smp.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. /* smp.c: Sparc SMP support.
  2. *
  3. * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  4. * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  5. * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
  6. */
  7. #include <asm/head.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/init.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/mm.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/delay.h>
  21. #include <asm/ptrace.h>
  22. #include <asm/atomic.h>
  23. #include <asm/irq.h>
  24. #include <asm/page.h>
  25. #include <asm/pgalloc.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/oplib.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/cpudata.h>
  31. int smp_num_cpus = 1;
  32. volatile unsigned long cpu_callin_map[NR_CPUS] __initdata = {0,};
  33. unsigned char boot_cpu_id = 0;
  34. unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
  35. int smp_activated = 0;
  36. volatile int __cpu_number_map[NR_CPUS];
  37. volatile int __cpu_logical_map[NR_CPUS];
  38. cpumask_t cpu_online_map = CPU_MASK_NONE;
  39. cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
  40. cpumask_t smp_commenced_mask = CPU_MASK_NONE;
  41. /* The only guaranteed locking primitive available on all Sparc
  42. * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
  43. * places the current byte at the effective address into dest_reg and
  44. * places 0xff there afterwards. Pretty lame locking primitive
  45. * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
  46. * instruction which is much better...
  47. */
  48. /* Used to make bitops atomic */
  49. unsigned char bitops_spinlock = 0;
  50. void __cpuinit smp_store_cpu_info(int id)
  51. {
  52. int cpu_node;
  53. cpu_data(id).udelay_val = loops_per_jiffy;
  54. cpu_find_by_mid(id, &cpu_node);
  55. cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
  56. "clock-frequency", 0);
  57. cpu_data(id).prom_node = cpu_node;
  58. cpu_data(id).mid = cpu_get_hwmid(cpu_node);
  59. if (cpu_data(id).mid < 0)
  60. panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
  61. }
  62. void __init smp_cpus_done(unsigned int max_cpus)
  63. {
  64. extern void smp4m_smp_done(void);
  65. extern void smp4d_smp_done(void);
  66. unsigned long bogosum = 0;
  67. int cpu, num;
  68. for (cpu = 0, num = 0; cpu < NR_CPUS; cpu++)
  69. if (cpu_online(cpu)) {
  70. num++;
  71. bogosum += cpu_data(cpu).udelay_val;
  72. }
  73. printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
  74. num, bogosum/(500000/HZ),
  75. (bogosum/(5000/HZ))%100);
  76. switch(sparc_cpu_model) {
  77. case sun4:
  78. printk("SUN4\n");
  79. BUG();
  80. break;
  81. case sun4c:
  82. printk("SUN4C\n");
  83. BUG();
  84. break;
  85. case sun4m:
  86. smp4m_smp_done();
  87. break;
  88. case sun4d:
  89. smp4d_smp_done();
  90. break;
  91. case sun4e:
  92. printk("SUN4E\n");
  93. BUG();
  94. break;
  95. case sun4u:
  96. printk("SUN4U\n");
  97. BUG();
  98. break;
  99. default:
  100. printk("UNKNOWN!\n");
  101. BUG();
  102. break;
  103. };
  104. }
  105. void cpu_panic(void)
  106. {
  107. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  108. panic("SMP bolixed\n");
  109. }
  110. struct linux_prom_registers smp_penguin_ctable __initdata = { 0 };
  111. void smp_send_reschedule(int cpu)
  112. {
  113. /* See sparc64 */
  114. }
  115. void smp_send_stop(void)
  116. {
  117. }
  118. void smp_flush_cache_all(void)
  119. {
  120. xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
  121. local_flush_cache_all();
  122. }
  123. void smp_flush_tlb_all(void)
  124. {
  125. xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
