sched.c 164 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <linux/pagemap.h>
  64. #include <asm/tlb.h>
  65. /*
  66. * Scheduler clock - returns current time in nanosec units.
  67. * This is default implementation.
  68. * Architectures and sub-architectures can override this.
  69. */
  70. unsigned long long __attribute__((weak)) sched_clock(void)
  71. {
  72. return (unsigned long long)jiffies * (1000000000 / HZ);
  73. }
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Some helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  94. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  101. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. #define SCALE_PRIO(x, prio) \
  126. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  127. /*
  128. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  129. * to time slice values: [800ms ... 100ms ... 5ms]
  130. */
  131. static unsigned int static_prio_timeslice(int static_prio)
  132. {
  133. if (static_prio == NICE_TO_PRIO(19))
  134. return 1;
  135. if (static_prio < NICE_TO_PRIO(0))
  136. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  137. else
  138. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  139. }
  140. static inline int rt_policy(int policy)
  141. {
  142. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  143. return 1;
  144. return 0;
  145. }
  146. static inline int task_has_rt_policy(struct task_struct *p)
  147. {
  148. return rt_policy(p->policy);
  149. }
  150. /*
  151. * This is the priority-queue data structure of the RT scheduling class:
  152. */
  153. struct rt_prio_array {
  154. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  155. struct list_head queue[MAX_RT_PRIO];
  156. };
  157. /* CFS-related fields in a runqueue */
  158. struct cfs_rq {
  159. struct load_weight load;
  160. unsigned long nr_running;
  161. s64 fair_clock;
  162. u64 exec_clock;
  163. u64 min_vruntime;
  164. s64 wait_runtime;
  165. u64 sleeper_bonus;
  166. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  167. struct rb_root tasks_timeline;
  168. struct rb_node *rb_leftmost;
  169. struct rb_node *rb_load_balance_curr;
  170. /* 'curr' points to currently running entity on this cfs_rq.
  171. * It is set to NULL otherwise (i.e when none are currently running).
  172. */
  173. struct sched_entity *curr;
  174. #ifdef CONFIG_FAIR_GROUP_SCHED
  175. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  176. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  177. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  178. * (like users, containers etc.)
  179. *
  180. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  181. * list is used during load balance.
  182. */
  183. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  184. #endif
  185. };
  186. /* Real-Time classes' related field in a runqueue: */
  187. struct rt_rq {
  188. struct rt_prio_array active;
  189. int rt_load_balance_idx;
  190. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  191. };
  192. /*
  193. * This is the main, per-CPU runqueue data structure.
  194. *
  195. * Locking rule: those places that want to lock multiple runqueues
  196. * (such as the load balancing or the thread migration code), lock
  197. * acquire operations must be ordered by ascending &runqueue.
  198. */
  199. struct rq {
  200. spinlock_t lock; /* runqueue lock */
  201. /*
  202. * nr_running and cpu_load should be in the same cacheline because
  203. * remote CPUs use both these fields when doing load calculation.
  204. */
  205. unsigned long nr_running;
  206. #define CPU_LOAD_IDX_MAX 5
  207. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  208. unsigned char idle_at_tick;
  209. #ifdef CONFIG_NO_HZ
  210. unsigned char in_nohz_recently;
  211. #endif
  212. struct load_weight load; /* capture load from *all* tasks on this cpu */
  213. unsigned long nr_load_updates;
  214. u64 nr_switches;
  215. struct cfs_rq cfs;
  216. #ifdef CONFIG_FAIR_GROUP_SCHED
  217. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  218. #endif
  219. struct rt_rq rt;
  220. /*
  221. * This is part of a global counter where only the total sum
  222. * over all CPUs matters. A task can increase this counter on
  223. * one CPU and if it got migrated afterwards it may decrease
  224. * it on another CPU. Always updated under the runqueue lock:
  225. */
  226. unsigned long nr_uninterruptible;
  227. struct task_struct *curr, *idle;
  228. unsigned long next_balance;
  229. struct mm_struct *prev_mm;
  230. u64 clock, prev_clock_raw;
  231. s64 clock_max_delta;
  232. unsigned int clock_warps, clock_overflows;
  233. u64 idle_clock;
  234. unsigned int clock_deep_idle_events;
  235. u64 tick_timestamp;
  236. atomic_t nr_iowait;
  237. #ifdef CONFIG_SMP
  238. struct sched_domain *sd;
  239. /* For active balancing */
  240. int active_balance;
  241. int push_cpu;
  242. int cpu; /* cpu of this runqueue */
  243. struct task_struct *migration_thread;
  244. struct list_head migration_queue;
  245. #endif
  246. #ifdef CONFIG_SCHEDSTATS
  247. /* latency stats */
  248. struct sched_info rq_sched_info;
  249. /* sys_sched_yield() stats */
  250. unsigned long yld_exp_empty;
  251. unsigned long yld_act_empty;
  252. unsigned long yld_both_empty;
  253. unsigned long yld_cnt;
  254. /* schedule() stats */
  255. unsigned long sched_switch;
  256. unsigned long sched_cnt;
  257. unsigned long sched_goidle;
  258. /* try_to_wake_up() stats */
  259. unsigned long ttwu_cnt;
  260. unsigned long ttwu_local;
  261. #endif
  262. struct lock_class_key rq_lock_key;
  263. };
  264. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  265. static DEFINE_MUTEX(sched_hotcpu_mutex);
  266. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  267. {
  268. rq->curr->sched_class->check_preempt_curr(rq, p);
  269. }
  270. static inline int cpu_of(struct rq *rq)
  271. {
  272. #ifdef CONFIG_SMP
  273. return rq->cpu;
  274. #else
  275. return 0;
  276. #endif
  277. }
  278. /*
  279. * Update the per-runqueue clock, as finegrained as the platform can give
  280. * us, but without assuming monotonicity, etc.:
  281. */
  282. static void __update_rq_clock(struct rq *rq)
  283. {
  284. u64 prev_raw = rq->prev_clock_raw;
  285. u64 now = sched_clock();
  286. s64 delta = now - prev_raw;
  287. u64 clock = rq->clock;
  288. #ifdef CONFIG_SCHED_DEBUG
  289. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  290. #endif
  291. /*
  292. * Protect against sched_clock() occasionally going backwards:
  293. */
  294. if (unlikely(delta < 0)) {
  295. clock++;
  296. rq->clock_warps++;
  297. } else {
  298. /*
  299. * Catch too large forward jumps too:
  300. */
  301. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  302. if (clock < rq->tick_timestamp + TICK_NSEC)
  303. clock = rq->tick_timestamp + TICK_NSEC;
  304. else
  305. clock++;
  306. rq->clock_overflows++;
  307. } else {
  308. if (unlikely(delta > rq->clock_max_delta))
  309. rq->clock_max_delta = delta;
  310. clock += delta;
  311. }
  312. }
  313. rq->prev_clock_raw = now;
  314. rq->clock = clock;
  315. }
  316. static void update_rq_clock(struct rq *rq)
  317. {
  318. if (likely(smp_processor_id() == cpu_of(rq)))
  319. __update_rq_clock(rq);
  320. }
  321. /*
  322. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  323. * See detach_destroy_domains: synchronize_sched for details.
  324. *
  325. * The domain tree of any CPU may only be accessed from within
  326. * preempt-disabled sections.
  327. */
  328. #define for_each_domain(cpu, __sd) \
  329. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  330. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  331. #define this_rq() (&__get_cpu_var(runqueues))
  332. #define task_rq(p) cpu_rq(task_cpu(p))
  333. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  334. /*
  335. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  336. */
  337. #ifdef CONFIG_SCHED_DEBUG
  338. # define const_debug __read_mostly
  339. #else
  340. # define const_debug static const
  341. #endif
  342. /*
  343. * Debugging: various feature bits
  344. */
  345. enum {
  346. SCHED_FEAT_FAIR_SLEEPERS = 1,
  347. SCHED_FEAT_NEW_FAIR_SLEEPERS = 2,
  348. SCHED_FEAT_SLEEPER_AVG = 4,
  349. SCHED_FEAT_SLEEPER_LOAD_AVG = 8,
  350. SCHED_FEAT_START_DEBIT = 16,
  351. SCHED_FEAT_USE_TREE_AVG = 32,
  352. SCHED_FEAT_APPROX_AVG = 64,
  353. };
  354. const_debug unsigned int sysctl_sched_features =
  355. SCHED_FEAT_FAIR_SLEEPERS *0 |
  356. SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
  357. SCHED_FEAT_SLEEPER_AVG *0 |
  358. SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
  359. SCHED_FEAT_START_DEBIT *1 |
  360. SCHED_FEAT_USE_TREE_AVG *0 |
  361. SCHED_FEAT_APPROX_AVG *0;
  362. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  363. /*
  364. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  365. * clock constructed from sched_clock():
  366. */
  367. unsigned long long cpu_clock(int cpu)
  368. {
  369. unsigned long long now;
  370. unsigned long flags;
  371. struct rq *rq;
  372. local_irq_save(flags);
  373. rq = cpu_rq(cpu);
  374. update_rq_clock(rq);
  375. now = rq->clock;
  376. local_irq_restore(flags);
  377. return now;
  378. }
  379. #ifdef CONFIG_FAIR_GROUP_SCHED
  380. /* Change a task's ->cfs_rq if it moves across CPUs */
  381. static inline void set_task_cfs_rq(struct task_struct *p)
  382. {
  383. p->se.cfs_rq = &task_rq(p)->cfs;
  384. }
  385. #else
  386. static inline void set_task_cfs_rq(struct task_struct *p)
  387. {
  388. }
  389. #endif
  390. #ifndef prepare_arch_switch
  391. # define prepare_arch_switch(next) do { } while (0)
  392. #endif
  393. #ifndef finish_arch_switch
  394. # define finish_arch_switch(prev) do { } while (0)
  395. #endif
  396. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  397. static inline int task_running(struct rq *rq, struct task_struct *p)
  398. {
  399. return rq->curr == p;
  400. }
  401. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  402. {
  403. }
  404. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  405. {
  406. #ifdef CONFIG_DEBUG_SPINLOCK
  407. /* this is a valid case when another task releases the spinlock */
  408. rq->lock.owner = current;
  409. #endif
  410. /*
  411. * If we are tracking spinlock dependencies then we have to
  412. * fix up the runqueue lock - which gets 'carried over' from
  413. * prev into current:
  414. */
  415. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  416. spin_unlock_irq(&rq->lock);
  417. }
  418. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  419. static inline int task_running(struct rq *rq, struct task_struct *p)
  420. {
  421. #ifdef CONFIG_SMP
  422. return p->oncpu;
  423. #else
  424. return rq->curr == p;
  425. #endif
  426. }
  427. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  428. {
  429. #ifdef CONFIG_SMP
  430. /*
  431. * We can optimise this out completely for !SMP, because the
  432. * SMP rebalancing from interrupt is the only thing that cares
  433. * here.
  434. */
  435. next->oncpu = 1;
  436. #endif
  437. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  438. spin_unlock_irq(&rq->lock);
  439. #else
  440. spin_unlock(&rq->lock);
  441. #endif
  442. }
  443. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  444. {
  445. #ifdef CONFIG_SMP
  446. /*
  447. * After ->oncpu is cleared, the task can be moved to a different CPU.
  448. * We must ensure this doesn't happen until the switch is completely
  449. * finished.
  450. */
  451. smp_wmb();
  452. prev->oncpu = 0;
  453. #endif
  454. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  455. local_irq_enable();
  456. #endif
  457. }
  458. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  459. /*
  460. * __task_rq_lock - lock the runqueue a given task resides on.
  461. * Must be called interrupts disabled.
  462. */
  463. static inline struct rq *__task_rq_lock(struct task_struct *p)
  464. __acquires(rq->lock)
  465. {
  466. struct rq *rq;
  467. repeat_lock_task:
  468. rq = task_rq(p);
  469. spin_lock(&rq->lock);
  470. if (unlikely(rq != task_rq(p))) {
  471. spin_unlock(&rq->lock);
  472. goto repeat_lock_task;
  473. }
  474. return rq;
  475. }
  476. /*
  477. * task_rq_lock - lock the runqueue a given task resides on and disable
  478. * interrupts. Note the ordering: we can safely lookup the task_rq without
  479. * explicitly disabling preemption.
  480. */
  481. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  482. __acquires(rq->lock)
  483. {
  484. struct rq *rq;
  485. repeat_lock_task:
  486. local_irq_save(*flags);
  487. rq = task_rq(p);
  488. spin_lock(&rq->lock);
  489. if (unlikely(rq != task_rq(p))) {
  490. spin_unlock_irqrestore(&rq->lock, *flags);
  491. goto repeat_lock_task;
  492. }
  493. return rq;
  494. }
  495. static inline void __task_rq_unlock(struct rq *rq)
  496. __releases(rq->lock)
  497. {
  498. spin_unlock(&rq->lock);
  499. }
  500. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  501. __releases(rq->lock)
  502. {
  503. spin_unlock_irqrestore(&rq->lock, *flags);
  504. }
  505. /*
  506. * this_rq_lock - lock this runqueue and disable interrupts.
  507. */
  508. static inline struct rq *this_rq_lock(void)
  509. __acquires(rq->lock)
  510. {
  511. struct rq *rq;
  512. local_irq_disable();
  513. rq = this_rq();
  514. spin_lock(&rq->lock);
  515. return rq;
  516. }
  517. /*
  518. * We are going deep-idle (irqs are disabled):
  519. */
  520. void sched_clock_idle_sleep_event(void)
  521. {
  522. struct rq *rq = cpu_rq(smp_processor_id());
  523. spin_lock(&rq->lock);
  524. __update_rq_clock(rq);
  525. spin_unlock(&rq->lock);
  526. rq->clock_deep_idle_events++;
  527. }
  528. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  529. /*
  530. * We just idled delta nanoseconds (called with irqs disabled):
  531. */
  532. void sched_clock_idle_wakeup_event(u64 delta_ns)
  533. {
  534. struct rq *rq = cpu_rq(smp_processor_id());
  535. u64 now = sched_clock();
  536. rq->idle_clock += delta_ns;
  537. /*
  538. * Override the previous timestamp and ignore all
  539. * sched_clock() deltas that occured while we idled,
  540. * and use the PM-provided delta_ns to advance the
  541. * rq clock:
  542. */
  543. spin_lock(&rq->lock);
  544. rq->prev_clock_raw = now;
  545. rq->clock += delta_ns;
  546. spin_unlock(&rq->lock);
  547. }
  548. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  549. /*
  550. * resched_task - mark a task 'to be rescheduled now'.
  551. *
  552. * On UP this means the setting of the need_resched flag, on SMP it
  553. * might also involve a cross-CPU call to trigger the scheduler on
  554. * the target CPU.
  555. */
  556. #ifdef CONFIG_SMP
  557. #ifndef tsk_is_polling
  558. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  559. #endif
  560. static void resched_task(struct task_struct *p)
  561. {
  562. int cpu;
  563. assert_spin_locked(&task_rq(p)->lock);
  564. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  565. return;
  566. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  567. cpu = task_cpu(p);
  568. if (cpu == smp_processor_id())
  569. return;
  570. /* NEED_RESCHED must be visible before we test polling */
  571. smp_mb();
  572. if (!tsk_is_polling(p))
  573. smp_send_reschedule(cpu);
  574. }
  575. static void resched_cpu(int cpu)
  576. {
  577. struct rq *rq = cpu_rq(cpu);
  578. unsigned long flags;
  579. if (!spin_trylock_irqsave(&rq->lock, flags))
  580. return;
  581. resched_task(cpu_curr(cpu));
  582. spin_unlock_irqrestore(&rq->lock, flags);
  583. }
  584. #else
  585. static inline void resched_task(struct task_struct *p)
  586. {
  587. assert_spin_locked(&task_rq(p)->lock);
  588. set_tsk_need_resched(p);
  589. }
  590. #endif
  591. static u64 div64_likely32(u64 divident, unsigned long divisor)
  592. {
  593. #if BITS_PER_LONG == 32
  594. if (likely(divident <= 0xffffffffULL))
  595. return (u32)divident / divisor;
  596. do_div(divident, divisor);
  597. return divident;
  598. #else
  599. return divident / divisor;
  600. #endif
  601. }
  602. #if BITS_PER_LONG == 32
  603. # define WMULT_CONST (~0UL)
  604. #else
  605. # define WMULT_CONST (1UL << 32)
  606. #endif
  607. #define WMULT_SHIFT 32
  608. /*
  609. * Shift right and round:
  610. */
  611. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  612. static unsigned long
  613. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  614. struct load_weight *lw)
  615. {
  616. u64 tmp;
  617. if (unlikely(!lw->inv_weight))
  618. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  619. tmp = (u64)delta_exec * weight;
  620. /*
  621. * Check whether we'd overflow the 64-bit multiplication:
  622. */
  623. if (unlikely(tmp > WMULT_CONST))
  624. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  625. WMULT_SHIFT/2);
  626. else
  627. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  628. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  629. }
  630. static inline unsigned long
  631. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  632. {
  633. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  634. }
  635. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  636. {
  637. lw->weight += inc;
  638. if (sched_feat(FAIR_SLEEPERS))
  639. lw->inv_weight = WMULT_CONST / lw->weight;
  640. }
  641. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  642. {
  643. lw->weight -= dec;
  644. if (sched_feat(FAIR_SLEEPERS) && likely(lw->weight))
  645. lw->inv_weight = WMULT_CONST / lw->weight;
  646. }
  647. /*
  648. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  649. * of tasks with abnormal "nice" values across CPUs the contribution that
  650. * each task makes to its run queue's load is weighted according to its
  651. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  652. * scaled version of the new time slice allocation that they receive on time
  653. * slice expiry etc.
