slub.c 123 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. #include <linux/stacktrace.h>
  31. #include <trace/events/kmem.h>
  32. /*
  33. * Lock order:
  34. * 1. slub_lock (Global Semaphore)
  35. * 2. node->list_lock
  36. * 3. slab_lock(page) (Only on some arches and for debugging)
  37. *
  38. * slub_lock
  39. *
  40. * The role of the slub_lock is to protect the list of all the slabs
  41. * and to synchronize major metadata changes to slab cache structures.
  42. *
  43. * The slab_lock is only used for debugging and on arches that do not
  44. * have the ability to do a cmpxchg_double. It only protects the second
  45. * double word in the page struct. Meaning
  46. * A. page->freelist -> List of object free in a page
  47. * B. page->counters -> Counters of objects
  48. * C. page->frozen -> frozen state
  49. *
  50. * If a slab is frozen then it is exempt from list management. It is not
  51. * on any list. The processor that froze the slab is the one who can
  52. * perform list operations on the page. Other processors may put objects
  53. * onto the freelist but the processor that froze the slab is the only
  54. * one that can retrieve the objects from the page's freelist.
  55. *
  56. * The list_lock protects the partial and full list on each node and
  57. * the partial slab counter. If taken then no new slabs may be added or
  58. * removed from the lists nor make the number of partial slabs be modified.
  59. * (Note that the total number of slabs is an atomic value that may be
  60. * modified without taking the list lock).
  61. *
  62. * The list_lock is a centralized lock and thus we avoid taking it as
  63. * much as possible. As long as SLUB does not have to handle partial
  64. * slabs, operations can continue without any centralized lock. F.e.
  65. * allocating a long series of objects that fill up slabs does not require
  66. * the list lock.
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  108. SLAB_TRACE | SLAB_DEBUG_FREE)
  109. static inline int kmem_cache_debug(struct kmem_cache *s)
  110. {
  111. #ifdef CONFIG_SLUB_DEBUG
  112. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  113. #else
  114. return 0;
  115. #endif
  116. }
  117. /*
  118. * Issues still to be resolved:
  119. *
  120. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  121. *
  122. * - Variable sizing of the per node arrays
  123. */
  124. /* Enable to test recovery from slab corruption on boot */
  125. #undef SLUB_RESILIENCY_TEST
  126. /* Enable to log cmpxchg failures */
  127. #undef SLUB_DEBUG_CMPXCHG
  128. /*
  129. * Mininum number of partial slabs. These will be left on the partial
  130. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  131. */
  132. #define MIN_PARTIAL 5
  133. /*
  134. * Maximum number of desirable partial slabs.
  135. * The existence of more partial slabs makes kmem_cache_shrink
  136. * sort the partial list by the number of objects in the.
  137. */
  138. #define MAX_PARTIAL 10
  139. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  140. SLAB_POISON | SLAB_STORE_USER)
  141. /*
  142. * Debugging flags that require metadata to be stored in the slab. These get
  143. * disabled when slub_debug=O is used and a cache's min order increases with
  144. * metadata.
  145. */
  146. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  147. /*
  148. * Set of flags that will prevent slab merging
  149. */
  150. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  151. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  152. SLAB_FAILSLAB)
  153. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  154. SLAB_CACHE_DMA | SLAB_NOTRACK)
  155. #define OO_SHIFT 16
  156. #define OO_MASK ((1 << OO_SHIFT) - 1)
  157. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  158. /* Internal SLUB flags */
  159. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  160. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  161. static int kmem_size = sizeof(struct kmem_cache);
  162. #ifdef CONFIG_SMP
  163. static struct notifier_block slab_notifier;
  164. #endif
  165. static enum {
  166. DOWN, /* No slab functionality available */
  167. PARTIAL, /* Kmem_cache_node works */
  168. UP, /* Everything works but does not show up in sysfs */
  169. SYSFS /* Sysfs up */
  170. } slab_state = DOWN;
  171. /* A list of all slab caches on the system */
  172. static DECLARE_RWSEM(slub_lock);
  173. static LIST_HEAD(slab_caches);
  174. /*
  175. * Tracking user of a slab.
  176. */
  177. #define TRACK_ADDRS_COUNT 16
  178. struct track {
  179. unsigned long addr; /* Called from address */
  180. #ifdef CONFIG_STACKTRACE
  181. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  182. #endif
  183. int cpu; /* Was running on cpu */
  184. int pid; /* Pid context */
  185. unsigned long when; /* When did the operation occur */
  186. };
  187. enum track_item { TRACK_ALLOC, TRACK_FREE };
  188. #ifdef CONFIG_SYSFS
  189. static int sysfs_slab_add(struct kmem_cache *);
  190. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  191. static void sysfs_slab_remove(struct kmem_cache *);
  192. #else
  193. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  194. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  195. { return 0; }
  196. static inline void sysfs_slab_remove(struct kmem_cache *s)
  197. {
  198. kfree(s->name);
  199. kfree(s);
  200. }
  201. #endif
  202. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  203. {
  204. #ifdef CONFIG_SLUB_STATS
  205. __this_cpu_inc(s->cpu_slab->stat[si]);
  206. #endif
  207. }
  208. /********************************************************************
  209. * Core slab cache functions
  210. *******************************************************************/
  211. int slab_is_available(void)
  212. {
  213. return slab_state >= UP;
  214. }
  215. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  216. {
  217. return s->node[node];
  218. }
  219. /* Verify that a pointer has an address that is valid within a slab page */
  220. static inline int check_valid_pointer(struct kmem_cache *s,
  221. struct page *page, const void *object)
  222. {
  223. void *base;
  224. if (!object)
  225. return 1;
  226. base = page_address(page);
  227. if (object < base || object >= base + page->objects * s->size ||
  228. (object - base) % s->size) {
  229. return 0;
  230. }
  231. return 1;
  232. }
  233. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  234. {
  235. return *(void **)(object + s->offset);
  236. }
  237. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  238. {
  239. void *p;
  240. #ifdef CONFIG_DEBUG_PAGEALLOC
  241. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  242. #else
  243. p = get_freepointer(s, object);
  244. #endif
  245. return p;
  246. }
  247. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  248. {
  249. *(void **)(object + s->offset) = fp;
  250. }
  251. /* Loop over all objects in a slab */
  252. #define for_each_object(__p, __s, __addr, __objects) \
  253. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  254. __p += (__s)->size)
  255. /* Determine object index from a given position */
  256. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  257. {
  258. return (p - addr) / s->size;
  259. }
  260. static inline size_t slab_ksize(const struct kmem_cache *s)
  261. {
  262. #ifdef CONFIG_SLUB_DEBUG
  263. /*
  264. * Debugging requires use of the padding between object
  265. * and whatever may come after it.
  266. */
  267. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  268. return s->objsize;
  269. #endif
  270. /*
  271. * If we have the need to store the freelist pointer
  272. * back there or track user information then we can
  273. * only use the space before that information.
  274. */
  275. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  276. return s->inuse;
  277. /*
  278. * Else we can use all the padding etc for the allocation
  279. */
  280. return s->size;
  281. }
  282. static inline int order_objects(int order, unsigned long size, int reserved)
  283. {
  284. return ((PAGE_SIZE << order) - reserved) / size;
  285. }
  286. static inline struct kmem_cache_order_objects oo_make(int order,
  287. unsigned long size, int reserved)
  288. {
  289. struct kmem_cache_order_objects x = {
  290. (order << OO_SHIFT) + order_objects(order, size, reserved)
  291. };
  292. return x;
  293. }
  294. static inline int oo_order(struct kmem_cache_order_objects x)
  295. {
  296. return x.x >> OO_SHIFT;
  297. }
  298. static inline int oo_objects(struct kmem_cache_order_objects x)
  299. {
  300. return x.x & OO_MASK;
  301. }
  302. /*
  303. * Per slab locking using the pagelock
  304. */
  305. static __always_inline void slab_lock(struct page *page)
  306. {
  307. bit_spin_lock(PG_locked, &page->flags);
  308. }
  309. static __always_inline void slab_unlock(struct page *page)
  310. {
  311. __bit_spin_unlock(PG_locked, &page->flags);
  312. }
  313. /* Interrupts must be disabled (for the fallback code to work right) */
  314. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  315. void *freelist_old, unsigned long counters_old,
  316. void *freelist_new, unsigned long counters_new,
  317. const char *n)
  318. {
  319. VM_BUG_ON(!irqs_disabled());
  320. #ifdef CONFIG_CMPXCHG_DOUBLE
  321. if (s->flags & __CMPXCHG_DOUBLE) {
  322. if (cmpxchg_double(&page->freelist,
  323. freelist_old, counters_old,
  324. freelist_new, counters_new))
  325. return 1;
  326. } else
  327. #endif
  328. {
  329. slab_lock(page);
  330. if (page->freelist == freelist_old && page->counters == counters_old) {
  331. page->freelist = freelist_new;
  332. page->counters = counters_new;
  333. slab_unlock(page);
  334. return 1;
  335. }
  336. slab_unlock(page);
  337. }
  338. cpu_relax();
  339. stat(s, CMPXCHG_DOUBLE_FAIL);
  340. #ifdef SLUB_DEBUG_CMPXCHG
  341. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  342. #endif
  343. return 0;
  344. }
  345. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  346. void *freelist_old, unsigned long counters_old,
  347. void *freelist_new, unsigned long counters_new,
  348. const char *n)
  349. {
  350. #ifdef CONFIG_CMPXCHG_DOUBLE
  351. if (s->flags & __CMPXCHG_DOUBLE) {
  352. if (cmpxchg_double(&page->freelist,
  353. freelist_old, counters_old,
  354. freelist_new, counters_new))
  355. return 1;
  356. } else
  357. #endif
  358. {
  359. unsigned long flags;
  360. local_irq_save(flags);
  361. slab_lock(page);
  362. if (page->freelist == freelist_old && page->counters == counters_old) {
  363. page->freelist = freelist_new;
  364. page->counters = counters_new;
  365. slab_unlock(page);
  366. local_irq_restore(flags);
  367. return 1;
  368. }
  369. slab_unlock(page);
  370. local_irq_restore(flags);
  371. }
  372. cpu_relax();
  373. stat(s, CMPXCHG_DOUBLE_FAIL);
  374. #ifdef SLUB_DEBUG_CMPXCHG
  375. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  376. #endif
  377. return 0;
  378. }
  379. #ifdef CONFIG_SLUB_DEBUG
  380. /*
  381. * Determine a map of object in use on a page.
  382. *
  383. * Node listlock must be held to guarantee that the page does
  384. * not vanish from under us.
  385. */
  386. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  387. {
  388. void *p;
  389. void *addr = page_address(page);
  390. for (p = page->freelist; p; p = get_freepointer(s, p))
  391. set_bit(slab_index(p, s, addr), map);
  392. }
  393. /*
  394. * Debug settings:
  395. */
  396. #ifdef CONFIG_SLUB_DEBUG_ON
  397. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  398. #else
  399. static int slub_debug;
  400. #endif
  401. static char *slub_debug_slabs;
  402. static int disable_higher_order_debug;
  403. /*
  404. * Object debugging
  405. */
  406. static void print_section(char *text, u8 *addr, unsigned int length)
  407. {
  408. int i, offset;
  409. int newline = 1;
  410. char ascii[17];
  411. ascii[16] = 0;
  412. for (i = 0; i < length; i++) {
  413. if (newline) {
  414. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  415. newline = 0;
  416. }
  417. printk(KERN_CONT " %02x", addr[i]);
  418. offset = i % 16;
  419. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  420. if (offset == 15) {
  421. printk(KERN_CONT " %s\n", ascii);
  422. newline = 1;
  423. }
  424. }
  425. if (!newline) {
  426. i %= 16;
  427. while (i < 16) {
  428. printk(KERN_CONT " ");
  429. ascii[i] = ' ';
  430. i++;
  431. }
  432. printk(KERN_CONT " %s\n", ascii);
  433. }
  434. }
  435. static struct track *get_track(struct kmem_cache *s, void *object,
  436. enum track_item alloc)
  437. {
  438. struct track *p;
  439. if (s->offset)
  440. p = object + s->offset + sizeof(void *);
  441. else
  442. p = object + s->inuse;
  443. return p + alloc;
  444. }
  445. static void set_track(struct kmem_cache *s, void *object,
  446. enum track_item alloc, unsigned long addr)
  447. {
  448. struct track *p = get_track(s, object, alloc);
  449. if (addr) {
  450. #ifdef CONFIG_STACKTRACE
  451. struct stack_trace trace;
  452. int i;
  453. trace.nr_entries = 0;
  454. trace.max_entries = TRACK_ADDRS_COUNT;
  455. trace.entries = p->addrs;
  456. trace.skip = 3;
  457. save_stack_trace(&trace);
  458. /* See rant in lockdep.c */
  459. if (trace.nr_entries != 0 &&
  460. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  461. trace.nr_entries--;
  462. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  463. p->addrs[i] = 0;
  464. #endif
  465. p->addr = addr;
  466. p->cpu = smp_processor_id();
  467. p->pid = current->pid;
  468. p->when = jiffies;
  469. } else
  470. memset(p, 0, sizeof(struct track));
  471. }
  472. static void init_tracking(struct kmem_cache *s, void *object)
  473. {
  474. if (!(s->flags & SLAB_STORE_USER))
  475. return;
  476. set_track(s, object, TRACK_FREE, 0UL);
  477. set_track(s, object, TRACK_ALLOC, 0UL);
  478. }
  479. static void print_track(const char *s, struct track *t)
  480. {
  481. if (!t->addr)
  482. return;
  483. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  484. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  485. #ifdef CONFIG_STACKTRACE
  486. {
  487. int i;
  488. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  489. if (t->addrs[i])
  490. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  491. else
  492. break;
  493. }
  494. #endif
  495. }
  496. static void print_tracking(struct kmem_cache *s, void *object)
  497. {
  498. if (!(s->flags & SLAB_STORE_USER))
  499. return;
  500. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  501. print_track("Freed", get_track(s, object, TRACK_FREE));
  502. }
  503. static void print_page_info(struct page *page)
  504. {
  505. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  506. page, page->objects, page->inuse, page->freelist, page->flags);
  507. }
  508. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  509. {
  510. va_list args;
  511. char buf[100];
  512. va_start(args, fmt);
  513. vsnprintf(buf, sizeof(buf), fmt, args);
  514. va_end(args);
  515. printk(KERN_ERR "========================================"
  516. "=====================================\n");
  517. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  518. printk(KERN_ERR "----------------------------------------"
  519. "-------------------------------------\n\n");
  520. }
  521. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  522. {
  523. va_list args;
  524. char buf[100];
  525. va_start(args, fmt);
  526. vsnprintf(buf, sizeof(buf), fmt, args);
  527. va_end(args);
  528. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  529. }
  530. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  531. {
  532. unsigned int off; /* Offset of last byte */
  533. u8 *addr = page_address(page);
  534. print_tracking(s, p);
  535. print_page_info(page);
  536. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  537. p, p - addr, get_freepointer(s, p));
  538. if (p > addr + 16)
  539. print_section("Bytes b4", p - 16, 16);
  540. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  541. if (s->flags & SLAB_RED_ZONE)
  542. print_section("Redzone", p + s->objsize,
  543. s->inuse - s->objsize);
  544. if (s->offset)
  545. off = s->offset + sizeof(void *);
  546. else
  547. off = s->inuse;
  548. if (s->flags & SLAB_STORE_USER)
  549. off += 2 * sizeof(struct track);
  550. if (off != s->size)
  551. /* Beginning of the filler is the free pointer */
  552. print_section("Padding", p + off, s->size - off);
  553. dump_stack();
  554. }
  555. static void object_err(struct kmem_cache *s, struct page *page,
  556. u8 *object, char *reason)
  557. {
  558. slab_bug(s, "%s", reason);
  559. print_trailer(s, page, object);
  560. }
  561. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  562. {
  563. va_list args;
  564. char buf[100];
  565. va_start(args, fmt);
  566. vsnprintf(buf, sizeof(buf), fmt, args);
  567. va_end(args);
  568. slab_bug(s, "%s", buf);
  569. print_page_info(page);
  570. dump_stack();
  571. }
  572. static void init_object(struct kmem_cache *s, void *object, u8 val)
  573. {
  574. u8 *p = object;
  575. if (s->flags & __OBJECT_POISON) {
  576. memset(p, POISON_FREE, s->objsize - 1);
  577. p[s->objsize - 1] = POISON_END;
  578. }
  579. if (s->flags & SLAB_RED_ZONE)
  580. memset(p + s->objsize, val, s->inuse - s->objsize);
  581. }
  582. static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
  583. {
  584. while (bytes) {
  585. if (*start != value)
  586. return start;
  587. start++;
  588. bytes--;
  589. }
  590. return NULL;
  591. }
  592. static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
  593. {
  594. u64 value64;
  595. unsigned int words, prefix;
  596. if (bytes <= 16)
  597. return check_bytes8(start, value, bytes);
  598. value64 = value | value << 8 | value << 16 | value << 24;
  599. value64 = (value64 & 0xffffffff) | value64 << 32;
  600. prefix = 8 - ((unsigned long)start) % 8;
  601. if (prefix) {
  602. u8 *r = check_bytes8(start, value, prefix);
  603. if (r)
  604. return r;
  605. start += prefix;
  606. bytes -= prefix;
  607. }
  608. words = bytes / 8;
  609. while (words) {
  610. if (*(u64 *)start != value64)
  611. return check_bytes8(start, value, 8);
  612. start += 8;
  613. words--;
  614. }
  615. return check_bytes8(start, value, bytes % 8);
  616. }
  617. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  618. void *from, void *to)
  619. {
  620. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  621. memset(from, data, to - from);
  622. }
  623. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  624. u8 *object, char *what,
  625. u8 *start, unsigned int value, unsigned int bytes)
  626. {
  627. u8 *fault;
  628. u8 *end;
  629. fault = check_bytes(start, value, bytes);
  630. if (!fault)
  631. return 1;
  632. end = start + bytes;
  633. while (end > fault && end[-1] == value)
  634. end--;
  635. slab_bug(s, "%s overwritten", what);
  636. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  637. fault, end - 1, fault[0], value);
  638. print_trailer(s, page, object);
  639. restore_bytes(s, what, value, fault, end);
  640. return 0;
  641. }
  642. /*
  643. * Object layout:
  644. *
  645. * object address
  646. * Bytes of the object to be managed.
  647. * If the freepointer may overlay the object then the free
  648. * pointer is the first word of the object.
