i915_gem.c 118 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "intel_drv.h"
  32. #include <linux/swap.h>
  33. #include <linux/pci.h>
  34. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  35. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  37. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  38. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  39. int write);
  40. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  41. uint64_t offset,
  42. uint64_t size);
  43. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  44. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  45. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  46. unsigned alignment);
  47. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  48. static int i915_gem_evict_something(struct drm_device *dev);
  49. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  50. struct drm_i915_gem_pwrite *args,
  51. struct drm_file *file_priv);
  52. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  53. unsigned long end)
  54. {
  55. drm_i915_private_t *dev_priv = dev->dev_private;
  56. if (start >= end ||
  57. (start & (PAGE_SIZE - 1)) != 0 ||
  58. (end & (PAGE_SIZE - 1)) != 0) {
  59. return -EINVAL;
  60. }
  61. drm_mm_init(&dev_priv->mm.gtt_space, start,
  62. end - start);
  63. dev->gtt_total = (uint32_t) (end - start);
  64. return 0;
  65. }
  66. int
  67. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  68. struct drm_file *file_priv)
  69. {
  70. struct drm_i915_gem_init *args = data;
  71. int ret;
  72. mutex_lock(&dev->struct_mutex);
  73. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  74. mutex_unlock(&dev->struct_mutex);
  75. return ret;
  76. }
  77. int
  78. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  79. struct drm_file *file_priv)
  80. {
  81. struct drm_i915_gem_get_aperture *args = data;
  82. if (!(dev->driver->driver_features & DRIVER_GEM))
  83. return -ENODEV;
  84. args->aper_size = dev->gtt_total;
  85. args->aper_available_size = (args->aper_size -
  86. atomic_read(&dev->pin_memory));
  87. return 0;
  88. }
  89. /**
  90. * Creates a new mm object and returns a handle to it.
  91. */
  92. int
  93. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  94. struct drm_file *file_priv)
  95. {
  96. struct drm_i915_gem_create *args = data;
  97. struct drm_gem_object *obj;
  98. int ret;
  99. u32 handle;
  100. args->size = roundup(args->size, PAGE_SIZE);
  101. /* Allocate the new object */
  102. obj = drm_gem_object_alloc(dev, args->size);
  103. if (obj == NULL)
  104. return -ENOMEM;
  105. ret = drm_gem_handle_create(file_priv, obj, &handle);
  106. mutex_lock(&dev->struct_mutex);
  107. drm_gem_object_handle_unreference(obj);
  108. mutex_unlock(&dev->struct_mutex);
  109. if (ret)
  110. return ret;
  111. args->handle = handle;
  112. return 0;
  113. }
  114. static inline int
  115. fast_shmem_read(struct page **pages,
  116. loff_t page_base, int page_offset,
  117. char __user *data,
  118. int length)
  119. {
  120. char __iomem *vaddr;
  121. int unwritten;
  122. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  123. if (vaddr == NULL)
  124. return -ENOMEM;
  125. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  126. kunmap_atomic(vaddr, KM_USER0);
  127. if (unwritten)
  128. return -EFAULT;
  129. return 0;
  130. }
  131. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  132. {
  133. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  134. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  135. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  136. obj_priv->tiling_mode != I915_TILING_NONE;
  137. }
  138. static inline int
  139. slow_shmem_copy(struct page *dst_page,
  140. int dst_offset,
  141. struct page *src_page,
  142. int src_offset,
  143. int length)
  144. {
  145. char *dst_vaddr, *src_vaddr;
  146. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  147. if (dst_vaddr == NULL)
  148. return -ENOMEM;
  149. src_vaddr = kmap_atomic(src_page, KM_USER1);
  150. if (src_vaddr == NULL) {
  151. kunmap_atomic(dst_vaddr, KM_USER0);
  152. return -ENOMEM;
  153. }
  154. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  155. kunmap_atomic(src_vaddr, KM_USER1);
  156. kunmap_atomic(dst_vaddr, KM_USER0);
  157. return 0;
  158. }
  159. static inline int
  160. slow_shmem_bit17_copy(struct page *gpu_page,
  161. int gpu_offset,
  162. struct page *cpu_page,
  163. int cpu_offset,
  164. int length,
  165. int is_read)
  166. {
  167. char *gpu_vaddr, *cpu_vaddr;
  168. /* Use the unswizzled path if this page isn't affected. */
  169. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  170. if (is_read)
  171. return slow_shmem_copy(cpu_page, cpu_offset,
  172. gpu_page, gpu_offset, length);
  173. else
  174. return slow_shmem_copy(gpu_page, gpu_offset,
  175. cpu_page, cpu_offset, length);
  176. }
  177. gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
  178. if (gpu_vaddr == NULL)
  179. return -ENOMEM;
  180. cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
  181. if (cpu_vaddr == NULL) {
  182. kunmap_atomic(gpu_vaddr, KM_USER0);
  183. return -ENOMEM;
  184. }
  185. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  186. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  187. */
  188. while (length > 0) {
  189. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  190. int this_length = min(cacheline_end - gpu_offset, length);
  191. int swizzled_gpu_offset = gpu_offset ^ 64;
  192. if (is_read) {
  193. memcpy(cpu_vaddr + cpu_offset,
  194. gpu_vaddr + swizzled_gpu_offset,
  195. this_length);
  196. } else {
  197. memcpy(gpu_vaddr + swizzled_gpu_offset,
  198. cpu_vaddr + cpu_offset,
  199. this_length);
  200. }
  201. cpu_offset += this_length;
  202. gpu_offset += this_length;
  203. length -= this_length;
  204. }
  205. kunmap_atomic(cpu_vaddr, KM_USER1);
  206. kunmap_atomic(gpu_vaddr, KM_USER0);
  207. return 0;
  208. }
  209. /**
  210. * This is the fast shmem pread path, which attempts to copy_from_user directly
  211. * from the backing pages of the object to the user's address space. On a
  212. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  213. */
  214. static int
  215. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  216. struct drm_i915_gem_pread *args,
  217. struct drm_file *file_priv)
  218. {
  219. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  220. ssize_t remain;
  221. loff_t offset, page_base;
  222. char __user *user_data;
  223. int page_offset, page_length;
  224. int ret;
  225. user_data = (char __user *) (uintptr_t) args->data_ptr;
  226. remain = args->size;
  227. mutex_lock(&dev->struct_mutex);
  228. ret = i915_gem_object_get_pages(obj);
  229. if (ret != 0)
  230. goto fail_unlock;
  231. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  232. args->size);
  233. if (ret != 0)
  234. goto fail_put_pages;
  235. obj_priv = obj->driver_private;
  236. offset = args->offset;
  237. while (remain > 0) {
  238. /* Operation in this page
  239. *
  240. * page_base = page offset within aperture
  241. * page_offset = offset within page
  242. * page_length = bytes to copy for this page
  243. */
  244. page_base = (offset & ~(PAGE_SIZE-1));
  245. page_offset = offset & (PAGE_SIZE-1);
  246. page_length = remain;
  247. if ((page_offset + remain) > PAGE_SIZE)
  248. page_length = PAGE_SIZE - page_offset;
  249. ret = fast_shmem_read(obj_priv->pages,
  250. page_base, page_offset,
  251. user_data, page_length);
  252. if (ret)
  253. goto fail_put_pages;
  254. remain -= page_length;
  255. user_data += page_length;
  256. offset += page_length;
  257. }
  258. fail_put_pages:
  259. i915_gem_object_put_pages(obj);
  260. fail_unlock:
  261. mutex_unlock(&dev->struct_mutex);
  262. return ret;
  263. }
  264. /**
  265. * This is the fallback shmem pread path, which allocates temporary storage
  266. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  267. * can copy out of the object's backing pages while holding the struct mutex
  268. * and not take page faults.
  269. */
  270. static int
  271. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  272. struct drm_i915_gem_pread *args,
  273. struct drm_file *file_priv)
  274. {
  275. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  276. struct mm_struct *mm = current->mm;
  277. struct page **user_pages;
  278. ssize_t remain;
  279. loff_t offset, pinned_pages, i;
  280. loff_t first_data_page, last_data_page, num_pages;
  281. int shmem_page_index, shmem_page_offset;
  282. int data_page_index, data_page_offset;
  283. int page_length;
  284. int ret;
  285. uint64_t data_ptr = args->data_ptr;
  286. int do_bit17_swizzling;
  287. remain = args->size;
  288. /* Pin the user pages containing the data. We can't fault while
  289. * holding the struct mutex, yet we want to hold it while
  290. * dereferencing the user data.
  291. */
  292. first_data_page = data_ptr / PAGE_SIZE;
  293. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  294. num_pages = last_data_page - first_data_page + 1;
  295. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  296. if (user_pages == NULL)
  297. return -ENOMEM;
  298. down_read(&mm->mmap_sem);
  299. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  300. num_pages, 1, 0, user_pages, NULL);
  301. up_read(&mm->mmap_sem);
  302. if (pinned_pages < num_pages) {
  303. ret = -EFAULT;
  304. goto fail_put_user_pages;
  305. }
  306. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  307. mutex_lock(&dev->struct_mutex);
  308. ret = i915_gem_object_get_pages(obj);
  309. if (ret != 0)
  310. goto fail_unlock;
  311. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  312. args->size);
  313. if (ret != 0)
  314. goto fail_put_pages;
  315. obj_priv = obj->driver_private;
  316. offset = args->offset;
  317. while (remain > 0) {
  318. /* Operation in this page
  319. *
  320. * shmem_page_index = page number within shmem file
  321. * shmem_page_offset = offset within page in shmem file
  322. * data_page_index = page number in get_user_pages return
  323. * data_page_offset = offset with data_page_index page.
  324. * page_length = bytes to copy for this page
  325. */
  326. shmem_page_index = offset / PAGE_SIZE;
  327. shmem_page_offset = offset & ~PAGE_MASK;
  328. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  329. data_page_offset = data_ptr & ~PAGE_MASK;
  330. page_length = remain;
  331. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  332. page_length = PAGE_SIZE - shmem_page_offset;
  333. if ((data_page_offset + page_length) > PAGE_SIZE)
  334. page_length = PAGE_SIZE - data_page_offset;
  335. if (do_bit17_swizzling) {
  336. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  337. shmem_page_offset,
  338. user_pages[data_page_index],
  339. data_page_offset,
  340. page_length,
  341. 1);
  342. } else {
  343. ret = slow_shmem_copy(user_pages[data_page_index],
  344. data_page_offset,
  345. obj_priv->pages[shmem_page_index],
  346. shmem_page_offset,
  347. page_length);
  348. }
  349. if (ret)
  350. goto fail_put_pages;
  351. remain -= page_length;
  352. data_ptr += page_length;
  353. offset += page_length;
  354. }
  355. fail_put_pages:
  356. i915_gem_object_put_pages(obj);
  357. fail_unlock:
  358. mutex_unlock(&dev->struct_mutex);
  359. fail_put_user_pages:
  360. for (i = 0; i < pinned_pages; i++) {
  361. SetPageDirty(user_pages[i]);
  362. page_cache_release(user_pages[i]);
  363. }
  364. drm_free_large(user_pages);
  365. return ret;
  366. }
  367. /**
  368. * Reads data from the object referenced by handle.
  369. *
  370. * On error, the contents of *data are undefined.
  371. */
  372. int
  373. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  374. struct drm_file *file_priv)
  375. {
  376. struct drm_i915_gem_pread *args = data;
  377. struct drm_gem_object *obj;
  378. struct drm_i915_gem_object *obj_priv;
  379. int ret;
  380. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  381. if (obj == NULL)
  382. return -EBADF;
  383. obj_priv = obj->driver_private;
  384. /* Bounds check source.
  385. *
  386. * XXX: This could use review for overflow issues...
  387. */
  388. if (args->offset > obj->size || args->size > obj->size ||
  389. args->offset + args->size > obj->size) {
  390. drm_gem_object_unreference(obj);
  391. return -EINVAL;
  392. }
  393. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  394. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  395. } else {
  396. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  397. if (ret != 0)
  398. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  399. file_priv);
  400. }
  401. drm_gem_object_unreference(obj);
  402. return ret;
  403. }
  404. /* This is the fast write path which cannot handle
  405. * page faults in the source data
  406. */
  407. static inline int
  408. fast_user_write(struct io_mapping *mapping,
  409. loff_t page_base, int page_offset,
  410. char __user *user_data,
  411. int length)
  412. {
  413. char *vaddr_atomic;
  414. unsigned long unwritten;
  415. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  416. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  417. user_data, length);
  418. io_mapping_unmap_atomic(vaddr_atomic);
  419. if (unwritten)
  420. return -EFAULT;
  421. return 0;
  422. }
  423. /* Here's the write path which can sleep for
  424. * page faults
  425. */
  426. static inline int
  427. slow_kernel_write(struct io_mapping *mapping,
  428. loff_t gtt_base, int gtt_offset,
  429. struct page *user_page, int user_offset,
  430. int length)
  431. {
  432. char *src_vaddr, *dst_vaddr;
  433. unsigned long unwritten;
  434. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  435. src_vaddr = kmap_atomic(user_page, KM_USER1);
  436. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  437. src_vaddr + user_offset,
  438. length);
  439. kunmap_atomic(src_vaddr, KM_USER1);
  440. io_mapping_unmap_atomic(dst_vaddr);
  441. if (unwritten)
  442. return -EFAULT;
  443. return 0;
  444. }
  445. static inline int
  446. fast_shmem_write(struct page **pages,
  447. loff_t page_base, int page_offset,
  448. char __user *data,
  449. int length)
  450. {
  451. char __iomem *vaddr;
  452. unsigned long unwritten;
  453. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  454. if (vaddr == NULL)
  455. return -ENOMEM;
  456. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  457. kunmap_atomic(vaddr, KM_USER0);
  458. if (unwritten)
  459. return -EFAULT;
  460. return 0;
  461. }
  462. /**
  463. * This is the fast pwrite path, where we copy the data directly from the
  464. * user into the GTT, uncached.
  465. */
  466. static int
  467. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  468. struct drm_i915_gem_pwrite *args,
  469. struct drm_file *file_priv)
  470. {
  471. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  472. drm_i915_private_t *dev_priv = dev->dev_private;
  473. ssize_t remain;
  474. loff_t offset, page_base;
  475. char __user *user_data;
  476. int page_offset, page_length;
  477. int ret;
  478. user_data = (char __user *) (uintptr_t) args->data_ptr;
  479. remain = args->size;
  480. if (!access_ok(VERIFY_READ, user_data, remain))
  481. return -EFAULT;
  482. mutex_lock(&dev->struct_mutex);
  483. ret = i915_gem_object_pin(obj, 0);
  484. if (ret) {
  485. mutex_unlock(&dev->struct_mutex);
  486. return ret;
  487. }
  488. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  489. if (ret)
  490. goto fail;
  491. obj_priv = obj->driver_private;
  492. offset = obj_priv->gtt_offset + args->offset;
  493. while (remain > 0) {
  494. /* Operation in this page
  495. *
  496. * page_base = page offset within aperture
  497. * page_offset = offset within page
  498. * page_length = bytes to copy for this page
  499. */
  500. page_base = (offset & ~(PAGE_SIZE-1));
  501. page_offset = offset & (PAGE_SIZE-1);
  502. page_length = remain;
  503. if ((page_offset + remain) > PAGE_SIZE)
  504. page_length = PAGE_SIZE - page_offset;
  505. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  506. page_offset, user_data, page_length);
  507. /* If we get a fault while copying data, then (presumably) our
  508. * source page isn't available. Return the error and we'll
  509. * retry in the slow path.
  510. */
  511. if (ret)
  512. goto fail;
  513. remain -= page_length;
  514. user_data += page_length;
  515. offset += page_length;
  516. }
  517. fail:
  518. i915_gem_object_unpin(obj);
  519. mutex_unlock(&dev->struct_mutex);
  520. return ret;
  521. }
  522. /**
  523. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  524. * the memory and maps it using kmap_atomic for copying.
  525. *
  526. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  527. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  528. */
  529. static int
  530. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  531. struct drm_i915_gem_pwrite *args,
  532. struct drm_file *file_priv)
  533. {
  534. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  535. drm_i915_private_t *dev_priv = dev->dev_private;
  536. ssize_t remain;
  537. loff_t gtt_page_base, offset;
  538. loff_t first_data_page, last_data_page, num_pages;
  539. loff_t pinned_pages, i;
  540. struct page **user_pages;
  541. struct mm_struct *mm = current->mm;
  542. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  543. int ret;
  544. uint64_t data_ptr = args->data_ptr;
  545. remain = args->size;
  546. /* Pin the user pages containing the data. We can't fault while
  547. * holding the struct mutex, and all of the pwrite implementations
  548. * want to hold it while dereferencing the user data.
