tlbex.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004,2005,2006 by Thiemo Seufer
  9. * Copyright (C) 2005 Maciej W. Rozycki
  10. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  11. *
  12. * ... and the days got worse and worse and now you see
  13. * I've gone completly out of my mind.
  14. *
  15. * They're coming to take me a away haha
  16. * they're coming to take me a away hoho hihi haha
  17. * to the funny farm where code is beautiful all the time ...
  18. *
  19. * (Condolences to Napoleon XIV)
  20. */
  21. #include <stdarg.h>
  22. #include <linux/mm.h>
  23. #include <linux/kernel.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/init.h>
  27. #include <asm/pgtable.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/mmu_context.h>
  30. #include <asm/inst.h>
  31. #include <asm/elf.h>
  32. #include <asm/smp.h>
  33. #include <asm/war.h>
  34. static __init int __maybe_unused r45k_bvahwbug(void)
  35. {
  36. /* XXX: We should probe for the presence of this bug, but we don't. */
  37. return 0;
  38. }
  39. static __init int __maybe_unused r4k_250MHZhwbug(void)
  40. {
  41. /* XXX: We should probe for the presence of this bug, but we don't. */
  42. return 0;
  43. }
  44. static __init int __maybe_unused bcm1250_m3_war(void)
  45. {
  46. return BCM1250_M3_WAR;
  47. }
  48. static __init int __maybe_unused r10000_llsc_war(void)
  49. {
  50. return R10000_LLSC_WAR;
  51. }
  52. /*
  53. * A little micro-assembler, intended for TLB refill handler
  54. * synthesizing. It is intentionally kept simple, does only support
  55. * a subset of instructions, and does not try to hide pipeline effects
  56. * like branch delay slots.
  57. */
  58. enum fields
  59. {
  60. RS = 0x001,
  61. RT = 0x002,
  62. RD = 0x004,
  63. RE = 0x008,
  64. SIMM = 0x010,
  65. UIMM = 0x020,
  66. BIMM = 0x040,
  67. JIMM = 0x080,
  68. FUNC = 0x100,
  69. SET = 0x200
  70. };
  71. #define OP_MASK 0x2f
  72. #define OP_SH 26
  73. #define RS_MASK 0x1f
  74. #define RS_SH 21
  75. #define RT_MASK 0x1f
  76. #define RT_SH 16
  77. #define RD_MASK 0x1f
  78. #define RD_SH 11
  79. #define RE_MASK 0x1f
  80. #define RE_SH 6
  81. #define IMM_MASK 0xffff
  82. #define IMM_SH 0
  83. #define JIMM_MASK 0x3ffffff
  84. #define JIMM_SH 0
  85. #define FUNC_MASK 0x2f
  86. #define FUNC_SH 0
  87. #define SET_MASK 0x7
  88. #define SET_SH 0
  89. enum opcode {
  90. insn_invalid,
  91. insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
  92. insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
  93. insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
  94. insn_dsll, insn_dsll32, insn_dsra, insn_dsrl, insn_dsrl32,
  95. insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
  96. insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
  97. insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
  98. insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
  99. insn_tlbwr, insn_xor, insn_xori
  100. };
  101. struct insn {
  102. enum opcode opcode;
  103. u32 match;
  104. enum fields fields;
  105. };
  106. /* This macro sets the non-variable bits of an instruction. */
  107. #define M(a, b, c, d, e, f) \
  108. ((a) << OP_SH \
  109. | (b) << RS_SH \
  110. | (c) << RT_SH \
  111. | (d) << RD_SH \
  112. | (e) << RE_SH \
  113. | (f) << FUNC_SH)
  114. static __initdata struct insn insn_table[] = {
  115. { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
  116. { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
  117. { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
  118. { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
  119. { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
  120. { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
  121. { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
  122. { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
  123. { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
  124. { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
  125. { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
  126. { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
  127. { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
  128. { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
  129. { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
  130. { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
  131. { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
  132. { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
  133. { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
  134. { insn_dsrl32, M(spec_op,0,0,0,0,dsrl32_op), RT | RD | RE },
  135. { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
  136. { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
  137. { insn_j, M(j_op,0,0,0,0,0), JIMM },
  138. { insn_jal, M(jal_op,0,0,0,0,0), JIMM },
  139. { insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
  140. { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
  141. { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
  142. { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
  143. { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
  144. { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
  145. { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
  146. { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
  147. { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
  148. { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
  149. { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
  150. { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
  151. { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
  152. { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
  153. { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
  154. { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
  155. { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
  156. { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
  157. { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
  158. { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
  159. { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
  160. { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
  161. { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
  162. { insn_invalid, 0, 0 }
  163. };
  164. #undef M
  165. static __init u32 build_rs(u32 arg)
  166. {
  167. if (arg & ~RS_MASK)
  168. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  169. return (arg & RS_MASK) << RS_SH;
  170. }
  171. static __init u32 build_rt(u32 arg)
  172. {
  173. if (arg & ~RT_MASK)
  174. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  175. return (arg & RT_MASK) << RT_SH;
  176. }
  177. static __init u32 build_rd(u32 arg)
  178. {
  179. if (arg & ~RD_MASK)
  180. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  181. return (arg & RD_MASK) << RD_SH;
  182. }
  183. static __init u32 build_re(u32 arg)
  184. {
  185. if (arg & ~RE_MASK)
  186. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  187. return (arg & RE_MASK) << RE_SH;
  188. }
  189. static __init u32 build_simm(s32 arg)
  190. {
  191. if (arg > 0x7fff || arg < -0x8000)
  192. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  193. return arg & 0xffff;
  194. }
  195. static __init u32 build_uimm(u32 arg)
  196. {
  197. if (arg & ~IMM_MASK)
  198. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  199. return arg & IMM_MASK;
  200. }
  201. static __init u32 build_bimm(s32 arg)
  202. {
  203. if (arg > 0x1ffff || arg < -0x20000)
  204. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  205. if (arg & 0x3)
  206. printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
  207. return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
  208. }
  209. static __init u32 build_jimm(u32 arg)
  210. {
  211. if (arg & ~((JIMM_MASK) << 2))
  212. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  213. return (arg >> 2) & JIMM_MASK;
  214. }
  215. static __init u32 build_func(u32 arg)
  216. {
  217. if (arg & ~FUNC_MASK)
  218. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  219. return arg & FUNC_MASK;
  220. }
  221. static __init u32 build_set(u32 arg)
  222. {
  223. if (arg & ~SET_MASK)
  224. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  225. return arg & SET_MASK;
  226. }
  227. /*
  228. * The order of opcode arguments is implicitly left to right,
  229. * starting with RS and ending with FUNC or IMM.
  230. */
  231. static void __init build_insn(u32 **buf, enum opcode opc, ...)