  649. *
  650. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  651. * 0xa5 (POISON_END)
  652. *
  653. * object + s->objsize
  654. * Padding to reach word boundary. This is also used for Redzoning.
  655. * Padding is extended by another word if Redzoning is enabled and
  656. * objsize == inuse.
  657. *
  658. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  659. * 0xcc (RED_ACTIVE) for objects in use.
  660. *
  661. * object + s->inuse
  662. * Meta data starts here.
  663. *
  664. * A. Free pointer (if we cannot overwrite object on free)
  665. * B. Tracking data for SLAB_STORE_USER
  666. * C. Padding to reach required alignment boundary or at mininum
  667. * one word if debugging is on to be able to detect writes
  668. * before the word boundary.
  669. *
  670. * Padding is done using 0x5a (POISON_INUSE)
  671. *
  672. * object + s->size
  673. * Nothing is used beyond s->size.
  674. *
  675. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  676. * ignored. And therefore no slab options that rely on these boundaries
  677. * may be used with merged slabcaches.
  678. */
  679. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  680. {
  681. unsigned long off = s->inuse; /* The end of info */
  682. if (s->offset)
  683. /* Freepointer is placed after the object. */
  684. off += sizeof(void *);
  685. if (s->flags & SLAB_STORE_USER)
  686. /* We also have user information there */
  687. off += 2 * sizeof(struct track);
  688. if (s->size == off)
  689. return 1;
  690. return check_bytes_and_report(s, page, p, "Object padding",
  691. p + off, POISON_INUSE, s->size - off);
  692. }
  693. /* Check the pad bytes at the end of a slab page */
  694. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  695. {
  696. u8 *start;
  697. u8 *fault;
  698. u8 *end;
  699. int length;
  700. int remainder;
  701. if (!(s->flags & SLAB_POISON))
  702. return 1;
  703. start = page_address(page);
  704. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  705. end = start + length;
  706. remainder = length % s->size;
  707. if (!remainder)
  708. return 1;
  709. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  710. if (!fault)
  711. return 1;
  712. while (end > fault && end[-1] == POISON_INUSE)
  713. end--;
  714. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  715. print_section("Padding", end - remainder, remainder);
  716. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  717. return 0;
  718. }
  719. static int check_object(struct kmem_cache *s, struct page *page,
  720. void *object, u8 val)
  721. {
  722. u8 *p = object;
  723. u8 *endobject = object + s->objsize;
  724. if (s->flags & SLAB_RED_ZONE) {
  725. if (!check_bytes_and_report(s, page, object, "Redzone",
  726. endobject, val, s->inuse - s->objsize))
  727. return 0;
  728. } else {
  729. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  730. check_bytes_and_report(s, page, p, "Alignment padding",
  731. endobject, POISON_INUSE, s->inuse - s->objsize);
  732. }
  733. }
  734. if (s->flags & SLAB_POISON) {
  735. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  736. (!check_bytes_and_report(s, page, p, "Poison", p,
  737. POISON_FREE, s->objsize - 1) ||
  738. !check_bytes_and_report(s, page, p, "Poison",
  739. p + s->objsize - 1, POISON_END, 1)))
  740. return 0;
  741. /*
  742. * check_pad_bytes cleans up on its own.
  743. */
  744. check_pad_bytes(s, page, p);
  745. }
  746. if (!s->offset && val == SLUB_RED_ACTIVE)
  747. /*
  748. * Object and freepointer overlap. Cannot check
  749. * freepointer while object is allocated.
  750. */
  751. return 1;
  752. /* Check free pointer validity */
  753. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  754. object_err(s, page, p, "Freepointer corrupt");
  755. /*
  756. * No choice but to zap it and thus lose the remainder
  757. * of the free objects in this slab. May cause
  758. * another error because the object count is now wrong.
  759. */
  760. set_freepointer(s, p, NULL);
  761. return 0;
  762. }
  763. return 1;
  764. }
  765. static int check_slab(struct kmem_cache *s, struct page *page)
  766. {
  767. int maxobj;
  768. VM_BUG_ON(!irqs_disabled());
  769. if (!PageSlab(page)) {
  770. slab_err(s, page, "Not a valid slab page");
  771. return 0;
  772. }
  773. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  774. if (page->objects > maxobj) {
  775. slab_err(s, page, "objects %u > max %u",
  776. s->name, page->objects, maxobj);
  777. return 0;
  778. }
  779. if (page->inuse > page->objects) {
  780. slab_err(s, page, "inuse %u > max %u",
  781. s->name, page->inuse, page->objects);
  782. return 0;
  783. }
  784. /* Slab_pad_check fixes things up after itself */
  785. slab_pad_check(s, page);
  786. return 1;
  787. }
  788. /*
  789. * Determine if a certain object on a page is on the freelist. Must hold the
  790. * slab lock to guarantee that the chains are in a consistent state.
  791. */
  792. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  793. {
  794. int nr = 0;
  795. void *fp;
  796. void *object = NULL;
  797. unsigned long max_objects;
  798. fp = page->freelist;
  799. while (fp && nr <= page->objects) {
  800. if (fp == search)
  801. return 1;
  802. if (!check_valid_pointer(s, page, fp)) {
  803. if (object) {
  804. object_err(s, page, object,
  805. "Freechain corrupt");
  806. set_freepointer(s, object, NULL);
  807. break;
  808. } else {
  809. slab_err(s, page, "Freepointer corrupt");
  810. page->freelist = NULL;
  811. page->inuse = page->objects;
  812. slab_fix(s, "Freelist cleared");
  813. return 0;
  814. }
  815. break;
  816. }
  817. object = fp;
  818. fp = get_freepointer(s, object);
  819. nr++;
  820. }
  821. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  822. if (max_objects > MAX_OBJS_PER_PAGE)
  823. max_objects = MAX_OBJS_PER_PAGE;
  824. if (page->objects != max_objects) {
  825. slab_err(s, page, "Wrong number of objects. Found %d but "
  826. "should be %d", page->objects, max_objects);
  827. page->objects = max_objects;
  828. slab_fix(s, "Number of objects adjusted.");
  829. }
  830. if (page->inuse != page->objects - nr) {
  831. slab_err(s, page, "Wrong object count. Counter is %d but "
  832. "counted were %d", page->inuse, page->objects - nr);
  833. page->inuse = page->objects - nr;
  834. slab_fix(s, "Object count adjusted.");
  835. }
  836. return search == NULL;
  837. }
  838. static void trace(struct kmem_cache *s, struct page *page, void *object,
  839. int alloc)
  840. {
  841. if (s->flags & SLAB_TRACE) {
  842. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  843. s->name,
  844. alloc ? "alloc" : "free",
  845. object, page->inuse,
  846. page->freelist);
  847. if (!alloc)
  848. print_section("Object", (void *)object, s->objsize);
  849. dump_stack();
  850. }
  851. }
  852. /*
  853. * Hooks for other subsystems that check memory allocations. In a typical
  854. * production configuration these hooks all should produce no code at all.
  855. */
  856. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  857. {
  858. flags &= gfp_allowed_mask;
  859. lockdep_trace_alloc(flags);
  860. might_sleep_if(flags & __GFP_WAIT);
  861. return should_failslab(s->objsize, flags, s->flags);
  862. }
  863. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  864. {
  865. flags &= gfp_allowed_mask;
  866. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  867. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  868. }
  869. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  870. {
  871. kmemleak_free_recursive(x, s->flags);
  872. /*
  873. * Trouble is that we may no longer disable interupts in the fast path
  874. * So in order to make the debug calls that expect irqs to be
  875. * disabled we need to disable interrupts temporarily.
  876. */
  877. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  878. {
  879. unsigned long flags;
  880. local_irq_save(flags);
  881. kmemcheck_slab_free(s, x, s->objsize);
  882. debug_check_no_locks_freed(x, s->objsize);
  883. local_irq_restore(flags);
  884. }
  885. #endif
  886. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  887. debug_check_no_obj_freed(x, s->objsize);
  888. }
  889. /*
  890. * Tracking of fully allocated slabs for debugging purposes.
  891. *
  892. * list_lock must be held.
  893. */
  894. static void add_full(struct kmem_cache *s,
  895. struct kmem_cache_node *n, struct page *page)
  896. {
  897. if (!(s->flags & SLAB_STORE_USER))
  898. return;
  899. list_add(&page->lru, &n->full);
  900. }
  901. /*
  902. * list_lock must be held.
  903. */
  904. static void remove_full(struct kmem_cache *s, struct page *page)
  905. {
  906. if (!(s->flags & SLAB_STORE_USER))
  907. return;
  908. list_del(&page->lru);
  909. }
  910. /* Tracking of the number of slabs for debugging purposes */
  911. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  912. {
  913. struct kmem_cache_node *n = get_node(s, node);
  914. return atomic_long_read(&n->nr_slabs);
  915. }
  916. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  917. {
  918. return atomic_long_read(&n->nr_slabs);
  919. }
  920. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  921. {
  922. struct kmem_cache_node *n = get_node(s, node);
  923. /*
  924. * May be called early in order to allocate a slab for the
  925. * kmem_cache_node structure. Solve the chicken-egg
  926. * dilemma by deferring the increment of the count during
  927. * bootstrap (see early_kmem_cache_node_alloc).
  928. */
  929. if (n) {
  930. atomic_long_inc(&n->nr_slabs);
  931. atomic_long_add(objects, &n->total_objects);
  932. }
  933. }
  934. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  935. {
  936. struct kmem_cache_node *n = get_node(s, node);
  937. atomic_long_dec(&n->nr_slabs);
  938. atomic_long_sub(objects, &n->total_objects);
  939. }
  940. /* Object debug checks for alloc/free paths */
  941. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  942. void *object)
  943. {
  944. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  945. return;
  946. init_object(s, object, SLUB_RED_INACTIVE);
  947. init_tracking(s, object);
  948. }
  949. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  950. void *object, unsigned long addr)
  951. {
  952. if (!check_slab(s, page))
  953. goto bad;
  954. if (!check_valid_pointer(s, page, object)) {
  955. object_err(s, page, object, "Freelist Pointer check fails");
  956. goto bad;
  957. }
  958. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  959. goto bad;
  960. /* Success perform special debug activities for allocs */
  961. if (s->flags & SLAB_STORE_USER)
  962. set_track(s, object, TRACK_ALLOC, addr);
  963. trace(s, page, object, 1);
  964. init_object(s, object, SLUB_RED_ACTIVE);
  965. return 1;
  966. bad:
  967. if (PageSlab(page)) {
  968. /*
  969. * If this is a slab page then lets do the best we can
  970. * to avoid issues in the future. Marking all objects
  971. * as used avoids touching the remaining objects.
  972. */
  973. slab_fix(s, "Marking all objects used");
  974. page->inuse = page->objects;
  975. page->freelist = NULL;
  976. }
  977. return 0;
  978. }
  979. static noinline int free_debug_processing(struct kmem_cache *s,
  980. struct page *page, void *object, unsigned long addr)
  981. {
  982. unsigned long flags;
  983. int rc = 0;
  984. local_irq_save(flags);
  985. slab_lock(page);
  986. if (!check_slab(s, page))
  987. goto fail;
  988. if (!check_valid_pointer(s, page, object)) {
  989. slab_err(s, page, "Invalid object pointer 0x%p", object);
  990. goto fail;
  991. }
  992. if (on_freelist(s, page, object)) {
  993. object_err(s, page, object, "Object already free");
  994. goto fail;
  995. }
  996. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  997. goto out;
  998. if (unlikely(s != page->slab)) {
  999. if (!PageSlab(page)) {
  1000. slab_err(s, page, "Attempt to free object(0x%p) "
  1001. "outside of slab", object);
  1002. } else if (!page->slab) {
  1003. printk(KERN_ERR
  1004. "SLUB <none>: no slab for object 0x%p.\n",
  1005. object);
  1006. dump_stack();
  1007. } else
  1008. object_err(s, page, object,
  1009. "page slab pointer corrupt.");
  1010. goto fail;
  1011. }
  1012. if (s->flags & SLAB_STORE_USER)
  1013. set_track(s, object, TRACK_FREE, addr);
  1014. trace(s, page, object, 0);
  1015. init_object(s, object, SLUB_RED_INACTIVE);
  1016. rc = 1;
  1017. out:
  1018. slab_unlock(page);
  1019. local_irq_restore(flags);
  1020. return rc;
  1021. fail:
  1022. slab_fix(s, "Object at 0x%p not freed", object);
  1023. goto out;
  1024. }
  1025. static int __init setup_slub_debug(char *str)
  1026. {
  1027. slub_debug = DEBUG_DEFAULT_FLAGS;
  1028. if (*str++ != '=' || !*str)
  1029. /*
  1030. * No options specified. Switch on full debugging.
  1031. */
  1032. goto out;
  1033. if (*str == ',')
  1034. /*
  1035. * No options but restriction on slabs. This means full
  1036. * debugging for slabs matching a pattern.
  1037. */
  1038. goto check_slabs;
  1039. if (tolower(*str) == 'o') {
  1040. /*
  1041. * Avoid enabling debugging on caches if its minimum order
  1042. * would increase as a result.
  1043. */
  1044. disable_higher_order_debug = 1;
  1045. goto out;
  1046. }
  1047. slub_debug = 0;
  1048. if (*str == '-')
  1049. /*
  1050. * Switch off all debugging measures.
  1051. */
  1052. goto out;
  1053. /*
  1054. * Determine which debug features should be switched on
  1055. */
  1056. for (; *str && *str != ','; str++) {
  1057. switch (tolower(*str)) {
  1058. case 'f':
  1059. slub_debug |= SLAB_DEBUG_FREE;
  1060. break;
  1061. case 'z':
  1062. slub_debug |= SLAB_RED_ZONE;
  1063. break;
  1064. case 'p':
  1065. slub_debug |= SLAB_POISON;
  1066. break;
  1067. case 'u':
  1068. slub_debug |= SLAB_STORE_USER;
  1069. break;
  1070. case 't':
  1071. slub_debug |= SLAB_TRACE;
  1072. break;
  1073. case 'a':
  1074. slub_debug |= SLAB_FAILSLAB;
  1075. break;
  1076. default:
  1077. printk(KERN_ERR "slub_debug option '%c' "
  1078. "unknown. skipped\n", *str);
  1079. }
  1080. }
  1081. check_slabs:
  1082. if (*str == ',')
  1083. slub_debug_slabs = str + 1;
  1084. out:
  1085. return 1;
  1086. }
  1087. __setup("slub_debug", setup_slub_debug);
  1088. static unsigned long kmem_cache_flags(unsigned long objsize,
  1089. unsigned long flags, const char *name,
  1090. void (*ctor)(void *))
  1091. {
  1092. /*
  1093. * Enable debugging if selected on the kernel commandline.
  1094. */
  1095. if (slub_debug && (!slub_debug_slabs ||
  1096. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1097. flags |= slub_debug;
  1098. return flags;
  1099. }
  1100. #else
  1101. static inline void setup_object_debug(struct kmem_cache *s,
  1102. struct page *page, void *object) {}
  1103. static inline int alloc_debug_processing(struct kmem_cache *s,
  1104. struct page *page, void *object, unsigned long addr) { return 0; }
  1105. static inline int free_debug_processing(struct kmem_cache *s,
  1106. struct page *page, void *object, unsigned long addr) { return 0; }
  1107. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1108. { return 1; }
  1109. static inline int check_object(struct kmem_cache *s, struct page *page,
  1110. void *object, u8 val) { return 1; }
  1111. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1112. struct page *page) {}
  1113. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1114. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  1115. unsigned long flags, const char *name,
  1116. void (*ctor)(void *))
  1117. {
  1118. return flags;
  1119. }
  1120. #define slub_debug 0
  1121. #define disable_higher_order_debug 0
  1122. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1123. { return 0; }
  1124. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1125. { return 0; }
  1126. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1127. int objects) {}
  1128. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1129. int objects) {}
  1130. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1131. { return 0; }
  1132. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1133. void *object) {}
  1134. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1135. #endif /* CONFIG_SLUB_DEBUG */
  1136. /*
  1137. * Slab allocation and freeing
  1138. */
  1139. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1140. struct kmem_cache_order_objects oo)
  1141. {
  1142. int order = oo_order(oo);
  1143. flags |= __GFP_NOTRACK;
  1144. if (node == NUMA_NO_NODE)
  1145. return alloc_pages(flags, order);
  1146. else
  1147. return alloc_pages_exact_node(node, flags, order);
  1148. }
  1149. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1150. {
  1151. struct page *page;
  1152. struct kmem_cache_order_objects oo = s->oo;
  1153. gfp_t alloc_gfp;
  1154. flags &= gfp_allowed_mask;
  1155. if (flags & __GFP_WAIT)
  1156. local_irq_enable();
  1157. flags |= s->allocflags;
  1158. /*
  1159. * Let the initial higher-order allocation fail under memory pressure
  1160. * so we fall-back to the minimum order allocation.
  1161. */
  1162. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1163. page = alloc_slab_page(alloc_gfp, node, oo);
  1164. if (unlikely(!page)) {
  1165. oo = s->min;
  1166. /*
  1167. * Allocation may have failed due to fragmentation.
  1168. * Try a lower order alloc if possible
  1169. */
  1170. page = alloc_slab_page(flags, node, oo);
  1171. if (page)
  1172. stat(s, ORDER_FALLBACK);
  1173. }
  1174. if (flags & __GFP_WAIT)
  1175. local_irq_disable();
  1176. if (!page)
  1177. return NULL;
  1178. if (kmemcheck_enabled
  1179. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1180. int pages = 1 << oo_order(oo);
  1181. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1182. /*
  1183. * Objects from caches that have a constructor don't get
  1184. * cleared when they're allocated, so we need to do it here.
