sched.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806
  1. /* sched.c - SPU scheduler.
  2. *
  3. * Copyright (C) IBM 2005
  4. * Author: Mark Nutter <mnutter@us.ibm.com>
  5. *
  6. * 2006-03-31 NUMA domains added.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #undef DEBUG
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/sched.h>
  26. #include <linux/kernel.h>
  27. #include <linux/mm.h>
  28. #include <linux/completion.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/smp.h>
  31. #include <linux/stddef.h>
  32. #include <linux/unistd.h>
  33. #include <linux/numa.h>
  34. #include <linux/mutex.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kthread.h>
  37. #include <linux/pid_namespace.h>
  38. #include <linux/proc_fs.h>
  39. #include <linux/seq_file.h>
  40. #include <asm/io.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/spu.h>
  43. #include <asm/spu_csa.h>
  44. #include <asm/spu_priv1.h>
  45. #include "spufs.h"
  46. struct spu_prio_array {
  47. DECLARE_BITMAP(bitmap, MAX_PRIO);
  48. struct list_head runq[MAX_PRIO];
  49. spinlock_t runq_lock;
  50. struct list_head active_list[MAX_NUMNODES];
  51. struct mutex active_mutex[MAX_NUMNODES];
  52. int nr_active[MAX_NUMNODES];
  53. int nr_waiting;
  54. };
  55. static unsigned long spu_avenrun[3];
  56. static struct spu_prio_array *spu_prio;
  57. static struct task_struct *spusched_task;
  58. static struct timer_list spusched_timer;
  59. /*
  60. * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
  61. */
  62. #define NORMAL_PRIO 120
  63. /*
  64. * Frequency of the spu scheduler tick. By default we do one SPU scheduler
  65. * tick for every 10 CPU scheduler ticks.
  66. */
  67. #define SPUSCHED_TICK (10)
  68. /*
  69. * These are the 'tuning knobs' of the scheduler:
  70. *
  71. * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
  72. * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  73. */
  74. #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
  75. #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
  76. #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
  77. #define SCALE_PRIO(x, prio) \
  78. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
  79. /*
  80. * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
  81. * [800ms ... 100ms ... 5ms]
  82. *
  83. * The higher a thread's priority, the bigger timeslices
  84. * it gets during one round of execution. But even the lowest
  85. * priority thread gets MIN_TIMESLICE worth of execution time.
  86. */
  87. void spu_set_timeslice(struct spu_context *ctx)
  88. {
  89. if (ctx->prio < NORMAL_PRIO)
  90. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
  91. else
  92. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
  93. }
  94. /*
  95. * Update scheduling information from the owning thread.
  96. */
  97. void __spu_update_sched_info(struct spu_context *ctx)
  98. {
  99. /*
  100. * 32-Bit assignment are atomic on powerpc, and we don't care about
  101. * memory ordering here because retriving the controlling thread is
  102. * per defintion racy.
  103. */
  104. ctx->tid = current->pid;
  105. /*
  106. * We do our own priority calculations, so we normally want
  107. * ->static_prio to start with. Unfortunately thies field
  108. * contains junk for threads with a realtime scheduling
  109. * policy so we have to look at ->prio in this case.
  110. */
  111. if (rt_prio(current->prio))
  112. ctx->prio = current->prio;
  113. else
  114. ctx->prio = current->static_prio;
  115. ctx->policy = current->policy;
  116. /*
  117. * A lot of places that don't hold active_mutex poke into
  118. * cpus_allowed, including grab_runnable_context which
  119. * already holds the runq_lock. So abuse runq_lock
  120. * to protect this field aswell.
