transaction.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/slab.h>
  20. #include <linux/sched.h>
  21. #include <linux/writeback.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/blkdev.h>
  24. #include "ctree.h"
  25. #include "disk-io.h"
  26. #include "transaction.h"
  27. #include "locking.h"
  28. #include "tree-log.h"
  29. #include "inode-map.h"
  30. #define BTRFS_ROOT_TRANS_TAG 0
  31. void put_transaction(struct btrfs_transaction *transaction)
  32. {
  33. WARN_ON(atomic_read(&transaction->use_count) == 0);
  34. if (atomic_dec_and_test(&transaction->use_count)) {
  35. BUG_ON(!list_empty(&transaction->list));
  36. WARN_ON(transaction->delayed_refs.root.rb_node);
  37. WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
  38. memset(transaction, 0, sizeof(*transaction));
  39. kmem_cache_free(btrfs_transaction_cachep, transaction);
  40. }
  41. }
  42. static noinline void switch_commit_root(struct btrfs_root *root)
  43. {
  44. free_extent_buffer(root->commit_root);
  45. root->commit_root = btrfs_root_node(root);
  46. }
  47. /*
  48. * either allocate a new transaction or hop into the existing one
  49. */
  50. static noinline int join_transaction(struct btrfs_root *root, int nofail)
  51. {
  52. struct btrfs_transaction *cur_trans;
  53. spin_lock(&root->fs_info->trans_lock);
  54. loop:
  55. /* The file system has been taken offline. No new transactions. */
  56. if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  57. spin_unlock(&root->fs_info->trans_lock);
  58. return -EROFS;
  59. }
  60. if (root->fs_info->trans_no_join) {
  61. if (!nofail) {
  62. spin_unlock(&root->fs_info->trans_lock);
  63. return -EBUSY;
  64. }
  65. }
  66. cur_trans = root->fs_info->running_transaction;
  67. if (cur_trans) {
  68. if (cur_trans->aborted)
  69. return cur_trans->aborted;
  70. atomic_inc(&cur_trans->use_count);
  71. atomic_inc(&cur_trans->num_writers);
  72. cur_trans->num_joined++;
  73. spin_unlock(&root->fs_info->trans_lock);
  74. return 0;
  75. }
  76. spin_unlock(&root->fs_info->trans_lock);
  77. cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
  78. if (!cur_trans)
  79. return -ENOMEM;
  80. spin_lock(&root->fs_info->trans_lock);
  81. if (root->fs_info->running_transaction) {
  82. /*
  83. * someone started a transaction after we unlocked. Make sure
  84. * to redo the trans_no_join checks above
  85. */
  86. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  87. cur_trans = root->fs_info->running_transaction;
  88. goto loop;
  89. }
  90. atomic_set(&cur_trans->num_writers, 1);
  91. cur_trans->num_joined = 0;
  92. init_waitqueue_head(&cur_trans->writer_wait);
  93. init_waitqueue_head(&cur_trans->commit_wait);
  94. cur_trans->in_commit = 0;
  95. cur_trans->blocked = 0;
  96. /*
  97. * One for this trans handle, one so it will live on until we
  98. * commit the transaction.
  99. */
  100. atomic_set(&cur_trans->use_count, 2);
  101. cur_trans->commit_done = 0;
  102. cur_trans->start_time = get_seconds();
  103. cur_trans->delayed_refs.root = RB_ROOT;
  104. cur_trans->delayed_refs.num_entries = 0;
  105. cur_trans->delayed_refs.num_heads_ready = 0;
  106. cur_trans->delayed_refs.num_heads = 0;
  107. cur_trans->delayed_refs.flushing = 0;
  108. cur_trans->delayed_refs.run_delayed_start = 0;
  109. cur_trans->delayed_refs.seq = 1;
  110. init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
  111. spin_lock_init(&cur_trans->commit_lock);
  112. spin_lock_init(&cur_trans->delayed_refs.lock);
  113. INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
  114. INIT_LIST_HEAD(&cur_trans->pending_snapshots);
  115. list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
  116. extent_io_tree_init(&cur_trans->dirty_pages,
  117. root->fs_info->btree_inode->i_mapping);
  118. root->fs_info->generation++;
  119. cur_trans->transid = root->fs_info->generation;
  120. root->fs_info->running_transaction = cur_trans;
  121. cur_trans->aborted = 0;
  122. spin_unlock(&root->fs_info->trans_lock);
  123. return 0;
  124. }
  125. /*
  126. * this does all the record keeping required to make sure that a reference
  127. * counted root is properly recorded in a given transaction. This is required
  128. * to make sure the old root from before we joined the transaction is deleted
  129. * when the transaction commits
  130. */
  131. static int record_root_in_trans(struct btrfs_trans_handle *trans,
  132. struct btrfs_root *root)
  133. {
  134. if (root->ref_cows && root->last_trans < trans->transid) {
  135. WARN_ON(root == root->fs_info->extent_root);
  136. WARN_ON(root->commit_root != root->node);
  137. /*
  138. * see below for in_trans_setup usage rules
  139. * we have the reloc mutex held now, so there
  140. * is only one writer in this function
  141. */
  142. root->in_trans_setup = 1;
  143. /* make sure readers find in_trans_setup before
  144. * they find our root->last_trans update
  145. */
  146. smp_wmb();
  147. spin_lock(&root->fs_info->fs_roots_radix_lock);
  148. if (root->last_trans == trans->transid) {
  149. spin_unlock(&root->fs_info->fs_roots_radix_lock);
  150. return 0;
  151. }
  152. radix_tree_tag_set(&root->fs_info->fs_roots_radix,
  153. (unsigned long)root->root_key.objectid,
  154. BTRFS_ROOT_TRANS_TAG);
  155. spin_unlock(&root->fs_info->fs_roots_radix_lock);
  156. root->last_trans = trans->transid;
  157. /* this is pretty tricky. We don't want to
  158. * take the relocation lock in btrfs_record_root_in_trans
  159. * unless we're really doing the first setup for this root in
  160. * this transaction.
  161. *
  162. * Normally we'd use root->last_trans as a flag to decide
  163. * if we want to take the expensive mutex.