  1185. */
  1186. if (s->ctor)
  1187. kmemcheck_mark_uninitialized_pages(page, pages);
  1188. else
  1189. kmemcheck_mark_unallocated_pages(page, pages);
  1190. }
  1191. page->objects = oo_objects(oo);
  1192. mod_zone_page_state(page_zone(page),
  1193. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1194. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1195. 1 << oo_order(oo));
  1196. return page;
  1197. }
  1198. static void setup_object(struct kmem_cache *s, struct page *page,
  1199. void *object)
  1200. {
  1201. setup_object_debug(s, page, object);
  1202. if (unlikely(s->ctor))
  1203. s->ctor(object);
  1204. }
  1205. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1206. {
  1207. struct page *page;
  1208. void *start;
  1209. void *last;
  1210. void *p;
  1211. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1212. page = allocate_slab(s,
  1213. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1214. if (!page)
  1215. goto out;
  1216. inc_slabs_node(s, page_to_nid(page), page->objects);
  1217. page->slab = s;
  1218. page->flags |= 1 << PG_slab;
  1219. start = page_address(page);
  1220. if (unlikely(s->flags & SLAB_POISON))
  1221. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1222. last = start;
  1223. for_each_object(p, s, start, page->objects) {
  1224. setup_object(s, page, last);
  1225. set_freepointer(s, last, p);
  1226. last = p;
  1227. }
  1228. setup_object(s, page, last);
  1229. set_freepointer(s, last, NULL);
  1230. page->freelist = start;
  1231. page->inuse = page->objects;
  1232. page->frozen = 1;
  1233. out:
  1234. return page;
  1235. }
  1236. static void __free_slab(struct kmem_cache *s, struct page *page)
  1237. {
  1238. int order = compound_order(page);
  1239. int pages = 1 << order;
  1240. if (kmem_cache_debug(s)) {
  1241. void *p;
  1242. slab_pad_check(s, page);
  1243. for_each_object(p, s, page_address(page),
  1244. page->objects)
  1245. check_object(s, page, p, SLUB_RED_INACTIVE);
  1246. }
  1247. kmemcheck_free_shadow(page, compound_order(page));
  1248. mod_zone_page_state(page_zone(page),
  1249. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1250. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1251. -pages);
  1252. __ClearPageSlab(page);
  1253. reset_page_mapcount(page);
  1254. if (current->reclaim_state)
  1255. current->reclaim_state->reclaimed_slab += pages;
  1256. __free_pages(page, order);
  1257. }
  1258. #define need_reserve_slab_rcu \
  1259. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1260. static void rcu_free_slab(struct rcu_head *h)
  1261. {
  1262. struct page *page;
  1263. if (need_reserve_slab_rcu)
  1264. page = virt_to_head_page(h);
  1265. else
  1266. page = container_of((struct list_head *)h, struct page, lru);
  1267. __free_slab(page->slab, page);
  1268. }
  1269. static void free_slab(struct kmem_cache *s, struct page *page)
  1270. {
  1271. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1272. struct rcu_head *head;
  1273. if (need_reserve_slab_rcu) {
  1274. int order = compound_order(page);
  1275. int offset = (PAGE_SIZE << order) - s->reserved;
  1276. VM_BUG_ON(s->reserved != sizeof(*head));
  1277. head = page_address(page) + offset;
  1278. } else {
  1279. /*
  1280. * RCU free overloads the RCU head over the LRU
  1281. */
  1282. head = (void *)&page->lru;
  1283. }
  1284. call_rcu(head, rcu_free_slab);
  1285. } else
  1286. __free_slab(s, page);
  1287. }
  1288. static void discard_slab(struct kmem_cache *s, struct page *page)
  1289. {
  1290. dec_slabs_node(s, page_to_nid(page), page->objects);
  1291. free_slab(s, page);
  1292. }
  1293. /*
  1294. * Management of partially allocated slabs.
  1295. *
  1296. * list_lock must be held.
  1297. */
  1298. static inline void add_partial(struct kmem_cache_node *n,
  1299. struct page *page, int tail)
  1300. {
  1301. n->nr_partial++;
  1302. if (tail)
  1303. list_add_tail(&page->lru, &n->partial);
  1304. else
  1305. list_add(&page->lru, &n->partial);
  1306. }
  1307. /*
  1308. * list_lock must be held.
  1309. */
  1310. static inline void remove_partial(struct kmem_cache_node *n,
  1311. struct page *page)
  1312. {
  1313. list_del(&page->lru);
  1314. n->nr_partial--;
  1315. }
  1316. /*
  1317. * Lock slab, remove from the partial list and put the object into the
  1318. * per cpu freelist.
  1319. *
  1320. * Returns a list of objects or NULL if it fails.
  1321. *
  1322. * Must hold list_lock.
  1323. */
  1324. static inline void *acquire_slab(struct kmem_cache *s,
  1325. struct kmem_cache_node *n, struct page *page,
  1326. struct kmem_cache_cpu *c)
  1327. {
  1328. void *freelist;
  1329. unsigned long counters;
  1330. struct page new;
  1331. /*
  1332. * Zap the freelist and set the frozen bit.
  1333. * The old freelist is the list of objects for the
  1334. * per cpu allocation list.
  1335. */
  1336. do {
  1337. freelist = page->freelist;
  1338. counters = page->counters;
  1339. new.counters = counters;
  1340. new.inuse = page->objects;
  1341. VM_BUG_ON(new.frozen);
  1342. new.frozen = 1;
  1343. } while (!__cmpxchg_double_slab(s, page,
  1344. freelist, counters,
  1345. NULL, new.counters,
  1346. "lock and freeze"));
  1347. remove_partial(n, page);
  1348. if (freelist) {
  1349. /* Populate the per cpu freelist */
  1350. c->page = page;
  1351. c->node = page_to_nid(page);
  1352. stat(s, ALLOC_FROM_PARTIAL);
  1353. return freelist;
  1354. } else {
  1355. /*
  1356. * Slab page came from the wrong list. No object to allocate
  1357. * from. Put it onto the correct list and continue partial
  1358. * scan.
  1359. */
  1360. printk(KERN_ERR "SLUB: %s : Page without available objects on"
  1361. " partial list\n", s->name);
  1362. return NULL;
  1363. }
  1364. }
  1365. /*
  1366. * Try to allocate a partial slab from a specific node.
  1367. */
  1368. static void *get_partial_node(struct kmem_cache *s,
  1369. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1370. {
  1371. struct page *page;
  1372. void *object;
  1373. /*
  1374. * Racy check. If we mistakenly see no partial slabs then we
  1375. * just allocate an empty slab. If we mistakenly try to get a
  1376. * partial slab and there is none available then get_partials()
  1377. * will return NULL.
  1378. */
  1379. if (!n || !n->nr_partial)
  1380. return NULL;
  1381. spin_lock(&n->list_lock);
  1382. list_for_each_entry(page, &n->partial, lru) {
  1383. object = acquire_slab(s, n, page, c);
  1384. if (object)
  1385. goto out;
  1386. }
  1387. object = NULL;
  1388. out:
  1389. spin_unlock(&n->list_lock);
  1390. return object;
  1391. }
  1392. /*
  1393. * Get a page from somewhere. Search in increasing NUMA distances.
  1394. */
  1395. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1396. struct kmem_cache_cpu *c)
  1397. {
  1398. #ifdef CONFIG_NUMA
  1399. struct zonelist *zonelist;
  1400. struct zoneref *z;
  1401. struct zone *zone;
  1402. enum zone_type high_zoneidx = gfp_zone(flags);
  1403. void *object;
  1404. /*
  1405. * The defrag ratio allows a configuration of the tradeoffs between
  1406. * inter node defragmentation and node local allocations. A lower
  1407. * defrag_ratio increases the tendency to do local allocations
  1408. * instead of attempting to obtain partial slabs from other nodes.
  1409. *
  1410. * If the defrag_ratio is set to 0 then kmalloc() always
  1411. * returns node local objects. If the ratio is higher then kmalloc()
  1412. * may return off node objects because partial slabs are obtained
  1413. * from other nodes and filled up.
  1414. *
  1415. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1416. * defrag_ratio = 1000) then every (well almost) allocation will
  1417. * first attempt to defrag slab caches on other nodes. This means
  1418. * scanning over all nodes to look for partial slabs which may be
  1419. * expensive if we do it every time we are trying to find a slab
  1420. * with available objects.
  1421. */
  1422. if (!s->remote_node_defrag_ratio ||
  1423. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1424. return NULL;
  1425. get_mems_allowed();
  1426. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1427. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1428. struct kmem_cache_node *n;
  1429. n = get_node(s, zone_to_nid(zone));
  1430. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1431. n->nr_partial > s->min_partial) {
  1432. object = get_partial_node(s, n, c);
  1433. if (object) {
  1434. put_mems_allowed();
  1435. return object;
  1436. }
  1437. }
  1438. }
  1439. put_mems_allowed();
  1440. #endif
  1441. return NULL;
  1442. }
  1443. /*
  1444. * Get a partial page, lock it and return it.
  1445. */
  1446. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1447. struct kmem_cache_cpu *c)
  1448. {
  1449. void *object;
  1450. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1451. object = get_partial_node(s, get_node(s, searchnode), c);
  1452. if (object || node != NUMA_NO_NODE)
  1453. return object;
  1454. return get_any_partial(s, flags, c);
  1455. }
  1456. #ifdef CONFIG_PREEMPT
  1457. /*
  1458. * Calculate the next globally unique transaction for disambiguiation
  1459. * during cmpxchg. The transactions start with the cpu number and are then
  1460. * incremented by CONFIG_NR_CPUS.
  1461. */
  1462. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1463. #else
  1464. /*
  1465. * No preemption supported therefore also no need to check for
  1466. * different cpus.
  1467. */
  1468. #define TID_STEP 1
  1469. #endif
  1470. static inline unsigned long next_tid(unsigned long tid)
  1471. {
  1472. return tid + TID_STEP;
  1473. }
  1474. static inline unsigned int tid_to_cpu(unsigned long tid)
  1475. {
  1476. return tid % TID_STEP;
  1477. }
  1478. static inline unsigned long tid_to_event(unsigned long tid)
  1479. {
  1480. return tid / TID_STEP;
  1481. }
  1482. static inline unsigned int init_tid(int cpu)
  1483. {
  1484. return cpu;
  1485. }
  1486. static inline void note_cmpxchg_failure(const char *n,
  1487. const struct kmem_cache *s, unsigned long tid)
  1488. {
  1489. #ifdef SLUB_DEBUG_CMPXCHG
  1490. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1491. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1492. #ifdef CONFIG_PREEMPT
  1493. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1494. printk("due to cpu change %d -> %d\n",
  1495. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1496. else
  1497. #endif
  1498. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1499. printk("due to cpu running other code. Event %ld->%ld\n",
  1500. tid_to_event(tid), tid_to_event(actual_tid));
  1501. else
  1502. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1503. actual_tid, tid, next_tid(tid));
  1504. #endif
  1505. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1506. }
  1507. void init_kmem_cache_cpus(struct kmem_cache *s)
  1508. {
  1509. int cpu;
  1510. for_each_possible_cpu(cpu)
  1511. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1512. }
  1513. /*
  1514. * Remove the cpu slab
  1515. */
  1516. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1517. {
  1518. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1519. struct page *page = c->page;
  1520. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1521. int lock = 0;
  1522. enum slab_modes l = M_NONE, m = M_NONE;
  1523. void *freelist;
  1524. void *nextfree;
  1525. int tail = 0;
  1526. struct page new;
  1527. struct page old;
  1528. if (page->freelist) {
  1529. stat(s, DEACTIVATE_REMOTE_FREES);
  1530. tail = 1;
  1531. }
  1532. c->tid = next_tid(c->tid);
  1533. c->page = NULL;
  1534. freelist = c->freelist;
  1535. c->freelist = NULL;
  1536. /*
  1537. * Stage one: Free all available per cpu objects back
  1538. * to the page freelist while it is still frozen. Leave the
  1539. * last one.
  1540. *
  1541. * There is no need to take the list->lock because the page
  1542. * is still frozen.
  1543. */
  1544. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1545. void *prior;
  1546. unsigned long counters;
  1547. do {
  1548. prior = page->freelist;
  1549. counters = page->counters;
  1550. set_freepointer(s, freelist, prior);
  1551. new.counters = counters;
  1552. new.inuse--;
  1553. VM_BUG_ON(!new.frozen);
  1554. } while (!__cmpxchg_double_slab(s, page,
  1555. prior, counters,
  1556. freelist, new.counters,
  1557. "drain percpu freelist"));
  1558. freelist = nextfree;
  1559. }
  1560. /*
  1561. * Stage two: Ensure that the page is unfrozen while the
  1562. * list presence reflects the actual number of objects
  1563. * during unfreeze.
  1564. *
  1565. * We setup the list membership and then perform a cmpxchg
  1566. * with the count. If there is a mismatch then the page
  1567. * is not unfrozen but the page is on the wrong list.
  1568. *
  1569. * Then we restart the process which may have to remove
  1570. * the page from the list that we just put it on again
  1571. * because the number of objects in the slab may have
  1572. * changed.
  1573. */
  1574. redo:
  1575. old.freelist = page->freelist;
  1576. old.counters = page->counters;
  1577. VM_BUG_ON(!old.frozen);
  1578. /* Determine target state of the slab */
  1579. new.counters = old.counters;
  1580. if (freelist) {
  1581. new.inuse--;
  1582. set_freepointer(s, freelist, old.freelist);
  1583. new.freelist = freelist;
  1584. } else
  1585. new.freelist = old.freelist;
  1586. new.frozen = 0;
  1587. if (!new.inuse && n->nr_partial > s->min_partial)
  1588. m = M_FREE;
  1589. else if (new.freelist) {
  1590. m = M_PARTIAL;
  1591. if (!lock) {
  1592. lock = 1;
  1593. /*
  1594. * Taking the spinlock removes the possiblity
  1595. * that acquire_slab() will see a slab page that
  1596. * is frozen
  1597. */
  1598. spin_lock(&n->list_lock);
  1599. }
  1600. } else {
  1601. m = M_FULL;
  1602. if (kmem_cache_debug(s) && !lock) {
  1603. lock = 1;
  1604. /*
  1605. * This also ensures that the scanning of full
  1606. * slabs from diagnostic functions will not see
  1607. * any frozen slabs.
  1608. */
  1609. spin_lock(&n->list_lock);
  1610. }
  1611. }
  1612. if (l != m) {
  1613. if (l == M_PARTIAL)
  1614. remove_partial(n, page);
  1615. else if (l == M_FULL)
  1616. remove_full(s, page);
  1617. if (m == M_PARTIAL) {
  1618. add_partial(n, page, tail);
  1619. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1620. } else if (m == M_FULL) {
  1621. stat(s, DEACTIVATE_FULL);
  1622. add_full(s, n, page);
  1623. }
  1624. }
  1625. l = m;
  1626. if (!__cmpxchg_double_slab(s, page,
  1627. old.freelist, old.counters,
  1628. new.freelist, new.counters,
  1629. "unfreezing slab"))
  1630. goto redo;
  1631. if (lock)
  1632. spin_unlock(&n->list_lock);
  1633. if (m == M_FREE) {
  1634. stat(s, DEACTIVATE_EMPTY);
  1635. discard_slab(s, page);
  1636. stat(s, FREE_SLAB);
  1637. }
  1638. }
  1639. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1640. {
  1641. stat(s, CPUSLAB_FLUSH);
  1642. deactivate_slab(s, c);
  1643. }
  1644. /*
  1645. * Flush cpu slab.
  1646. *
  1647. * Called from IPI handler with interrupts disabled.
  1648. */
  1649. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1650. {
  1651. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1652. if (likely(c && c->page))
  1653. flush_slab(s, c);
  1654. }
  1655. static void flush_cpu_slab(void *d)
  1656. {
  1657. struct kmem_cache *s = d;
  1658. __flush_cpu_slab(s, smp_processor_id());
  1659. }
  1660. static void flush_all(struct kmem_cache *s)
  1661. {
  1662. on_each_cpu(flush_cpu_slab, s, 1);
  1663. }
  1664. /*
  1665. * Check if the objects in a per cpu structure fit numa
  1666. * locality expectations.
  1667. */
  1668. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1669. {
  1670. #ifdef CONFIG_NUMA
  1671. if (node != NUMA_NO_NODE && c->node != node)
  1672. return 0;
  1673. #endif
  1674. return 1;
  1675. }
  1676. static int count_free(struct page *page)
  1677. {
  1678. return page->objects - page->inuse;
  1679. }
  1680. static unsigned long count_partial(struct kmem_cache_node *n,
  1681. int (*get_count)(struct page *))
  1682. {
  1683. unsigned long flags;
  1684. unsigned long x = 0;
  1685. struct page *page;
  1686. spin_lock_irqsave(&n->list_lock, flags);
  1687. list_for_each_entry(page, &n->partial, lru)
  1688. x += get_count(page);
  1689. spin_unlock_irqrestore(&n->list_lock, flags);
  1690. return x;
  1691. }
  1692. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1693. {
  1694. #ifdef CONFIG_SLUB_DEBUG
  1695. return atomic_long_read(&n->total_objects);
  1696. #else
  1697. return 0;
  1698. #endif
  1699. }
  1700. static noinline void
  1701. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1702. {
  1703. int node;
  1704. printk(KERN_WARNING
  1705. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1706. nid, gfpflags);
  1707. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1708. "default order: %d, min order: %d\n", s->name, s->objsize,
  1709. s->size, oo_order(s->oo), oo_order(s->min));
  1710. if (oo_order(s->min) > get_order(s->objsize))
  1711. printk(KERN_WARNING " %s debugging increased min order, use "
  1712. "slub_debug=O to disable.\n", s->name);
  1713. for_each_online_node(node) {
  1714. struct kmem_cache_node *n = get_node(s, node);
  1715. unsigned long nr_slabs;
  1716. unsigned long nr_objs;
  1717. unsigned long nr_free;
  1718. if (!n)
  1719. continue;
  1720. nr_free = count_partial(n, count_free);
  1721. nr_slabs = node_nr_slabs(n);
  1722. nr_objs = node_nr_objs(n);
  1723. printk(KERN_WARNING
  1724. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1725. node, nr_slabs, nr_objs, nr_free);
  1726. }
  1727. }
  1728. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1729. int node, struct kmem_cache_cpu **pc)
  1730. {
  1731. void *object;
  1732. struct kmem_cache_cpu *c;
  1733. struct page *page = new_slab(s, flags, node);
  1734. if (page) {
  1735. c = __this_cpu_ptr(s->cpu_slab);
  1736. if (c->page)
  1737. flush_slab(s, c);
  1738. /*
  1739. * No other reference to the page yet so we can
  1740. * muck around with it freely without cmpxchg
  1741. */
  1742. object = page->freelist;
  1743. page->freelist = NULL;
  1744. stat(s, ALLOC_SLAB);
  1745. c->node = page_to_nid(page);
  1746. c->page = page;
  1747. *pc = c;
  1748. } else
  1749. object = NULL;
  1750. return object;
  1751. }
  1752. /*
  1753. * Slow path. The lockless freelist is empty or we need to perform
  1754. * debugging duties.
  1755. *
  1756. * Interrupts are disabled.