  121. */
  122. spin_lock(&spu_prio->runq_lock);
  123. ctx->cpus_allowed = current->cpus_allowed;
  124. spin_unlock(&spu_prio->runq_lock);
  125. }
  126. void spu_update_sched_info(struct spu_context *ctx)
  127. {
  128. int node = ctx->spu->node;
  129. mutex_lock(&spu_prio->active_mutex[node]);
  130. __spu_update_sched_info(ctx);
  131. mutex_unlock(&spu_prio->active_mutex[node]);
  132. }
  133. static int __node_allowed(struct spu_context *ctx, int node)
  134. {
  135. if (nr_cpus_node(node)) {
  136. cpumask_t mask = node_to_cpumask(node);
  137. if (cpus_intersects(mask, ctx->cpus_allowed))
  138. return 1;
  139. }
  140. return 0;
  141. }
  142. static int node_allowed(struct spu_context *ctx, int node)
  143. {
  144. int rval;
  145. spin_lock(&spu_prio->runq_lock);
  146. rval = __node_allowed(ctx, node);
  147. spin_unlock(&spu_prio->runq_lock);
  148. return rval;
  149. }
  150. /**
  151. * spu_add_to_active_list - add spu to active list
  152. * @spu: spu to add to the active list
  153. */
  154. static void spu_add_to_active_list(struct spu *spu)
  155. {
  156. int node = spu->node;
  157. mutex_lock(&spu_prio->active_mutex[node]);
  158. spu_prio->nr_active[node]++;
  159. list_add_tail(&spu->list, &spu_prio->active_list[node]);
  160. mutex_unlock(&spu_prio->active_mutex[node]);
  161. }
  162. static void __spu_remove_from_active_list(struct spu *spu)
  163. {
  164. list_del_init(&spu->list);
  165. spu_prio->nr_active[spu->node]--;
  166. }
  167. /**
  168. * spu_remove_from_active_list - remove spu from active list
  169. * @spu: spu to remove from the active list
  170. */
  171. static void spu_remove_from_active_list(struct spu *spu)
  172. {
  173. int node = spu->node;
  174. mutex_lock(&spu_prio->active_mutex[node]);
  175. __spu_remove_from_active_list(spu);
  176. mutex_unlock(&spu_prio->active_mutex[node]);
  177. }
  178. static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
  179. static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
  180. {
  181. blocking_notifier_call_chain(&spu_switch_notifier,
  182. ctx ? ctx->object_id : 0, spu);
  183. }
  184. int spu_switch_event_register(struct notifier_block * n)
  185. {
  186. return blocking_notifier_chain_register(&spu_switch_notifier, n);
  187. }
  188. int spu_switch_event_unregister(struct notifier_block * n)
  189. {
  190. return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
  191. }
  192. /**
  193. * spu_bind_context - bind spu context to physical spu
  194. * @spu: physical spu to bind to
  195. * @ctx: context to bind
  196. */
  197. static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
  198. {
  199. pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
  200. spu->number, spu->node);
  201. ctx->stats.slb_flt_base = spu->stats.slb_flt;
  202. ctx->stats.class2_intr_base = spu->stats.class2_intr;
  203. spu->ctx = ctx;
  204. spu->flags = 0;
  205. ctx->spu = spu;
  206. ctx->ops = &spu_hw_ops;
  207. spu->pid = current->pid;
  208. spu_associate_mm(spu, ctx->owner);
  209. spu->ibox_callback = spufs_ibox_callback;
  210. spu->wbox_callback = spufs_wbox_callback;
  211. spu->stop_callback = spufs_stop_callback;
  212. spu->mfc_callback = spufs_mfc_callback;
  213. spu->dma_callback = spufs_dma_callback;
  214. mb();
  215. spu_unmap_mappings(ctx);
  216. spu_restore(&ctx->csa, spu);
  217. spu->timestamp = jiffies;
  218. spu_cpu_affinity_set(spu, raw_smp_processor_id());
  219. spu_switch_notify(spu, ctx);
  220. ctx->state = SPU_STATE_RUNNABLE;
  221. spu_switch_state(spu, SPU_UTIL_SYSTEM);
  222. }
  223. /**
  224. * spu_unbind_context - unbind spu context from physical spu
  225. * @spu: physical spu to unbind from
  226. * @ctx: context to unbind
  227. */
  228. static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
  229. {
  230. pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
  231. spu->pid, spu->number, spu->node);
  232. spu_switch_state(spu, SPU_UTIL_IDLE);
  233. spu_switch_notify(spu, NULL);
  234. spu_unmap_mappings(ctx);
  235. spu_save(&ctx->csa, spu);
  236. spu->timestamp = jiffies;
  237. ctx->state = SPU_STATE_SAVED;
  238. spu->ibox_callback = NULL;
  239. spu->wbox_callback = NULL;
  240. spu->stop_callback = NULL;
  241. spu->mfc_callback = NULL;
  242. spu->dma_callback = NULL;
  243. spu_associate_mm(spu, NULL);
  244. spu->pid = 0;
  245. ctx->ops = &spu_backing_ops;
  246. ctx->spu = NULL;
  247. spu->flags = 0;
  248. spu->ctx = NULL;
  249. ctx->stats.slb_flt +=
  250. (spu->stats.slb_flt - ctx->stats.slb_flt_base);
  251. ctx->stats.class2_intr +=
  252. (spu->stats.class2_intr - ctx->stats.class2_intr_base);
  253. }
  254. /**
  255. * spu_add_to_rq - add a context to the runqueue
  256. * @ctx: context to add
  257. */
  258. static void __spu_add_to_rq(struct spu_context *ctx)
  259. {
  260. /*
  261. * Unfortunately this code path can be called from multiple threads
  262. * on behalf of a single context due to the way the problem state
  263. * mmap support works.