  164. *
  165. * But, we have to set root->last_trans before we
  166. * init the relocation root, otherwise, we trip over warnings
  167. * in ctree.c. The solution used here is to flag ourselves
  168. * with root->in_trans_setup. When this is 1, we're still
  169. * fixing up the reloc trees and everyone must wait.
  170. *
  171. * When this is zero, they can trust root->last_trans and fly
  172. * through btrfs_record_root_in_trans without having to take the
  173. * lock. smp_wmb() makes sure that all the writes above are
  174. * done before we pop in the zero below
  175. */
  176. btrfs_init_reloc_root(trans, root);
  177. smp_wmb();
  178. root->in_trans_setup = 0;
  179. }
  180. return 0;
  181. }
  182. int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
  183. struct btrfs_root *root)
  184. {
  185. if (!root->ref_cows)
  186. return 0;
  187. /*
  188. * see record_root_in_trans for comments about in_trans_setup usage
  189. * and barriers
  190. */
  191. smp_rmb();
  192. if (root->last_trans == trans->transid &&
  193. !root->in_trans_setup)
  194. return 0;
  195. mutex_lock(&root->fs_info->reloc_mutex);
  196. record_root_in_trans(trans, root);
  197. mutex_unlock(&root->fs_info->reloc_mutex);
  198. return 0;
  199. }
  200. /* wait for commit against the current transaction to become unblocked
  201. * when this is done, it is safe to start a new transaction, but the current
  202. * transaction might not be fully on disk.
  203. */
  204. static void wait_current_trans(struct btrfs_root *root)
  205. {
  206. struct btrfs_transaction *cur_trans;
  207. spin_lock(&root->fs_info->trans_lock);
  208. cur_trans = root->fs_info->running_transaction;
  209. if (cur_trans && cur_trans->blocked) {
  210. atomic_inc(&cur_trans->use_count);
  211. spin_unlock(&root->fs_info->trans_lock);
  212. wait_event(root->fs_info->transaction_wait,
  213. !cur_trans->blocked);
  214. put_transaction(cur_trans);
  215. } else {
  216. spin_unlock(&root->fs_info->trans_lock);
  217. }
  218. }
  219. enum btrfs_trans_type {
  220. TRANS_START,
  221. TRANS_JOIN,
  222. TRANS_USERSPACE,
  223. TRANS_JOIN_NOLOCK,
  224. };
  225. static int may_wait_transaction(struct btrfs_root *root, int type)
  226. {
  227. if (root->fs_info->log_root_recovering)
  228. return 0;
  229. if (type == TRANS_USERSPACE)
  230. return 1;
  231. if (type == TRANS_START &&
  232. !atomic_read(&root->fs_info->open_ioctl_trans))
  233. return 1;
  234. return 0;
  235. }
  236. static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
  237. u64 num_items, int type)
  238. {
  239. struct btrfs_trans_handle *h;
  240. struct btrfs_transaction *cur_trans;
  241. u64 num_bytes = 0;
  242. int ret;
  243. if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  244. return ERR_PTR(-EROFS);
  245. if (current->journal_info) {
  246. WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
  247. h = current->journal_info;
  248. h->use_count++;
  249. h->orig_rsv = h->block_rsv;
  250. h->block_rsv = NULL;
  251. goto got_it;
  252. }
  253. /*
  254. * Do the reservation before we join the transaction so we can do all
  255. * the appropriate flushing if need be.
  256. */
  257. if (num_items > 0 && root != root->fs_info->chunk_root) {
  258. num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
  259. ret = btrfs_block_rsv_add(root,
  260. &root->fs_info->trans_block_rsv,
  261. num_bytes);
  262. if (ret)
  263. return ERR_PTR(ret);
  264. }
  265. again:
  266. h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
  267. if (!h)
  268. return ERR_PTR(-ENOMEM);
  269. if (may_wait_transaction(root, type))
  270. wait_current_trans(root);
  271. do {
  272. ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
  273. if (ret == -EBUSY)
  274. wait_current_trans(root);
  275. } while (ret == -EBUSY);
  276. if (ret < 0) {
  277. kmem_cache_free(btrfs_trans_handle_cachep, h);
  278. return ERR_PTR(ret);
  279. }
  280. cur_trans = root->fs_info->running_transaction;
  281. h->transid = cur_trans->transid;
  282. h->transaction = cur_trans;
  283. h->blocks_used = 0;
  284. h->bytes_reserved = 0;
  285. h->delayed_ref_updates = 0;
  286. h->use_count = 1;
  287. h->block_rsv = NULL;
  288. h->orig_rsv = NULL;
  289. h->aborted = 0;
  290. smp_mb();
  291. if (cur_trans->blocked && may_wait_transaction(root, type)) {
  292. btrfs_commit_transaction(h, root);
  293. goto again;
  294. }
  295. if (num_bytes) {
  296. trace_btrfs_space_reservation(root->fs_info, "transaction",
  297. (u64)(unsigned long)h,
  298. num_bytes, 1);
  299. h->block_rsv = &root->fs_info->trans_block_rsv;
  300. h->bytes_reserved = num_bytes;
  301. }
  302. got_it:
  303. btrfs_record_root_in_trans(h, root);
  304. if (!current->journal_info && type != TRANS_USERSPACE)
  305. current->journal_info = h;
  306. return h;
  307. }
  308. struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
  309. int num_items)
  310. {
  311. return start_transaction(root, num_items, TRANS_START);
  312. }
  313. struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
  314. {
  315. return start_transaction(root, 0, TRANS_JOIN);
  316. }
  317. struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
  318. {
  319. return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
  320. }
  321. struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
  322. {
  323. return start_transaction(root, 0, TRANS_USERSPACE);
  324. }
  325. /* wait for a transaction commit to be fully complete */
  326. static noinline void wait_for_commit(struct btrfs_root *root,
  327. struct btrfs_transaction *commit)
