irq_32.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. /*
  2. * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
  3. *
  4. * This file contains the lowest level x86-specific interrupt
  5. * entry, irq-stacks and irq statistics code. All the remaining
  6. * irq logic is done by the generic kernel/irq/ code and
  7. * by the x86-specific irq controller code. (e.g. i8259.c and
  8. * io_apic.c.)
  9. */
  10. #include <linux/module.h>
  11. #include <linux/seq_file.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/notifier.h>
  15. #include <linux/cpu.h>
  16. #include <linux/delay.h>
  17. #include <asm/apic.h>
  18. #include <asm/uaccess.h>
  19. DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
  20. EXPORT_PER_CPU_SYMBOL(irq_stat);
  21. DEFINE_PER_CPU(struct pt_regs *, irq_regs);
  22. EXPORT_PER_CPU_SYMBOL(irq_regs);
  23. /*
  24. * 'what should we do if we get a hw irq event on an illegal vector'.
  25. * each architecture has to answer this themselves.
  26. */
  27. void ack_bad_irq(unsigned int irq)
  28. {
  29. printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);
  30. #ifdef CONFIG_X86_LOCAL_APIC
  31. /*
  32. * Currently unexpected vectors happen only on SMP and APIC.
  33. * We _must_ ack these because every local APIC has only N
  34. * irq slots per priority level, and a 'hanging, unacked' IRQ
  35. * holds up an irq slot - in excessive cases (when multiple
  36. * unexpected vectors occur) that might lock up the APIC
  37. * completely.
  38. * But only ack when the APIC is enabled -AK
  39. */
  40. if (cpu_has_apic)
  41. ack_APIC_irq();
  42. #endif
  43. }
  44. #ifdef CONFIG_DEBUG_STACKOVERFLOW
  45. /* Debugging check for stack overflow: is there less than 1KB free? */
  46. static int check_stack_overflow(void)
  47. {
  48. long sp;
  49. __asm__ __volatile__("andl %%esp,%0" :
  50. "=r" (sp) : "0" (THREAD_SIZE - 1));
  51. return sp < (sizeof(struct thread_info) + STACK_WARN);
  52. }
  53. static void print_stack_overflow(void)
  54. {
  55. printk(KERN_WARNING "low stack detected by irq handler\n");
  56. dump_stack();
  57. }
  58. #else
  59. static inline int check_stack_overflow(void) { return 0; }
  60. static inline void print_stack_overflow(void) { }
  61. #endif
  62. #ifdef CONFIG_4KSTACKS
  63. /*
  64. * per-CPU IRQ handling contexts (thread information and stack)
  65. */
  66. union irq_ctx {
  67. struct thread_info tinfo;
  68. u32 stack[THREAD_SIZE/sizeof(u32)];
  69. };
  70. static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
  71. static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
  72. static char softirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
  73. static char hardirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
  74. static void call_on_stack(void *func, void *stack)
  75. {
  76. asm volatile("xchgl %%ebx,%%esp \n"
  77. "call *%%edi \n"
  78. "movl %%ebx,%%esp \n"
  79. : "=b" (stack)
  80. : "0" (stack),
  81. "D"(func)
  82. : "memory", "cc", "edx", "ecx", "eax");
  83. }
  84. static inline int
  85. execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq)
  86. {
  87. union irq_ctx *curctx, *irqctx;
  88. u32 *isp, arg1, arg2;
  89. curctx = (union irq_ctx *) current_thread_info();
  90. irqctx = hardirq_ctx[smp_processor_id()];
  91. /*
  92. * this is where we switch to the IRQ stack. However, if we are
  93. * already using the IRQ stack (because we interrupted a hardirq
  94. * handler) we can't do that and just have to keep using the
  95. * current stack (which is the irq stack already after all)
  96. */
  97. if (unlikely(curctx == irqctx))
  98. return 0;
  99. /* build the stack frame on the IRQ stack */
  100. isp = (u32 *) ((char*)irqctx + sizeof(*irqctx));
  101. irqctx->tinfo.task = curctx->tinfo.task;
  102. irqctx->tinfo.previous_esp = current_stack_pointer;
  103. /*
  104. * Copy the softirq bits in preempt_count so that the
  105. * softirq checks work in the hardirq context.
