iwl-5000.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  23. *
  24. *****************************************************************************/
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/init.h>
  28. #include <linux/pci.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/delay.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/wireless.h>
  34. #include <net/mac80211.h>
  35. #include <linux/etherdevice.h>
  36. #include <asm/unaligned.h>
  37. #include "iwl-eeprom.h"
  38. #include "iwl-dev.h"
  39. #include "iwl-core.h"
  40. #include "iwl-io.h"
  41. #include "iwl-sta.h"
  42. #include "iwl-helpers.h"
  43. #include "iwl-5000-hw.h"
  44. #define IWL5000_UCODE_API "-1"
  45. #define IWL5000_MODULE_FIRMWARE "iwlwifi-5000" IWL5000_UCODE_API ".ucode"
  46. static const u16 iwl5000_default_queue_to_tx_fifo[] = {
  47. IWL_TX_FIFO_AC3,
  48. IWL_TX_FIFO_AC2,
  49. IWL_TX_FIFO_AC1,
  50. IWL_TX_FIFO_AC0,
  51. IWL50_CMD_FIFO_NUM,
  52. IWL_TX_FIFO_HCCA_1,
  53. IWL_TX_FIFO_HCCA_2
  54. };
  55. /* FIXME: same implementation as 4965 */
  56. static int iwl5000_apm_stop_master(struct iwl_priv *priv)
  57. {
  58. int ret = 0;
  59. unsigned long flags;
  60. spin_lock_irqsave(&priv->lock, flags);
  61. /* set stop master bit */
  62. iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
  63. ret = iwl_poll_bit(priv, CSR_RESET,
  64. CSR_RESET_REG_FLAG_MASTER_DISABLED,
  65. CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
  66. if (ret < 0)
  67. goto out;
  68. out:
  69. spin_unlock_irqrestore(&priv->lock, flags);
  70. IWL_DEBUG_INFO("stop master\n");
  71. return ret;
  72. }
  73. static int iwl5000_apm_init(struct iwl_priv *priv)
  74. {
  75. int ret = 0;
  76. iwl_set_bit(priv, CSR_GIO_CHICKEN_BITS,
  77. CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
  78. /* disable L0s without affecting L1 :don't wait for ICH L0s bug W/A) */
  79. iwl_set_bit(priv, CSR_GIO_CHICKEN_BITS,
  80. CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
  81. /* Set FH wait treshold to maximum (HW error during stress W/A) */
  82. iwl_set_bit(priv, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
  83. /* enable HAP INTA to move device L1a -> L0s */
  84. iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
  85. CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
  86. iwl_set_bit(priv, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL);
  87. /* set "initialization complete" bit to move adapter
  88. * D0U* --> D0A* state */
  89. iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
  90. /* wait for clock stabilization */
  91. ret = iwl_poll_bit(priv, CSR_GP_CNTRL,
  92. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  93. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
  94. if (ret < 0) {
  95. IWL_DEBUG_INFO("Failed to init the card\n");
  96. return ret;
  97. }
  98. ret = iwl_grab_nic_access(priv);
  99. if (ret)
  100. return ret;
  101. /* enable DMA */
  102. iwl_write_prph(priv, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT);
  103. udelay(20);
  104. /* disable L1-Active */
  105. iwl_set_bits_prph(priv, APMG_PCIDEV_STT_REG,
  106. APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
  107. iwl_release_nic_access(priv);
  108. return ret;
  109. }
  110. /* FIXME: this is indentical to 4965 */
  111. static void iwl5000_apm_stop(struct iwl_priv *priv)
  112. {
  113. unsigned long flags;
  114. iwl5000_apm_stop_master(priv);
  115. spin_lock_irqsave(&priv->lock, flags);
  116. iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
  117. udelay(10);
  118. /* clear "init complete" move adapter D0A* --> D0U state */
  119. iwl_clear_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
  120. spin_unlock_irqrestore(&priv->lock, flags);
  121. }
  122. static int iwl5000_apm_reset(struct iwl_priv *priv)
  123. {
  124. int ret = 0;
  125. unsigned long flags;
  126. iwl5000_apm_stop_master(priv);
  127. spin_lock_irqsave(&priv->lock, flags);
  128. iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
  129. udelay(10);
  130. /* FIXME: put here L1A -L0S w/a */
  131. iwl_set_bit(priv, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL);
  132. /* set "initialization complete" bit to move adapter
  133. * D0U* --> D0A* state */
  134. iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
  135. /* wait for clock stabilization */
  136. ret = iwl_poll_bit(priv, CSR_GP_CNTRL,
  137. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  138. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
  139. if (ret < 0) {
  140. IWL_DEBUG_INFO("Failed to init the card\n");
  141. goto out;
  142. }
  143. ret = iwl_grab_nic_access(priv);
  144. if (ret)
  145. goto out;
  146. /* enable DMA */
  147. iwl_write_prph(priv, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT);
  148. udelay(20);
  149. /* disable L1-Active */
  150. iwl_set_bits_prph(priv, APMG_PCIDEV_STT_REG,
  151. APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
  152. iwl_release_nic_access(priv);
  153. out:
  154. spin_unlock_irqrestore(&priv->lock, flags);
  155. return ret;
  156. }
  157. static void iwl5000_nic_config(struct iwl_priv *priv)
  158. {
  159. unsigned long flags;
  160. u16 radio_cfg;
  161. u16 link;
  162. spin_lock_irqsave(&priv->lock, flags);
  163. pci_read_config_word(priv->pci_dev, PCI_CFG_LINK_CTRL, &link);
  164. /* L1 is enabled by BIOS */
  165. if ((link & PCI_CFG_LINK_CTRL_VAL_L1_EN) == PCI_CFG_LINK_CTRL_VAL_L1_EN)
  166. /* diable L0S disabled L1A enabled */
  167. iwl_set_bit(priv, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
  168. else
  169. /* L0S enabled L1A disabled */
  170. iwl_clear_bit(priv, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
  171. radio_cfg = iwl_eeprom_query16(priv, EEPROM_RADIO_CONFIG);
  172. /* write radio config values to register */
  173. if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) < EEPROM_5000_RF_CFG_TYPE_MAX)
  174. iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
  175. EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
  176. EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
  177. EEPROM_RF_CFG_DASH_MSK(radio_cfg));
  178. /* set CSR_HW_CONFIG_REG for uCode use */
  179. iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
  180. CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
  181. CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
  182. /* W/A : NIC is stuck in a reset state after Early PCIe power off
  183. * (PCIe power is lost before PERST# is asserted),
  184. * causing ME FW to lose ownership and not being able to obtain it back.
