time.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. /*
  2. * linux/arch/ia64/kernel/time.c
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * Stephane Eranian <eranian@hpl.hp.com>
  6. * David Mosberger <davidm@hpl.hp.com>
  7. * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
  8. * Copyright (C) 1999-2000 VA Linux Systems
  9. * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/profile.h>
  16. #include <linux/sched.h>
  17. #include <linux/time.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/efi.h>
  20. #include <linux/timex.h>
  21. #include <asm/machvec.h>
  22. #include <asm/delay.h>
  23. #include <asm/hw_irq.h>
  24. #include <asm/ptrace.h>
  25. #include <asm/sal.h>
  26. #include <asm/sections.h>
  27. #include <asm/system.h>
  28. volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
  29. #ifdef CONFIG_IA64_DEBUG_IRQ
  30. unsigned long last_cli_ip;
  31. EXPORT_SYMBOL(last_cli_ip);
  32. #endif
  33. static struct time_interpolator itc_interpolator = {
  34. .shift = 16,
  35. .mask = 0xffffffffffffffffLL,
  36. .source = TIME_SOURCE_CPU
  37. };
  38. static irqreturn_t
  39. timer_interrupt (int irq, void *dev_id)
  40. {
  41. unsigned long new_itm;
  42. if (unlikely(cpu_is_offline(smp_processor_id()))) {
  43. return IRQ_HANDLED;
  44. }
  45. platform_timer_interrupt(irq, dev_id);
  46. new_itm = local_cpu_data->itm_next;
  47. if (!time_after(ia64_get_itc(), new_itm))
  48. printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
  49. ia64_get_itc(), new_itm);
  50. profile_tick(CPU_PROFILING);
  51. while (1) {
  52. update_process_times(user_mode(get_irq_regs()));
  53. new_itm += local_cpu_data->itm_delta;
  54. if (smp_processor_id() == time_keeper_id) {
  55. /*
  56. * Here we are in the timer irq handler. We have irqs locally
  57. * disabled, but we don't know if the timer_bh is running on
  58. * another CPU. We need to avoid to SMP race by acquiring the
  59. * xtime_lock.
  60. */
  61. write_seqlock(&xtime_lock);
  62. do_timer(1);
  63. local_cpu_data->itm_next = new_itm;
  64. write_sequnlock(&xtime_lock);
  65. } else
  66. local_cpu_data->itm_next = new_itm;
  67. if (time_after(new_itm, ia64_get_itc()))
  68. break;
  69. /*
  70. * Allow IPIs to interrupt the timer loop.
  71. */
  72. local_irq_enable();
  73. local_irq_disable();
  74. }
  75. do {
  76. /*
  77. * If we're too close to the next clock tick for
  78. * comfort, we increase the safety margin by
  79. * intentionally dropping the next tick(s). We do NOT
  80. * update itm.next because that would force us to call
  81. * do_timer() which in turn would let our clock run
  82. * too fast (with the potentially devastating effect
  83. * of losing monotony of time).
  84. */
  85. while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
  86. new_itm += local_cpu_data->itm_delta;
  87. ia64_set_itm(new_itm);
  88. /* double check, in case we got hit by a (slow) PMI: */
  89. } while (time_after_eq(ia64_get_itc(), new_itm));
  90. return IRQ_HANDLED;
  91. }
  92. /*
  93. * Encapsulate access to the itm structure for SMP.
  94. */
  95. void
  96. ia64_cpu_local_tick (void)
  97. {
  98. int cpu = smp_processor_id();
  99. unsigned long shift = 0, delta;
  100. /* arrange for the cycle counter to generate a timer interrupt: */
  101. ia64_set_itv(IA64_TIMER_VECTOR);
  102. delta = local_cpu_data->itm_delta;
  103. /*
  104. * Stagger the timer tick for each CPU so they don't occur all at (almost) the
  105. * same time:
  106. */
  107. if (cpu) {
  108. unsigned long hi = 1UL << ia64_fls(cpu);
  109. shift = (2*(cpu - hi) + 1) * delta/hi/2;
  110. }
  111. local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
  112. ia64_set_itm(local_cpu_data->itm_next);
  113. }
  114. static int nojitter;
  115. static int __init nojitter_setup(char *str)
  116. {
  117. nojitter = 1;
  118. printk("Jitter checking for ITC timers disabled\n");
  119. return 1;
  120. }
  121. __setup("nojitter", nojitter_setup);
  122. void __devinit
  123. ia64_init_itm (void)
  124. {
  125. unsigned long platform_base_freq, itc_freq;
  126. struct pal_freq_ratio itc_ratio, proc_ratio;
  127. long status, platform_base_drift, itc_drift;
  128. /*
  129. * According to SAL v2.6, we need to use a SAL call to determine the platform base
  130. * frequency and then a PAL call to determine the frequency ratio between the ITC
  131. * and the base frequency.