  232. {
  233. struct insn *ip = NULL;
  234. unsigned int i;
  235. va_list ap;
  236. u32 op;
  237. for (i = 0; insn_table[i].opcode != insn_invalid; i++)
  238. if (insn_table[i].opcode == opc) {
  239. ip = &insn_table[i];
  240. break;
  241. }
  242. if (!ip)
  243. panic("Unsupported TLB synthesizer instruction %d", opc);
  244. op = ip->match;
  245. va_start(ap, opc);
  246. if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
  247. if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
  248. if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
  249. if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
  250. if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
  251. if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
  252. if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
  253. if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
  254. if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
  255. if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
  256. va_end(ap);
  257. **buf = op;
  258. (*buf)++;
  259. }
  260. #define I_u1u2u3(op) \
  261. static inline void __init i##op(u32 **buf, unsigned int a, \
  262. unsigned int b, unsigned int c) \
  263. { \
  264. build_insn(buf, insn##op, a, b, c); \
  265. }
  266. #define I_u2u1u3(op) \
  267. static inline void __init i##op(u32 **buf, unsigned int a, \
  268. unsigned int b, unsigned int c) \
  269. { \
  270. build_insn(buf, insn##op, b, a, c); \
  271. }
  272. #define I_u3u1u2(op) \
  273. static inline void __init i##op(u32 **buf, unsigned int a, \
  274. unsigned int b, unsigned int c) \
  275. { \
  276. build_insn(buf, insn##op, b, c, a); \
  277. }
  278. #define I_u1u2s3(op) \
  279. static inline void __init i##op(u32 **buf, unsigned int a, \
  280. unsigned int b, signed int c) \
  281. { \
  282. build_insn(buf, insn##op, a, b, c); \
  283. }
  284. #define I_u2s3u1(op) \
  285. static inline void __init i##op(u32 **buf, unsigned int a, \
  286. signed int b, unsigned int c) \
  287. { \
  288. build_insn(buf, insn##op, c, a, b); \
  289. }
  290. #define I_u2u1s3(op) \
  291. static inline void __init i##op(u32 **buf, unsigned int a, \
  292. unsigned int b, signed int c) \
  293. { \
  294. build_insn(buf, insn##op, b, a, c); \
  295. }
  296. #define I_u1u2(op) \
  297. static inline void __init i##op(u32 **buf, unsigned int a, \
  298. unsigned int b) \
  299. { \
  300. build_insn(buf, insn##op, a, b); \
  301. }
  302. #define I_u1s2(op) \
  303. static inline void __init i##op(u32 **buf, unsigned int a, \
  304. signed int b) \
  305. { \
  306. build_insn(buf, insn##op, a, b); \
  307. }
  308. #define I_u1(op) \
  309. static inline void __init i##op(u32 **buf, unsigned int a) \
  310. { \
  311. build_insn(buf, insn##op, a); \
  312. }
  313. #define I_0(op) \
  314. static inline void __init i##op(u32 **buf) \
  315. { \
  316. build_insn(buf, insn##op); \
  317. }
  318. I_u2u1s3(_addiu);
  319. I_u3u1u2(_addu);
  320. I_u2u1u3(_andi);
  321. I_u3u1u2(_and);
  322. I_u1u2s3(_beq);
  323. I_u1u2s3(_beql);
  324. I_u1s2(_bgez);
  325. I_u1s2(_bgezl);
  326. I_u1s2(_bltz);
  327. I_u1s2(_bltzl);
  328. I_u1u2s3(_bne);
  329. I_u1u2u3(_dmfc0);
  330. I_u1u2u3(_dmtc0);
  331. I_u2u1s3(_daddiu);
  332. I_u3u1u2(_daddu);
  333. I_u2u1u3(_dsll);
  334. I_u2u1u3(_dsll32);
  335. I_u2u1u3(_dsra);
  336. I_u2u1u3(_dsrl);
  337. I_u2u1u3(_dsrl32);
  338. I_u3u1u2(_dsubu);
  339. I_0(_eret);
  340. I_u1(_j);
  341. I_u1(_jal);
  342. I_u1(_jr);
  343. I_u2s3u1(_ld);
  344. I_u2s3u1(_ll);
  345. I_u2s3u1(_lld);
  346. I_u1s2(_lui);
  347. I_u2s3u1(_lw);
  348. I_u1u2u3(_mfc0);
  349. I_u1u2u3(_mtc0);
  350. I_u2u1u3(_ori);
  351. I_0(_rfe);
  352. I_u2s3u1(_sc);
  353. I_u2s3u1(_scd);
  354. I_u2s3u1(_sd);
  355. I_u2u1u3(_sll);
  356. I_u2u1u3(_sra);
  357. I_u2u1u3(_srl);
  358. I_u3u1u2(_subu);
  359. I_u2s3u1(_sw);
  360. I_0(_tlbp);
  361. I_0(_tlbwi);
  362. I_0(_tlbwr);
  363. I_u3u1u2(_xor)
  364. I_u2u1u3(_xori);
  365. /*
  366. * handling labels
  367. */
  368. enum label_id {
  369. label_invalid,
  370. label_second_part,
  371. label_leave,
  372. #ifdef MODULE_START
  373. label_module_alloc,
  374. #endif
  375. label_vmalloc,
  376. label_vmalloc_done,
  377. label_tlbw_hazard,
  378. label_split,
  379. label_nopage_tlbl,
  380. label_nopage_tlbs,
  381. label_nopage_tlbm,
  382. label_smp_pgtable_change,
  383. label_r3000_write_probe_fail,
  384. };
  385. struct label {
  386. u32 *addr;
  387. enum label_id lab;
  388. };
  389. static __init void build_label(struct label **lab, u32 *addr,
  390. enum label_id l)
  391. {
  392. (*lab)->addr = addr;
  393. (*lab)->lab = l;
  394. (*lab)++;
  395. }
  396. #define L_LA(lb) \
  397. static inline void l##lb(struct label **lab, u32 *addr) \
  398. { \
  399. build_label(lab, addr, label##lb); \
  400. }
  401. L_LA(_second_part)
  402. L_LA(_leave)
  403. #ifdef MODULE_START
  404. L_LA(_module_alloc)
  405. #endif
  406. L_LA(_vmalloc)
  407. L_LA(_vmalloc_done)
  408. L_LA(_tlbw_hazard)
  409. L_LA(_split)
  410. L_LA(_nopage_tlbl)
  411. L_LA(_nopage_tlbs)
  412. L_LA(_nopage_tlbm)
  413. L_LA(_smp_pgtable_change)
  414. L_LA(_r3000_write_probe_fail)
  415. /* convenience macros for instructions */
  416. #ifdef CONFIG_64BIT
  417. # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
  418. # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
  419. # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
  420. # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
  421. # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
  422. # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
  423. # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
  424. # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
  425. # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
  426. # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
  427. # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
  428. # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
  429. #else
  430. # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
  431. # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
  432. # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
  433. # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
  434. # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
  435. # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
  436. # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
  437. # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
  438. # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
  439. # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
  440. # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
  441. # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
  442. #endif
  443. #define i_b(buf, off) i_beq(buf, 0, 0, off)
  444. #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
  445. #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
  446. #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
  447. #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
  448. #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
  449. #define i_nop(buf) i_sll(buf, 0, 0, 0)
  450. #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
  451. #define i_ehb(buf) i_sll(buf, 0, 0, 3)
  452. #ifdef CONFIG_64BIT
  453. static __init int __maybe_unused in_compat_space_p(long addr)
  454. {
  455. /* Is this address in 32bit compat space? */