  185. */
  186. iwl_grab_nic_access(priv);
  187. iwl_set_bits_mask_prph(priv, APMG_PS_CTRL_REG,
  188. APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
  189. ~APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
  190. iwl_release_nic_access(priv);
  191. spin_unlock_irqrestore(&priv->lock, flags);
  192. }
  193. /*
  194. * EEPROM
  195. */
  196. static u32 eeprom_indirect_address(const struct iwl_priv *priv, u32 address)
  197. {
  198. u16 offset = 0;
  199. if ((address & INDIRECT_ADDRESS) == 0)
  200. return address;
  201. switch (address & INDIRECT_TYPE_MSK) {
  202. case INDIRECT_HOST:
  203. offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_HOST);
  204. break;
  205. case INDIRECT_GENERAL:
  206. offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_GENERAL);
  207. break;
  208. case INDIRECT_REGULATORY:
  209. offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_REGULATORY);
  210. break;
  211. case INDIRECT_CALIBRATION:
  212. offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_CALIBRATION);
  213. break;
  214. case INDIRECT_PROCESS_ADJST:
  215. offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_PROCESS_ADJST);
  216. break;
  217. case INDIRECT_OTHERS:
  218. offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_OTHERS);
  219. break;
  220. default:
  221. IWL_ERROR("illegal indirect type: 0x%X\n",
  222. address & INDIRECT_TYPE_MSK);
  223. break;
  224. }
  225. /* translate the offset from words to byte */
  226. return (address & ADDRESS_MSK) + (offset << 1);
  227. }
  228. static int iwl5000_eeprom_check_version(struct iwl_priv *priv)
  229. {
  230. u16 eeprom_ver;
  231. struct iwl_eeprom_calib_hdr {
  232. u8 version;
  233. u8 pa_type;
  234. u16 voltage;
  235. } *hdr;
  236. eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION);
  237. hdr = (struct iwl_eeprom_calib_hdr *)iwl_eeprom_query_addr(priv,
  238. EEPROM_5000_CALIB_ALL);
  239. if (eeprom_ver < EEPROM_5000_EEPROM_VERSION ||
  240. hdr->version < EEPROM_5000_TX_POWER_VERSION)
  241. goto err;
  242. return 0;
  243. err:
  244. IWL_ERROR("Unsuported EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
  245. eeprom_ver, EEPROM_5000_EEPROM_VERSION,
  246. hdr->version, EEPROM_5000_TX_POWER_VERSION);
  247. return -EINVAL;
  248. }
  249. static void iwl5000_gain_computation(struct iwl_priv *priv,
  250. u32 average_noise[NUM_RX_CHAINS],
  251. u16 min_average_noise_antenna_i,
  252. u32 min_average_noise)
  253. {
  254. int i;
  255. s32 delta_g;
  256. struct iwl_chain_noise_data *data = &priv->chain_noise_data;
  257. /* Find Gain Code for the antennas B and C */
  258. for (i = 1; i < NUM_RX_CHAINS; i++) {
  259. if ((data->disconn_array[i])) {
  260. data->delta_gain_code[i] = 0;
  261. continue;
  262. }
  263. delta_g = (1000 * ((s32)average_noise[0] -
  264. (s32)average_noise[i])) / 1500;
  265. /* bound gain by 2 bits value max, 3rd bit is sign */
  266. data->delta_gain_code[i] =
  267. min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
  268. if (delta_g < 0)
  269. /* set negative sign */
  270. data->delta_gain_code[i] |= (1 << 2);
  271. }
  272. IWL_DEBUG_CALIB("Delta gains: ANT_B = %d ANT_C = %d\n",
  273. data->delta_gain_code[1], data->delta_gain_code[2]);
  274. if (!data->radio_write) {
  275. struct iwl5000_calibration_chain_noise_gain_cmd cmd;
  276. memset(&cmd, 0, sizeof(cmd));
  277. cmd.op_code = IWL5000_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD;
  278. cmd.delta_gain_1 = data->delta_gain_code[1];
  279. cmd.delta_gain_2 = data->delta_gain_code[2];
  280. iwl_send_cmd_pdu_async(priv, REPLY_PHY_CALIBRATION_CMD,
  281. sizeof(cmd), &cmd, NULL);
  282. data->radio_write = 1;
  283. data->state = IWL_CHAIN_NOISE_CALIBRATED;
  284. }
  285. data->chain_noise_a = 0;
  286. data->chain_noise_b = 0;
  287. data->chain_noise_c = 0;
  288. data->chain_signal_a = 0;
  289. data->chain_signal_b = 0;
  290. data->chain_signal_c = 0;
  291. data->beacon_count = 0;
  292. }
  293. static void iwl5000_chain_noise_reset(struct iwl_priv *priv)
  294. {
  295. struct iwl_chain_noise_data *data = &priv->chain_noise_data;
  296. if ((data->state == IWL_CHAIN_NOISE_ALIVE) && iwl_is_associated(priv)) {
  297. struct iwl5000_calibration_chain_noise_reset_cmd cmd;
  298. memset(&cmd, 0, sizeof(cmd));
  299. cmd.op_code = IWL5000_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD;
  300. if (iwl_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
  301. sizeof(cmd), &cmd))
  302. IWL_ERROR("Could not send REPLY_PHY_CALIBRATION_CMD\n");
  303. data->state = IWL_CHAIN_NOISE_ACCUMULATE;
  304. IWL_DEBUG_CALIB("Run chain_noise_calibrate\n");
  305. }
  306. }
  307. static void iwl5000_rts_tx_cmd_flag(struct ieee80211_tx_info *info,
  308. __le32 *tx_flags)
  309. {
  310. if ((info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) ||
  311. (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
  312. *tx_flags |= TX_CMD_FLG_RTS_CTS_MSK;
  313. else
  314. *tx_flags &= ~TX_CMD_FLG_RTS_CTS_MSK;
  315. }
  316. static struct iwl_sensitivity_ranges iwl5000_sensitivity = {
  317. .min_nrg_cck = 95,
  318. .max_nrg_cck = 0,
  319. .auto_corr_min_ofdm = 90,
  320. .auto_corr_min_ofdm_mrc = 170,
  321. .auto_corr_min_ofdm_x1 = 120,
  322. .auto_corr_min_ofdm_mrc_x1 = 240,
  323. .auto_corr_max_ofdm = 120,
  324. .auto_corr_max_ofdm_mrc = 210,
  325. .auto_corr_max_ofdm_x1 = 155,
  326. .auto_corr_max_ofdm_mrc_x1 = 290,
  327. .auto_corr_min_cck = 125,
  328. .auto_corr_max_cck = 200,
  329. .auto_corr_min_cck_mrc = 170,
  330. .auto_corr_max_cck_mrc = 400,
  331. .nrg_th_cck = 95,
  332. .nrg_th_ofdm = 95,
  333. };
  334. static const u8 *iwl5000_eeprom_query_addr(const struct iwl_priv *priv,
  335. size_t offset)
  336. {
  337. u32 address = eeprom_indirect_address(priv, offset);
  338. BUG_ON(address >= priv->cfg->eeprom_size);
  339. return &priv->eeprom[address];
  340. }
  341. /*
  342. * Calibration
  343. */
  344. static int iwl5000_set_Xtal_calib(struct iwl_priv *priv)
  345. {
  346. u8 data[sizeof(struct iwl5000_calib_hdr) +
  347. sizeof(struct iwl_cal_xtal_freq)];
  348. struct iwl5000_calib_cmd *cmd = (struct iwl5000_calib_cmd *)data;
  349. struct iwl_cal_xtal_freq *xtal = (struct iwl_cal_xtal_freq *)cmd->data;
  350. u16 *xtal_calib = (u16 *)iwl_eeprom_query_addr(priv, EEPROM_5000_XTAL);
  351. cmd->hdr.op_code = IWL5000_PHY_CALIBRATE_CRYSTAL_FRQ_CMD;
  352. xtal->cap_pin1 = (u8)xtal_calib[0];
  353. xtal->cap_pin2 = (u8)xtal_calib[1];
  354. return iwl_calib_set(&priv->calib_results[IWL5000_CALIB_XTAL],
  355. data, sizeof(data));
  356. }
  357. static int iwl5000_send_calib_cfg(struct iwl_priv *priv)
  358. {
  359. struct iwl5000_calib_cfg_cmd calib_cfg_cmd;
  360. struct iwl_host_cmd cmd = {
  361. .id = CALIBRATION_CFG_CMD,
  362. .len = sizeof(struct iwl5000_calib_cfg_cmd),
  363. .data = &calib_cfg_cmd,
  364. };
  365. memset(&calib_cfg_cmd, 0, sizeof(calib_cfg_cmd));
  366. calib_cfg_cmd.ucd_calib_cfg.once.is_enable = IWL_CALIB_INIT_CFG_ALL;
  367. calib_cfg_cmd.ucd_calib_cfg.once.start = IWL_CALIB_INIT_CFG_ALL;
  368. calib_cfg_cmd.ucd_calib_cfg.once.send_res = IWL_CALIB_INIT_CFG_ALL;
  369. calib_cfg_cmd.ucd_calib_cfg.flags = IWL_CALIB_INIT_CFG_ALL;
  370. return iwl_send_cmd(priv, &cmd);
  371. }
  372. static void iwl5000_rx_calib_result(struct iwl_priv *priv,
  373. struct iwl_rx_mem_buffer *rxb)
  374. {
  375. struct iwl_rx_packet *pkt = (void *)rxb->skb->data;
  376. struct iwl5000_calib_hdr *hdr = (struct iwl5000_calib_hdr *)pkt->u.raw;
