pxa27x.c 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259
  1. /*
  2. * linux/arch/arm/mach-pxa/pxa27x.c
  3. *
  4. * Author: Nicolas Pitre
  5. * Created: Nov 05, 2002
  6. * Copyright: MontaVista Software Inc.
  7. *
  8. * Code specific to PXA27x aka Bulverde.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/kernel.h>
  16. #include <linux/init.h>
  17. #include <linux/pm.h>
  18. #include <linux/platform_device.h>
  19. #include <asm/hardware.h>
  20. #include <asm/irq.h>
  21. #include <asm/arch/irqs.h>
  22. #include <asm/arch/pxa-regs.h>
  23. #include <asm/arch/ohci.h>
  24. #include <asm/arch/pm.h>
  25. #include <asm/arch/dma.h>
  26. #include "generic.h"
  27. #include "devices.h"
  28. /* Crystal clock: 13MHz */
  29. #define BASE_CLK 13000000
  30. /*
  31. * Get the clock frequency as reflected by CCSR and the turbo flag.
  32. * We assume these values have been applied via a fcs.
  33. * If info is not 0 we also display the current settings.
  34. */
  35. unsigned int get_clk_frequency_khz( int info)
  36. {
  37. unsigned long ccsr, clkcfg;
  38. unsigned int l, L, m, M, n2, N, S;
  39. int cccr_a, t, ht, b;
  40. ccsr = CCSR;
  41. cccr_a = CCCR & (1 << 25);
  42. /* Read clkcfg register: it has turbo, b, half-turbo (and f) */
  43. asm( "mrc\tp14, 0, %0, c6, c0, 0" : "=r" (clkcfg) );
  44. t = clkcfg & (1 << 0);
  45. ht = clkcfg & (1 << 2);
  46. b = clkcfg & (1 << 3);
  47. l = ccsr & 0x1f;
  48. n2 = (ccsr>>7) & 0xf;
  49. m = (l <= 10) ? 1 : (l <= 20) ? 2 : 4;
  50. L = l * BASE_CLK;
  51. N = (L * n2) / 2;
  52. M = (!cccr_a) ? (L/m) : ((b) ? L : (L/2));
  53. S = (b) ? L : (L/2);
  54. if (info) {
  55. printk( KERN_INFO "Run Mode clock: %d.%02dMHz (*%d)\n",
  56. L / 1000000, (L % 1000000) / 10000, l );
  57. printk( KERN_INFO "Turbo Mode clock: %d.%02dMHz (*%d.%d, %sactive)\n",
  58. N / 1000000, (N % 1000000)/10000, n2 / 2, (n2 % 2)*5,
  59. (t) ? "" : "in" );
  60. printk( KERN_INFO "Memory clock: %d.%02dMHz (/%d)\n",
  61. M / 1000000, (M % 1000000) / 10000, m );
  62. printk( KERN_INFO "System bus clock: %d.%02dMHz \n",
  63. S / 1000000, (S % 1000000) / 10000 );
  64. }
  65. return (t) ? (N/1000) : (L/1000);
  66. }
  67. /*
  68. * Return the current mem clock frequency in units of 10kHz as
  69. * reflected by CCCR[A], B, and L
  70. */
  71. unsigned int get_memclk_frequency_10khz(void)
  72. {
  73. unsigned long ccsr, clkcfg;
  74. unsigned int l, L, m, M;
  75. int cccr_a, b;
  76. ccsr = CCSR;
  77. cccr_a = CCCR & (1 << 25);
  78. /* Read clkcfg register: it has turbo, b, half-turbo (and f) */
  79. asm( "mrc\tp14, 0, %0, c6, c0, 0" : "=r" (clkcfg) );
  80. b = clkcfg & (1 << 3);
  81. l = ccsr & 0x1f;
  82. m = (l <= 10) ? 1 : (l <= 20) ? 2 : 4;
  83. L = l * BASE_CLK;
  84. M = (!cccr_a) ? (L/m) : ((b) ? L : (L/2));
  85. return (M / 10000);
  86. }
  87. /*
  88. * Return the current LCD clock frequency in units of 10kHz as
  89. */
  90. unsigned int get_lcdclk_frequency_10khz(void)
  91. {
  92. unsigned long ccsr;
  93. unsigned int l, L, k, K;
  94. ccsr = CCSR;
  95. l = ccsr & 0x1f;
  96. k = (l <= 7) ? 1 : (l <= 16) ? 2 : 4;
  97. L = l * BASE_CLK;
  98. K = L / k;
  99. return (K / 10000);
  100. }
  101. EXPORT_SYMBOL(get_clk_frequency_khz);
  102. EXPORT_SYMBOL(get_memclk_frequency_10khz);
  103. EXPORT_SYMBOL(get_lcdclk_frequency_10khz);
