  2186. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2187. if (r)
  2188. goto out;
  2189. r = -EFAULT;
  2190. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2191. goto out;
  2192. r = 0;
  2193. break;
  2194. }
  2195. case KVM_SET_REGS: {
  2196. struct kvm_regs kvm_regs;
  2197. r = -EFAULT;
  2198. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2199. goto out;
  2200. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2201. if (r)
  2202. goto out;
  2203. r = 0;
  2204. break;
  2205. }
  2206. case KVM_GET_SREGS: {
  2207. struct kvm_sregs kvm_sregs;
  2208. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2209. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2210. if (r)
  2211. goto out;
  2212. r = -EFAULT;
  2213. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2214. goto out;
  2215. r = 0;
  2216. break;
  2217. }
  2218. case KVM_SET_SREGS: {
  2219. struct kvm_sregs kvm_sregs;
  2220. r = -EFAULT;
  2221. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2222. goto out;
  2223. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2224. if (r)
  2225. goto out;
  2226. r = 0;
  2227. break;
  2228. }
  2229. case KVM_TRANSLATE: {
  2230. struct kvm_translation tr;
  2231. r = -EFAULT;
  2232. if (copy_from_user(&tr, argp, sizeof tr))
  2233. goto out;
  2234. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2235. if (r)
  2236. goto out;
  2237. r = -EFAULT;
  2238. if (copy_to_user(argp, &tr, sizeof tr))
  2239. goto out;
  2240. r = 0;
  2241. break;
  2242. }
  2243. case KVM_INTERRUPT: {
  2244. struct kvm_interrupt irq;
  2245. r = -EFAULT;
  2246. if (copy_from_user(&irq, argp, sizeof irq))
  2247. goto out;
  2248. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2249. if (r)
  2250. goto out;
  2251. r = 0;
  2252. break;
  2253. }
  2254. case KVM_DEBUG_GUEST: {
  2255. struct kvm_debug_guest dbg;
  2256. r = -EFAULT;
  2257. if (copy_from_user(&dbg, argp, sizeof dbg))
  2258. goto out;
  2259. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2260. if (r)
  2261. goto out;
  2262. r = 0;
  2263. break;
  2264. }
  2265. case KVM_GET_MSRS:
  2266. r = msr_io(vcpu, argp, get_msr, 1);
  2267. break;
  2268. case KVM_SET_MSRS:
  2269. r = msr_io(vcpu, argp, do_set_msr, 0);
  2270. break;
  2271. case KVM_SET_CPUID: {
  2272. struct kvm_cpuid __user *cpuid_arg = argp;
  2273. struct kvm_cpuid cpuid;
  2274. r = -EFAULT;
  2275. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2276. goto out;
  2277. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2278. if (r)
  2279. goto out;
  2280. break;
  2281. }
  2282. case KVM_SET_SIGNAL_MASK: {
  2283. struct kvm_signal_mask __user *sigmask_arg = argp;
  2284. struct kvm_signal_mask kvm_sigmask;
  2285. sigset_t sigset, *p;
  2286. p = NULL;
  2287. if (argp) {
  2288. r = -EFAULT;
  2289. if (copy_from_user(&kvm_sigmask, argp,
  2290. sizeof kvm_sigmask))
  2291. goto out;
  2292. r = -EINVAL;
  2293. if (kvm_sigmask.len != sizeof sigset)
  2294. goto out;
  2295. r = -EFAULT;
  2296. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2297. sizeof sigset))
  2298. goto out;
  2299. p = &sigset;
  2300. }
  2301. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2302. break;
  2303. }