  654. */
  655. #define WEIGHT_IDLEPRIO 2
  656. #define WMULT_IDLEPRIO (1 << 31)
  657. /*
  658. * Nice levels are multiplicative, with a gentle 10% change for every
  659. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  660. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  661. * that remained on nice 0.
  662. *
  663. * The "10% effect" is relative and cumulative: from _any_ nice level,
  664. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  665. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  666. * If a task goes up by ~10% and another task goes down by ~10% then
  667. * the relative distance between them is ~25%.)
  668. */
  669. static const int prio_to_weight[40] = {
  670. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  671. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  672. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  673. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  674. /* 0 */ 1024, 820, 655, 526, 423,
  675. /* 5 */ 335, 272, 215, 172, 137,
  676. /* 10 */ 110, 87, 70, 56, 45,
  677. /* 15 */ 36, 29, 23, 18, 15,
  678. };
  679. /*
  680. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  681. *
  682. * In cases where the weight does not change often, we can use the
  683. * precalculated inverse to speed up arithmetics by turning divisions
  684. * into multiplications:
  685. */
  686. static const u32 prio_to_wmult[40] = {
  687. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  688. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  689. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  690. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  691. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  692. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  693. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  694. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  695. };
  696. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  697. /*
  698. * runqueue iterator, to support SMP load-balancing between different
  699. * scheduling classes, without having to expose their internal data
  700. * structures to the load-balancing proper:
  701. */
  702. struct rq_iterator {
  703. void *arg;
  704. struct task_struct *(*start)(void *);
  705. struct task_struct *(*next)(void *);
  706. };
  707. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  708. unsigned long max_nr_move, unsigned long max_load_move,
  709. struct sched_domain *sd, enum cpu_idle_type idle,
  710. int *all_pinned, unsigned long *load_moved,
  711. int *this_best_prio, struct rq_iterator *iterator);
  712. #include "sched_stats.h"
  713. #include "sched_rt.c"
  714. #include "sched_fair.c"
  715. #include "sched_idletask.c"
  716. #ifdef CONFIG_SCHED_DEBUG
  717. # include "sched_debug.c"
  718. #endif
  719. #define sched_class_highest (&rt_sched_class)
  720. /*
  721. * Update delta_exec, delta_fair fields for rq.
  722. *
  723. * delta_fair clock advances at a rate inversely proportional to
  724. * total load (rq->load.weight) on the runqueue, while
  725. * delta_exec advances at the same rate as wall-clock (provided
  726. * cpu is not idle).
  727. *
  728. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  729. * runqueue over any given interval. This (smoothened) load is used
  730. * during load balance.
  731. *
  732. * This function is called /before/ updating rq->load
  733. * and when switching tasks.
  734. */
  735. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  736. {
  737. update_load_add(&rq->load, p->se.load.weight);
  738. }
  739. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  740. {
  741. update_load_sub(&rq->load, p->se.load.weight);
  742. }
  743. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  744. {
  745. rq->nr_running++;
  746. inc_load(rq, p);
  747. }
  748. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  749. {
  750. rq->nr_running--;
  751. dec_load(rq, p);
  752. }
  753. static void set_load_weight(struct task_struct *p)
  754. {
  755. p->se.wait_runtime = 0;
  756. if (task_has_rt_policy(p)) {
  757. p->se.load.weight = prio_to_weight[0] * 2;
  758. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  759. return;
  760. }
  761. /*
  762. * SCHED_IDLE tasks get minimal weight:
  763. */
  764. if (p->policy == SCHED_IDLE) {
  765. p->se.load.weight = WEIGHT_IDLEPRIO;
  766. p->se.load.inv_weight = WMULT_IDLEPRIO;
  767. return;
  768. }
  769. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  770. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  771. }
  772. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  773. {
  774. sched_info_queued(p);
  775. p->sched_class->enqueue_task(rq, p, wakeup);
  776. p->se.on_rq = 1;
  777. }
  778. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  779. {
  780. p->sched_class->dequeue_task(rq, p, sleep);
  781. p->se.on_rq = 0;
  782. }
  783. /*
  784. * __normal_prio - return the priority that is based on the static prio
  785. */
  786. static inline int __normal_prio(struct task_struct *p)
  787. {
  788. return p->static_prio;
  789. }
  790. /*
  791. * Calculate the expected normal priority: i.e. priority
  792. * without taking RT-inheritance into account. Might be
  793. * boosted by interactivity modifiers. Changes upon fork,
  794. * setprio syscalls, and whenever the interactivity
  795. * estimator recalculates.
  796. */
  797. static inline int normal_prio(struct task_struct *p)
  798. {
  799. int prio;
  800. if (task_has_rt_policy(p))
  801. prio = MAX_RT_PRIO-1 - p->rt_priority;
  802. else
  803. prio = __normal_prio(p);
  804. return prio;
  805. }
  806. /*
  807. * Calculate the current priority, i.e. the priority
  808. * taken into account by the scheduler. This value might
  809. * be boosted by RT tasks, or might be boosted by
  810. * interactivity modifiers. Will be RT if the task got
  811. * RT-boosted. If not then it returns p->normal_prio.
  812. */
  813. static int effective_prio(struct task_struct *p)
  814. {
  815. p->normal_prio = normal_prio(p);
  816. /*
  817. * If we are RT tasks or we were boosted to RT priority,
  818. * keep the priority unchanged. Otherwise, update priority
  819. * to the normal priority:
  820. */
  821. if (!rt_prio(p->prio))
  822. return p->normal_prio;
  823. return p->prio;
  824. }
  825. /*
  826. * activate_task - move a task to the runqueue.
  827. */
  828. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  829. {
  830. if (p->state == TASK_UNINTERRUPTIBLE)
  831. rq->nr_uninterruptible--;
  832. enqueue_task(rq, p, wakeup);
  833. inc_nr_running(p, rq);
  834. }
  835. /*
  836. * activate_idle_task - move idle task to the _front_ of runqueue.
  837. */
  838. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  839. {
  840. update_rq_clock(rq);
  841. if (p->state == TASK_UNINTERRUPTIBLE)
  842. rq->nr_uninterruptible--;
  843. enqueue_task(rq, p, 0);
  844. inc_nr_running(p, rq);
  845. }
  846. /*
  847. * deactivate_task - remove a task from the runqueue.
  848. */
  849. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  850. {
  851. if (p->state == TASK_UNINTERRUPTIBLE)
  852. rq->nr_uninterruptible++;
  853. dequeue_task(rq, p, sleep);
  854. dec_nr_running(p, rq);
  855. }
  856. /**
  857. * task_curr - is this task currently executing on a CPU?
  858. * @p: the task in question.
  859. */
  860. inline int task_curr(const struct task_struct *p)
  861. {
  862. return cpu_curr(task_cpu(p)) == p;
  863. }
  864. /* Used instead of source_load when we know the type == 0 */
  865. unsigned long weighted_cpuload(const int cpu)
  866. {
  867. return cpu_rq(cpu)->load.weight;
  868. }
  869. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  870. {
  871. #ifdef CONFIG_SMP
  872. task_thread_info(p)->cpu = cpu;
  873. set_task_cfs_rq(p);
  874. #endif
  875. }
  876. #ifdef CONFIG_SMP
  877. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  878. {
  879. int old_cpu = task_cpu(p);
  880. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  881. u64 clock_offset, fair_clock_offset;
  882. clock_offset = old_rq->clock - new_rq->clock;
  883. fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
  884. if (p->se.wait_start_fair)
  885. p->se.wait_start_fair -= fair_clock_offset;
  886. if (p->se.sleep_start_fair)
  887. p->se.sleep_start_fair -= fair_clock_offset;
  888. #ifdef CONFIG_SCHEDSTATS
  889. if (p->se.wait_start)
  890. p->se.wait_start -= clock_offset;
  891. if (p->se.sleep_start)
  892. p->se.sleep_start -= clock_offset;
  893. if (p->se.block_start)
  894. p->se.block_start -= clock_offset;
  895. #endif
  896. __set_task_cpu(p, new_cpu);
  897. }
  898. struct migration_req {
  899. struct list_head list;
  900. struct task_struct *task;
  901. int dest_cpu;
  902. struct completion done;
  903. };
  904. /*
  905. * The task's runqueue lock must be held.
  906. * Returns true if you have to wait for migration thread.
  907. */
  908. static int
  909. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  910. {
  911. struct rq *rq = task_rq(p);
  912. /*
  913. * If the task is not on a runqueue (and not running), then
  914. * it is sufficient to simply update the task's cpu field.
  915. */
  916. if (!p->se.on_rq && !task_running(rq, p)) {
  917. set_task_cpu(p, dest_cpu);
  918. return 0;
  919. }
  920. init_completion(&req->done);
  921. req->task = p;
  922. req->dest_cpu = dest_cpu;
  923. list_add(&req->list, &rq->migration_queue);
  924. return 1;
  925. }
  926. /*
  927. * wait_task_inactive - wait for a thread to unschedule.
  928. *
  929. * The caller must ensure that the task *will* unschedule sometime soon,
  930. * else this function might spin for a *long* time. This function can't
  931. * be called with interrupts off, or it may introduce deadlock with
  932. * smp_call_function() if an IPI is sent by the same process we are
  933. * waiting to become inactive.
  934. */
  935. void wait_task_inactive(struct task_struct *p)
  936. {
  937. unsigned long flags;
  938. int running, on_rq;
  939. struct rq *rq;
  940. repeat:
  941. /*
  942. * We do the initial early heuristics without holding
  943. * any task-queue locks at all. We'll only try to get
  944. * the runqueue lock when things look like they will
  945. * work out!
  946. */
  947. rq = task_rq(p);
  948. /*
  949. * If the task is actively running on another CPU
  950. * still, just relax and busy-wait without holding
  951. * any locks.
  952. *
  953. * NOTE! Since we don't hold any locks, it's not
  954. * even sure that "rq" stays as the right runqueue!
  955. * But we don't care, since "task_running()" will
  956. * return false if the runqueue has changed and p
  957. * is actually now running somewhere else!
  958. */
  959. while (task_running(rq, p))
  960. cpu_relax();
  961. /*
  962. * Ok, time to look more closely! We need the rq
  963. * lock now, to be *sure*. If we're wrong, we'll
  964. * just go back and repeat.
  965. */
  966. rq = task_rq_lock(p, &flags);
  967. running = task_running(rq, p);
  968. on_rq = p->se.on_rq;
  969. task_rq_unlock(rq, &flags);
  970. /*
  971. * Was it really running after all now that we
  972. * checked with the proper locks actually held?
  973. *
  974. * Oops. Go back and try again..
  975. */
  976. if (unlikely(running)) {
  977. cpu_relax();
  978. goto repeat;
  979. }
  980. /*
  981. * It's not enough that it's not actively running,
  982. * it must be off the runqueue _entirely_, and not
  983. * preempted!
  984. *
  985. * So if it wa still runnable (but just not actively
  986. * running right now), it's preempted, and we should
  987. * yield - it could be a while.
  988. */
  989. if (unlikely(on_rq)) {
  990. yield();
  991. goto repeat;
  992. }
  993. /*
  994. * Ahh, all good. It wasn't running, and it wasn't
  995. * runnable, which means that it will never become
  996. * running in the future either. We're all done!
  997. */
  998. }
  999. /***
  1000. * kick_process - kick a running thread to enter/exit the kernel
  1001. * @p: the to-be-kicked thread
  1002. *
  1003. * Cause a process which is running on another CPU to enter
  1004. * kernel-mode, without any delay. (to get signals handled.)
  1005. *
  1006. * NOTE: this function doesnt have to take the runqueue lock,
  1007. * because all it wants to ensure is that the remote task enters
  1008. * the kernel. If the IPI races and the task has been migrated
  1009. * to another CPU then no harm is done and the purpose has been
  1010. * achieved as well.
  1011. */
  1012. void kick_process(struct task_struct *p)
  1013. {
  1014. int cpu;
  1015. preempt_disable();
  1016. cpu = task_cpu(p);
  1017. if ((cpu != smp_processor_id()) && task_curr(p))
  1018. smp_send_reschedule(cpu);
  1019. preempt_enable();
  1020. }
  1021. /*
  1022. * Return a low guess at the load of a migration-source cpu weighted
  1023. * according to the scheduling class and "nice" value.
  1024. *
  1025. * We want to under-estimate the load of migration sources, to
  1026. * balance conservatively.
  1027. */
  1028. static inline unsigned long source_load(int cpu, int type)
  1029. {
  1030. struct rq *rq = cpu_rq(cpu);
  1031. unsigned long total = weighted_cpuload(cpu);
  1032. if (type == 0)
  1033. return total;
  1034. return min(rq->cpu_load[type-1], total);
  1035. }
  1036. /*
  1037. * Return a high guess at the load of a migration-target cpu weighted
  1038. * according to the scheduling class and "nice" value.
  1039. */
  1040. static inline unsigned long target_load(int cpu, int type)
  1041. {
  1042. struct rq *rq = cpu_rq(cpu);
  1043. unsigned long total = weighted_cpuload(cpu);
  1044. if (type == 0)
  1045. return total;
  1046. return max(rq->cpu_load[type-1], total);
  1047. }
  1048. /*
  1049. * Return the average load per task on the cpu's run queue
  1050. */
  1051. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1052. {
  1053. struct rq *rq = cpu_rq(cpu);
  1054. unsigned long total = weighted_cpuload(cpu);
  1055. unsigned long n = rq->nr_running;
  1056. return n ? total / n : SCHED_LOAD_SCALE;
  1057. }
  1058. /*
  1059. * find_idlest_group finds and returns the least busy CPU group within the
  1060. * domain.
  1061. */
  1062. static struct sched_group *
  1063. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1064. {
  1065. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1066. unsigned long min_load = ULONG_MAX, this_load = 0;
  1067. int load_idx = sd->forkexec_idx;
  1068. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1069. do {
  1070. unsigned long load, avg_load;
  1071. int local_group;
  1072. int i;
  1073. /* Skip over this group if it has no CPUs allowed */
  1074. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1075. goto nextgroup;
  1076. local_group = cpu_isset(this_cpu, group->cpumask);
  1077. /* Tally up the load of all CPUs in the group */
  1078. avg_load = 0;
  1079. for_each_cpu_mask(i, group->cpumask) {
  1080. /* Bias balancing toward cpus of our domain */
  1081. if (local_group)
  1082. load = source_load(i, load_idx);
  1083. else
  1084. load = target_load(i, load_idx);
  1085. avg_load += load;
  1086. }
  1087. /* Adjust by relative CPU power of the group */
  1088. avg_load = sg_div_cpu_power(group,
  1089. avg_load * SCHED_LOAD_SCALE);
  1090. if (local_group) {
  1091. this_load = avg_load;
  1092. this = group;
  1093. } else if (avg_load < min_load) {
  1094. min_load = avg_load;
  1095. idlest = group;
  1096. }
  1097. nextgroup:
  1098. group = group->next;
  1099. } while (group != sd->groups);
  1100. if (!idlest || 100*this_load < imbalance*min_load)
  1101. return NULL;
  1102. return idlest;
  1103. }
  1104. /*
  1105. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1106. */
  1107. static int
  1108. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1109. {
  1110. cpumask_t tmp;
  1111. unsigned long load, min_load = ULONG_MAX;
  1112. int idlest = -1;
  1113. int i;
  1114. /* Traverse only the allowed CPUs */
  1115. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1116. for_each_cpu_mask(i, tmp) {
  1117. load = weighted_cpuload(i);
  1118. if (load < min_load || (load == min_load && i == this_cpu)) {
  1119. min_load = load;
  1120. idlest = i;
  1121. }
  1122. }
  1123. return idlest;
  1124. }
  1125. /*
  1126. * sched_balance_self: balance the current task (running on cpu) in domains
  1127. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1128. * SD_BALANCE_EXEC.
  1129. *
  1130. * Balance, ie. select the least loaded group.
  1131. *
  1132. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1133. *
  1134. * preempt must be disabled.
  1135. */
  1136. static int sched_balance_self(int cpu, int flag)
  1137. {
  1138. struct task_struct *t = current;
  1139. struct sched_domain *tmp, *sd = NULL;
  1140. for_each_domain(cpu, tmp) {
  1141. /*
  1142. * If power savings logic is enabled for a domain, stop there.
  1143. */
  1144. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1145. break;
  1146. if (tmp->flags & flag)
  1147. sd = tmp;
  1148. }
  1149. while (sd) {
  1150. cpumask_t span;
  1151. struct sched_group *group;
  1152. int new_cpu, weight;
  1153. if (!(sd->flags & flag)) {
  1154. sd = sd->child;
  1155. continue;
  1156. }
  1157. span = sd->span;
  1158. group = find_idlest_group(sd, t, cpu);
  1159. if (!group) {
  1160. sd = sd->child;
  1161. continue;
  1162. }
  1163. new_cpu = find_idlest_cpu(group, t, cpu);
  1164. if (new_cpu == -1 || new_cpu == cpu) {
  1165. /* Now try balancing at a lower domain level of cpu */
  1166. sd = sd->child;
  1167. continue;
  1168. }
  1169. /* Now try balancing at a lower domain level of new_cpu */
  1170. cpu = new_cpu;
  1171. sd = NULL;
  1172. weight = cpus_weight(span);
  1173. for_each_domain(cpu, tmp) {
  1174. if (weight <= cpus_weight(tmp->span))
  1175. break;
  1176. if (tmp->flags & flag)
  1177. sd = tmp;
  1178. }
  1179. /* while loop will break here if sd == NULL */
  1180. }
  1181. return cpu;
  1182. }
  1183. #endif /* CONFIG_SMP */
  1184. /*
  1185. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1186. * not idle and an idle cpu is available. The span of cpus to
  1187. * search starts with cpus closest then further out as needed,
  1188. * so we always favor a closer, idle cpu.