  126. local_flush_tlb_all();
  127. }
  128. void smp_flush_cache_mm(struct mm_struct *mm)
  129. {
  130. if(mm->context != NO_CONTEXT) {
  131. cpumask_t cpu_mask = mm->cpu_vm_mask;
  132. cpu_clear(smp_processor_id(), cpu_mask);
  133. if (!cpus_empty(cpu_mask))
  134. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
  135. local_flush_cache_mm(mm);
  136. }
  137. }
  138. void smp_flush_tlb_mm(struct mm_struct *mm)
  139. {
  140. if(mm->context != NO_CONTEXT) {
  141. cpumask_t cpu_mask = mm->cpu_vm_mask;
  142. cpu_clear(smp_processor_id(), cpu_mask);
  143. if (!cpus_empty(cpu_mask)) {
  144. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
  145. if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
  146. mm->cpu_vm_mask = cpumask_of_cpu(smp_processor_id());
  147. }
  148. local_flush_tlb_mm(mm);
  149. }
  150. }
  151. void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
  152. unsigned long end)
  153. {
  154. struct mm_struct *mm = vma->vm_mm;
  155. if (mm->context != NO_CONTEXT) {
  156. cpumask_t cpu_mask = mm->cpu_vm_mask;
  157. cpu_clear(smp_processor_id(), cpu_mask);
  158. if (!cpus_empty(cpu_mask))
  159. xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
  160. local_flush_cache_range(vma, start, end);
  161. }
  162. }
  163. void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  164. unsigned long end)
  165. {
  166. struct mm_struct *mm = vma->vm_mm;
  167. if (mm->context != NO_CONTEXT) {
  168. cpumask_t cpu_mask = mm->cpu_vm_mask;
  169. cpu_clear(smp_processor_id(), cpu_mask);
  170. if (!cpus_empty(cpu_mask))
  171. xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
  172. local_flush_tlb_range(vma, start, end);
  173. }
  174. }
  175. void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
  176. {
  177. struct mm_struct *mm = vma->vm_mm;
  178. if(mm->context != NO_CONTEXT) {
  179. cpumask_t cpu_mask = mm->cpu_vm_mask;
  180. cpu_clear(smp_processor_id(), cpu_mask);
  181. if (!cpus_empty(cpu_mask))
  182. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
  183. local_flush_cache_page(vma, page);
  184. }
  185. }
  186. void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  187. {
  188. struct mm_struct *mm = vma->vm_mm;
  189. if(mm->context != NO_CONTEXT) {
  190. cpumask_t cpu_mask = mm->cpu_vm_mask;
  191. cpu_clear(smp_processor_id(), cpu_mask);
  192. if (!cpus_empty(cpu_mask))
  193. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
  194. local_flush_tlb_page(vma, page);
  195. }
  196. }
  197. void smp_reschedule_irq(void)
  198. {
  199. set_need_resched();
  200. }
  201. void smp_flush_page_to_ram(unsigned long page)
  202. {
  203. /* Current theory is that those who call this are the one's
  204. * who have just dirtied their cache with the pages contents
  205. * in kernel space, therefore we only run this on local cpu.
  206. *
  207. * XXX This experiment failed, research further... -DaveM
  208. */
  209. #if 1
  210. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
  211. #endif
  212. local_flush_page_to_ram(page);
  213. }
  214. void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
  215. {
  216. cpumask_t cpu_mask = mm->cpu_vm_mask;
  217. cpu_clear(smp_processor_id(), cpu_mask);
  218. if (!cpus_empty(cpu_mask))
  219. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
  220. local_flush_sig_insns(mm, insn_addr);
  221. }
  222. extern unsigned int lvl14_resolution;
  223. /* /proc/profile writes can call this, don't __init it please. */
  224. static DEFINE_SPINLOCK(prof_setup_lock);
  225. int setup_profiling_timer(unsigned int multiplier)
  226. {
  227. int i;
  228. unsigned long flags;
  229. /* Prevent level14 ticker IRQ flooding. */