  1757. *
  1758. * Processing is still very fast if new objects have been freed to the
  1759. * regular freelist. In that case we simply take over the regular freelist
  1760. * as the lockless freelist and zap the regular freelist.
  1761. *
  1762. * If that is not working then we fall back to the partial lists. We take the
  1763. * first element of the freelist as the object to allocate now and move the
  1764. * rest of the freelist to the lockless freelist.
  1765. *
  1766. * And if we were unable to get a new slab from the partial slab lists then
  1767. * we need to allocate a new slab. This is the slowest path since it involves
  1768. * a call to the page allocator and the setup of a new slab.
  1769. */
  1770. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1771. unsigned long addr, struct kmem_cache_cpu *c)
  1772. {
  1773. void **object;
  1774. unsigned long flags;
  1775. struct page new;
  1776. unsigned long counters;
  1777. local_irq_save(flags);
  1778. #ifdef CONFIG_PREEMPT
  1779. /*
  1780. * We may have been preempted and rescheduled on a different
  1781. * cpu before disabling interrupts. Need to reload cpu area
  1782. * pointer.
  1783. */
  1784. c = this_cpu_ptr(s->cpu_slab);
  1785. #endif
  1786. if (!c->page)
  1787. goto new_slab;
  1788. if (unlikely(!node_match(c, node))) {
  1789. stat(s, ALLOC_NODE_MISMATCH);
  1790. deactivate_slab(s, c);
  1791. goto new_slab;
  1792. }
  1793. stat(s, ALLOC_SLOWPATH);
  1794. do {
  1795. object = c->page->freelist;
  1796. counters = c->page->counters;
  1797. new.counters = counters;
  1798. VM_BUG_ON(!new.frozen);
  1799. /*
  1800. * If there is no object left then we use this loop to
  1801. * deactivate the slab which is simple since no objects
  1802. * are left in the slab and therefore we do not need to
  1803. * put the page back onto the partial list.
  1804. *
  1805. * If there are objects left then we retrieve them
  1806. * and use them to refill the per cpu queue.
  1807. */
  1808. new.inuse = c->page->objects;
  1809. new.frozen = object != NULL;
  1810. } while (!__cmpxchg_double_slab(s, c->page,
  1811. object, counters,
  1812. NULL, new.counters,
  1813. "__slab_alloc"));
  1814. if (unlikely(!object)) {
  1815. c->page = NULL;
  1816. stat(s, DEACTIVATE_BYPASS);
  1817. goto new_slab;
  1818. }
  1819. stat(s, ALLOC_REFILL);
  1820. load_freelist:
  1821. c->freelist = get_freepointer(s, object);
  1822. c->tid = next_tid(c->tid);
  1823. local_irq_restore(flags);
  1824. return object;
  1825. new_slab:
  1826. object = get_partial(s, gfpflags, node, c);
  1827. if (unlikely(!object)) {
  1828. object = new_slab_objects(s, gfpflags, node, &c);
  1829. if (unlikely(!object)) {
  1830. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1831. slab_out_of_memory(s, gfpflags, node);
  1832. local_irq_restore(flags);
  1833. return NULL;
  1834. }
  1835. }
  1836. if (likely(!kmem_cache_debug(s)))
  1837. goto load_freelist;
  1838. /* Only entered in the debug case */
  1839. if (!alloc_debug_processing(s, c->page, object, addr))
  1840. goto new_slab; /* Slab failed checks. Next slab needed */
  1841. c->freelist = get_freepointer(s, object);
  1842. deactivate_slab(s, c);
  1843. c->node = NUMA_NO_NODE;
  1844. local_irq_restore(flags);
  1845. return object;
  1846. }
  1847. /*
  1848. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1849. * have the fastpath folded into their functions. So no function call
  1850. * overhead for requests that can be satisfied on the fastpath.
  1851. *
  1852. * The fastpath works by first checking if the lockless freelist can be used.
  1853. * If not then __slab_alloc is called for slow processing.
  1854. *
  1855. * Otherwise we can simply pick the next object from the lockless free list.
  1856. */
  1857. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1858. gfp_t gfpflags, int node, unsigned long addr)
  1859. {
  1860. void **object;
  1861. struct kmem_cache_cpu *c;
  1862. unsigned long tid;
  1863. if (slab_pre_alloc_hook(s, gfpflags))
  1864. return NULL;
  1865. redo:
  1866. /*
  1867. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1868. * enabled. We may switch back and forth between cpus while
  1869. * reading from one cpu area. That does not matter as long
  1870. * as we end up on the original cpu again when doing the cmpxchg.
  1871. */
  1872. c = __this_cpu_ptr(s->cpu_slab);
  1873. /*
  1874. * The transaction ids are globally unique per cpu and per operation on
  1875. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1876. * occurs on the right processor and that there was no operation on the
  1877. * linked list in between.
  1878. */
  1879. tid = c->tid;
  1880. barrier();
  1881. object = c->freelist;
  1882. if (unlikely(!object || !node_match(c, node)))
  1883. object = __slab_alloc(s, gfpflags, node, addr, c);
  1884. else {
  1885. /*
  1886. * The cmpxchg will only match if there was no additional
  1887. * operation and if we are on the right processor.
  1888. *
  1889. * The cmpxchg does the following atomically (without lock semantics!)
  1890. * 1. Relocate first pointer to the current per cpu area.
  1891. * 2. Verify that tid and freelist have not been changed
  1892. * 3. If they were not changed replace tid and freelist
  1893. *
  1894. * Since this is without lock semantics the protection is only against
  1895. * code executing on this cpu *not* from access by other cpus.
  1896. */
  1897. if (unlikely(!irqsafe_cpu_cmpxchg_double(
  1898. s->cpu_slab->freelist, s->cpu_slab->tid,
  1899. object, tid,
  1900. get_freepointer_safe(s, object), next_tid(tid)))) {
  1901. note_cmpxchg_failure("slab_alloc", s, tid);
  1902. goto redo;
  1903. }
  1904. stat(s, ALLOC_FASTPATH);
  1905. }
  1906. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1907. memset(object, 0, s->objsize);
  1908. slab_post_alloc_hook(s, gfpflags, object);
  1909. return object;
  1910. }
  1911. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1912. {
  1913. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1914. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1915. return ret;
  1916. }
  1917. EXPORT_SYMBOL(kmem_cache_alloc);
  1918. #ifdef CONFIG_TRACING
  1919. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  1920. {
  1921. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1922. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  1923. return ret;
  1924. }
  1925. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  1926. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  1927. {
  1928. void *ret = kmalloc_order(size, flags, order);
  1929. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  1930. return ret;
  1931. }
  1932. EXPORT_SYMBOL(kmalloc_order_trace);
  1933. #endif
  1934. #ifdef CONFIG_NUMA
  1935. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1936. {
  1937. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1938. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1939. s->objsize, s->size, gfpflags, node);
  1940. return ret;
  1941. }
  1942. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1943. #ifdef CONFIG_TRACING
  1944. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  1945. gfp_t gfpflags,
  1946. int node, size_t size)
  1947. {
  1948. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1949. trace_kmalloc_node(_RET_IP_, ret,
  1950. size, s->size, gfpflags, node);
  1951. return ret;
  1952. }
  1953. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  1954. #endif
  1955. #endif
  1956. /*
  1957. * Slow patch handling. This may still be called frequently since objects
  1958. * have a longer lifetime than the cpu slabs in most processing loads.
  1959. *
  1960. * So we still attempt to reduce cache line usage. Just take the slab
  1961. * lock and free the item. If there is no additional partial page
  1962. * handling required then we can return immediately.
  1963. */
  1964. static void __slab_free(struct kmem_cache *s, struct page *page,
  1965. void *x, unsigned long addr)
  1966. {
  1967. void *prior;
  1968. void **object = (void *)x;
  1969. int was_frozen;
  1970. int inuse;
  1971. struct page new;
  1972. unsigned long counters;
  1973. struct kmem_cache_node *n = NULL;
  1974. unsigned long uninitialized_var(flags);
  1975. stat(s, FREE_SLOWPATH);
  1976. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  1977. return;
  1978. do {
  1979. prior = page->freelist;
  1980. counters = page->counters;
  1981. set_freepointer(s, object, prior);
  1982. new.counters = counters;
  1983. was_frozen = new.frozen;
  1984. new.inuse--;
  1985. if ((!new.inuse || !prior) && !was_frozen && !n) {
  1986. n = get_node(s, page_to_nid(page));
  1987. /*
  1988. * Speculatively acquire the list_lock.
  1989. * If the cmpxchg does not succeed then we may
  1990. * drop the list_lock without any processing.
  1991. *
  1992. * Otherwise the list_lock will synchronize with
  1993. * other processors updating the list of slabs.
  1994. */
  1995. spin_lock_irqsave(&n->list_lock, flags);
  1996. }
  1997. inuse = new.inuse;
  1998. } while (!cmpxchg_double_slab(s, page,
  1999. prior, counters,
  2000. object, new.counters,
  2001. "__slab_free"));
  2002. if (likely(!n)) {
  2003. /*
  2004. * The list lock was not taken therefore no list
  2005. * activity can be necessary.
  2006. */
  2007. if (was_frozen)
  2008. stat(s, FREE_FROZEN);
  2009. return;
  2010. }
  2011. /*
  2012. * was_frozen may have been set after we acquired the list_lock in
  2013. * an earlier loop. So we need to check it here again.
  2014. */
  2015. if (was_frozen)
  2016. stat(s, FREE_FROZEN);
  2017. else {
  2018. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2019. goto slab_empty;
  2020. /*
  2021. * Objects left in the slab. If it was not on the partial list before
  2022. * then add it.
  2023. */
  2024. if (unlikely(!prior)) {
  2025. remove_full(s, page);
  2026. add_partial(n, page, 0);
  2027. stat(s, FREE_ADD_PARTIAL);
  2028. }
  2029. }
  2030. spin_unlock_irqrestore(&n->list_lock, flags);
  2031. return;
  2032. slab_empty:
  2033. if (prior) {
  2034. /*
  2035. * Slab on the partial list.
  2036. */
  2037. remove_partial(n, page);
  2038. stat(s, FREE_REMOVE_PARTIAL);
  2039. } else
  2040. /* Slab must be on the full list */
  2041. remove_full(s, page);
  2042. spin_unlock_irqrestore(&n->list_lock, flags);
  2043. stat(s, FREE_SLAB);
  2044. discard_slab(s, page);
  2045. }
  2046. /*
  2047. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2048. * can perform fastpath freeing without additional function calls.
  2049. *
  2050. * The fastpath is only possible if we are freeing to the current cpu slab
  2051. * of this processor. This typically the case if we have just allocated
  2052. * the item before.
  2053. *
  2054. * If fastpath is not possible then fall back to __slab_free where we deal
  2055. * with all sorts of special processing.
  2056. */
  2057. static __always_inline void slab_free(struct kmem_cache *s,
  2058. struct page *page, void *x, unsigned long addr)
  2059. {
  2060. void **object = (void *)x;
  2061. struct kmem_cache_cpu *c;
  2062. unsigned long tid;
  2063. slab_free_hook(s, x);
  2064. redo:
  2065. /*
  2066. * Determine the currently cpus per cpu slab.
  2067. * The cpu may change afterward. However that does not matter since
  2068. * data is retrieved via this pointer. If we are on the same cpu
  2069. * during the cmpxchg then the free will succedd.
  2070. */
  2071. c = __this_cpu_ptr(s->cpu_slab);
  2072. tid = c->tid;
  2073. barrier();
  2074. if (likely(page == c->page)) {
  2075. set_freepointer(s, object, c->freelist);
  2076. if (unlikely(!irqsafe_cpu_cmpxchg_double(
  2077. s->cpu_slab->freelist, s->cpu_slab->tid,
  2078. c->freelist, tid,
  2079. object, next_tid(tid)))) {
  2080. note_cmpxchg_failure("slab_free", s, tid);
  2081. goto redo;
  2082. }
  2083. stat(s, FREE_FASTPATH);
  2084. } else
  2085. __slab_free(s, page, x, addr);
  2086. }
  2087. void kmem_cache_free(struct kmem_cache *s, void *x)
  2088. {
  2089. struct page *page;
  2090. page = virt_to_head_page(x);
  2091. slab_free(s, page, x, _RET_IP_);
  2092. trace_kmem_cache_free(_RET_IP_, x);
  2093. }
  2094. EXPORT_SYMBOL(kmem_cache_free);
  2095. /*
  2096. * Object placement in a slab is made very easy because we always start at
  2097. * offset 0. If we tune the size of the object to the alignment then we can
  2098. * get the required alignment by putting one properly sized object after
  2099. * another.
  2100. *
  2101. * Notice that the allocation order determines the sizes of the per cpu
  2102. * caches. Each processor has always one slab available for allocations.
  2103. * Increasing the allocation order reduces the number of times that slabs
  2104. * must be moved on and off the partial lists and is therefore a factor in
  2105. * locking overhead.
  2106. */
  2107. /*
  2108. * Mininum / Maximum order of slab pages. This influences locking overhead
  2109. * and slab fragmentation. A higher order reduces the number of partial slabs
  2110. * and increases the number of allocations possible without having to
  2111. * take the list_lock.
  2112. */
  2113. static int slub_min_order;
  2114. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2115. static int slub_min_objects;
  2116. /*
  2117. * Merge control. If this is set then no merging of slab caches will occur.
  2118. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2119. */
  2120. static int slub_nomerge;
  2121. /*
  2122. * Calculate the order of allocation given an slab object size.
  2123. *
  2124. * The order of allocation has significant impact on performance and other
  2125. * system components. Generally order 0 allocations should be preferred since
  2126. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2127. * be problematic to put into order 0 slabs because there may be too much
  2128. * unused space left. We go to a higher order if more than 1/16th of the slab
  2129. * would be wasted.
  2130. *
  2131. * In order to reach satisfactory performance we must ensure that a minimum
  2132. * number of objects is in one slab. Otherwise we may generate too much
  2133. * activity on the partial lists which requires taking the list_lock. This is
  2134. * less a concern for large slabs though which are rarely used.
  2135. *
  2136. * slub_max_order specifies the order where we begin to stop considering the
  2137. * number of objects in a slab as critical. If we reach slub_max_order then
  2138. * we try to keep the page order as low as possible. So we accept more waste
  2139. * of space in favor of a small page order.
  2140. *
  2141. * Higher order allocations also allow the placement of more objects in a
  2142. * slab and thereby reduce object handling overhead. If the user has
  2143. * requested a higher mininum order then we start with that one instead of
  2144. * the smallest order which will fit the object.
  2145. */
  2146. static inline int slab_order(int size, int min_objects,
  2147. int max_order, int fract_leftover, int reserved)
  2148. {
  2149. int order;
  2150. int rem;
  2151. int min_order = slub_min_order;
  2152. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2153. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2154. for (order = max(min_order,
  2155. fls(min_objects * size - 1) - PAGE_SHIFT);
  2156. order <= max_order; order++) {
  2157. unsigned long slab_size = PAGE_SIZE << order;
  2158. if (slab_size < min_objects * size + reserved)
  2159. continue;
  2160. rem = (slab_size - reserved) % size;
  2161. if (rem <= slab_size / fract_leftover)
  2162. break;
  2163. }
  2164. return order;
  2165. }
  2166. static inline int calculate_order(int size, int reserved)
  2167. {
  2168. int order;
  2169. int min_objects;
  2170. int fraction;
  2171. int max_objects;
  2172. /*
  2173. * Attempt to find best configuration for a slab. This
  2174. * works by first attempting to generate a layout with
  2175. * the best configuration and backing off gradually.
  2176. *
  2177. * First we reduce the acceptable waste in a slab. Then
  2178. * we reduce the minimum objects required in a slab.
  2179. */
  2180. min_objects = slub_min_objects;
  2181. if (!min_objects)
  2182. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2183. max_objects = order_objects(slub_max_order, size, reserved);
  2184. min_objects = min(min_objects, max_objects);
  2185. while (min_objects > 1) {
  2186. fraction = 16;
  2187. while (fraction >= 4) {
  2188. order = slab_order(size, min_objects,
  2189. slub_max_order, fraction, reserved);
  2190. if (order <= slub_max_order)
  2191. return order;
  2192. fraction /= 2;
  2193. }
  2194. min_objects--;
  2195. }
  2196. /*
  2197. * We were unable to place multiple objects in a slab. Now
  2198. * lets see if we can place a single object there.
  2199. */
  2200. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2201. if (order <= slub_max_order)
  2202. return order;
  2203. /*
  2204. * Doh this slab cannot be placed using slub_max_order.
  2205. */
  2206. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2207. if (order < MAX_ORDER)
  2208. return order;
  2209. return -ENOSYS;
  2210. }
  2211. /*
  2212. * Figure out what the alignment of the objects will be.
  2213. */
  2214. static unsigned long calculate_alignment(unsigned long flags,
  2215. unsigned long align, unsigned long size)
  2216. {
  2217. /*
  2218. * If the user wants hardware cache aligned objects then follow that
  2219. * suggestion if the object is sufficiently large.
  2220. *
  2221. * The hardware cache alignment cannot override the specified
  2222. * alignment though. If that is greater then use it.
  2223. */
  2224. if (flags & SLAB_HWCACHE_ALIGN) {
  2225. unsigned long ralign = cache_line_size();
  2226. while (size <= ralign / 2)
  2227. ralign /= 2;
  2228. align = max(align, ralign);
  2229. }
  2230. if (align < ARCH_SLAB_MINALIGN)
  2231. align = ARCH_SLAB_MINALIGN;
  2232. return ALIGN(align, sizeof(void *));
  2233. }
  2234. static void
  2235. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  2236. {
  2237. n->nr_partial = 0;
  2238. spin_lock_init(&n->list_lock);
  2239. INIT_LIST_HEAD(&n->partial);
  2240. #ifdef CONFIG_SLUB_DEBUG
  2241. atomic_long_set(&n->nr_slabs, 0);
  2242. atomic_long_set(&n->total_objects, 0);
  2243. INIT_LIST_HEAD(&n->full);
  2244. #endif
  2245. }
  2246. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2247. {
  2248. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2249. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2250. /*
  2251. * Must align to double word boundary for the double cmpxchg
  2252. * instructions to work; see __pcpu_double_call_return_bool().
  2253. */
  2254. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2255. 2 * sizeof(void *));
  2256. if (!s->cpu_slab)
  2257. return 0;
  2258. init_kmem_cache_cpus(s);
  2259. return 1;
  2260. }
  2261. static struct kmem_cache *kmem_cache_node;
  2262. /*
  2263. * No kmalloc_node yet so do it by hand. We know that this is the first
  2264. * slab on the node for this slabcache. There are no concurrent accesses
  2265. * possible.