  549. */
  550. first_data_page = data_ptr / PAGE_SIZE;
  551. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  552. num_pages = last_data_page - first_data_page + 1;
  553. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  554. if (user_pages == NULL)
  555. return -ENOMEM;
  556. down_read(&mm->mmap_sem);
  557. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  558. num_pages, 0, 0, user_pages, NULL);
  559. up_read(&mm->mmap_sem);
  560. if (pinned_pages < num_pages) {
  561. ret = -EFAULT;
  562. goto out_unpin_pages;
  563. }
  564. mutex_lock(&dev->struct_mutex);
  565. ret = i915_gem_object_pin(obj, 0);
  566. if (ret)
  567. goto out_unlock;
  568. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  569. if (ret)
  570. goto out_unpin_object;
  571. obj_priv = obj->driver_private;
  572. offset = obj_priv->gtt_offset + args->offset;
  573. while (remain > 0) {
  574. /* Operation in this page
  575. *
  576. * gtt_page_base = page offset within aperture
  577. * gtt_page_offset = offset within page in aperture
  578. * data_page_index = page number in get_user_pages return
  579. * data_page_offset = offset with data_page_index page.
  580. * page_length = bytes to copy for this page
  581. */
  582. gtt_page_base = offset & PAGE_MASK;
  583. gtt_page_offset = offset & ~PAGE_MASK;
  584. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  585. data_page_offset = data_ptr & ~PAGE_MASK;
  586. page_length = remain;
  587. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  588. page_length = PAGE_SIZE - gtt_page_offset;
  589. if ((data_page_offset + page_length) > PAGE_SIZE)
  590. page_length = PAGE_SIZE - data_page_offset;
  591. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  592. gtt_page_base, gtt_page_offset,
  593. user_pages[data_page_index],
  594. data_page_offset,
  595. page_length);
  596. /* If we get a fault while copying data, then (presumably) our
  597. * source page isn't available. Return the error and we'll
  598. * retry in the slow path.
  599. */
  600. if (ret)
  601. goto out_unpin_object;
  602. remain -= page_length;
  603. offset += page_length;
  604. data_ptr += page_length;
  605. }
  606. out_unpin_object:
  607. i915_gem_object_unpin(obj);
  608. out_unlock:
  609. mutex_unlock(&dev->struct_mutex);
  610. out_unpin_pages:
  611. for (i = 0; i < pinned_pages; i++)
  612. page_cache_release(user_pages[i]);
  613. drm_free_large(user_pages);
  614. return ret;
  615. }
  616. /**
  617. * This is the fast shmem pwrite path, which attempts to directly
  618. * copy_from_user into the kmapped pages backing the object.
  619. */
  620. static int
  621. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  622. struct drm_i915_gem_pwrite *args,
  623. struct drm_file *file_priv)
  624. {
  625. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  626. ssize_t remain;
  627. loff_t offset, page_base;
  628. char __user *user_data;
  629. int page_offset, page_length;
  630. int ret;
  631. user_data = (char __user *) (uintptr_t) args->data_ptr;
  632. remain = args->size;
  633. mutex_lock(&dev->struct_mutex);
  634. ret = i915_gem_object_get_pages(obj);
  635. if (ret != 0)
  636. goto fail_unlock;
  637. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  638. if (ret != 0)
  639. goto fail_put_pages;
  640. obj_priv = obj->driver_private;
  641. offset = args->offset;
  642. obj_priv->dirty = 1;
  643. while (remain > 0) {
  644. /* Operation in this page
  645. *
  646. * page_base = page offset within aperture
  647. * page_offset = offset within page
  648. * page_length = bytes to copy for this page
  649. */
  650. page_base = (offset & ~(PAGE_SIZE-1));
  651. page_offset = offset & (PAGE_SIZE-1);
  652. page_length = remain;
  653. if ((page_offset + remain) > PAGE_SIZE)
  654. page_length = PAGE_SIZE - page_offset;
  655. ret = fast_shmem_write(obj_priv->pages,
  656. page_base, page_offset,
  657. user_data, page_length);
  658. if (ret)
  659. goto fail_put_pages;
  660. remain -= page_length;
  661. user_data += page_length;
  662. offset += page_length;
  663. }
  664. fail_put_pages:
  665. i915_gem_object_put_pages(obj);
  666. fail_unlock:
  667. mutex_unlock(&dev->struct_mutex);
  668. return ret;
  669. }
  670. /**
  671. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  672. * the memory and maps it using kmap_atomic for copying.
  673. *
  674. * This avoids taking mmap_sem for faulting on the user's address while the
  675. * struct_mutex is held.
  676. */
  677. static int
  678. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  679. struct drm_i915_gem_pwrite *args,
  680. struct drm_file *file_priv)
  681. {
  682. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  683. struct mm_struct *mm = current->mm;
  684. struct page **user_pages;
  685. ssize_t remain;
  686. loff_t offset, pinned_pages, i;
  687. loff_t first_data_page, last_data_page, num_pages;
  688. int shmem_page_index, shmem_page_offset;
  689. int data_page_index, data_page_offset;
  690. int page_length;
  691. int ret;
  692. uint64_t data_ptr = args->data_ptr;
  693. int do_bit17_swizzling;
  694. remain = args->size;
  695. /* Pin the user pages containing the data. We can't fault while
  696. * holding the struct mutex, and all of the pwrite implementations
  697. * want to hold it while dereferencing the user data.
  698. */
  699. first_data_page = data_ptr / PAGE_SIZE;
  700. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  701. num_pages = last_data_page - first_data_page + 1;
  702. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  703. if (user_pages == NULL)
  704. return -ENOMEM;
  705. down_read(&mm->mmap_sem);
  706. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  707. num_pages, 0, 0, user_pages, NULL);
  708. up_read(&mm->mmap_sem);
  709. if (pinned_pages < num_pages) {
  710. ret = -EFAULT;
  711. goto fail_put_user_pages;
  712. }
  713. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  714. mutex_lock(&dev->struct_mutex);
  715. ret = i915_gem_object_get_pages(obj);
  716. if (ret != 0)
  717. goto fail_unlock;
  718. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  719. if (ret != 0)
  720. goto fail_put_pages;
  721. obj_priv = obj->driver_private;
  722. offset = args->offset;
  723. obj_priv->dirty = 1;
  724. while (remain > 0) {
  725. /* Operation in this page
  726. *
  727. * shmem_page_index = page number within shmem file
  728. * shmem_page_offset = offset within page in shmem file
  729. * data_page_index = page number in get_user_pages return
  730. * data_page_offset = offset with data_page_index page.
  731. * page_length = bytes to copy for this page
  732. */
  733. shmem_page_index = offset / PAGE_SIZE;
  734. shmem_page_offset = offset & ~PAGE_MASK;
  735. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  736. data_page_offset = data_ptr & ~PAGE_MASK;
  737. page_length = remain;
  738. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  739. page_length = PAGE_SIZE - shmem_page_offset;
  740. if ((data_page_offset + page_length) > PAGE_SIZE)
  741. page_length = PAGE_SIZE - data_page_offset;
  742. if (do_bit17_swizzling) {
  743. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  744. shmem_page_offset,
  745. user_pages[data_page_index],
  746. data_page_offset,
  747. page_length,
  748. 0);
  749. } else {
  750. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  751. shmem_page_offset,
  752. user_pages[data_page_index],
  753. data_page_offset,
  754. page_length);
  755. }
  756. if (ret)
  757. goto fail_put_pages;
  758. remain -= page_length;
  759. data_ptr += page_length;
  760. offset += page_length;
  761. }
  762. fail_put_pages:
  763. i915_gem_object_put_pages(obj);
  764. fail_unlock:
  765. mutex_unlock(&dev->struct_mutex);
  766. fail_put_user_pages:
  767. for (i = 0; i < pinned_pages; i++)
  768. page_cache_release(user_pages[i]);
  769. drm_free_large(user_pages);
  770. return ret;
  771. }
  772. /**
  773. * Writes data to the object referenced by handle.
  774. *
  775. * On error, the contents of the buffer that were to be modified are undefined.
  776. */
  777. int
  778. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  779. struct drm_file *file_priv)
  780. {
  781. struct drm_i915_gem_pwrite *args = data;
  782. struct drm_gem_object *obj;
  783. struct drm_i915_gem_object *obj_priv;
  784. int ret = 0;
  785. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  786. if (obj == NULL)
  787. return -EBADF;
  788. obj_priv = obj->driver_private;
  789. /* Bounds check destination.
  790. *
  791. * XXX: This could use review for overflow issues...
  792. */
  793. if (args->offset > obj->size || args->size > obj->size ||
  794. args->offset + args->size > obj->size) {
  795. drm_gem_object_unreference(obj);
  796. return -EINVAL;
  797. }
  798. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  799. * it would end up going through the fenced access, and we'll get
  800. * different detiling behavior between reading and writing.
  801. * pread/pwrite currently are reading and writing from the CPU
  802. * perspective, requiring manual detiling by the client.
  803. */
  804. if (obj_priv->phys_obj)
  805. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  806. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  807. dev->gtt_total != 0) {
  808. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  809. if (ret == -EFAULT) {
  810. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  811. file_priv);
  812. }
  813. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  814. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  815. } else {
  816. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  817. if (ret == -EFAULT) {
  818. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  819. file_priv);
  820. }
  821. }
  822. #if WATCH_PWRITE
  823. if (ret)
  824. DRM_INFO("pwrite failed %d\n", ret);
  825. #endif
  826. drm_gem_object_unreference(obj);
  827. return ret;
  828. }
  829. /**
  830. * Called when user space prepares to use an object with the CPU, either
  831. * through the mmap ioctl's mapping or a GTT mapping.
  832. */
  833. int
  834. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  835. struct drm_file *file_priv)
  836. {
  837. struct drm_i915_private *dev_priv = dev->dev_private;
  838. struct drm_i915_gem_set_domain *args = data;
  839. struct drm_gem_object *obj;
  840. struct drm_i915_gem_object *obj_priv;
  841. uint32_t read_domains = args->read_domains;
  842. uint32_t write_domain = args->write_domain;
  843. int ret;
  844. if (!(dev->driver->driver_features & DRIVER_GEM))
  845. return -ENODEV;
  846. /* Only handle setting domains to types used by the CPU. */
  847. if (write_domain & I915_GEM_GPU_DOMAINS)
  848. return -EINVAL;
  849. if (read_domains & I915_GEM_GPU_DOMAINS)
  850. return -EINVAL;
  851. /* Having something in the write domain implies it's in the read
  852. * domain, and only that read domain. Enforce that in the request.
  853. */
  854. if (write_domain != 0 && read_domains != write_domain)
  855. return -EINVAL;
  856. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  857. if (obj == NULL)
  858. return -EBADF;
  859. obj_priv = obj->driver_private;
  860. mutex_lock(&dev->struct_mutex);
  861. intel_mark_busy(dev, obj);
  862. #if WATCH_BUF
  863. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  864. obj, obj->size, read_domains, write_domain);
  865. #endif
  866. if (read_domains & I915_GEM_DOMAIN_GTT) {
  867. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  868. /* Update the LRU on the fence for the CPU access that's
  869. * about to occur.
  870. */
  871. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  872. list_move_tail(&obj_priv->fence_list,
  873. &dev_priv->mm.fence_list);
  874. }
  875. /* Silently promote "you're not bound, there was nothing to do"
  876. * to success, since the client was just asking us to
  877. * make sure everything was done.
  878. */
  879. if (ret == -EINVAL)
  880. ret = 0;
  881. } else {
  882. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  883. }
  884. drm_gem_object_unreference(obj);
  885. mutex_unlock(&dev->struct_mutex);
  886. return ret;
  887. }
  888. /**
  889. * Called when user space has done writes to this buffer
  890. */
  891. int
  892. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  893. struct drm_file *file_priv)
  894. {
  895. struct drm_i915_gem_sw_finish *args = data;
  896. struct drm_gem_object *obj;
  897. struct drm_i915_gem_object *obj_priv;
  898. int ret = 0;
  899. if (!(dev->driver->driver_features & DRIVER_GEM))
  900. return -ENODEV;
  901. mutex_lock(&dev->struct_mutex);
  902. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  903. if (obj == NULL) {
  904. mutex_unlock(&dev->struct_mutex);
  905. return -EBADF;
  906. }
  907. #if WATCH_BUF
  908. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  909. __func__, args->handle, obj, obj->size);
  910. #endif
  911. obj_priv = obj->driver_private;
  912. /* Pinned buffers may be scanout, so flush the cache */
  913. if (obj_priv->pin_count)
  914. i915_gem_object_flush_cpu_write_domain(obj);
  915. drm_gem_object_unreference(obj);
  916. mutex_unlock(&dev->struct_mutex);
  917. return ret;
  918. }
  919. /**
  920. * Maps the contents of an object, returning the address it is mapped
  921. * into.
  922. *
  923. * While the mapping holds a reference on the contents of the object, it doesn't
  924. * imply a ref on the object itself.
  925. */
  926. int
  927. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  928. struct drm_file *file_priv)
  929. {
  930. struct drm_i915_gem_mmap *args = data;
  931. struct drm_gem_object *obj;
  932. loff_t offset;
  933. unsigned long addr;
  934. if (!(dev->driver->driver_features & DRIVER_GEM))
  935. return -ENODEV;
  936. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  937. if (obj == NULL)
  938. return -EBADF;
  939. offset = args->offset;
  940. down_write(&current->mm->mmap_sem);
  941. addr = do_mmap(obj->filp, 0, args->size,
  942. PROT_READ | PROT_WRITE, MAP_SHARED,
  943. args->offset);
  944. up_write(&current->mm->mmap_sem);
  945. mutex_lock(&dev->struct_mutex);
  946. drm_gem_object_unreference(obj);
  947. mutex_unlock(&dev->struct_mutex);
  948. if (IS_ERR((void *)addr))
  949. return addr;
  950. args->addr_ptr = (uint64_t) addr;
  951. return 0;
  952. }
  953. /**
  954. * i915_gem_fault - fault a page into the GTT
  955. * vma: VMA in question
  956. * vmf: fault info
  957. *
  958. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  959. * from userspace. The fault handler takes care of binding the object to
  960. * the GTT (if needed), allocating and programming a fence register (again,
  961. * only if needed based on whether the old reg is still valid or the object
  962. * is tiled) and inserting a new PTE into the faulting process.
  963. *
  964. * Note that the faulting process may involve evicting existing objects
  965. * from the GTT and/or fence registers to make room. So performance may
  966. * suffer if the GTT working set is large or there are few fence registers
  967. * left.
  968. */
  969. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  970. {
  971. struct drm_gem_object *obj = vma->vm_private_data;
  972. struct drm_device *dev = obj->dev;
  973. struct drm_i915_private *dev_priv = dev->dev_private;
  974. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  975. pgoff_t page_offset;
  976. unsigned long pfn;
  977. int ret = 0;
  978. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  979. /* We don't use vmf->pgoff since that has the fake offset */
  980. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  981. PAGE_SHIFT;
  982. /* Now bind it into the GTT if needed */
  983. mutex_lock(&dev->struct_mutex);
  984. if (!obj_priv->gtt_space) {
  985. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  986. if (ret) {
  987. mutex_unlock(&dev->struct_mutex);
  988. return VM_FAULT_SIGBUS;
  989. }
  990. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  991. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  992. if (ret) {
  993. mutex_unlock(&dev->struct_mutex);
  994. return VM_FAULT_SIGBUS;
  995. }
  996. }
  997. /* Need a new fence register? */
  998. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  999. ret = i915_gem_object_get_fence_reg(obj);
  1000. if (ret) {
  1001. mutex_unlock(&dev->struct_mutex);
  1002. return VM_FAULT_SIGBUS;
  1003. }
  1004. }
  1005. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1006. page_offset;
  1007. /* Finally, remap it using the new GTT offset */
  1008. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1009. mutex_unlock(&dev->struct_mutex);
  1010. switch (ret) {
  1011. case -ENOMEM:
  1012. case -EAGAIN:
  1013. return VM_FAULT_OOM;
  1014. case -EFAULT:
  1015. case -EINVAL:
  1016. return VM_FAULT_SIGBUS;
  1017. default:
  1018. return VM_FAULT_NOPAGE;
  1019. }
  1020. }
  1021. /**
  1022. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1023. * @obj: obj in question
  1024. *
  1025. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1026. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1027. * up the object based on the offset and sets up the various memory mapping
  1028. * structures.
  1029. *
  1030. * This routine allocates and attaches a fake offset for @obj.