  377. int len = le32_to_cpu(pkt->len) & FH_RSCSR_FRAME_SIZE_MSK;
  378. int index;
  379. /* reduce the size of the length field itself */
  380. len -= 4;
  381. /* Define the order in which the results will be sent to the runtime
  382. * uCode. iwl_send_calib_results sends them in a row according to their
  383. * index. We sort them here */
  384. switch (hdr->op_code) {
  385. case IWL5000_PHY_CALIBRATE_LO_CMD:
  386. index = IWL5000_CALIB_LO;
  387. break;
  388. case IWL5000_PHY_CALIBRATE_TX_IQ_CMD:
  389. index = IWL5000_CALIB_TX_IQ;
  390. break;
  391. case IWL5000_PHY_CALIBRATE_TX_IQ_PERD_CMD:
  392. index = IWL5000_CALIB_TX_IQ_PERD;
  393. break;
  394. default:
  395. IWL_ERROR("Unknown calibration notification %d\n",
  396. hdr->op_code);
  397. return;
  398. }
  399. iwl_calib_set(&priv->calib_results[index], pkt->u.raw, len);
  400. }
  401. static void iwl5000_rx_calib_complete(struct iwl_priv *priv,
  402. struct iwl_rx_mem_buffer *rxb)
  403. {
  404. IWL_DEBUG_INFO("Init. calibration is completed, restarting fw.\n");
  405. queue_work(priv->workqueue, &priv->restart);
  406. }
  407. /*
  408. * ucode
  409. */
  410. static int iwl5000_load_section(struct iwl_priv *priv,
  411. struct fw_desc *image,
  412. u32 dst_addr)
  413. {
  414. int ret = 0;
  415. unsigned long flags;
  416. dma_addr_t phy_addr = image->p_addr;
  417. u32 byte_cnt = image->len;
  418. spin_lock_irqsave(&priv->lock, flags);
  419. ret = iwl_grab_nic_access(priv);
  420. if (ret) {
  421. spin_unlock_irqrestore(&priv->lock, flags);
  422. return ret;
  423. }
  424. iwl_write_direct32(priv,
  425. FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
  426. FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
  427. iwl_write_direct32(priv,
  428. FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL), dst_addr);
  429. iwl_write_direct32(priv,
  430. FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL),
  431. phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
  432. iwl_write_direct32(priv,
  433. FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL),
  434. (iwl_get_dma_hi_addr(phy_addr)
  435. << FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
  436. iwl_write_direct32(priv,
  437. FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL),
  438. 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
  439. 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
  440. FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
  441. iwl_write_direct32(priv,
  442. FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
  443. FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
  444. FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE_VAL |
  445. FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
  446. iwl_release_nic_access(priv);
  447. spin_unlock_irqrestore(&priv->lock, flags);
  448. return 0;
  449. }
  450. static int iwl5000_load_given_ucode(struct iwl_priv *priv,
  451. struct fw_desc *inst_image,
  452. struct fw_desc *data_image)
  453. {
  454. int ret = 0;
  455. ret = iwl5000_load_section(
  456. priv, inst_image, RTC_INST_LOWER_BOUND);
  457. if (ret)
  458. return ret;
  459. IWL_DEBUG_INFO("INST uCode section being loaded...\n");
  460. ret = wait_event_interruptible_timeout(priv->wait_command_queue,
  461. priv->ucode_write_complete, 5 * HZ);
  462. if (ret == -ERESTARTSYS) {
  463. IWL_ERROR("Could not load the INST uCode section due "
  464. "to interrupt\n");
  465. return ret;
  466. }
  467. if (!ret) {
  468. IWL_ERROR("Could not load the INST uCode section\n");
  469. return -ETIMEDOUT;
  470. }
  471. priv->ucode_write_complete = 0;
  472. ret = iwl5000_load_section(
  473. priv, data_image, RTC_DATA_LOWER_BOUND);
  474. if (ret)
  475. return ret;
  476. IWL_DEBUG_INFO("DATA uCode section being loaded...\n");
  477. ret = wait_event_interruptible_timeout(priv->wait_command_queue,
  478. priv->ucode_write_complete, 5 * HZ);
  479. if (ret == -ERESTARTSYS) {
  480. IWL_ERROR("Could not load the INST uCode section due "
  481. "to interrupt\n");
  482. return ret;
  483. } else if (!ret) {
  484. IWL_ERROR("Could not load the DATA uCode section\n");
  485. return -ETIMEDOUT;
  486. } else
  487. ret = 0;
  488. priv->ucode_write_complete = 0;
  489. return ret;
  490. }
  491. static int iwl5000_load_ucode(struct iwl_priv *priv)
  492. {
  493. int ret = 0;
  494. /* check whether init ucode should be loaded, or rather runtime ucode */
  495. if (priv->ucode_init.len && (priv->ucode_type == UCODE_NONE)) {
  496. IWL_DEBUG_INFO("Init ucode found. Loading init ucode...\n");
  497. ret = iwl5000_load_given_ucode(priv,
  498. &priv->ucode_init, &priv->ucode_init_data);
  499. if (!ret) {
  500. IWL_DEBUG_INFO("Init ucode load complete.\n");
  501. priv->ucode_type = UCODE_INIT;
  502. }
  503. } else {
  504. IWL_DEBUG_INFO("Init ucode not found, or already loaded. "
  505. "Loading runtime ucode...\n");
  506. ret = iwl5000_load_given_ucode(priv,
  507. &priv->ucode_code, &priv->ucode_data);
  508. if (!ret) {
  509. IWL_DEBUG_INFO("Runtime ucode load complete.\n");
  510. priv->ucode_type = UCODE_RT;
  511. }
  512. }
  513. return ret;
  514. }
  515. static void iwl5000_init_alive_start(struct iwl_priv *priv)
  516. {
  517. int ret = 0;
  518. /* Check alive response for "valid" sign from uCode */
  519. if (priv->card_alive_init.is_valid != UCODE_VALID_OK) {
  520. /* We had an error bringing up the hardware, so take it
  521. * all the way back down so we can try again */
  522. IWL_DEBUG_INFO("Initialize Alive failed.\n");
  523. goto restart;
  524. }
  525. /* initialize uCode was loaded... verify inst image.
  526. * This is a paranoid check, because we would not have gotten the
  527. * "initialize" alive if code weren't properly loaded. */
  528. if (iwl_verify_ucode(priv)) {
  529. /* Runtime instruction load was bad;
  530. * take it all the way back down so we can try again */
  531. IWL_DEBUG_INFO("Bad \"initialize\" uCode load.\n");
  532. goto restart;
  533. }
  534. iwl_clear_stations_table(priv);
  535. ret = priv->cfg->ops->lib->alive_notify(priv);
  536. if (ret) {
  537. IWL_WARNING("Could not complete ALIVE transition: %d\n", ret);
  538. goto restart;
  539. }
  540. iwl5000_send_calib_cfg(priv);
  541. return;
  542. restart:
  543. /* real restart (first load init_ucode) */
  544. queue_work(priv->workqueue, &priv->restart);
  545. }
  546. static void iwl5000_set_wr_ptrs(struct iwl_priv *priv,
  547. int txq_id, u32 index)
  548. {
  549. iwl_write_direct32(priv, HBUS_TARG_WRPTR,
  550. (index & 0xff) | (txq_id << 8));
  551. iwl_write_prph(priv, IWL50_SCD_QUEUE_RDPTR(txq_id), index);
  552. }
  553. static void iwl5000_tx_queue_set_status(struct iwl_priv *priv,
  554. struct iwl_tx_queue *txq,
  555. int tx_fifo_id, int scd_retry)
  556. {
  557. int txq_id = txq->q.id;
  558. int active = test_bit(txq_id, &priv->txq_ctx_active_msk)?1:0;
  559. iwl_write_prph(priv, IWL50_SCD_QUEUE_STATUS_BITS(txq_id),
  560. (active << IWL50_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
  561. (tx_fifo_id << IWL50_SCD_QUEUE_STTS_REG_POS_TXF) |
  562. (1 << IWL50_SCD_QUEUE_STTS_REG_POS_WSL) |
  563. IWL50_SCD_QUEUE_STTS_REG_MSK);
  564. txq->sched_retry = scd_retry;
  565. IWL_DEBUG_INFO("%s %s Queue %d on AC %d\n",
  566. active ? "Activate" : "Deactivate",
  567. scd_retry ? "BA" : "AC", txq_id, tx_fifo_id);
  568. }
  569. static int iwl5000_send_wimax_coex(struct iwl_priv *priv)
  570. {
  571. struct iwl_wimax_coex_cmd coex_cmd;