  132. */
  133. status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
  134. &platform_base_freq, &platform_base_drift);
  135. if (status != 0) {
  136. printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
  137. } else {
  138. status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
  139. if (status != 0)
  140. printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
  141. }
  142. if (status != 0) {
  143. /* invent "random" values */
  144. printk(KERN_ERR
  145. "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
  146. platform_base_freq = 100000000;
  147. platform_base_drift = -1; /* no drift info */
  148. itc_ratio.num = 3;
  149. itc_ratio.den = 1;
  150. }
  151. if (platform_base_freq < 40000000) {
  152. printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
  153. platform_base_freq);
  154. platform_base_freq = 75000000;
  155. platform_base_drift = -1;
  156. }
  157. if (!proc_ratio.den)
  158. proc_ratio.den = 1; /* avoid division by zero */
  159. if (!itc_ratio.den)
  160. itc_ratio.den = 1; /* avoid division by zero */
  161. itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
  162. local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
  163. printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
  164. "ITC freq=%lu.%03luMHz", smp_processor_id(),
  165. platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
  166. itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
  167. if (platform_base_drift != -1) {
  168. itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
  169. printk("+/-%ldppm\n", itc_drift);
  170. } else {
  171. itc_drift = -1;
  172. printk("\n");
  173. }
  174. local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
  175. local_cpu_data->itc_freq = itc_freq;
  176. local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
  177. local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
  178. + itc_freq/2)/itc_freq;
  179. if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
  180. itc_interpolator.frequency = local_cpu_data->itc_freq;
  181. itc_interpolator.drift = itc_drift;
  182. #ifdef CONFIG_SMP
  183. /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
  184. * Jitter compensation requires a cmpxchg which may limit
  185. * the scalability of the syscalls for retrieving time.
  186. * The ITC synchronization is usually successful to within a few
  187. * ITC ticks but this is not a sure thing. If you need to improve
  188. * timer performance in SMP situations then boot the kernel with the
  189. * "nojitter" option. However, doing so may result in time fluctuating (maybe
  190. * even going backward) if the ITC offsets between the individual CPUs
  191. * are too large.
  192. */
  193. if (!nojitter) itc_interpolator.jitter = 1;
  194. #endif
  195. register_time_interpolator(&itc_interpolator);
  196. }
  197. /* Setup the CPU local timer tick */
  198. ia64_cpu_local_tick();
  199. }
  200. static struct irqaction timer_irqaction = {
  201. .handler = timer_interrupt,
  202. .flags = IRQF_DISABLED | IRQF_IRQPOLL,
  203. .name = "timer"
  204. };
  205. void __devinit ia64_disable_timer(void)
  206. {
  207. ia64_set_itv(1 << 16);
  208. }
  209. void __init
  210. time_init (void)
  211. {
  212. register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
  213. efi_gettimeofday(&xtime);
  214. ia64_init_itm();
  215. /*
  216. * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
  217. * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
  218. */
  219. set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
  220. }
  221. /*
  222. * Generic udelay assumes that if preemption is allowed and the thread
  223. * migrates to another CPU, that the ITC values are synchronized across
  224. * all CPUs.
  225. */
  226. static void
  227. ia64_itc_udelay (unsigned long usecs)
  228. {
  229. unsigned long start = ia64_get_itc();
  230. unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
  231. while (time_before(ia64_get_itc(), end))
  232. cpu_relax();
  233. }
  234. void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
  235. void
  236. udelay (unsigned long usecs)
  237. {
  238. (*ia64_udelay)(usecs);
  239. }
  240. EXPORT_SYMBOL(udelay);
  241. static unsigned long long ia64_itc_printk_clock(void)
  242. {
  243. if (ia64_get_kr(IA64_KR_PER_CPU_DATA))
  244. return sched_clock();
  245. return 0;
  246. }
  247. static unsigned long long ia64_default_printk_clock(void)
  248. {
  249. return (unsigned long long)(jiffies_64 - INITIAL_JIFFIES) *
  250. (1000000000/HZ);
  251. }
  252. unsigned long long (*ia64_printk_clock)(void) = &ia64_default_printk_clock;
  253. unsigned long long printk_clock(void)
  254. {
  255. return ia64_printk_clock();
  256. }
  257. void __init
  258. ia64_setup_printk_clock(void)
  259. {
  260. if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT))
  261. ia64_printk_clock = ia64_itc_printk_clock;
  262. }