pxa25x.c 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174
  1. /*
  2. * linux/arch/arm/mach-pxa/pxa25x.c
  3. *
  4. * Author: Nicolas Pitre
  5. * Created: Jun 15, 2001
  6. * Copyright: MontaVista Software Inc.
  7. *
  8. * Code specific to PXA21x/25x/26x variants.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. *
  14. * Since this file should be linked before any other machine specific file,
  15. * the __initcall() here will be executed first. This serves as default
  16. * initialization stuff for PXA machines which can be overridden later if
  17. * need be.
  18. */
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/init.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/pm.h>
  24. #include <asm/hardware.h>
  25. #include <asm/arch/irqs.h>
  26. #include <asm/arch/pxa-regs.h>
  27. #include <asm/arch/pm.h>
  28. #include <asm/arch/dma.h>
  29. #include "generic.h"
  30. #include "devices.h"
  31. /*
  32. * Various clock factors driven by the CCCR register.
  33. */
  34. /* Crystal Frequency to Memory Frequency Multiplier (L) */
  35. static unsigned char L_clk_mult[32] = { 0, 27, 32, 36, 40, 45, 0, };
  36. /* Memory Frequency to Run Mode Frequency Multiplier (M) */
  37. static unsigned char M_clk_mult[4] = { 0, 1, 2, 4 };
  38. /* Run Mode Frequency to Turbo Mode Frequency Multiplier (N) */
  39. /* Note: we store the value N * 2 here. */
  40. static unsigned char N2_clk_mult[8] = { 0, 0, 2, 3, 4, 0, 6, 0 };
  41. /* Crystal clock */
  42. #define BASE_CLK 3686400
  43. /*
  44. * Get the clock frequency as reflected by CCCR and the turbo flag.
  45. * We assume these values have been applied via a fcs.
  46. * If info is not 0 we also display the current settings.
  47. */
  48. unsigned int get_clk_frequency_khz(int info)
  49. {
  50. unsigned long cccr, turbo;
  51. unsigned int l, L, m, M, n2, N;
  52. cccr = CCCR;
  53. asm( "mrc\tp14, 0, %0, c6, c0, 0" : "=r" (turbo) );
  54. l = L_clk_mult[(cccr >> 0) & 0x1f];
  55. m = M_clk_mult[(cccr >> 5) & 0x03];
  56. n2 = N2_clk_mult[(cccr >> 7) & 0x07];
  57. L = l * BASE_CLK;
  58. M = m * L;
  59. N = n2 * M / 2;
  60. if(info)
  61. {
  62. L += 5000;
  63. printk( KERN_INFO "Memory clock: %d.%02dMHz (*%d)\n",
  64. L / 1000000, (L % 1000000) / 10000, l );
  65. M += 5000;
  66. printk( KERN_INFO "Run Mode clock: %d.%02dMHz (*%d)\n",
  67. M / 1000000, (M % 1000000) / 10000, m );
  68. N += 5000;
  69. printk( KERN_INFO "Turbo Mode clock: %d.%02dMHz (*%d.%d, %sactive)\n",
  70. N / 1000000, (N % 1000000) / 10000, n2 / 2, (n2 % 2) * 5,
  71. (turbo & 1) ? "" : "in" );
  72. }
  73. return (turbo & 1) ? (N/1000) : (M/1000);
  74. }
  75. EXPORT_SYMBOL(get_clk_frequency_khz);
  76. /*
  77. * Return the current memory clock frequency in units of 10kHz
  78. */
  79. unsigned int get_memclk_frequency_10khz(void)
  80. {
  81. return L_clk_mult[(CCCR >> 0) & 0x1f] * BASE_CLK / 10000;
  82. }
  83. EXPORT_SYMBOL(get_memclk_frequency_10khz);
  84. /*
  85. * Return the current LCD clock frequency in units of 10kHz
  86. */
  87. unsigned int get_lcdclk_frequency_10khz(void)
  88. {
  89. return get_memclk_frequency_10khz();
  90. }
  91. EXPORT_SYMBOL(get_lcdclk_frequency_10khz);
  92. #ifdef CONFIG_PM
  93. void pxa_cpu_pm_enter(suspend_state_t state)
  94. {
  95. extern void pxa_cpu_suspend(unsigned int);
  96. extern void pxa_cpu_resume(void);
  97. CKEN = 0;
  98. switch (state) {
  99. case PM_SUSPEND_MEM:
  100. /* set resume return address */
  101. PSPR = virt_to_phys(pxa_cpu_resume);
  102. pxa_cpu_suspend(PWRMODE_SLEEP);
  103. break;
  104. }
  105. }
  106. static struct pm_ops pxa25x_pm_ops = {
  107. .enter = pxa_pm_enter,
  108. .valid = pm_valid_only_mem,
  109. };
  110. #endif
  111. void __init pxa25x_init_irq(void)
  112. {
  113. pxa_init_irq_low();
  114. pxa_init_irq_gpio(85);
  115. }
  116. static struct platform_device *pxa25x_devices[] __initdata = {
  117. &pxamci_device,
  118. &pxaudc_device,
  119. &pxafb_device,
  120. &ffuart_device,
  121. &btuart_device,
  122. &stuart_device,
  123. &pxai2c_device,
  124. &pxai2s_device,
  125. &pxaficp_device,
  126. &pxartc_device,
  127. };
  128. static int __init pxa25x_init(void)
  129. {
  130. int ret = 0;
  131. if (cpu_is_pxa21x() || cpu_is_pxa25x()) {
  132. if ((ret = pxa_init_dma(16)))
  133. return ret;
  134. #ifdef CONFIG_PM
  135. pm_set_ops(&pxa25x_pm_ops);
  136. #endif
  137. ret = platform_add_devices(pxa25x_devices,
  138. ARRAY_SIZE(pxa25x_devices));
  139. }
  140. /* Only add HWUART for PXA255/26x; PXA210/250/27x do not have it. */
  141. if (cpu_is_pxa25x())
  142. ret = platform_device_register(&hwuart_device);
  143. return ret;
  144. }
  145. subsys_initcall(pxa25x_init);