  572. memset(&coex_cmd, 0, sizeof(coex_cmd));
  573. return iwl_send_cmd_pdu(priv, COEX_PRIORITY_TABLE_CMD,
  574. sizeof(coex_cmd), &coex_cmd);
  575. }
  576. static int iwl5000_alive_notify(struct iwl_priv *priv)
  577. {
  578. u32 a;
  579. int i = 0;
  580. unsigned long flags;
  581. int ret;
  582. spin_lock_irqsave(&priv->lock, flags);
  583. ret = iwl_grab_nic_access(priv);
  584. if (ret) {
  585. spin_unlock_irqrestore(&priv->lock, flags);
  586. return ret;
  587. }
  588. priv->scd_base_addr = iwl_read_prph(priv, IWL50_SCD_SRAM_BASE_ADDR);
  589. a = priv->scd_base_addr + IWL50_SCD_CONTEXT_DATA_OFFSET;
  590. for (; a < priv->scd_base_addr + IWL50_SCD_TX_STTS_BITMAP_OFFSET;
  591. a += 4)
  592. iwl_write_targ_mem(priv, a, 0);
  593. for (; a < priv->scd_base_addr + IWL50_SCD_TRANSLATE_TBL_OFFSET;
  594. a += 4)
  595. iwl_write_targ_mem(priv, a, 0);
  596. for (; a < sizeof(u16) * priv->hw_params.max_txq_num; a += 4)
  597. iwl_write_targ_mem(priv, a, 0);
  598. iwl_write_prph(priv, IWL50_SCD_DRAM_BASE_ADDR,
  599. (priv->shared_phys +
  600. offsetof(struct iwl5000_shared, queues_byte_cnt_tbls)) >> 10);
  601. iwl_write_prph(priv, IWL50_SCD_QUEUECHAIN_SEL,
  602. IWL50_SCD_QUEUECHAIN_SEL_ALL(
  603. priv->hw_params.max_txq_num));
  604. iwl_write_prph(priv, IWL50_SCD_AGGR_SEL, 0);
  605. /* initiate the queues */
  606. for (i = 0; i < priv->hw_params.max_txq_num; i++) {
  607. iwl_write_prph(priv, IWL50_SCD_QUEUE_RDPTR(i), 0);
  608. iwl_write_direct32(priv, HBUS_TARG_WRPTR, 0 | (i << 8));
  609. iwl_write_targ_mem(priv, priv->scd_base_addr +
  610. IWL50_SCD_CONTEXT_QUEUE_OFFSET(i), 0);
  611. iwl_write_targ_mem(priv, priv->scd_base_addr +
  612. IWL50_SCD_CONTEXT_QUEUE_OFFSET(i) +
  613. sizeof(u32),
  614. ((SCD_WIN_SIZE <<
  615. IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
  616. IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
  617. ((SCD_FRAME_LIMIT <<
  618. IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
  619. IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
  620. }
  621. iwl_write_prph(priv, IWL50_SCD_INTERRUPT_MASK,
  622. IWL_MASK(0, priv->hw_params.max_txq_num));
  623. /* Activate all Tx DMA/FIFO channels */
  624. priv->cfg->ops->lib->txq_set_sched(priv, IWL_MASK(0, 7));
  625. iwl5000_set_wr_ptrs(priv, IWL_CMD_QUEUE_NUM, 0);
  626. /* map qos queues to fifos one-to-one */
  627. for (i = 0; i < ARRAY_SIZE(iwl5000_default_queue_to_tx_fifo); i++) {
  628. int ac = iwl5000_default_queue_to_tx_fifo[i];
  629. iwl_txq_ctx_activate(priv, i);
  630. iwl5000_tx_queue_set_status(priv, &priv->txq[i], ac, 0);
  631. }
  632. /* TODO - need to initialize those FIFOs inside the loop above,
  633. * not only mark them as active */
  634. iwl_txq_ctx_activate(priv, 4);
  635. iwl_txq_ctx_activate(priv, 7);
  636. iwl_txq_ctx_activate(priv, 8);
  637. iwl_txq_ctx_activate(priv, 9);
  638. iwl_release_nic_access(priv);
  639. spin_unlock_irqrestore(&priv->lock, flags);
  640. iwl5000_send_wimax_coex(priv);
  641. iwl5000_set_Xtal_calib(priv);
  642. iwl_send_calib_results(priv);
  643. return 0;
  644. }
  645. static int iwl5000_hw_set_hw_params(struct iwl_priv *priv)
  646. {
  647. if ((priv->cfg->mod_params->num_of_queues > IWL50_NUM_QUEUES) ||
  648. (priv->cfg->mod_params->num_of_queues < IWL_MIN_NUM_QUEUES)) {
  649. IWL_ERROR("invalid queues_num, should be between %d and %d\n",
  650. IWL_MIN_NUM_QUEUES, IWL50_NUM_QUEUES);
  651. return -EINVAL;
  652. }
  653. priv->hw_params.max_txq_num = priv->cfg->mod_params->num_of_queues;
  654. priv->hw_params.first_ampdu_q = IWL50_FIRST_AMPDU_QUEUE;
  655. priv->hw_params.max_stations = IWL5000_STATION_COUNT;
  656. priv->hw_params.bcast_sta_id = IWL5000_BROADCAST_ID;
  657. priv->hw_params.max_data_size = IWL50_RTC_DATA_SIZE;
  658. priv->hw_params.max_inst_size = IWL50_RTC_INST_SIZE;
  659. priv->hw_params.max_bsm_size = 0;
  660. priv->hw_params.fat_channel = BIT(IEEE80211_BAND_2GHZ) |
  661. BIT(IEEE80211_BAND_5GHZ);
  662. priv->hw_params.sens = &iwl5000_sensitivity;
  663. switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
  664. case CSR_HW_REV_TYPE_5100:
  665. priv->hw_params.tx_chains_num = 1;
  666. priv->hw_params.rx_chains_num = 2;
  667. priv->hw_params.valid_tx_ant = ANT_B;
  668. priv->hw_params.valid_rx_ant = ANT_AB;
  669. break;
  670. case CSR_HW_REV_TYPE_5150:
  671. priv->hw_params.tx_chains_num = 1;
  672. priv->hw_params.rx_chains_num = 2;
  673. priv->hw_params.valid_tx_ant = ANT_A;
  674. priv->hw_params.valid_rx_ant = ANT_AB;
  675. break;
  676. case CSR_HW_REV_TYPE_5300:
  677. case CSR_HW_REV_TYPE_5350:
  678. priv->hw_params.tx_chains_num = 3;
  679. priv->hw_params.rx_chains_num = 3;
  680. priv->hw_params.valid_tx_ant = ANT_ABC;
  681. priv->hw_params.valid_rx_ant = ANT_ABC;
  682. break;
  683. }
  684. switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
  685. case CSR_HW_REV_TYPE_5100:
  686. case CSR_HW_REV_TYPE_5300:
  687. case CSR_HW_REV_TYPE_5350:
  688. /* 5X00 and 5350 wants in Celsius */
  689. priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD;
  690. break;
  691. case CSR_HW_REV_TYPE_5150:
  692. /* 5150 wants in Kelvin */
  693. priv->hw_params.ct_kill_threshold =
  694. CELSIUS_TO_KELVIN(CT_KILL_THRESHOLD);
  695. break;
  696. }
  697. /* Set initial calibration set */
  698. switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
  699. case CSR_HW_REV_TYPE_5100:
  700. case CSR_HW_REV_TYPE_5300:
  701. case CSR_HW_REV_TYPE_5350:
  702. priv->hw_params.calib_init_cfg =
  703. BIT(IWL5000_CALIB_XTAL) |
  704. BIT(IWL5000_CALIB_LO) |
  705. BIT(IWL5000_CALIB_TX_IQ) |
  706. BIT(IWL5000_CALIB_TX_IQ_PERD);
  707. break;
  708. case CSR_HW_REV_TYPE_5150:
  709. priv->hw_params.calib_init_cfg = 0;
  710. break;
  711. }
  712. return 0;
  713. }
  714. static int iwl5000_alloc_shared_mem(struct iwl_priv *priv)
  715. {
  716. priv->shared_virt = pci_alloc_consistent(priv->pci_dev,
  717. sizeof(struct iwl5000_shared),
  718. &priv->shared_phys);
  719. if (!priv->shared_virt)
  720. return -ENOMEM;
  721. memset(priv->shared_virt, 0, sizeof(struct iwl5000_shared));
  722. priv->rb_closed_offset = offsetof(struct iwl5000_shared, rb_closed);
  723. return 0;
  724. }
  725. static void iwl5000_free_shared_mem(struct iwl_priv *priv)
  726. {
  727. if (priv->shared_virt)
  728. pci_free_consistent(priv->pci_dev,
  729. sizeof(struct iwl5000_shared),
  730. priv->shared_virt,
  731. priv->shared_phys);
  732. }
  733. static int iwl5000_shared_mem_rx_idx(struct iwl_priv *priv)
  734. {
  735. struct iwl5000_shared *s = priv->shared_virt;
  736. return le32_to_cpu(s->rb_closed) & 0xFFF;
  737. }
  738. /**
  739. * iwl5000_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
  740. */
  741. static void iwl5000_txq_update_byte_cnt_tbl(struct iwl_priv *priv,
  742. struct iwl_tx_queue *txq,
  743. u16 byte_cnt)
  744. {
  745. struct iwl5000_shared *shared_data = priv->shared_virt;
  746. int txq_id = txq->q.id;
  747. u8 sec_ctl = 0;
  748. u8 sta = 0;
  749. int len;
  750. len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE;
  751. if (txq_id != IWL_CMD_QUEUE_NUM) {
  752. sta = txq->cmd[txq->q.write_ptr]->cmd.tx.sta_id;
  753. sec_ctl = txq->cmd[txq->q.write_ptr]->cmd.tx.sec_ctl;
  754. switch (sec_ctl & TX_CMD_SEC_MSK) {
  755. case TX_CMD_SEC_CCM:
  756. len += CCMP_MIC_LEN;
  757. break;
  758. case TX_CMD_SEC_TKIP:
  759. len += TKIP_ICV_LEN;
  760. break;
  761. case TX_CMD_SEC_WEP:
  762. len += WEP_IV_LEN + WEP_ICV_LEN;
  763. break;