  1189. *
  1190. * Returns the CPU we should wake onto.
  1191. */
  1192. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1193. static int wake_idle(int cpu, struct task_struct *p)
  1194. {
  1195. cpumask_t tmp;
  1196. struct sched_domain *sd;
  1197. int i;
  1198. /*
  1199. * If it is idle, then it is the best cpu to run this task.
  1200. *
  1201. * This cpu is also the best, if it has more than one task already.
  1202. * Siblings must be also busy(in most cases) as they didn't already
  1203. * pickup the extra load from this cpu and hence we need not check
  1204. * sibling runqueue info. This will avoid the checks and cache miss
  1205. * penalities associated with that.
  1206. */
  1207. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1208. return cpu;
  1209. for_each_domain(cpu, sd) {
  1210. if (sd->flags & SD_WAKE_IDLE) {
  1211. cpus_and(tmp, sd->span, p->cpus_allowed);
  1212. for_each_cpu_mask(i, tmp) {
  1213. if (idle_cpu(i))
  1214. return i;
  1215. }
  1216. } else {
  1217. break;
  1218. }
  1219. }
  1220. return cpu;
  1221. }
  1222. #else
  1223. static inline int wake_idle(int cpu, struct task_struct *p)
  1224. {
  1225. return cpu;
  1226. }
  1227. #endif
  1228. /***
  1229. * try_to_wake_up - wake up a thread
  1230. * @p: the to-be-woken-up thread
  1231. * @state: the mask of task states that can be woken
  1232. * @sync: do a synchronous wakeup?
  1233. *
  1234. * Put it on the run-queue if it's not already there. The "current"
  1235. * thread is always on the run-queue (except when the actual
  1236. * re-schedule is in progress), and as such you're allowed to do
  1237. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1238. * runnable without the overhead of this.
  1239. *
  1240. * returns failure only if the task is already active.
  1241. */
  1242. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1243. {
  1244. int cpu, this_cpu, success = 0;
  1245. unsigned long flags;
  1246. long old_state;
  1247. struct rq *rq;
  1248. #ifdef CONFIG_SMP
  1249. struct sched_domain *sd, *this_sd = NULL;
  1250. unsigned long load, this_load;
  1251. int new_cpu;
  1252. #endif
  1253. rq = task_rq_lock(p, &flags);
  1254. old_state = p->state;
  1255. if (!(old_state & state))
  1256. goto out;
  1257. if (p->se.on_rq)
  1258. goto out_running;
  1259. cpu = task_cpu(p);
  1260. this_cpu = smp_processor_id();
  1261. #ifdef CONFIG_SMP
  1262. if (unlikely(task_running(rq, p)))
  1263. goto out_activate;
  1264. new_cpu = cpu;
  1265. schedstat_inc(rq, ttwu_cnt);
  1266. if (cpu == this_cpu) {
  1267. schedstat_inc(rq, ttwu_local);
  1268. goto out_set_cpu;
  1269. }
  1270. for_each_domain(this_cpu, sd) {
  1271. if (cpu_isset(cpu, sd->span)) {
  1272. schedstat_inc(sd, ttwu_wake_remote);
  1273. this_sd = sd;
  1274. break;
  1275. }
  1276. }
  1277. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1278. goto out_set_cpu;
  1279. /*
  1280. * Check for affine wakeup and passive balancing possibilities.
  1281. */
  1282. if (this_sd) {
  1283. int idx = this_sd->wake_idx;
  1284. unsigned int imbalance;
  1285. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1286. load = source_load(cpu, idx);
  1287. this_load = target_load(this_cpu, idx);
  1288. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1289. if (this_sd->flags & SD_WAKE_AFFINE) {
  1290. unsigned long tl = this_load;
  1291. unsigned long tl_per_task;
  1292. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1293. /*
  1294. * If sync wakeup then subtract the (maximum possible)
  1295. * effect of the currently running task from the load
  1296. * of the current CPU:
  1297. */
  1298. if (sync)
  1299. tl -= current->se.load.weight;
  1300. if ((tl <= load &&
  1301. tl + target_load(cpu, idx) <= tl_per_task) ||
  1302. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1303. /*
  1304. * This domain has SD_WAKE_AFFINE and
  1305. * p is cache cold in this domain, and
  1306. * there is no bad imbalance.
  1307. */
  1308. schedstat_inc(this_sd, ttwu_move_affine);
  1309. goto out_set_cpu;
  1310. }
  1311. }
  1312. /*
  1313. * Start passive balancing when half the imbalance_pct
  1314. * limit is reached.
  1315. */
  1316. if (this_sd->flags & SD_WAKE_BALANCE) {
  1317. if (imbalance*this_load <= 100*load) {
  1318. schedstat_inc(this_sd, ttwu_move_balance);
  1319. goto out_set_cpu;
  1320. }
  1321. }
  1322. }
  1323. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1324. out_set_cpu:
  1325. new_cpu = wake_idle(new_cpu, p);
  1326. if (new_cpu != cpu) {
  1327. set_task_cpu(p, new_cpu);
  1328. task_rq_unlock(rq, &flags);
  1329. /* might preempt at this point */
  1330. rq = task_rq_lock(p, &flags);
  1331. old_state = p->state;
  1332. if (!(old_state & state))
  1333. goto out;
  1334. if (p->se.on_rq)
  1335. goto out_running;
  1336. this_cpu = smp_processor_id();
  1337. cpu = task_cpu(p);
  1338. }
  1339. out_activate:
  1340. #endif /* CONFIG_SMP */
  1341. update_rq_clock(rq);
  1342. activate_task(rq, p, 1);
  1343. /*
  1344. * Sync wakeups (i.e. those types of wakeups where the waker
  1345. * has indicated that it will leave the CPU in short order)
  1346. * don't trigger a preemption, if the woken up task will run on
  1347. * this cpu. (in this case the 'I will reschedule' promise of
  1348. * the waker guarantees that the freshly woken up task is going
  1349. * to be considered on this CPU.)
  1350. */
  1351. if (!sync || cpu != this_cpu)
  1352. check_preempt_curr(rq, p);
  1353. success = 1;
  1354. out_running:
  1355. p->state = TASK_RUNNING;
  1356. out:
  1357. task_rq_unlock(rq, &flags);
  1358. return success;
  1359. }
  1360. int fastcall wake_up_process(struct task_struct *p)
  1361. {
  1362. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1363. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1364. }
  1365. EXPORT_SYMBOL(wake_up_process);
  1366. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1367. {
  1368. return try_to_wake_up(p, state, 0);
  1369. }
  1370. /*
  1371. * Perform scheduler related setup for a newly forked process p.
  1372. * p is forked by current.
  1373. *
  1374. * __sched_fork() is basic setup used by init_idle() too:
  1375. */
  1376. static void __sched_fork(struct task_struct *p)
  1377. {
  1378. p->se.wait_start_fair = 0;
  1379. p->se.exec_start = 0;
  1380. p->se.sum_exec_runtime = 0;
  1381. p->se.prev_sum_exec_runtime = 0;
  1382. p->se.wait_runtime = 0;
  1383. p->se.sleep_start_fair = 0;
  1384. #ifdef CONFIG_SCHEDSTATS
  1385. p->se.wait_start = 0;
  1386. p->se.sum_wait_runtime = 0;
  1387. p->se.sum_sleep_runtime = 0;
  1388. p->se.sleep_start = 0;
  1389. p->se.block_start = 0;
  1390. p->se.sleep_max = 0;
  1391. p->se.block_max = 0;
  1392. p->se.exec_max = 0;
  1393. p->se.slice_max = 0;
  1394. p->se.wait_max = 0;
  1395. p->se.wait_runtime_overruns = 0;
  1396. p->se.wait_runtime_underruns = 0;
  1397. #endif
  1398. INIT_LIST_HEAD(&p->run_list);
  1399. p->se.on_rq = 0;
  1400. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1401. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1402. #endif
  1403. /*
  1404. * We mark the process as running here, but have not actually
  1405. * inserted it onto the runqueue yet. This guarantees that
  1406. * nobody will actually run it, and a signal or other external
  1407. * event cannot wake it up and insert it on the runqueue either.
  1408. */
  1409. p->state = TASK_RUNNING;
  1410. }
  1411. /*
  1412. * fork()/clone()-time setup:
  1413. */
  1414. void sched_fork(struct task_struct *p, int clone_flags)
  1415. {
  1416. int cpu = get_cpu();
  1417. __sched_fork(p);
  1418. #ifdef CONFIG_SMP
  1419. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1420. #endif
  1421. __set_task_cpu(p, cpu);
  1422. /*
  1423. * Make sure we do not leak PI boosting priority to the child:
  1424. */
  1425. p->prio = current->normal_prio;
  1426. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1427. if (likely(sched_info_on()))
  1428. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1429. #endif
  1430. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1431. p->oncpu = 0;
  1432. #endif
  1433. #ifdef CONFIG_PREEMPT
  1434. /* Want to start with kernel preemption disabled. */
  1435. task_thread_info(p)->preempt_count = 1;
  1436. #endif
  1437. put_cpu();
  1438. }
  1439. /*
  1440. * wake_up_new_task - wake up a newly created task for the first time.
  1441. *
  1442. * This function will do some initial scheduler statistics housekeeping
  1443. * that must be done for every newly created context, then puts the task
  1444. * on the runqueue and wakes it.
  1445. */
  1446. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1447. {
  1448. unsigned long flags;
  1449. struct rq *rq;
  1450. int this_cpu;
  1451. rq = task_rq_lock(p, &flags);
  1452. BUG_ON(p->state != TASK_RUNNING);
  1453. this_cpu = smp_processor_id(); /* parent's CPU */
  1454. update_rq_clock(rq);
  1455. p->prio = effective_prio(p);
  1456. if (rt_prio(p->prio))
  1457. p->sched_class = &rt_sched_class;
  1458. else
  1459. p->sched_class = &fair_sched_class;
  1460. if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
  1461. !current->se.on_rq) {
  1462. activate_task(rq, p, 0);
  1463. } else {
  1464. /*
  1465. * Let the scheduling class do new task startup
  1466. * management (if any):
  1467. */
  1468. p->sched_class->task_new(rq, p);
  1469. inc_nr_running(p, rq);
  1470. }
  1471. check_preempt_curr(rq, p);
  1472. task_rq_unlock(rq, &flags);
  1473. }
  1474. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1475. /**
  1476. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1477. * @notifier: notifier struct to register
  1478. */
  1479. void preempt_notifier_register(struct preempt_notifier *notifier)
  1480. {
  1481. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1482. }
  1483. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1484. /**
  1485. * preempt_notifier_unregister - no longer interested in preemption notifications
  1486. * @notifier: notifier struct to unregister
  1487. *
  1488. * This is safe to call from within a preemption notifier.
  1489. */
  1490. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1491. {
  1492. hlist_del(&notifier->link);
  1493. }
  1494. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1495. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1496. {
  1497. struct preempt_notifier *notifier;
  1498. struct hlist_node *node;
  1499. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1500. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1501. }
  1502. static void
  1503. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1504. struct task_struct *next)
  1505. {
  1506. struct preempt_notifier *notifier;
  1507. struct hlist_node *node;
  1508. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1509. notifier->ops->sched_out(notifier, next);
  1510. }
  1511. #else
  1512. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1513. {
  1514. }
  1515. static void
  1516. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1517. struct task_struct *next)
  1518. {
  1519. }
  1520. #endif
  1521. /**
  1522. * prepare_task_switch - prepare to switch tasks
  1523. * @rq: the runqueue preparing to switch
  1524. * @prev: the current task that is being switched out
  1525. * @next: the task we are going to switch to.
  1526. *
  1527. * This is called with the rq lock held and interrupts off. It must
  1528. * be paired with a subsequent finish_task_switch after the context
  1529. * switch.
  1530. *
  1531. * prepare_task_switch sets up locking and calls architecture specific
  1532. * hooks.
  1533. */
  1534. static inline void
  1535. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1536. struct task_struct *next)
  1537. {
  1538. fire_sched_out_preempt_notifiers(prev, next);
  1539. prepare_lock_switch(rq, next);
  1540. prepare_arch_switch(next);
  1541. }
  1542. /**
  1543. * finish_task_switch - clean up after a task-switch
  1544. * @rq: runqueue associated with task-switch
  1545. * @prev: the thread we just switched away from.
  1546. *
  1547. * finish_task_switch must be called after the context switch, paired
  1548. * with a prepare_task_switch call before the context switch.
  1549. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1550. * and do any other architecture-specific cleanup actions.
  1551. *
  1552. * Note that we may have delayed dropping an mm in context_switch(). If
  1553. * so, we finish that here outside of the runqueue lock. (Doing it
  1554. * with the lock held can cause deadlocks; see schedule() for
  1555. * details.)
  1556. */
  1557. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1558. __releases(rq->lock)
  1559. {
  1560. struct mm_struct *mm = rq->prev_mm;
  1561. long prev_state;
  1562. rq->prev_mm = NULL;
  1563. /*
  1564. * A task struct has one reference for the use as "current".
  1565. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1566. * schedule one last time. The schedule call will never return, and
  1567. * the scheduled task must drop that reference.
  1568. * The test for TASK_DEAD must occur while the runqueue locks are
  1569. * still held, otherwise prev could be scheduled on another cpu, die
  1570. * there before we look at prev->state, and then the reference would
  1571. * be dropped twice.
  1572. * Manfred Spraul <manfred@colorfullife.com>
  1573. */
  1574. prev_state = prev->state;
  1575. finish_arch_switch(prev);
  1576. finish_lock_switch(rq, prev);
  1577. fire_sched_in_preempt_notifiers(current);
  1578. if (mm)
  1579. mmdrop(mm);
  1580. if (unlikely(prev_state == TASK_DEAD)) {
  1581. /*
  1582. * Remove function-return probe instances associated with this
  1583. * task and put them back on the free list.
  1584. */
  1585. kprobe_flush_task(prev);
  1586. put_task_struct(prev);
  1587. }
  1588. }
  1589. /**
  1590. * schedule_tail - first thing a freshly forked thread must call.
  1591. * @prev: the thread we just switched away from.
  1592. */
  1593. asmlinkage void schedule_tail(struct task_struct *prev)
  1594. __releases(rq->lock)
  1595. {
  1596. struct rq *rq = this_rq();
  1597. finish_task_switch(rq, prev);
  1598. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1599. /* In this case, finish_task_switch does not reenable preemption */
  1600. preempt_enable();
  1601. #endif
  1602. if (current->set_child_tid)
  1603. put_user(current->pid, current->set_child_tid);
  1604. }
  1605. /*
  1606. * context_switch - switch to the new MM and the new
  1607. * thread's register state.
  1608. */
  1609. static inline void
  1610. context_switch(struct rq *rq, struct task_struct *prev,
  1611. struct task_struct *next)
  1612. {
  1613. struct mm_struct *mm, *oldmm;
  1614. prepare_task_switch(rq, prev, next);
  1615. mm = next->mm;
  1616. oldmm = prev->active_mm;
  1617. /*
  1618. * For paravirt, this is coupled with an exit in switch_to to
  1619. * combine the page table reload and the switch backend into
  1620. * one hypercall.
  1621. */
  1622. arch_enter_lazy_cpu_mode();
  1623. if (unlikely(!mm)) {
  1624. next->active_mm = oldmm;
  1625. atomic_inc(&oldmm->mm_count);
  1626. enter_lazy_tlb(oldmm, next);
  1627. } else
  1628. switch_mm(oldmm, mm, next);
  1629. if (unlikely(!prev->mm)) {
  1630. prev->active_mm = NULL;
  1631. rq->prev_mm = oldmm;
  1632. }
  1633. /*
  1634. * Since the runqueue lock will be released by the next
  1635. * task (which is an invalid locking op but in the case
  1636. * of the scheduler it's an obvious special-case), so we
  1637. * do an early lockdep release here:
  1638. */
  1639. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1640. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1641. #endif
  1642. /* Here we just switch the register state and the stack. */
  1643. switch_to(prev, next, prev);
  1644. barrier();
  1645. /*
  1646. * this_rq must be evaluated again because prev may have moved
  1647. * CPUs since it called schedule(), thus the 'rq' on its stack
  1648. * frame will be invalid.
  1649. */
  1650. finish_task_switch(this_rq(), prev);
  1651. }
  1652. /*
  1653. * nr_running, nr_uninterruptible and nr_context_switches:
  1654. *
  1655. * externally visible scheduler statistics: current number of runnable
  1656. * threads, current number of uninterruptible-sleeping threads, total
  1657. * number of context switches performed since bootup.