  2304. case KVM_GET_FPU: {
  2305. struct kvm_fpu fpu;
  2306. memset(&fpu, 0, sizeof fpu);
  2307. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2308. if (r)
  2309. goto out;
  2310. r = -EFAULT;
  2311. if (copy_to_user(argp, &fpu, sizeof fpu))
  2312. goto out;
  2313. r = 0;
  2314. break;
  2315. }
  2316. case KVM_SET_FPU: {
  2317. struct kvm_fpu fpu;
  2318. r = -EFAULT;
  2319. if (copy_from_user(&fpu, argp, sizeof fpu))
  2320. goto out;
  2321. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2322. if (r)
  2323. goto out;
  2324. r = 0;
  2325. break;
  2326. }
  2327. default:
  2328. ;
  2329. }
  2330. out:
  2331. return r;
  2332. }
  2333. static long kvm_vm_ioctl(struct file *filp,
  2334. unsigned int ioctl, unsigned long arg)
  2335. {
  2336. struct kvm *kvm = filp->private_data;
  2337. void __user *argp = (void __user *)arg;
  2338. int r = -EINVAL;
  2339. switch (ioctl) {
  2340. case KVM_CREATE_VCPU:
  2341. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2342. if (r < 0)
  2343. goto out;
  2344. break;
  2345. case KVM_SET_MEMORY_REGION: {
  2346. struct kvm_memory_region kvm_mem;
  2347. r = -EFAULT;
  2348. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2349. goto out;
  2350. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2351. if (r)
  2352. goto out;
  2353. break;
  2354. }
  2355. case KVM_GET_DIRTY_LOG: {
  2356. struct kvm_dirty_log log;
  2357. r = -EFAULT;
  2358. if (copy_from_user(&log, argp, sizeof log))
  2359. goto out;
  2360. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2361. if (r)
  2362. goto out;
  2363. break;
  2364. }
  2365. case KVM_SET_MEMORY_ALIAS: {
  2366. struct kvm_memory_alias alias;
  2367. r = -EFAULT;
  2368. if (copy_from_user(&alias, argp, sizeof alias))
  2369. goto out;
  2370. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2371. if (r)
  2372. goto out;
  2373. break;
  2374. }
  2375. default:
  2376. ;
  2377. }
  2378. out:
  2379. return r;
  2380. }
  2381. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2382. unsigned long address,
  2383. int *type)
  2384. {
  2385. struct kvm *kvm = vma->vm_file->private_data;
  2386. unsigned long pgoff;
  2387. struct page *page;
  2388. *type = VM_FAULT_MINOR;
  2389. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2390. page = gfn_to_page(kvm, pgoff);
  2391. if (!page)
  2392. return NOPAGE_SIGBUS;
  2393. get_page(page);
  2394. return page;
  2395. }
  2396. static struct vm_operations_struct kvm_vm_vm_ops = {
  2397. .nopage = kvm_vm_nopage,
  2398. };
  2399. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2400. {
  2401. vma->vm_ops = &kvm_vm_vm_ops;
  2402. return 0;
  2403. }
  2404. static struct file_operations kvm_vm_fops = {
  2405. .release = kvm_vm_release,
  2406. .unlocked_ioctl = kvm_vm_ioctl,
  2407. .compat_ioctl = kvm_vm_ioctl,
  2408. .mmap = kvm_vm_mmap,
  2409. };
  2410. static int kvm_dev_ioctl_create_vm(void)
  2411. {
  2412. int fd, r;
  2413. struct inode *inode;
  2414. struct file *file;
  2415. struct kvm *kvm;
  2416. kvm = kvm_create_vm();
  2417. if (IS_ERR(kvm))
  2418. return PTR_ERR(kvm);
  2419. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2420. if (r) {
  2421. kvm_destroy_vm(kvm);