  764. }
  765. }
  766. IWL_SET_BITS16(shared_data->queues_byte_cnt_tbls[txq_id].
  767. tfd_offset[txq->q.write_ptr], byte_cnt, len);
  768. IWL_SET_BITS16(shared_data->queues_byte_cnt_tbls[txq_id].
  769. tfd_offset[txq->q.write_ptr], sta_id, sta);
  770. if (txq->q.write_ptr < IWL50_MAX_WIN_SIZE) {
  771. IWL_SET_BITS16(shared_data->queues_byte_cnt_tbls[txq_id].
  772. tfd_offset[IWL50_QUEUE_SIZE + txq->q.write_ptr],
  773. byte_cnt, len);
  774. IWL_SET_BITS16(shared_data->queues_byte_cnt_tbls[txq_id].
  775. tfd_offset[IWL50_QUEUE_SIZE + txq->q.write_ptr],
  776. sta_id, sta);
  777. }
  778. }
  779. static void iwl5000_txq_inval_byte_cnt_tbl(struct iwl_priv *priv,
  780. struct iwl_tx_queue *txq)
  781. {
  782. int txq_id = txq->q.id;
  783. struct iwl5000_shared *shared_data = priv->shared_virt;
  784. u8 sta = 0;
  785. if (txq_id != IWL_CMD_QUEUE_NUM)
  786. sta = txq->cmd[txq->q.read_ptr]->cmd.tx.sta_id;
  787. shared_data->queues_byte_cnt_tbls[txq_id].tfd_offset[txq->q.read_ptr].
  788. val = cpu_to_le16(1 | (sta << 12));
  789. if (txq->q.write_ptr < IWL50_MAX_WIN_SIZE) {
  790. shared_data->queues_byte_cnt_tbls[txq_id].
  791. tfd_offset[IWL50_QUEUE_SIZE + txq->q.read_ptr].
  792. val = cpu_to_le16(1 | (sta << 12));
  793. }
  794. }
  795. static int iwl5000_tx_queue_set_q2ratid(struct iwl_priv *priv, u16 ra_tid,
  796. u16 txq_id)
  797. {
  798. u32 tbl_dw_addr;
  799. u32 tbl_dw;
  800. u16 scd_q2ratid;
  801. scd_q2ratid = ra_tid & IWL_SCD_QUEUE_RA_TID_MAP_RATID_MSK;
  802. tbl_dw_addr = priv->scd_base_addr +
  803. IWL50_SCD_TRANSLATE_TBL_OFFSET_QUEUE(txq_id);
  804. tbl_dw = iwl_read_targ_mem(priv, tbl_dw_addr);
  805. if (txq_id & 0x1)
  806. tbl_dw = (scd_q2ratid << 16) | (tbl_dw & 0x0000FFFF);
  807. else
  808. tbl_dw = scd_q2ratid | (tbl_dw & 0xFFFF0000);
  809. iwl_write_targ_mem(priv, tbl_dw_addr, tbl_dw);
  810. return 0;
  811. }
  812. static void iwl5000_tx_queue_stop_scheduler(struct iwl_priv *priv, u16 txq_id)
  813. {
  814. /* Simply stop the queue, but don't change any configuration;
  815. * the SCD_ACT_EN bit is the write-enable mask for the ACTIVE bit. */
  816. iwl_write_prph(priv,
  817. IWL50_SCD_QUEUE_STATUS_BITS(txq_id),
  818. (0 << IWL50_SCD_QUEUE_STTS_REG_POS_ACTIVE)|
  819. (1 << IWL50_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
  820. }
  821. static int iwl5000_txq_agg_enable(struct iwl_priv *priv, int txq_id,
  822. int tx_fifo, int sta_id, int tid, u16 ssn_idx)
  823. {
  824. unsigned long flags;
  825. int ret;
  826. u16 ra_tid;
  827. if ((IWL50_FIRST_AMPDU_QUEUE > txq_id) ||
  828. (IWL50_FIRST_AMPDU_QUEUE + IWL50_NUM_AMPDU_QUEUES <= txq_id)) {
  829. IWL_WARNING("queue number out of range: %d, must be %d to %d\n",
  830. txq_id, IWL50_FIRST_AMPDU_QUEUE,
  831. IWL50_FIRST_AMPDU_QUEUE + IWL50_NUM_AMPDU_QUEUES - 1);
  832. return -EINVAL;
  833. }
  834. ra_tid = BUILD_RAxTID(sta_id, tid);
  835. /* Modify device's station table to Tx this TID */
  836. iwl_sta_modify_enable_tid_tx(priv, sta_id, tid);
  837. spin_lock_irqsave(&priv->lock, flags);
  838. ret = iwl_grab_nic_access(priv);
  839. if (ret) {
  840. spin_unlock_irqrestore(&priv->lock, flags);
  841. return ret;
  842. }
  843. /* Stop this Tx queue before configuring it */
  844. iwl5000_tx_queue_stop_scheduler(priv, txq_id);
  845. /* Map receiver-address / traffic-ID to this queue */
  846. iwl5000_tx_queue_set_q2ratid(priv, ra_tid, txq_id);
  847. /* Set this queue as a chain-building queue */
  848. iwl_set_bits_prph(priv, IWL50_SCD_QUEUECHAIN_SEL, (1<<txq_id));
  849. /* enable aggregations for the queue */
  850. iwl_set_bits_prph(priv, IWL50_SCD_AGGR_SEL, (1<<txq_id));
  851. /* Place first TFD at index corresponding to start sequence number.
  852. * Assumes that ssn_idx is valid (!= 0xFFF) */
  853. priv->txq[txq_id].q.read_ptr = (ssn_idx & 0xff);
  854. priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff);
  855. iwl5000_set_wr_ptrs(priv, txq_id, ssn_idx);
  856. /* Set up Tx window size and frame limit for this queue */
  857. iwl_write_targ_mem(priv, priv->scd_base_addr +
  858. IWL50_SCD_CONTEXT_QUEUE_OFFSET(txq_id) +
  859. sizeof(u32),
  860. ((SCD_WIN_SIZE <<
  861. IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
  862. IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
  863. ((SCD_FRAME_LIMIT <<
  864. IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
  865. IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
  866. iwl_set_bits_prph(priv, IWL50_SCD_INTERRUPT_MASK, (1 << txq_id));
  867. /* Set up Status area in SRAM, map to Tx DMA/FIFO, activate the queue */
  868. iwl5000_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 1);
  869. iwl_release_nic_access(priv);
  870. spin_unlock_irqrestore(&priv->lock, flags);
  871. return 0;
  872. }
  873. static int iwl5000_txq_agg_disable(struct iwl_priv *priv, u16 txq_id,
  874. u16 ssn_idx, u8 tx_fifo)
  875. {
  876. int ret;
  877. if ((IWL50_FIRST_AMPDU_QUEUE > txq_id) ||
  878. (IWL50_FIRST_AMPDU_QUEUE + IWL50_NUM_AMPDU_QUEUES <= txq_id)) {
  879. IWL_WARNING("queue number out of range: %d, must be %d to %d\n",
  880. txq_id, IWL50_FIRST_AMPDU_QUEUE,
  881. IWL50_FIRST_AMPDU_QUEUE + IWL50_NUM_AMPDU_QUEUES - 1);
  882. return -EINVAL;
  883. }
  884. ret = iwl_grab_nic_access(priv);
  885. if (ret)
  886. return ret;
  887. iwl5000_tx_queue_stop_scheduler(priv, txq_id);
  888. iwl_clear_bits_prph(priv, IWL50_SCD_AGGR_SEL, (1 << txq_id));
  889. priv->txq[txq_id].q.read_ptr = (ssn_idx & 0xff);
  890. priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff);
  891. /* supposes that ssn_idx is valid (!= 0xFFF) */
  892. iwl5000_set_wr_ptrs(priv, txq_id, ssn_idx);
  893. iwl_clear_bits_prph(priv, IWL50_SCD_INTERRUPT_MASK, (1 << txq_id));
  894. iwl_txq_ctx_deactivate(priv, txq_id);
  895. iwl5000_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 0);
  896. iwl_release_nic_access(priv);
  897. return 0;
  898. }
  899. static u16 iwl5000_build_addsta_hcmd(const struct iwl_addsta_cmd *cmd, u8 *data)
  900. {
  901. u16 size = (u16)sizeof(struct iwl_addsta_cmd);
  902. memcpy(data, cmd, size);
  903. return size;
  904. }
  905. /*
  906. * Activate/Deactivat Tx DMA/FIFO channels according tx fifos mask
  907. * must be called under priv->lock and mac access
  908. */
  909. static void iwl5000_txq_set_sched(struct iwl_priv *priv, u32 mask)
  910. {
  911. iwl_write_prph(priv, IWL50_SCD_TXFACT, mask);
  912. }
  913. static inline u32 iwl5000_get_scd_ssn(struct iwl5000_tx_resp *tx_resp)
  914. {
  915. return le32_to_cpup((__le32 *)&tx_resp->status +
  916. tx_resp->frame_count) & MAX_SN;
  917. }
  918. static int iwl5000_tx_status_reply_tx(struct iwl_priv *priv,
  919. struct iwl_ht_agg *agg,
  920. struct iwl5000_tx_resp *tx_resp,
  921. int txq_id, u16 start_idx)
  922. {
  923. u16 status;
  924. struct agg_tx_status *frame_status = &tx_resp->status;
  925. struct ieee80211_tx_info *info = NULL;
  926. struct ieee80211_hdr *hdr = NULL;
  927. u32 rate_n_flags = le32_to_cpu(tx_resp->rate_n_flags);
  928. int i, sh, idx;
  929. u16 seq;
  930. if (agg->wait_for_ba)
  931. IWL_DEBUG_TX_REPLY("got tx response w/o block-ack\n");
  932. agg->frame_count = tx_resp->frame_count;
  933. agg->start_idx = start_idx;
  934. agg->rate_n_flags = rate_n_flags;
  935. agg->bitmap = 0;
  936. /* # frames attempted by Tx command */
  937. if (agg->frame_count == 1) {
  938. /* Only one frame was attempted; no block-ack will arrive */
  939. status = le16_to_cpu(frame_status[0].status);
  940. idx = start_idx;
  941. /* FIXME: code repetition */
  942. IWL_DEBUG_TX_REPLY("FrameCnt = %d, StartIdx=%d idx=%d\n",
  943. agg->frame_count, agg->start_idx, idx);
  944. info = IEEE80211_SKB_CB(priv->txq[txq_id].txb[idx].skb[0]);
  945. info->status.rates[0].count = tx_resp->failure_frame + 1;
  946. info->flags &= ~IEEE80211_TX_CTL_AMPDU;
  947. info->flags |= iwl_is_tx_success(status)?