  1658. */
  1659. unsigned long nr_running(void)
  1660. {
  1661. unsigned long i, sum = 0;
  1662. for_each_online_cpu(i)
  1663. sum += cpu_rq(i)->nr_running;
  1664. return sum;
  1665. }
  1666. unsigned long nr_uninterruptible(void)
  1667. {
  1668. unsigned long i, sum = 0;
  1669. for_each_possible_cpu(i)
  1670. sum += cpu_rq(i)->nr_uninterruptible;
  1671. /*
  1672. * Since we read the counters lockless, it might be slightly
  1673. * inaccurate. Do not allow it to go below zero though:
  1674. */
  1675. if (unlikely((long)sum < 0))
  1676. sum = 0;
  1677. return sum;
  1678. }
  1679. unsigned long long nr_context_switches(void)
  1680. {
  1681. int i;
  1682. unsigned long long sum = 0;
  1683. for_each_possible_cpu(i)
  1684. sum += cpu_rq(i)->nr_switches;
  1685. return sum;
  1686. }
  1687. unsigned long nr_iowait(void)
  1688. {
  1689. unsigned long i, sum = 0;
  1690. for_each_possible_cpu(i)
  1691. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1692. return sum;
  1693. }
  1694. unsigned long nr_active(void)
  1695. {
  1696. unsigned long i, running = 0, uninterruptible = 0;
  1697. for_each_online_cpu(i) {
  1698. running += cpu_rq(i)->nr_running;
  1699. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1700. }
  1701. if (unlikely((long)uninterruptible < 0))
  1702. uninterruptible = 0;
  1703. return running + uninterruptible;
  1704. }
  1705. /*
  1706. * Update rq->cpu_load[] statistics. This function is usually called every
  1707. * scheduler tick (TICK_NSEC).
  1708. */
  1709. static void update_cpu_load(struct rq *this_rq)
  1710. {
  1711. unsigned long this_load = this_rq->load.weight;
  1712. int i, scale;
  1713. this_rq->nr_load_updates++;
  1714. /* Update our load: */
  1715. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1716. unsigned long old_load, new_load;
  1717. /* scale is effectively 1 << i now, and >> i divides by scale */
  1718. old_load = this_rq->cpu_load[i];
  1719. new_load = this_load;
  1720. /*
  1721. * Round up the averaging division if load is increasing. This
  1722. * prevents us from getting stuck on 9 if the load is 10, for
  1723. * example.
  1724. */
  1725. if (new_load > old_load)
  1726. new_load += scale-1;
  1727. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1728. }
  1729. }
  1730. #ifdef CONFIG_SMP
  1731. /*
  1732. * double_rq_lock - safely lock two runqueues
  1733. *
  1734. * Note this does not disable interrupts like task_rq_lock,
  1735. * you need to do so manually before calling.
  1736. */
  1737. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1738. __acquires(rq1->lock)
  1739. __acquires(rq2->lock)
  1740. {
  1741. BUG_ON(!irqs_disabled());
  1742. if (rq1 == rq2) {
  1743. spin_lock(&rq1->lock);
  1744. __acquire(rq2->lock); /* Fake it out ;) */
  1745. } else {
  1746. if (rq1 < rq2) {
  1747. spin_lock(&rq1->lock);
  1748. spin_lock(&rq2->lock);
  1749. } else {
  1750. spin_lock(&rq2->lock);
  1751. spin_lock(&rq1->lock);
  1752. }
  1753. }
  1754. update_rq_clock(rq1);
  1755. update_rq_clock(rq2);
  1756. }
  1757. /*
  1758. * double_rq_unlock - safely unlock two runqueues
  1759. *
  1760. * Note this does not restore interrupts like task_rq_unlock,
  1761. * you need to do so manually after calling.
  1762. */
  1763. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1764. __releases(rq1->lock)
  1765. __releases(rq2->lock)
  1766. {
  1767. spin_unlock(&rq1->lock);
  1768. if (rq1 != rq2)
  1769. spin_unlock(&rq2->lock);
  1770. else
  1771. __release(rq2->lock);
  1772. }
  1773. /*
  1774. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1775. */
  1776. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1777. __releases(this_rq->lock)
  1778. __acquires(busiest->lock)
  1779. __acquires(this_rq->lock)
  1780. {
  1781. if (unlikely(!irqs_disabled())) {
  1782. /* printk() doesn't work good under rq->lock */
  1783. spin_unlock(&this_rq->lock);
  1784. BUG_ON(1);
  1785. }
  1786. if (unlikely(!spin_trylock(&busiest->lock))) {
  1787. if (busiest < this_rq) {
  1788. spin_unlock(&this_rq->lock);
  1789. spin_lock(&busiest->lock);
  1790. spin_lock(&this_rq->lock);
  1791. } else
  1792. spin_lock(&busiest->lock);
  1793. }
  1794. }
  1795. /*
  1796. * If dest_cpu is allowed for this process, migrate the task to it.
  1797. * This is accomplished by forcing the cpu_allowed mask to only
  1798. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1799. * the cpu_allowed mask is restored.
  1800. */
  1801. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1802. {
  1803. struct migration_req req;
  1804. unsigned long flags;
  1805. struct rq *rq;
  1806. rq = task_rq_lock(p, &flags);
  1807. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1808. || unlikely(cpu_is_offline(dest_cpu)))
  1809. goto out;
  1810. /* force the process onto the specified CPU */
  1811. if (migrate_task(p, dest_cpu, &req)) {
  1812. /* Need to wait for migration thread (might exit: take ref). */
  1813. struct task_struct *mt = rq->migration_thread;
  1814. get_task_struct(mt);
  1815. task_rq_unlock(rq, &flags);
  1816. wake_up_process(mt);
  1817. put_task_struct(mt);
  1818. wait_for_completion(&req.done);
  1819. return;
  1820. }
  1821. out:
  1822. task_rq_unlock(rq, &flags);
  1823. }
  1824. /*
  1825. * sched_exec - execve() is a valuable balancing opportunity, because at
  1826. * this point the task has the smallest effective memory and cache footprint.
  1827. */
  1828. void sched_exec(void)
  1829. {
  1830. int new_cpu, this_cpu = get_cpu();
  1831. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1832. put_cpu();
  1833. if (new_cpu != this_cpu)
  1834. sched_migrate_task(current, new_cpu);
  1835. }
  1836. /*
  1837. * pull_task - move a task from a remote runqueue to the local runqueue.
  1838. * Both runqueues must be locked.
  1839. */
  1840. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1841. struct rq *this_rq, int this_cpu)
  1842. {
  1843. deactivate_task(src_rq, p, 0);
  1844. set_task_cpu(p, this_cpu);
  1845. activate_task(this_rq, p, 0);
  1846. /*
  1847. * Note that idle threads have a prio of MAX_PRIO, for this test
  1848. * to be always true for them.
  1849. */
  1850. check_preempt_curr(this_rq, p);
  1851. }
  1852. /*
  1853. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1854. */
  1855. static
  1856. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1857. struct sched_domain *sd, enum cpu_idle_type idle,
  1858. int *all_pinned)
  1859. {
  1860. /*
  1861. * We do not migrate tasks that are:
  1862. * 1) running (obviously), or
  1863. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1864. * 3) are cache-hot on their current CPU.
  1865. */
  1866. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1867. return 0;
  1868. *all_pinned = 0;
  1869. if (task_running(rq, p))
  1870. return 0;
  1871. return 1;
  1872. }
  1873. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1874. unsigned long max_nr_move, unsigned long max_load_move,
  1875. struct sched_domain *sd, enum cpu_idle_type idle,
  1876. int *all_pinned, unsigned long *load_moved,
  1877. int *this_best_prio, struct rq_iterator *iterator)
  1878. {
  1879. int pulled = 0, pinned = 0, skip_for_load;
  1880. struct task_struct *p;
  1881. long rem_load_move = max_load_move;
  1882. if (max_nr_move == 0 || max_load_move == 0)
  1883. goto out;
  1884. pinned = 1;
  1885. /*
  1886. * Start the load-balancing iterator:
  1887. */
  1888. p = iterator->start(iterator->arg);
  1889. next:
  1890. if (!p)
  1891. goto out;
  1892. /*
  1893. * To help distribute high priority tasks accross CPUs we don't
  1894. * skip a task if it will be the highest priority task (i.e. smallest
  1895. * prio value) on its new queue regardless of its load weight
  1896. */
  1897. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1898. SCHED_LOAD_SCALE_FUZZ;
  1899. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1900. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1901. p = iterator->next(iterator->arg);
  1902. goto next;
  1903. }
  1904. pull_task(busiest, p, this_rq, this_cpu);
  1905. pulled++;
  1906. rem_load_move -= p->se.load.weight;
  1907. /*
  1908. * We only want to steal up to the prescribed number of tasks
  1909. * and the prescribed amount of weighted load.
  1910. */
  1911. if (pulled < max_nr_move && rem_load_move > 0) {
  1912. if (p->prio < *this_best_prio)
  1913. *this_best_prio = p->prio;
  1914. p = iterator->next(iterator->arg);
  1915. goto next;
  1916. }
  1917. out:
  1918. /*
  1919. * Right now, this is the only place pull_task() is called,
  1920. * so we can safely collect pull_task() stats here rather than
  1921. * inside pull_task().
  1922. */
  1923. schedstat_add(sd, lb_gained[idle], pulled);
  1924. if (all_pinned)
  1925. *all_pinned = pinned;
  1926. *load_moved = max_load_move - rem_load_move;
  1927. return pulled;
  1928. }
  1929. /*
  1930. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1931. * this_rq, as part of a balancing operation within domain "sd".
  1932. * Returns 1 if successful and 0 otherwise.
  1933. *
  1934. * Called with both runqueues locked.
  1935. */
  1936. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1937. unsigned long max_load_move,
  1938. struct sched_domain *sd, enum cpu_idle_type idle,
  1939. int *all_pinned)
  1940. {
  1941. struct sched_class *class = sched_class_highest;
  1942. unsigned long total_load_moved = 0;
  1943. int this_best_prio = this_rq->curr->prio;
  1944. do {
  1945. total_load_moved +=
  1946. class->load_balance(this_rq, this_cpu, busiest,
  1947. ULONG_MAX, max_load_move - total_load_moved,
  1948. sd, idle, all_pinned, &this_best_prio);
  1949. class = class->next;
  1950. } while (class && max_load_move > total_load_moved);
  1951. return total_load_moved > 0;
  1952. }
  1953. /*
  1954. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1955. * part of active balancing operations within "domain".
  1956. * Returns 1 if successful and 0 otherwise.
  1957. *
  1958. * Called with both runqueues locked.
  1959. */
  1960. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1961. struct sched_domain *sd, enum cpu_idle_type idle)
  1962. {
  1963. struct sched_class *class;
  1964. int this_best_prio = MAX_PRIO;
  1965. for (class = sched_class_highest; class; class = class->next)
  1966. if (class->load_balance(this_rq, this_cpu, busiest,
  1967. 1, ULONG_MAX, sd, idle, NULL,
  1968. &this_best_prio))
  1969. return 1;
  1970. return 0;
  1971. }
  1972. /*
  1973. * find_busiest_group finds and returns the busiest CPU group within the
  1974. * domain. It calculates and returns the amount of weighted load which
  1975. * should be moved to restore balance via the imbalance parameter.
  1976. */
  1977. static struct sched_group *
  1978. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1979. unsigned long *imbalance, enum cpu_idle_type idle,
  1980. int *sd_idle, cpumask_t *cpus, int *balance)
  1981. {
  1982. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1983. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1984. unsigned long max_pull;
  1985. unsigned long busiest_load_per_task, busiest_nr_running;
  1986. unsigned long this_load_per_task, this_nr_running;
  1987. int load_idx;
  1988. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1989. int power_savings_balance = 1;
  1990. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1991. unsigned long min_nr_running = ULONG_MAX;
  1992. struct sched_group *group_min = NULL, *group_leader = NULL;
  1993. #endif
  1994. max_load = this_load = total_load = total_pwr = 0;
  1995. busiest_load_per_task = busiest_nr_running = 0;
  1996. this_load_per_task = this_nr_running = 0;
  1997. if (idle == CPU_NOT_IDLE)
  1998. load_idx = sd->busy_idx;
  1999. else if (idle == CPU_NEWLY_IDLE)
  2000. load_idx = sd->newidle_idx;
  2001. else
  2002. load_idx = sd->idle_idx;
  2003. do {
  2004. unsigned long load, group_capacity;
  2005. int local_group;
  2006. int i;
  2007. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2008. unsigned long sum_nr_running, sum_weighted_load;
  2009. local_group = cpu_isset(this_cpu, group->cpumask);
  2010. if (local_group)
  2011. balance_cpu = first_cpu(group->cpumask);
  2012. /* Tally up the load of all CPUs in the group */
  2013. sum_weighted_load = sum_nr_running = avg_load = 0;
  2014. for_each_cpu_mask(i, group->cpumask) {
  2015. struct rq *rq;
  2016. if (!cpu_isset(i, *cpus))
  2017. continue;
  2018. rq = cpu_rq(i);
  2019. if (*sd_idle && rq->nr_running)
  2020. *sd_idle = 0;
  2021. /* Bias balancing toward cpus of our domain */
  2022. if (local_group) {
  2023. if (idle_cpu(i) && !first_idle_cpu) {
  2024. first_idle_cpu = 1;
  2025. balance_cpu = i;
  2026. }
  2027. load = target_load(i, load_idx);
  2028. } else
  2029. load = source_load(i, load_idx);
  2030. avg_load += load;
  2031. sum_nr_running += rq->nr_running;
  2032. sum_weighted_load += weighted_cpuload(i);
  2033. }
  2034. /*
  2035. * First idle cpu or the first cpu(busiest) in this sched group
  2036. * is eligible for doing load balancing at this and above
  2037. * domains. In the newly idle case, we will allow all the cpu's
  2038. * to do the newly idle load balance.
  2039. */
  2040. if (idle != CPU_NEWLY_IDLE && local_group &&
  2041. balance_cpu != this_cpu && balance) {
  2042. *balance = 0;
  2043. goto ret;
  2044. }
  2045. total_load += avg_load;
  2046. total_pwr += group->__cpu_power;
  2047. /* Adjust by relative CPU power of the group */
  2048. avg_load = sg_div_cpu_power(group,
  2049. avg_load * SCHED_LOAD_SCALE);
  2050. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2051. if (local_group) {
  2052. this_load = avg_load;
  2053. this = group;
  2054. this_nr_running = sum_nr_running;
  2055. this_load_per_task = sum_weighted_load;
  2056. } else if (avg_load > max_load &&
  2057. sum_nr_running > group_capacity) {
  2058. max_load = avg_load;
  2059. busiest = group;
  2060. busiest_nr_running = sum_nr_running;
  2061. busiest_load_per_task = sum_weighted_load;
  2062. }
  2063. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2064. /*
  2065. * Busy processors will not participate in power savings
  2066. * balance.
  2067. */
  2068. if (idle == CPU_NOT_IDLE ||
  2069. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2070. goto group_next;
  2071. /*
  2072. * If the local group is idle or completely loaded
  2073. * no need to do power savings balance at this domain
  2074. */
  2075. if (local_group && (this_nr_running >= group_capacity ||
  2076. !this_nr_running))
  2077. power_savings_balance = 0;
  2078. /*
  2079. * If a group is already running at full capacity or idle,
  2080. * don't include that group in power savings calculations
  2081. */
  2082. if (!power_savings_balance || sum_nr_running >= group_capacity
  2083. || !sum_nr_running)
  2084. goto group_next;
  2085. /*
  2086. * Calculate the group which has the least non-idle load.
  2087. * This is the group from where we need to pick up the load
  2088. * for saving power
  2089. */
  2090. if ((sum_nr_running < min_nr_running) ||
  2091. (sum_nr_running == min_nr_running &&
  2092. first_cpu(group->cpumask) <
  2093. first_cpu(group_min->cpumask))) {
  2094. group_min = group;
  2095. min_nr_running = sum_nr_running;
  2096. min_load_per_task = sum_weighted_load /
  2097. sum_nr_running;
  2098. }
  2099. /*
  2100. * Calculate the group which is almost near its
  2101. * capacity but still has some space to pick up some load
  2102. * from other group and save more power
  2103. */
  2104. if (sum_nr_running <= group_capacity - 1) {
  2105. if (sum_nr_running > leader_nr_running ||
  2106. (sum_nr_running == leader_nr_running &&
  2107. first_cpu(group->cpumask) >
  2108. first_cpu(group_leader->cpumask))) {
  2109. group_leader = group;
  2110. leader_nr_running = sum_nr_running;
  2111. }
  2112. }
  2113. group_next:
  2114. #endif
  2115. group = group->next;
  2116. } while (group != sd->groups);
  2117. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2118. goto out_balanced;
  2119. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2120. if (this_load >= avg_load ||
  2121. 100*max_load <= sd->imbalance_pct*this_load)
  2122. goto out_balanced;
  2123. busiest_load_per_task /= busiest_nr_running;
  2124. /*
  2125. * We're trying to get all the cpus to the average_load, so we don't
  2126. * want to push ourselves above the average load, nor do we wish to
  2127. * reduce the max loaded cpu below the average load, as either of these
  2128. * actions would just result in more rebalancing later, and ping-pong
  2129. * tasks around. Thus we look for the minimum possible imbalance.
  2130. * Negative imbalances (*we* are more loaded than anyone else) will
  2131. * be counted as no imbalance for these purposes -- we can't fix that
  2132. * by pulling tasks to us. Be careful of negative numbers as they'll
  2133. * appear as very large values with unsigned longs.
  2134. */
  2135. if (max_load <= busiest_load_per_task)
  2136. goto out_balanced;
  2137. /*
  2138. * In the presence of smp nice balancing, certain scenarios can have
  2139. * max load less than avg load(as we skip the groups at or below
  2140. * its cpu_power, while calculating max_load..)