  2422. return r;
  2423. }
  2424. kvm->filp = file;
  2425. return fd;
  2426. }
  2427. static long kvm_dev_ioctl(struct file *filp,
  2428. unsigned int ioctl, unsigned long arg)
  2429. {
  2430. void __user *argp = (void __user *)arg;
  2431. long r = -EINVAL;
  2432. switch (ioctl) {
  2433. case KVM_GET_API_VERSION:
  2434. r = -EINVAL;
  2435. if (arg)
  2436. goto out;
  2437. r = KVM_API_VERSION;
  2438. break;
  2439. case KVM_CREATE_VM:
  2440. r = -EINVAL;
  2441. if (arg)
  2442. goto out;
  2443. r = kvm_dev_ioctl_create_vm();
  2444. break;
  2445. case KVM_GET_MSR_INDEX_LIST: {
  2446. struct kvm_msr_list __user *user_msr_list = argp;
  2447. struct kvm_msr_list msr_list;
  2448. unsigned n;
  2449. r = -EFAULT;
  2450. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2451. goto out;
  2452. n = msr_list.nmsrs;
  2453. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2454. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2455. goto out;
  2456. r = -E2BIG;
  2457. if (n < num_msrs_to_save)
  2458. goto out;
  2459. r = -EFAULT;
  2460. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2461. num_msrs_to_save * sizeof(u32)))
  2462. goto out;
  2463. if (copy_to_user(user_msr_list->indices
  2464. + num_msrs_to_save * sizeof(u32),
  2465. &emulated_msrs,
  2466. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2467. goto out;
  2468. r = 0;
  2469. break;
  2470. }
  2471. case KVM_CHECK_EXTENSION:
  2472. /*
  2473. * No extensions defined at present.
  2474. */
  2475. r = 0;
  2476. break;
  2477. case KVM_GET_VCPU_MMAP_SIZE:
  2478. r = -EINVAL;
  2479. if (arg)
  2480. goto out;
  2481. r = 2 * PAGE_SIZE;
  2482. break;
  2483. default:
  2484. ;
  2485. }
  2486. out:
  2487. return r;
  2488. }
  2489. static struct file_operations kvm_chardev_ops = {
  2490. .open = kvm_dev_open,
  2491. .release = kvm_dev_release,
  2492. .unlocked_ioctl = kvm_dev_ioctl,
  2493. .compat_ioctl = kvm_dev_ioctl,
  2494. };
  2495. static struct miscdevice kvm_dev = {
  2496. KVM_MINOR,
  2497. "kvm",
  2498. &kvm_chardev_ops,
  2499. };
  2500. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2501. void *v)
  2502. {
  2503. if (val == SYS_RESTART) {
  2504. /*
  2505. * Some (well, at least mine) BIOSes hang on reboot if
  2506. * in vmx root mode.
  2507. */
  2508. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2509. on_each_cpu(hardware_disable, NULL, 0, 1);
  2510. }
  2511. return NOTIFY_OK;
  2512. }
  2513. static struct notifier_block kvm_reboot_notifier = {
  2514. .notifier_call = kvm_reboot,
  2515. .priority = 0,
  2516. };
  2517. /*
  2518. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2519. * cached on it.
  2520. */
  2521. static void decache_vcpus_on_cpu(int cpu)
  2522. {
  2523. struct kvm *vm;
  2524. struct kvm_vcpu *vcpu;
  2525. int i;
  2526. spin_lock(&kvm_lock);
  2527. list_for_each_entry(vm, &vm_list, vm_list)
  2528. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2529. vcpu = &vm->vcpus[i];
  2530. /*
  2531. * If the vcpu is locked, then it is running on some
  2532. * other cpu and therefore it is not cached on the
  2533. * cpu in question.
  2534. *
  2535. * If it's not locked, check the last cpu it executed
  2536. * on.