  328. {
  329. wait_event(commit->commit_wait, commit->commit_done);
  330. }
  331. int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
  332. {
  333. struct btrfs_transaction *cur_trans = NULL, *t;
  334. int ret;
  335. ret = 0;
  336. if (transid) {
  337. if (transid <= root->fs_info->last_trans_committed)
  338. goto out;
  339. /* find specified transaction */
  340. spin_lock(&root->fs_info->trans_lock);
  341. list_for_each_entry(t, &root->fs_info->trans_list, list) {
  342. if (t->transid == transid) {
  343. cur_trans = t;
  344. atomic_inc(&cur_trans->use_count);
  345. break;
  346. }
  347. if (t->transid > transid)
  348. break;
  349. }
  350. spin_unlock(&root->fs_info->trans_lock);
  351. ret = -EINVAL;
  352. if (!cur_trans)
  353. goto out; /* bad transid */
  354. } else {
  355. /* find newest transaction that is committing | committed */
  356. spin_lock(&root->fs_info->trans_lock);
  357. list_for_each_entry_reverse(t, &root->fs_info->trans_list,
  358. list) {
  359. if (t->in_commit) {
  360. if (t->commit_done)
  361. break;
  362. cur_trans = t;
  363. atomic_inc(&cur_trans->use_count);
  364. break;
  365. }
  366. }
  367. spin_unlock(&root->fs_info->trans_lock);
  368. if (!cur_trans)
  369. goto out; /* nothing committing|committed */
  370. }
  371. wait_for_commit(root, cur_trans);
  372. put_transaction(cur_trans);
  373. ret = 0;
  374. out:
  375. return ret;
  376. }
  377. void btrfs_throttle(struct btrfs_root *root)
  378. {
  379. if (!atomic_read(&root->fs_info->open_ioctl_trans))
  380. wait_current_trans(root);
  381. }
  382. static int should_end_transaction(struct btrfs_trans_handle *trans,
  383. struct btrfs_root *root)
  384. {
  385. int ret;
  386. ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
  387. return ret ? 1 : 0;
  388. }
  389. int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
  390. struct btrfs_root *root)
  391. {
  392. struct btrfs_transaction *cur_trans = trans->transaction;
  393. struct btrfs_block_rsv *rsv = trans->block_rsv;
  394. int updates;
  395. int err;
  396. smp_mb();
  397. if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
  398. return 1;
  399. /*
  400. * We need to do this in case we're deleting csums so the global block
  401. * rsv get's used instead of the csum block rsv.
  402. */
  403. trans->block_rsv = NULL;
  404. updates = trans->delayed_ref_updates;
  405. trans->delayed_ref_updates = 0;
  406. if (updates) {
  407. err = btrfs_run_delayed_refs(trans, root, updates);
  408. if (err) /* Error code will also eval true */
  409. return err;
  410. }
  411. trans->block_rsv = rsv;
  412. return should_end_transaction(trans, root);
  413. }
  414. static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
  415. struct btrfs_root *root, int throttle, int lock)
  416. {
  417. struct btrfs_transaction *cur_trans = trans->transaction;
  418. struct btrfs_fs_info *info = root->fs_info;
  419. int count = 0;
  420. if (--trans->use_count) {
  421. trans->block_rsv = trans->orig_rsv;
  422. return 0;
  423. }
  424. btrfs_trans_release_metadata(trans, root);
  425. trans->block_rsv = NULL;
  426. while (count < 2) {
  427. unsigned long cur = trans->delayed_ref_updates;
  428. trans->delayed_ref_updates = 0;
  429. if (cur &&
  430. trans->transaction->delayed_refs.num_heads_ready > 64) {
  431. trans->delayed_ref_updates = 0;
  432. btrfs_run_delayed_refs(trans, root, cur);
  433. } else {
  434. break;
  435. }
  436. count++;
  437. }
  438. if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
  439. should_end_transaction(trans, root)) {
  440. trans->transaction->blocked = 1;
  441. smp_wmb();
  442. }
  443. if (lock && cur_trans->blocked && !cur_trans->in_commit) {
  444. if (throttle) {
  445. /*
  446. * We may race with somebody else here so end up having
  447. * to call end_transaction on ourselves again, so inc
  448. * our use_count.
  449. */
  450. trans->use_count++;
  451. return btrfs_commit_transaction(trans, root);
  452. } else {
  453. wake_up_process(info->transaction_kthread);
  454. }
  455. }
  456. WARN_ON(cur_trans != info->running_transaction);
  457. WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
  458. atomic_dec(&cur_trans->num_writers);
  459. smp_mb();
  460. if (waitqueue_active(&cur_trans->writer_wait))
  461. wake_up(&cur_trans->writer_wait);
  462. put_transaction(cur_trans);
  463. if (current->journal_info == trans)
  464. current->journal_info = NULL;
  465. memset(trans, 0, sizeof(*trans));
  466. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  467. if (throttle)
  468. btrfs_run_delayed_iputs(root);
  469. if (trans->aborted ||
  470. root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  471. return -EIO;
  472. }
  473. return 0;
  474. }
  475. int btrfs_end_transaction(struct btrfs_trans_handle *trans,
  476. struct btrfs_root *root)
  477. {
  478. int ret;
  479. ret = __btrfs_end_transaction(trans, root, 0, 1);
  480. if (ret)
  481. return ret;
  482. return 0;
  483. }
  484. int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
  485. struct btrfs_root *root)
  486. {
  487. int ret;
  488. ret = __btrfs_end_transaction(trans, root, 1, 1);
  489. if (ret)
  490. return ret;
  491. return 0;
  492. }
  493. int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
  494. struct btrfs_root *root)
  495. {
  496. int ret;
  497. ret = __btrfs_end_transaction(trans, root, 0, 0);
  498. if (ret)
  499. return ret;
  500. return 0;
  501. }
  502. int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
  503. struct btrfs_root *root)
  504. {