  2141. */
  2142. if (max_load < avg_load) {
  2143. *imbalance = 0;
  2144. goto small_imbalance;
  2145. }
  2146. /* Don't want to pull so many tasks that a group would go idle */
  2147. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2148. /* How much load to actually move to equalise the imbalance */
  2149. *imbalance = min(max_pull * busiest->__cpu_power,
  2150. (avg_load - this_load) * this->__cpu_power)
  2151. / SCHED_LOAD_SCALE;
  2152. /*
  2153. * if *imbalance is less than the average load per runnable task
  2154. * there is no gaurantee that any tasks will be moved so we'll have
  2155. * a think about bumping its value to force at least one task to be
  2156. * moved
  2157. */
  2158. if (*imbalance < busiest_load_per_task) {
  2159. unsigned long tmp, pwr_now, pwr_move;
  2160. unsigned int imbn;
  2161. small_imbalance:
  2162. pwr_move = pwr_now = 0;
  2163. imbn = 2;
  2164. if (this_nr_running) {
  2165. this_load_per_task /= this_nr_running;
  2166. if (busiest_load_per_task > this_load_per_task)
  2167. imbn = 1;
  2168. } else
  2169. this_load_per_task = SCHED_LOAD_SCALE;
  2170. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2171. busiest_load_per_task * imbn) {
  2172. *imbalance = busiest_load_per_task;
  2173. return busiest;
  2174. }
  2175. /*
  2176. * OK, we don't have enough imbalance to justify moving tasks,
  2177. * however we may be able to increase total CPU power used by
  2178. * moving them.
  2179. */
  2180. pwr_now += busiest->__cpu_power *
  2181. min(busiest_load_per_task, max_load);
  2182. pwr_now += this->__cpu_power *
  2183. min(this_load_per_task, this_load);
  2184. pwr_now /= SCHED_LOAD_SCALE;
  2185. /* Amount of load we'd subtract */
  2186. tmp = sg_div_cpu_power(busiest,
  2187. busiest_load_per_task * SCHED_LOAD_SCALE);
  2188. if (max_load > tmp)
  2189. pwr_move += busiest->__cpu_power *
  2190. min(busiest_load_per_task, max_load - tmp);
  2191. /* Amount of load we'd add */
  2192. if (max_load * busiest->__cpu_power <
  2193. busiest_load_per_task * SCHED_LOAD_SCALE)
  2194. tmp = sg_div_cpu_power(this,
  2195. max_load * busiest->__cpu_power);
  2196. else
  2197. tmp = sg_div_cpu_power(this,
  2198. busiest_load_per_task * SCHED_LOAD_SCALE);
  2199. pwr_move += this->__cpu_power *
  2200. min(this_load_per_task, this_load + tmp);
  2201. pwr_move /= SCHED_LOAD_SCALE;
  2202. /* Move if we gain throughput */
  2203. if (pwr_move > pwr_now)
  2204. *imbalance = busiest_load_per_task;
  2205. }
  2206. return busiest;
  2207. out_balanced:
  2208. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2209. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2210. goto ret;
  2211. if (this == group_leader && group_leader != group_min) {
  2212. *imbalance = min_load_per_task;
  2213. return group_min;
  2214. }
  2215. #endif
  2216. ret:
  2217. *imbalance = 0;
  2218. return NULL;
  2219. }
  2220. /*
  2221. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2222. */
  2223. static struct rq *
  2224. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2225. unsigned long imbalance, cpumask_t *cpus)
  2226. {
  2227. struct rq *busiest = NULL, *rq;
  2228. unsigned long max_load = 0;
  2229. int i;
  2230. for_each_cpu_mask(i, group->cpumask) {
  2231. unsigned long wl;
  2232. if (!cpu_isset(i, *cpus))
  2233. continue;
  2234. rq = cpu_rq(i);
  2235. wl = weighted_cpuload(i);
  2236. if (rq->nr_running == 1 && wl > imbalance)
  2237. continue;
  2238. if (wl > max_load) {
  2239. max_load = wl;
  2240. busiest = rq;
  2241. }
  2242. }
  2243. return busiest;
  2244. }
  2245. /*
  2246. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2247. * so long as it is large enough.
  2248. */
  2249. #define MAX_PINNED_INTERVAL 512
  2250. /*
  2251. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2252. * tasks if there is an imbalance.
  2253. */
  2254. static int load_balance(int this_cpu, struct rq *this_rq,
  2255. struct sched_domain *sd, enum cpu_idle_type idle,
  2256. int *balance)
  2257. {
  2258. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2259. struct sched_group *group;
  2260. unsigned long imbalance;
  2261. struct rq *busiest;
  2262. cpumask_t cpus = CPU_MASK_ALL;
  2263. unsigned long flags;
  2264. /*
  2265. * When power savings policy is enabled for the parent domain, idle
  2266. * sibling can pick up load irrespective of busy siblings. In this case,
  2267. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2268. * portraying it as CPU_NOT_IDLE.
  2269. */
  2270. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2271. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2272. sd_idle = 1;
  2273. schedstat_inc(sd, lb_cnt[idle]);
  2274. redo:
  2275. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2276. &cpus, balance);
  2277. if (*balance == 0)
  2278. goto out_balanced;
  2279. if (!group) {
  2280. schedstat_inc(sd, lb_nobusyg[idle]);
  2281. goto out_balanced;
  2282. }
  2283. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2284. if (!busiest) {
  2285. schedstat_inc(sd, lb_nobusyq[idle]);
  2286. goto out_balanced;
  2287. }
  2288. BUG_ON(busiest == this_rq);
  2289. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2290. ld_moved = 0;
  2291. if (busiest->nr_running > 1) {
  2292. /*
  2293. * Attempt to move tasks. If find_busiest_group has found
  2294. * an imbalance but busiest->nr_running <= 1, the group is
  2295. * still unbalanced. ld_moved simply stays zero, so it is
  2296. * correctly treated as an imbalance.
  2297. */
  2298. local_irq_save(flags);
  2299. double_rq_lock(this_rq, busiest);
  2300. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2301. imbalance, sd, idle, &all_pinned);
  2302. double_rq_unlock(this_rq, busiest);
  2303. local_irq_restore(flags);
  2304. /*
  2305. * some other cpu did the load balance for us.
  2306. */
  2307. if (ld_moved && this_cpu != smp_processor_id())
  2308. resched_cpu(this_cpu);
  2309. /* All tasks on this runqueue were pinned by CPU affinity */
  2310. if (unlikely(all_pinned)) {
  2311. cpu_clear(cpu_of(busiest), cpus);
  2312. if (!cpus_empty(cpus))
  2313. goto redo;
  2314. goto out_balanced;
  2315. }
  2316. }
  2317. if (!ld_moved) {
  2318. schedstat_inc(sd, lb_failed[idle]);
  2319. sd->nr_balance_failed++;
  2320. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2321. spin_lock_irqsave(&busiest->lock, flags);
  2322. /* don't kick the migration_thread, if the curr
  2323. * task on busiest cpu can't be moved to this_cpu
  2324. */
  2325. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2326. spin_unlock_irqrestore(&busiest->lock, flags);
  2327. all_pinned = 1;
  2328. goto out_one_pinned;
  2329. }
  2330. if (!busiest->active_balance) {
  2331. busiest->active_balance = 1;
  2332. busiest->push_cpu = this_cpu;
  2333. active_balance = 1;
  2334. }
  2335. spin_unlock_irqrestore(&busiest->lock, flags);
  2336. if (active_balance)
  2337. wake_up_process(busiest->migration_thread);
  2338. /*
  2339. * We've kicked active balancing, reset the failure
  2340. * counter.
  2341. */
  2342. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2343. }
  2344. } else
  2345. sd->nr_balance_failed = 0;
  2346. if (likely(!active_balance)) {
  2347. /* We were unbalanced, so reset the balancing interval */
  2348. sd->balance_interval = sd->min_interval;
  2349. } else {
  2350. /*
  2351. * If we've begun active balancing, start to back off. This
  2352. * case may not be covered by the all_pinned logic if there
  2353. * is only 1 task on the busy runqueue (because we don't call
  2354. * move_tasks).
  2355. */
  2356. if (sd->balance_interval < sd->max_interval)
  2357. sd->balance_interval *= 2;
  2358. }
  2359. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2360. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2361. return -1;
  2362. return ld_moved;
  2363. out_balanced:
  2364. schedstat_inc(sd, lb_balanced[idle]);
  2365. sd->nr_balance_failed = 0;
  2366. out_one_pinned:
  2367. /* tune up the balancing interval */
  2368. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2369. (sd->balance_interval < sd->max_interval))
  2370. sd->balance_interval *= 2;
  2371. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2372. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2373. return -1;
  2374. return 0;
  2375. }
  2376. /*
  2377. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2378. * tasks if there is an imbalance.
  2379. *
  2380. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2381. * this_rq is locked.
  2382. */
  2383. static int
  2384. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2385. {
  2386. struct sched_group *group;
  2387. struct rq *busiest = NULL;
  2388. unsigned long imbalance;
  2389. int ld_moved = 0;
  2390. int sd_idle = 0;
  2391. int all_pinned = 0;
  2392. cpumask_t cpus = CPU_MASK_ALL;
  2393. /*
  2394. * When power savings policy is enabled for the parent domain, idle
  2395. * sibling can pick up load irrespective of busy siblings. In this case,
  2396. * let the state of idle sibling percolate up as IDLE, instead of
  2397. * portraying it as CPU_NOT_IDLE.
  2398. */
  2399. if (sd->flags & SD_SHARE_CPUPOWER &&
  2400. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2401. sd_idle = 1;
  2402. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2403. redo:
  2404. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2405. &sd_idle, &cpus, NULL);
  2406. if (!group) {
  2407. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2408. goto out_balanced;
  2409. }
  2410. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2411. &cpus);
  2412. if (!busiest) {
  2413. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2414. goto out_balanced;
  2415. }
  2416. BUG_ON(busiest == this_rq);
  2417. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2418. ld_moved = 0;
  2419. if (busiest->nr_running > 1) {
  2420. /* Attempt to move tasks */
  2421. double_lock_balance(this_rq, busiest);
  2422. /* this_rq->clock is already updated */
  2423. update_rq_clock(busiest);
  2424. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2425. imbalance, sd, CPU_NEWLY_IDLE,
  2426. &all_pinned);
  2427. spin_unlock(&busiest->lock);
  2428. if (unlikely(all_pinned)) {
  2429. cpu_clear(cpu_of(busiest), cpus);
  2430. if (!cpus_empty(cpus))
  2431. goto redo;
  2432. }
  2433. }
  2434. if (!ld_moved) {
  2435. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2436. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2437. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2438. return -1;
  2439. } else
  2440. sd->nr_balance_failed = 0;
  2441. return ld_moved;
  2442. out_balanced:
  2443. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2444. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2445. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2446. return -1;
  2447. sd->nr_balance_failed = 0;
  2448. return 0;
  2449. }
  2450. /*
  2451. * idle_balance is called by schedule() if this_cpu is about to become
  2452. * idle. Attempts to pull tasks from other CPUs.
  2453. */
  2454. static void idle_balance(int this_cpu, struct rq *this_rq)
  2455. {
  2456. struct sched_domain *sd;
  2457. int pulled_task = -1;
  2458. unsigned long next_balance = jiffies + HZ;
  2459. for_each_domain(this_cpu, sd) {
  2460. unsigned long interval;
  2461. if (!(sd->flags & SD_LOAD_BALANCE))
  2462. continue;
  2463. if (sd->flags & SD_BALANCE_NEWIDLE)
  2464. /* If we've pulled tasks over stop searching: */
  2465. pulled_task = load_balance_newidle(this_cpu,
  2466. this_rq, sd);
  2467. interval = msecs_to_jiffies(sd->balance_interval);
  2468. if (time_after(next_balance, sd->last_balance + interval))
  2469. next_balance = sd->last_balance + interval;
  2470. if (pulled_task)
  2471. break;
  2472. }
  2473. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2474. /*
  2475. * We are going idle. next_balance may be set based on
  2476. * a busy processor. So reset next_balance.
  2477. */
  2478. this_rq->next_balance = next_balance;
  2479. }
  2480. }
  2481. /*
  2482. * active_load_balance is run by migration threads. It pushes running tasks
  2483. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2484. * running on each physical CPU where possible, and avoids physical /
  2485. * logical imbalances.
  2486. *
  2487. * Called with busiest_rq locked.
  2488. */
  2489. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2490. {
  2491. int target_cpu = busiest_rq->push_cpu;
  2492. struct sched_domain *sd;
  2493. struct rq *target_rq;
  2494. /* Is there any task to move? */
  2495. if (busiest_rq->nr_running <= 1)
  2496. return;
  2497. target_rq = cpu_rq(target_cpu);
  2498. /*
  2499. * This condition is "impossible", if it occurs
  2500. * we need to fix it. Originally reported by
  2501. * Bjorn Helgaas on a 128-cpu setup.
  2502. */
  2503. BUG_ON(busiest_rq == target_rq);
  2504. /* move a task from busiest_rq to target_rq */
  2505. double_lock_balance(busiest_rq, target_rq);
  2506. update_rq_clock(busiest_rq);
  2507. update_rq_clock(target_rq);
  2508. /* Search for an sd spanning us and the target CPU. */
  2509. for_each_domain(target_cpu, sd) {
  2510. if ((sd->flags & SD_LOAD_BALANCE) &&
  2511. cpu_isset(busiest_cpu, sd->span))
  2512. break;
  2513. }
  2514. if (likely(sd)) {
  2515. schedstat_inc(sd, alb_cnt);
  2516. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2517. sd, CPU_IDLE))
  2518. schedstat_inc(sd, alb_pushed);
  2519. else
  2520. schedstat_inc(sd, alb_failed);
  2521. }
  2522. spin_unlock(&target_rq->lock);
  2523. }
  2524. #ifdef CONFIG_NO_HZ
  2525. static struct {
  2526. atomic_t load_balancer;
  2527. cpumask_t cpu_mask;
  2528. } nohz ____cacheline_aligned = {
  2529. .load_balancer = ATOMIC_INIT(-1),
  2530. .cpu_mask = CPU_MASK_NONE,
  2531. };
  2532. /*
  2533. * This routine will try to nominate the ilb (idle load balancing)
  2534. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2535. * load balancing on behalf of all those cpus. If all the cpus in the system
  2536. * go into this tickless mode, then there will be no ilb owner (as there is
  2537. * no need for one) and all the cpus will sleep till the next wakeup event
  2538. * arrives...
  2539. *
  2540. * For the ilb owner, tick is not stopped. And this tick will be used
  2541. * for idle load balancing. ilb owner will still be part of
  2542. * nohz.cpu_mask..
  2543. *
  2544. * While stopping the tick, this cpu will become the ilb owner if there
  2545. * is no other owner. And will be the owner till that cpu becomes busy
  2546. * or if all cpus in the system stop their ticks at which point
  2547. * there is no need for ilb owner.
  2548. *
  2549. * When the ilb owner becomes busy, it nominates another owner, during the
  2550. * next busy scheduler_tick()
  2551. */
  2552. int select_nohz_load_balancer(int stop_tick)
  2553. {
  2554. int cpu = smp_processor_id();
  2555. if (stop_tick) {
  2556. cpu_set(cpu, nohz.cpu_mask);
  2557. cpu_rq(cpu)->in_nohz_recently = 1;
  2558. /*
  2559. * If we are going offline and still the leader, give up!
  2560. */
  2561. if (cpu_is_offline(cpu) &&
  2562. atomic_read(&nohz.load_balancer) == cpu) {
  2563. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2564. BUG();
  2565. return 0;
  2566. }
  2567. /* time for ilb owner also to sleep */
  2568. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2569. if (atomic_read(&nohz.load_balancer) == cpu)
  2570. atomic_set(&nohz.load_balancer, -1);
  2571. return 0;
  2572. }
  2573. if (atomic_read(&nohz.load_balancer) == -1) {
  2574. /* make me the ilb owner */
  2575. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2576. return 1;
  2577. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2578. return 1;
  2579. } else {
  2580. if (!cpu_isset(cpu, nohz.cpu_mask))
  2581. return 0;
  2582. cpu_clear(cpu, nohz.cpu_mask);
  2583. if (atomic_read(&nohz.load_balancer) == cpu)
  2584. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2585. BUG();
  2586. }
  2587. return 0;
  2588. }
  2589. #endif
  2590. static DEFINE_SPINLOCK(balancing);
  2591. /*
  2592. * It checks each scheduling domain to see if it is due to be balanced,
  2593. * and initiates a balancing operation if so.
  2594. *
  2595. * Balancing parameters are set up in arch_init_sched_domains.
  2596. */
  2597. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2598. {
  2599. int balance = 1;
  2600. struct rq *rq = cpu_rq(cpu);
  2601. unsigned long interval;
  2602. struct sched_domain *sd;
  2603. /* Earliest time when we have to do rebalance again */
  2604. unsigned long next_balance = jiffies + 60*HZ;
  2605. int update_next_balance = 0;
  2606. for_each_domain(cpu, sd) {
  2607. if (!(sd->flags & SD_LOAD_BALANCE))
  2608. continue;
  2609. interval = sd->balance_interval;
  2610. if (idle != CPU_IDLE)
  2611. interval *= sd->busy_factor;
  2612. /* scale ms to jiffies */
  2613. interval = msecs_to_jiffies(interval);
  2614. if (unlikely(!interval))
  2615. interval = 1;
  2616. if (interval > HZ*NR_CPUS/10)
  2617. interval = HZ*NR_CPUS/10;
  2618. if (sd->flags & SD_SERIALIZE) {
  2619. if (!spin_trylock(&balancing))
  2620. goto out;
  2621. }
  2622. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2623. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2624. /*
  2625. * We've pulled tasks over so either we're no
  2626. * longer idle, or one of our SMT siblings is
  2627. * not idle.