  2537. */
  2538. if (mutex_trylock(&vcpu->mutex)) {
  2539. if (vcpu->cpu == cpu) {
  2540. kvm_arch_ops->vcpu_decache(vcpu);
  2541. vcpu->cpu = -1;
  2542. }
  2543. mutex_unlock(&vcpu->mutex);
  2544. }
  2545. }
  2546. spin_unlock(&kvm_lock);
  2547. }
  2548. static void hardware_enable(void *junk)
  2549. {
  2550. int cpu = raw_smp_processor_id();
  2551. if (cpu_isset(cpu, cpus_hardware_enabled))
  2552. return;
  2553. cpu_set(cpu, cpus_hardware_enabled);
  2554. kvm_arch_ops->hardware_enable(NULL);
  2555. }
  2556. static void hardware_disable(void *junk)
  2557. {
  2558. int cpu = raw_smp_processor_id();
  2559. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2560. return;
  2561. cpu_clear(cpu, cpus_hardware_enabled);
  2562. decache_vcpus_on_cpu(cpu);
  2563. kvm_arch_ops->hardware_disable(NULL);
  2564. }
  2565. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2566. void *v)
  2567. {
  2568. int cpu = (long)v;
  2569. switch (val) {
  2570. case CPU_DYING:
  2571. case CPU_DYING_FROZEN:
  2572. case CPU_UP_CANCELED:
  2573. case CPU_UP_CANCELED_FROZEN:
  2574. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2575. cpu);
  2576. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2577. break;
  2578. case CPU_ONLINE:
  2579. case CPU_ONLINE_FROZEN:
  2580. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2581. cpu);
  2582. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2583. break;
  2584. }
  2585. return NOTIFY_OK;
  2586. }
  2587. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2588. {
  2589. memset(bus, 0, sizeof(*bus));
  2590. }
  2591. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2592. {
  2593. int i;
  2594. for (i = 0; i < bus->dev_count; i++) {
  2595. struct kvm_io_device *pos = bus->devs[i];
  2596. kvm_iodevice_destructor(pos);
  2597. }
  2598. }
  2599. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2600. {
  2601. int i;
  2602. for (i = 0; i < bus->dev_count; i++) {
  2603. struct kvm_io_device *pos = bus->devs[i];
  2604. if (pos->in_range(pos, addr))
  2605. return pos;
  2606. }
  2607. return NULL;
  2608. }
  2609. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2610. {
  2611. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2612. bus->devs[bus->dev_count++] = dev;
  2613. }
  2614. static struct notifier_block kvm_cpu_notifier = {
  2615. .notifier_call = kvm_cpu_hotplug,
  2616. .priority = 20, /* must be > scheduler priority */
  2617. };
  2618. static u64 stat_get(void *_offset)
  2619. {
  2620. unsigned offset = (long)_offset;
  2621. u64 total = 0;
  2622. struct kvm *kvm;
  2623. struct kvm_vcpu *vcpu;
  2624. int i;
  2625. spin_lock(&kvm_lock);
  2626. list_for_each_entry(kvm, &vm_list, vm_list)
  2627. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2628. vcpu = &kvm->vcpus[i];
  2629. total += *(u32 *)((void *)vcpu + offset);
  2630. }
  2631. spin_unlock(&kvm_lock);
  2632. return total;
  2633. }
  2634. static void stat_set(void *offset, u64 val)
  2635. {
  2636. }
  2637. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2638. static __init void kvm_init_debug(void)
  2639. {
  2640. struct kvm_stats_debugfs_item *p;
  2641. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2642. for (p = debugfs_entries; p->name; ++p)
  2643. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2644. (void *)(long)p->offset,
  2645. &stat_fops);
  2646. }
  2647. static void kvm_exit_debug(void)
  2648. {
  2649. struct kvm_stats_debugfs_item *p;
  2650. for (p = debugfs_entries; p->name; ++p)