  456. return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
  457. }
  458. static __init int __maybe_unused rel_highest(long val)
  459. {
  460. return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
  461. }
  462. static __init int __maybe_unused rel_higher(long val)
  463. {
  464. return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
  465. }
  466. #endif
  467. static __init int rel_hi(long val)
  468. {
  469. return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
  470. }
  471. static __init int rel_lo(long val)
  472. {
  473. return ((val & 0xffff) ^ 0x8000) - 0x8000;
  474. }
  475. static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
  476. {
  477. #ifdef CONFIG_64BIT
  478. if (!in_compat_space_p(addr)) {
  479. i_lui(buf, rs, rel_highest(addr));
  480. if (rel_higher(addr))
  481. i_daddiu(buf, rs, rs, rel_higher(addr));
  482. if (rel_hi(addr)) {
  483. i_dsll(buf, rs, rs, 16);
  484. i_daddiu(buf, rs, rs, rel_hi(addr));
  485. i_dsll(buf, rs, rs, 16);
  486. } else
  487. i_dsll32(buf, rs, rs, 0);
  488. } else
  489. #endif
  490. i_lui(buf, rs, rel_hi(addr));
  491. }
  492. static __init void __maybe_unused i_LA(u32 **buf, unsigned int rs,
  493. long addr)
  494. {
  495. i_LA_mostly(buf, rs, addr);
  496. if (rel_lo(addr))
  497. i_ADDIU(buf, rs, rs, rel_lo(addr));
  498. }
  499. /*
  500. * handle relocations
  501. */
  502. struct reloc {
  503. u32 *addr;
  504. unsigned int type;
  505. enum label_id lab;
  506. };
  507. static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
  508. enum label_id l)
  509. {
  510. (*rel)->addr = addr;
  511. (*rel)->type = R_MIPS_PC16;
  512. (*rel)->lab = l;
  513. (*rel)++;
  514. }
  515. static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
  516. {
  517. long laddr = (long)lab->addr;
  518. long raddr = (long)rel->addr;
  519. switch (rel->type) {
  520. case R_MIPS_PC16:
  521. *rel->addr |= build_bimm(laddr - (raddr + 4));
  522. break;
  523. default:
  524. panic("Unsupported TLB synthesizer relocation %d",
  525. rel->type);
  526. }
  527. }
  528. static __init void resolve_relocs(struct reloc *rel, struct label *lab)
  529. {
  530. struct label *l;
  531. for (; rel->lab != label_invalid; rel++)
  532. for (l = lab; l->lab != label_invalid; l++)
  533. if (rel->lab == l->lab)
  534. __resolve_relocs(rel, l);
  535. }
  536. static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
  537. long off)
  538. {
  539. for (; rel->lab != label_invalid; rel++)
  540. if (rel->addr >= first && rel->addr < end)
  541. rel->addr += off;
  542. }
  543. static __init void move_labels(struct label *lab, u32 *first, u32 *end,
  544. long off)
  545. {
  546. for (; lab->lab != label_invalid; lab++)
  547. if (lab->addr >= first && lab->addr < end)
  548. lab->addr += off;
  549. }
  550. static __init void copy_handler(struct reloc *rel, struct label *lab,
  551. u32 *first, u32 *end, u32 *target)
  552. {
  553. long off = (long)(target - first);
  554. memcpy(target, first, (end - first) * sizeof(u32));
  555. move_relocs(rel, first, end, off);
  556. move_labels(lab, first, end, off);
  557. }
  558. static __init int __maybe_unused insn_has_bdelay(struct reloc *rel,
  559. u32 *addr)
  560. {
  561. for (; rel->lab != label_invalid; rel++) {
  562. if (rel->addr == addr
  563. && (rel->type == R_MIPS_PC16
  564. || rel->type == R_MIPS_26))
  565. return 1;
  566. }
  567. return 0;
  568. }
  569. /* convenience functions for labeled branches */
  570. static void __init __maybe_unused
  571. il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
  572. {
  573. r_mips_pc16(r, *p, l);
  574. i_bltz(p, reg, 0);
  575. }
  576. static void __init __maybe_unused il_b(u32 **p, struct reloc **r,
  577. enum label_id l)
  578. {
  579. r_mips_pc16(r, *p, l);
  580. i_b(p, 0);
  581. }
  582. static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
  583. enum label_id l)
  584. {
  585. r_mips_pc16(r, *p, l);
  586. i_beqz(p, reg, 0);
  587. }
  588. static void __init __maybe_unused
  589. il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
  590. {
  591. r_mips_pc16(r, *p, l);
  592. i_beqzl(p, reg, 0);
  593. }
  594. static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
  595. enum label_id l)
  596. {
  597. r_mips_pc16(r, *p, l);
  598. i_bnez(p, reg, 0);
  599. }
  600. static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
  601. enum label_id l)
  602. {
  603. r_mips_pc16(r, *p, l);
  604. i_bgezl(p, reg, 0);
  605. }
  606. static void __init __maybe_unused
  607. il_bgez(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
  608. {
  609. r_mips_pc16(r, *p, l);
  610. i_bgez(p, reg, 0);
  611. }
  612. /* The only general purpose registers allowed in TLB handlers. */
  613. #define K0 26
  614. #define K1 27
  615. /* Some CP0 registers */
  616. #define C0_INDEX 0, 0
  617. #define C0_ENTRYLO0 2, 0
  618. #define C0_TCBIND 2, 2
  619. #define C0_ENTRYLO1 3, 0
  620. #define C0_CONTEXT 4, 0
  621. #define C0_BADVADDR 8, 0
  622. #define C0_ENTRYHI 10, 0
  623. #define C0_EPC 14, 0
  624. #define C0_XCONTEXT 20, 0
  625. #ifdef CONFIG_64BIT
  626. # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
  627. #else
  628. # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
  629. #endif
  630. /* The worst case length of the handler is around 18 instructions for
  631. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  632. * Maximum space available is 32 instructions for R3000 and 64
  633. * instructions for R4000.
  634. *
  635. * We deliberately chose a buffer size of 128, so we won't scribble
  636. * over anything important on overflow before we panic.
  637. */
  638. static __initdata u32 tlb_handler[128];
  639. /* simply assume worst case size for labels and relocs */
  640. static __initdata struct label labels[128];
  641. static __initdata struct reloc relocs[128];
  642. /*
  643. * The R3000 TLB handler is simple.
  644. */
  645. static void __init build_r3000_tlb_refill_handler(void)
  646. {
  647. long pgdc = (long)pgd_current;
  648. u32 *p;
  649. int i;
  650. memset(tlb_handler, 0, sizeof(tlb_handler));
  651. p = tlb_handler;
  652. i_mfc0(&p, K0, C0_BADVADDR);
  653. i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
  654. i_lw(&p, K1, rel_lo(pgdc), K1);
  655. i_srl(&p, K0, K0, 22); /* load delay */
  656. i_sll(&p, K0, K0, 2);
  657. i_addu(&p, K1, K1, K0);
  658. i_mfc0(&p, K0, C0_CONTEXT);
  659. i_lw(&p, K1, 0, K1); /* cp0 delay */
  660. i_andi(&p, K0, K0, 0xffc); /* load delay */
  661. i_addu(&p, K1, K1, K0);
  662. i_lw(&p, K0, 0, K1);
  663. i_nop(&p); /* load delay */
  664. i_mtc0(&p, K0, C0_ENTRYLO0);
  665. i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  666. i_tlbwr(&p); /* cp0 delay */
  667. i_jr(&p, K1);
  668. i_rfe(&p); /* branch delay */
  669. if (p > tlb_handler + 32)
  670. panic("TLB refill handler space exceeded");
  671. pr_info("Synthesized TLB refill handler (%u instructions).\n",
  672. (unsigned int)(p - tlb_handler));
  673. pr_debug("\t.set push\n");
  674. pr_debug("\t.set noreorder\n");
  675. for (i = 0; i < (p - tlb_handler); i++)
  676. pr_debug("\t.word 0x%08x\n", tlb_handler[i]);
  677. pr_debug("\t.set pop\n");
  678. memcpy((void *)ebase, tlb_handler, 0x80);
  679. }
  680. /*
  681. * The R4000 TLB handler is much more complicated. We have two
  682. * consecutive handler areas with 32 instructions space each.