  264. *
  265. * Fortunately we need to wake up all these threads at the same time
  266. * and can simply skip the runqueue addition for every but the first
  267. * thread getting into this codepath.
  268. *
  269. * It's still quite hacky, and long-term we should proxy all other
  270. * threads through the owner thread so that spu_run is in control
  271. * of all the scheduling activity for a given context.
  272. */
  273. if (list_empty(&ctx->rq)) {
  274. list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
  275. set_bit(ctx->prio, spu_prio->bitmap);
  276. if (!spu_prio->nr_waiting++)
  277. __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  278. }
  279. }
  280. static void __spu_del_from_rq(struct spu_context *ctx)
  281. {
  282. int prio = ctx->prio;
  283. if (!list_empty(&ctx->rq)) {
  284. if (!--spu_prio->nr_waiting)
  285. del_timer(&spusched_timer);
  286. list_del_init(&ctx->rq);
  287. if (list_empty(&spu_prio->runq[prio]))
  288. clear_bit(prio, spu_prio->bitmap);
  289. }
  290. }
  291. static void spu_prio_wait(struct spu_context *ctx)
  292. {
  293. DEFINE_WAIT(wait);
  294. spin_lock(&spu_prio->runq_lock);
  295. prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
  296. if (!signal_pending(current)) {
  297. __spu_add_to_rq(ctx);
  298. spin_unlock(&spu_prio->runq_lock);
  299. mutex_unlock(&ctx->state_mutex);
  300. schedule();
  301. mutex_lock(&ctx->state_mutex);
  302. spin_lock(&spu_prio->runq_lock);
  303. __spu_del_from_rq(ctx);
  304. }
  305. spin_unlock(&spu_prio->runq_lock);
  306. __set_current_state(TASK_RUNNING);
  307. remove_wait_queue(&ctx->stop_wq, &wait);
  308. }
  309. static struct spu *spu_get_idle(struct spu_context *ctx)
  310. {
  311. struct spu *spu = NULL;
  312. int node = cpu_to_node(raw_smp_processor_id());
  313. int n;
  314. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  315. node = (node < MAX_NUMNODES) ? node : 0;
  316. if (!node_allowed(ctx, node))
  317. continue;
  318. spu = spu_alloc_node(node);
  319. if (spu)
  320. break;
  321. }
  322. return spu;
  323. }
  324. /**
  325. * find_victim - find a lower priority context to preempt
  326. * @ctx: canidate context for running
  327. *
  328. * Returns the freed physical spu to run the new context on.
  329. */
  330. static struct spu *find_victim(struct spu_context *ctx)
  331. {
  332. struct spu_context *victim = NULL;
  333. struct spu *spu;
  334. int node, n;
  335. /*
  336. * Look for a possible preemption candidate on the local node first.
  337. * If there is no candidate look at the other nodes. This isn't
  338. * exactly fair, but so far the whole spu schedule tries to keep
  339. * a strong node affinity. We might want to fine-tune this in
  340. * the future.
  341. */
  342. restart:
  343. node = cpu_to_node(raw_smp_processor_id());
  344. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  345. node = (node < MAX_NUMNODES) ? node : 0;
  346. if (!node_allowed(ctx, node))
  347. continue;
  348. mutex_lock(&spu_prio->active_mutex[node]);
  349. list_for_each_entry(spu, &spu_prio->active_list[node], list) {
  350. struct spu_context *tmp = spu->ctx;
  351. if (tmp->prio > ctx->prio &&
  352. (!victim || tmp->prio > victim->prio))
  353. victim = spu->ctx;
  354. }
  355. mutex_unlock(&spu_prio->active_mutex[node]);
  356. if (victim) {
  357. /*
  358. * This nests ctx->state_mutex, but we always lock
  359. * higher priority contexts before lower priority
  360. * ones, so this is safe until we introduce
  361. * priority inheritance schemes.