  2628. */
  2629. idle = CPU_NOT_IDLE;
  2630. }
  2631. sd->last_balance = jiffies;
  2632. }
  2633. if (sd->flags & SD_SERIALIZE)
  2634. spin_unlock(&balancing);
  2635. out:
  2636. if (time_after(next_balance, sd->last_balance + interval)) {
  2637. next_balance = sd->last_balance + interval;
  2638. update_next_balance = 1;
  2639. }
  2640. /*
  2641. * Stop the load balance at this level. There is another
  2642. * CPU in our sched group which is doing load balancing more
  2643. * actively.
  2644. */
  2645. if (!balance)
  2646. break;
  2647. }
  2648. /*
  2649. * next_balance will be updated only when there is a need.
  2650. * When the cpu is attached to null domain for ex, it will not be
  2651. * updated.
  2652. */
  2653. if (likely(update_next_balance))
  2654. rq->next_balance = next_balance;
  2655. }
  2656. /*
  2657. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2658. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2659. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2660. */
  2661. static void run_rebalance_domains(struct softirq_action *h)
  2662. {
  2663. int this_cpu = smp_processor_id();
  2664. struct rq *this_rq = cpu_rq(this_cpu);
  2665. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2666. CPU_IDLE : CPU_NOT_IDLE;
  2667. rebalance_domains(this_cpu, idle);
  2668. #ifdef CONFIG_NO_HZ
  2669. /*
  2670. * If this cpu is the owner for idle load balancing, then do the
  2671. * balancing on behalf of the other idle cpus whose ticks are
  2672. * stopped.
  2673. */
  2674. if (this_rq->idle_at_tick &&
  2675. atomic_read(&nohz.load_balancer) == this_cpu) {
  2676. cpumask_t cpus = nohz.cpu_mask;
  2677. struct rq *rq;
  2678. int balance_cpu;
  2679. cpu_clear(this_cpu, cpus);
  2680. for_each_cpu_mask(balance_cpu, cpus) {
  2681. /*
  2682. * If this cpu gets work to do, stop the load balancing
  2683. * work being done for other cpus. Next load
  2684. * balancing owner will pick it up.
  2685. */
  2686. if (need_resched())
  2687. break;
  2688. rebalance_domains(balance_cpu, CPU_IDLE);
  2689. rq = cpu_rq(balance_cpu);
  2690. if (time_after(this_rq->next_balance, rq->next_balance))
  2691. this_rq->next_balance = rq->next_balance;
  2692. }
  2693. }
  2694. #endif
  2695. }
  2696. /*
  2697. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2698. *
  2699. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2700. * idle load balancing owner or decide to stop the periodic load balancing,
  2701. * if the whole system is idle.
  2702. */
  2703. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2704. {
  2705. #ifdef CONFIG_NO_HZ
  2706. /*
  2707. * If we were in the nohz mode recently and busy at the current
  2708. * scheduler tick, then check if we need to nominate new idle
  2709. * load balancer.
  2710. */
  2711. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2712. rq->in_nohz_recently = 0;
  2713. if (atomic_read(&nohz.load_balancer) == cpu) {
  2714. cpu_clear(cpu, nohz.cpu_mask);
  2715. atomic_set(&nohz.load_balancer, -1);
  2716. }
  2717. if (atomic_read(&nohz.load_balancer) == -1) {
  2718. /*
  2719. * simple selection for now: Nominate the
  2720. * first cpu in the nohz list to be the next
  2721. * ilb owner.
  2722. *
  2723. * TBD: Traverse the sched domains and nominate
  2724. * the nearest cpu in the nohz.cpu_mask.
  2725. */
  2726. int ilb = first_cpu(nohz.cpu_mask);
  2727. if (ilb != NR_CPUS)
  2728. resched_cpu(ilb);
  2729. }
  2730. }
  2731. /*
  2732. * If this cpu is idle and doing idle load balancing for all the
  2733. * cpus with ticks stopped, is it time for that to stop?
  2734. */
  2735. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2736. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2737. resched_cpu(cpu);
  2738. return;
  2739. }
  2740. /*
  2741. * If this cpu is idle and the idle load balancing is done by
  2742. * someone else, then no need raise the SCHED_SOFTIRQ
  2743. */
  2744. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2745. cpu_isset(cpu, nohz.cpu_mask))
  2746. return;
  2747. #endif
  2748. if (time_after_eq(jiffies, rq->next_balance))
  2749. raise_softirq(SCHED_SOFTIRQ);
  2750. }
  2751. #else /* CONFIG_SMP */
  2752. /*
  2753. * on UP we do not need to balance between CPUs:
  2754. */
  2755. static inline void idle_balance(int cpu, struct rq *rq)
  2756. {
  2757. }
  2758. /* Avoid "used but not defined" warning on UP */
  2759. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2760. unsigned long max_nr_move, unsigned long max_load_move,
  2761. struct sched_domain *sd, enum cpu_idle_type idle,
  2762. int *all_pinned, unsigned long *load_moved,
  2763. int *this_best_prio, struct rq_iterator *iterator)
  2764. {
  2765. *load_moved = 0;
  2766. return 0;
  2767. }
  2768. #endif
  2769. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2770. EXPORT_PER_CPU_SYMBOL(kstat);
  2771. /*
  2772. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2773. * that have not yet been banked in case the task is currently running.
  2774. */
  2775. unsigned long long task_sched_runtime(struct task_struct *p)
  2776. {
  2777. unsigned long flags;
  2778. u64 ns, delta_exec;
  2779. struct rq *rq;
  2780. rq = task_rq_lock(p, &flags);
  2781. ns = p->se.sum_exec_runtime;
  2782. if (rq->curr == p) {
  2783. update_rq_clock(rq);
  2784. delta_exec = rq->clock - p->se.exec_start;
  2785. if ((s64)delta_exec > 0)
  2786. ns += delta_exec;
  2787. }
  2788. task_rq_unlock(rq, &flags);
  2789. return ns;
  2790. }
  2791. /*
  2792. * Account user cpu time to a process.
  2793. * @p: the process that the cpu time gets accounted to
  2794. * @hardirq_offset: the offset to subtract from hardirq_count()
  2795. * @cputime: the cpu time spent in user space since the last update
  2796. */
  2797. void account_user_time(struct task_struct *p, cputime_t cputime)
  2798. {
  2799. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2800. cputime64_t tmp;
  2801. p->utime = cputime_add(p->utime, cputime);
  2802. /* Add user time to cpustat. */
  2803. tmp = cputime_to_cputime64(cputime);
  2804. if (TASK_NICE(p) > 0)
  2805. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2806. else
  2807. cpustat->user = cputime64_add(cpustat->user, tmp);
  2808. }
  2809. /*
  2810. * Account system cpu time to a process.
  2811. * @p: the process that the cpu time gets accounted to
  2812. * @hardirq_offset: the offset to subtract from hardirq_count()
  2813. * @cputime: the cpu time spent in kernel space since the last update
  2814. */
  2815. void account_system_time(struct task_struct *p, int hardirq_offset,
  2816. cputime_t cputime)
  2817. {
  2818. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2819. struct rq *rq = this_rq();
  2820. cputime64_t tmp;
  2821. p->stime = cputime_add(p->stime, cputime);
  2822. /* Add system time to cpustat. */
  2823. tmp = cputime_to_cputime64(cputime);
  2824. if (hardirq_count() - hardirq_offset)
  2825. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2826. else if (softirq_count())
  2827. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2828. else if (p != rq->idle)
  2829. cpustat->system = cputime64_add(cpustat->system, tmp);
  2830. else if (atomic_read(&rq->nr_iowait) > 0)
  2831. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2832. else
  2833. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2834. /* Account for system time used */
  2835. acct_update_integrals(p);
  2836. }
  2837. /*
  2838. * Account for involuntary wait time.
  2839. * @p: the process from which the cpu time has been stolen
  2840. * @steal: the cpu time spent in involuntary wait
  2841. */
  2842. void account_steal_time(struct task_struct *p, cputime_t steal)
  2843. {
  2844. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2845. cputime64_t tmp = cputime_to_cputime64(steal);
  2846. struct rq *rq = this_rq();
  2847. if (p == rq->idle) {
  2848. p->stime = cputime_add(p->stime, steal);
  2849. if (atomic_read(&rq->nr_iowait) > 0)
  2850. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2851. else
  2852. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2853. } else
  2854. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2855. }
  2856. /*
  2857. * This function gets called by the timer code, with HZ frequency.
  2858. * We call it with interrupts disabled.
  2859. *
  2860. * It also gets called by the fork code, when changing the parent's
  2861. * timeslices.
  2862. */
  2863. void scheduler_tick(void)
  2864. {
  2865. int cpu = smp_processor_id();
  2866. struct rq *rq = cpu_rq(cpu);
  2867. struct task_struct *curr = rq->curr;
  2868. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2869. spin_lock(&rq->lock);
  2870. __update_rq_clock(rq);
  2871. /*
  2872. * Let rq->clock advance by at least TICK_NSEC:
  2873. */
  2874. if (unlikely(rq->clock < next_tick))
  2875. rq->clock = next_tick;
  2876. rq->tick_timestamp = rq->clock;
  2877. update_cpu_load(rq);
  2878. if (curr != rq->idle) /* FIXME: needed? */
  2879. curr->sched_class->task_tick(rq, curr);
  2880. spin_unlock(&rq->lock);
  2881. #ifdef CONFIG_SMP
  2882. rq->idle_at_tick = idle_cpu(cpu);
  2883. trigger_load_balance(rq, cpu);
  2884. #endif
  2885. }
  2886. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2887. void fastcall add_preempt_count(int val)
  2888. {
  2889. /*
  2890. * Underflow?
  2891. */
  2892. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2893. return;
  2894. preempt_count() += val;
  2895. /*
  2896. * Spinlock count overflowing soon?
  2897. */
  2898. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2899. PREEMPT_MASK - 10);
  2900. }
  2901. EXPORT_SYMBOL(add_preempt_count);
  2902. void fastcall sub_preempt_count(int val)
  2903. {
  2904. /*
  2905. * Underflow?
  2906. */
  2907. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2908. return;
  2909. /*
  2910. * Is the spinlock portion underflowing?
  2911. */
  2912. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2913. !(preempt_count() & PREEMPT_MASK)))
  2914. return;
  2915. preempt_count() -= val;
  2916. }
  2917. EXPORT_SYMBOL(sub_preempt_count);
  2918. #endif
  2919. /*
  2920. * Print scheduling while atomic bug:
  2921. */
  2922. static noinline void __schedule_bug(struct task_struct *prev)
  2923. {
  2924. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2925. prev->comm, preempt_count(), prev->pid);
  2926. debug_show_held_locks(prev);
  2927. if (irqs_disabled())
  2928. print_irqtrace_events(prev);
  2929. dump_stack();
  2930. }
  2931. /*
  2932. * Various schedule()-time debugging checks and statistics:
  2933. */
  2934. static inline void schedule_debug(struct task_struct *prev)
  2935. {
  2936. /*
  2937. * Test if we are atomic. Since do_exit() needs to call into
  2938. * schedule() atomically, we ignore that path for now.
  2939. * Otherwise, whine if we are scheduling when we should not be.
  2940. */
  2941. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2942. __schedule_bug(prev);
  2943. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2944. schedstat_inc(this_rq(), sched_cnt);
  2945. }
  2946. /*
  2947. * Pick up the highest-prio task:
  2948. */
  2949. static inline struct task_struct *
  2950. pick_next_task(struct rq *rq, struct task_struct *prev)
  2951. {
  2952. struct sched_class *class;
  2953. struct task_struct *p;
  2954. /*
  2955. * Optimization: we know that if all tasks are in
  2956. * the fair class we can call that function directly:
  2957. */
  2958. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2959. p = fair_sched_class.pick_next_task(rq);
  2960. if (likely(p))
  2961. return p;
  2962. }
  2963. class = sched_class_highest;
  2964. for ( ; ; ) {
  2965. p = class->pick_next_task(rq);
  2966. if (p)
  2967. return p;
  2968. /*
  2969. * Will never be NULL as the idle class always
  2970. * returns a non-NULL p:
  2971. */
  2972. class = class->next;
  2973. }
  2974. }
  2975. /*
  2976. * schedule() is the main scheduler function.
  2977. */
  2978. asmlinkage void __sched schedule(void)
  2979. {
  2980. struct task_struct *prev, *next;
  2981. long *switch_count;
  2982. struct rq *rq;
  2983. int cpu;
  2984. need_resched:
  2985. preempt_disable();
  2986. cpu = smp_processor_id();
  2987. rq = cpu_rq(cpu);
  2988. rcu_qsctr_inc(cpu);
  2989. prev = rq->curr;
  2990. switch_count = &prev->nivcsw;
  2991. release_kernel_lock(prev);
  2992. need_resched_nonpreemptible:
  2993. schedule_debug(prev);
  2994. spin_lock_irq(&rq->lock);
  2995. clear_tsk_need_resched(prev);
  2996. __update_rq_clock(rq);
  2997. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2998. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2999. unlikely(signal_pending(prev)))) {
  3000. prev->state = TASK_RUNNING;
  3001. } else {
  3002. deactivate_task(rq, prev, 1);
  3003. }
  3004. switch_count = &prev->nvcsw;
  3005. }
  3006. if (unlikely(!rq->nr_running))
  3007. idle_balance(cpu, rq);
  3008. prev->sched_class->put_prev_task(rq, prev);
  3009. next = pick_next_task(rq, prev);
  3010. sched_info_switch(prev, next);
  3011. if (likely(prev != next)) {
  3012. rq->nr_switches++;
  3013. rq->curr = next;
  3014. ++*switch_count;
  3015. context_switch(rq, prev, next); /* unlocks the rq */
  3016. } else
  3017. spin_unlock_irq(&rq->lock);
  3018. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3019. cpu = smp_processor_id();
  3020. rq = cpu_rq(cpu);
  3021. goto need_resched_nonpreemptible;
  3022. }
  3023. preempt_enable_no_resched();
  3024. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3025. goto need_resched;
  3026. }
  3027. EXPORT_SYMBOL(schedule);
  3028. #ifdef CONFIG_PREEMPT
  3029. /*
  3030. * this is the entry point to schedule() from in-kernel preemption
  3031. * off of preempt_enable. Kernel preemptions off return from interrupt
  3032. * occur there and call schedule directly.
  3033. */
  3034. asmlinkage void __sched preempt_schedule(void)
  3035. {
  3036. struct thread_info *ti = current_thread_info();
  3037. #ifdef CONFIG_PREEMPT_BKL
  3038. struct task_struct *task = current;
  3039. int saved_lock_depth;
  3040. #endif
  3041. /*
  3042. * If there is a non-zero preempt_count or interrupts are disabled,
  3043. * we do not want to preempt the current task. Just return..
  3044. */
  3045. if (likely(ti->preempt_count || irqs_disabled()))
  3046. return;
  3047. need_resched:
  3048. add_preempt_count(PREEMPT_ACTIVE);
  3049. /*
  3050. * We keep the big kernel semaphore locked, but we
  3051. * clear ->lock_depth so that schedule() doesnt
  3052. * auto-release the semaphore:
  3053. */
  3054. #ifdef CONFIG_PREEMPT_BKL
  3055. saved_lock_depth = task->lock_depth;
  3056. task->lock_depth = -1;
  3057. #endif
  3058. schedule();
  3059. #ifdef CONFIG_PREEMPT_BKL
  3060. task->lock_depth = saved_lock_depth;
  3061. #endif
  3062. sub_preempt_count(PREEMPT_ACTIVE);
  3063. /* we could miss a preemption opportunity between schedule and now */
  3064. barrier();
  3065. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3066. goto need_resched;
  3067. }
  3068. EXPORT_SYMBOL(preempt_schedule);
  3069. /*
  3070. * this is the entry point to schedule() from kernel preemption
  3071. * off of irq context.
  3072. * Note, that this is called and return with irqs disabled. This will
  3073. * protect us against recursive calling from irq.
  3074. */
  3075. asmlinkage void __sched preempt_schedule_irq(void)
  3076. {
  3077. struct thread_info *ti = current_thread_info();
  3078. #ifdef CONFIG_PREEMPT_BKL
  3079. struct task_struct *task = current;
  3080. int saved_lock_depth;
  3081. #endif
  3082. /* Catch callers which need to be fixed */
  3083. BUG_ON(ti->preempt_count || !irqs_disabled());
  3084. need_resched:
  3085. add_preempt_count(PREEMPT_ACTIVE);
  3086. /*
  3087. * We keep the big kernel semaphore locked, but we
  3088. * clear ->lock_depth so that schedule() doesnt
  3089. * auto-release the semaphore:
  3090. */
  3091. #ifdef CONFIG_PREEMPT_BKL
  3092. saved_lock_depth = task->lock_depth;
  3093. task->lock_depth = -1;
  3094. #endif
  3095. local_irq_enable();
  3096. schedule();
  3097. local_irq_disable();
  3098. #ifdef CONFIG_PREEMPT_BKL
  3099. task->lock_depth = saved_lock_depth;
  3100. #endif
  3101. sub_preempt_count(PREEMPT_ACTIVE);
  3102. /* we could miss a preemption opportunity between schedule and now */
  3103. barrier();
  3104. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3105. goto need_resched;
  3106. }
  3107. #endif /* CONFIG_PREEMPT */
  3108. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3109. void *key)
  3110. {
  3111. return try_to_wake_up(curr->private, mode, sync);
  3112. }
  3113. EXPORT_SYMBOL(default_wake_function);
  3114. /*
  3115. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3116. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3117. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3118. *
  3119. * There are circumstances in which we can try to wake a task which has already
  3120. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3121. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3122. */
  3123. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3124. int nr_exclusive, int sync, void *key)
  3125. {
  3126. wait_queue_t *curr, *next;
  3127. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3128. unsigned flags = curr->flags;
  3129. if (curr->func(curr, mode, sync, key) &&
  3130. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3131. break;
  3132. }
  3133. }
  3134. /**
  3135. * __wake_up - wake up threads blocked on a waitqueue.