  683. * Since they aren't used at the same time, we can overflow in the
  684. * other one.To keep things simple, we first assume linear space,
  685. * then we relocate it to the final handler layout as needed.
  686. */
  687. static __initdata u32 final_handler[64];
  688. /*
  689. * Hazards
  690. *
  691. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  692. * 2. A timing hazard exists for the TLBP instruction.
  693. *
  694. * stalling_instruction
  695. * TLBP
  696. *
  697. * The JTLB is being read for the TLBP throughout the stall generated by the
  698. * previous instruction. This is not really correct as the stalling instruction
  699. * can modify the address used to access the JTLB. The failure symptom is that
  700. * the TLBP instruction will use an address created for the stalling instruction
  701. * and not the address held in C0_ENHI and thus report the wrong results.
  702. *
  703. * The software work-around is to not allow the instruction preceding the TLBP
  704. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  705. *
  706. * Errata 2 will not be fixed. This errata is also on the R5000.
  707. *
  708. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  709. */
  710. static __init void __maybe_unused build_tlb_probe_entry(u32 **p)
  711. {
  712. switch (current_cpu_data.cputype) {
  713. /* Found by experiment: R4600 v2.0 needs this, too. */
  714. case CPU_R4600:
  715. case CPU_R5000:
  716. case CPU_R5000A:
  717. case CPU_NEVADA:
  718. i_nop(p);
  719. i_tlbp(p);
  720. break;
  721. default:
  722. i_tlbp(p);
  723. break;
  724. }
  725. }
  726. /*
  727. * Write random or indexed TLB entry, and care about the hazards from
  728. * the preceeding mtc0 and for the following eret.
  729. */
  730. enum tlb_write_entry { tlb_random, tlb_indexed };
  731. static __init void build_tlb_write_entry(u32 **p, struct label **l,
  732. struct reloc **r,
  733. enum tlb_write_entry wmode)
  734. {
  735. void(*tlbw)(u32 **) = NULL;
  736. switch (wmode) {
  737. case tlb_random: tlbw = i_tlbwr; break;
  738. case tlb_indexed: tlbw = i_tlbwi; break;
  739. }
  740. switch (current_cpu_data.cputype) {
  741. case CPU_R4000PC:
  742. case CPU_R4000SC:
  743. case CPU_R4000MC:
  744. case CPU_R4400PC:
  745. case CPU_R4400SC:
  746. case CPU_R4400MC:
  747. /*
  748. * This branch uses up a mtc0 hazard nop slot and saves
  749. * two nops after the tlbw instruction.
  750. */
  751. il_bgezl(p, r, 0, label_tlbw_hazard);
  752. tlbw(p);
  753. l_tlbw_hazard(l, *p);
  754. i_nop(p);
  755. break;
  756. case CPU_R4600:
  757. case CPU_R4700:
  758. case CPU_R5000:
  759. case CPU_R5000A:
  760. i_nop(p);
  761. tlbw(p);
  762. i_nop(p);
  763. break;
  764. case CPU_R4300:
  765. case CPU_5KC:
  766. case CPU_TX49XX:
  767. case CPU_AU1000:
  768. case CPU_AU1100:
  769. case CPU_AU1500:
  770. case CPU_AU1550:
  771. case CPU_AU1200:
  772. case CPU_PR4450:
  773. i_nop(p);
  774. tlbw(p);
  775. break;
  776. case CPU_R10000:
  777. case CPU_R12000:
  778. case CPU_R14000:
  779. case CPU_4KC:
  780. case CPU_SB1:
  781. case CPU_SB1A:
  782. case CPU_4KSC:
  783. case CPU_20KC:
  784. case CPU_25KF:
  785. case CPU_LOONGSON2:
  786. tlbw(p);
  787. break;
  788. case CPU_NEVADA:
  789. i_nop(p); /* QED specifies 2 nops hazard */
  790. /*
  791. * This branch uses up a mtc0 hazard nop slot and saves
  792. * a nop after the tlbw instruction.
  793. */
  794. il_bgezl(p, r, 0, label_tlbw_hazard);
  795. tlbw(p);
  796. l_tlbw_hazard(l, *p);
  797. break;
  798. case CPU_RM7000:
  799. i_nop(p);
  800. i_nop(p);
  801. i_nop(p);
  802. i_nop(p);
  803. tlbw(p);
  804. break;
  805. case CPU_4KEC:
  806. case CPU_24K:
  807. case CPU_34K:
  808. case CPU_74K:
  809. i_ehb(p);
  810. tlbw(p);
  811. break;
  812. case CPU_RM9000:
  813. /*
  814. * When the JTLB is updated by tlbwi or tlbwr, a subsequent
  815. * use of the JTLB for instructions should not occur for 4
  816. * cpu cycles and use for data translations should not occur
  817. * for 3 cpu cycles.
  818. */
  819. i_ssnop(p);
  820. i_ssnop(p);
  821. i_ssnop(p);
  822. i_ssnop(p);
  823. tlbw(p);
  824. i_ssnop(p);
  825. i_ssnop(p);
  826. i_ssnop(p);
  827. i_ssnop(p);
  828. break;
  829. case CPU_VR4111:
  830. case CPU_VR4121:
  831. case CPU_VR4122:
  832. case CPU_VR4181:
  833. case CPU_VR4181A:
  834. i_nop(p);
  835. i_nop(p);
  836. tlbw(p);
  837. i_nop(p);
  838. i_nop(p);
  839. break;
  840. case CPU_VR4131:
  841. case CPU_VR4133:
  842. case CPU_R5432:
  843. i_nop(p);
  844. i_nop(p);
  845. tlbw(p);
  846. break;
  847. default:
  848. panic("No TLB refill handler yet (CPU type: %d)",
  849. current_cpu_data.cputype);
  850. break;
  851. }
  852. }
  853. #ifdef CONFIG_64BIT
  854. /*
  855. * TMP and PTR are scratch.
  856. * TMP will be clobbered, PTR will hold the pmd entry.
  857. */
  858. static __init void
  859. build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
  860. unsigned int tmp, unsigned int ptr)
  861. {
  862. long pgdc = (long)pgd_current;
  863. /*
  864. * The vmalloc handling is not in the hotpath.
  865. */
  866. i_dmfc0(p, tmp, C0_BADVADDR);
  867. #ifdef MODULE_START
  868. il_bltz(p, r, tmp, label_module_alloc);
  869. #else
  870. il_bltz(p, r, tmp, label_vmalloc);
  871. #endif
  872. /* No i_nop needed here, since the next insn doesn't touch TMP. */
  873. #ifdef CONFIG_SMP
  874. # ifdef CONFIG_MIPS_MT_SMTC
  875. /*
  876. * SMTC uses TCBind value as "CPU" index
  877. */
  878. i_mfc0(p, ptr, C0_TCBIND);
  879. i_dsrl(p, ptr, ptr, 19);
  880. # else
  881. /*
  882. * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
  883. * stored in CONTEXT.