  362. */
  363. if (!mutex_trylock(&victim->state_mutex)) {
  364. victim = NULL;
  365. goto restart;
  366. }
  367. spu = victim->spu;
  368. if (!spu) {
  369. /*
  370. * This race can happen because we've dropped
  371. * the active list mutex. No a problem, just
  372. * restart the search.
  373. */
  374. mutex_unlock(&victim->state_mutex);
  375. victim = NULL;
  376. goto restart;
  377. }
  378. spu_remove_from_active_list(spu);
  379. spu_unbind_context(spu, victim);
  380. victim->stats.invol_ctx_switch++;
  381. spu->stats.invol_ctx_switch++;
  382. mutex_unlock(&victim->state_mutex);
  383. /*
  384. * We need to break out of the wait loop in spu_run
  385. * manually to ensure this context gets put on the
  386. * runqueue again ASAP.
  387. */
  388. wake_up(&victim->stop_wq);
  389. return spu;
  390. }
  391. }
  392. return NULL;
  393. }
  394. /**
  395. * spu_activate - find a free spu for a context and execute it
  396. * @ctx: spu context to schedule
  397. * @flags: flags (currently ignored)
  398. *
  399. * Tries to find a free spu to run @ctx. If no free spu is available
  400. * add the context to the runqueue so it gets woken up once an spu
  401. * is available.
  402. */
  403. int spu_activate(struct spu_context *ctx, unsigned long flags)
  404. {
  405. spuctx_switch_state(ctx, SPUCTX_UTIL_SYSTEM);
  406. do {
  407. struct spu *spu;
  408. /*
  409. * If there are multiple threads waiting for a single context
  410. * only one actually binds the context while the others will
  411. * only be able to acquire the state_mutex once the context
  412. * already is in runnable state.
  413. */
  414. if (ctx->spu)
  415. return 0;
  416. spu = spu_get_idle(ctx);
  417. /*
  418. * If this is a realtime thread we try to get it running by
  419. * preempting a lower priority thread.
  420. */
  421. if (!spu && rt_prio(ctx->prio))
  422. spu = find_victim(ctx);
  423. if (spu) {
  424. spu_bind_context(spu, ctx);
  425. spu_add_to_active_list(spu);
  426. return 0;
  427. }
  428. spu_prio_wait(ctx);
  429. } while (!signal_pending(current));
  430. return -ERESTARTSYS;
  431. }
  432. /**
  433. * grab_runnable_context - try to find a runnable context
  434. *
  435. * Remove the highest priority context on the runqueue and return it
  436. * to the caller. Returns %NULL if no runnable context was found.
  437. */
  438. static struct spu_context *grab_runnable_context(int prio, int node)
  439. {
  440. struct spu_context *ctx;
  441. int best;
  442. spin_lock(&spu_prio->runq_lock);
  443. best = sched_find_first_bit(spu_prio->bitmap);
  444. while (best < prio) {
  445. struct list_head *rq = &spu_prio->runq[best];
  446. list_for_each_entry(ctx, rq, rq) {
  447. /* XXX(hch): check for affinity here aswell */
  448. if (__node_allowed(ctx, node)) {
  449. __spu_del_from_rq(ctx);
  450. goto found;
  451. }
  452. }
  453. best++;
  454. }
  455. ctx = NULL;
  456. found:
  457. spin_unlock(&spu_prio->runq_lock);
  458. return ctx;
  459. }
  460. static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
  461. {
  462. struct spu *spu = ctx->spu;
  463. struct spu_context *new = NULL;
  464. if (spu) {
  465. new = grab_runnable_context(max_prio, spu->node);
  466. if (new || force) {
  467. spu_remove_from_active_list(spu);
  468. spu_unbind_context(spu, ctx);
  469. ctx->stats.vol_ctx_switch++;
  470. spu->stats.vol_ctx_switch++;
  471. spu_free(spu);
  472. if (new)
  473. wake_up(&new->stop_wq);
  474. }
  475. }
  476. return new != NULL;
  477. }
  478. /**
  479. * spu_deactivate - unbind a context from it's physical spu
  480. * @ctx: spu context to unbind
  481. *
  482. * Unbind @ctx from the physical spu it is running on and schedule
  483. * the highest priority context to run on the freed physical spu.