  1031. */
  1032. static int
  1033. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1034. {
  1035. struct drm_device *dev = obj->dev;
  1036. struct drm_gem_mm *mm = dev->mm_private;
  1037. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1038. struct drm_map_list *list;
  1039. struct drm_local_map *map;
  1040. int ret = 0;
  1041. /* Set the object up for mmap'ing */
  1042. list = &obj->map_list;
  1043. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1044. if (!list->map)
  1045. return -ENOMEM;
  1046. map = list->map;
  1047. map->type = _DRM_GEM;
  1048. map->size = obj->size;
  1049. map->handle = obj;
  1050. /* Get a DRM GEM mmap offset allocated... */
  1051. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1052. obj->size / PAGE_SIZE, 0, 0);
  1053. if (!list->file_offset_node) {
  1054. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1055. ret = -ENOMEM;
  1056. goto out_free_list;
  1057. }
  1058. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1059. obj->size / PAGE_SIZE, 0);
  1060. if (!list->file_offset_node) {
  1061. ret = -ENOMEM;
  1062. goto out_free_list;
  1063. }
  1064. list->hash.key = list->file_offset_node->start;
  1065. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1066. DRM_ERROR("failed to add to map hash\n");
  1067. goto out_free_mm;
  1068. }
  1069. /* By now we should be all set, any drm_mmap request on the offset
  1070. * below will get to our mmap & fault handler */
  1071. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1072. return 0;
  1073. out_free_mm:
  1074. drm_mm_put_block(list->file_offset_node);
  1075. out_free_list:
  1076. kfree(list->map);
  1077. return ret;
  1078. }
  1079. /**
  1080. * i915_gem_release_mmap - remove physical page mappings
  1081. * @obj: obj in question
  1082. *
  1083. * Preserve the reservation of the mmaping with the DRM core code, but
  1084. * relinquish ownership of the pages back to the system.
  1085. *
  1086. * It is vital that we remove the page mapping if we have mapped a tiled
  1087. * object through the GTT and then lose the fence register due to
  1088. * resource pressure. Similarly if the object has been moved out of the
  1089. * aperture, than pages mapped into userspace must be revoked. Removing the
  1090. * mapping will then trigger a page fault on the next user access, allowing
  1091. * fixup by i915_gem_fault().
  1092. */
  1093. void
  1094. i915_gem_release_mmap(struct drm_gem_object *obj)
  1095. {
  1096. struct drm_device *dev = obj->dev;
  1097. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1098. if (dev->dev_mapping)
  1099. unmap_mapping_range(dev->dev_mapping,
  1100. obj_priv->mmap_offset, obj->size, 1);
  1101. }
  1102. static void
  1103. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1104. {
  1105. struct drm_device *dev = obj->dev;
  1106. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1107. struct drm_gem_mm *mm = dev->mm_private;
  1108. struct drm_map_list *list;
  1109. list = &obj->map_list;
  1110. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1111. if (list->file_offset_node) {
  1112. drm_mm_put_block(list->file_offset_node);
  1113. list->file_offset_node = NULL;
  1114. }
  1115. if (list->map) {
  1116. kfree(list->map);
  1117. list->map = NULL;
  1118. }
  1119. obj_priv->mmap_offset = 0;
  1120. }
  1121. /**
  1122. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1123. * @obj: object to check
  1124. *
  1125. * Return the required GTT alignment for an object, taking into account
  1126. * potential fence register mapping if needed.
  1127. */
  1128. static uint32_t
  1129. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1130. {
  1131. struct drm_device *dev = obj->dev;
  1132. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1133. int start, i;
  1134. /*
  1135. * Minimum alignment is 4k (GTT page size), but might be greater
  1136. * if a fence register is needed for the object.
  1137. */
  1138. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1139. return 4096;
  1140. /*
  1141. * Previous chips need to be aligned to the size of the smallest
  1142. * fence register that can contain the object.
  1143. */
  1144. if (IS_I9XX(dev))
  1145. start = 1024*1024;
  1146. else
  1147. start = 512*1024;
  1148. for (i = start; i < obj->size; i <<= 1)
  1149. ;
  1150. return i;
  1151. }
  1152. /**
  1153. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1154. * @dev: DRM device
  1155. * @data: GTT mapping ioctl data
  1156. * @file_priv: GEM object info
  1157. *
  1158. * Simply returns the fake offset to userspace so it can mmap it.
  1159. * The mmap call will end up in drm_gem_mmap(), which will set things
  1160. * up so we can get faults in the handler above.
  1161. *
  1162. * The fault handler will take care of binding the object into the GTT
  1163. * (since it may have been evicted to make room for something), allocating
  1164. * a fence register, and mapping the appropriate aperture address into
  1165. * userspace.
  1166. */
  1167. int
  1168. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1169. struct drm_file *file_priv)
  1170. {
  1171. struct drm_i915_gem_mmap_gtt *args = data;
  1172. struct drm_i915_private *dev_priv = dev->dev_private;
  1173. struct drm_gem_object *obj;
  1174. struct drm_i915_gem_object *obj_priv;
  1175. int ret;
  1176. if (!(dev->driver->driver_features & DRIVER_GEM))
  1177. return -ENODEV;
  1178. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1179. if (obj == NULL)
  1180. return -EBADF;
  1181. mutex_lock(&dev->struct_mutex);
  1182. obj_priv = obj->driver_private;
  1183. if (!obj_priv->mmap_offset) {
  1184. ret = i915_gem_create_mmap_offset(obj);
  1185. if (ret) {
  1186. drm_gem_object_unreference(obj);
  1187. mutex_unlock(&dev->struct_mutex);
  1188. return ret;
  1189. }
  1190. }
  1191. args->offset = obj_priv->mmap_offset;
  1192. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1193. /* Make sure the alignment is correct for fence regs etc */
  1194. if (obj_priv->agp_mem &&
  1195. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1196. drm_gem_object_unreference(obj);
  1197. mutex_unlock(&dev->struct_mutex);
  1198. return -EINVAL;
  1199. }
  1200. /*
  1201. * Pull it into the GTT so that we have a page list (makes the
  1202. * initial fault faster and any subsequent flushing possible).
  1203. */
  1204. if (!obj_priv->agp_mem) {
  1205. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1206. if (ret) {
  1207. drm_gem_object_unreference(obj);
  1208. mutex_unlock(&dev->struct_mutex);
  1209. return ret;
  1210. }
  1211. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1212. }
  1213. drm_gem_object_unreference(obj);
  1214. mutex_unlock(&dev->struct_mutex);
  1215. return 0;
  1216. }
  1217. void
  1218. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1219. {
  1220. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1221. int page_count = obj->size / PAGE_SIZE;
  1222. int i;
  1223. BUG_ON(obj_priv->pages_refcount == 0);
  1224. if (--obj_priv->pages_refcount != 0)
  1225. return;
  1226. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1227. i915_gem_object_save_bit_17_swizzle(obj);
  1228. for (i = 0; i < page_count; i++)
  1229. if (obj_priv->pages[i] != NULL) {
  1230. if (obj_priv->dirty)
  1231. set_page_dirty(obj_priv->pages[i]);
  1232. mark_page_accessed(obj_priv->pages[i]);
  1233. page_cache_release(obj_priv->pages[i]);
  1234. }
  1235. obj_priv->dirty = 0;
  1236. drm_free_large(obj_priv->pages);
  1237. obj_priv->pages = NULL;
  1238. }
  1239. static void
  1240. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1241. {
  1242. struct drm_device *dev = obj->dev;
  1243. drm_i915_private_t *dev_priv = dev->dev_private;
  1244. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1245. /* Add a reference if we're newly entering the active list. */
  1246. if (!obj_priv->active) {
  1247. drm_gem_object_reference(obj);
  1248. obj_priv->active = 1;
  1249. }
  1250. /* Move from whatever list we were on to the tail of execution. */
  1251. spin_lock(&dev_priv->mm.active_list_lock);
  1252. list_move_tail(&obj_priv->list,
  1253. &dev_priv->mm.active_list);
  1254. spin_unlock(&dev_priv->mm.active_list_lock);
  1255. obj_priv->last_rendering_seqno = seqno;
  1256. }
  1257. static void
  1258. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1259. {
  1260. struct drm_device *dev = obj->dev;
  1261. drm_i915_private_t *dev_priv = dev->dev_private;
  1262. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1263. BUG_ON(!obj_priv->active);
  1264. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1265. obj_priv->last_rendering_seqno = 0;
  1266. }
  1267. static void
  1268. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1269. {
  1270. struct drm_device *dev = obj->dev;
  1271. drm_i915_private_t *dev_priv = dev->dev_private;
  1272. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1273. i915_verify_inactive(dev, __FILE__, __LINE__);
  1274. if (obj_priv->pin_count != 0)
  1275. list_del_init(&obj_priv->list);
  1276. else
  1277. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1278. obj_priv->last_rendering_seqno = 0;
  1279. if (obj_priv->active) {
  1280. obj_priv->active = 0;
  1281. drm_gem_object_unreference(obj);
  1282. }
  1283. i915_verify_inactive(dev, __FILE__, __LINE__);
  1284. }
  1285. /**
  1286. * Creates a new sequence number, emitting a write of it to the status page
  1287. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1288. *
  1289. * Must be called with struct_lock held.
  1290. *
  1291. * Returned sequence numbers are nonzero on success.
  1292. */
  1293. static uint32_t
  1294. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1295. uint32_t flush_domains)
  1296. {
  1297. drm_i915_private_t *dev_priv = dev->dev_private;
  1298. struct drm_i915_file_private *i915_file_priv = NULL;
  1299. struct drm_i915_gem_request *request;
  1300. uint32_t seqno;
  1301. int was_empty;
  1302. RING_LOCALS;
  1303. if (file_priv != NULL)
  1304. i915_file_priv = file_priv->driver_priv;
  1305. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1306. if (request == NULL)
  1307. return 0;
  1308. /* Grab the seqno we're going to make this request be, and bump the
  1309. * next (skipping 0 so it can be the reserved no-seqno value).
  1310. */
  1311. seqno = dev_priv->mm.next_gem_seqno;
  1312. dev_priv->mm.next_gem_seqno++;
  1313. if (dev_priv->mm.next_gem_seqno == 0)
  1314. dev_priv->mm.next_gem_seqno++;
  1315. BEGIN_LP_RING(4);
  1316. OUT_RING(MI_STORE_DWORD_INDEX);
  1317. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1318. OUT_RING(seqno);
  1319. OUT_RING(MI_USER_INTERRUPT);
  1320. ADVANCE_LP_RING();
  1321. DRM_DEBUG("%d\n", seqno);
  1322. request->seqno = seqno;
  1323. request->emitted_jiffies = jiffies;
  1324. was_empty = list_empty(&dev_priv->mm.request_list);
  1325. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1326. if (i915_file_priv) {
  1327. list_add_tail(&request->client_list,
  1328. &i915_file_priv->mm.request_list);
  1329. } else {
  1330. INIT_LIST_HEAD(&request->client_list);
  1331. }
  1332. /* Associate any objects on the flushing list matching the write
  1333. * domain we're flushing with our flush.
  1334. */
  1335. if (flush_domains != 0) {
  1336. struct drm_i915_gem_object *obj_priv, *next;
  1337. list_for_each_entry_safe(obj_priv, next,
  1338. &dev_priv->mm.flushing_list, list) {
  1339. struct drm_gem_object *obj = obj_priv->obj;
  1340. if ((obj->write_domain & flush_domains) ==
  1341. obj->write_domain) {
  1342. obj->write_domain = 0;
  1343. i915_gem_object_move_to_active(obj, seqno);
  1344. }
  1345. }
  1346. }
  1347. if (!dev_priv->mm.suspended) {
  1348. mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
  1349. if (was_empty)
  1350. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1351. }
  1352. return seqno;
  1353. }
  1354. /**
  1355. * Command execution barrier
  1356. *
  1357. * Ensures that all commands in the ring are finished
  1358. * before signalling the CPU
  1359. */
  1360. static uint32_t
  1361. i915_retire_commands(struct drm_device *dev)
  1362. {
  1363. drm_i915_private_t *dev_priv = dev->dev_private;
  1364. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1365. uint32_t flush_domains = 0;
  1366. RING_LOCALS;
  1367. /* The sampler always gets flushed on i965 (sigh) */
  1368. if (IS_I965G(dev))
  1369. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1370. BEGIN_LP_RING(2);
  1371. OUT_RING(cmd);
  1372. OUT_RING(0); /* noop */
  1373. ADVANCE_LP_RING();
  1374. return flush_domains;
  1375. }
  1376. /**
  1377. * Moves buffers associated only with the given active seqno from the active
  1378. * to inactive list, potentially freeing them.
  1379. */
  1380. static void
  1381. i915_gem_retire_request(struct drm_device *dev,
  1382. struct drm_i915_gem_request *request)
  1383. {
  1384. drm_i915_private_t *dev_priv = dev->dev_private;
  1385. /* Move any buffers on the active list that are no longer referenced
  1386. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1387. */
  1388. spin_lock(&dev_priv->mm.active_list_lock);
  1389. while (!list_empty(&dev_priv->mm.active_list)) {
  1390. struct drm_gem_object *obj;
  1391. struct drm_i915_gem_object *obj_priv;
  1392. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1393. struct drm_i915_gem_object,
  1394. list);
  1395. obj = obj_priv->obj;
  1396. /* If the seqno being retired doesn't match the oldest in the
  1397. * list, then the oldest in the list must still be newer than
  1398. * this seqno.
  1399. */
  1400. if (obj_priv->last_rendering_seqno != request->seqno)
  1401. goto out;
  1402. #if WATCH_LRU
  1403. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1404. __func__, request->seqno, obj);
  1405. #endif
  1406. if (obj->write_domain != 0)
  1407. i915_gem_object_move_to_flushing(obj);
  1408. else {
  1409. /* Take a reference on the object so it won't be
  1410. * freed while the spinlock is held. The list
  1411. * protection for this spinlock is safe when breaking
  1412. * the lock like this since the next thing we do
  1413. * is just get the head of the list again.
  1414. */
  1415. drm_gem_object_reference(obj);
  1416. i915_gem_object_move_to_inactive(obj);
  1417. spin_unlock(&dev_priv->mm.active_list_lock);
  1418. drm_gem_object_unreference(obj);
  1419. spin_lock(&dev_priv->mm.active_list_lock);
  1420. }
  1421. }
  1422. out:
  1423. spin_unlock(&dev_priv->mm.active_list_lock);
  1424. }
  1425. /**
  1426. * Returns true if seq1 is later than seq2.
  1427. */
  1428. bool
  1429. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1430. {
  1431. return (int32_t)(seq1 - seq2) >= 0;
  1432. }
  1433. uint32_t
  1434. i915_get_gem_seqno(struct drm_device *dev)
  1435. {
  1436. drm_i915_private_t *dev_priv = dev->dev_private;
  1437. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1438. }
  1439. /**
  1440. * This function clears the request list as sequence numbers are passed.
  1441. */
  1442. void
  1443. i915_gem_retire_requests(struct drm_device *dev)
  1444. {
  1445. drm_i915_private_t *dev_priv = dev->dev_private;
  1446. uint32_t seqno;
  1447. if (!dev_priv->hw_status_page)
  1448. return;
  1449. seqno = i915_get_gem_seqno(dev);
  1450. while (!list_empty(&dev_priv->mm.request_list)) {
  1451. struct drm_i915_gem_request *request;
  1452. uint32_t retiring_seqno;
  1453. request = list_first_entry(&dev_priv->mm.request_list,
  1454. struct drm_i915_gem_request,
  1455. list);
  1456. retiring_seqno = request->seqno;
  1457. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1458. atomic_read(&dev_priv->mm.wedged)) {
  1459. i915_gem_retire_request(dev, request);
  1460. list_del(&request->list);
  1461. list_del(&request->client_list);
  1462. kfree(request);
  1463. } else
  1464. break;
  1465. }
  1466. }
  1467. void
  1468. i915_gem_retire_work_handler(struct work_struct *work)
  1469. {
  1470. drm_i915_private_t *dev_priv;
  1471. struct drm_device *dev;
  1472. dev_priv = container_of(work, drm_i915_private_t,
  1473. mm.retire_work.work);
  1474. dev = dev_priv->dev;
  1475. mutex_lock(&dev->struct_mutex);
  1476. i915_gem_retire_requests(dev);
  1477. if (!dev_priv->mm.suspended &&
  1478. !list_empty(&dev_priv->mm.request_list))
  1479. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1480. mutex_unlock(&dev->struct_mutex);
  1481. }
  1482. /**
  1483. * Waits for a sequence number to be signaled, and cleans up the
  1484. * request and object lists appropriately for that event.