  505. return __btrfs_end_transaction(trans, root, 1, 1);
  506. }
  507. /*
  508. * when btree blocks are allocated, they have some corresponding bits set for
  509. * them in one of two extent_io trees. This is used to make sure all of
  510. * those extents are sent to disk but does not wait on them
  511. */
  512. int btrfs_write_marked_extents(struct btrfs_root *root,
  513. struct extent_io_tree *dirty_pages, int mark)
  514. {
  515. int err = 0;
  516. int werr = 0;
  517. struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
  518. u64 start = 0;
  519. u64 end;
  520. while (!find_first_extent_bit(dirty_pages, start, &start, &end,
  521. mark)) {
  522. convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
  523. GFP_NOFS);
  524. err = filemap_fdatawrite_range(mapping, start, end);
  525. if (err)
  526. werr = err;
  527. cond_resched();
  528. start = end + 1;
  529. }
  530. if (err)
  531. werr = err;
  532. return werr;
  533. }
  534. /*
  535. * when btree blocks are allocated, they have some corresponding bits set for
  536. * them in one of two extent_io trees. This is used to make sure all of
  537. * those extents are on disk for transaction or log commit. We wait
  538. * on all the pages and clear them from the dirty pages state tree
  539. */
  540. int btrfs_wait_marked_extents(struct btrfs_root *root,
  541. struct extent_io_tree *dirty_pages, int mark)
  542. {
  543. int err = 0;
  544. int werr = 0;
  545. struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
  546. u64 start = 0;
  547. u64 end;
  548. while (!find_first_extent_bit(dirty_pages, start, &start, &end,
  549. EXTENT_NEED_WAIT)) {
  550. clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
  551. err = filemap_fdatawait_range(mapping, start, end);
  552. if (err)
  553. werr = err;
  554. cond_resched();
  555. start = end + 1;
  556. }
  557. if (err)
  558. werr = err;
  559. return werr;
  560. }
  561. /*
  562. * when btree blocks are allocated, they have some corresponding bits set for
  563. * them in one of two extent_io trees. This is used to make sure all of
  564. * those extents are on disk for transaction or log commit
  565. */
  566. int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
  567. struct extent_io_tree *dirty_pages, int mark)
  568. {
  569. int ret;
  570. int ret2;
  571. ret = btrfs_write_marked_extents(root, dirty_pages, mark);
  572. ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
  573. if (ret)
  574. return ret;
  575. if (ret2)
  576. return ret2;
  577. return 0;
  578. }
  579. int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
  580. struct btrfs_root *root)
  581. {
  582. if (!trans || !trans->transaction) {
  583. struct inode *btree_inode;
  584. btree_inode = root->fs_info->btree_inode;
  585. return filemap_write_and_wait(btree_inode->i_mapping);
  586. }
  587. return btrfs_write_and_wait_marked_extents(root,
  588. &trans->transaction->dirty_pages,
  589. EXTENT_DIRTY);
  590. }
  591. /*
  592. * this is used to update the root pointer in the tree of tree roots.
  593. *
  594. * But, in the case of the extent allocation tree, updating the root
  595. * pointer may allocate blocks which may change the root of the extent
  596. * allocation tree.
  597. *
  598. * So, this loops and repeats and makes sure the cowonly root didn't
  599. * change while the root pointer was being updated in the metadata.
  600. */
  601. static int update_cowonly_root(struct btrfs_trans_handle *trans,
  602. struct btrfs_root *root)
  603. {
  604. int ret;
  605. u64 old_root_bytenr;
  606. u64 old_root_used;
  607. struct btrfs_root *tree_root = root->fs_info->tree_root;
  608. old_root_used = btrfs_root_used(&root->root_item);
  609. btrfs_write_dirty_block_groups(trans, root);
  610. while (1) {
  611. old_root_bytenr = btrfs_root_bytenr(&root->root_item);
  612. if (old_root_bytenr == root->node->start &&
  613. old_root_used == btrfs_root_used(&root->root_item))
  614. break;
  615. btrfs_set_root_node(&root->root_item, root->node);
  616. ret = btrfs_update_root(trans, tree_root,
  617. &root->root_key,
  618. &root->root_item);
  619. if (ret)
  620. return ret;
  621. old_root_used = btrfs_root_used(&root->root_item);
  622. ret = btrfs_write_dirty_block_groups(trans, root);
  623. if (ret)
  624. return ret;
  625. }
  626. if (root != root->fs_info->extent_root)
  627. switch_commit_root(root);
  628. return 0;
  629. }
  630. /*
  631. * update all the cowonly tree roots on disk
  632. *
  633. * The error handling in this function may not be obvious. Any of the
  634. * failures will cause the file system to go offline. We still need
  635. * to clean up the delayed refs.
  636. */
  637. static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
  638. struct btrfs_root *root)
  639. {
  640. struct btrfs_fs_info *fs_info = root->fs_info;
  641. struct list_head *next;
  642. struct extent_buffer *eb;
  643. int ret;
  644. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  645. if (ret)
  646. return ret;
  647. eb = btrfs_lock_root_node(fs_info->tree_root);
  648. ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
  649. 0, &eb);
  650. btrfs_tree_unlock(eb);
  651. free_extent_buffer(eb);
  652. if (ret)
  653. return ret;
  654. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  655. if (ret)
  656. return ret;
  657. while (!list_empty(&fs_info->dirty_cowonly_roots)) {
  658. next = fs_info->dirty_cowonly_roots.next;
  659. list_del_init(next);
  660. root = list_entry(next, struct btrfs_root, dirty_list);
  661. ret = update_cowonly_root(trans, root);