  948. IEEE80211_TX_STAT_ACK : 0;
  949. iwl_hwrate_to_tx_control(priv, rate_n_flags, info);
  950. /* FIXME: code repetition end */
  951. IWL_DEBUG_TX_REPLY("1 Frame 0x%x failure :%d\n",
  952. status & 0xff, tx_resp->failure_frame);
  953. IWL_DEBUG_TX_REPLY("Rate Info rate_n_flags=%x\n", rate_n_flags);
  954. agg->wait_for_ba = 0;
  955. } else {
  956. /* Two or more frames were attempted; expect block-ack */
  957. u64 bitmap = 0;
  958. int start = agg->start_idx;
  959. /* Construct bit-map of pending frames within Tx window */
  960. for (i = 0; i < agg->frame_count; i++) {
  961. u16 sc;
  962. status = le16_to_cpu(frame_status[i].status);
  963. seq = le16_to_cpu(frame_status[i].sequence);
  964. idx = SEQ_TO_INDEX(seq);
  965. txq_id = SEQ_TO_QUEUE(seq);
  966. if (status & (AGG_TX_STATE_FEW_BYTES_MSK |
  967. AGG_TX_STATE_ABORT_MSK))
  968. continue;
  969. IWL_DEBUG_TX_REPLY("FrameCnt = %d, txq_id=%d idx=%d\n",
  970. agg->frame_count, txq_id, idx);
  971. hdr = iwl_tx_queue_get_hdr(priv, txq_id, idx);
  972. sc = le16_to_cpu(hdr->seq_ctrl);
  973. if (idx != (SEQ_TO_SN(sc) & 0xff)) {
  974. IWL_ERROR("BUG_ON idx doesn't match seq control"
  975. " idx=%d, seq_idx=%d, seq=%d\n",
  976. idx, SEQ_TO_SN(sc),
  977. hdr->seq_ctrl);
  978. return -1;
  979. }
  980. IWL_DEBUG_TX_REPLY("AGG Frame i=%d idx %d seq=%d\n",
  981. i, idx, SEQ_TO_SN(sc));
  982. sh = idx - start;
  983. if (sh > 64) {
  984. sh = (start - idx) + 0xff;
  985. bitmap = bitmap << sh;
  986. sh = 0;
  987. start = idx;
  988. } else if (sh < -64)
  989. sh = 0xff - (start - idx);
  990. else if (sh < 0) {
  991. sh = start - idx;
  992. start = idx;
  993. bitmap = bitmap << sh;
  994. sh = 0;
  995. }
  996. bitmap |= 1ULL << sh;
  997. IWL_DEBUG_TX_REPLY("start=%d bitmap=0x%llx\n",
  998. start, (unsigned long long)bitmap);
  999. }
  1000. agg->bitmap = bitmap;
  1001. agg->start_idx = start;
  1002. IWL_DEBUG_TX_REPLY("Frames %d start_idx=%d bitmap=0x%llx\n",
  1003. agg->frame_count, agg->start_idx,
  1004. (unsigned long long)agg->bitmap);
  1005. if (bitmap)
  1006. agg->wait_for_ba = 1;
  1007. }
  1008. return 0;
  1009. }
  1010. static void iwl5000_rx_reply_tx(struct iwl_priv *priv,
  1011. struct iwl_rx_mem_buffer *rxb)
  1012. {
  1013. struct iwl_rx_packet *pkt = (struct iwl_rx_packet *)rxb->skb->data;
  1014. u16 sequence = le16_to_cpu(pkt->hdr.sequence);
  1015. int txq_id = SEQ_TO_QUEUE(sequence);
  1016. int index = SEQ_TO_INDEX(sequence);
  1017. struct iwl_tx_queue *txq = &priv->txq[txq_id];
  1018. struct ieee80211_tx_info *info;
  1019. struct iwl5000_tx_resp *tx_resp = (void *)&pkt->u.raw[0];
  1020. u32 status = le16_to_cpu(tx_resp->status.status);
  1021. int tid = MAX_TID_COUNT, sta_id = IWL_INVALID_STATION;
  1022. struct ieee80211_hdr *hdr;
  1023. u8 *qc = NULL;
  1024. if ((index >= txq->q.n_bd) || (iwl_queue_used(&txq->q, index) == 0)) {
  1025. IWL_ERROR("Read index for DMA queue txq_id (%d) index %d "
  1026. "is out of range [0-%d] %d %d\n", txq_id,
  1027. index, txq->q.n_bd, txq->q.write_ptr,
  1028. txq->q.read_ptr);
  1029. return;
  1030. }
  1031. info = IEEE80211_SKB_CB(txq->txb[txq->q.read_ptr].skb[0]);
  1032. memset(&info->status, 0, sizeof(info->status));
  1033. hdr = iwl_tx_queue_get_hdr(priv, txq_id, index);
  1034. if (ieee80211_is_data_qos(hdr->frame_control)) {
  1035. qc = ieee80211_get_qos_ctl(hdr);
  1036. tid = qc[0] & 0xf;
  1037. }
  1038. sta_id = iwl_get_ra_sta_id(priv, hdr);
  1039. if (txq->sched_retry && unlikely(sta_id == IWL_INVALID_STATION)) {
  1040. IWL_ERROR("Station not known\n");
  1041. return;
  1042. }
  1043. if (txq->sched_retry) {
  1044. const u32 scd_ssn = iwl5000_get_scd_ssn(tx_resp);
  1045. struct iwl_ht_agg *agg = NULL;
  1046. if (!qc)
  1047. return;
  1048. agg = &priv->stations[sta_id].tid[tid].agg;
  1049. iwl5000_tx_status_reply_tx(priv, agg, tx_resp, txq_id, index);
  1050. /* check if BAR is needed */
  1051. if ((tx_resp->frame_count == 1) && !iwl_is_tx_success(status))
  1052. info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  1053. if (txq->q.read_ptr != (scd_ssn & 0xff)) {
  1054. int freed, ampdu_q;
  1055. index = iwl_queue_dec_wrap(scd_ssn & 0xff, txq->q.n_bd);
  1056. IWL_DEBUG_TX_REPLY("Retry scheduler reclaim scd_ssn "
  1057. "%d index %d\n", scd_ssn , index);
  1058. freed = iwl_tx_queue_reclaim(priv, txq_id, index);
  1059. priv->stations[sta_id].tid[tid].tfds_in_queue -= freed;
  1060. if (iwl_queue_space(&txq->q) > txq->q.low_mark &&
  1061. txq_id >= 0 && priv->mac80211_registered &&
  1062. agg->state != IWL_EMPTYING_HW_QUEUE_DELBA) {
  1063. /* calculate mac80211 ampdu sw queue to wake */
  1064. ampdu_q = txq_id - IWL50_FIRST_AMPDU_QUEUE +
  1065. priv->hw->queues;
  1066. if (agg->state == IWL_AGG_OFF)
  1067. ieee80211_wake_queue(priv->hw, txq_id);
  1068. else
  1069. ieee80211_wake_queue(priv->hw, ampdu_q);
  1070. }
  1071. iwl_txq_check_empty(priv, sta_id, tid, txq_id);
  1072. }
  1073. } else {
  1074. info->status.rates[0].count = tx_resp->failure_frame + 1;
  1075. info->flags =
  1076. iwl_is_tx_success(status) ? IEEE80211_TX_STAT_ACK : 0;
  1077. iwl_hwrate_to_tx_control(priv,
  1078. le32_to_cpu(tx_resp->rate_n_flags),
  1079. info);
  1080. IWL_DEBUG_TX("Tx queue %d Status %s (0x%08x) rate_n_flags "
  1081. "0x%x retries %d\n", txq_id,
  1082. iwl_get_tx_fail_reason(status),