  1485. */
  1486. static int
  1487. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1488. {
  1489. drm_i915_private_t *dev_priv = dev->dev_private;
  1490. u32 ier;
  1491. int ret = 0;
  1492. BUG_ON(seqno == 0);
  1493. if (atomic_read(&dev_priv->mm.wedged))
  1494. return -EIO;
  1495. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1496. if (IS_IGDNG(dev))
  1497. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1498. else
  1499. ier = I915_READ(IER);
  1500. if (!ier) {
  1501. DRM_ERROR("something (likely vbetool) disabled "
  1502. "interrupts, re-enabling\n");
  1503. i915_driver_irq_preinstall(dev);
  1504. i915_driver_irq_postinstall(dev);
  1505. }
  1506. dev_priv->mm.waiting_gem_seqno = seqno;
  1507. i915_user_irq_get(dev);
  1508. ret = wait_event_interruptible(dev_priv->irq_queue,
  1509. i915_seqno_passed(i915_get_gem_seqno(dev),
  1510. seqno) ||
  1511. atomic_read(&dev_priv->mm.wedged));
  1512. i915_user_irq_put(dev);
  1513. dev_priv->mm.waiting_gem_seqno = 0;
  1514. }
  1515. if (atomic_read(&dev_priv->mm.wedged))
  1516. ret = -EIO;
  1517. if (ret && ret != -ERESTARTSYS)
  1518. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1519. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1520. /* Directly dispatch request retiring. While we have the work queue
  1521. * to handle this, the waiter on a request often wants an associated
  1522. * buffer to have made it to the inactive list, and we would need
  1523. * a separate wait queue to handle that.
  1524. */
  1525. if (ret == 0)
  1526. i915_gem_retire_requests(dev);
  1527. return ret;
  1528. }
  1529. static void
  1530. i915_gem_flush(struct drm_device *dev,
  1531. uint32_t invalidate_domains,
  1532. uint32_t flush_domains)
  1533. {
  1534. drm_i915_private_t *dev_priv = dev->dev_private;
  1535. uint32_t cmd;
  1536. RING_LOCALS;
  1537. #if WATCH_EXEC
  1538. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1539. invalidate_domains, flush_domains);
  1540. #endif
  1541. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1542. drm_agp_chipset_flush(dev);
  1543. if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
  1544. /*
  1545. * read/write caches:
  1546. *
  1547. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1548. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1549. * also flushed at 2d versus 3d pipeline switches.
  1550. *
  1551. * read-only caches:
  1552. *
  1553. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1554. * MI_READ_FLUSH is set, and is always flushed on 965.
  1555. *
  1556. * I915_GEM_DOMAIN_COMMAND may not exist?
  1557. *
  1558. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1559. * invalidated when MI_EXE_FLUSH is set.
  1560. *
  1561. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1562. * invalidated with every MI_FLUSH.
  1563. *
  1564. * TLBs:
  1565. *
  1566. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1567. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1568. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1569. * are flushed at any MI_FLUSH.
  1570. */
  1571. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1572. if ((invalidate_domains|flush_domains) &
  1573. I915_GEM_DOMAIN_RENDER)
  1574. cmd &= ~MI_NO_WRITE_FLUSH;
  1575. if (!IS_I965G(dev)) {
  1576. /*
  1577. * On the 965, the sampler cache always gets flushed
  1578. * and this bit is reserved.
  1579. */
  1580. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1581. cmd |= MI_READ_FLUSH;
  1582. }
  1583. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1584. cmd |= MI_EXE_FLUSH;
  1585. #if WATCH_EXEC
  1586. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1587. #endif
  1588. BEGIN_LP_RING(2);
  1589. OUT_RING(cmd);
  1590. OUT_RING(0); /* noop */
  1591. ADVANCE_LP_RING();
  1592. }
  1593. }
  1594. /**
  1595. * Ensures that all rendering to the object has completed and the object is
  1596. * safe to unbind from the GTT or access from the CPU.
  1597. */
  1598. static int
  1599. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1600. {
  1601. struct drm_device *dev = obj->dev;
  1602. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1603. int ret;
  1604. /* This function only exists to support waiting for existing rendering,
  1605. * not for emitting required flushes.
  1606. */
  1607. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1608. /* If there is rendering queued on the buffer being evicted, wait for
  1609. * it.
  1610. */
  1611. if (obj_priv->active) {
  1612. #if WATCH_BUF
  1613. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1614. __func__, obj, obj_priv->last_rendering_seqno);
  1615. #endif
  1616. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1617. if (ret != 0)
  1618. return ret;
  1619. }
  1620. return 0;
  1621. }
  1622. /**
  1623. * Unbinds an object from the GTT aperture.
  1624. */
  1625. int
  1626. i915_gem_object_unbind(struct drm_gem_object *obj)
  1627. {
  1628. struct drm_device *dev = obj->dev;
  1629. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1630. int ret = 0;
  1631. #if WATCH_BUF
  1632. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1633. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1634. #endif
  1635. if (obj_priv->gtt_space == NULL)
  1636. return 0;
  1637. if (obj_priv->pin_count != 0) {
  1638. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1639. return -EINVAL;
  1640. }
  1641. /* blow away mappings if mapped through GTT */
  1642. i915_gem_release_mmap(obj);
  1643. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1644. i915_gem_clear_fence_reg(obj);
  1645. /* Move the object to the CPU domain to ensure that
  1646. * any possible CPU writes while it's not in the GTT
  1647. * are flushed when we go to remap it. This will
  1648. * also ensure that all pending GPU writes are finished
  1649. * before we unbind.
  1650. */
  1651. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1652. if (ret) {
  1653. if (ret != -ERESTARTSYS)
  1654. DRM_ERROR("set_domain failed: %d\n", ret);
  1655. return ret;
  1656. }
  1657. BUG_ON(obj_priv->active);
  1658. if (obj_priv->agp_mem != NULL) {
  1659. drm_unbind_agp(obj_priv->agp_mem);
  1660. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1661. obj_priv->agp_mem = NULL;
  1662. }
  1663. i915_gem_object_put_pages(obj);
  1664. if (obj_priv->gtt_space) {
  1665. atomic_dec(&dev->gtt_count);
  1666. atomic_sub(obj->size, &dev->gtt_memory);
  1667. drm_mm_put_block(obj_priv->gtt_space);
  1668. obj_priv->gtt_space = NULL;
  1669. }
  1670. /* Remove ourselves from the LRU list if present. */
  1671. if (!list_empty(&obj_priv->list))
  1672. list_del_init(&obj_priv->list);
  1673. return 0;
  1674. }
  1675. static int
  1676. i915_gem_evict_something(struct drm_device *dev)
  1677. {
  1678. drm_i915_private_t *dev_priv = dev->dev_private;
  1679. struct drm_gem_object *obj;
  1680. struct drm_i915_gem_object *obj_priv;
  1681. int ret = 0;
  1682. for (;;) {
  1683. /* If there's an inactive buffer available now, grab it
  1684. * and be done.
  1685. */
  1686. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1687. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1688. struct drm_i915_gem_object,
  1689. list);
  1690. obj = obj_priv->obj;
  1691. BUG_ON(obj_priv->pin_count != 0);
  1692. #if WATCH_LRU
  1693. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1694. #endif
  1695. BUG_ON(obj_priv->active);
  1696. /* Wait on the rendering and unbind the buffer. */
  1697. ret = i915_gem_object_unbind(obj);
  1698. break;
  1699. }
  1700. /* If we didn't get anything, but the ring is still processing
  1701. * things, wait for one of those things to finish and hopefully
  1702. * leave us a buffer to evict.
  1703. */
  1704. if (!list_empty(&dev_priv->mm.request_list)) {
  1705. struct drm_i915_gem_request *request;
  1706. request = list_first_entry(&dev_priv->mm.request_list,
  1707. struct drm_i915_gem_request,
  1708. list);
  1709. ret = i915_wait_request(dev, request->seqno);
  1710. if (ret)
  1711. break;
  1712. /* if waiting caused an object to become inactive,
  1713. * then loop around and wait for it. Otherwise, we
  1714. * assume that waiting freed and unbound something,
  1715. * so there should now be some space in the GTT
  1716. */
  1717. if (!list_empty(&dev_priv->mm.inactive_list))
  1718. continue;
  1719. break;
  1720. }
  1721. /* If we didn't have anything on the request list but there
  1722. * are buffers awaiting a flush, emit one and try again.
  1723. * When we wait on it, those buffers waiting for that flush
  1724. * will get moved to inactive.
  1725. */
  1726. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1727. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1728. struct drm_i915_gem_object,
  1729. list);
  1730. obj = obj_priv->obj;
  1731. i915_gem_flush(dev,
  1732. obj->write_domain,
  1733. obj->write_domain);
  1734. i915_add_request(dev, NULL, obj->write_domain);
  1735. obj = NULL;
  1736. continue;
  1737. }
  1738. DRM_ERROR("inactive empty %d request empty %d "
  1739. "flushing empty %d\n",
  1740. list_empty(&dev_priv->mm.inactive_list),
  1741. list_empty(&dev_priv->mm.request_list),
  1742. list_empty(&dev_priv->mm.flushing_list));
  1743. /* If we didn't do any of the above, there's nothing to be done
  1744. * and we just can't fit it in.
  1745. */
  1746. return -ENOSPC;
  1747. }
  1748. return ret;
  1749. }
  1750. static int
  1751. i915_gem_evict_everything(struct drm_device *dev)
  1752. {
  1753. int ret;
  1754. for (;;) {
  1755. ret = i915_gem_evict_something(dev);
  1756. if (ret != 0)
  1757. break;
  1758. }
  1759. if (ret == -ENOSPC)
  1760. return 0;
  1761. return ret;
  1762. }
  1763. int
  1764. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1765. {
  1766. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1767. int page_count, i;
  1768. struct address_space *mapping;
  1769. struct inode *inode;
  1770. struct page *page;
  1771. int ret;
  1772. if (obj_priv->pages_refcount++ != 0)
  1773. return 0;
  1774. /* Get the list of pages out of our struct file. They'll be pinned
  1775. * at this point until we release them.
  1776. */
  1777. page_count = obj->size / PAGE_SIZE;
  1778. BUG_ON(obj_priv->pages != NULL);
  1779. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1780. if (obj_priv->pages == NULL) {
  1781. DRM_ERROR("Faled to allocate page list\n");
  1782. obj_priv->pages_refcount--;
  1783. return -ENOMEM;
  1784. }
  1785. inode = obj->filp->f_path.dentry->d_inode;
  1786. mapping = inode->i_mapping;
  1787. for (i = 0; i < page_count; i++) {
  1788. page = read_mapping_page(mapping, i, NULL);
  1789. if (IS_ERR(page)) {
  1790. ret = PTR_ERR(page);
  1791. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1792. i915_gem_object_put_pages(obj);
  1793. return ret;
  1794. }
  1795. obj_priv->pages[i] = page;
  1796. }
  1797. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1798. i915_gem_object_do_bit_17_swizzle(obj);
  1799. return 0;
  1800. }
  1801. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1802. {
  1803. struct drm_gem_object *obj = reg->obj;
  1804. struct drm_device *dev = obj->dev;
  1805. drm_i915_private_t *dev_priv = dev->dev_private;
  1806. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1807. int regnum = obj_priv->fence_reg;
  1808. uint64_t val;
  1809. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1810. 0xfffff000) << 32;
  1811. val |= obj_priv->gtt_offset & 0xfffff000;
  1812. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1813. if (obj_priv->tiling_mode == I915_TILING_Y)
  1814. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1815. val |= I965_FENCE_REG_VALID;
  1816. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1817. }
  1818. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1819. {
  1820. struct drm_gem_object *obj = reg->obj;
  1821. struct drm_device *dev = obj->dev;
  1822. drm_i915_private_t *dev_priv = dev->dev_private;
  1823. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1824. int regnum = obj_priv->fence_reg;
  1825. int tile_width;
  1826. uint32_t fence_reg, val;
  1827. uint32_t pitch_val;
  1828. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1829. (obj_priv->gtt_offset & (obj->size - 1))) {
  1830. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1831. __func__, obj_priv->gtt_offset, obj->size);
  1832. return;
  1833. }
  1834. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1835. HAS_128_BYTE_Y_TILING(dev))
  1836. tile_width = 128;
  1837. else
  1838. tile_width = 512;
  1839. /* Note: pitch better be a power of two tile widths */
  1840. pitch_val = obj_priv->stride / tile_width;
  1841. pitch_val = ffs(pitch_val) - 1;
  1842. val = obj_priv->gtt_offset;
  1843. if (obj_priv->tiling_mode == I915_TILING_Y)
  1844. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1845. val |= I915_FENCE_SIZE_BITS(obj->size);
  1846. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1847. val |= I830_FENCE_REG_VALID;
  1848. if (regnum < 8)
  1849. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1850. else
  1851. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1852. I915_WRITE(fence_reg, val);
  1853. }
  1854. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1855. {
  1856. struct drm_gem_object *obj = reg->obj;
  1857. struct drm_device *dev = obj->dev;
  1858. drm_i915_private_t *dev_priv = dev->dev_private;
  1859. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1860. int regnum = obj_priv->fence_reg;
  1861. uint32_t val;
  1862. uint32_t pitch_val;
  1863. uint32_t fence_size_bits;
  1864. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1865. (obj_priv->gtt_offset & (obj->size - 1))) {
  1866. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1867. __func__, obj_priv->gtt_offset);
  1868. return;
  1869. }
  1870. pitch_val = obj_priv->stride / 128;
  1871. pitch_val = ffs(pitch_val) - 1;
  1872. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1873. val = obj_priv->gtt_offset;
  1874. if (obj_priv->tiling_mode == I915_TILING_Y)
  1875. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1876. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1877. WARN_ON(fence_size_bits & ~0x00000f00);
  1878. val |= fence_size_bits;
  1879. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1880. val |= I830_FENCE_REG_VALID;
  1881. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1882. }
  1883. /**
  1884. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1885. * @obj: object to map through a fence reg
  1886. *
  1887. * When mapping objects through the GTT, userspace wants to be able to write
  1888. * to them without having to worry about swizzling if the object is tiled.
  1889. *
  1890. * This function walks the fence regs looking for a free one for @obj,
  1891. * stealing one if it can't find any.
  1892. *
  1893. * It then sets up the reg based on the object's properties: address, pitch
  1894. * and tiling format.
  1895. */
  1896. int
  1897. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  1898. {
  1899. struct drm_device *dev = obj->dev;
  1900. struct drm_i915_private *dev_priv = dev->dev_private;
  1901. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1902. struct drm_i915_fence_reg *reg = NULL;
  1903. struct drm_i915_gem_object *old_obj_priv = NULL;
  1904. int i, ret, avail;
  1905. /* Just update our place in the LRU if our fence is getting used. */
  1906. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1907. list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  1908. return 0;
  1909. }
  1910. switch (obj_priv->tiling_mode) {
  1911. case I915_TILING_NONE:
  1912. WARN(1, "allocating a fence for non-tiled object?\n");
  1913. break;
  1914. case I915_TILING_X:
  1915. if (!obj_priv->stride)
  1916. return -EINVAL;
  1917. WARN((obj_priv->stride & (512 - 1)),
  1918. "object 0x%08x is X tiled but has non-512B pitch\n",
  1919. obj_priv->gtt_offset);
  1920. break;
  1921. case I915_TILING_Y:
  1922. if (!obj_priv->stride)
  1923. return -EINVAL;
  1924. WARN((obj_priv->stride & (128 - 1)),
  1925. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1926. obj_priv->gtt_offset);
  1927. break;
  1928. }
  1929. /* First try to find a free reg */
  1930. avail = 0;
  1931. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1932. reg = &dev_priv->fence_regs[i];
  1933. if (!reg->obj)
  1934. break;
  1935. old_obj_priv = reg->obj->driver_private;
  1936. if (!old_obj_priv->pin_count)
  1937. avail++;
  1938. }
  1939. /* None available, try to steal one or wait for a user to finish */
  1940. if (i == dev_priv->num_fence_regs) {
  1941. struct drm_gem_object *old_obj = NULL;
  1942. if (avail == 0)
  1943. return -ENOSPC;
  1944. list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
  1945. fence_list) {
  1946. old_obj = old_obj_priv->obj;
  1947. if (old_obj_priv->pin_count)
  1948. continue;
  1949. /* Take a reference, as otherwise the wait_rendering
  1950. * below may cause the object to get freed out from
  1951. * under us.
  1952. */
  1953. drm_gem_object_reference(old_obj);
  1954. /* i915 uses fences for GPU access to tiled buffers */
  1955. if (IS_I965G(dev) || !old_obj_priv->active)
  1956. break;
  1957. /* This brings the object to the head of the LRU if it
  1958. * had been written to. The only way this should
  1959. * result in us waiting longer than the expected
  1960. * optimal amount of time is if there was a
  1961. * fence-using buffer later that was read-only.
  1962. */
  1963. i915_gem_object_flush_gpu_write_domain(old_obj);
  1964. ret = i915_gem_object_wait_rendering(old_obj);
  1965. if (ret != 0) {
  1966. drm_gem_object_unreference(old_obj);
  1967. return ret;
  1968. }
  1969. break;
  1970. }
  1971. /*
  1972. * Zap this virtual mapping so we can set up a fence again
  1973. * for this object next time we need it.