  3136. * @q: the waitqueue
  3137. * @mode: which threads
  3138. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3139. * @key: is directly passed to the wakeup function
  3140. */
  3141. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3142. int nr_exclusive, void *key)
  3143. {
  3144. unsigned long flags;
  3145. spin_lock_irqsave(&q->lock, flags);
  3146. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3147. spin_unlock_irqrestore(&q->lock, flags);
  3148. }
  3149. EXPORT_SYMBOL(__wake_up);
  3150. /*
  3151. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3152. */
  3153. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3154. {
  3155. __wake_up_common(q, mode, 1, 0, NULL);
  3156. }
  3157. /**
  3158. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3159. * @q: the waitqueue
  3160. * @mode: which threads
  3161. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3162. *
  3163. * The sync wakeup differs that the waker knows that it will schedule
  3164. * away soon, so while the target thread will be woken up, it will not
  3165. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3166. * with each other. This can prevent needless bouncing between CPUs.
  3167. *
  3168. * On UP it can prevent extra preemption.
  3169. */
  3170. void fastcall
  3171. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3172. {
  3173. unsigned long flags;
  3174. int sync = 1;
  3175. if (unlikely(!q))
  3176. return;
  3177. if (unlikely(!nr_exclusive))
  3178. sync = 0;
  3179. spin_lock_irqsave(&q->lock, flags);
  3180. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3181. spin_unlock_irqrestore(&q->lock, flags);
  3182. }
  3183. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3184. void fastcall complete(struct completion *x)
  3185. {
  3186. unsigned long flags;
  3187. spin_lock_irqsave(&x->wait.lock, flags);
  3188. x->done++;
  3189. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3190. 1, 0, NULL);
  3191. spin_unlock_irqrestore(&x->wait.lock, flags);
  3192. }
  3193. EXPORT_SYMBOL(complete);
  3194. void fastcall complete_all(struct completion *x)
  3195. {
  3196. unsigned long flags;
  3197. spin_lock_irqsave(&x->wait.lock, flags);
  3198. x->done += UINT_MAX/2;
  3199. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3200. 0, 0, NULL);
  3201. spin_unlock_irqrestore(&x->wait.lock, flags);
  3202. }
  3203. EXPORT_SYMBOL(complete_all);
  3204. void fastcall __sched wait_for_completion(struct completion *x)
  3205. {
  3206. might_sleep();
  3207. spin_lock_irq(&x->wait.lock);
  3208. if (!x->done) {
  3209. DECLARE_WAITQUEUE(wait, current);
  3210. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3211. __add_wait_queue_tail(&x->wait, &wait);
  3212. do {
  3213. __set_current_state(TASK_UNINTERRUPTIBLE);
  3214. spin_unlock_irq(&x->wait.lock);
  3215. schedule();
  3216. spin_lock_irq(&x->wait.lock);
  3217. } while (!x->done);
  3218. __remove_wait_queue(&x->wait, &wait);
  3219. }
  3220. x->done--;
  3221. spin_unlock_irq(&x->wait.lock);
  3222. }
  3223. EXPORT_SYMBOL(wait_for_completion);
  3224. unsigned long fastcall __sched
  3225. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3226. {
  3227. might_sleep();
  3228. spin_lock_irq(&x->wait.lock);
  3229. if (!x->done) {
  3230. DECLARE_WAITQUEUE(wait, current);
  3231. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3232. __add_wait_queue_tail(&x->wait, &wait);
  3233. do {
  3234. __set_current_state(TASK_UNINTERRUPTIBLE);
  3235. spin_unlock_irq(&x->wait.lock);
  3236. timeout = schedule_timeout(timeout);
  3237. spin_lock_irq(&x->wait.lock);
  3238. if (!timeout) {
  3239. __remove_wait_queue(&x->wait, &wait);
  3240. goto out;
  3241. }
  3242. } while (!x->done);
  3243. __remove_wait_queue(&x->wait, &wait);
  3244. }
  3245. x->done--;
  3246. out:
  3247. spin_unlock_irq(&x->wait.lock);
  3248. return timeout;
  3249. }
  3250. EXPORT_SYMBOL(wait_for_completion_timeout);
  3251. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3252. {
  3253. int ret = 0;
  3254. might_sleep();
  3255. spin_lock_irq(&x->wait.lock);
  3256. if (!x->done) {
  3257. DECLARE_WAITQUEUE(wait, current);
  3258. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3259. __add_wait_queue_tail(&x->wait, &wait);
  3260. do {
  3261. if (signal_pending(current)) {
  3262. ret = -ERESTARTSYS;
  3263. __remove_wait_queue(&x->wait, &wait);
  3264. goto out;
  3265. }
  3266. __set_current_state(TASK_INTERRUPTIBLE);
  3267. spin_unlock_irq(&x->wait.lock);
  3268. schedule();
  3269. spin_lock_irq(&x->wait.lock);
  3270. } while (!x->done);
  3271. __remove_wait_queue(&x->wait, &wait);
  3272. }
  3273. x->done--;
  3274. out:
  3275. spin_unlock_irq(&x->wait.lock);
  3276. return ret;
  3277. }
  3278. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3279. unsigned long fastcall __sched
  3280. wait_for_completion_interruptible_timeout(struct completion *x,
  3281. unsigned long timeout)
  3282. {
  3283. might_sleep();
  3284. spin_lock_irq(&x->wait.lock);
  3285. if (!x->done) {
  3286. DECLARE_WAITQUEUE(wait, current);
  3287. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3288. __add_wait_queue_tail(&x->wait, &wait);
  3289. do {
  3290. if (signal_pending(current)) {
  3291. timeout = -ERESTARTSYS;
  3292. __remove_wait_queue(&x->wait, &wait);
  3293. goto out;
  3294. }
  3295. __set_current_state(TASK_INTERRUPTIBLE);
  3296. spin_unlock_irq(&x->wait.lock);
  3297. timeout = schedule_timeout(timeout);
  3298. spin_lock_irq(&x->wait.lock);
  3299. if (!timeout) {
  3300. __remove_wait_queue(&x->wait, &wait);
  3301. goto out;
  3302. }
  3303. } while (!x->done);
  3304. __remove_wait_queue(&x->wait, &wait);
  3305. }
  3306. x->done--;
  3307. out:
  3308. spin_unlock_irq(&x->wait.lock);
  3309. return timeout;
  3310. }
  3311. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3312. static inline void
  3313. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3314. {
  3315. spin_lock_irqsave(&q->lock, *flags);
  3316. __add_wait_queue(q, wait);
  3317. spin_unlock(&q->lock);
  3318. }
  3319. static inline void
  3320. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3321. {
  3322. spin_lock_irq(&q->lock);
  3323. __remove_wait_queue(q, wait);
  3324. spin_unlock_irqrestore(&q->lock, *flags);
  3325. }
  3326. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3327. {
  3328. unsigned long flags;
  3329. wait_queue_t wait;
  3330. init_waitqueue_entry(&wait, current);
  3331. current->state = TASK_INTERRUPTIBLE;
  3332. sleep_on_head(q, &wait, &flags);
  3333. schedule();
  3334. sleep_on_tail(q, &wait, &flags);
  3335. }
  3336. EXPORT_SYMBOL(interruptible_sleep_on);
  3337. long __sched
  3338. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3339. {
  3340. unsigned long flags;
  3341. wait_queue_t wait;
  3342. init_waitqueue_entry(&wait, current);
  3343. current->state = TASK_INTERRUPTIBLE;
  3344. sleep_on_head(q, &wait, &flags);
  3345. timeout = schedule_timeout(timeout);
  3346. sleep_on_tail(q, &wait, &flags);
  3347. return timeout;
  3348. }
  3349. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3350. void __sched sleep_on(wait_queue_head_t *q)
  3351. {
  3352. unsigned long flags;
  3353. wait_queue_t wait;
  3354. init_waitqueue_entry(&wait, current);
  3355. current->state = TASK_UNINTERRUPTIBLE;
  3356. sleep_on_head(q, &wait, &flags);
  3357. schedule();
  3358. sleep_on_tail(q, &wait, &flags);
  3359. }
  3360. EXPORT_SYMBOL(sleep_on);
  3361. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3362. {
  3363. unsigned long flags;
  3364. wait_queue_t wait;
  3365. init_waitqueue_entry(&wait, current);
  3366. current->state = TASK_UNINTERRUPTIBLE;
  3367. sleep_on_head(q, &wait, &flags);
  3368. timeout = schedule_timeout(timeout);
  3369. sleep_on_tail(q, &wait, &flags);
  3370. return timeout;
  3371. }
  3372. EXPORT_SYMBOL(sleep_on_timeout);
  3373. #ifdef CONFIG_RT_MUTEXES
  3374. /*
  3375. * rt_mutex_setprio - set the current priority of a task
  3376. * @p: task
  3377. * @prio: prio value (kernel-internal form)
  3378. *
  3379. * This function changes the 'effective' priority of a task. It does
  3380. * not touch ->normal_prio like __setscheduler().
  3381. *
  3382. * Used by the rt_mutex code to implement priority inheritance logic.
  3383. */
  3384. void rt_mutex_setprio(struct task_struct *p, int prio)
  3385. {
  3386. unsigned long flags;
  3387. int oldprio, on_rq;
  3388. struct rq *rq;
  3389. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3390. rq = task_rq_lock(p, &flags);
  3391. update_rq_clock(rq);
  3392. oldprio = p->prio;
  3393. on_rq = p->se.on_rq;
  3394. if (on_rq)
  3395. dequeue_task(rq, p, 0);
  3396. if (rt_prio(prio))
  3397. p->sched_class = &rt_sched_class;
  3398. else
  3399. p->sched_class = &fair_sched_class;
  3400. p->prio = prio;
  3401. if (on_rq) {
  3402. enqueue_task(rq, p, 0);
  3403. /*
  3404. * Reschedule if we are currently running on this runqueue and
  3405. * our priority decreased, or if we are not currently running on
  3406. * this runqueue and our priority is higher than the current's
  3407. */
  3408. if (task_running(rq, p)) {
  3409. if (p->prio > oldprio)
  3410. resched_task(rq->curr);
  3411. } else {
  3412. check_preempt_curr(rq, p);
  3413. }
  3414. }
  3415. task_rq_unlock(rq, &flags);
  3416. }
  3417. #endif
  3418. void set_user_nice(struct task_struct *p, long nice)
  3419. {
  3420. int old_prio, delta, on_rq;
  3421. unsigned long flags;
  3422. struct rq *rq;
  3423. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3424. return;
  3425. /*
  3426. * We have to be careful, if called from sys_setpriority(),
  3427. * the task might be in the middle of scheduling on another CPU.
  3428. */
  3429. rq = task_rq_lock(p, &flags);
  3430. update_rq_clock(rq);
  3431. /*
  3432. * The RT priorities are set via sched_setscheduler(), but we still
  3433. * allow the 'normal' nice value to be set - but as expected
  3434. * it wont have any effect on scheduling until the task is
  3435. * SCHED_FIFO/SCHED_RR:
  3436. */
  3437. if (task_has_rt_policy(p)) {
  3438. p->static_prio = NICE_TO_PRIO(nice);
  3439. goto out_unlock;
  3440. }
  3441. on_rq = p->se.on_rq;
  3442. if (on_rq) {
  3443. dequeue_task(rq, p, 0);
  3444. dec_load(rq, p);
  3445. }
  3446. p->static_prio = NICE_TO_PRIO(nice);
  3447. set_load_weight(p);
  3448. old_prio = p->prio;
  3449. p->prio = effective_prio(p);
  3450. delta = p->prio - old_prio;
  3451. if (on_rq) {
  3452. enqueue_task(rq, p, 0);
  3453. inc_load(rq, p);
  3454. /*
  3455. * If the task increased its priority or is running and
  3456. * lowered its priority, then reschedule its CPU:
  3457. */
  3458. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3459. resched_task(rq->curr);
  3460. }
  3461. out_unlock:
  3462. task_rq_unlock(rq, &flags);
  3463. }
  3464. EXPORT_SYMBOL(set_user_nice);
  3465. /*
  3466. * can_nice - check if a task can reduce its nice value
  3467. * @p: task
  3468. * @nice: nice value
  3469. */
  3470. int can_nice(const struct task_struct *p, const int nice)
  3471. {
  3472. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3473. int nice_rlim = 20 - nice;
  3474. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3475. capable(CAP_SYS_NICE));
  3476. }
  3477. #ifdef __ARCH_WANT_SYS_NICE
  3478. /*
  3479. * sys_nice - change the priority of the current process.
  3480. * @increment: priority increment
  3481. *
  3482. * sys_setpriority is a more generic, but much slower function that
  3483. * does similar things.
  3484. */
  3485. asmlinkage long sys_nice(int increment)
  3486. {
  3487. long nice, retval;
  3488. /*
  3489. * Setpriority might change our priority at the same moment.
  3490. * We don't have to worry. Conceptually one call occurs first
  3491. * and we have a single winner.
  3492. */
  3493. if (increment < -40)
  3494. increment = -40;
  3495. if (increment > 40)
  3496. increment = 40;
  3497. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3498. if (nice < -20)
  3499. nice = -20;
  3500. if (nice > 19)
  3501. nice = 19;
  3502. if (increment < 0 && !can_nice(current, nice))
  3503. return -EPERM;
  3504. retval = security_task_setnice(current, nice);
  3505. if (retval)
  3506. return retval;
  3507. set_user_nice(current, nice);
  3508. return 0;
  3509. }
  3510. #endif
  3511. /**
  3512. * task_prio - return the priority value of a given task.
  3513. * @p: the task in question.
  3514. *
  3515. * This is the priority value as seen by users in /proc.
  3516. * RT tasks are offset by -200. Normal tasks are centered
  3517. * around 0, value goes from -16 to +15.
  3518. */
  3519. int task_prio(const struct task_struct *p)
  3520. {
  3521. return p->prio - MAX_RT_PRIO;
  3522. }
  3523. /**
  3524. * task_nice - return the nice value of a given task.
  3525. * @p: the task in question.
  3526. */
  3527. int task_nice(const struct task_struct *p)
  3528. {
  3529. return TASK_NICE(p);
  3530. }
  3531. EXPORT_SYMBOL_GPL(task_nice);
  3532. /**
  3533. * idle_cpu - is a given cpu idle currently?
  3534. * @cpu: the processor in question.
  3535. */
  3536. int idle_cpu(int cpu)
  3537. {
  3538. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3539. }
  3540. /**
  3541. * idle_task - return the idle task for a given cpu.
  3542. * @cpu: the processor in question.
  3543. */
  3544. struct task_struct *idle_task(int cpu)
  3545. {
  3546. return cpu_rq(cpu)->idle;
  3547. }
  3548. /**
  3549. * find_process_by_pid - find a process with a matching PID value.
  3550. * @pid: the pid in question.
  3551. */
  3552. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3553. {
  3554. return pid ? find_task_by_pid(pid) : current;
  3555. }
  3556. /* Actually do priority change: must hold rq lock. */
  3557. static void
  3558. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3559. {
  3560. BUG_ON(p->se.on_rq);
  3561. p->policy = policy;
  3562. switch (p->policy) {
  3563. case SCHED_NORMAL:
  3564. case SCHED_BATCH:
  3565. case SCHED_IDLE:
  3566. p->sched_class = &fair_sched_class;
  3567. break;
  3568. case SCHED_FIFO:
  3569. case SCHED_RR:
  3570. p->sched_class = &rt_sched_class;
  3571. break;
  3572. }
  3573. p->rt_priority = prio;
  3574. p->normal_prio = normal_prio(p);
  3575. /* we are holding p->pi_lock already */
  3576. p->prio = rt_mutex_getprio(p);
  3577. set_load_weight(p);
  3578. }
  3579. /**
  3580. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3581. * @p: the task in question.
  3582. * @policy: new policy.
  3583. * @param: structure containing the new RT priority.
  3584. *
  3585. * NOTE that the task may be already dead.
  3586. */
  3587. int sched_setscheduler(struct task_struct *p, int policy,
  3588. struct sched_param *param)
  3589. {
  3590. int retval, oldprio, oldpolicy = -1, on_rq;
  3591. unsigned long flags;
  3592. struct rq *rq;
  3593. /* may grab non-irq protected spin_locks */
  3594. BUG_ON(in_interrupt());
  3595. recheck:
  3596. /* double check policy once rq lock held */
  3597. if (policy < 0)
  3598. policy = oldpolicy = p->policy;
  3599. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3600. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3601. policy != SCHED_IDLE)
  3602. return -EINVAL;
  3603. /*
  3604. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3605. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3606. * SCHED_BATCH and SCHED_IDLE is 0.