  104. #ifdef CONFIG_PM
  105. void pxa_cpu_pm_enter(suspend_state_t state)
  106. {
  107. extern void pxa_cpu_standby(void);
  108. extern void pxa_cpu_suspend(unsigned int);
  109. extern void pxa_cpu_resume(void);
  110. if (state == PM_SUSPEND_STANDBY)
  111. CKEN = (1 << CKEN_MEMC) | (1 << CKEN_OSTIMER) | (1 << CKEN_LCD) | (1 << CKEN_PWM0);
  112. else
  113. CKEN = (1 << CKEN_MEMC) | (1 << CKEN_OSTIMER);
  114. /* ensure voltage-change sequencer not initiated, which hangs */
  115. PCFR &= ~PCFR_FVC;
  116. /* Clear edge-detect status register. */
  117. PEDR = 0xDF12FE1B;
  118. switch (state) {
  119. case PM_SUSPEND_STANDBY:
  120. pxa_cpu_standby();
  121. break;
  122. case PM_SUSPEND_MEM:
  123. /* set resume return address */
  124. PSPR = virt_to_phys(pxa_cpu_resume);
  125. pxa_cpu_suspend(PWRMODE_SLEEP);
  126. break;
  127. }
  128. }
  129. static int pxa27x_pm_valid(suspend_state_t state)
  130. {
  131. return state == PM_SUSPEND_MEM || state == PM_SUSPEND_STANDBY;
  132. }
  133. static struct pm_ops pxa27x_pm_ops = {
  134. .enter = pxa_pm_enter,
  135. .valid = pxa27x_pm_valid,
  136. };
  137. #endif
  138. /*
  139. * device registration specific to PXA27x.
  140. */
  141. static u64 pxa27x_dmamask = 0xffffffffUL;
  142. static struct resource pxa27x_ohci_resources[] = {
  143. [0] = {
  144. .start = 0x4C000000,
  145. .end = 0x4C00ff6f,
  146. .flags = IORESOURCE_MEM,
  147. },
  148. [1] = {
  149. .start = IRQ_USBH1,
  150. .end = IRQ_USBH1,
  151. .flags = IORESOURCE_IRQ,
  152. },
  153. };
  154. static struct platform_device pxaohci_device = {
  155. .name = "pxa27x-ohci",
  156. .id = -1,
  157. .dev = {
  158. .dma_mask = &pxa27x_dmamask,
  159. .coherent_dma_mask = 0xffffffff,
  160. },
  161. .num_resources = ARRAY_SIZE(pxa27x_ohci_resources),
  162. .resource = pxa27x_ohci_resources,
  163. };
  164. void __init pxa_set_ohci_info(struct pxaohci_platform_data *info)
  165. {
  166. pxaohci_device.dev.platform_data = info;
  167. }
  168. static struct resource i2c_power_resources[] = {
  169. {
  170. .start = 0x40f00180,
  171. .end = 0x40f001a3,
  172. .flags = IORESOURCE_MEM,
  173. }, {
  174. .start = IRQ_PWRI2C,
  175. .end = IRQ_PWRI2C,
  176. .flags = IORESOURCE_IRQ,
  177. },
  178. };
  179. static struct platform_device pxai2c_power_device = {
  180. .name = "pxa2xx-i2c",
  181. .id = 1,
  182. .resource = i2c_power_resources,
  183. .num_resources = ARRAY_SIZE(i2c_power_resources),
  184. };
  185. static struct platform_device *devices[] __initdata = {
  186. &pxamci_device,
  187. &pxaudc_device,
  188. &pxafb_device,
  189. &ffuart_device,
  190. &btuart_device,
  191. &stuart_device,
  192. &pxai2c_device,
  193. &pxai2c_power_device,
  194. &pxai2s_device,
  195. &pxaficp_device,
  196. &pxartc_device,
  197. &pxaohci_device,
  198. };
  199. void __init pxa27x_init_irq(void)
  200. {
  201. pxa_init_irq_low();
  202. pxa_init_irq_high();
  203. pxa_init_irq_gpio(128);
  204. }
  205. static int __init pxa27x_init(void)
  206. {
  207. int ret = 0;
  208. if (cpu_is_pxa27x()) {
  209. if ((ret = pxa_init_dma(32)))
  210. return ret;
  211. #ifdef CONFIG_PM
  212. pm_set_ops(&pxa27x_pm_ops);
  213. #endif
  214. ret = platform_add_devices(devices, ARRAY_SIZE(devices));
  215. }
  216. return ret;
  217. }
  218. subsys_initcall(pxa27x_init);