  2266. *
  2267. * Note that this function only works on the kmalloc_node_cache
  2268. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2269. * memory on a fresh node that has no slab structures yet.
  2270. */
  2271. static void early_kmem_cache_node_alloc(int node)
  2272. {
  2273. struct page *page;
  2274. struct kmem_cache_node *n;
  2275. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2276. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2277. BUG_ON(!page);
  2278. if (page_to_nid(page) != node) {
  2279. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2280. "node %d\n", node);
  2281. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2282. "in order to be able to continue\n");
  2283. }
  2284. n = page->freelist;
  2285. BUG_ON(!n);
  2286. page->freelist = get_freepointer(kmem_cache_node, n);
  2287. page->inuse = 1;
  2288. page->frozen = 0;
  2289. kmem_cache_node->node[node] = n;
  2290. #ifdef CONFIG_SLUB_DEBUG
  2291. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2292. init_tracking(kmem_cache_node, n);
  2293. #endif
  2294. init_kmem_cache_node(n, kmem_cache_node);
  2295. inc_slabs_node(kmem_cache_node, node, page->objects);
  2296. add_partial(n, page, 0);
  2297. }
  2298. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2299. {
  2300. int node;
  2301. for_each_node_state(node, N_NORMAL_MEMORY) {
  2302. struct kmem_cache_node *n = s->node[node];
  2303. if (n)
  2304. kmem_cache_free(kmem_cache_node, n);
  2305. s->node[node] = NULL;
  2306. }
  2307. }
  2308. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2309. {
  2310. int node;
  2311. for_each_node_state(node, N_NORMAL_MEMORY) {
  2312. struct kmem_cache_node *n;
  2313. if (slab_state == DOWN) {
  2314. early_kmem_cache_node_alloc(node);
  2315. continue;
  2316. }
  2317. n = kmem_cache_alloc_node(kmem_cache_node,
  2318. GFP_KERNEL, node);
  2319. if (!n) {
  2320. free_kmem_cache_nodes(s);
  2321. return 0;
  2322. }
  2323. s->node[node] = n;
  2324. init_kmem_cache_node(n, s);
  2325. }
  2326. return 1;
  2327. }
  2328. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2329. {
  2330. if (min < MIN_PARTIAL)
  2331. min = MIN_PARTIAL;
  2332. else if (min > MAX_PARTIAL)
  2333. min = MAX_PARTIAL;
  2334. s->min_partial = min;
  2335. }
  2336. /*
  2337. * calculate_sizes() determines the order and the distribution of data within
  2338. * a slab object.
  2339. */
  2340. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2341. {
  2342. unsigned long flags = s->flags;
  2343. unsigned long size = s->objsize;
  2344. unsigned long align = s->align;
  2345. int order;
  2346. /*
  2347. * Round up object size to the next word boundary. We can only
  2348. * place the free pointer at word boundaries and this determines
  2349. * the possible location of the free pointer.
  2350. */
  2351. size = ALIGN(size, sizeof(void *));
  2352. #ifdef CONFIG_SLUB_DEBUG
  2353. /*
  2354. * Determine if we can poison the object itself. If the user of
  2355. * the slab may touch the object after free or before allocation
  2356. * then we should never poison the object itself.
  2357. */
  2358. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2359. !s->ctor)
  2360. s->flags |= __OBJECT_POISON;
  2361. else
  2362. s->flags &= ~__OBJECT_POISON;
  2363. /*
  2364. * If we are Redzoning then check if there is some space between the
  2365. * end of the object and the free pointer. If not then add an
  2366. * additional word to have some bytes to store Redzone information.
  2367. */
  2368. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2369. size += sizeof(void *);
  2370. #endif
  2371. /*
  2372. * With that we have determined the number of bytes in actual use
  2373. * by the object. This is the potential offset to the free pointer.
  2374. */
  2375. s->inuse = size;
  2376. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2377. s->ctor)) {
  2378. /*
  2379. * Relocate free pointer after the object if it is not
  2380. * permitted to overwrite the first word of the object on
  2381. * kmem_cache_free.
  2382. *
  2383. * This is the case if we do RCU, have a constructor or
  2384. * destructor or are poisoning the objects.
  2385. */
  2386. s->offset = size;
  2387. size += sizeof(void *);
  2388. }
  2389. #ifdef CONFIG_SLUB_DEBUG
  2390. if (flags & SLAB_STORE_USER)
  2391. /*
  2392. * Need to store information about allocs and frees after
  2393. * the object.
  2394. */
  2395. size += 2 * sizeof(struct track);
  2396. if (flags & SLAB_RED_ZONE)
  2397. /*
  2398. * Add some empty padding so that we can catch
  2399. * overwrites from earlier objects rather than let
  2400. * tracking information or the free pointer be
  2401. * corrupted if a user writes before the start
  2402. * of the object.
  2403. */
  2404. size += sizeof(void *);
  2405. #endif
  2406. /*
  2407. * Determine the alignment based on various parameters that the
  2408. * user specified and the dynamic determination of cache line size
  2409. * on bootup.
  2410. */
  2411. align = calculate_alignment(flags, align, s->objsize);
  2412. s->align = align;
  2413. /*
  2414. * SLUB stores one object immediately after another beginning from
  2415. * offset 0. In order to align the objects we have to simply size
  2416. * each object to conform to the alignment.
  2417. */
  2418. size = ALIGN(size, align);
  2419. s->size = size;
  2420. if (forced_order >= 0)
  2421. order = forced_order;
  2422. else
  2423. order = calculate_order(size, s->reserved);
  2424. if (order < 0)
  2425. return 0;
  2426. s->allocflags = 0;
  2427. if (order)
  2428. s->allocflags |= __GFP_COMP;
  2429. if (s->flags & SLAB_CACHE_DMA)
  2430. s->allocflags |= SLUB_DMA;
  2431. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2432. s->allocflags |= __GFP_RECLAIMABLE;
  2433. /*
  2434. * Determine the number of objects per slab
  2435. */
  2436. s->oo = oo_make(order, size, s->reserved);
  2437. s->min = oo_make(get_order(size), size, s->reserved);
  2438. if (oo_objects(s->oo) > oo_objects(s->max))
  2439. s->max = s->oo;
  2440. return !!oo_objects(s->oo);
  2441. }
  2442. static int kmem_cache_open(struct kmem_cache *s,
  2443. const char *name, size_t size,
  2444. size_t align, unsigned long flags,
  2445. void (*ctor)(void *))
  2446. {
  2447. memset(s, 0, kmem_size);
  2448. s->name = name;
  2449. s->ctor = ctor;
  2450. s->objsize = size;
  2451. s->align = align;
  2452. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2453. s->reserved = 0;
  2454. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2455. s->reserved = sizeof(struct rcu_head);
  2456. if (!calculate_sizes(s, -1))
  2457. goto error;
  2458. if (disable_higher_order_debug) {
  2459. /*
  2460. * Disable debugging flags that store metadata if the min slab
  2461. * order increased.
  2462. */
  2463. if (get_order(s->size) > get_order(s->objsize)) {
  2464. s->flags &= ~DEBUG_METADATA_FLAGS;
  2465. s->offset = 0;
  2466. if (!calculate_sizes(s, -1))
  2467. goto error;
  2468. }
  2469. }
  2470. #ifdef CONFIG_CMPXCHG_DOUBLE
  2471. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2472. /* Enable fast mode */
  2473. s->flags |= __CMPXCHG_DOUBLE;
  2474. #endif
  2475. /*
  2476. * The larger the object size is, the more pages we want on the partial
  2477. * list to avoid pounding the page allocator excessively.
  2478. */
  2479. set_min_partial(s, ilog2(s->size));
  2480. s->refcount = 1;
  2481. #ifdef CONFIG_NUMA
  2482. s->remote_node_defrag_ratio = 1000;
  2483. #endif
  2484. if (!init_kmem_cache_nodes(s))
  2485. goto error;
  2486. if (alloc_kmem_cache_cpus(s))
  2487. return 1;
  2488. free_kmem_cache_nodes(s);
  2489. error:
  2490. if (flags & SLAB_PANIC)
  2491. panic("Cannot create slab %s size=%lu realsize=%u "
  2492. "order=%u offset=%u flags=%lx\n",
  2493. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2494. s->offset, flags);
  2495. return 0;
  2496. }
  2497. /*
  2498. * Determine the size of a slab object
  2499. */
  2500. unsigned int kmem_cache_size(struct kmem_cache *s)
  2501. {
  2502. return s->objsize;
  2503. }
  2504. EXPORT_SYMBOL(kmem_cache_size);
  2505. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2506. const char *text)
  2507. {
  2508. #ifdef CONFIG_SLUB_DEBUG
  2509. void *addr = page_address(page);
  2510. void *p;
  2511. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2512. sizeof(long), GFP_ATOMIC);
  2513. if (!map)
  2514. return;
  2515. slab_err(s, page, "%s", text);
  2516. slab_lock(page);
  2517. get_map(s, page, map);
  2518. for_each_object(p, s, addr, page->objects) {
  2519. if (!test_bit(slab_index(p, s, addr), map)) {
  2520. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2521. p, p - addr);
  2522. print_tracking(s, p);
  2523. }
  2524. }
  2525. slab_unlock(page);
  2526. kfree(map);
  2527. #endif
  2528. }
  2529. /*
  2530. * Attempt to free all partial slabs on a node.
  2531. * This is called from kmem_cache_close(). We must be the last thread
  2532. * using the cache and therefore we do not need to lock anymore.
  2533. */
  2534. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2535. {
  2536. struct page *page, *h;
  2537. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2538. if (!page->inuse) {
  2539. remove_partial(n, page);
  2540. discard_slab(s, page);
  2541. } else {
  2542. list_slab_objects(s, page,
  2543. "Objects remaining on kmem_cache_close()");
  2544. }
  2545. }
  2546. }
  2547. /*
  2548. * Release all resources used by a slab cache.
  2549. */
  2550. static inline int kmem_cache_close(struct kmem_cache *s)
  2551. {
  2552. int node;
  2553. flush_all(s);
  2554. free_percpu(s->cpu_slab);
  2555. /* Attempt to free all objects */
  2556. for_each_node_state(node, N_NORMAL_MEMORY) {
  2557. struct kmem_cache_node *n = get_node(s, node);
  2558. free_partial(s, n);
  2559. if (n->nr_partial || slabs_node(s, node))
  2560. return 1;
  2561. }
  2562. free_kmem_cache_nodes(s);
  2563. return 0;
  2564. }
  2565. /*
  2566. * Close a cache and release the kmem_cache structure
  2567. * (must be used for caches created using kmem_cache_create)
  2568. */
  2569. void kmem_cache_destroy(struct kmem_cache *s)
  2570. {
  2571. down_write(&slub_lock);
  2572. s->refcount--;
  2573. if (!s->refcount) {
  2574. list_del(&s->list);
  2575. up_write(&slub_lock);
  2576. if (kmem_cache_close(s)) {
  2577. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2578. "still has objects.\n", s->name, __func__);
  2579. dump_stack();
  2580. }
  2581. if (s->flags & SLAB_DESTROY_BY_RCU)
  2582. rcu_barrier();
  2583. sysfs_slab_remove(s);
  2584. } else
  2585. up_write(&slub_lock);
  2586. }
  2587. EXPORT_SYMBOL(kmem_cache_destroy);
  2588. /********************************************************************
  2589. * Kmalloc subsystem
  2590. *******************************************************************/
  2591. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2592. EXPORT_SYMBOL(kmalloc_caches);
  2593. static struct kmem_cache *kmem_cache;
  2594. #ifdef CONFIG_ZONE_DMA
  2595. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2596. #endif
  2597. static int __init setup_slub_min_order(char *str)
  2598. {
  2599. get_option(&str, &slub_min_order);
  2600. return 1;
  2601. }
  2602. __setup("slub_min_order=", setup_slub_min_order);
  2603. static int __init setup_slub_max_order(char *str)
  2604. {
  2605. get_option(&str, &slub_max_order);
  2606. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2607. return 1;
  2608. }
  2609. __setup("slub_max_order=", setup_slub_max_order);
  2610. static int __init setup_slub_min_objects(char *str)
  2611. {
  2612. get_option(&str, &slub_min_objects);
  2613. return 1;
  2614. }
  2615. __setup("slub_min_objects=", setup_slub_min_objects);
  2616. static int __init setup_slub_nomerge(char *str)
  2617. {
  2618. slub_nomerge = 1;
  2619. return 1;
  2620. }
  2621. __setup("slub_nomerge", setup_slub_nomerge);
  2622. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2623. int size, unsigned int flags)
  2624. {
  2625. struct kmem_cache *s;
  2626. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2627. /*
  2628. * This function is called with IRQs disabled during early-boot on
  2629. * single CPU so there's no need to take slub_lock here.
  2630. */
  2631. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2632. flags, NULL))
  2633. goto panic;
  2634. list_add(&s->list, &slab_caches);
  2635. return s;
  2636. panic:
  2637. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2638. return NULL;
  2639. }
  2640. /*
  2641. * Conversion table for small slabs sizes / 8 to the index in the
  2642. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2643. * of two cache sizes there. The size of larger slabs can be determined using
  2644. * fls.
  2645. */
  2646. static s8 size_index[24] = {
  2647. 3, /* 8 */
  2648. 4, /* 16 */
  2649. 5, /* 24 */
  2650. 5, /* 32 */
  2651. 6, /* 40 */
  2652. 6, /* 48 */
  2653. 6, /* 56 */
  2654. 6, /* 64 */
  2655. 1, /* 72 */
  2656. 1, /* 80 */
  2657. 1, /* 88 */
  2658. 1, /* 96 */
  2659. 7, /* 104 */
  2660. 7, /* 112 */
  2661. 7, /* 120 */
  2662. 7, /* 128 */
  2663. 2, /* 136 */
  2664. 2, /* 144 */
  2665. 2, /* 152 */
  2666. 2, /* 160 */
  2667. 2, /* 168 */
  2668. 2, /* 176 */
  2669. 2, /* 184 */
  2670. 2 /* 192 */
  2671. };
  2672. static inline int size_index_elem(size_t bytes)
  2673. {
  2674. return (bytes - 1) / 8;
  2675. }
  2676. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2677. {
  2678. int index;
  2679. if (size <= 192) {
  2680. if (!size)
  2681. return ZERO_SIZE_PTR;
  2682. index = size_index[size_index_elem(size)];
  2683. } else
  2684. index = fls(size - 1);
  2685. #ifdef CONFIG_ZONE_DMA
  2686. if (unlikely((flags & SLUB_DMA)))
  2687. return kmalloc_dma_caches[index];
  2688. #endif
  2689. return kmalloc_caches[index];
  2690. }
  2691. void *__kmalloc(size_t size, gfp_t flags)
  2692. {
  2693. struct kmem_cache *s;
  2694. void *ret;
  2695. if (unlikely(size > SLUB_MAX_SIZE))
  2696. return kmalloc_large(size, flags);
  2697. s = get_slab(size, flags);
  2698. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2699. return s;
  2700. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2701. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2702. return ret;
  2703. }
  2704. EXPORT_SYMBOL(__kmalloc);
  2705. #ifdef CONFIG_NUMA
  2706. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2707. {
  2708. struct page *page;
  2709. void *ptr = NULL;
  2710. flags |= __GFP_COMP | __GFP_NOTRACK;
  2711. page = alloc_pages_node(node, flags, get_order(size));
  2712. if (page)
  2713. ptr = page_address(page);
  2714. kmemleak_alloc(ptr, size, 1, flags);
  2715. return ptr;
  2716. }
  2717. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2718. {
  2719. struct kmem_cache *s;
  2720. void *ret;
  2721. if (unlikely(size > SLUB_MAX_SIZE)) {
  2722. ret = kmalloc_large_node(size, flags, node);
  2723. trace_kmalloc_node(_RET_IP_, ret,
  2724. size, PAGE_SIZE << get_order(size),
  2725. flags, node);
  2726. return ret;
  2727. }
  2728. s = get_slab(size, flags);
  2729. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2730. return s;
  2731. ret = slab_alloc(s, flags, node, _RET_IP_);
  2732. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2733. return ret;
  2734. }
  2735. EXPORT_SYMBOL(__kmalloc_node);
  2736. #endif
  2737. size_t ksize(const void *object)
  2738. {
  2739. struct page *page;
  2740. if (unlikely(object == ZERO_SIZE_PTR))
  2741. return 0;
  2742. page = virt_to_head_page(object);
  2743. if (unlikely(!PageSlab(page))) {
  2744. WARN_ON(!PageCompound(page));
  2745. return PAGE_SIZE << compound_order(page);
  2746. }
  2747. return slab_ksize(page->slab);
  2748. }
  2749. EXPORT_SYMBOL(ksize);
  2750. #ifdef CONFIG_SLUB_DEBUG
  2751. bool verify_mem_not_deleted(const void *x)
  2752. {
  2753. struct page *page;
  2754. void *object = (void *)x;
  2755. unsigned long flags;
  2756. bool rv;
  2757. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2758. return false;
  2759. local_irq_save(flags);
  2760. page = virt_to_head_page(x);
  2761. if (unlikely(!PageSlab(page))) {
  2762. /* maybe it was from stack? */
  2763. rv = true;
  2764. goto out_unlock;
  2765. }
  2766. slab_lock(page);
  2767. if (on_freelist(page->slab, page, object)) {
  2768. object_err(page->slab, page, object, "Object is on free-list");
  2769. rv = false;
  2770. } else {
  2771. rv = true;
  2772. }
  2773. slab_unlock(page);
  2774. out_unlock:
  2775. local_irq_restore(flags);
  2776. return rv;
  2777. }
  2778. EXPORT_SYMBOL(verify_mem_not_deleted);
  2779. #endif
  2780. void kfree(const void *x)
  2781. {
  2782. struct page *page;
  2783. void *object = (void *)x;
  2784. trace_kfree(_RET_IP_, x);
  2785. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2786. return;
  2787. page = virt_to_head_page(x);
  2788. if (unlikely(!PageSlab(page))) {
  2789. BUG_ON(!PageCompound(page));
  2790. kmemleak_free(x);
  2791. put_page(page);
  2792. return;
  2793. }
  2794. slab_free(page->slab, page, object, _RET_IP_);
  2795. }
  2796. EXPORT_SYMBOL(kfree);
  2797. /*
  2798. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2799. * the remaining slabs by the number of items in use. The slabs with the
  2800. * most items in use come first. New allocations will then fill those up
  2801. * and thus they can be removed from the partial lists.