  662. if (ret)
  663. return ret;
  664. }
  665. down_write(&fs_info->extent_commit_sem);
  666. switch_commit_root(fs_info->extent_root);
  667. up_write(&fs_info->extent_commit_sem);
  668. return 0;
  669. }
  670. /*
  671. * dead roots are old snapshots that need to be deleted. This allocates
  672. * a dirty root struct and adds it into the list of dead roots that need to
  673. * be deleted
  674. */
  675. int btrfs_add_dead_root(struct btrfs_root *root)
  676. {
  677. spin_lock(&root->fs_info->trans_lock);
  678. list_add(&root->root_list, &root->fs_info->dead_roots);
  679. spin_unlock(&root->fs_info->trans_lock);
  680. return 0;
  681. }
  682. /*
  683. * update all the cowonly tree roots on disk
  684. */
  685. static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
  686. struct btrfs_root *root)
  687. {
  688. struct btrfs_root *gang[8];
  689. struct btrfs_fs_info *fs_info = root->fs_info;
  690. int i;
  691. int ret;
  692. int err = 0;
  693. spin_lock(&fs_info->fs_roots_radix_lock);
  694. while (1) {
  695. ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
  696. (void **)gang, 0,
  697. ARRAY_SIZE(gang),
  698. BTRFS_ROOT_TRANS_TAG);
  699. if (ret == 0)
  700. break;
  701. for (i = 0; i < ret; i++) {
  702. root = gang[i];
  703. radix_tree_tag_clear(&fs_info->fs_roots_radix,
  704. (unsigned long)root->root_key.objectid,
  705. BTRFS_ROOT_TRANS_TAG);
  706. spin_unlock(&fs_info->fs_roots_radix_lock);
  707. btrfs_free_log(trans, root);
  708. btrfs_update_reloc_root(trans, root);
  709. btrfs_orphan_commit_root(trans, root);
  710. btrfs_save_ino_cache(root, trans);
  711. /* see comments in should_cow_block() */
  712. root->force_cow = 0;
  713. smp_wmb();
  714. if (root->commit_root != root->node) {
  715. mutex_lock(&root->fs_commit_mutex);
  716. switch_commit_root(root);
  717. btrfs_unpin_free_ino(root);
  718. mutex_unlock(&root->fs_commit_mutex);
  719. btrfs_set_root_node(&root->root_item,
  720. root->node);
  721. }
  722. err = btrfs_update_root(trans, fs_info->tree_root,
  723. &root->root_key,
  724. &root->root_item);
  725. spin_lock(&fs_info->fs_roots_radix_lock);
  726. if (err)
  727. break;
  728. }
  729. }
  730. spin_unlock(&fs_info->fs_roots_radix_lock);
  731. return err;
  732. }
  733. /*
  734. * defrag a given btree. If cacheonly == 1, this won't read from the disk,
  735. * otherwise every leaf in the btree is read and defragged.
  736. */
  737. int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
  738. {
  739. struct btrfs_fs_info *info = root->fs_info;
  740. struct btrfs_trans_handle *trans;
  741. int ret;
  742. unsigned long nr;
  743. if (xchg(&root->defrag_running, 1))
  744. return 0;
  745. while (1) {
  746. trans = btrfs_start_transaction(root, 0);
  747. if (IS_ERR(trans))
  748. return PTR_ERR(trans);
  749. ret = btrfs_defrag_leaves(trans, root, cacheonly);
  750. nr = trans->blocks_used;
  751. btrfs_end_transaction(trans, root);
  752. btrfs_btree_balance_dirty(info->tree_root, nr);
  753. cond_resched();
  754. if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
  755. break;
  756. }
  757. root->defrag_running = 0;
  758. return ret;
  759. }
  760. /*
  761. * new snapshots need to be created at a very specific time in the
  762. * transaction commit. This does the actual creation
  763. */
  764. static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
  765. struct btrfs_fs_info *fs_info,
  766. struct btrfs_pending_snapshot *pending)
  767. {
  768. struct btrfs_key key;
  769. struct btrfs_root_item *new_root_item;
  770. struct btrfs_root *tree_root = fs_info->tree_root;
  771. struct btrfs_root *root = pending->root;
  772. struct btrfs_root *parent_root;
  773. struct btrfs_block_rsv *rsv;
  774. struct inode *parent_inode;
  775. struct dentry *parent;
  776. struct dentry *dentry;
  777. struct extent_buffer *tmp;
  778. struct extent_buffer *old;
  779. int ret;
  780. u64 to_reserve = 0;
  781. u64 index = 0;
  782. u64 objectid;
  783. u64 root_flags;
  784. rsv = trans->block_rsv;
  785. new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
  786. if (!new_root_item) {
  787. ret = pending->error = -ENOMEM;
  788. goto fail;
  789. }
  790. ret = btrfs_find_free_objectid(tree_root, &objectid);
  791. if (ret) {
  792. pending->error = ret;
  793. goto fail;
  794. }
  795. btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
  796. if (to_reserve > 0) {
  797. ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
  798. to_reserve);
  799. if (ret) {
  800. pending->error = ret;
  801. goto fail;
  802. }
  803. }
  804. key.objectid = objectid;
  805. key.offset = (u64)-1;
  806. key.type = BTRFS_ROOT_ITEM_KEY;
  807. trans->block_rsv = &pending->block_rsv;
  808. dentry = pending->dentry;
  809. parent = dget_parent(dentry);
  810. parent_inode = parent->d_inode;
  811. parent_root = BTRFS_I(parent_inode)->root;
  812. record_root_in_trans(trans, parent_root);
  813. /*
  814. * insert the directory item
  815. */
  816. ret = btrfs_set_inode_index(parent_inode, &index);
  817. BUG_ON(ret); /* -ENOMEM */
  818. ret = btrfs_insert_dir_item(trans, parent_root,
  819. dentry->d_name.name, dentry->d_name.len,
  820. parent_inode, &key,
  821. BTRFS_FT_DIR, index);
  822. if (ret) {
  823. pending->error = -EEXIST;
  824. dput(parent);
  825. goto fail;
  826. } else if (ret)
  827. goto abort_trans;
  828. btrfs_i_size_write(parent_inode, parent_inode->i_size +
  829. dentry->d_name.len * 2);
  830. ret = btrfs_update_inode(trans, parent_root, parent_inode);
  831. if (ret)
  832. goto abort_trans;
  833. /*