  884. */
  885. i_dmfc0(p, ptr, C0_CONTEXT);
  886. i_dsrl(p, ptr, ptr, 23);
  887. #endif
  888. i_LA_mostly(p, tmp, pgdc);
  889. i_daddu(p, ptr, ptr, tmp);
  890. i_dmfc0(p, tmp, C0_BADVADDR);
  891. i_ld(p, ptr, rel_lo(pgdc), ptr);
  892. #else
  893. i_LA_mostly(p, ptr, pgdc);
  894. i_ld(p, ptr, rel_lo(pgdc), ptr);
  895. #endif
  896. l_vmalloc_done(l, *p);
  897. if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */
  898. i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3);
  899. else
  900. i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32);
  901. i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  902. i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  903. i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  904. i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  905. i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  906. i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  907. i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  908. }
  909. /*
  910. * BVADDR is the faulting address, PTR is scratch.
  911. * PTR will hold the pgd for vmalloc.
  912. */
  913. static __init void
  914. build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
  915. unsigned int bvaddr, unsigned int ptr)
  916. {
  917. long swpd = (long)swapper_pg_dir;
  918. #ifdef MODULE_START
  919. long modd = (long)module_pg_dir;
  920. l_module_alloc(l, *p);
  921. /*
  922. * Assumption:
  923. * VMALLOC_START >= 0xc000000000000000UL
  924. * MODULE_START >= 0xe000000000000000UL
  925. */
  926. i_SLL(p, ptr, bvaddr, 2);
  927. il_bgez(p, r, ptr, label_vmalloc);
  928. if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START)) {
  929. i_lui(p, ptr, rel_hi(MODULE_START)); /* delay slot */
  930. } else {
  931. /* unlikely configuration */
  932. i_nop(p); /* delay slot */
  933. i_LA(p, ptr, MODULE_START);
  934. }
  935. i_dsubu(p, bvaddr, bvaddr, ptr);
  936. if (in_compat_space_p(modd) && !rel_lo(modd)) {
  937. il_b(p, r, label_vmalloc_done);
  938. i_lui(p, ptr, rel_hi(modd));
  939. } else {
  940. i_LA_mostly(p, ptr, modd);
  941. il_b(p, r, label_vmalloc_done);
  942. i_daddiu(p, ptr, ptr, rel_lo(modd));
  943. }
  944. l_vmalloc(l, *p);
  945. if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START) &&
  946. MODULE_START << 32 == VMALLOC_START)
  947. i_dsll32(p, ptr, ptr, 0); /* typical case */
  948. else
  949. i_LA(p, ptr, VMALLOC_START);
  950. #else
  951. l_vmalloc(l, *p);
  952. i_LA(p, ptr, VMALLOC_START);
  953. #endif
  954. i_dsubu(p, bvaddr, bvaddr, ptr);
  955. if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
  956. il_b(p, r, label_vmalloc_done);
  957. i_lui(p, ptr, rel_hi(swpd));
  958. } else {
  959. i_LA_mostly(p, ptr, swpd);
  960. il_b(p, r, label_vmalloc_done);
  961. i_daddiu(p, ptr, ptr, rel_lo(swpd));
  962. }
  963. }
  964. #else /* !CONFIG_64BIT */
  965. /*
  966. * TMP and PTR are scratch.
  967. * TMP will be clobbered, PTR will hold the pgd entry.
  968. */
  969. static __init void __maybe_unused
  970. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  971. {
  972. long pgdc = (long)pgd_current;
  973. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  974. #ifdef CONFIG_SMP
  975. #ifdef CONFIG_MIPS_MT_SMTC
  976. /*
  977. * SMTC uses TCBind value as "CPU" index
  978. */
  979. i_mfc0(p, ptr, C0_TCBIND);
  980. i_LA_mostly(p, tmp, pgdc);
  981. i_srl(p, ptr, ptr, 19);
  982. #else
  983. /*
  984. * smp_processor_id() << 3 is stored in CONTEXT.
  985. */
  986. i_mfc0(p, ptr, C0_CONTEXT);
  987. i_LA_mostly(p, tmp, pgdc);
  988. i_srl(p, ptr, ptr, 23);
  989. #endif
  990. i_addu(p, ptr, tmp, ptr);
  991. #else
  992. i_LA_mostly(p, ptr, pgdc);
  993. #endif
  994. i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  995. i_lw(p, ptr, rel_lo(pgdc), ptr);
  996. i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  997. i_sll(p, tmp, tmp, PGD_T_LOG2);
  998. i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  999. }
  1000. #endif /* !CONFIG_64BIT */
  1001. static __init void build_adjust_context(u32 **p, unsigned int ctx)
  1002. {
  1003. unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
  1004. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  1005. switch (current_cpu_data.cputype) {
  1006. case CPU_VR41XX:
  1007. case CPU_VR4111:
  1008. case CPU_VR4121:
  1009. case CPU_VR4122:
  1010. case CPU_VR4131:
  1011. case CPU_VR4181:
  1012. case CPU_VR4181A:
  1013. case CPU_VR4133:
  1014. shift += 2;
  1015. break;
  1016. default:
  1017. break;
  1018. }
  1019. if (shift)
  1020. i_SRL(p, ctx, ctx, shift);
  1021. i_andi(p, ctx, ctx, mask);
  1022. }
  1023. static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  1024. {
  1025. /*
  1026. * Bug workaround for the Nevada. It seems as if under certain
  1027. * circumstances the move from cp0_context might produce a
  1028. * bogus result when the mfc0 instruction and its consumer are
  1029. * in a different cacheline or a load instruction, probably any
  1030. * memory reference, is between them.
  1031. */
  1032. switch (current_cpu_data.cputype) {
  1033. case CPU_NEVADA:
  1034. i_LW(p, ptr, 0, ptr);
  1035. GET_CONTEXT(p, tmp); /* get context reg */
  1036. break;
  1037. default:
  1038. GET_CONTEXT(p, tmp); /* get context reg */
  1039. i_LW(p, ptr, 0, ptr);
  1040. break;
  1041. }
  1042. build_adjust_context(p, tmp);
  1043. i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  1044. }
  1045. static __init void build_update_entries(u32 **p, unsigned int tmp,
  1046. unsigned int ptep)
  1047. {
  1048. /*
  1049. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  1050. * Kernel is a special case. Only a few CPUs use it.