  1974. */
  1975. i915_gem_release_mmap(old_obj);
  1976. i = old_obj_priv->fence_reg;
  1977. reg = &dev_priv->fence_regs[i];
  1978. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1979. list_del_init(&old_obj_priv->fence_list);
  1980. drm_gem_object_unreference(old_obj);
  1981. }
  1982. obj_priv->fence_reg = i;
  1983. list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  1984. reg->obj = obj;
  1985. if (IS_I965G(dev))
  1986. i965_write_fence_reg(reg);
  1987. else if (IS_I9XX(dev))
  1988. i915_write_fence_reg(reg);
  1989. else
  1990. i830_write_fence_reg(reg);
  1991. return 0;
  1992. }
  1993. /**
  1994. * i915_gem_clear_fence_reg - clear out fence register info
  1995. * @obj: object to clear
  1996. *
  1997. * Zeroes out the fence register itself and clears out the associated
  1998. * data structures in dev_priv and obj_priv.
  1999. */
  2000. static void
  2001. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2002. {
  2003. struct drm_device *dev = obj->dev;
  2004. drm_i915_private_t *dev_priv = dev->dev_private;
  2005. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2006. if (IS_I965G(dev))
  2007. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2008. else {
  2009. uint32_t fence_reg;
  2010. if (obj_priv->fence_reg < 8)
  2011. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2012. else
  2013. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  2014. 8) * 4;
  2015. I915_WRITE(fence_reg, 0);
  2016. }
  2017. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  2018. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2019. list_del_init(&obj_priv->fence_list);
  2020. }
  2021. /**
  2022. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2023. * to the buffer to finish, and then resets the fence register.
  2024. * @obj: tiled object holding a fence register.
  2025. *
  2026. * Zeroes out the fence register itself and clears out the associated
  2027. * data structures in dev_priv and obj_priv.
  2028. */
  2029. int
  2030. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2031. {
  2032. struct drm_device *dev = obj->dev;
  2033. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2034. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2035. return 0;
  2036. /* On the i915, GPU access to tiled buffers is via a fence,
  2037. * therefore we must wait for any outstanding access to complete
  2038. * before clearing the fence.
  2039. */
  2040. if (!IS_I965G(dev)) {
  2041. int ret;
  2042. i915_gem_object_flush_gpu_write_domain(obj);
  2043. i915_gem_object_flush_gtt_write_domain(obj);
  2044. ret = i915_gem_object_wait_rendering(obj);
  2045. if (ret != 0)
  2046. return ret;
  2047. }
  2048. i915_gem_clear_fence_reg (obj);
  2049. return 0;
  2050. }
  2051. /**
  2052. * Finds free space in the GTT aperture and binds the object there.
  2053. */
  2054. static int
  2055. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2056. {
  2057. struct drm_device *dev = obj->dev;
  2058. drm_i915_private_t *dev_priv = dev->dev_private;
  2059. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2060. struct drm_mm_node *free_space;
  2061. int page_count, ret;
  2062. if (dev_priv->mm.suspended)
  2063. return -EBUSY;
  2064. if (alignment == 0)
  2065. alignment = i915_gem_get_gtt_alignment(obj);
  2066. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2067. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2068. return -EINVAL;
  2069. }
  2070. search_free:
  2071. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2072. obj->size, alignment, 0);
  2073. if (free_space != NULL) {
  2074. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2075. alignment);
  2076. if (obj_priv->gtt_space != NULL) {
  2077. obj_priv->gtt_space->private = obj;
  2078. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2079. }
  2080. }
  2081. if (obj_priv->gtt_space == NULL) {
  2082. bool lists_empty;
  2083. /* If the gtt is empty and we're still having trouble
  2084. * fitting our object in, we're out of memory.
  2085. */
  2086. #if WATCH_LRU
  2087. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2088. #endif
  2089. spin_lock(&dev_priv->mm.active_list_lock);
  2090. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  2091. list_empty(&dev_priv->mm.flushing_list) &&
  2092. list_empty(&dev_priv->mm.active_list));
  2093. spin_unlock(&dev_priv->mm.active_list_lock);
  2094. if (lists_empty) {
  2095. DRM_ERROR("GTT full, but LRU list empty\n");
  2096. return -ENOSPC;
  2097. }
  2098. ret = i915_gem_evict_something(dev);
  2099. if (ret != 0) {
  2100. if (ret != -ERESTARTSYS)
  2101. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  2102. return ret;
  2103. }
  2104. goto search_free;
  2105. }
  2106. #if WATCH_BUF
  2107. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2108. obj->size, obj_priv->gtt_offset);
  2109. #endif
  2110. ret = i915_gem_object_get_pages(obj);
  2111. if (ret) {
  2112. drm_mm_put_block(obj_priv->gtt_space);
  2113. obj_priv->gtt_space = NULL;
  2114. return ret;
  2115. }
  2116. page_count = obj->size / PAGE_SIZE;
  2117. /* Create an AGP memory structure pointing at our pages, and bind it
  2118. * into the GTT.
  2119. */
  2120. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2121. obj_priv->pages,
  2122. page_count,
  2123. obj_priv->gtt_offset,
  2124. obj_priv->agp_type);
  2125. if (obj_priv->agp_mem == NULL) {
  2126. i915_gem_object_put_pages(obj);
  2127. drm_mm_put_block(obj_priv->gtt_space);
  2128. obj_priv->gtt_space = NULL;
  2129. return -ENOMEM;
  2130. }
  2131. atomic_inc(&dev->gtt_count);
  2132. atomic_add(obj->size, &dev->gtt_memory);
  2133. /* Assert that the object is not currently in any GPU domain. As it
  2134. * wasn't in the GTT, there shouldn't be any way it could have been in
  2135. * a GPU cache
  2136. */
  2137. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2138. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2139. return 0;
  2140. }
  2141. void
  2142. i915_gem_clflush_object(struct drm_gem_object *obj)
  2143. {
  2144. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2145. /* If we don't have a page list set up, then we're not pinned
  2146. * to GPU, and we can ignore the cache flush because it'll happen
  2147. * again at bind time.
  2148. */
  2149. if (obj_priv->pages == NULL)
  2150. return;
  2151. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2152. }
  2153. /** Flushes any GPU write domain for the object if it's dirty. */
  2154. static void
  2155. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2156. {
  2157. struct drm_device *dev = obj->dev;
  2158. uint32_t seqno;
  2159. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2160. return;
  2161. /* Queue the GPU write cache flushing we need. */
  2162. i915_gem_flush(dev, 0, obj->write_domain);
  2163. seqno = i915_add_request(dev, NULL, obj->write_domain);
  2164. obj->write_domain = 0;
  2165. i915_gem_object_move_to_active(obj, seqno);
  2166. }
  2167. /** Flushes the GTT write domain for the object if it's dirty. */
  2168. static void
  2169. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2170. {
  2171. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2172. return;
  2173. /* No actual flushing is required for the GTT write domain. Writes
  2174. * to it immediately go to main memory as far as we know, so there's
  2175. * no chipset flush. It also doesn't land in render cache.
  2176. */
  2177. obj->write_domain = 0;
  2178. }
  2179. /** Flushes the CPU write domain for the object if it's dirty. */
  2180. static void
  2181. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2182. {
  2183. struct drm_device *dev = obj->dev;
  2184. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2185. return;
  2186. i915_gem_clflush_object(obj);
  2187. drm_agp_chipset_flush(dev);
  2188. obj->write_domain = 0;
  2189. }
  2190. /**
  2191. * Moves a single object to the GTT read, and possibly write domain.
  2192. *
  2193. * This function returns when the move is complete, including waiting on
  2194. * flushes to occur.
  2195. */
  2196. int
  2197. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2198. {
  2199. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2200. int ret;
  2201. /* Not valid to be called on unbound objects. */
  2202. if (obj_priv->gtt_space == NULL)
  2203. return -EINVAL;
  2204. i915_gem_object_flush_gpu_write_domain(obj);
  2205. /* Wait on any GPU rendering and flushing to occur. */
  2206. ret = i915_gem_object_wait_rendering(obj);
  2207. if (ret != 0)
  2208. return ret;
  2209. /* If we're writing through the GTT domain, then CPU and GPU caches
  2210. * will need to be invalidated at next use.
  2211. */
  2212. if (write)
  2213. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2214. i915_gem_object_flush_cpu_write_domain(obj);
  2215. /* It should now be out of any other write domains, and we can update
  2216. * the domain values for our changes.
  2217. */
  2218. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2219. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2220. if (write) {
  2221. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2222. obj_priv->dirty = 1;
  2223. }
  2224. return 0;
  2225. }
  2226. /**
  2227. * Moves a single object to the CPU read, and possibly write domain.
  2228. *
  2229. * This function returns when the move is complete, including waiting on
  2230. * flushes to occur.
  2231. */
  2232. static int
  2233. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2234. {
  2235. int ret;
  2236. i915_gem_object_flush_gpu_write_domain(obj);
  2237. /* Wait on any GPU rendering and flushing to occur. */
  2238. ret = i915_gem_object_wait_rendering(obj);
  2239. if (ret != 0)
  2240. return ret;
  2241. i915_gem_object_flush_gtt_write_domain(obj);
  2242. /* If we have a partially-valid cache of the object in the CPU,
  2243. * finish invalidating it and free the per-page flags.
  2244. */
  2245. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2246. /* Flush the CPU cache if it's still invalid. */
  2247. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2248. i915_gem_clflush_object(obj);
  2249. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2250. }
  2251. /* It should now be out of any other write domains, and we can update
  2252. * the domain values for our changes.
  2253. */
  2254. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2255. /* If we're writing through the CPU, then the GPU read domains will
  2256. * need to be invalidated at next use.
  2257. */
  2258. if (write) {
  2259. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2260. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2261. }
  2262. return 0;
  2263. }
  2264. /*
  2265. * Set the next domain for the specified object. This
  2266. * may not actually perform the necessary flushing/invaliding though,
  2267. * as that may want to be batched with other set_domain operations
  2268. *
  2269. * This is (we hope) the only really tricky part of gem. The goal
  2270. * is fairly simple -- track which caches hold bits of the object
  2271. * and make sure they remain coherent. A few concrete examples may
  2272. * help to explain how it works. For shorthand, we use the notation
  2273. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2274. * a pair of read and write domain masks.
  2275. *
  2276. * Case 1: the batch buffer
  2277. *
  2278. * 1. Allocated
  2279. * 2. Written by CPU
  2280. * 3. Mapped to GTT
  2281. * 4. Read by GPU
  2282. * 5. Unmapped from GTT
  2283. * 6. Freed
  2284. *
  2285. * Let's take these a step at a time
  2286. *
  2287. * 1. Allocated
  2288. * Pages allocated from the kernel may still have
  2289. * cache contents, so we set them to (CPU, CPU) always.
  2290. * 2. Written by CPU (using pwrite)
  2291. * The pwrite function calls set_domain (CPU, CPU) and
  2292. * this function does nothing (as nothing changes)
  2293. * 3. Mapped by GTT
  2294. * This function asserts that the object is not
  2295. * currently in any GPU-based read or write domains
  2296. * 4. Read by GPU
  2297. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2298. * As write_domain is zero, this function adds in the
  2299. * current read domains (CPU+COMMAND, 0).
  2300. * flush_domains is set to CPU.
  2301. * invalidate_domains is set to COMMAND
  2302. * clflush is run to get data out of the CPU caches
  2303. * then i915_dev_set_domain calls i915_gem_flush to
  2304. * emit an MI_FLUSH and drm_agp_chipset_flush
  2305. * 5. Unmapped from GTT
  2306. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2307. * flush_domains and invalidate_domains end up both zero
  2308. * so no flushing/invalidating happens
  2309. * 6. Freed
  2310. * yay, done
  2311. *
  2312. * Case 2: The shared render buffer
  2313. *
  2314. * 1. Allocated
  2315. * 2. Mapped to GTT
  2316. * 3. Read/written by GPU
  2317. * 4. set_domain to (CPU,CPU)
  2318. * 5. Read/written by CPU
  2319. * 6. Read/written by GPU
  2320. *
  2321. * 1. Allocated
  2322. * Same as last example, (CPU, CPU)
  2323. * 2. Mapped to GTT
  2324. * Nothing changes (assertions find that it is not in the GPU)
  2325. * 3. Read/written by GPU
  2326. * execbuffer calls set_domain (RENDER, RENDER)
  2327. * flush_domains gets CPU
  2328. * invalidate_domains gets GPU
  2329. * clflush (obj)
  2330. * MI_FLUSH and drm_agp_chipset_flush
  2331. * 4. set_domain (CPU, CPU)
  2332. * flush_domains gets GPU
  2333. * invalidate_domains gets CPU
  2334. * wait_rendering (obj) to make sure all drawing is complete.
  2335. * This will include an MI_FLUSH to get the data from GPU
  2336. * to memory
  2337. * clflush (obj) to invalidate the CPU cache
  2338. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2339. * 5. Read/written by CPU
  2340. * cache lines are loaded and dirtied
  2341. * 6. Read written by GPU
  2342. * Same as last GPU access
  2343. *
  2344. * Case 3: The constant buffer
  2345. *
  2346. * 1. Allocated
  2347. * 2. Written by CPU
  2348. * 3. Read by GPU
  2349. * 4. Updated (written) by CPU again
  2350. * 5. Read by GPU
  2351. *
  2352. * 1. Allocated
  2353. * (CPU, CPU)
  2354. * 2. Written by CPU
  2355. * (CPU, CPU)
  2356. * 3. Read by GPU
  2357. * (CPU+RENDER, 0)
  2358. * flush_domains = CPU
  2359. * invalidate_domains = RENDER
  2360. * clflush (obj)
  2361. * MI_FLUSH
  2362. * drm_agp_chipset_flush
  2363. * 4. Updated (written) by CPU again
  2364. * (CPU, CPU)
  2365. * flush_domains = 0 (no previous write domain)
  2366. * invalidate_domains = 0 (no new read domains)
  2367. * 5. Read by GPU
  2368. * (CPU+RENDER, 0)
  2369. * flush_domains = CPU
  2370. * invalidate_domains = RENDER
  2371. * clflush (obj)
  2372. * MI_FLUSH
  2373. * drm_agp_chipset_flush
  2374. */
  2375. static void
  2376. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2377. {
  2378. struct drm_device *dev = obj->dev;
  2379. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2380. uint32_t invalidate_domains = 0;
  2381. uint32_t flush_domains = 0;
  2382. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2383. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2384. intel_mark_busy(dev, obj);
  2385. #if WATCH_BUF
  2386. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2387. __func__, obj,
  2388. obj->read_domains, obj->pending_read_domains,
  2389. obj->write_domain, obj->pending_write_domain);
  2390. #endif
  2391. /*
  2392. * If the object isn't moving to a new write domain,
  2393. * let the object stay in multiple read domains
  2394. */
  2395. if (obj->pending_write_domain == 0)
  2396. obj->pending_read_domains |= obj->read_domains;
  2397. else
  2398. obj_priv->dirty = 1;
  2399. /*
  2400. * Flush the current write domain if
  2401. * the new read domains don't match. Invalidate
  2402. * any read domains which differ from the old
  2403. * write domain
  2404. */
  2405. if (obj->write_domain &&
  2406. obj->write_domain != obj->pending_read_domains) {
  2407. flush_domains |= obj->write_domain;
  2408. invalidate_domains |=
  2409. obj->pending_read_domains & ~obj->write_domain;
  2410. }
  2411. /*
  2412. * Invalidate any read caches which may have
  2413. * stale data. That is, any new read domains.
  2414. */
  2415. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2416. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2417. #if WATCH_BUF
  2418. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2419. __func__, flush_domains, invalidate_domains);
  2420. #endif
  2421. i915_gem_clflush_object(obj);
  2422. }
  2423. /* The actual obj->write_domain will be updated with
  2424. * pending_write_domain after we emit the accumulated flush for all
  2425. * of our domain changes in execbuffers (which clears objects'
  2426. * write_domains). So if we have a current write domain that we
  2427. * aren't changing, set pending_write_domain to that.
  2428. */
  2429. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2430. obj->pending_write_domain = obj->write_domain;
  2431. obj->read_domains = obj->pending_read_domains;
  2432. dev->invalidate_domains |= invalidate_domains;
  2433. dev->flush_domains |= flush_domains;
  2434. #if WATCH_BUF
  2435. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2436. __func__,
  2437. obj->read_domains, obj->write_domain,
  2438. dev->invalidate_domains, dev->flush_domains);
  2439. #endif
  2440. }
  2441. /**
  2442. * Moves the object from a partially CPU read to a full one.
  2443. *
  2444. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2445. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2446. */
  2447. static void
  2448. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2449. {
  2450. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2451. if (!obj_priv->page_cpu_valid)
  2452. return;
  2453. /* If we're partially in the CPU read domain, finish moving it in.