  230. if((!multiplier) || (lvl14_resolution / multiplier) < 500)
  231. return -EINVAL;
  232. spin_lock_irqsave(&prof_setup_lock, flags);
  233. for_each_possible_cpu(i) {
  234. load_profile_irq(i, lvl14_resolution / multiplier);
  235. prof_multiplier(i) = multiplier;
  236. }
  237. spin_unlock_irqrestore(&prof_setup_lock, flags);
  238. return 0;
  239. }
  240. void __init smp_prepare_cpus(unsigned int max_cpus)
  241. {
  242. extern void __init smp4m_boot_cpus(void);
  243. extern void __init smp4d_boot_cpus(void);
  244. int i, cpuid, extra;
  245. printk("Entering SMP Mode...\n");
  246. extra = 0;
  247. for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
  248. if (cpuid >= NR_CPUS)
  249. extra++;
  250. }
  251. /* i = number of cpus */
  252. if (extra && max_cpus > i - extra)
  253. printk("Warning: NR_CPUS is too low to start all cpus\n");
  254. smp_store_cpu_info(boot_cpu_id);
  255. switch(sparc_cpu_model) {
  256. case sun4:
  257. printk("SUN4\n");
  258. BUG();
  259. break;
  260. case sun4c:
  261. printk("SUN4C\n");
  262. BUG();
  263. break;
  264. case sun4m:
  265. smp4m_boot_cpus();
  266. break;
  267. case sun4d:
  268. smp4d_boot_cpus();
  269. break;
  270. case sun4e:
  271. printk("SUN4E\n");
  272. BUG();
  273. break;
  274. case sun4u:
  275. printk("SUN4U\n");
  276. BUG();
  277. break;
  278. default:
  279. printk("UNKNOWN!\n");
  280. BUG();
  281. break;
  282. };
  283. }
  284. /* Set this up early so that things like the scheduler can init
  285. * properly. We use the same cpu mask for both the present and
  286. * possible cpu map.
  287. */
  288. void __init smp_setup_cpu_possible_map(void)
  289. {
  290. int instance, mid;
  291. instance = 0;
  292. while (!cpu_find_by_instance(instance, NULL, &mid)) {
  293. if (mid < NR_CPUS) {
  294. cpu_set(mid, phys_cpu_present_map);
  295. cpu_set(mid, cpu_present_map);
  296. }
  297. instance++;
  298. }
  299. }
  300. void __init smp_prepare_boot_cpu(void)
  301. {
  302. int cpuid = hard_smp_processor_id();
  303. if (cpuid >= NR_CPUS) {
  304. prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
  305. prom_halt();
  306. }
  307. if (cpuid != 0)
  308. printk("boot cpu id != 0, this could work but is untested\n");
  309. current_thread_info()->cpu = cpuid;
  310. cpu_set(cpuid, cpu_online_map);
  311. cpu_set(cpuid, phys_cpu_present_map);
  312. }
  313. int __cpuinit __cpu_up(unsigned int cpu)
  314. {
  315. extern int __cpuinit smp4m_boot_one_cpu(int);
  316. extern int __cpuinit smp4d_boot_one_cpu(int);
  317. int ret=0;
  318. switch(sparc_cpu_model) {
  319. case sun4:
  320. printk("SUN4\n");
  321. BUG();
  322. break;
  323. case sun4c:
  324. printk("SUN4C\n");
  325. BUG();
  326. break;
  327. case sun4m:
  328. ret = smp4m_boot_one_cpu(cpu);
  329. break;
  330. case sun4d:
  331. ret = smp4d_boot_one_cpu(cpu);
  332. break;
  333. case sun4e:
  334. printk("SUN4E\n");
  335. BUG();
  336. break;
  337. case sun4u:
  338. printk("SUN4U\n");
  339. BUG();
  340. break;
  341. default:
  342. printk("UNKNOWN!\n");
  343. BUG();
  344. break;
  345. };
  346. if (!ret) {
  347. cpu_set(cpu, smp_commenced_mask);
  348. while (!cpu_online(cpu))
  349. mb();
  350. }
  351. return ret;
  352. }
  353. void smp_bogo(struct seq_file *m)
  354. {
  355. int i;
  356. for_each_online_cpu(i) {
  357. seq_printf(m,
  358. "Cpu%dBogo\t: %lu.%02lu\n",
  359. i,
  360. cpu_data(i).udelay_val/(500000/HZ),
  361. (cpu_data(i).udelay_val/(5000/HZ))%100);
  362. }
  363. }
  364. void smp_info(struct seq_file *m)
  365. {
  366. int i;
  367. seq_printf(m, "State:\n");
  368. for_each_online_cpu(i)
  369. seq_printf(m, "CPU%d\t\t: online\n", i);
  370. }