  834. * pull in the delayed directory update
  835. * and the delayed inode item
  836. * otherwise we corrupt the FS during
  837. * snapshot
  838. */
  839. ret = btrfs_run_delayed_items(trans, root);
  840. if (ret) /* Transaction aborted */
  841. goto fail;
  842. record_root_in_trans(trans, root);
  843. btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
  844. memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
  845. btrfs_check_and_init_root_item(new_root_item);
  846. root_flags = btrfs_root_flags(new_root_item);
  847. if (pending->readonly)
  848. root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
  849. else
  850. root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
  851. btrfs_set_root_flags(new_root_item, root_flags);
  852. old = btrfs_lock_root_node(root);
  853. ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
  854. if (ret)
  855. goto abort_trans;
  856. btrfs_set_lock_blocking(old);
  857. ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
  858. if (ret)
  859. goto abort_trans;
  860. btrfs_tree_unlock(old);
  861. free_extent_buffer(old);
  862. /* see comments in should_cow_block() */
  863. root->force_cow = 1;
  864. smp_wmb();
  865. btrfs_set_root_node(new_root_item, tmp);
  866. /* record when the snapshot was created in key.offset */
  867. key.offset = trans->transid;
  868. ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
  869. btrfs_tree_unlock(tmp);
  870. free_extent_buffer(tmp);
  871. if (ret)
  872. goto abort_trans;
  873. /*
  874. * insert root back/forward references
  875. */
  876. ret = btrfs_add_root_ref(trans, tree_root, objectid,
  877. parent_root->root_key.objectid,
  878. btrfs_ino(parent_inode), index,
  879. dentry->d_name.name, dentry->d_name.len);
  880. if (ret)
  881. goto fail;
  882. dput(parent);
  883. key.offset = (u64)-1;
  884. pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
  885. if (IS_ERR(pending->snap))
  886. goto abort_trans;
  887. ret = btrfs_reloc_post_snapshot(trans, pending);
  888. if (ret)
  889. goto abort_trans;
  890. ret = 0;
  891. fail:
  892. kfree(new_root_item);
  893. trans->block_rsv = rsv;
  894. btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
  895. return ret;
  896. abort_trans:
  897. btrfs_abort_transaction(trans, root, ret);
  898. goto fail;
  899. }
  900. /*
  901. * create all the snapshots we've scheduled for creation
  902. */
  903. static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
  904. struct btrfs_fs_info *fs_info)
  905. {
  906. struct btrfs_pending_snapshot *pending;
  907. struct list_head *head = &trans->transaction->pending_snapshots;
  908. list_for_each_entry(pending, head, list)
  909. create_pending_snapshot(trans, fs_info, pending);
  910. return 0;
  911. }
  912. static void update_super_roots(struct btrfs_root *root)
  913. {
  914. struct btrfs_root_item *root_item;
  915. struct btrfs_super_block *super;
  916. super = root->fs_info->super_copy;
  917. root_item = &root->fs_info->chunk_root->root_item;
  918. super->chunk_root = root_item->bytenr;
  919. super->chunk_root_generation = root_item->generation;
  920. super->chunk_root_level = root_item->level;
  921. root_item = &root->fs_info->tree_root->root_item;
  922. super->root = root_item->bytenr;
  923. super->generation = root_item->generation;
  924. super->root_level = root_item->level;
  925. if (btrfs_test_opt(root, SPACE_CACHE))
  926. super->cache_generation = root_item->generation;
  927. }
  928. int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
  929. {
  930. int ret = 0;
  931. spin_lock(&info->trans_lock);
  932. if (info->running_transaction)
  933. ret = info->running_transaction->in_commit;
  934. spin_unlock(&info->trans_lock);
  935. return ret;
  936. }
  937. int btrfs_transaction_blocked(struct btrfs_fs_info *info)
  938. {
  939. int ret = 0;
  940. spin_lock(&info->trans_lock);
  941. if (info->running_transaction)
  942. ret = info->running_transaction->blocked;
  943. spin_unlock(&info->trans_lock);
  944. return ret;
  945. }
  946. /*
  947. * wait for the current transaction commit to start and block subsequent
  948. * transaction joins
  949. */
  950. static void wait_current_trans_commit_start(struct btrfs_root *root,
  951. struct btrfs_transaction *trans)
  952. {
  953. wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
  954. }
  955. /*
  956. * wait for the current transaction to start and then become unblocked.
  957. * caller holds ref.
  958. */
  959. static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
  960. struct btrfs_transaction *trans)
  961. {
  962. wait_event(root->fs_info->transaction_wait,
  963. trans->commit_done || (trans->in_commit && !trans->blocked));
  964. }
  965. /*
  966. * commit transactions asynchronously. once btrfs_commit_transaction_async
  967. * returns, any subsequent transaction will not be allowed to join.
  968. */
  969. struct btrfs_async_commit {
  970. struct btrfs_trans_handle *newtrans;
  971. struct btrfs_root *root;
  972. struct delayed_work work;
  973. };
  974. static void do_async_commit(struct work_struct *work)
  975. {
  976. struct btrfs_async_commit *ac =
  977. container_of(work, struct btrfs_async_commit, work.work);
  978. btrfs_commit_transaction(ac->newtrans, ac->root);
  979. kfree(ac);
  980. }
  981. int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
  982. struct btrfs_root *root,
  983. int wait_for_unblock)
  984. {
  985. struct btrfs_async_commit *ac;
  986. struct btrfs_transaction *cur_trans;
  987. ac = kmalloc(sizeof(*ac), GFP_NOFS);
  988. if (!ac)
  989. return -ENOMEM;