  1051. */
  1052. #ifdef CONFIG_64BIT_PHYS_ADDR
  1053. if (cpu_has_64bits) {
  1054. i_ld(p, tmp, 0, ptep); /* get even pte */
  1055. i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  1056. i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
  1057. i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  1058. i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
  1059. i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  1060. } else {
  1061. int pte_off_even = sizeof(pte_t) / 2;
  1062. int pte_off_odd = pte_off_even + sizeof(pte_t);
  1063. /* The pte entries are pre-shifted */
  1064. i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  1065. i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  1066. i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  1067. i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  1068. }
  1069. #else
  1070. i_LW(p, tmp, 0, ptep); /* get even pte */
  1071. i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  1072. if (r45k_bvahwbug())
  1073. build_tlb_probe_entry(p);
  1074. i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
  1075. if (r4k_250MHZhwbug())
  1076. i_mtc0(p, 0, C0_ENTRYLO0);
  1077. i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  1078. i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
  1079. if (r45k_bvahwbug())
  1080. i_mfc0(p, tmp, C0_INDEX);
  1081. if (r4k_250MHZhwbug())
  1082. i_mtc0(p, 0, C0_ENTRYLO1);
  1083. i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  1084. #endif
  1085. }
  1086. static void __init build_r4000_tlb_refill_handler(void)
  1087. {
  1088. u32 *p = tlb_handler;
  1089. struct label *l = labels;
  1090. struct reloc *r = relocs;
  1091. u32 *f;
  1092. unsigned int final_len;
  1093. int i;
  1094. memset(tlb_handler, 0, sizeof(tlb_handler));
  1095. memset(labels, 0, sizeof(labels));
  1096. memset(relocs, 0, sizeof(relocs));
  1097. memset(final_handler, 0, sizeof(final_handler));
  1098. /*
  1099. * create the plain linear handler
  1100. */
  1101. if (bcm1250_m3_war()) {
  1102. i_MFC0(&p, K0, C0_BADVADDR);
  1103. i_MFC0(&p, K1, C0_ENTRYHI);
  1104. i_xor(&p, K0, K0, K1);
  1105. i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
  1106. il_bnez(&p, &r, K0, label_leave);
  1107. /* No need for i_nop */
  1108. }
  1109. #ifdef CONFIG_64BIT
  1110. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1111. #else
  1112. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1113. #endif
  1114. build_get_ptep(&p, K0, K1);
  1115. build_update_entries(&p, K0, K1);
  1116. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1117. l_leave(&l, p);
  1118. i_eret(&p); /* return from trap */
  1119. #ifdef CONFIG_64BIT
  1120. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
  1121. #endif
  1122. /*
  1123. * Overflow check: For the 64bit handler, we need at least one
  1124. * free instruction slot for the wrap-around branch. In worst
  1125. * case, if the intended insertion point is a delay slot, we
  1126. * need three, with the second nop'ed and the third being
  1127. * unused.
  1128. */
  1129. /* Loongson2 ebase is different than r4k, we have more space */
  1130. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  1131. if ((p - tlb_handler) > 64)
  1132. panic("TLB refill handler space exceeded");
  1133. #else
  1134. if (((p - tlb_handler) > 63)
  1135. || (((p - tlb_handler) > 61)
  1136. && insn_has_bdelay(relocs, tlb_handler + 29)))
  1137. panic("TLB refill handler space exceeded");
  1138. #endif
  1139. /*
  1140. * Now fold the handler in the TLB refill handler space.
  1141. */
  1142. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  1143. f = final_handler;
  1144. /* Simplest case, just copy the handler. */
  1145. copy_handler(relocs, labels, tlb_handler, p, f);
  1146. final_len = p - tlb_handler;
  1147. #else /* CONFIG_64BIT */
  1148. f = final_handler + 32;
  1149. if ((p - tlb_handler) <= 32) {
  1150. /* Just copy the handler. */
  1151. copy_handler(relocs, labels, tlb_handler, p, f);
  1152. final_len = p - tlb_handler;
  1153. } else {
  1154. u32 *split = tlb_handler + 30;
  1155. /*
  1156. * Find the split point.
  1157. */
  1158. if (insn_has_bdelay(relocs, split - 1))
  1159. split--;
  1160. /* Copy first part of the handler. */
  1161. copy_handler(relocs, labels, tlb_handler, split, f);
  1162. f += split - tlb_handler;
  1163. /* Insert branch. */
  1164. l_split(&l, final_handler);
  1165. il_b(&f, &r, label_split);
  1166. if (insn_has_bdelay(relocs, split))
  1167. i_nop(&f);
  1168. else {
  1169. copy_handler(relocs, labels, split, split + 1, f);
  1170. move_labels(labels, f, f + 1, -1);
  1171. f++;
  1172. split++;
  1173. }
  1174. /* Copy the rest of the handler. */
  1175. copy_handler(relocs, labels, split, p, final_handler);
  1176. final_len = (f - (final_handler + 32)) + (p - split);
  1177. }
  1178. #endif /* CONFIG_64BIT */
  1179. resolve_relocs(relocs, labels);
  1180. pr_info("Synthesized TLB refill handler (%u instructions).\n",
  1181. final_len);
  1182. f = final_handler;
  1183. #if defined(CONFIG_64BIT) && !defined(CONFIG_CPU_LOONGSON2)
  1184. if (final_len > 32)
  1185. final_len = 64;
  1186. else
  1187. f = final_handler + 32;
  1188. #endif /* CONFIG_64BIT */
  1189. pr_debug("\t.set push\n");
  1190. pr_debug("\t.set noreorder\n");
  1191. for (i = 0; i < final_len; i++)
  1192. pr_debug("\t.word 0x%08x\n", f[i]);
  1193. pr_debug("\t.set pop\n");
  1194. memcpy((void *)ebase, final_handler, 0x100);
  1195. }
  1196. /*
  1197. * TLB load/store/modify handlers.
  1198. *
  1199. * Only the fastpath gets synthesized at runtime, the slowpath for
  1200. * do_page_fault remains normal asm.
  1201. */
  1202. extern void tlb_do_page_fault_0(void);
  1203. extern void tlb_do_page_fault_1(void);
  1204. #define __tlb_handler_align \
  1205. __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
  1206. /*
  1207. * 128 instructions for the fastpath handler is generous and should
  1208. * never be exceeded.
  1209. */
  1210. #define FASTPATH_SIZE 128
  1211. u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
  1212. u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
  1213. u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
  1214. static void __init
  1215. iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
  1216. {
  1217. #ifdef CONFIG_SMP
  1218. # ifdef CONFIG_64BIT_PHYS_ADDR
  1219. if (cpu_has_64bits)
  1220. i_lld(p, pte, 0, ptr);
  1221. else
  1222. # endif
  1223. i_LL(p, pte, 0, ptr);
  1224. #else
  1225. # ifdef CONFIG_64BIT_PHYS_ADDR
  1226. if (cpu_has_64bits)
  1227. i_ld(p, pte, 0, ptr);
  1228. else
  1229. # endif
  1230. i_LW(p, pte, 0, ptr);
  1231. #endif
  1232. }
  1233. static void __init
  1234. iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
  1235. unsigned int mode)
  1236. {
  1237. #ifdef CONFIG_64BIT_PHYS_ADDR
  1238. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1239. #endif
  1240. i_ori(p, pte, pte, mode);
  1241. #ifdef CONFIG_SMP
  1242. # ifdef CONFIG_64BIT_PHYS_ADDR
  1243. if (cpu_has_64bits)
  1244. i_scd(p, pte, 0, ptr);
  1245. else
  1246. # endif
  1247. i_SC(p, pte, 0, ptr);
  1248. if (r10000_llsc_war())
  1249. il_beqzl(p, r, pte, label_smp_pgtable_change);
  1250. else
  1251. il_beqz(p, r, pte, label_smp_pgtable_change);
  1252. # ifdef CONFIG_64BIT_PHYS_ADDR
  1253. if (!cpu_has_64bits) {
  1254. /* no i_nop needed */
  1255. i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1256. i_ori(p, pte, pte, hwmode);
  1257. i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1258. il_beqz(p, r, pte, label_smp_pgtable_change);
  1259. /* no i_nop needed */
  1260. i_lw(p, pte, 0, ptr);
  1261. } else
  1262. i_nop(p);
  1263. # else
  1264. i_nop(p);
  1265. # endif
  1266. #else
  1267. # ifdef CONFIG_64BIT_PHYS_ADDR
  1268. if (cpu_has_64bits)
  1269. i_sd(p, pte, 0, ptr);
  1270. else
  1271. # endif
  1272. i_SW(p, pte, 0, ptr);
  1273. # ifdef CONFIG_64BIT_PHYS_ADDR
  1274. if (!cpu_has_64bits) {
  1275. i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1276. i_ori(p, pte, pte, hwmode);
  1277. i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1278. i_lw(p, pte, 0, ptr);
  1279. }
  1280. # endif
  1281. #endif
  1282. }
  1283. /*
  1284. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1285. * the page table where this PTE is located, PTE will be re-loaded
  1286. * with it's original value.