  106. */
  107. irqctx->tinfo.preempt_count =
  108. (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
  109. (curctx->tinfo.preempt_count & SOFTIRQ_MASK);
  110. if (unlikely(overflow))
  111. call_on_stack(print_stack_overflow, isp);
  112. asm volatile("xchgl %%ebx,%%esp \n"
  113. "call *%%edi \n"
  114. "movl %%ebx,%%esp \n"
  115. : "=a" (arg1), "=d" (arg2), "=b" (isp)
  116. : "0" (irq), "1" (desc), "2" (isp),
  117. "D" (desc->handle_irq)
  118. : "memory", "cc", "ecx");
  119. return 1;
  120. }
  121. /*
  122. * allocate per-cpu stacks for hardirq and for softirq processing
  123. */
  124. void __cpuinit irq_ctx_init(int cpu)
  125. {
  126. union irq_ctx *irqctx;
  127. if (hardirq_ctx[cpu])
  128. return;
  129. irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
  130. irqctx->tinfo.task = NULL;
  131. irqctx->tinfo.exec_domain = NULL;
  132. irqctx->tinfo.cpu = cpu;
  133. irqctx->tinfo.preempt_count = HARDIRQ_OFFSET;
  134. irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
  135. hardirq_ctx[cpu] = irqctx;
  136. irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
  137. irqctx->tinfo.task = NULL;
  138. irqctx->tinfo.exec_domain = NULL;
  139. irqctx->tinfo.cpu = cpu;
  140. irqctx->tinfo.preempt_count = 0;
  141. irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
  142. softirq_ctx[cpu] = irqctx;
  143. printk(KERN_DEBUG "CPU %u irqstacks, hard=%p soft=%p\n",
  144. cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
  145. }
  146. void irq_ctx_exit(int cpu)
  147. {
  148. hardirq_ctx[cpu] = NULL;
  149. }
  150. asmlinkage void do_softirq(void)
  151. {
  152. unsigned long flags;
  153. struct thread_info *curctx;
  154. union irq_ctx *irqctx;
  155. u32 *isp;
  156. if (in_interrupt())
  157. return;
  158. local_irq_save(flags);
  159. if (local_softirq_pending()) {
  160. curctx = current_thread_info();
  161. irqctx = softirq_ctx[smp_processor_id()];
  162. irqctx->tinfo.task = curctx->task;
  163. irqctx->tinfo.previous_esp = current_stack_pointer;
  164. /* build the stack frame on the softirq stack */
  165. isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
  166. call_on_stack(__do_softirq, isp);
  167. /*
  168. * Shouldnt happen, we returned above if in_interrupt():
  169. */
  170. WARN_ON_ONCE(softirq_count());
  171. }
  172. local_irq_restore(flags);
  173. }
  174. #else
  175. static inline int
  176. execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { return 0; }
  177. #endif
  178. /*
  179. * do_IRQ handles all normal device IRQ's (the special
  180. * SMP cross-CPU interrupts have their own specific
  181. * handlers).