  484. */
  485. void spu_deactivate(struct spu_context *ctx)
  486. {
  487. /*
  488. * We must never reach this for a nosched context,
  489. * but handle the case gracefull instead of panicing.
  490. */
  491. if (ctx->flags & SPU_CREATE_NOSCHED) {
  492. WARN_ON(1);
  493. return;
  494. }
  495. __spu_deactivate(ctx, 1, MAX_PRIO);
  496. spuctx_switch_state(ctx, SPUCTX_UTIL_USER);
  497. }
  498. /**
  499. * spu_yield - yield a physical spu if others are waiting
  500. * @ctx: spu context to yield
  501. *
  502. * Check if there is a higher priority context waiting and if yes
  503. * unbind @ctx from the physical spu and schedule the highest
  504. * priority context to run on the freed physical spu instead.
  505. */
  506. void spu_yield(struct spu_context *ctx)
  507. {
  508. if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
  509. mutex_lock(&ctx->state_mutex);
  510. if (__spu_deactivate(ctx, 0, MAX_PRIO))
  511. spuctx_switch_state(ctx, SPUCTX_UTIL_USER);
  512. else {
  513. spuctx_switch_state(ctx, SPUCTX_UTIL_LOADED);
  514. spu_switch_state(ctx->spu, SPU_UTIL_USER);
  515. }
  516. mutex_unlock(&ctx->state_mutex);
  517. }
  518. }
  519. static void spusched_tick(struct spu_context *ctx)
  520. {
  521. if (ctx->flags & SPU_CREATE_NOSCHED)
  522. return;
  523. if (ctx->policy == SCHED_FIFO)
  524. return;
  525. if (--ctx->time_slice)
  526. return;
  527. /*
  528. * Unfortunately active_mutex ranks outside of state_mutex, so
  529. * we have to trylock here. If we fail give the context another
  530. * tick and try again.
  531. */
  532. if (mutex_trylock(&ctx->state_mutex)) {
  533. struct spu *spu = ctx->spu;
  534. struct spu_context *new;
  535. new = grab_runnable_context(ctx->prio + 1, spu->node);
  536. if (new) {
  537. __spu_remove_from_active_list(spu);
  538. spu_unbind_context(spu, ctx);
  539. ctx->stats.invol_ctx_switch++;
  540. spu->stats.invol_ctx_switch++;
  541. spu_free(spu);
  542. wake_up(&new->stop_wq);
  543. /*
  544. * We need to break out of the wait loop in
  545. * spu_run manually to ensure this context
  546. * gets put on the runqueue again ASAP.
  547. */
  548. wake_up(&ctx->stop_wq);
  549. }
  550. spu_set_timeslice(ctx);
  551. mutex_unlock(&ctx->state_mutex);
  552. } else {
  553. ctx->time_slice++;
  554. }
  555. }
  556. /**
  557. * count_active_contexts - count nr of active tasks
  558. *
  559. * Return the number of tasks currently running or waiting to run.
  560. *
  561. * Note that we don't take runq_lock / active_mutex here. Reading
  562. * a single 32bit value is atomic on powerpc, and we don't care
  563. * about memory ordering issues here.
  564. */
  565. static unsigned long count_active_contexts(void)
  566. {
  567. int nr_active = 0, node;
  568. for (node = 0; node < MAX_NUMNODES; node++)
  569. nr_active += spu_prio->nr_active[node];
  570. nr_active += spu_prio->nr_waiting;
  571. return nr_active;
  572. }
  573. /**
  574. * spu_calc_load - given tick count, update the avenrun load estimates.
  575. * @tick: tick count
  576. *
  577. * No locking against reading these values from userspace, as for
  578. * the CPU loadavg code.