  1287. */
  1288. static void __init
  1289. build_pte_present(u32 **p, struct label **l, struct reloc **r,
  1290. unsigned int pte, unsigned int ptr, enum label_id lid)
  1291. {
  1292. i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
  1293. i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
  1294. il_bnez(p, r, pte, lid);
  1295. iPTE_LW(p, l, pte, ptr);
  1296. }
  1297. /* Make PTE valid, store result in PTR. */
  1298. static void __init
  1299. build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
  1300. unsigned int ptr)
  1301. {
  1302. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1303. iPTE_SW(p, r, pte, ptr, mode);
  1304. }
  1305. /*
  1306. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1307. * restore PTE with value from PTR when done.
  1308. */
  1309. static void __init
  1310. build_pte_writable(u32 **p, struct label **l, struct reloc **r,
  1311. unsigned int pte, unsigned int ptr, enum label_id lid)
  1312. {
  1313. i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1314. i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1315. il_bnez(p, r, pte, lid);
  1316. iPTE_LW(p, l, pte, ptr);
  1317. }
  1318. /* Make PTE writable, update software status bits as well, then store
  1319. * at PTR.
  1320. */
  1321. static void __init
  1322. build_make_write(u32 **p, struct reloc **r, unsigned int pte,
  1323. unsigned int ptr)
  1324. {
  1325. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1326. | _PAGE_DIRTY);
  1327. iPTE_SW(p, r, pte, ptr, mode);
  1328. }
  1329. /*
  1330. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1331. * restore PTE with value from PTR when done.
  1332. */
  1333. static void __init
  1334. build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
  1335. unsigned int pte, unsigned int ptr, enum label_id lid)
  1336. {
  1337. i_andi(p, pte, pte, _PAGE_WRITE);
  1338. il_beqz(p, r, pte, lid);
  1339. iPTE_LW(p, l, pte, ptr);
  1340. }
  1341. /*
  1342. * R3000 style TLB load/store/modify handlers.
  1343. */
  1344. /*
  1345. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  1346. * Then it returns.
  1347. */
  1348. static void __init
  1349. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  1350. {
  1351. i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1352. i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  1353. i_tlbwi(p);
  1354. i_jr(p, tmp);
  1355. i_rfe(p); /* branch delay */
  1356. }
  1357. /*
  1358. * This places the pte into ENTRYLO0 and writes it with tlbwi
  1359. * or tlbwr as appropriate. This is because the index register
  1360. * may have the probe fail bit set as a result of a trap on a
  1361. * kseg2 access, i.e. without refill. Then it returns.
  1362. */
  1363. static void __init
  1364. build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
  1365. unsigned int pte, unsigned int tmp)
  1366. {
  1367. i_mfc0(p, tmp, C0_INDEX);
  1368. i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1369. il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  1370. i_mfc0(p, tmp, C0_EPC); /* branch delay */
  1371. i_tlbwi(p); /* cp0 delay */
  1372. i_jr(p, tmp);
  1373. i_rfe(p); /* branch delay */
  1374. l_r3000_write_probe_fail(l, *p);
  1375. i_tlbwr(p); /* cp0 delay */
  1376. i_jr(p, tmp);
  1377. i_rfe(p); /* branch delay */
  1378. }
  1379. static void __init
  1380. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1381. unsigned int ptr)
  1382. {
  1383. long pgdc = (long)pgd_current;
  1384. i_mfc0(p, pte, C0_BADVADDR);
  1385. i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
  1386. i_lw(p, ptr, rel_lo(pgdc), ptr);
  1387. i_srl(p, pte, pte, 22); /* load delay */
  1388. i_sll(p, pte, pte, 2);
  1389. i_addu(p, ptr, ptr, pte);
  1390. i_mfc0(p, pte, C0_CONTEXT);
  1391. i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1392. i_andi(p, pte, pte, 0xffc); /* load delay */
  1393. i_addu(p, ptr, ptr, pte);
  1394. i_lw(p, pte, 0, ptr);
  1395. i_tlbp(p); /* load delay */
  1396. }
  1397. static void __init build_r3000_tlb_load_handler(void)
  1398. {
  1399. u32 *p = handle_tlbl;
  1400. struct label *l = labels;
  1401. struct reloc *r = relocs;
  1402. int i;
  1403. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  1404. memset(labels, 0, sizeof(labels));
  1405. memset(relocs, 0, sizeof(relocs));
  1406. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1407. build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
  1408. i_nop(&p); /* load delay */
  1409. build_make_valid(&p, &r, K0, K1);
  1410. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1411. l_nopage_tlbl(&l, p);
  1412. i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1413. i_nop(&p);
  1414. if ((p - handle_tlbl) > FASTPATH_SIZE)
  1415. panic("TLB load handler fastpath space exceeded");
  1416. resolve_relocs(relocs, labels);
  1417. pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
  1418. (unsigned int)(p - handle_tlbl));
  1419. pr_debug("\t.set push\n");
  1420. pr_debug("\t.set noreorder\n");
  1421. for (i = 0; i < (p - handle_tlbl); i++)
  1422. pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
  1423. pr_debug("\t.set pop\n");
  1424. }
  1425. static void __init build_r3000_tlb_store_handler(void)
  1426. {
  1427. u32 *p = handle_tlbs;
  1428. struct label *l = labels;
  1429. struct reloc *r = relocs;
  1430. int i;
  1431. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  1432. memset(labels, 0, sizeof(labels));
  1433. memset(relocs, 0, sizeof(relocs));
  1434. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1435. build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
  1436. i_nop(&p); /* load delay */
  1437. build_make_write(&p, &r, K0, K1);
  1438. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1439. l_nopage_tlbs(&l, p);
  1440. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1441. i_nop(&p);
  1442. if ((p - handle_tlbs) > FASTPATH_SIZE)
  1443. panic("TLB store handler fastpath space exceeded");
  1444. resolve_relocs(relocs, labels);
  1445. pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
  1446. (unsigned int)(p - handle_tlbs));
  1447. pr_debug("\t.set push\n");
  1448. pr_debug("\t.set noreorder\n");
  1449. for (i = 0; i < (p - handle_tlbs); i++)
  1450. pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
  1451. pr_debug("\t.set pop\n");
  1452. }
  1453. static void __init build_r3000_tlb_modify_handler(void)
  1454. {
  1455. u32 *p = handle_tlbm;
  1456. struct label *l = labels;
  1457. struct reloc *r = relocs;
  1458. int i;
  1459. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  1460. memset(labels, 0, sizeof(labels));
  1461. memset(relocs, 0, sizeof(relocs));
  1462. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1463. build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
  1464. i_nop(&p); /* load delay */
  1465. build_make_write(&p, &r, K0, K1);
  1466. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  1467. l_nopage_tlbm(&l, p);
  1468. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1469. i_nop(&p);
  1470. if ((p - handle_tlbm) > FASTPATH_SIZE)
  1471. panic("TLB modify handler fastpath space exceeded");
  1472. resolve_relocs(relocs, labels);
  1473. pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
  1474. (unsigned int)(p - handle_tlbm));
  1475. pr_debug("\t.set push\n");
  1476. pr_debug("\t.set noreorder\n");
  1477. for (i = 0; i < (p - handle_tlbm); i++)
  1478. pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
  1479. pr_debug("\t.set pop\n");
  1480. }
  1481. /*
  1482. * R4000 style TLB load/store/modify handlers.