  182. */
  183. unsigned int do_IRQ(struct pt_regs *regs)
  184. {
  185. struct pt_regs *old_regs;
  186. /* high bit used in ret_from_ code */
  187. int overflow;
  188. unsigned vector = ~regs->orig_ax;
  189. struct irq_desc *desc;
  190. unsigned irq;
  191. old_regs = set_irq_regs(regs);
  192. irq_enter();
  193. irq = __get_cpu_var(vector_irq)[vector];
  194. overflow = check_stack_overflow();
  195. desc = irq_to_desc(irq);
  196. if (unlikely(!desc)) {
  197. printk(KERN_EMERG "%s: cannot handle IRQ %d vector %#x\n",
  198. __func__, irq, vector);
  199. BUG();
  200. }
  201. if (!execute_on_irq_stack(overflow, desc, irq)) {
  202. if (unlikely(overflow))
  203. print_stack_overflow();
  204. desc->handle_irq(irq, desc);
  205. }
  206. irq_exit();
  207. set_irq_regs(old_regs);
  208. return 1;
  209. }
  210. /*
  211. * Interrupt statistics:
  212. */
  213. atomic_t irq_err_count;
  214. /*
  215. * /proc/interrupts printing:
  216. */
  217. int show_interrupts(struct seq_file *p, void *v)
  218. {
  219. int i = *(loff_t *) v, j;
  220. struct irqaction * action;
  221. unsigned long flags;
  222. unsigned int entries;
  223. struct irq_desc *desc;
  224. int tail = 0;
  225. #ifdef CONFIG_HAVE_SPARSE_IRQ
  226. desc = (struct irq_desc *)v;
  227. entries = -1U;
  228. i = desc->irq;
  229. if (!desc->next)
  230. tail = 1;
  231. #else
  232. entries = nr_irqs - 1;
  233. i = *(loff_t *) v;
  234. if (i == nr_irqs)
  235. tail = 1;
  236. else
  237. desc = irq_to_desc(i);
  238. #endif
  239. if (i == 0) {
  240. seq_printf(p, " ");
  241. for_each_online_cpu(j)
  242. seq_printf(p, "CPU%-8d",j);
  243. seq_putc(p, '\n');
  244. }
  245. if (i <= entries) {
  246. unsigned any_count = 0;
  247. spin_lock_irqsave(&desc->lock, flags);
  248. #ifndef CONFIG_SMP
  249. any_count = kstat_irqs(i);
  250. #else
  251. for_each_online_cpu(j)
  252. any_count |= kstat_irqs_cpu(i, j);
  253. #endif
  254. action = desc->action;
  255. if (!action && !any_count)
  256. goto skip;
  257. seq_printf(p, "%#x: ",i);
  258. #ifndef CONFIG_SMP
  259. seq_printf(p, "%10u ", kstat_irqs(i));
  260. #else
  261. for_each_online_cpu(j)
  262. seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
  263. #endif
  264. seq_printf(p, " %8s", desc->chip->name);
  265. seq_printf(p, "-%-8s", desc->name);
  266. if (action) {
  267. seq_printf(p, " %s", action->name);
  268. while ((action = action->next) != NULL)
  269. seq_printf(p, ", %s", action->name);
  270. }
  271. seq_putc(p, '\n');
  272. skip:
  273. spin_unlock_irqrestore(&desc->lock, flags);
  274. }
  275. if (tail) {
  276. seq_printf(p, "NMI: ");
  277. for_each_online_cpu(j)
  278. seq_printf(p, "%10u ", nmi_count(j));
  279. seq_printf(p, " Non-maskable interrupts\n");
  280. #ifdef CONFIG_X86_LOCAL_APIC
  281. seq_printf(p, "LOC: ");
  282. for_each_online_cpu(j)
  283. seq_printf(p, "%10u ",
  284. per_cpu(irq_stat,j).apic_timer_irqs);
  285. seq_printf(p, " Local timer interrupts\n");
  286. #endif
  287. #ifdef CONFIG_SMP
  288. seq_printf(p, "RES: ");
  289. for_each_online_cpu(j)
  290. seq_printf(p, "%10u ",
  291. per_cpu(irq_stat,j).irq_resched_count);