  1083. status, le32_to_cpu(tx_resp->rate_n_flags),
  1084. tx_resp->failure_frame);
  1085. IWL_DEBUG_TX_REPLY("Tx queue reclaim %d\n", index);
  1086. if (index != -1) {
  1087. int freed = iwl_tx_queue_reclaim(priv, txq_id, index);
  1088. if (tid != MAX_TID_COUNT)
  1089. priv->stations[sta_id].tid[tid].tfds_in_queue -= freed;
  1090. if (iwl_queue_space(&txq->q) > txq->q.low_mark &&
  1091. (txq_id >= 0) && priv->mac80211_registered)
  1092. ieee80211_wake_queue(priv->hw, txq_id);
  1093. if (tid != MAX_TID_COUNT)
  1094. iwl_txq_check_empty(priv, sta_id, tid, txq_id);
  1095. }
  1096. }
  1097. if (iwl_check_bits(status, TX_ABORT_REQUIRED_MSK))
  1098. IWL_ERROR("TODO: Implement Tx ABORT REQUIRED!!!\n");
  1099. }
  1100. /* Currently 5000 is the supperset of everything */
  1101. static u16 iwl5000_get_hcmd_size(u8 cmd_id, u16 len)
  1102. {
  1103. return len;
  1104. }
  1105. static void iwl5000_setup_deferred_work(struct iwl_priv *priv)
  1106. {
  1107. /* in 5000 the tx power calibration is done in uCode */
  1108. priv->disable_tx_power_cal = 1;
  1109. }
  1110. static void iwl5000_rx_handler_setup(struct iwl_priv *priv)
  1111. {
  1112. /* init calibration handlers */
  1113. priv->rx_handlers[CALIBRATION_RES_NOTIFICATION] =
  1114. iwl5000_rx_calib_result;
  1115. priv->rx_handlers[CALIBRATION_COMPLETE_NOTIFICATION] =
  1116. iwl5000_rx_calib_complete;
  1117. priv->rx_handlers[REPLY_TX] = iwl5000_rx_reply_tx;
  1118. }
  1119. static int iwl5000_hw_valid_rtc_data_addr(u32 addr)
  1120. {
  1121. return (addr >= RTC_DATA_LOWER_BOUND) &&
  1122. (addr < IWL50_RTC_DATA_UPPER_BOUND);
  1123. }
  1124. static int iwl5000_send_rxon_assoc(struct iwl_priv *priv)
  1125. {
  1126. int ret = 0;
  1127. struct iwl5000_rxon_assoc_cmd rxon_assoc;
  1128. const struct iwl_rxon_cmd *rxon1 = &priv->staging_rxon;
  1129. const struct iwl_rxon_cmd *rxon2 = &priv->active_rxon;
  1130. if ((rxon1->flags == rxon2->flags) &&
  1131. (rxon1->filter_flags == rxon2->filter_flags) &&
  1132. (rxon1->cck_basic_rates == rxon2->cck_basic_rates) &&
  1133. (rxon1->ofdm_ht_single_stream_basic_rates ==
  1134. rxon2->ofdm_ht_single_stream_basic_rates) &&
  1135. (rxon1->ofdm_ht_dual_stream_basic_rates ==
  1136. rxon2->ofdm_ht_dual_stream_basic_rates) &&
  1137. (rxon1->ofdm_ht_triple_stream_basic_rates ==
  1138. rxon2->ofdm_ht_triple_stream_basic_rates) &&
  1139. (rxon1->acquisition_data == rxon2->acquisition_data) &&
  1140. (rxon1->rx_chain == rxon2->rx_chain) &&
  1141. (rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates)) {
  1142. IWL_DEBUG_INFO("Using current RXON_ASSOC. Not resending.\n");
  1143. return 0;
  1144. }
  1145. rxon_assoc.flags = priv->staging_rxon.flags;
  1146. rxon_assoc.filter_flags = priv->staging_rxon.filter_flags;
  1147. rxon_assoc.ofdm_basic_rates = priv->staging_rxon.ofdm_basic_rates;
  1148. rxon_assoc.cck_basic_rates = priv->staging_rxon.cck_basic_rates;
  1149. rxon_assoc.reserved1 = 0;
  1150. rxon_assoc.reserved2 = 0;
  1151. rxon_assoc.reserved3 = 0;
  1152. rxon_assoc.ofdm_ht_single_stream_basic_rates =
  1153. priv->staging_rxon.ofdm_ht_single_stream_basic_rates;
  1154. rxon_assoc.ofdm_ht_dual_stream_basic_rates =
  1155. priv->staging_rxon.ofdm_ht_dual_stream_basic_rates;
  1156. rxon_assoc.rx_chain_select_flags = priv->staging_rxon.rx_chain;
  1157. rxon_assoc.ofdm_ht_triple_stream_basic_rates =
  1158. priv->staging_rxon.ofdm_ht_triple_stream_basic_rates;
  1159. rxon_assoc.acquisition_data = priv->staging_rxon.acquisition_data;
  1160. ret = iwl_send_cmd_pdu_async(priv, REPLY_RXON_ASSOC,
  1161. sizeof(rxon_assoc), &rxon_assoc, NULL);
  1162. if (ret)
  1163. return ret;
  1164. return ret;
  1165. }
  1166. static int iwl5000_send_tx_power(struct iwl_priv *priv)
  1167. {
  1168. struct iwl5000_tx_power_dbm_cmd tx_power_cmd;
  1169. /* half dBm need to multiply */
  1170. tx_power_cmd.global_lmt = (s8)(2 * priv->tx_power_user_lmt);
  1171. tx_power_cmd.flags = IWL50_TX_POWER_NO_CLOSED;
  1172. tx_power_cmd.srv_chan_lmt = IWL50_TX_POWER_AUTO;
  1173. return iwl_send_cmd_pdu_async(priv, REPLY_TX_POWER_DBM_CMD,
  1174. sizeof(tx_power_cmd), &tx_power_cmd,
  1175. NULL);
  1176. }
  1177. static void iwl5000_temperature(struct iwl_priv *priv)
  1178. {
  1179. /* store temperature from statistics (in Celsius) */
  1180. priv->temperature = le32_to_cpu(priv->statistics.general.temperature);
  1181. }
  1182. /* Calc max signal level (dBm) among 3 possible receivers */
  1183. static int iwl5000_calc_rssi(struct iwl_priv *priv,
  1184. struct iwl_rx_phy_res *rx_resp)
  1185. {
  1186. /* data from PHY/DSP regarding signal strength, etc.,
  1187. * contents are always there, not configurable by host
  1188. */
  1189. struct iwl5000_non_cfg_phy *ncphy =
  1190. (struct iwl5000_non_cfg_phy *)rx_resp->non_cfg_phy_buf;
  1191. u32 val, rssi_a, rssi_b, rssi_c, max_rssi;
  1192. u8 agc;
  1193. val = le32_to_cpu(ncphy->non_cfg_phy[IWL50_RX_RES_AGC_IDX]);
  1194. agc = (val & IWL50_OFDM_AGC_MSK) >> IWL50_OFDM_AGC_BIT_POS;
  1195. /* Find max rssi among 3 possible receivers.
  1196. * These values are measured by the digital signal processor (DSP).
  1197. * They should stay fairly constant even as the signal strength varies,
  1198. * if the radio's automatic gain control (AGC) is working right.
  1199. * AGC value (see below) will provide the "interesting" info.