  1483. */
  1484. static void __init
  1485. build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
  1486. struct reloc **r, unsigned int pte,
  1487. unsigned int ptr)
  1488. {
  1489. #ifdef CONFIG_64BIT
  1490. build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
  1491. #else
  1492. build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
  1493. #endif
  1494. i_MFC0(p, pte, C0_BADVADDR);
  1495. i_LW(p, ptr, 0, ptr);
  1496. i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1497. i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1498. i_ADDU(p, ptr, ptr, pte);
  1499. #ifdef CONFIG_SMP
  1500. l_smp_pgtable_change(l, *p);
  1501. # endif
  1502. iPTE_LW(p, l, pte, ptr); /* get even pte */
  1503. build_tlb_probe_entry(p);
  1504. }
  1505. static void __init
  1506. build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
  1507. struct reloc **r, unsigned int tmp,
  1508. unsigned int ptr)
  1509. {
  1510. i_ori(p, ptr, ptr, sizeof(pte_t));
  1511. i_xori(p, ptr, ptr, sizeof(pte_t));
  1512. build_update_entries(p, tmp, ptr);
  1513. build_tlb_write_entry(p, l, r, tlb_indexed);
  1514. l_leave(l, *p);
  1515. i_eret(p); /* return from trap */
  1516. #ifdef CONFIG_64BIT
  1517. build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
  1518. #endif
  1519. }
  1520. static void __init build_r4000_tlb_load_handler(void)
  1521. {
  1522. u32 *p = handle_tlbl;
  1523. struct label *l = labels;
  1524. struct reloc *r = relocs;
  1525. int i;
  1526. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  1527. memset(labels, 0, sizeof(labels));
  1528. memset(relocs, 0, sizeof(relocs));
  1529. if (bcm1250_m3_war()) {
  1530. i_MFC0(&p, K0, C0_BADVADDR);
  1531. i_MFC0(&p, K1, C0_ENTRYHI);
  1532. i_xor(&p, K0, K0, K1);
  1533. i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
  1534. il_bnez(&p, &r, K0, label_leave);
  1535. /* No need for i_nop */
  1536. }
  1537. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1538. build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
  1539. build_make_valid(&p, &r, K0, K1);
  1540. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1541. l_nopage_tlbl(&l, p);
  1542. i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1543. i_nop(&p);
  1544. if ((p - handle_tlbl) > FASTPATH_SIZE)
  1545. panic("TLB load handler fastpath space exceeded");
  1546. resolve_relocs(relocs, labels);
  1547. pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
  1548. (unsigned int)(p - handle_tlbl));
  1549. pr_debug("\t.set push\n");
  1550. pr_debug("\t.set noreorder\n");
  1551. for (i = 0; i < (p - handle_tlbl); i++)
  1552. pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
  1553. pr_debug("\t.set pop\n");
  1554. }
  1555. static void __init build_r4000_tlb_store_handler(void)
  1556. {
  1557. u32 *p = handle_tlbs;
  1558. struct label *l = labels;
  1559. struct reloc *r = relocs;
  1560. int i;
  1561. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  1562. memset(labels, 0, sizeof(labels));
  1563. memset(relocs, 0, sizeof(relocs));
  1564. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1565. build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
  1566. build_make_write(&p, &r, K0, K1);
  1567. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1568. l_nopage_tlbs(&l, p);
  1569. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1570. i_nop(&p);
  1571. if ((p - handle_tlbs) > FASTPATH_SIZE)
  1572. panic("TLB store handler fastpath space exceeded");
  1573. resolve_relocs(relocs, labels);
  1574. pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
  1575. (unsigned int)(p - handle_tlbs));
  1576. pr_debug("\t.set push\n");
  1577. pr_debug("\t.set noreorder\n");
  1578. for (i = 0; i < (p - handle_tlbs); i++)
  1579. pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
  1580. pr_debug("\t.set pop\n");
  1581. }
  1582. static void __init build_r4000_tlb_modify_handler(void)
  1583. {
  1584. u32 *p = handle_tlbm;
  1585. struct label *l = labels;
  1586. struct reloc *r = relocs;
  1587. int i;
  1588. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  1589. memset(labels, 0, sizeof(labels));
  1590. memset(relocs, 0, sizeof(relocs));
  1591. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1592. build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
  1593. /* Present and writable bits set, set accessed and dirty bits. */
  1594. build_make_write(&p, &r, K0, K1);
  1595. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1596. l_nopage_tlbm(&l, p);
  1597. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1598. i_nop(&p);
  1599. if ((p - handle_tlbm) > FASTPATH_SIZE)
  1600. panic("TLB modify handler fastpath space exceeded");
  1601. resolve_relocs(relocs, labels);
  1602. pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
  1603. (unsigned int)(p - handle_tlbm));
  1604. pr_debug("\t.set push\n");
  1605. pr_debug("\t.set noreorder\n");
  1606. for (i = 0; i < (p - handle_tlbm); i++)
  1607. pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
  1608. pr_debug("\t.set pop\n");
  1609. }
  1610. void __init build_tlb_refill_handler(void)
  1611. {
  1612. /*
  1613. * The refill handler is generated per-CPU, multi-node systems
  1614. * may have local storage for it. The other handlers are only
  1615. * needed once.
  1616. */
  1617. static int run_once = 0;
  1618. switch (current_cpu_data.cputype) {
  1619. case CPU_R2000:
  1620. case CPU_R3000:
  1621. case CPU_R3000A:
  1622. case CPU_R3081E:
  1623. case CPU_TX3912:
  1624. case CPU_TX3922:
  1625. case CPU_TX3927:
  1626. build_r3000_tlb_refill_handler();
  1627. if (!run_once) {
  1628. build_r3000_tlb_load_handler();
  1629. build_r3000_tlb_store_handler();
  1630. build_r3000_tlb_modify_handler();
  1631. run_once++;
  1632. }
  1633. break;
  1634. case CPU_R6000:
  1635. case CPU_R6000A:
  1636. panic("No R6000 TLB refill handler yet");
  1637. break;
  1638. case CPU_R8000:
  1639. panic("No R8000 TLB refill handler yet");
  1640. break;
  1641. default:
  1642. build_r4000_tlb_refill_handler();
  1643. if (!run_once) {
  1644. build_r4000_tlb_load_handler();
  1645. build_r4000_tlb_store_handler();
  1646. build_r4000_tlb_modify_handler();
  1647. run_once++;
  1648. }
  1649. }
  1650. }
  1651. void __init flush_tlb_handlers(void)
  1652. {
  1653. flush_icache_range((unsigned long)handle_tlbl,
  1654. (unsigned long)handle_tlbl + sizeof(handle_tlbl));
  1655. flush_icache_range((unsigned long)handle_tlbs,
  1656. (unsigned long)handle_tlbs + sizeof(handle_tlbs));
  1657. flush_icache_range((unsigned long)handle_tlbm,
  1658. (unsigned long)handle_tlbm + sizeof(handle_tlbm));
  1659. }