  292. seq_printf(p, " Rescheduling interrupts\n");
  293. seq_printf(p, "CAL: ");
  294. for_each_online_cpu(j)
  295. seq_printf(p, "%10u ",
  296. per_cpu(irq_stat,j).irq_call_count);
  297. seq_printf(p, " Function call interrupts\n");
  298. seq_printf(p, "TLB: ");
  299. for_each_online_cpu(j)
  300. seq_printf(p, "%10u ",
  301. per_cpu(irq_stat,j).irq_tlb_count);
  302. seq_printf(p, " TLB shootdowns\n");
  303. #endif
  304. #ifdef CONFIG_X86_MCE
  305. seq_printf(p, "TRM: ");
  306. for_each_online_cpu(j)
  307. seq_printf(p, "%10u ",
  308. per_cpu(irq_stat,j).irq_thermal_count);
  309. seq_printf(p, " Thermal event interrupts\n");
  310. #endif
  311. #ifdef CONFIG_X86_LOCAL_APIC
  312. seq_printf(p, "SPU: ");
  313. for_each_online_cpu(j)
  314. seq_printf(p, "%10u ",
  315. per_cpu(irq_stat,j).irq_spurious_count);
  316. seq_printf(p, " Spurious interrupts\n");
  317. #endif
  318. seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
  319. #if defined(CONFIG_X86_IO_APIC)
  320. seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
  321. #endif
  322. }
  323. return 0;
  324. }
  325. /*
  326. * /proc/stat helpers
  327. */
  328. u64 arch_irq_stat_cpu(unsigned int cpu)
  329. {
  330. u64 sum = nmi_count(cpu);
  331. #ifdef CONFIG_X86_LOCAL_APIC
  332. sum += per_cpu(irq_stat, cpu).apic_timer_irqs;
  333. #endif
  334. #ifdef CONFIG_SMP
  335. sum += per_cpu(irq_stat, cpu).irq_resched_count;
  336. sum += per_cpu(irq_stat, cpu).irq_call_count;
  337. sum += per_cpu(irq_stat, cpu).irq_tlb_count;
  338. #endif
  339. #ifdef CONFIG_X86_MCE
  340. sum += per_cpu(irq_stat, cpu).irq_thermal_count;
  341. #endif
  342. #ifdef CONFIG_X86_LOCAL_APIC
  343. sum += per_cpu(irq_stat, cpu).irq_spurious_count;
  344. #endif
  345. return sum;
  346. }
  347. u64 arch_irq_stat(void)
  348. {
  349. u64 sum = atomic_read(&irq_err_count);
  350. #ifdef CONFIG_X86_IO_APIC
  351. sum += atomic_read(&irq_mis_count);
  352. #endif
  353. return sum;
  354. }
  355. #ifdef CONFIG_HOTPLUG_CPU
  356. #include <mach_apic.h>
  357. void fixup_irqs(cpumask_t map)
  358. {
  359. unsigned int irq;
  360. static int warned;
  361. struct irq_desc *desc;
  362. for_each_irq_desc(irq, desc) {
  363. cpumask_t mask;
  364. if (irq == 2)
  365. continue;
  366. cpus_and(mask, desc->affinity, map);
  367. if (any_online_cpu(mask) == NR_CPUS) {
  368. printk("Breaking affinity for irq %i\n", irq);
  369. mask = map;
  370. }
  371. if (desc->chip->set_affinity)
  372. desc->chip->set_affinity(irq, mask);
  373. else if (desc->action && !(warned++))
  374. printk("Cannot set affinity for irq %i\n", irq);
  375. }
  376. #if 0
  377. barrier();
  378. /* Ingo Molnar says: "after the IO-APIC masks have been redirected
  379. [note the nop - the interrupt-enable boundary on x86 is two
  380. instructions from sti] - to flush out pending hardirqs and
  381. IPIs. After this point nothing is supposed to reach this CPU." */
  382. __asm__ __volatile__("sti; nop; cli");
  383. barrier();
  384. #else
  385. /* That doesn't seem sufficient. Give it 1ms. */
  386. local_irq_enable();
  387. mdelay(1);
  388. local_irq_disable();
  389. #endif
  390. }
  391. #endif