  2651. debugfs_remove(p->dentry);
  2652. debugfs_remove(debugfs_dir);
  2653. }
  2654. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2655. {
  2656. hardware_disable(NULL);
  2657. return 0;
  2658. }
  2659. static int kvm_resume(struct sys_device *dev)
  2660. {
  2661. hardware_enable(NULL);
  2662. return 0;
  2663. }
  2664. static struct sysdev_class kvm_sysdev_class = {
  2665. set_kset_name("kvm"),
  2666. .suspend = kvm_suspend,
  2667. .resume = kvm_resume,
  2668. };
  2669. static struct sys_device kvm_sysdev = {
  2670. .id = 0,
  2671. .cls = &kvm_sysdev_class,
  2672. };
  2673. hpa_t bad_page_address;
  2674. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  2675. {
  2676. int r;
  2677. if (kvm_arch_ops) {
  2678. printk(KERN_ERR "kvm: already loaded the other module\n");
  2679. return -EEXIST;
  2680. }
  2681. if (!ops->cpu_has_kvm_support()) {
  2682. printk(KERN_ERR "kvm: no hardware support\n");
  2683. return -EOPNOTSUPP;
  2684. }
  2685. if (ops->disabled_by_bios()) {
  2686. printk(KERN_ERR "kvm: disabled by bios\n");
  2687. return -EOPNOTSUPP;
  2688. }
  2689. kvm_arch_ops = ops;
  2690. r = kvm_arch_ops->hardware_setup();
  2691. if (r < 0)
  2692. goto out;
  2693. on_each_cpu(hardware_enable, NULL, 0, 1);
  2694. r = register_cpu_notifier(&kvm_cpu_notifier);
  2695. if (r)
  2696. goto out_free_1;
  2697. register_reboot_notifier(&kvm_reboot_notifier);
  2698. r = sysdev_class_register(&kvm_sysdev_class);
  2699. if (r)
  2700. goto out_free_2;
  2701. r = sysdev_register(&kvm_sysdev);
  2702. if (r)
  2703. goto out_free_3;
  2704. kvm_chardev_ops.owner = module;
  2705. r = misc_register(&kvm_dev);
  2706. if (r) {
  2707. printk (KERN_ERR "kvm: misc device register failed\n");
  2708. goto out_free;
  2709. }
  2710. return r;
  2711. out_free:
  2712. sysdev_unregister(&kvm_sysdev);
  2713. out_free_3:
  2714. sysdev_class_unregister(&kvm_sysdev_class);
  2715. out_free_2:
  2716. unregister_reboot_notifier(&kvm_reboot_notifier);
  2717. unregister_cpu_notifier(&kvm_cpu_notifier);
  2718. out_free_1:
  2719. on_each_cpu(hardware_disable, NULL, 0, 1);
  2720. kvm_arch_ops->hardware_unsetup();
  2721. out:
  2722. kvm_arch_ops = NULL;
  2723. return r;
  2724. }
  2725. void kvm_exit_arch(void)
  2726. {
  2727. misc_deregister(&kvm_dev);
  2728. sysdev_unregister(&kvm_sysdev);
  2729. sysdev_class_unregister(&kvm_sysdev_class);
  2730. unregister_reboot_notifier(&kvm_reboot_notifier);
  2731. unregister_cpu_notifier(&kvm_cpu_notifier);
  2732. on_each_cpu(hardware_disable, NULL, 0, 1);
  2733. kvm_arch_ops->hardware_unsetup();
  2734. kvm_arch_ops = NULL;
  2735. }
  2736. static __init int kvm_init(void)
  2737. {
  2738. static struct page *bad_page;
  2739. int r;
  2740. r = kvm_mmu_module_init();
  2741. if (r)
  2742. goto out4;
  2743. kvm_init_debug();
  2744. kvm_init_msr_list();
  2745. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2746. r = -ENOMEM;
  2747. goto out;
  2748. }
  2749. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2750. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2751. return 0;
  2752. out:
  2753. kvm_exit_debug();
  2754. kvm_mmu_module_exit();
  2755. out4:
  2756. return r;
  2757. }
  2758. static __exit void kvm_exit(void)
  2759. {
  2760. kvm_exit_debug();
  2761. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2762. kvm_mmu_module_exit();
  2763. }
  2764. module_init(kvm_init)
  2765. module_exit(kvm_exit)
  2766. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2767. EXPORT_SYMBOL_GPL(kvm_exit_arch);