  2454. */
  2455. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2456. int i;
  2457. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2458. if (obj_priv->page_cpu_valid[i])
  2459. continue;
  2460. drm_clflush_pages(obj_priv->pages + i, 1);
  2461. }
  2462. }
  2463. /* Free the page_cpu_valid mappings which are now stale, whether
  2464. * or not we've got I915_GEM_DOMAIN_CPU.
  2465. */
  2466. kfree(obj_priv->page_cpu_valid);
  2467. obj_priv->page_cpu_valid = NULL;
  2468. }
  2469. /**
  2470. * Set the CPU read domain on a range of the object.
  2471. *
  2472. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2473. * not entirely valid. The page_cpu_valid member of the object flags which
  2474. * pages have been flushed, and will be respected by
  2475. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2476. * of the whole object.
  2477. *
  2478. * This function returns when the move is complete, including waiting on
  2479. * flushes to occur.
  2480. */
  2481. static int
  2482. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2483. uint64_t offset, uint64_t size)
  2484. {
  2485. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2486. int i, ret;
  2487. if (offset == 0 && size == obj->size)
  2488. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2489. i915_gem_object_flush_gpu_write_domain(obj);
  2490. /* Wait on any GPU rendering and flushing to occur. */
  2491. ret = i915_gem_object_wait_rendering(obj);
  2492. if (ret != 0)
  2493. return ret;
  2494. i915_gem_object_flush_gtt_write_domain(obj);
  2495. /* If we're already fully in the CPU read domain, we're done. */
  2496. if (obj_priv->page_cpu_valid == NULL &&
  2497. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2498. return 0;
  2499. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2500. * newly adding I915_GEM_DOMAIN_CPU
  2501. */
  2502. if (obj_priv->page_cpu_valid == NULL) {
  2503. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2504. GFP_KERNEL);
  2505. if (obj_priv->page_cpu_valid == NULL)
  2506. return -ENOMEM;
  2507. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2508. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2509. /* Flush the cache on any pages that are still invalid from the CPU's
  2510. * perspective.
  2511. */
  2512. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2513. i++) {
  2514. if (obj_priv->page_cpu_valid[i])
  2515. continue;
  2516. drm_clflush_pages(obj_priv->pages + i, 1);
  2517. obj_priv->page_cpu_valid[i] = 1;
  2518. }
  2519. /* It should now be out of any other write domains, and we can update
  2520. * the domain values for our changes.
  2521. */
  2522. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2523. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2524. return 0;
  2525. }
  2526. /**
  2527. * Pin an object to the GTT and evaluate the relocations landing in it.
  2528. */
  2529. static int
  2530. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2531. struct drm_file *file_priv,
  2532. struct drm_i915_gem_exec_object *entry,
  2533. struct drm_i915_gem_relocation_entry *relocs)
  2534. {
  2535. struct drm_device *dev = obj->dev;
  2536. drm_i915_private_t *dev_priv = dev->dev_private;
  2537. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2538. int i, ret;
  2539. void __iomem *reloc_page;
  2540. /* Choose the GTT offset for our buffer and put it there. */
  2541. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2542. if (ret)
  2543. return ret;
  2544. entry->offset = obj_priv->gtt_offset;
  2545. /* Apply the relocations, using the GTT aperture to avoid cache
  2546. * flushing requirements.
  2547. */
  2548. for (i = 0; i < entry->relocation_count; i++) {
  2549. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2550. struct drm_gem_object *target_obj;
  2551. struct drm_i915_gem_object *target_obj_priv;
  2552. uint32_t reloc_val, reloc_offset;
  2553. uint32_t __iomem *reloc_entry;
  2554. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2555. reloc->target_handle);
  2556. if (target_obj == NULL) {
  2557. i915_gem_object_unpin(obj);
  2558. return -EBADF;
  2559. }
  2560. target_obj_priv = target_obj->driver_private;
  2561. /* The target buffer should have appeared before us in the
  2562. * exec_object list, so it should have a GTT space bound by now.
  2563. */
  2564. if (target_obj_priv->gtt_space == NULL) {
  2565. DRM_ERROR("No GTT space found for object %d\n",
  2566. reloc->target_handle);
  2567. drm_gem_object_unreference(target_obj);
  2568. i915_gem_object_unpin(obj);
  2569. return -EINVAL;
  2570. }
  2571. if (reloc->offset > obj->size - 4) {
  2572. DRM_ERROR("Relocation beyond object bounds: "
  2573. "obj %p target %d offset %d size %d.\n",
  2574. obj, reloc->target_handle,
  2575. (int) reloc->offset, (int) obj->size);
  2576. drm_gem_object_unreference(target_obj);
  2577. i915_gem_object_unpin(obj);
  2578. return -EINVAL;
  2579. }
  2580. if (reloc->offset & 3) {
  2581. DRM_ERROR("Relocation not 4-byte aligned: "
  2582. "obj %p target %d offset %d.\n",
  2583. obj, reloc->target_handle,
  2584. (int) reloc->offset);
  2585. drm_gem_object_unreference(target_obj);
  2586. i915_gem_object_unpin(obj);
  2587. return -EINVAL;
  2588. }
  2589. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2590. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2591. DRM_ERROR("reloc with read/write CPU domains: "
  2592. "obj %p target %d offset %d "
  2593. "read %08x write %08x",
  2594. obj, reloc->target_handle,
  2595. (int) reloc->offset,
  2596. reloc->read_domains,
  2597. reloc->write_domain);
  2598. drm_gem_object_unreference(target_obj);
  2599. i915_gem_object_unpin(obj);
  2600. return -EINVAL;
  2601. }
  2602. if (reloc->write_domain && target_obj->pending_write_domain &&
  2603. reloc->write_domain != target_obj->pending_write_domain) {
  2604. DRM_ERROR("Write domain conflict: "
  2605. "obj %p target %d offset %d "
  2606. "new %08x old %08x\n",
  2607. obj, reloc->target_handle,
  2608. (int) reloc->offset,
  2609. reloc->write_domain,
  2610. target_obj->pending_write_domain);
  2611. drm_gem_object_unreference(target_obj);
  2612. i915_gem_object_unpin(obj);
  2613. return -EINVAL;
  2614. }
  2615. #if WATCH_RELOC
  2616. DRM_INFO("%s: obj %p offset %08x target %d "
  2617. "read %08x write %08x gtt %08x "
  2618. "presumed %08x delta %08x\n",
  2619. __func__,
  2620. obj,
  2621. (int) reloc->offset,
  2622. (int) reloc->target_handle,
  2623. (int) reloc->read_domains,
  2624. (int) reloc->write_domain,
  2625. (int) target_obj_priv->gtt_offset,
  2626. (int) reloc->presumed_offset,
  2627. reloc->delta);
  2628. #endif
  2629. target_obj->pending_read_domains |= reloc->read_domains;
  2630. target_obj->pending_write_domain |= reloc->write_domain;
  2631. /* If the relocation already has the right value in it, no
  2632. * more work needs to be done.
  2633. */
  2634. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2635. drm_gem_object_unreference(target_obj);
  2636. continue;
  2637. }
  2638. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2639. if (ret != 0) {
  2640. drm_gem_object_unreference(target_obj);
  2641. i915_gem_object_unpin(obj);
  2642. return -EINVAL;
  2643. }
  2644. /* Map the page containing the relocation we're going to
  2645. * perform.
  2646. */
  2647. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2648. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2649. (reloc_offset &
  2650. ~(PAGE_SIZE - 1)));
  2651. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2652. (reloc_offset & (PAGE_SIZE - 1)));
  2653. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2654. #if WATCH_BUF
  2655. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2656. obj, (unsigned int) reloc->offset,
  2657. readl(reloc_entry), reloc_val);
  2658. #endif
  2659. writel(reloc_val, reloc_entry);
  2660. io_mapping_unmap_atomic(reloc_page);
  2661. /* The updated presumed offset for this entry will be
  2662. * copied back out to the user.
  2663. */
  2664. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2665. drm_gem_object_unreference(target_obj);
  2666. }
  2667. #if WATCH_BUF
  2668. if (0)
  2669. i915_gem_dump_object(obj, 128, __func__, ~0);
  2670. #endif
  2671. return 0;
  2672. }
  2673. /** Dispatch a batchbuffer to the ring
  2674. */
  2675. static int
  2676. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2677. struct drm_i915_gem_execbuffer *exec,
  2678. struct drm_clip_rect *cliprects,
  2679. uint64_t exec_offset)
  2680. {
  2681. drm_i915_private_t *dev_priv = dev->dev_private;
  2682. int nbox = exec->num_cliprects;
  2683. int i = 0, count;
  2684. uint32_t exec_start, exec_len;
  2685. RING_LOCALS;
  2686. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2687. exec_len = (uint32_t) exec->batch_len;
  2688. count = nbox ? nbox : 1;
  2689. for (i = 0; i < count; i++) {
  2690. if (i < nbox) {
  2691. int ret = i915_emit_box(dev, cliprects, i,
  2692. exec->DR1, exec->DR4);
  2693. if (ret)
  2694. return ret;
  2695. }
  2696. if (IS_I830(dev) || IS_845G(dev)) {
  2697. BEGIN_LP_RING(4);
  2698. OUT_RING(MI_BATCH_BUFFER);
  2699. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2700. OUT_RING(exec_start + exec_len - 4);
  2701. OUT_RING(0);
  2702. ADVANCE_LP_RING();
  2703. } else {
  2704. BEGIN_LP_RING(2);
  2705. if (IS_I965G(dev)) {
  2706. OUT_RING(MI_BATCH_BUFFER_START |
  2707. (2 << 6) |
  2708. MI_BATCH_NON_SECURE_I965);
  2709. OUT_RING(exec_start);
  2710. } else {
  2711. OUT_RING(MI_BATCH_BUFFER_START |
  2712. (2 << 6));
  2713. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2714. }
  2715. ADVANCE_LP_RING();
  2716. }
  2717. }
  2718. /* XXX breadcrumb */
  2719. return 0;
  2720. }
  2721. /* Throttle our rendering by waiting until the ring has completed our requests
  2722. * emitted over 20 msec ago.
  2723. *
  2724. * Note that if we were to use the current jiffies each time around the loop,
  2725. * we wouldn't escape the function with any frames outstanding if the time to
  2726. * render a frame was over 20ms.
  2727. *
  2728. * This should get us reasonable parallelism between CPU and GPU but also
  2729. * relatively low latency when blocking on a particular request to finish.
  2730. */
  2731. static int
  2732. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2733. {
  2734. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2735. int ret = 0;
  2736. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2737. mutex_lock(&dev->struct_mutex);
  2738. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2739. struct drm_i915_gem_request *request;
  2740. request = list_first_entry(&i915_file_priv->mm.request_list,
  2741. struct drm_i915_gem_request,
  2742. client_list);
  2743. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2744. break;
  2745. ret = i915_wait_request(dev, request->seqno);
  2746. if (ret != 0)
  2747. break;
  2748. }
  2749. mutex_unlock(&dev->struct_mutex);
  2750. return ret;
  2751. }
  2752. static int
  2753. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2754. uint32_t buffer_count,
  2755. struct drm_i915_gem_relocation_entry **relocs)
  2756. {
  2757. uint32_t reloc_count = 0, reloc_index = 0, i;
  2758. int ret;
  2759. *relocs = NULL;
  2760. for (i = 0; i < buffer_count; i++) {
  2761. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2762. return -EINVAL;
  2763. reloc_count += exec_list[i].relocation_count;
  2764. }
  2765. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2766. if (*relocs == NULL)
  2767. return -ENOMEM;
  2768. for (i = 0; i < buffer_count; i++) {
  2769. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2770. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2771. ret = copy_from_user(&(*relocs)[reloc_index],
  2772. user_relocs,
  2773. exec_list[i].relocation_count *
  2774. sizeof(**relocs));
  2775. if (ret != 0) {
  2776. drm_free_large(*relocs);
  2777. *relocs = NULL;
  2778. return -EFAULT;
  2779. }
  2780. reloc_index += exec_list[i].relocation_count;
  2781. }
  2782. return 0;
  2783. }
  2784. static int
  2785. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2786. uint32_t buffer_count,
  2787. struct drm_i915_gem_relocation_entry *relocs)
  2788. {
  2789. uint32_t reloc_count = 0, i;
  2790. int ret = 0;
  2791. for (i = 0; i < buffer_count; i++) {
  2792. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2793. int unwritten;
  2794. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2795. unwritten = copy_to_user(user_relocs,
  2796. &relocs[reloc_count],
  2797. exec_list[i].relocation_count *
  2798. sizeof(*relocs));
  2799. if (unwritten) {
  2800. ret = -EFAULT;
  2801. goto err;
  2802. }
  2803. reloc_count += exec_list[i].relocation_count;
  2804. }
  2805. err:
  2806. drm_free_large(relocs);
  2807. return ret;
  2808. }
  2809. static int
  2810. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
  2811. uint64_t exec_offset)
  2812. {
  2813. uint32_t exec_start, exec_len;
  2814. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2815. exec_len = (uint32_t) exec->batch_len;
  2816. if ((exec_start | exec_len) & 0x7)
  2817. return -EINVAL;
  2818. if (!exec_start)
  2819. return -EINVAL;
  2820. return 0;
  2821. }
  2822. int
  2823. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2824. struct drm_file *file_priv)
  2825. {
  2826. drm_i915_private_t *dev_priv = dev->dev_private;
  2827. struct drm_i915_gem_execbuffer *args = data;
  2828. struct drm_i915_gem_exec_object *exec_list = NULL;
  2829. struct drm_gem_object **object_list = NULL;
  2830. struct drm_gem_object *batch_obj;
  2831. struct drm_i915_gem_object *obj_priv;
  2832. struct drm_clip_rect *cliprects = NULL;
  2833. struct drm_i915_gem_relocation_entry *relocs;
  2834. int ret, ret2, i, pinned = 0;
  2835. uint64_t exec_offset;
  2836. uint32_t seqno, flush_domains, reloc_index;
  2837. int pin_tries;
  2838. #if WATCH_EXEC
  2839. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2840. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2841. #endif
  2842. if (args->buffer_count < 1) {
  2843. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2844. return -EINVAL;
  2845. }
  2846. /* Copy in the exec list from userland */
  2847. exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
  2848. object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
  2849. if (exec_list == NULL || object_list == NULL) {
  2850. DRM_ERROR("Failed to allocate exec or object list "
  2851. "for %d buffers\n",
  2852. args->buffer_count);
  2853. ret = -ENOMEM;
  2854. goto pre_mutex_err;
  2855. }
  2856. ret = copy_from_user(exec_list,
  2857. (struct drm_i915_relocation_entry __user *)
  2858. (uintptr_t) args->buffers_ptr,
  2859. sizeof(*exec_list) * args->buffer_count);
  2860. if (ret != 0) {
  2861. DRM_ERROR("copy %d exec entries failed %d\n",
  2862. args->buffer_count, ret);
  2863. goto pre_mutex_err;
  2864. }
  2865. if (args->num_cliprects != 0) {
  2866. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  2867. GFP_KERNEL);
  2868. if (cliprects == NULL)
  2869. goto pre_mutex_err;
  2870. ret = copy_from_user(cliprects,
  2871. (struct drm_clip_rect __user *)
  2872. (uintptr_t) args->cliprects_ptr,
  2873. sizeof(*cliprects) * args->num_cliprects);
  2874. if (ret != 0) {
  2875. DRM_ERROR("copy %d cliprects failed: %d\n",
  2876. args->num_cliprects, ret);
  2877. goto pre_mutex_err;
  2878. }
  2879. }
  2880. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2881. &relocs);
  2882. if (ret != 0)
  2883. goto pre_mutex_err;
  2884. mutex_lock(&dev->struct_mutex);
  2885. i915_verify_inactive(dev, __FILE__, __LINE__);
  2886. if (atomic_read(&dev_priv->mm.wedged)) {
  2887. DRM_ERROR("Execbuf while wedged\n");
  2888. mutex_unlock(&dev->struct_mutex);
  2889. ret = -EIO;
  2890. goto pre_mutex_err;
  2891. }
  2892. if (dev_priv->mm.suspended) {
  2893. DRM_ERROR("Execbuf while VT-switched.\n");
  2894. mutex_unlock(&dev->struct_mutex);
  2895. ret = -EBUSY;
  2896. goto pre_mutex_err;
  2897. }
  2898. /* Look up object handles */
  2899. for (i = 0; i < args->buffer_count; i++) {
  2900. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2901. exec_list[i].handle);
  2902. if (object_list[i] == NULL) {
  2903. DRM_ERROR("Invalid object handle %d at index %d\n",
  2904. exec_list[i].handle, i);
  2905. ret = -EBADF;
  2906. goto err;
  2907. }
  2908. obj_priv = object_list[i]->driver_private;
  2909. if (obj_priv->in_execbuffer) {
  2910. DRM_ERROR("Object %p appears more than once in object list\n",
  2911. object_list[i]);
  2912. ret = -EBADF;
  2913. goto err;
  2914. }
  2915. obj_priv->in_execbuffer = true;
  2916. }
  2917. /* Pin and relocate */
  2918. for (pin_tries = 0; ; pin_tries++) {
  2919. ret = 0;
  2920. reloc_index = 0;
  2921. for (i = 0; i < args->buffer_count; i++) {
  2922. object_list[i]->pending_read_domains = 0;
  2923. object_list[i]->pending_write_domain = 0;
  2924. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2925. file_priv,
  2926. &exec_list[i],
  2927. &relocs[reloc_index]);
  2928. if (ret)
  2929. break;
  2930. pinned = i + 1;
  2931. reloc_index += exec_list[i].relocation_count;
  2932. }
  2933. /* success */
  2934. if (ret == 0)
  2935. break;
  2936. /* error other than GTT full, or we've already tried again */
  2937. if (ret != -ENOSPC || pin_tries >= 1) {
  2938. if (ret != -ERESTARTSYS)
  2939. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2940. goto err;
  2941. }
  2942. /* unpin all of our buffers */
  2943. for (i = 0; i < pinned; i++)
  2944. i915_gem_object_unpin(object_list[i]);
  2945. pinned = 0;
  2946. /* evict everyone we can from the aperture */
  2947. ret = i915_gem_evict_everything(dev);
  2948. if (ret)
  2949. goto err;
  2950. }
  2951. /* Set the pending read domains for the batch buffer to COMMAND */
  2952. batch_obj = object_list[args->buffer_count-1];
  2953. if (batch_obj->pending_write_domain) {
  2954. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  2955. ret = -EINVAL;
  2956. goto err;
  2957. }
  2958. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  2959. /* Sanity check the batch buffer, prior to moving objects */
  2960. exec_offset = exec_list[args->buffer_count - 1].offset;
  2961. ret = i915_gem_check_execbuffer (args, exec_offset);
  2962. if (ret != 0) {
  2963. DRM_ERROR("execbuf with invalid offset/length\n");
  2964. goto err;
  2965. }
  2966. i915_verify_inactive(dev, __FILE__, __LINE__);
  2967. /* Zero the global flush/invalidate flags. These
  2968. * will be modified as new domains are computed
  2969. * for each object
  2970. */
  2971. dev->invalidate_domains = 0;
  2972. dev->flush_domains = 0;
  2973. for (i = 0; i < args->buffer_count; i++) {
  2974. struct drm_gem_object *obj = object_list[i];
  2975. /* Compute new gpu domains and update invalidate/flush */
  2976. i915_gem_object_set_to_gpu_domain(obj);
  2977. }
  2978. i915_verify_inactive(dev, __FILE__, __LINE__);
  2979. if (dev->invalidate_domains | dev->flush_domains) {
  2980. #if WATCH_EXEC
  2981. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2982. __func__,
  2983. dev->invalidate_domains,
  2984. dev->flush_domains);
  2985. #endif
  2986. i915_gem_flush(dev,
  2987. dev->invalidate_domains,
  2988. dev->flush_domains);
  2989. if (dev->flush_domains)
  2990. (void)i915_add_request(dev, file_priv,
  2991. dev->flush_domains);
  2992. }
  2993. for (i = 0; i < args->buffer_count; i++) {
  2994. struct drm_gem_object *obj = object_list[i];
  2995. obj->write_domain = obj->pending_write_domain;
  2996. }
  2997. i915_verify_inactive(dev, __FILE__, __LINE__);
  2998. #if WATCH_COHERENCY
  2999. for (i = 0; i < args->buffer_count; i++) {
  3000. i915_gem_object_check_coherency(object_list[i],
  3001. exec_list[i].handle);
  3002. }
  3003. #endif
  3004. #if WATCH_EXEC
  3005. i915_gem_dump_object(batch_obj,
  3006. args->batch_len,
  3007. __func__,
  3008. ~0);
  3009. #endif
  3010. /* Exec the batchbuffer */
  3011. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  3012. if (ret) {
  3013. DRM_ERROR("dispatch failed %d\n", ret);
  3014. goto err;
  3015. }
  3016. /*
  3017. * Ensure that the commands in the batch buffer are
  3018. * finished before the interrupt fires
  3019. */
  3020. flush_domains = i915_retire_commands(dev);
  3021. i915_verify_inactive(dev, __FILE__, __LINE__);
  3022. /*
  3023. * Get a seqno representing the execution of the current buffer,
  3024. * which we can wait on. We would like to mitigate these interrupts,
  3025. * likely by only creating seqnos occasionally (so that we have
  3026. * *some* interrupts representing completion of buffers that we can
  3027. * wait on when trying to clear up gtt space).