  2802. *
  2803. * The slabs with the least items are placed last. This results in them
  2804. * being allocated from last increasing the chance that the last objects
  2805. * are freed in them.
  2806. */
  2807. int kmem_cache_shrink(struct kmem_cache *s)
  2808. {
  2809. int node;
  2810. int i;
  2811. struct kmem_cache_node *n;
  2812. struct page *page;
  2813. struct page *t;
  2814. int objects = oo_objects(s->max);
  2815. struct list_head *slabs_by_inuse =
  2816. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2817. unsigned long flags;
  2818. if (!slabs_by_inuse)
  2819. return -ENOMEM;
  2820. flush_all(s);
  2821. for_each_node_state(node, N_NORMAL_MEMORY) {
  2822. n = get_node(s, node);
  2823. if (!n->nr_partial)
  2824. continue;
  2825. for (i = 0; i < objects; i++)
  2826. INIT_LIST_HEAD(slabs_by_inuse + i);
  2827. spin_lock_irqsave(&n->list_lock, flags);
  2828. /*
  2829. * Build lists indexed by the items in use in each slab.
  2830. *
  2831. * Note that concurrent frees may occur while we hold the
  2832. * list_lock. page->inuse here is the upper limit.
  2833. */
  2834. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2835. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2836. if (!page->inuse)
  2837. n->nr_partial--;
  2838. }
  2839. /*
  2840. * Rebuild the partial list with the slabs filled up most
  2841. * first and the least used slabs at the end.
  2842. */
  2843. for (i = objects - 1; i > 0; i--)
  2844. list_splice(slabs_by_inuse + i, n->partial.prev);
  2845. spin_unlock_irqrestore(&n->list_lock, flags);
  2846. /* Release empty slabs */
  2847. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2848. discard_slab(s, page);
  2849. }
  2850. kfree(slabs_by_inuse);
  2851. return 0;
  2852. }
  2853. EXPORT_SYMBOL(kmem_cache_shrink);
  2854. #if defined(CONFIG_MEMORY_HOTPLUG)
  2855. static int slab_mem_going_offline_callback(void *arg)
  2856. {
  2857. struct kmem_cache *s;
  2858. down_read(&slub_lock);
  2859. list_for_each_entry(s, &slab_caches, list)
  2860. kmem_cache_shrink(s);
  2861. up_read(&slub_lock);
  2862. return 0;
  2863. }
  2864. static void slab_mem_offline_callback(void *arg)
  2865. {
  2866. struct kmem_cache_node *n;
  2867. struct kmem_cache *s;
  2868. struct memory_notify *marg = arg;
  2869. int offline_node;
  2870. offline_node = marg->status_change_nid;
  2871. /*
  2872. * If the node still has available memory. we need kmem_cache_node
  2873. * for it yet.
  2874. */
  2875. if (offline_node < 0)
  2876. return;
  2877. down_read(&slub_lock);
  2878. list_for_each_entry(s, &slab_caches, list) {
  2879. n = get_node(s, offline_node);
  2880. if (n) {
  2881. /*
  2882. * if n->nr_slabs > 0, slabs still exist on the node
  2883. * that is going down. We were unable to free them,
  2884. * and offline_pages() function shouldn't call this
  2885. * callback. So, we must fail.
  2886. */
  2887. BUG_ON(slabs_node(s, offline_node));
  2888. s->node[offline_node] = NULL;
  2889. kmem_cache_free(kmem_cache_node, n);
  2890. }
  2891. }
  2892. up_read(&slub_lock);
  2893. }
  2894. static int slab_mem_going_online_callback(void *arg)
  2895. {
  2896. struct kmem_cache_node *n;
  2897. struct kmem_cache *s;
  2898. struct memory_notify *marg = arg;
  2899. int nid = marg->status_change_nid;
  2900. int ret = 0;
  2901. /*
  2902. * If the node's memory is already available, then kmem_cache_node is
  2903. * already created. Nothing to do.
  2904. */
  2905. if (nid < 0)
  2906. return 0;
  2907. /*
  2908. * We are bringing a node online. No memory is available yet. We must
  2909. * allocate a kmem_cache_node structure in order to bring the node
  2910. * online.
  2911. */
  2912. down_read(&slub_lock);
  2913. list_for_each_entry(s, &slab_caches, list) {
  2914. /*
  2915. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2916. * since memory is not yet available from the node that
  2917. * is brought up.
  2918. */
  2919. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2920. if (!n) {
  2921. ret = -ENOMEM;
  2922. goto out;
  2923. }
  2924. init_kmem_cache_node(n, s);
  2925. s->node[nid] = n;
  2926. }
  2927. out:
  2928. up_read(&slub_lock);
  2929. return ret;
  2930. }
  2931. static int slab_memory_callback(struct notifier_block *self,
  2932. unsigned long action, void *arg)
  2933. {
  2934. int ret = 0;
  2935. switch (action) {
  2936. case MEM_GOING_ONLINE:
  2937. ret = slab_mem_going_online_callback(arg);
  2938. break;
  2939. case MEM_GOING_OFFLINE:
  2940. ret = slab_mem_going_offline_callback(arg);
  2941. break;
  2942. case MEM_OFFLINE:
  2943. case MEM_CANCEL_ONLINE:
  2944. slab_mem_offline_callback(arg);
  2945. break;
  2946. case MEM_ONLINE:
  2947. case MEM_CANCEL_OFFLINE:
  2948. break;
  2949. }
  2950. if (ret)
  2951. ret = notifier_from_errno(ret);
  2952. else
  2953. ret = NOTIFY_OK;
  2954. return ret;
  2955. }
  2956. #endif /* CONFIG_MEMORY_HOTPLUG */
  2957. /********************************************************************
  2958. * Basic setup of slabs
  2959. *******************************************************************/
  2960. /*
  2961. * Used for early kmem_cache structures that were allocated using
  2962. * the page allocator
  2963. */
  2964. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  2965. {
  2966. int node;
  2967. list_add(&s->list, &slab_caches);
  2968. s->refcount = -1;
  2969. for_each_node_state(node, N_NORMAL_MEMORY) {
  2970. struct kmem_cache_node *n = get_node(s, node);
  2971. struct page *p;
  2972. if (n) {
  2973. list_for_each_entry(p, &n->partial, lru)
  2974. p->slab = s;
  2975. #ifdef CONFIG_SLUB_DEBUG
  2976. list_for_each_entry(p, &n->full, lru)
  2977. p->slab = s;
  2978. #endif
  2979. }
  2980. }
  2981. }
  2982. void __init kmem_cache_init(void)
  2983. {
  2984. int i;
  2985. int caches = 0;
  2986. struct kmem_cache *temp_kmem_cache;
  2987. int order;
  2988. struct kmem_cache *temp_kmem_cache_node;
  2989. unsigned long kmalloc_size;
  2990. kmem_size = offsetof(struct kmem_cache, node) +
  2991. nr_node_ids * sizeof(struct kmem_cache_node *);
  2992. /* Allocate two kmem_caches from the page allocator */
  2993. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  2994. order = get_order(2 * kmalloc_size);
  2995. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2996. /*
  2997. * Must first have the slab cache available for the allocations of the
  2998. * struct kmem_cache_node's. There is special bootstrap code in
  2999. * kmem_cache_open for slab_state == DOWN.
  3000. */
  3001. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3002. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3003. sizeof(struct kmem_cache_node),
  3004. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3005. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3006. /* Able to allocate the per node structures */
  3007. slab_state = PARTIAL;
  3008. temp_kmem_cache = kmem_cache;
  3009. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3010. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3011. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3012. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3013. /*
  3014. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3015. * kmem_cache_node is separately allocated so no need to
  3016. * update any list pointers.
  3017. */
  3018. temp_kmem_cache_node = kmem_cache_node;
  3019. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3020. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3021. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3022. caches++;
  3023. kmem_cache_bootstrap_fixup(kmem_cache);
  3024. caches++;
  3025. /* Free temporary boot structure */
  3026. free_pages((unsigned long)temp_kmem_cache, order);
  3027. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3028. /*
  3029. * Patch up the size_index table if we have strange large alignment
  3030. * requirements for the kmalloc array. This is only the case for
  3031. * MIPS it seems. The standard arches will not generate any code here.
  3032. *
  3033. * Largest permitted alignment is 256 bytes due to the way we
  3034. * handle the index determination for the smaller caches.
  3035. *
  3036. * Make sure that nothing crazy happens if someone starts tinkering
  3037. * around with ARCH_KMALLOC_MINALIGN
  3038. */
  3039. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3040. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3041. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3042. int elem = size_index_elem(i);
  3043. if (elem >= ARRAY_SIZE(size_index))
  3044. break;
  3045. size_index[elem] = KMALLOC_SHIFT_LOW;
  3046. }
  3047. if (KMALLOC_MIN_SIZE == 64) {
  3048. /*
  3049. * The 96 byte size cache is not used if the alignment
  3050. * is 64 byte.
  3051. */
  3052. for (i = 64 + 8; i <= 96; i += 8)
  3053. size_index[size_index_elem(i)] = 7;
  3054. } else if (KMALLOC_MIN_SIZE == 128) {
  3055. /*
  3056. * The 192 byte sized cache is not used if the alignment
  3057. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3058. * instead.
  3059. */
  3060. for (i = 128 + 8; i <= 192; i += 8)
  3061. size_index[size_index_elem(i)] = 8;
  3062. }
  3063. /* Caches that are not of the two-to-the-power-of size */
  3064. if (KMALLOC_MIN_SIZE <= 32) {
  3065. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3066. caches++;
  3067. }
  3068. if (KMALLOC_MIN_SIZE <= 64) {
  3069. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3070. caches++;
  3071. }
  3072. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3073. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3074. caches++;
  3075. }
  3076. slab_state = UP;
  3077. /* Provide the correct kmalloc names now that the caches are up */
  3078. if (KMALLOC_MIN_SIZE <= 32) {
  3079. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3080. BUG_ON(!kmalloc_caches[1]->name);
  3081. }
  3082. if (KMALLOC_MIN_SIZE <= 64) {
  3083. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3084. BUG_ON(!kmalloc_caches[2]->name);
  3085. }
  3086. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3087. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3088. BUG_ON(!s);
  3089. kmalloc_caches[i]->name = s;
  3090. }
  3091. #ifdef CONFIG_SMP
  3092. register_cpu_notifier(&slab_notifier);
  3093. #endif
  3094. #ifdef CONFIG_ZONE_DMA
  3095. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3096. struct kmem_cache *s = kmalloc_caches[i];
  3097. if (s && s->size) {
  3098. char *name = kasprintf(GFP_NOWAIT,
  3099. "dma-kmalloc-%d", s->objsize);
  3100. BUG_ON(!name);
  3101. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3102. s->objsize, SLAB_CACHE_DMA);
  3103. }
  3104. }
  3105. #endif
  3106. printk(KERN_INFO
  3107. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3108. " CPUs=%d, Nodes=%d\n",
  3109. caches, cache_line_size(),
  3110. slub_min_order, slub_max_order, slub_min_objects,
  3111. nr_cpu_ids, nr_node_ids);
  3112. }
  3113. void __init kmem_cache_init_late(void)
  3114. {
  3115. }
  3116. /*
  3117. * Find a mergeable slab cache
  3118. */
  3119. static int slab_unmergeable(struct kmem_cache *s)
  3120. {
  3121. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3122. return 1;
  3123. if (s->ctor)
  3124. return 1;
  3125. /*
  3126. * We may have set a slab to be unmergeable during bootstrap.
  3127. */
  3128. if (s->refcount < 0)
  3129. return 1;
  3130. return 0;
  3131. }
  3132. static struct kmem_cache *find_mergeable(size_t size,
  3133. size_t align, unsigned long flags, const char *name,
  3134. void (*ctor)(void *))
  3135. {
  3136. struct kmem_cache *s;
  3137. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3138. return NULL;
  3139. if (ctor)
  3140. return NULL;
  3141. size = ALIGN(size, sizeof(void *));
  3142. align = calculate_alignment(flags, align, size);
  3143. size = ALIGN(size, align);
  3144. flags = kmem_cache_flags(size, flags, name, NULL);
  3145. list_for_each_entry(s, &slab_caches, list) {
  3146. if (slab_unmergeable(s))
  3147. continue;
  3148. if (size > s->size)
  3149. continue;
  3150. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3151. continue;
  3152. /*
  3153. * Check if alignment is compatible.
  3154. * Courtesy of Adrian Drzewiecki
  3155. */
  3156. if ((s->size & ~(align - 1)) != s->size)
  3157. continue;
  3158. if (s->size - size >= sizeof(void *))
  3159. continue;
  3160. return s;
  3161. }
  3162. return NULL;
  3163. }
  3164. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  3165. size_t align, unsigned long flags, void (*ctor)(void *))
  3166. {
  3167. struct kmem_cache *s;
  3168. char *n;
  3169. if (WARN_ON(!name))
  3170. return NULL;
  3171. down_write(&slub_lock);
  3172. s = find_mergeable(size, align, flags, name, ctor);
  3173. if (s) {
  3174. s->refcount++;
  3175. /*
  3176. * Adjust the object sizes so that we clear
  3177. * the complete object on kzalloc.
  3178. */
  3179. s->objsize = max(s->objsize, (int)size);
  3180. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3181. if (sysfs_slab_alias(s, name)) {
  3182. s->refcount--;
  3183. goto err;
  3184. }
  3185. up_write(&slub_lock);
  3186. return s;
  3187. }
  3188. n = kstrdup(name, GFP_KERNEL);
  3189. if (!n)
  3190. goto err;
  3191. s = kmalloc(kmem_size, GFP_KERNEL);
  3192. if (s) {
  3193. if (kmem_cache_open(s, n,
  3194. size, align, flags, ctor)) {
  3195. list_add(&s->list, &slab_caches);
  3196. if (sysfs_slab_add(s)) {
  3197. list_del(&s->list);
  3198. kfree(n);
  3199. kfree(s);
  3200. goto err;
  3201. }
  3202. up_write(&slub_lock);
  3203. return s;
  3204. }
  3205. kfree(n);
  3206. kfree(s);
  3207. }
  3208. err:
  3209. up_write(&slub_lock);
  3210. if (flags & SLAB_PANIC)
  3211. panic("Cannot create slabcache %s\n", name);
  3212. else
  3213. s = NULL;
  3214. return s;
  3215. }
  3216. EXPORT_SYMBOL(kmem_cache_create);
  3217. #ifdef CONFIG_SMP
  3218. /*
  3219. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3220. * necessary.
  3221. */
  3222. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3223. unsigned long action, void *hcpu)
  3224. {
  3225. long cpu = (long)hcpu;
  3226. struct kmem_cache *s;
  3227. unsigned long flags;
  3228. switch (action) {
  3229. case CPU_UP_CANCELED:
  3230. case CPU_UP_CANCELED_FROZEN:
  3231. case CPU_DEAD:
  3232. case CPU_DEAD_FROZEN:
  3233. down_read(&slub_lock);
  3234. list_for_each_entry(s, &slab_caches, list) {
  3235. local_irq_save(flags);
  3236. __flush_cpu_slab(s, cpu);
  3237. local_irq_restore(flags);
  3238. }
  3239. up_read(&slub_lock);
  3240. break;
  3241. default:
  3242. break;
  3243. }
  3244. return NOTIFY_OK;
  3245. }
  3246. static struct notifier_block __cpuinitdata slab_notifier = {
  3247. .notifier_call = slab_cpuup_callback
  3248. };
  3249. #endif
  3250. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3251. {
  3252. struct kmem_cache *s;
  3253. void *ret;
  3254. if (unlikely(size > SLUB_MAX_SIZE))
  3255. return kmalloc_large(size, gfpflags);
  3256. s = get_slab(size, gfpflags);
  3257. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3258. return s;
  3259. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3260. /* Honor the call site pointer we received. */
  3261. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3262. return ret;
  3263. }
  3264. #ifdef CONFIG_NUMA
  3265. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3266. int node, unsigned long caller)
  3267. {
  3268. struct kmem_cache *s;
  3269. void *ret;
  3270. if (unlikely(size > SLUB_MAX_SIZE)) {
  3271. ret = kmalloc_large_node(size, gfpflags, node);
  3272. trace_kmalloc_node(caller, ret,
  3273. size, PAGE_SIZE << get_order(size),
  3274. gfpflags, node);
  3275. return ret;
  3276. }
  3277. s = get_slab(size, gfpflags);
  3278. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3279. return s;
  3280. ret = slab_alloc(s, gfpflags, node, caller);
  3281. /* Honor the call site pointer we received. */
  3282. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3283. return ret;
  3284. }
  3285. #endif
  3286. #ifdef CONFIG_SYSFS
  3287. static int count_inuse(struct page *page)
  3288. {
  3289. return page->inuse;
  3290. }
  3291. static int count_total(struct page *page)
  3292. {
  3293. return page->objects;
  3294. }
  3295. #endif
  3296. #ifdef CONFIG_SLUB_DEBUG
  3297. static int validate_slab(struct kmem_cache *s, struct page *page,
  3298. unsigned long *map)
  3299. {
  3300. void *p;
  3301. void *addr = page_address(page);
  3302. if (!check_slab(s, page) ||
  3303. !on_freelist(s, page, NULL))
  3304. return 0;
  3305. /* Now we know that a valid freelist exists */
  3306. bitmap_zero(map, page->objects);
  3307. get_map(s, page, map);
  3308. for_each_object(p, s, addr, page->objects) {
  3309. if (test_bit(slab_index(p, s, addr), map))
  3310. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3311. return 0;
  3312. }
  3313. for_each_object(p, s, addr, page->objects)
  3314. if (!test_bit(slab_index(p, s, addr), map))
  3315. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3316. return 0;
  3317. return 1;
  3318. }
  3319. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3320. unsigned long *map)
  3321. {
  3322. slab_lock(page);
  3323. validate_slab(s, page, map);
  3324. slab_unlock(page);
  3325. }
  3326. static int validate_slab_node(struct kmem_cache *s,
  3327. struct kmem_cache_node *n, unsigned long *map)
  3328. {
  3329. unsigned long count = 0;
  3330. struct page *page;
  3331. unsigned long flags;
  3332. spin_lock_irqsave(&n->list_lock, flags);
  3333. list_for_each_entry(page, &n->partial, lru) {
  3334. validate_slab_slab(s, page, map);
  3335. count++;
  3336. }
  3337. if (count != n->nr_partial)
  3338. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3339. "counter=%ld\n", s->name, count, n->nr_partial);
  3340. if (!(s->flags & SLAB_STORE_USER))
  3341. goto out;
  3342. list_for_each_entry(page, &n->full, lru) {
  3343. validate_slab_slab(s, page, map);
  3344. count++;
  3345. }
  3346. if (count != atomic_long_read(&n->nr_slabs))
  3347. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3348. "counter=%ld\n", s->name, count,
  3349. atomic_long_read(&n->nr_slabs));
  3350. out:
  3351. spin_unlock_irqrestore(&n->list_lock, flags);
  3352. return count;
  3353. }
  3354. static long validate_slab_cache(struct kmem_cache *s)
  3355. {
  3356. int node;
  3357. unsigned long count = 0;
  3358. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3359. sizeof(unsigned long), GFP_KERNEL);
  3360. if (!map)
  3361. return -ENOMEM;
  3362. flush_all(s);
  3363. for_each_node_state(node, N_NORMAL_MEMORY) {
  3364. struct kmem_cache_node *n = get_node(s, node);
  3365. count += validate_slab_node(s, n, map);
  3366. }
  3367. kfree(map);
  3368. return count;
  3369. }
  3370. /*
  3371. * Generate lists of code addresses where slabcache objects are allocated
  3372. * and freed.