  579. */
  580. static void spu_calc_load(unsigned long ticks)
  581. {
  582. unsigned long active_tasks; /* fixed-point */
  583. static int count = LOAD_FREQ;
  584. count -= ticks;
  585. if (unlikely(count < 0)) {
  586. active_tasks = count_active_contexts() * FIXED_1;
  587. do {
  588. CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
  589. CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
  590. CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
  591. count += LOAD_FREQ;
  592. } while (count < 0);
  593. }
  594. }
  595. static void spusched_wake(unsigned long data)
  596. {
  597. mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  598. wake_up_process(spusched_task);
  599. spu_calc_load(SPUSCHED_TICK);
  600. }
  601. static int spusched_thread(void *unused)
  602. {
  603. struct spu *spu, *next;
  604. int node;
  605. while (!kthread_should_stop()) {
  606. set_current_state(TASK_INTERRUPTIBLE);
  607. schedule();
  608. for (node = 0; node < MAX_NUMNODES; node++) {
  609. mutex_lock(&spu_prio->active_mutex[node]);
  610. list_for_each_entry_safe(spu, next,
  611. &spu_prio->active_list[node],
  612. list)
  613. spusched_tick(spu->ctx);
  614. mutex_unlock(&spu_prio->active_mutex[node]);
  615. }
  616. }
  617. return 0;
  618. }
  619. #define LOAD_INT(x) ((x) >> FSHIFT)
  620. #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
  621. static int show_spu_loadavg(struct seq_file *s, void *private)
  622. {
  623. int a, b, c;
  624. a = spu_avenrun[0] + (FIXED_1/200);
  625. b = spu_avenrun[1] + (FIXED_1/200);
  626. c = spu_avenrun[2] + (FIXED_1/200);
  627. /*
  628. * Note that last_pid doesn't really make much sense for the
  629. * SPU loadavg (it even seems very odd on the CPU side..),
  630. * but we include it here to have a 100% compatible interface.
  631. */
  632. seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
  633. LOAD_INT(a), LOAD_FRAC(a),
  634. LOAD_INT(b), LOAD_FRAC(b),
  635. LOAD_INT(c), LOAD_FRAC(c),
  636. count_active_contexts(),
  637. atomic_read(&nr_spu_contexts),
  638. current->nsproxy->pid_ns->last_pid);
  639. return 0;
  640. }
  641. static int spu_loadavg_open(struct inode *inode, struct file *file)
  642. {
  643. return single_open(file, show_spu_loadavg, NULL);
  644. }
  645. static const struct file_operations spu_loadavg_fops = {
  646. .open = spu_loadavg_open,
  647. .read = seq_read,
  648. .llseek = seq_lseek,
  649. .release = single_release,
  650. };
  651. int __init spu_sched_init(void)
  652. {
  653. struct proc_dir_entry *entry;
  654. int err = -ENOMEM, i;
  655. spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
  656. if (!spu_prio)
  657. goto out;
  658. for (i = 0; i < MAX_PRIO; i++) {
  659. INIT_LIST_HEAD(&spu_prio->runq[i]);
  660. __clear_bit(i, spu_prio->bitmap);
  661. }
  662. __set_bit(MAX_PRIO, spu_prio->bitmap);
  663. for (i = 0; i < MAX_NUMNODES; i++) {
  664. mutex_init(&spu_prio->active_mutex[i]);
  665. INIT_LIST_HEAD(&spu_prio->active_list[i]);
  666. }
  667. spin_lock_init(&spu_prio->runq_lock);
  668. setup_timer(&spusched_timer, spusched_wake, 0);
  669. spusched_task = kthread_run(spusched_thread, NULL, "spusched");
  670. if (IS_ERR(spusched_task)) {
  671. err = PTR_ERR(spusched_task);
  672. goto out_free_spu_prio;
  673. }
  674. entry = create_proc_entry("spu_loadavg", 0, NULL);
  675. if (!entry)
  676. goto out_stop_kthread;
  677. entry->proc_fops = &spu_loadavg_fops;
  678. pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
  679. SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
  680. return 0;
  681. out_stop_kthread:
  682. kthread_stop(spusched_task);
  683. out_free_spu_prio:
  684. kfree(spu_prio);
  685. out:
  686. return err;
  687. }
  688. void __exit spu_sched_exit(void)
  689. {
  690. struct spu *spu, *tmp;
  691. int node;
  692. remove_proc_entry("spu_loadavg", NULL);
  693. del_timer_sync(&spusched_timer);
  694. kthread_stop(spusched_task);
  695. for (node = 0; node < MAX_NUMNODES; node++) {
  696. mutex_lock(&spu_prio->active_mutex[node]);
  697. list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
  698. list) {
  699. list_del_init(&spu->list);
  700. spu_free(spu);
  701. }
  702. mutex_unlock(&spu_prio->active_mutex[node]);
  703. }
  704. kfree(spu_prio);
  705. }