  990. INIT_DELAYED_WORK(&ac->work, do_async_commit);
  991. ac->root = root;
  992. ac->newtrans = btrfs_join_transaction(root);
  993. if (IS_ERR(ac->newtrans)) {
  994. int err = PTR_ERR(ac->newtrans);
  995. kfree(ac);
  996. return err;
  997. }
  998. /* take transaction reference */
  999. cur_trans = trans->transaction;
  1000. atomic_inc(&cur_trans->use_count);
  1001. btrfs_end_transaction(trans, root);
  1002. schedule_delayed_work(&ac->work, 0);
  1003. /* wait for transaction to start and unblock */
  1004. if (wait_for_unblock)
  1005. wait_current_trans_commit_start_and_unblock(root, cur_trans);
  1006. else
  1007. wait_current_trans_commit_start(root, cur_trans);
  1008. if (current->journal_info == trans)
  1009. current->journal_info = NULL;
  1010. put_transaction(cur_trans);
  1011. return 0;
  1012. }
  1013. static void cleanup_transaction(struct btrfs_trans_handle *trans,
  1014. struct btrfs_root *root)
  1015. {
  1016. struct btrfs_transaction *cur_trans = trans->transaction;
  1017. WARN_ON(trans->use_count > 1);
  1018. spin_lock(&root->fs_info->trans_lock);
  1019. list_del_init(&cur_trans->list);
  1020. spin_unlock(&root->fs_info->trans_lock);
  1021. btrfs_cleanup_one_transaction(trans->transaction, root);
  1022. put_transaction(cur_trans);
  1023. put_transaction(cur_trans);
  1024. trace_btrfs_transaction_commit(root);
  1025. btrfs_scrub_continue(root);
  1026. if (current->journal_info == trans)
  1027. current->journal_info = NULL;
  1028. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  1029. }
  1030. /*
  1031. * btrfs_transaction state sequence:
  1032. * in_commit = 0, blocked = 0 (initial)
  1033. * in_commit = 1, blocked = 1
  1034. * blocked = 0
  1035. * commit_done = 1
  1036. */
  1037. int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
  1038. struct btrfs_root *root)
  1039. {
  1040. unsigned long joined = 0;
  1041. struct btrfs_transaction *cur_trans = trans->transaction;
  1042. struct btrfs_transaction *prev_trans = NULL;
  1043. DEFINE_WAIT(wait);
  1044. int ret = -EIO;
  1045. int should_grow = 0;
  1046. unsigned long now = get_seconds();
  1047. int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
  1048. btrfs_run_ordered_operations(root, 0);
  1049. btrfs_trans_release_metadata(trans, root);
  1050. trans->block_rsv = NULL;
  1051. if (cur_trans->aborted)
  1052. goto cleanup_transaction;
  1053. /* make a pass through all the delayed refs we have so far
  1054. * any runnings procs may add more while we are here
  1055. */
  1056. ret = btrfs_run_delayed_refs(trans, root, 0);
  1057. if (ret)
  1058. goto cleanup_transaction;
  1059. cur_trans = trans->transaction;
  1060. /*
  1061. * set the flushing flag so procs in this transaction have to
  1062. * start sending their work down.
  1063. */
  1064. cur_trans->delayed_refs.flushing = 1;
  1065. ret = btrfs_run_delayed_refs(trans, root, 0);
  1066. if (ret)
  1067. goto cleanup_transaction;
  1068. spin_lock(&cur_trans->commit_lock);
  1069. if (cur_trans->in_commit) {
  1070. spin_unlock(&cur_trans->commit_lock);
  1071. atomic_inc(&cur_trans->use_count);
  1072. ret = btrfs_end_transaction(trans, root);
  1073. wait_for_commit(root, cur_trans);
  1074. put_transaction(cur_trans);
  1075. return ret;
  1076. }
  1077. trans->transaction->in_commit = 1;
  1078. trans->transaction->blocked = 1;
  1079. spin_unlock(&cur_trans->commit_lock);
  1080. wake_up(&root->fs_info->transaction_blocked_wait);
  1081. spin_lock(&root->fs_info->trans_lock);
  1082. if (cur_trans->list.prev != &root->fs_info->trans_list) {
  1083. prev_trans = list_entry(cur_trans->list.prev,
  1084. struct btrfs_transaction, list);
  1085. if (!prev_trans->commit_done) {
  1086. atomic_inc(&prev_trans->use_count);
  1087. spin_unlock(&root->fs_info->trans_lock);
  1088. wait_for_commit(root, prev_trans);
  1089. put_transaction(prev_trans);
  1090. } else {
  1091. spin_unlock(&root->fs_info->trans_lock);
  1092. }
  1093. } else {
  1094. spin_unlock(&root->fs_info->trans_lock);
  1095. }
  1096. if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
  1097. should_grow = 1;
  1098. do {
  1099. int snap_pending = 0;
  1100. joined = cur_trans->num_joined;
  1101. if (!list_empty(&trans->transaction->pending_snapshots))
  1102. snap_pending = 1;
  1103. WARN_ON(cur_trans != trans->transaction);
  1104. if (flush_on_commit || snap_pending) {
  1105. btrfs_start_delalloc_inodes(root, 1);
  1106. btrfs_wait_ordered_extents(root, 0, 1);
  1107. }
  1108. ret = btrfs_run_delayed_items(trans, root);
  1109. if (ret)
  1110. goto cleanup_transaction;
  1111. /*
  1112. * rename don't use btrfs_join_transaction, so, once we
  1113. * set the transaction to blocked above, we aren't going
  1114. * to get any new ordered operations. We can safely run
  1115. * it here and no for sure that nothing new will be added
  1116. * to the list
  1117. */
  1118. btrfs_run_ordered_operations(root, 1);
  1119. prepare_to_wait(&cur_trans->writer_wait, &wait,
  1120. TASK_UNINTERRUPTIBLE);
  1121. if (atomic_read(&cur_trans->num_writers) > 1)
  1122. schedule_timeout(MAX_SCHEDULE_TIMEOUT);
  1123. else if (should_grow)
  1124. schedule_timeout(1);
  1125. finish_wait(&cur_trans->writer_wait, &wait);
  1126. } while (atomic_read(&cur_trans->num_writers) > 1 ||
  1127. (should_grow && cur_trans->num_joined != joined));
  1128. /*
  1129. * Ok now we need to make sure to block out any other joins while we
  1130. * commit the transaction. We could have started a join before setting
  1131. * no_join so make sure to wait for num_writers to == 1 again.