  3373. */
  3374. struct location {
  3375. unsigned long count;
  3376. unsigned long addr;
  3377. long long sum_time;
  3378. long min_time;
  3379. long max_time;
  3380. long min_pid;
  3381. long max_pid;
  3382. DECLARE_BITMAP(cpus, NR_CPUS);
  3383. nodemask_t nodes;
  3384. };
  3385. struct loc_track {
  3386. unsigned long max;
  3387. unsigned long count;
  3388. struct location *loc;
  3389. };
  3390. static void free_loc_track(struct loc_track *t)
  3391. {
  3392. if (t->max)
  3393. free_pages((unsigned long)t->loc,
  3394. get_order(sizeof(struct location) * t->max));
  3395. }
  3396. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3397. {
  3398. struct location *l;
  3399. int order;
  3400. order = get_order(sizeof(struct location) * max);
  3401. l = (void *)__get_free_pages(flags, order);
  3402. if (!l)
  3403. return 0;
  3404. if (t->count) {
  3405. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3406. free_loc_track(t);
  3407. }
  3408. t->max = max;
  3409. t->loc = l;
  3410. return 1;
  3411. }
  3412. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3413. const struct track *track)
  3414. {
  3415. long start, end, pos;
  3416. struct location *l;
  3417. unsigned long caddr;
  3418. unsigned long age = jiffies - track->when;
  3419. start = -1;
  3420. end = t->count;
  3421. for ( ; ; ) {
  3422. pos = start + (end - start + 1) / 2;
  3423. /*
  3424. * There is nothing at "end". If we end up there
  3425. * we need to add something to before end.
  3426. */
  3427. if (pos == end)
  3428. break;
  3429. caddr = t->loc[pos].addr;
  3430. if (track->addr == caddr) {
  3431. l = &t->loc[pos];
  3432. l->count++;
  3433. if (track->when) {
  3434. l->sum_time += age;
  3435. if (age < l->min_time)
  3436. l->min_time = age;
  3437. if (age > l->max_time)
  3438. l->max_time = age;
  3439. if (track->pid < l->min_pid)
  3440. l->min_pid = track->pid;
  3441. if (track->pid > l->max_pid)
  3442. l->max_pid = track->pid;
  3443. cpumask_set_cpu(track->cpu,
  3444. to_cpumask(l->cpus));
  3445. }
  3446. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3447. return 1;
  3448. }
  3449. if (track->addr < caddr)
  3450. end = pos;
  3451. else
  3452. start = pos;
  3453. }
  3454. /*
  3455. * Not found. Insert new tracking element.
  3456. */
  3457. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3458. return 0;
  3459. l = t->loc + pos;
  3460. if (pos < t->count)
  3461. memmove(l + 1, l,
  3462. (t->count - pos) * sizeof(struct location));
  3463. t->count++;
  3464. l->count = 1;
  3465. l->addr = track->addr;
  3466. l->sum_time = age;
  3467. l->min_time = age;
  3468. l->max_time = age;
  3469. l->min_pid = track->pid;
  3470. l->max_pid = track->pid;
  3471. cpumask_clear(to_cpumask(l->cpus));
  3472. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3473. nodes_clear(l->nodes);
  3474. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3475. return 1;
  3476. }
  3477. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3478. struct page *page, enum track_item alloc,
  3479. unsigned long *map)
  3480. {
  3481. void *addr = page_address(page);
  3482. void *p;
  3483. bitmap_zero(map, page->objects);
  3484. get_map(s, page, map);
  3485. for_each_object(p, s, addr, page->objects)
  3486. if (!test_bit(slab_index(p, s, addr), map))
  3487. add_location(t, s, get_track(s, p, alloc));
  3488. }
  3489. static int list_locations(struct kmem_cache *s, char *buf,
  3490. enum track_item alloc)
  3491. {
  3492. int len = 0;
  3493. unsigned long i;
  3494. struct loc_track t = { 0, 0, NULL };
  3495. int node;
  3496. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3497. sizeof(unsigned long), GFP_KERNEL);
  3498. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3499. GFP_TEMPORARY)) {
  3500. kfree(map);
  3501. return sprintf(buf, "Out of memory\n");
  3502. }
  3503. /* Push back cpu slabs */
  3504. flush_all(s);
  3505. for_each_node_state(node, N_NORMAL_MEMORY) {
  3506. struct kmem_cache_node *n = get_node(s, node);
  3507. unsigned long flags;
  3508. struct page *page;
  3509. if (!atomic_long_read(&n->nr_slabs))
  3510. continue;
  3511. spin_lock_irqsave(&n->list_lock, flags);
  3512. list_for_each_entry(page, &n->partial, lru)
  3513. process_slab(&t, s, page, alloc, map);
  3514. list_for_each_entry(page, &n->full, lru)
  3515. process_slab(&t, s, page, alloc, map);
  3516. spin_unlock_irqrestore(&n->list_lock, flags);
  3517. }
  3518. for (i = 0; i < t.count; i++) {
  3519. struct location *l = &t.loc[i];
  3520. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3521. break;
  3522. len += sprintf(buf + len, "%7ld ", l->count);
  3523. if (l->addr)
  3524. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3525. else
  3526. len += sprintf(buf + len, "<not-available>");
  3527. if (l->sum_time != l->min_time) {
  3528. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3529. l->min_time,
  3530. (long)div_u64(l->sum_time, l->count),
  3531. l->max_time);
  3532. } else
  3533. len += sprintf(buf + len, " age=%ld",
  3534. l->min_time);
  3535. if (l->min_pid != l->max_pid)
  3536. len += sprintf(buf + len, " pid=%ld-%ld",
  3537. l->min_pid, l->max_pid);
  3538. else
  3539. len += sprintf(buf + len, " pid=%ld",
  3540. l->min_pid);
  3541. if (num_online_cpus() > 1 &&
  3542. !cpumask_empty(to_cpumask(l->cpus)) &&
  3543. len < PAGE_SIZE - 60) {
  3544. len += sprintf(buf + len, " cpus=");
  3545. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3546. to_cpumask(l->cpus));
  3547. }
  3548. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3549. len < PAGE_SIZE - 60) {
  3550. len += sprintf(buf + len, " nodes=");
  3551. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3552. l->nodes);
  3553. }
  3554. len += sprintf(buf + len, "\n");
  3555. }
  3556. free_loc_track(&t);
  3557. kfree(map);
  3558. if (!t.count)
  3559. len += sprintf(buf, "No data\n");
  3560. return len;
  3561. }
  3562. #endif
  3563. #ifdef SLUB_RESILIENCY_TEST
  3564. static void resiliency_test(void)
  3565. {
  3566. u8 *p;
  3567. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3568. printk(KERN_ERR "SLUB resiliency testing\n");
  3569. printk(KERN_ERR "-----------------------\n");
  3570. printk(KERN_ERR "A. Corruption after allocation\n");
  3571. p = kzalloc(16, GFP_KERNEL);
  3572. p[16] = 0x12;
  3573. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3574. " 0x12->0x%p\n\n", p + 16);
  3575. validate_slab_cache(kmalloc_caches[4]);
  3576. /* Hmmm... The next two are dangerous */
  3577. p = kzalloc(32, GFP_KERNEL);
  3578. p[32 + sizeof(void *)] = 0x34;
  3579. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3580. " 0x34 -> -0x%p\n", p);
  3581. printk(KERN_ERR
  3582. "If allocated object is overwritten then not detectable\n\n");
  3583. validate_slab_cache(kmalloc_caches[5]);
  3584. p = kzalloc(64, GFP_KERNEL);
  3585. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3586. *p = 0x56;
  3587. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3588. p);
  3589. printk(KERN_ERR
  3590. "If allocated object is overwritten then not detectable\n\n");
  3591. validate_slab_cache(kmalloc_caches[6]);
  3592. printk(KERN_ERR "\nB. Corruption after free\n");
  3593. p = kzalloc(128, GFP_KERNEL);
  3594. kfree(p);
  3595. *p = 0x78;
  3596. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3597. validate_slab_cache(kmalloc_caches[7]);
  3598. p = kzalloc(256, GFP_KERNEL);
  3599. kfree(p);
  3600. p[50] = 0x9a;
  3601. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3602. p);
  3603. validate_slab_cache(kmalloc_caches[8]);
  3604. p = kzalloc(512, GFP_KERNEL);
  3605. kfree(p);
  3606. p[512] = 0xab;
  3607. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3608. validate_slab_cache(kmalloc_caches[9]);
  3609. }
  3610. #else
  3611. #ifdef CONFIG_SYSFS
  3612. static void resiliency_test(void) {};
  3613. #endif
  3614. #endif
  3615. #ifdef CONFIG_SYSFS
  3616. enum slab_stat_type {
  3617. SL_ALL, /* All slabs */
  3618. SL_PARTIAL, /* Only partially allocated slabs */
  3619. SL_CPU, /* Only slabs used for cpu caches */
  3620. SL_OBJECTS, /* Determine allocated objects not slabs */
  3621. SL_TOTAL /* Determine object capacity not slabs */
  3622. };
  3623. #define SO_ALL (1 << SL_ALL)
  3624. #define SO_PARTIAL (1 << SL_PARTIAL)
  3625. #define SO_CPU (1 << SL_CPU)
  3626. #define SO_OBJECTS (1 << SL_OBJECTS)
  3627. #define SO_TOTAL (1 << SL_TOTAL)
  3628. static ssize_t show_slab_objects(struct kmem_cache *s,
  3629. char *buf, unsigned long flags)
  3630. {
  3631. unsigned long total = 0;
  3632. int node;
  3633. int x;
  3634. unsigned long *nodes;
  3635. unsigned long *per_cpu;
  3636. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3637. if (!nodes)
  3638. return -ENOMEM;
  3639. per_cpu = nodes + nr_node_ids;
  3640. if (flags & SO_CPU) {
  3641. int cpu;
  3642. for_each_possible_cpu(cpu) {
  3643. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3644. if (!c || c->node < 0)
  3645. continue;
  3646. if (c->page) {
  3647. if (flags & SO_TOTAL)
  3648. x = c->page->objects;
  3649. else if (flags & SO_OBJECTS)
  3650. x = c->page->inuse;
  3651. else
  3652. x = 1;
  3653. total += x;
  3654. nodes[c->node] += x;
  3655. }
  3656. per_cpu[c->node]++;
  3657. }
  3658. }
  3659. lock_memory_hotplug();
  3660. #ifdef CONFIG_SLUB_DEBUG
  3661. if (flags & SO_ALL) {
  3662. for_each_node_state(node, N_NORMAL_MEMORY) {
  3663. struct kmem_cache_node *n = get_node(s, node);
  3664. if (flags & SO_TOTAL)
  3665. x = atomic_long_read(&n->total_objects);
  3666. else if (flags & SO_OBJECTS)
  3667. x = atomic_long_read(&n->total_objects) -
  3668. count_partial(n, count_free);
  3669. else
  3670. x = atomic_long_read(&n->nr_slabs);
  3671. total += x;
  3672. nodes[node] += x;
  3673. }
  3674. } else
  3675. #endif
  3676. if (flags & SO_PARTIAL) {
  3677. for_each_node_state(node, N_NORMAL_MEMORY) {
  3678. struct kmem_cache_node *n = get_node(s, node);
  3679. if (flags & SO_TOTAL)
  3680. x = count_partial(n, count_total);
  3681. else if (flags & SO_OBJECTS)
  3682. x = count_partial(n, count_inuse);
  3683. else
  3684. x = n->nr_partial;
  3685. total += x;
  3686. nodes[node] += x;
  3687. }
  3688. }
  3689. x = sprintf(buf, "%lu", total);
  3690. #ifdef CONFIG_NUMA
  3691. for_each_node_state(node, N_NORMAL_MEMORY)
  3692. if (nodes[node])
  3693. x += sprintf(buf + x, " N%d=%lu",
  3694. node, nodes[node]);
  3695. #endif
  3696. unlock_memory_hotplug();
  3697. kfree(nodes);
  3698. return x + sprintf(buf + x, "\n");
  3699. }
  3700. #ifdef CONFIG_SLUB_DEBUG
  3701. static int any_slab_objects(struct kmem_cache *s)
  3702. {
  3703. int node;
  3704. for_each_online_node(node) {
  3705. struct kmem_cache_node *n = get_node(s, node);
  3706. if (!n)
  3707. continue;
  3708. if (atomic_long_read(&n->total_objects))
  3709. return 1;
  3710. }
  3711. return 0;
  3712. }
  3713. #endif
  3714. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3715. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3716. struct slab_attribute {
  3717. struct attribute attr;
  3718. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3719. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3720. };
  3721. #define SLAB_ATTR_RO(_name) \
  3722. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3723. #define SLAB_ATTR(_name) \
  3724. static struct slab_attribute _name##_attr = \
  3725. __ATTR(_name, 0644, _name##_show, _name##_store)
  3726. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3727. {
  3728. return sprintf(buf, "%d\n", s->size);
  3729. }
  3730. SLAB_ATTR_RO(slab_size);
  3731. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3732. {
  3733. return sprintf(buf, "%d\n", s->align);
  3734. }
  3735. SLAB_ATTR_RO(align);
  3736. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3737. {
  3738. return sprintf(buf, "%d\n", s->objsize);
  3739. }
  3740. SLAB_ATTR_RO(object_size);
  3741. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3742. {
  3743. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3744. }
  3745. SLAB_ATTR_RO(objs_per_slab);
  3746. static ssize_t order_store(struct kmem_cache *s,
  3747. const char *buf, size_t length)
  3748. {
  3749. unsigned long order;
  3750. int err;
  3751. err = strict_strtoul(buf, 10, &order);
  3752. if (err)
  3753. return err;
  3754. if (order > slub_max_order || order < slub_min_order)
  3755. return -EINVAL;
  3756. calculate_sizes(s, order);
  3757. return length;
  3758. }
  3759. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3760. {
  3761. return sprintf(buf, "%d\n", oo_order(s->oo));
  3762. }
  3763. SLAB_ATTR(order);
  3764. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3765. {
  3766. return sprintf(buf, "%lu\n", s->min_partial);
  3767. }
  3768. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3769. size_t length)
  3770. {
  3771. unsigned long min;
  3772. int err;
  3773. err = strict_strtoul(buf, 10, &min);
  3774. if (err)
  3775. return err;
  3776. set_min_partial(s, min);
  3777. return length;
  3778. }
  3779. SLAB_ATTR(min_partial);
  3780. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3781. {
  3782. if (!s->ctor)
  3783. return 0;
  3784. return sprintf(buf, "%pS\n", s->ctor);
  3785. }
  3786. SLAB_ATTR_RO(ctor);
  3787. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3788. {
  3789. return sprintf(buf, "%d\n", s->refcount - 1);
  3790. }
  3791. SLAB_ATTR_RO(aliases);
  3792. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3793. {
  3794. return show_slab_objects(s, buf, SO_PARTIAL);
  3795. }
  3796. SLAB_ATTR_RO(partial);
  3797. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3798. {
  3799. return show_slab_objects(s, buf, SO_CPU);
  3800. }
  3801. SLAB_ATTR_RO(cpu_slabs);
  3802. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3803. {
  3804. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3805. }
  3806. SLAB_ATTR_RO(objects);
  3807. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3808. {
  3809. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3810. }
  3811. SLAB_ATTR_RO(objects_partial);
  3812. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3813. {
  3814. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3815. }
  3816. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3817. const char *buf, size_t length)
  3818. {
  3819. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3820. if (buf[0] == '1')
  3821. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3822. return length;
  3823. }
  3824. SLAB_ATTR(reclaim_account);
  3825. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3826. {
  3827. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3828. }
  3829. SLAB_ATTR_RO(hwcache_align);
  3830. #ifdef CONFIG_ZONE_DMA
  3831. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3832. {
  3833. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3834. }
  3835. SLAB_ATTR_RO(cache_dma);
  3836. #endif
  3837. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3838. {
  3839. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3840. }
  3841. SLAB_ATTR_RO(destroy_by_rcu);
  3842. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3843. {
  3844. return sprintf(buf, "%d\n", s->reserved);
  3845. }
  3846. SLAB_ATTR_RO(reserved);
  3847. #ifdef CONFIG_SLUB_DEBUG
  3848. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3849. {
  3850. return show_slab_objects(s, buf, SO_ALL);
  3851. }
  3852. SLAB_ATTR_RO(slabs);
  3853. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3854. {
  3855. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3856. }
  3857. SLAB_ATTR_RO(total_objects);
  3858. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3859. {
  3860. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3861. }
  3862. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3863. const char *buf, size_t length)
  3864. {
  3865. s->flags &= ~SLAB_DEBUG_FREE;
  3866. if (buf[0] == '1') {
  3867. s->flags &= ~__CMPXCHG_DOUBLE;
  3868. s->flags |= SLAB_DEBUG_FREE;
  3869. }
  3870. return length;
  3871. }
  3872. SLAB_ATTR(sanity_checks);
  3873. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3874. {
  3875. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3876. }
  3877. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3878. size_t length)
  3879. {
  3880. s->flags &= ~SLAB_TRACE;
  3881. if (buf[0] == '1') {
  3882. s->flags &= ~__CMPXCHG_DOUBLE;
  3883. s->flags |= SLAB_TRACE;
  3884. }
  3885. return length;
  3886. }
  3887. SLAB_ATTR(trace);
  3888. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3889. {
  3890. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3891. }
  3892. static ssize_t red_zone_store(struct kmem_cache *s,
  3893. const char *buf, size_t length)
  3894. {
  3895. if (any_slab_objects(s))
  3896. return -EBUSY;
  3897. s->flags &= ~SLAB_RED_ZONE;
  3898. if (buf[0] == '1') {
  3899. s->flags &= ~__CMPXCHG_DOUBLE;
  3900. s->flags |= SLAB_RED_ZONE;
  3901. }
  3902. calculate_sizes(s, -1);