  1200. */
  1201. val = le32_to_cpu(ncphy->non_cfg_phy[IWL50_RX_RES_RSSI_AB_IDX]);
  1202. rssi_a = (val & IWL50_OFDM_RSSI_A_MSK) >> IWL50_OFDM_RSSI_A_BIT_POS;
  1203. rssi_b = (val & IWL50_OFDM_RSSI_B_MSK) >> IWL50_OFDM_RSSI_B_BIT_POS;
  1204. val = le32_to_cpu(ncphy->non_cfg_phy[IWL50_RX_RES_RSSI_C_IDX]);
  1205. rssi_c = (val & IWL50_OFDM_RSSI_C_MSK) >> IWL50_OFDM_RSSI_C_BIT_POS;
  1206. max_rssi = max_t(u32, rssi_a, rssi_b);
  1207. max_rssi = max_t(u32, max_rssi, rssi_c);
  1208. IWL_DEBUG_STATS("Rssi In A %d B %d C %d Max %d AGC dB %d\n",
  1209. rssi_a, rssi_b, rssi_c, max_rssi, agc);
  1210. /* dBm = max_rssi dB - agc dB - constant.
  1211. * Higher AGC (higher radio gain) means lower signal. */
  1212. return max_rssi - agc - IWL_RSSI_OFFSET;
  1213. }
  1214. static struct iwl_hcmd_ops iwl5000_hcmd = {
  1215. .rxon_assoc = iwl5000_send_rxon_assoc,
  1216. };
  1217. static struct iwl_hcmd_utils_ops iwl5000_hcmd_utils = {
  1218. .get_hcmd_size = iwl5000_get_hcmd_size,
  1219. .build_addsta_hcmd = iwl5000_build_addsta_hcmd,
  1220. .gain_computation = iwl5000_gain_computation,
  1221. .chain_noise_reset = iwl5000_chain_noise_reset,
  1222. .rts_tx_cmd_flag = iwl5000_rts_tx_cmd_flag,
  1223. .calc_rssi = iwl5000_calc_rssi,
  1224. };
  1225. static struct iwl_lib_ops iwl5000_lib = {
  1226. .set_hw_params = iwl5000_hw_set_hw_params,
  1227. .alloc_shared_mem = iwl5000_alloc_shared_mem,
  1228. .free_shared_mem = iwl5000_free_shared_mem,
  1229. .shared_mem_rx_idx = iwl5000_shared_mem_rx_idx,
  1230. .txq_update_byte_cnt_tbl = iwl5000_txq_update_byte_cnt_tbl,
  1231. .txq_inval_byte_cnt_tbl = iwl5000_txq_inval_byte_cnt_tbl,
  1232. .txq_set_sched = iwl5000_txq_set_sched,
  1233. .txq_agg_enable = iwl5000_txq_agg_enable,
  1234. .txq_agg_disable = iwl5000_txq_agg_disable,
  1235. .rx_handler_setup = iwl5000_rx_handler_setup,
  1236. .setup_deferred_work = iwl5000_setup_deferred_work,
  1237. .is_valid_rtc_data_addr = iwl5000_hw_valid_rtc_data_addr,
  1238. .load_ucode = iwl5000_load_ucode,
  1239. .init_alive_start = iwl5000_init_alive_start,
  1240. .alive_notify = iwl5000_alive_notify,
  1241. .send_tx_power = iwl5000_send_tx_power,
  1242. .temperature = iwl5000_temperature,
  1243. .update_chain_flags = iwl4965_update_chain_flags,
  1244. .apm_ops = {
  1245. .init = iwl5000_apm_init,
  1246. .reset = iwl5000_apm_reset,
  1247. .stop = iwl5000_apm_stop,
  1248. .config = iwl5000_nic_config,
  1249. .set_pwr_src = iwl4965_set_pwr_src,
  1250. },
  1251. .eeprom_ops = {
  1252. .regulatory_bands = {
  1253. EEPROM_5000_REG_BAND_1_CHANNELS,
  1254. EEPROM_5000_REG_BAND_2_CHANNELS,
  1255. EEPROM_5000_REG_BAND_3_CHANNELS,
  1256. EEPROM_5000_REG_BAND_4_CHANNELS,
  1257. EEPROM_5000_REG_BAND_5_CHANNELS,
  1258. EEPROM_5000_REG_BAND_24_FAT_CHANNELS,
  1259. EEPROM_5000_REG_BAND_52_FAT_CHANNELS
  1260. },
  1261. .verify_signature = iwlcore_eeprom_verify_signature,
  1262. .acquire_semaphore = iwlcore_eeprom_acquire_semaphore,
  1263. .release_semaphore = iwlcore_eeprom_release_semaphore,
  1264. .check_version = iwl5000_eeprom_check_version,
  1265. .query_addr = iwl5000_eeprom_query_addr,
  1266. },
  1267. };
  1268. static struct iwl_ops iwl5000_ops = {
  1269. .lib = &iwl5000_lib,
  1270. .hcmd = &iwl5000_hcmd,
  1271. .utils = &iwl5000_hcmd_utils,
  1272. };
  1273. static struct iwl_mod_params iwl50_mod_params = {
  1274. .num_of_queues = IWL50_NUM_QUEUES,
  1275. .num_of_ampdu_queues = IWL50_NUM_AMPDU_QUEUES,
  1276. .enable_qos = 1,
  1277. .amsdu_size_8K = 1,
  1278. .restart_fw = 1,
  1279. /* the rest are 0 by default */
  1280. };
  1281. struct iwl_cfg iwl5300_agn_cfg = {
  1282. .name = "5300AGN",
  1283. .fw_name = IWL5000_MODULE_FIRMWARE,
  1284. .sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N,
  1285. .ops = &iwl5000_ops,
  1286. .eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
  1287. .mod_params = &iwl50_mod_params,
  1288. };
  1289. struct iwl_cfg iwl5100_bg_cfg = {
  1290. .name = "5100BG",
  1291. .fw_name = IWL5000_MODULE_FIRMWARE,
  1292. .sku = IWL_SKU_G,
  1293. .ops = &iwl5000_ops,
  1294. .eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
  1295. .mod_params = &iwl50_mod_params,
  1296. };
  1297. struct iwl_cfg iwl5100_abg_cfg = {
  1298. .name = "5100ABG",
  1299. .fw_name = IWL5000_MODULE_FIRMWARE,
  1300. .sku = IWL_SKU_A|IWL_SKU_G,
  1301. .ops = &iwl5000_ops,
  1302. .eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
  1303. .mod_params = &iwl50_mod_params,
  1304. };
  1305. struct iwl_cfg iwl5100_agn_cfg = {
  1306. .name = "5100AGN",
  1307. .fw_name = IWL5000_MODULE_FIRMWARE,
  1308. .sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N,
  1309. .ops = &iwl5000_ops,
  1310. .eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
  1311. .mod_params = &iwl50_mod_params,
  1312. };
  1313. struct iwl_cfg iwl5350_agn_cfg = {
  1314. .name = "5350AGN",
  1315. .fw_name = IWL5000_MODULE_FIRMWARE,
  1316. .sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N,
  1317. .ops = &iwl5000_ops,
  1318. .eeprom_size = IWL_5000_EEPROM_IMG_SIZE,
  1319. .mod_params = &iwl50_mod_params,
  1320. };
  1321. MODULE_FIRMWARE(IWL5000_MODULE_FIRMWARE);
  1322. module_param_named(disable50, iwl50_mod_params.disable, int, 0444);
  1323. MODULE_PARM_DESC(disable50,
  1324. "manually disable the 50XX radio (default 0 [radio on])");
  1325. module_param_named(swcrypto50, iwl50_mod_params.sw_crypto, bool, 0444);
  1326. MODULE_PARM_DESC(swcrypto50,
  1327. "using software crypto engine (default 0 [hardware])\n");
  1328. module_param_named(debug50, iwl50_mod_params.debug, int, 0444);
  1329. MODULE_PARM_DESC(debug50, "50XX debug output mask");
  1330. module_param_named(queues_num50, iwl50_mod_params.num_of_queues, int, 0444);
  1331. MODULE_PARM_DESC(queues_num50, "number of hw queues in 50xx series");
  1332. module_param_named(qos_enable50, iwl50_mod_params.enable_qos, int, 0444);
  1333. MODULE_PARM_DESC(qos_enable50, "enable all 50XX QoS functionality");
  1334. module_param_named(11n_disable50, iwl50_mod_params.disable_11n, int, 0444);
  1335. MODULE_PARM_DESC(11n_disable50, "disable 50XX 11n functionality");
  1336. module_param_named(amsdu_size_8K50, iwl50_mod_params.amsdu_size_8K, int, 0444);
  1337. MODULE_PARM_DESC(amsdu_size_8K50, "enable 8K amsdu size in 50XX series");
  1338. module_param_named(fw_restart50, iwl50_mod_params.restart_fw, int, 0444);
  1339. MODULE_PARM_DESC(fw_restart50, "restart firmware in case of error");