  3028. */
  3029. seqno = i915_add_request(dev, file_priv, flush_domains);
  3030. BUG_ON(seqno == 0);
  3031. for (i = 0; i < args->buffer_count; i++) {
  3032. struct drm_gem_object *obj = object_list[i];
  3033. i915_gem_object_move_to_active(obj, seqno);
  3034. #if WATCH_LRU
  3035. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3036. #endif
  3037. }
  3038. #if WATCH_LRU
  3039. i915_dump_lru(dev, __func__);
  3040. #endif
  3041. i915_verify_inactive(dev, __FILE__, __LINE__);
  3042. err:
  3043. for (i = 0; i < pinned; i++)
  3044. i915_gem_object_unpin(object_list[i]);
  3045. for (i = 0; i < args->buffer_count; i++) {
  3046. if (object_list[i]) {
  3047. obj_priv = object_list[i]->driver_private;
  3048. obj_priv->in_execbuffer = false;
  3049. }
  3050. drm_gem_object_unreference(object_list[i]);
  3051. }
  3052. mutex_unlock(&dev->struct_mutex);
  3053. if (!ret) {
  3054. /* Copy the new buffer offsets back to the user's exec list. */
  3055. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3056. (uintptr_t) args->buffers_ptr,
  3057. exec_list,
  3058. sizeof(*exec_list) * args->buffer_count);
  3059. if (ret) {
  3060. ret = -EFAULT;
  3061. DRM_ERROR("failed to copy %d exec entries "
  3062. "back to user (%d)\n",
  3063. args->buffer_count, ret);
  3064. }
  3065. }
  3066. /* Copy the updated relocations out regardless of current error
  3067. * state. Failure to update the relocs would mean that the next
  3068. * time userland calls execbuf, it would do so with presumed offset
  3069. * state that didn't match the actual object state.
  3070. */
  3071. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3072. relocs);
  3073. if (ret2 != 0) {
  3074. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3075. if (ret == 0)
  3076. ret = ret2;
  3077. }
  3078. pre_mutex_err:
  3079. drm_free_large(object_list);
  3080. drm_free_large(exec_list);
  3081. kfree(cliprects);
  3082. return ret;
  3083. }
  3084. int
  3085. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3086. {
  3087. struct drm_device *dev = obj->dev;
  3088. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3089. int ret;
  3090. i915_verify_inactive(dev, __FILE__, __LINE__);
  3091. if (obj_priv->gtt_space == NULL) {
  3092. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3093. if (ret != 0) {
  3094. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3095. DRM_ERROR("Failure to bind: %d\n", ret);
  3096. return ret;
  3097. }
  3098. }
  3099. /*
  3100. * Pre-965 chips need a fence register set up in order to
  3101. * properly handle tiled surfaces.
  3102. */
  3103. if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
  3104. ret = i915_gem_object_get_fence_reg(obj);
  3105. if (ret != 0) {
  3106. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3107. DRM_ERROR("Failure to install fence: %d\n",
  3108. ret);
  3109. return ret;
  3110. }
  3111. }
  3112. obj_priv->pin_count++;
  3113. /* If the object is not active and not pending a flush,
  3114. * remove it from the inactive list
  3115. */
  3116. if (obj_priv->pin_count == 1) {
  3117. atomic_inc(&dev->pin_count);
  3118. atomic_add(obj->size, &dev->pin_memory);
  3119. if (!obj_priv->active &&
  3120. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
  3121. !list_empty(&obj_priv->list))
  3122. list_del_init(&obj_priv->list);
  3123. }
  3124. i915_verify_inactive(dev, __FILE__, __LINE__);
  3125. return 0;
  3126. }
  3127. void
  3128. i915_gem_object_unpin(struct drm_gem_object *obj)
  3129. {
  3130. struct drm_device *dev = obj->dev;
  3131. drm_i915_private_t *dev_priv = dev->dev_private;
  3132. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3133. i915_verify_inactive(dev, __FILE__, __LINE__);
  3134. obj_priv->pin_count--;
  3135. BUG_ON(obj_priv->pin_count < 0);
  3136. BUG_ON(obj_priv->gtt_space == NULL);
  3137. /* If the object is no longer pinned, and is
  3138. * neither active nor being flushed, then stick it on
  3139. * the inactive list
  3140. */
  3141. if (obj_priv->pin_count == 0) {
  3142. if (!obj_priv->active &&
  3143. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3144. list_move_tail(&obj_priv->list,
  3145. &dev_priv->mm.inactive_list);
  3146. atomic_dec(&dev->pin_count);
  3147. atomic_sub(obj->size, &dev->pin_memory);
  3148. }
  3149. i915_verify_inactive(dev, __FILE__, __LINE__);
  3150. }
  3151. int
  3152. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3153. struct drm_file *file_priv)
  3154. {
  3155. struct drm_i915_gem_pin *args = data;
  3156. struct drm_gem_object *obj;
  3157. struct drm_i915_gem_object *obj_priv;
  3158. int ret;
  3159. mutex_lock(&dev->struct_mutex);
  3160. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3161. if (obj == NULL) {
  3162. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3163. args->handle);
  3164. mutex_unlock(&dev->struct_mutex);
  3165. return -EBADF;
  3166. }
  3167. obj_priv = obj->driver_private;
  3168. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3169. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3170. args->handle);
  3171. drm_gem_object_unreference(obj);
  3172. mutex_unlock(&dev->struct_mutex);
  3173. return -EINVAL;
  3174. }
  3175. obj_priv->user_pin_count++;
  3176. obj_priv->pin_filp = file_priv;
  3177. if (obj_priv->user_pin_count == 1) {
  3178. ret = i915_gem_object_pin(obj, args->alignment);
  3179. if (ret != 0) {
  3180. drm_gem_object_unreference(obj);
  3181. mutex_unlock(&dev->struct_mutex);
  3182. return ret;
  3183. }
  3184. }
  3185. /* XXX - flush the CPU caches for pinned objects
  3186. * as the X server doesn't manage domains yet
  3187. */
  3188. i915_gem_object_flush_cpu_write_domain(obj);
  3189. args->offset = obj_priv->gtt_offset;
  3190. drm_gem_object_unreference(obj);
  3191. mutex_unlock(&dev->struct_mutex);
  3192. return 0;
  3193. }
  3194. int
  3195. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3196. struct drm_file *file_priv)
  3197. {
  3198. struct drm_i915_gem_pin *args = data;
  3199. struct drm_gem_object *obj;
  3200. struct drm_i915_gem_object *obj_priv;
  3201. mutex_lock(&dev->struct_mutex);
  3202. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3203. if (obj == NULL) {
  3204. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3205. args->handle);
  3206. mutex_unlock(&dev->struct_mutex);
  3207. return -EBADF;
  3208. }
  3209. obj_priv = obj->driver_private;
  3210. if (obj_priv->pin_filp != file_priv) {
  3211. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3212. args->handle);
  3213. drm_gem_object_unreference(obj);
  3214. mutex_unlock(&dev->struct_mutex);
  3215. return -EINVAL;
  3216. }
  3217. obj_priv->user_pin_count--;
  3218. if (obj_priv->user_pin_count == 0) {
  3219. obj_priv->pin_filp = NULL;
  3220. i915_gem_object_unpin(obj);
  3221. }
  3222. drm_gem_object_unreference(obj);
  3223. mutex_unlock(&dev->struct_mutex);
  3224. return 0;
  3225. }
  3226. int
  3227. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3228. struct drm_file *file_priv)
  3229. {
  3230. struct drm_i915_gem_busy *args = data;
  3231. struct drm_gem_object *obj;
  3232. struct drm_i915_gem_object *obj_priv;
  3233. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3234. if (obj == NULL) {
  3235. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3236. args->handle);
  3237. return -EBADF;
  3238. }
  3239. mutex_lock(&dev->struct_mutex);
  3240. /* Update the active list for the hardware's current position.
  3241. * Otherwise this only updates on a delayed timer or when irqs are
  3242. * actually unmasked, and our working set ends up being larger than
  3243. * required.
  3244. */
  3245. i915_gem_retire_requests(dev);
  3246. obj_priv = obj->driver_private;
  3247. /* Don't count being on the flushing list against the object being
  3248. * done. Otherwise, a buffer left on the flushing list but not getting
  3249. * flushed (because nobody's flushing that domain) won't ever return
  3250. * unbusy and get reused by libdrm's bo cache. The other expected
  3251. * consumer of this interface, OpenGL's occlusion queries, also specs
  3252. * that the objects get unbusy "eventually" without any interference.
  3253. */
  3254. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3255. drm_gem_object_unreference(obj);
  3256. mutex_unlock(&dev->struct_mutex);
  3257. return 0;
  3258. }
  3259. int
  3260. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3261. struct drm_file *file_priv)
  3262. {
  3263. return i915_gem_ring_throttle(dev, file_priv);
  3264. }
  3265. int i915_gem_init_object(struct drm_gem_object *obj)
  3266. {
  3267. struct drm_i915_gem_object *obj_priv;
  3268. obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
  3269. if (obj_priv == NULL)
  3270. return -ENOMEM;
  3271. /*
  3272. * We've just allocated pages from the kernel,
  3273. * so they've just been written by the CPU with
  3274. * zeros. They'll need to be clflushed before we
  3275. * use them with the GPU.
  3276. */
  3277. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3278. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3279. obj_priv->agp_type = AGP_USER_MEMORY;
  3280. obj->driver_private = obj_priv;
  3281. obj_priv->obj = obj;
  3282. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3283. INIT_LIST_HEAD(&obj_priv->list);
  3284. INIT_LIST_HEAD(&obj_priv->fence_list);
  3285. return 0;
  3286. }
  3287. void i915_gem_free_object(struct drm_gem_object *obj)
  3288. {
  3289. struct drm_device *dev = obj->dev;
  3290. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3291. while (obj_priv->pin_count > 0)
  3292. i915_gem_object_unpin(obj);
  3293. if (obj_priv->phys_obj)
  3294. i915_gem_detach_phys_object(dev, obj);
  3295. i915_gem_object_unbind(obj);
  3296. if (obj_priv->mmap_offset)
  3297. i915_gem_free_mmap_offset(obj);
  3298. kfree(obj_priv->page_cpu_valid);
  3299. kfree(obj_priv->bit_17);
  3300. kfree(obj->driver_private);
  3301. }
  3302. /** Unbinds all objects that are on the given buffer list. */
  3303. static int
  3304. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3305. {
  3306. struct drm_gem_object *obj;
  3307. struct drm_i915_gem_object *obj_priv;
  3308. int ret;
  3309. while (!list_empty(head)) {
  3310. obj_priv = list_first_entry(head,
  3311. struct drm_i915_gem_object,
  3312. list);
  3313. obj = obj_priv->obj;
  3314. if (obj_priv->pin_count != 0) {
  3315. DRM_ERROR("Pinned object in unbind list\n");
  3316. mutex_unlock(&dev->struct_mutex);
  3317. return -EINVAL;
  3318. }
  3319. ret = i915_gem_object_unbind(obj);
  3320. if (ret != 0) {
  3321. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3322. ret);
  3323. mutex_unlock(&dev->struct_mutex);
  3324. return ret;
  3325. }
  3326. }
  3327. return 0;
  3328. }
  3329. int
  3330. i915_gem_idle(struct drm_device *dev)
  3331. {
  3332. drm_i915_private_t *dev_priv = dev->dev_private;
  3333. uint32_t seqno, cur_seqno, last_seqno;
  3334. int stuck, ret;
  3335. mutex_lock(&dev->struct_mutex);
  3336. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3337. mutex_unlock(&dev->struct_mutex);
  3338. return 0;
  3339. }
  3340. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3341. * We need to replace this with a semaphore, or something.