  3903. return length;
  3904. }
  3905. SLAB_ATTR(red_zone);
  3906. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3907. {
  3908. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3909. }
  3910. static ssize_t poison_store(struct kmem_cache *s,
  3911. const char *buf, size_t length)
  3912. {
  3913. if (any_slab_objects(s))
  3914. return -EBUSY;
  3915. s->flags &= ~SLAB_POISON;
  3916. if (buf[0] == '1') {
  3917. s->flags &= ~__CMPXCHG_DOUBLE;
  3918. s->flags |= SLAB_POISON;
  3919. }
  3920. calculate_sizes(s, -1);
  3921. return length;
  3922. }
  3923. SLAB_ATTR(poison);
  3924. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3925. {
  3926. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3927. }
  3928. static ssize_t store_user_store(struct kmem_cache *s,
  3929. const char *buf, size_t length)
  3930. {
  3931. if (any_slab_objects(s))
  3932. return -EBUSY;
  3933. s->flags &= ~SLAB_STORE_USER;
  3934. if (buf[0] == '1') {
  3935. s->flags &= ~__CMPXCHG_DOUBLE;
  3936. s->flags |= SLAB_STORE_USER;
  3937. }
  3938. calculate_sizes(s, -1);
  3939. return length;
  3940. }
  3941. SLAB_ATTR(store_user);
  3942. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3943. {
  3944. return 0;
  3945. }
  3946. static ssize_t validate_store(struct kmem_cache *s,
  3947. const char *buf, size_t length)
  3948. {
  3949. int ret = -EINVAL;
  3950. if (buf[0] == '1') {
  3951. ret = validate_slab_cache(s);
  3952. if (ret >= 0)
  3953. ret = length;
  3954. }
  3955. return ret;
  3956. }
  3957. SLAB_ATTR(validate);
  3958. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3959. {
  3960. if (!(s->flags & SLAB_STORE_USER))
  3961. return -ENOSYS;
  3962. return list_locations(s, buf, TRACK_ALLOC);
  3963. }
  3964. SLAB_ATTR_RO(alloc_calls);
  3965. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3966. {
  3967. if (!(s->flags & SLAB_STORE_USER))
  3968. return -ENOSYS;
  3969. return list_locations(s, buf, TRACK_FREE);
  3970. }
  3971. SLAB_ATTR_RO(free_calls);
  3972. #endif /* CONFIG_SLUB_DEBUG */
  3973. #ifdef CONFIG_FAILSLAB
  3974. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3975. {
  3976. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3977. }
  3978. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3979. size_t length)
  3980. {
  3981. s->flags &= ~SLAB_FAILSLAB;
  3982. if (buf[0] == '1')
  3983. s->flags |= SLAB_FAILSLAB;
  3984. return length;
  3985. }
  3986. SLAB_ATTR(failslab);
  3987. #endif
  3988. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3989. {
  3990. return 0;
  3991. }
  3992. static ssize_t shrink_store(struct kmem_cache *s,
  3993. const char *buf, size_t length)
  3994. {
  3995. if (buf[0] == '1') {
  3996. int rc = kmem_cache_shrink(s);
  3997. if (rc)
  3998. return rc;
  3999. } else
  4000. return -EINVAL;
  4001. return length;
  4002. }
  4003. SLAB_ATTR(shrink);
  4004. #ifdef CONFIG_NUMA
  4005. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4006. {
  4007. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4008. }
  4009. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4010. const char *buf, size_t length)
  4011. {
  4012. unsigned long ratio;
  4013. int err;
  4014. err = strict_strtoul(buf, 10, &ratio);
  4015. if (err)
  4016. return err;
  4017. if (ratio <= 100)
  4018. s->remote_node_defrag_ratio = ratio * 10;
  4019. return length;
  4020. }
  4021. SLAB_ATTR(remote_node_defrag_ratio);
  4022. #endif
  4023. #ifdef CONFIG_SLUB_STATS
  4024. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4025. {
  4026. unsigned long sum = 0;
  4027. int cpu;
  4028. int len;
  4029. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4030. if (!data)
  4031. return -ENOMEM;
  4032. for_each_online_cpu(cpu) {
  4033. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4034. data[cpu] = x;
  4035. sum += x;
  4036. }
  4037. len = sprintf(buf, "%lu", sum);
  4038. #ifdef CONFIG_SMP
  4039. for_each_online_cpu(cpu) {
  4040. if (data[cpu] && len < PAGE_SIZE - 20)
  4041. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4042. }
  4043. #endif
  4044. kfree(data);
  4045. return len + sprintf(buf + len, "\n");
  4046. }
  4047. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4048. {
  4049. int cpu;
  4050. for_each_online_cpu(cpu)
  4051. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4052. }
  4053. #define STAT_ATTR(si, text) \
  4054. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4055. { \
  4056. return show_stat(s, buf, si); \
  4057. } \
  4058. static ssize_t text##_store(struct kmem_cache *s, \
  4059. const char *buf, size_t length) \
  4060. { \
  4061. if (buf[0] != '0') \
  4062. return -EINVAL; \
  4063. clear_stat(s, si); \
  4064. return length; \
  4065. } \
  4066. SLAB_ATTR(text); \
  4067. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4068. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4069. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4070. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4071. STAT_ATTR(FREE_FROZEN, free_frozen);
  4072. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4073. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4074. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4075. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4076. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4077. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4078. STAT_ATTR(FREE_SLAB, free_slab);
  4079. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4080. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4081. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4082. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4083. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4084. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4085. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4086. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4087. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4088. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4089. #endif
  4090. static struct attribute *slab_attrs[] = {
  4091. &slab_size_attr.attr,
  4092. &object_size_attr.attr,
  4093. &objs_per_slab_attr.attr,
  4094. &order_attr.attr,
  4095. &min_partial_attr.attr,
  4096. &objects_attr.attr,
  4097. &objects_partial_attr.attr,
  4098. &partial_attr.attr,
  4099. &cpu_slabs_attr.attr,
  4100. &ctor_attr.attr,
  4101. &aliases_attr.attr,
  4102. &align_attr.attr,
  4103. &hwcache_align_attr.attr,
  4104. &reclaim_account_attr.attr,
  4105. &destroy_by_rcu_attr.attr,
  4106. &shrink_attr.attr,
  4107. &reserved_attr.attr,
  4108. #ifdef CONFIG_SLUB_DEBUG
  4109. &total_objects_attr.attr,
  4110. &slabs_attr.attr,
  4111. &sanity_checks_attr.attr,
  4112. &trace_attr.attr,
  4113. &red_zone_attr.attr,
  4114. &poison_attr.attr,
  4115. &store_user_attr.attr,
  4116. &validate_attr.attr,
  4117. &alloc_calls_attr.attr,
  4118. &free_calls_attr.attr,
  4119. #endif
  4120. #ifdef CONFIG_ZONE_DMA
  4121. &cache_dma_attr.attr,
  4122. #endif
  4123. #ifdef CONFIG_NUMA
  4124. &remote_node_defrag_ratio_attr.attr,
  4125. #endif
  4126. #ifdef CONFIG_SLUB_STATS
  4127. &alloc_fastpath_attr.attr,
  4128. &alloc_slowpath_attr.attr,
  4129. &free_fastpath_attr.attr,
  4130. &free_slowpath_attr.attr,
  4131. &free_frozen_attr.attr,
  4132. &free_add_partial_attr.attr,
  4133. &free_remove_partial_attr.attr,
  4134. &alloc_from_partial_attr.attr,
  4135. &alloc_slab_attr.attr,
  4136. &alloc_refill_attr.attr,
  4137. &alloc_node_mismatch_attr.attr,
  4138. &free_slab_attr.attr,
  4139. &cpuslab_flush_attr.attr,
  4140. &deactivate_full_attr.attr,
  4141. &deactivate_empty_attr.attr,
  4142. &deactivate_to_head_attr.attr,
  4143. &deactivate_to_tail_attr.attr,
  4144. &deactivate_remote_frees_attr.attr,
  4145. &deactivate_bypass_attr.attr,
  4146. &order_fallback_attr.attr,
  4147. &cmpxchg_double_fail_attr.attr,
  4148. &cmpxchg_double_cpu_fail_attr.attr,
  4149. #endif
  4150. #ifdef CONFIG_FAILSLAB
  4151. &failslab_attr.attr,
  4152. #endif
  4153. NULL
  4154. };
  4155. static struct attribute_group slab_attr_group = {
  4156. .attrs = slab_attrs,
  4157. };
  4158. static ssize_t slab_attr_show(struct kobject *kobj,
  4159. struct attribute *attr,
  4160. char *buf)
  4161. {
  4162. struct slab_attribute *attribute;
  4163. struct kmem_cache *s;
  4164. int err;
  4165. attribute = to_slab_attr(attr);
  4166. s = to_slab(kobj);
  4167. if (!attribute->show)
  4168. return -EIO;
  4169. err = attribute->show(s, buf);
  4170. return err;
  4171. }
  4172. static ssize_t slab_attr_store(struct kobject *kobj,
  4173. struct attribute *attr,
  4174. const char *buf, size_t len)
  4175. {
  4176. struct slab_attribute *attribute;
  4177. struct kmem_cache *s;
  4178. int err;
  4179. attribute = to_slab_attr(attr);
  4180. s = to_slab(kobj);
  4181. if (!attribute->store)
  4182. return -EIO;
  4183. err = attribute->store(s, buf, len);
  4184. return err;
  4185. }
  4186. static void kmem_cache_release(struct kobject *kobj)
  4187. {
  4188. struct kmem_cache *s = to_slab(kobj);
  4189. kfree(s->name);
  4190. kfree(s);
  4191. }
  4192. static const struct sysfs_ops slab_sysfs_ops = {
  4193. .show = slab_attr_show,
  4194. .store = slab_attr_store,
  4195. };
  4196. static struct kobj_type slab_ktype = {
  4197. .sysfs_ops = &slab_sysfs_ops,
  4198. .release = kmem_cache_release
  4199. };
  4200. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4201. {
  4202. struct kobj_type *ktype = get_ktype(kobj);
  4203. if (ktype == &slab_ktype)
  4204. return 1;
  4205. return 0;
  4206. }
  4207. static const struct kset_uevent_ops slab_uevent_ops = {
  4208. .filter = uevent_filter,
  4209. };
  4210. static struct kset *slab_kset;
  4211. #define ID_STR_LENGTH 64
  4212. /* Create a unique string id for a slab cache:
  4213. *
  4214. * Format :[flags-]size
  4215. */
  4216. static char *create_unique_id(struct kmem_cache *s)
  4217. {
  4218. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4219. char *p = name;
  4220. BUG_ON(!name);
  4221. *p++ = ':';
  4222. /*
  4223. * First flags affecting slabcache operations. We will only
  4224. * get here for aliasable slabs so we do not need to support
  4225. * too many flags. The flags here must cover all flags that
  4226. * are matched during merging to guarantee that the id is
  4227. * unique.
  4228. */
  4229. if (s->flags & SLAB_CACHE_DMA)
  4230. *p++ = 'd';
  4231. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4232. *p++ = 'a';
  4233. if (s->flags & SLAB_DEBUG_FREE)
  4234. *p++ = 'F';
  4235. if (!(s->flags & SLAB_NOTRACK))
  4236. *p++ = 't';
  4237. if (p != name + 1)
  4238. *p++ = '-';
  4239. p += sprintf(p, "%07d", s->size);
  4240. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4241. return name;
  4242. }
  4243. static int sysfs_slab_add(struct kmem_cache *s)
  4244. {
  4245. int err;
  4246. const char *name;
  4247. int unmergeable;
  4248. if (slab_state < SYSFS)
  4249. /* Defer until later */
  4250. return 0;
  4251. unmergeable = slab_unmergeable(s);
  4252. if (unmergeable) {
  4253. /*
  4254. * Slabcache can never be merged so we can use the name proper.
  4255. * This is typically the case for debug situations. In that
  4256. * case we can catch duplicate names easily.
  4257. */
  4258. sysfs_remove_link(&slab_kset->kobj, s->name);
  4259. name = s->name;
  4260. } else {
  4261. /*
  4262. * Create a unique name for the slab as a target
  4263. * for the symlinks.
  4264. */
  4265. name = create_unique_id(s);
  4266. }
  4267. s->kobj.kset = slab_kset;
  4268. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4269. if (err) {
  4270. kobject_put(&s->kobj);
  4271. return err;
  4272. }
  4273. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4274. if (err) {
  4275. kobject_del(&s->kobj);
  4276. kobject_put(&s->kobj);
  4277. return err;
  4278. }
  4279. kobject_uevent(&s->kobj, KOBJ_ADD);
  4280. if (!unmergeable) {
  4281. /* Setup first alias */
  4282. sysfs_slab_alias(s, s->name);
  4283. kfree(name);
  4284. }
  4285. return 0;
  4286. }
  4287. static void sysfs_slab_remove(struct kmem_cache *s)
  4288. {
  4289. if (slab_state < SYSFS)
  4290. /*
  4291. * Sysfs has not been setup yet so no need to remove the
  4292. * cache from sysfs.
  4293. */
  4294. return;
  4295. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4296. kobject_del(&s->kobj);
  4297. kobject_put(&s->kobj);
  4298. }
  4299. /*
  4300. * Need to buffer aliases during bootup until sysfs becomes
  4301. * available lest we lose that information.
  4302. */
  4303. struct saved_alias {
  4304. struct kmem_cache *s;
  4305. const char *name;
  4306. struct saved_alias *next;
  4307. };
  4308. static struct saved_alias *alias_list;
  4309. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4310. {
  4311. struct saved_alias *al;
  4312. if (slab_state == SYSFS) {
  4313. /*
  4314. * If we have a leftover link then remove it.
  4315. */
  4316. sysfs_remove_link(&slab_kset->kobj, name);
  4317. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4318. }
  4319. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4320. if (!al)
  4321. return -ENOMEM;
  4322. al->s = s;
  4323. al->name = name;
  4324. al->next = alias_list;
  4325. alias_list = al;
  4326. return 0;
  4327. }
  4328. static int __init slab_sysfs_init(void)
  4329. {
  4330. struct kmem_cache *s;
  4331. int err;
  4332. down_write(&slub_lock);
  4333. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4334. if (!slab_kset) {
  4335. up_write(&slub_lock);
  4336. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4337. return -ENOSYS;
  4338. }
  4339. slab_state = SYSFS;
  4340. list_for_each_entry(s, &slab_caches, list) {
  4341. err = sysfs_slab_add(s);
  4342. if (err)
  4343. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4344. " to sysfs\n", s->name);
  4345. }
  4346. while (alias_list) {
  4347. struct saved_alias *al = alias_list;
  4348. alias_list = alias_list->next;
  4349. err = sysfs_slab_alias(al->s, al->name);
  4350. if (err)
  4351. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4352. " %s to sysfs\n", s->name);
  4353. kfree(al);
  4354. }
  4355. up_write(&slub_lock);
  4356. resiliency_test();
  4357. return 0;
  4358. }
  4359. __initcall(slab_sysfs_init);
  4360. #endif /* CONFIG_SYSFS */
  4361. /*
  4362. * The /proc/slabinfo ABI
  4363. */
  4364. #ifdef CONFIG_SLABINFO
  4365. static void print_slabinfo_header(struct seq_file *m)
  4366. {
  4367. seq_puts(m, "slabinfo - version: 2.1\n");
  4368. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  4369. "<objperslab> <pagesperslab>");
  4370. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4371. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4372. seq_putc(m, '\n');
  4373. }
  4374. static void *s_start(struct seq_file *m, loff_t *pos)
  4375. {
  4376. loff_t n = *pos;
  4377. down_read(&slub_lock);
  4378. if (!n)
  4379. print_slabinfo_header(m);
  4380. return seq_list_start(&slab_caches, *pos);
  4381. }
  4382. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4383. {
  4384. return seq_list_next(p, &slab_caches, pos);
  4385. }
  4386. static void s_stop(struct seq_file *m, void *p)
  4387. {
  4388. up_read(&slub_lock);
  4389. }
  4390. static int s_show(struct seq_file *m, void *p)
  4391. {
  4392. unsigned long nr_partials = 0;
  4393. unsigned long nr_slabs = 0;
  4394. unsigned long nr_inuse = 0;
  4395. unsigned long nr_objs = 0;
  4396. unsigned long nr_free = 0;
  4397. struct kmem_cache *s;
  4398. int node;
  4399. s = list_entry(p, struct kmem_cache, list);
  4400. for_each_online_node(node) {
  4401. struct kmem_cache_node *n = get_node(s, node);
  4402. if (!n)
  4403. continue;
  4404. nr_partials += n->nr_partial;
  4405. nr_slabs += atomic_long_read(&n->nr_slabs);
  4406. nr_objs += atomic_long_read(&n->total_objects);
  4407. nr_free += count_partial(n, count_free);
  4408. }
  4409. nr_inuse = nr_objs - nr_free;
  4410. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4411. nr_objs, s->size, oo_objects(s->oo),
  4412. (1 << oo_order(s->oo)));
  4413. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4414. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4415. 0UL);
  4416. seq_putc(m, '\n');
  4417. return 0;
  4418. }
  4419. static const struct seq_operations slabinfo_op = {
  4420. .start = s_start,
  4421. .next = s_next,
  4422. .stop = s_stop,
  4423. .show = s_show,
  4424. };
  4425. static int slabinfo_open(struct inode *inode, struct file *file)
  4426. {
  4427. return seq_open(file, &slabinfo_op);
  4428. }
  4429. static const struct file_operations proc_slabinfo_operations = {
  4430. .open = slabinfo_open,
  4431. .read = seq_read,
  4432. .llseek = seq_lseek,
  4433. .release = seq_release,
  4434. };
  4435. static int __init slab_proc_init(void)
  4436. {
  4437. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  4438. return 0;
  4439. }
  4440. module_init(slab_proc_init);
  4441. #endif /* CONFIG_SLABINFO */