  1132. */
  1133. spin_lock(&root->fs_info->trans_lock);
  1134. root->fs_info->trans_no_join = 1;
  1135. spin_unlock(&root->fs_info->trans_lock);
  1136. wait_event(cur_trans->writer_wait,
  1137. atomic_read(&cur_trans->num_writers) == 1);
  1138. /*
  1139. * the reloc mutex makes sure that we stop
  1140. * the balancing code from coming in and moving
  1141. * extents around in the middle of the commit
  1142. */
  1143. mutex_lock(&root->fs_info->reloc_mutex);
  1144. ret = btrfs_run_delayed_items(trans, root);
  1145. if (ret) {
  1146. mutex_unlock(&root->fs_info->reloc_mutex);
  1147. goto cleanup_transaction;
  1148. }
  1149. ret = create_pending_snapshots(trans, root->fs_info);
  1150. if (ret) {
  1151. mutex_unlock(&root->fs_info->reloc_mutex);
  1152. goto cleanup_transaction;
  1153. }
  1154. ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
  1155. if (ret) {
  1156. mutex_unlock(&root->fs_info->reloc_mutex);
  1157. goto cleanup_transaction;
  1158. }
  1159. /*
  1160. * make sure none of the code above managed to slip in a
  1161. * delayed item
  1162. */
  1163. btrfs_assert_delayed_root_empty(root);
  1164. WARN_ON(cur_trans != trans->transaction);
  1165. btrfs_scrub_pause(root);
  1166. /* btrfs_commit_tree_roots is responsible for getting the
  1167. * various roots consistent with each other. Every pointer
  1168. * in the tree of tree roots has to point to the most up to date
  1169. * root for every subvolume and other tree. So, we have to keep
  1170. * the tree logging code from jumping in and changing any
  1171. * of the trees.
  1172. *
  1173. * At this point in the commit, there can't be any tree-log
  1174. * writers, but a little lower down we drop the trans mutex
  1175. * and let new people in. By holding the tree_log_mutex
  1176. * from now until after the super is written, we avoid races
  1177. * with the tree-log code.
  1178. */
  1179. mutex_lock(&root->fs_info->tree_log_mutex);
  1180. ret = commit_fs_roots(trans, root);
  1181. if (ret) {
  1182. mutex_unlock(&root->fs_info->tree_log_mutex);
  1183. goto cleanup_transaction;
  1184. }
  1185. /* commit_fs_roots gets rid of all the tree log roots, it is now
  1186. * safe to free the root of tree log roots
  1187. */
  1188. btrfs_free_log_root_tree(trans, root->fs_info);
  1189. ret = commit_cowonly_roots(trans, root);
  1190. if (ret) {
  1191. mutex_unlock(&root->fs_info->tree_log_mutex);
  1192. goto cleanup_transaction;
  1193. }
  1194. btrfs_prepare_extent_commit(trans, root);
  1195. cur_trans = root->fs_info->running_transaction;
  1196. btrfs_set_root_node(&root->fs_info->tree_root->root_item,
  1197. root->fs_info->tree_root->node);
  1198. switch_commit_root(root->fs_info->tree_root);
  1199. btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
  1200. root->fs_info->chunk_root->node);
  1201. switch_commit_root(root->fs_info->chunk_root);
  1202. update_super_roots(root);
  1203. if (!root->fs_info->log_root_recovering) {
  1204. btrfs_set_super_log_root(root->fs_info->super_copy, 0);
  1205. btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
  1206. }
  1207. memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
  1208. sizeof(*root->fs_info->super_copy));
  1209. trans->transaction->blocked = 0;
  1210. spin_lock(&root->fs_info->trans_lock);
  1211. root->fs_info->running_transaction = NULL;
  1212. root->fs_info->trans_no_join = 0;
  1213. spin_unlock(&root->fs_info->trans_lock);
  1214. mutex_unlock(&root->fs_info->reloc_mutex);
  1215. wake_up(&root->fs_info->transaction_wait);
  1216. ret = btrfs_write_and_wait_transaction(trans, root);
  1217. if (ret) {
  1218. btrfs_error(root->fs_info, ret,
  1219. "Error while writing out transaction.");
  1220. mutex_unlock(&root->fs_info->tree_log_mutex);
  1221. goto cleanup_transaction;
  1222. }
  1223. ret = write_ctree_super(trans, root, 0);
  1224. if (ret) {
  1225. mutex_unlock(&root->fs_info->tree_log_mutex);
  1226. goto cleanup_transaction;
  1227. }
  1228. /*
  1229. * the super is written, we can safely allow the tree-loggers
  1230. * to go about their business
  1231. */
  1232. mutex_unlock(&root->fs_info->tree_log_mutex);
  1233. btrfs_finish_extent_commit(trans, root);
  1234. cur_trans->commit_done = 1;
  1235. root->fs_info->last_trans_committed = cur_trans->transid;
  1236. wake_up(&cur_trans->commit_wait);
  1237. spin_lock(&root->fs_info->trans_lock);
  1238. list_del_init(&cur_trans->list);
  1239. spin_unlock(&root->fs_info->trans_lock);
  1240. put_transaction(cur_trans);
  1241. put_transaction(cur_trans);
  1242. trace_btrfs_transaction_commit(root);
  1243. btrfs_scrub_continue(root);
  1244. if (current->journal_info == trans)
  1245. current->journal_info = NULL;
  1246. kmem_cache_free(btrfs_trans_handle_cachep, trans);
  1247. if (current != root->fs_info->transaction_kthread)
  1248. btrfs_run_delayed_iputs(root);
  1249. return ret;
  1250. cleanup_transaction:
  1251. btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
  1252. // WARN_ON(1);
  1253. if (current->journal_info == trans)
  1254. current->journal_info = NULL;
  1255. cleanup_transaction(trans, root);
  1256. return ret;
  1257. }
  1258. /*
  1259. * interface function to delete all the snapshots we have scheduled for deletion
  1260. */
  1261. int btrfs_clean_old_snapshots(struct btrfs_root *root)
  1262. {
  1263. LIST_HEAD(list);
  1264. struct btrfs_fs_info *fs_info = root->fs_info;
  1265. spin_lock(&fs_info->trans_lock);
  1266. list_splice_init(&fs_info->dead_roots, &list);
  1267. spin_unlock(&fs_info->trans_lock);
  1268. while (!list_empty(&list)) {
  1269. int ret;
  1270. root = list_entry(list.next, struct btrfs_root, root_list);
  1271. list_del(&root->root_list);
  1272. btrfs_kill_all_delayed_nodes(root);
  1273. if (btrfs_header_backref_rev(root->node) <
  1274. BTRFS_MIXED_BACKREF_REV)
  1275. ret = btrfs_drop_snapshot(root, NULL, 0, 0);
  1276. else
  1277. ret =btrfs_drop_snapshot(root, NULL, 1, 0);
  1278. BUG_ON(ret < 0);
  1279. }
  1280. return 0;
  1281. }