  3342. */
  3343. dev_priv->mm.suspended = 1;
  3344. del_timer(&dev_priv->hangcheck_timer);
  3345. /* Cancel the retire work handler, wait for it to finish if running
  3346. */
  3347. mutex_unlock(&dev->struct_mutex);
  3348. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3349. mutex_lock(&dev->struct_mutex);
  3350. i915_kernel_lost_context(dev);
  3351. /* Flush the GPU along with all non-CPU write domains
  3352. */
  3353. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  3354. seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
  3355. if (seqno == 0) {
  3356. mutex_unlock(&dev->struct_mutex);
  3357. return -ENOMEM;
  3358. }
  3359. dev_priv->mm.waiting_gem_seqno = seqno;
  3360. last_seqno = 0;
  3361. stuck = 0;
  3362. for (;;) {
  3363. cur_seqno = i915_get_gem_seqno(dev);
  3364. if (i915_seqno_passed(cur_seqno, seqno))
  3365. break;
  3366. if (last_seqno == cur_seqno) {
  3367. if (stuck++ > 100) {
  3368. DRM_ERROR("hardware wedged\n");
  3369. atomic_set(&dev_priv->mm.wedged, 1);
  3370. DRM_WAKEUP(&dev_priv->irq_queue);
  3371. break;
  3372. }
  3373. }
  3374. msleep(10);
  3375. last_seqno = cur_seqno;
  3376. }
  3377. dev_priv->mm.waiting_gem_seqno = 0;
  3378. i915_gem_retire_requests(dev);
  3379. spin_lock(&dev_priv->mm.active_list_lock);
  3380. if (!atomic_read(&dev_priv->mm.wedged)) {
  3381. /* Active and flushing should now be empty as we've
  3382. * waited for a sequence higher than any pending execbuffer
  3383. */
  3384. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3385. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3386. /* Request should now be empty as we've also waited
  3387. * for the last request in the list
  3388. */
  3389. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3390. }
  3391. /* Empty the active and flushing lists to inactive. If there's
  3392. * anything left at this point, it means that we're wedged and
  3393. * nothing good's going to happen by leaving them there. So strip
  3394. * the GPU domains and just stuff them onto inactive.
  3395. */
  3396. while (!list_empty(&dev_priv->mm.active_list)) {
  3397. struct drm_i915_gem_object *obj_priv;
  3398. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3399. struct drm_i915_gem_object,
  3400. list);
  3401. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3402. i915_gem_object_move_to_inactive(obj_priv->obj);
  3403. }
  3404. spin_unlock(&dev_priv->mm.active_list_lock);
  3405. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3406. struct drm_i915_gem_object *obj_priv;
  3407. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3408. struct drm_i915_gem_object,
  3409. list);
  3410. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3411. i915_gem_object_move_to_inactive(obj_priv->obj);
  3412. }
  3413. /* Move all inactive buffers out of the GTT. */
  3414. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3415. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3416. if (ret) {
  3417. mutex_unlock(&dev->struct_mutex);
  3418. return ret;
  3419. }
  3420. i915_gem_cleanup_ringbuffer(dev);
  3421. mutex_unlock(&dev->struct_mutex);
  3422. return 0;
  3423. }
  3424. static int
  3425. i915_gem_init_hws(struct drm_device *dev)
  3426. {
  3427. drm_i915_private_t *dev_priv = dev->dev_private;
  3428. struct drm_gem_object *obj;
  3429. struct drm_i915_gem_object *obj_priv;
  3430. int ret;
  3431. /* If we need a physical address for the status page, it's already
  3432. * initialized at driver load time.
  3433. */
  3434. if (!I915_NEED_GFX_HWS(dev))
  3435. return 0;
  3436. obj = drm_gem_object_alloc(dev, 4096);
  3437. if (obj == NULL) {
  3438. DRM_ERROR("Failed to allocate status page\n");
  3439. return -ENOMEM;
  3440. }
  3441. obj_priv = obj->driver_private;
  3442. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3443. ret = i915_gem_object_pin(obj, 4096);
  3444. if (ret != 0) {
  3445. drm_gem_object_unreference(obj);
  3446. return ret;
  3447. }
  3448. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3449. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3450. if (dev_priv->hw_status_page == NULL) {
  3451. DRM_ERROR("Failed to map status page.\n");
  3452. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3453. i915_gem_object_unpin(obj);
  3454. drm_gem_object_unreference(obj);
  3455. return -EINVAL;
  3456. }
  3457. dev_priv->hws_obj = obj;
  3458. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3459. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3460. I915_READ(HWS_PGA); /* posting read */
  3461. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3462. return 0;
  3463. }
  3464. static void
  3465. i915_gem_cleanup_hws(struct drm_device *dev)
  3466. {
  3467. drm_i915_private_t *dev_priv = dev->dev_private;
  3468. struct drm_gem_object *obj;
  3469. struct drm_i915_gem_object *obj_priv;
  3470. if (dev_priv->hws_obj == NULL)
  3471. return;
  3472. obj = dev_priv->hws_obj;
  3473. obj_priv = obj->driver_private;
  3474. kunmap(obj_priv->pages[0]);
  3475. i915_gem_object_unpin(obj);
  3476. drm_gem_object_unreference(obj);
  3477. dev_priv->hws_obj = NULL;
  3478. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3479. dev_priv->hw_status_page = NULL;
  3480. /* Write high address into HWS_PGA when disabling. */
  3481. I915_WRITE(HWS_PGA, 0x1ffff000);
  3482. }
  3483. int
  3484. i915_gem_init_ringbuffer(struct drm_device *dev)
  3485. {
  3486. drm_i915_private_t *dev_priv = dev->dev_private;
  3487. struct drm_gem_object *obj;
  3488. struct drm_i915_gem_object *obj_priv;
  3489. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3490. int ret;
  3491. u32 head;
  3492. ret = i915_gem_init_hws(dev);
  3493. if (ret != 0)
  3494. return ret;
  3495. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3496. if (obj == NULL) {
  3497. DRM_ERROR("Failed to allocate ringbuffer\n");
  3498. i915_gem_cleanup_hws(dev);
  3499. return -ENOMEM;
  3500. }
  3501. obj_priv = obj->driver_private;
  3502. ret = i915_gem_object_pin(obj, 4096);
  3503. if (ret != 0) {
  3504. drm_gem_object_unreference(obj);
  3505. i915_gem_cleanup_hws(dev);
  3506. return ret;
  3507. }
  3508. /* Set up the kernel mapping for the ring. */
  3509. ring->Size = obj->size;
  3510. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3511. ring->map.size = obj->size;
  3512. ring->map.type = 0;
  3513. ring->map.flags = 0;
  3514. ring->map.mtrr = 0;
  3515. drm_core_ioremap_wc(&ring->map, dev);
  3516. if (ring->map.handle == NULL) {
  3517. DRM_ERROR("Failed to map ringbuffer.\n");
  3518. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3519. i915_gem_object_unpin(obj);
  3520. drm_gem_object_unreference(obj);
  3521. i915_gem_cleanup_hws(dev);
  3522. return -EINVAL;
  3523. }
  3524. ring->ring_obj = obj;
  3525. ring->virtual_start = ring->map.handle;
  3526. /* Stop the ring if it's running. */
  3527. I915_WRITE(PRB0_CTL, 0);
  3528. I915_WRITE(PRB0_TAIL, 0);
  3529. I915_WRITE(PRB0_HEAD, 0);
  3530. /* Initialize the ring. */
  3531. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3532. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3533. /* G45 ring initialization fails to reset head to zero */
  3534. if (head != 0) {
  3535. DRM_ERROR("Ring head not reset to zero "
  3536. "ctl %08x head %08x tail %08x start %08x\n",
  3537. I915_READ(PRB0_CTL),
  3538. I915_READ(PRB0_HEAD),
  3539. I915_READ(PRB0_TAIL),
  3540. I915_READ(PRB0_START));
  3541. I915_WRITE(PRB0_HEAD, 0);
  3542. DRM_ERROR("Ring head forced to zero "
  3543. "ctl %08x head %08x tail %08x start %08x\n",
  3544. I915_READ(PRB0_CTL),
  3545. I915_READ(PRB0_HEAD),
  3546. I915_READ(PRB0_TAIL),
  3547. I915_READ(PRB0_START));
  3548. }
  3549. I915_WRITE(PRB0_CTL,
  3550. ((obj->size - 4096) & RING_NR_PAGES) |
  3551. RING_NO_REPORT |
  3552. RING_VALID);
  3553. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3554. /* If the head is still not zero, the ring is dead */
  3555. if (head != 0) {
  3556. DRM_ERROR("Ring initialization failed "
  3557. "ctl %08x head %08x tail %08x start %08x\n",
  3558. I915_READ(PRB0_CTL),
  3559. I915_READ(PRB0_HEAD),
  3560. I915_READ(PRB0_TAIL),
  3561. I915_READ(PRB0_START));
  3562. return -EIO;
  3563. }
  3564. /* Update our cache of the ring state */
  3565. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3566. i915_kernel_lost_context(dev);
  3567. else {
  3568. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3569. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3570. ring->space = ring->head - (ring->tail + 8);
  3571. if (ring->space < 0)
  3572. ring->space += ring->Size;
  3573. }
  3574. return 0;
  3575. }
  3576. void
  3577. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3578. {
  3579. drm_i915_private_t *dev_priv = dev->dev_private;
  3580. if (dev_priv->ring.ring_obj == NULL)
  3581. return;
  3582. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3583. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3584. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3585. dev_priv->ring.ring_obj = NULL;
  3586. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3587. i915_gem_cleanup_hws(dev);
  3588. }
  3589. int
  3590. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3591. struct drm_file *file_priv)
  3592. {
  3593. drm_i915_private_t *dev_priv = dev->dev_private;
  3594. int ret;
  3595. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3596. return 0;
  3597. if (atomic_read(&dev_priv->mm.wedged)) {
  3598. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3599. atomic_set(&dev_priv->mm.wedged, 0);
  3600. }
  3601. mutex_lock(&dev->struct_mutex);
  3602. dev_priv->mm.suspended = 0;
  3603. ret = i915_gem_init_ringbuffer(dev);
  3604. if (ret != 0) {
  3605. mutex_unlock(&dev->struct_mutex);
  3606. return ret;
  3607. }
  3608. spin_lock(&dev_priv->mm.active_list_lock);
  3609. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3610. spin_unlock(&dev_priv->mm.active_list_lock);
  3611. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3612. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3613. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3614. mutex_unlock(&dev->struct_mutex);
  3615. drm_irq_install(dev);
  3616. return 0;
  3617. }
  3618. int
  3619. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3620. struct drm_file *file_priv)
  3621. {
  3622. int ret;
  3623. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3624. return 0;
  3625. ret = i915_gem_idle(dev);
  3626. drm_irq_uninstall(dev);
  3627. return ret;
  3628. }
  3629. void
  3630. i915_gem_lastclose(struct drm_device *dev)
  3631. {
  3632. int ret;
  3633. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3634. return;
  3635. ret = i915_gem_idle(dev);
  3636. if (ret)
  3637. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3638. }
  3639. void
  3640. i915_gem_load(struct drm_device *dev)
  3641. {
  3642. int i;
  3643. drm_i915_private_t *dev_priv = dev->dev_private;
  3644. spin_lock_init(&dev_priv->mm.active_list_lock);
  3645. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3646. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3647. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3648. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3649. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3650. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3651. i915_gem_retire_work_handler);
  3652. dev_priv->mm.next_gem_seqno = 1;
  3653. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3654. dev_priv->fence_reg_start = 3;
  3655. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3656. dev_priv->num_fence_regs = 16;
  3657. else
  3658. dev_priv->num_fence_regs = 8;
  3659. /* Initialize fence registers to zero */
  3660. if (IS_I965G(dev)) {
  3661. for (i = 0; i < 16; i++)
  3662. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3663. } else {
  3664. for (i = 0; i < 8; i++)
  3665. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3666. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3667. for (i = 0; i < 8; i++)
  3668. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3669. }
  3670. i915_gem_detect_bit_6_swizzle(dev);
  3671. }
  3672. /*
  3673. * Create a physically contiguous memory object for this object
  3674. * e.g. for cursor + overlay regs
  3675. */
  3676. int i915_gem_init_phys_object(struct drm_device *dev,
  3677. int id, int size)
  3678. {
  3679. drm_i915_private_t *dev_priv = dev->dev_private;
  3680. struct drm_i915_gem_phys_object *phys_obj;
  3681. int ret;
  3682. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3683. return 0;
  3684. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3685. if (!phys_obj)
  3686. return -ENOMEM;
  3687. phys_obj->id = id;
  3688. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3689. if (!phys_obj->handle) {
  3690. ret = -ENOMEM;
  3691. goto kfree_obj;
  3692. }
  3693. #ifdef CONFIG_X86
  3694. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3695. #endif
  3696. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3697. return 0;
  3698. kfree_obj:
  3699. kfree(phys_obj);
  3700. return ret;
  3701. }
  3702. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3703. {
  3704. drm_i915_private_t *dev_priv = dev->dev_private;
  3705. struct drm_i915_gem_phys_object *phys_obj;
  3706. if (!dev_priv->mm.phys_objs[id - 1])
  3707. return;
  3708. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3709. if (phys_obj->cur_obj) {
  3710. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3711. }
  3712. #ifdef CONFIG_X86
  3713. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3714. #endif
  3715. drm_pci_free(dev, phys_obj->handle);
  3716. kfree(phys_obj);
  3717. dev_priv->mm.phys_objs[id - 1] = NULL;
  3718. }
  3719. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3720. {
  3721. int i;
  3722. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3723. i915_gem_free_phys_object(dev, i);
  3724. }
  3725. void i915_gem_detach_phys_object(struct drm_device *dev,
  3726. struct drm_gem_object *obj)
  3727. {
  3728. struct drm_i915_gem_object *obj_priv;
  3729. int i;
  3730. int ret;
  3731. int page_count;
  3732. obj_priv = obj->driver_private;
  3733. if (!obj_priv->phys_obj)
  3734. return;
  3735. ret = i915_gem_object_get_pages(obj);
  3736. if (ret)
  3737. goto out;
  3738. page_count = obj->size / PAGE_SIZE;
  3739. for (i = 0; i < page_count; i++) {
  3740. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3741. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3742. memcpy(dst, src, PAGE_SIZE);
  3743. kunmap_atomic(dst, KM_USER0);
  3744. }
  3745. drm_clflush_pages(obj_priv->pages, page_count);
  3746. drm_agp_chipset_flush(dev);
  3747. i915_gem_object_put_pages(obj);
  3748. out:
  3749. obj_priv->phys_obj->cur_obj = NULL;
  3750. obj_priv->phys_obj = NULL;
  3751. }
  3752. int
  3753. i915_gem_attach_phys_object(struct drm_device *dev,
  3754. struct drm_gem_object *obj, int id)
  3755. {
  3756. drm_i915_private_t *dev_priv = dev->dev_private;
  3757. struct drm_i915_gem_object *obj_priv;
  3758. int ret = 0;
  3759. int page_count;
  3760. int i;
  3761. if (id > I915_MAX_PHYS_OBJECT)
  3762. return -EINVAL;
  3763. obj_priv = obj->driver_private;
  3764. if (obj_priv->phys_obj) {
  3765. if (obj_priv->phys_obj->id == id)
  3766. return 0;
  3767. i915_gem_detach_phys_object(dev, obj);
  3768. }
  3769. /* create a new object */
  3770. if (!dev_priv->mm.phys_objs[id - 1]) {
  3771. ret = i915_gem_init_phys_object(dev, id,
  3772. obj->size);
  3773. if (ret) {
  3774. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3775. goto out;
  3776. }
  3777. }
  3778. /* bind to the object */
  3779. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3780. obj_priv->phys_obj->cur_obj = obj;
  3781. ret = i915_gem_object_get_pages(obj);
  3782. if (ret) {
  3783. DRM_ERROR("failed to get page list\n");
  3784. goto out;
  3785. }
  3786. page_count = obj->size / PAGE_SIZE;
  3787. for (i = 0; i < page_count; i++) {
  3788. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3789. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3790. memcpy(dst, src, PAGE_SIZE);
  3791. kunmap_atomic(src, KM_USER0);
  3792. }
  3793. i915_gem_object_put_pages(obj);
  3794. return 0;
  3795. out:
  3796. return ret;
  3797. }
  3798. static int
  3799. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3800. struct drm_i915_gem_pwrite *args,
  3801. struct drm_file *file_priv)
  3802. {
  3803. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3804. void *obj_addr;
  3805. int ret;
  3806. char __user *user_data;
  3807. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3808. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3809. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3810. ret = copy_from_user(obj_addr, user_data, args->size);
  3811. if (ret)
  3812. return -EFAULT;
  3813. drm_agp_chipset_flush(dev);
  3814. return 0;
  3815. }
  3816. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  3817. {
  3818. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  3819. /* Clean up our request list when the client is going away, so that
  3820. * later retire_requests won't dereference our soon-to-be-gone
  3821. * file_priv.
  3822. */
  3823. mutex_lock(&dev->struct_mutex);
  3824. while (!list_empty(&i915_file_priv->mm.request_list))
  3825. list_del_init(i915_file_priv->mm.request_list.next);
  3826. mutex_unlock(&dev->struct_mutex);
  3827. }