  3607. */
  3608. if (param->sched_priority < 0 ||
  3609. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3610. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3611. return -EINVAL;
  3612. if (rt_policy(policy) != (param->sched_priority != 0))
  3613. return -EINVAL;
  3614. /*
  3615. * Allow unprivileged RT tasks to decrease priority:
  3616. */
  3617. if (!capable(CAP_SYS_NICE)) {
  3618. if (rt_policy(policy)) {
  3619. unsigned long rlim_rtprio;
  3620. if (!lock_task_sighand(p, &flags))
  3621. return -ESRCH;
  3622. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3623. unlock_task_sighand(p, &flags);
  3624. /* can't set/change the rt policy */
  3625. if (policy != p->policy && !rlim_rtprio)
  3626. return -EPERM;
  3627. /* can't increase priority */
  3628. if (param->sched_priority > p->rt_priority &&
  3629. param->sched_priority > rlim_rtprio)
  3630. return -EPERM;
  3631. }
  3632. /*
  3633. * Like positive nice levels, dont allow tasks to
  3634. * move out of SCHED_IDLE either:
  3635. */
  3636. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3637. return -EPERM;
  3638. /* can't change other user's priorities */
  3639. if ((current->euid != p->euid) &&
  3640. (current->euid != p->uid))
  3641. return -EPERM;
  3642. }
  3643. retval = security_task_setscheduler(p, policy, param);
  3644. if (retval)
  3645. return retval;
  3646. /*
  3647. * make sure no PI-waiters arrive (or leave) while we are
  3648. * changing the priority of the task:
  3649. */
  3650. spin_lock_irqsave(&p->pi_lock, flags);
  3651. /*
  3652. * To be able to change p->policy safely, the apropriate
  3653. * runqueue lock must be held.
  3654. */
  3655. rq = __task_rq_lock(p);
  3656. /* recheck policy now with rq lock held */
  3657. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3658. policy = oldpolicy = -1;
  3659. __task_rq_unlock(rq);
  3660. spin_unlock_irqrestore(&p->pi_lock, flags);
  3661. goto recheck;
  3662. }
  3663. update_rq_clock(rq);
  3664. on_rq = p->se.on_rq;
  3665. if (on_rq)
  3666. deactivate_task(rq, p, 0);
  3667. oldprio = p->prio;
  3668. __setscheduler(rq, p, policy, param->sched_priority);
  3669. if (on_rq) {
  3670. activate_task(rq, p, 0);
  3671. /*
  3672. * Reschedule if we are currently running on this runqueue and
  3673. * our priority decreased, or if we are not currently running on
  3674. * this runqueue and our priority is higher than the current's
  3675. */
  3676. if (task_running(rq, p)) {
  3677. if (p->prio > oldprio)
  3678. resched_task(rq->curr);
  3679. } else {
  3680. check_preempt_curr(rq, p);
  3681. }
  3682. }
  3683. __task_rq_unlock(rq);
  3684. spin_unlock_irqrestore(&p->pi_lock, flags);
  3685. rt_mutex_adjust_pi(p);
  3686. return 0;
  3687. }
  3688. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3689. static int
  3690. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3691. {
  3692. struct sched_param lparam;
  3693. struct task_struct *p;
  3694. int retval;
  3695. if (!param || pid < 0)
  3696. return -EINVAL;
  3697. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3698. return -EFAULT;
  3699. rcu_read_lock();
  3700. retval = -ESRCH;
  3701. p = find_process_by_pid(pid);
  3702. if (p != NULL)
  3703. retval = sched_setscheduler(p, policy, &lparam);
  3704. rcu_read_unlock();
  3705. return retval;
  3706. }
  3707. /**
  3708. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3709. * @pid: the pid in question.
  3710. * @policy: new policy.
  3711. * @param: structure containing the new RT priority.
  3712. */
  3713. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3714. struct sched_param __user *param)
  3715. {
  3716. /* negative values for policy are not valid */
  3717. if (policy < 0)
  3718. return -EINVAL;
  3719. return do_sched_setscheduler(pid, policy, param);
  3720. }
  3721. /**
  3722. * sys_sched_setparam - set/change the RT priority of a thread
  3723. * @pid: the pid in question.
  3724. * @param: structure containing the new RT priority.
  3725. */
  3726. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3727. {
  3728. return do_sched_setscheduler(pid, -1, param);
  3729. }
  3730. /**
  3731. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3732. * @pid: the pid in question.
  3733. */
  3734. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3735. {
  3736. struct task_struct *p;
  3737. int retval = -EINVAL;
  3738. if (pid < 0)
  3739. goto out_nounlock;
  3740. retval = -ESRCH;
  3741. read_lock(&tasklist_lock);
  3742. p = find_process_by_pid(pid);
  3743. if (p) {
  3744. retval = security_task_getscheduler(p);
  3745. if (!retval)
  3746. retval = p->policy;
  3747. }
  3748. read_unlock(&tasklist_lock);
  3749. out_nounlock:
  3750. return retval;
  3751. }
  3752. /**
  3753. * sys_sched_getscheduler - get the RT priority of a thread
  3754. * @pid: the pid in question.
  3755. * @param: structure containing the RT priority.
  3756. */
  3757. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3758. {
  3759. struct sched_param lp;
  3760. struct task_struct *p;
  3761. int retval = -EINVAL;
  3762. if (!param || pid < 0)
  3763. goto out_nounlock;
  3764. read_lock(&tasklist_lock);
  3765. p = find_process_by_pid(pid);
  3766. retval = -ESRCH;
  3767. if (!p)
  3768. goto out_unlock;
  3769. retval = security_task_getscheduler(p);
  3770. if (retval)
  3771. goto out_unlock;
  3772. lp.sched_priority = p->rt_priority;
  3773. read_unlock(&tasklist_lock);
  3774. /*
  3775. * This one might sleep, we cannot do it with a spinlock held ...
  3776. */
  3777. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3778. out_nounlock:
  3779. return retval;
  3780. out_unlock:
  3781. read_unlock(&tasklist_lock);
  3782. return retval;
  3783. }
  3784. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3785. {
  3786. cpumask_t cpus_allowed;
  3787. struct task_struct *p;
  3788. int retval;
  3789. mutex_lock(&sched_hotcpu_mutex);
  3790. read_lock(&tasklist_lock);
  3791. p = find_process_by_pid(pid);
  3792. if (!p) {
  3793. read_unlock(&tasklist_lock);
  3794. mutex_unlock(&sched_hotcpu_mutex);
  3795. return -ESRCH;
  3796. }
  3797. /*
  3798. * It is not safe to call set_cpus_allowed with the
  3799. * tasklist_lock held. We will bump the task_struct's
  3800. * usage count and then drop tasklist_lock.
  3801. */
  3802. get_task_struct(p);
  3803. read_unlock(&tasklist_lock);
  3804. retval = -EPERM;
  3805. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3806. !capable(CAP_SYS_NICE))
  3807. goto out_unlock;
  3808. retval = security_task_setscheduler(p, 0, NULL);
  3809. if (retval)
  3810. goto out_unlock;
  3811. cpus_allowed = cpuset_cpus_allowed(p);
  3812. cpus_and(new_mask, new_mask, cpus_allowed);
  3813. retval = set_cpus_allowed(p, new_mask);
  3814. out_unlock:
  3815. put_task_struct(p);
  3816. mutex_unlock(&sched_hotcpu_mutex);
  3817. return retval;
  3818. }
  3819. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3820. cpumask_t *new_mask)
  3821. {
  3822. if (len < sizeof(cpumask_t)) {
  3823. memset(new_mask, 0, sizeof(cpumask_t));
  3824. } else if (len > sizeof(cpumask_t)) {
  3825. len = sizeof(cpumask_t);
  3826. }
  3827. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3828. }
  3829. /**
  3830. * sys_sched_setaffinity - set the cpu affinity of a process
  3831. * @pid: pid of the process
  3832. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3833. * @user_mask_ptr: user-space pointer to the new cpu mask
  3834. */
  3835. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3836. unsigned long __user *user_mask_ptr)
  3837. {
  3838. cpumask_t new_mask;
  3839. int retval;
  3840. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3841. if (retval)
  3842. return retval;
  3843. return sched_setaffinity(pid, new_mask);
  3844. }
  3845. /*
  3846. * Represents all cpu's present in the system
  3847. * In systems capable of hotplug, this map could dynamically grow
  3848. * as new cpu's are detected in the system via any platform specific
  3849. * method, such as ACPI for e.g.
  3850. */
  3851. cpumask_t cpu_present_map __read_mostly;
  3852. EXPORT_SYMBOL(cpu_present_map);
  3853. #ifndef CONFIG_SMP
  3854. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3855. EXPORT_SYMBOL(cpu_online_map);
  3856. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3857. EXPORT_SYMBOL(cpu_possible_map);
  3858. #endif
  3859. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3860. {
  3861. struct task_struct *p;
  3862. int retval;
  3863. mutex_lock(&sched_hotcpu_mutex);
  3864. read_lock(&tasklist_lock);
  3865. retval = -ESRCH;
  3866. p = find_process_by_pid(pid);
  3867. if (!p)
  3868. goto out_unlock;
  3869. retval = security_task_getscheduler(p);
  3870. if (retval)
  3871. goto out_unlock;
  3872. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3873. out_unlock:
  3874. read_unlock(&tasklist_lock);
  3875. mutex_unlock(&sched_hotcpu_mutex);
  3876. return retval;
  3877. }
  3878. /**
  3879. * sys_sched_getaffinity - get the cpu affinity of a process
  3880. * @pid: pid of the process
  3881. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3882. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3883. */
  3884. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3885. unsigned long __user *user_mask_ptr)
  3886. {
  3887. int ret;
  3888. cpumask_t mask;
  3889. if (len < sizeof(cpumask_t))
  3890. return -EINVAL;
  3891. ret = sched_getaffinity(pid, &mask);
  3892. if (ret < 0)
  3893. return ret;
  3894. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3895. return -EFAULT;
  3896. return sizeof(cpumask_t);
  3897. }
  3898. /**
  3899. * sys_sched_yield - yield the current processor to other threads.
  3900. *
  3901. * This function yields the current CPU to other tasks. If there are no
  3902. * other threads running on this CPU then this function will return.
  3903. */
  3904. asmlinkage long sys_sched_yield(void)
  3905. {
  3906. struct rq *rq = this_rq_lock();
  3907. schedstat_inc(rq, yld_cnt);
  3908. current->sched_class->yield_task(rq, current);
  3909. /*
  3910. * Since we are going to call schedule() anyway, there's
  3911. * no need to preempt or enable interrupts:
  3912. */
  3913. __release(rq->lock);
  3914. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3915. _raw_spin_unlock(&rq->lock);
  3916. preempt_enable_no_resched();
  3917. schedule();
  3918. return 0;
  3919. }
  3920. static void __cond_resched(void)
  3921. {
  3922. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3923. __might_sleep(__FILE__, __LINE__);
  3924. #endif
  3925. /*
  3926. * The BKS might be reacquired before we have dropped
  3927. * PREEMPT_ACTIVE, which could trigger a second
  3928. * cond_resched() call.
  3929. */
  3930. do {
  3931. add_preempt_count(PREEMPT_ACTIVE);
  3932. schedule();
  3933. sub_preempt_count(PREEMPT_ACTIVE);
  3934. } while (need_resched());
  3935. }
  3936. int __sched cond_resched(void)
  3937. {
  3938. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3939. system_state == SYSTEM_RUNNING) {
  3940. __cond_resched();
  3941. return 1;
  3942. }
  3943. return 0;
  3944. }
  3945. EXPORT_SYMBOL(cond_resched);
  3946. /*
  3947. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3948. * call schedule, and on return reacquire the lock.
  3949. *
  3950. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3951. * operations here to prevent schedule() from being called twice (once via
  3952. * spin_unlock(), once by hand).
  3953. */
  3954. int cond_resched_lock(spinlock_t *lock)
  3955. {
  3956. int ret = 0;
  3957. if (need_lockbreak(lock)) {
  3958. spin_unlock(lock);
  3959. cpu_relax();
  3960. ret = 1;
  3961. spin_lock(lock);
  3962. }
  3963. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3964. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3965. _raw_spin_unlock(lock);
  3966. preempt_enable_no_resched();
  3967. __cond_resched();
  3968. ret = 1;
  3969. spin_lock(lock);
  3970. }
  3971. return ret;
  3972. }
  3973. EXPORT_SYMBOL(cond_resched_lock);
  3974. int __sched cond_resched_softirq(void)
  3975. {
  3976. BUG_ON(!in_softirq());
  3977. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3978. local_bh_enable();
  3979. __cond_resched();
  3980. local_bh_disable();
  3981. return 1;
  3982. }
  3983. return 0;
  3984. }
  3985. EXPORT_SYMBOL(cond_resched_softirq);
  3986. /**
  3987. * yield - yield the current processor to other threads.
  3988. *
  3989. * This is a shortcut for kernel-space yielding - it marks the
  3990. * thread runnable and calls sys_sched_yield().
  3991. */
  3992. void __sched yield(void)
  3993. {
  3994. set_current_state(TASK_RUNNING);
  3995. sys_sched_yield();
  3996. }
  3997. EXPORT_SYMBOL(yield);
  3998. /*
  3999. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4000. * that process accounting knows that this is a task in IO wait state.
  4001. *
  4002. * But don't do that if it is a deliberate, throttling IO wait (this task
  4003. * has set its backing_dev_info: the queue against which it should throttle)
  4004. */
  4005. void __sched io_schedule(void)
  4006. {
  4007. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4008. delayacct_blkio_start();
  4009. atomic_inc(&rq->nr_iowait);
  4010. schedule();
  4011. atomic_dec(&rq->nr_iowait);
  4012. delayacct_blkio_end();
  4013. }
  4014. EXPORT_SYMBOL(io_schedule);
  4015. long __sched io_schedule_timeout(long timeout)
  4016. {
  4017. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4018. long ret;
  4019. delayacct_blkio_start();
  4020. atomic_inc(&rq->nr_iowait);
  4021. ret = schedule_timeout(timeout);
  4022. atomic_dec(&rq->nr_iowait);
  4023. delayacct_blkio_end();
  4024. return ret;
  4025. }
  4026. /**
  4027. * sys_sched_get_priority_max - return maximum RT priority.
  4028. * @policy: scheduling class.
  4029. *
  4030. * this syscall returns the maximum rt_priority that can be used
  4031. * by a given scheduling class.
  4032. */
  4033. asmlinkage long sys_sched_get_priority_max(int policy)
  4034. {
  4035. int ret = -EINVAL;
  4036. switch (policy) {
  4037. case SCHED_FIFO:
  4038. case SCHED_RR:
  4039. ret = MAX_USER_RT_PRIO-1;
  4040. break;
  4041. case SCHED_NORMAL:
  4042. case SCHED_BATCH:
  4043. case SCHED_IDLE:
  4044. ret = 0;
  4045. break;
  4046. }
  4047. return ret;
  4048. }
  4049. /**
  4050. * sys_sched_get_priority_min - return minimum RT priority.
  4051. * @policy: scheduling class.
  4052. *
  4053. * this syscall returns the minimum rt_priority that can be used
  4054. * by a given scheduling class.
  4055. */
  4056. asmlinkage long sys_sched_get_priority_min(int policy)
  4057. {
  4058. int ret = -EINVAL;
  4059. switch (policy) {
  4060. case SCHED_FIFO:
  4061. case SCHED_RR:
  4062. ret = 1;
  4063. break;
  4064. case SCHED_NORMAL:
  4065. case SCHED_BATCH:
  4066. case SCHED_IDLE:
  4067. ret = 0;
  4068. }
  4069. return ret;
  4070. }
  4071. /**
  4072. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4073. * @pid: pid of the process.
  4074. * @interval: userspace pointer to the timeslice value.
  4075. *
  4076. * this syscall writes the default timeslice value of a given process
  4077. * into the user-space timespec buffer. A value of '0' means infinity.
  4078. */
  4079. asmlinkage
  4080. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4081. {
  4082. struct task_struct *p;
  4083. int retval = -EINVAL;
  4084. struct timespec t;
  4085. if (pid < 0)
  4086. goto out_nounlock;
  4087. retval = -ESRCH;
  4088. read_lock(&tasklist_lock);
  4089. p = find_process_by_pid(pid);
  4090. if (!p)
  4091. goto out_unlock;
  4092. retval = security_task_getscheduler(p);
  4093. if (retval)
  4094. goto out_unlock;
  4095. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4096. 0 : static_prio_timeslice(p->static_prio), &t);
  4097. read_unlock(&tasklist_lock);
  4098. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4099. out_nounlock:
  4100. return retval;
  4101. out_unlock:
  4102. read_unlock(&tasklist_lock);
  4103. return retval;
  4104. }
  4105. static const char stat_nam[] = "RSDTtZX";
  4106. static void show_task(struct task_struct *p)
  4107. {
  4108. unsigned long free = 0;
  4109. unsigned state;
  4110. state = p->state ? __ffs(p->state) + 1 : 0;
  4111. printk("%-13.13s %c", p->comm,
  4112. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4113. #if BITS_PER_LONG == 32
  4114. if (state == TASK_RUNNING)
  4115. printk(" running ");
  4116. else
  4117. printk(" %08lx ", thread_saved_pc(p));
  4118. #else
  4119. if (state == TASK_RUNNING)
  4120. printk(" running task ");
  4121. else
  4122. printk(" %016lx ", thread_saved_pc(p));
  4123. #endif
  4124. #ifdef CONFIG_DEBUG_STACK_USAGE
  4125. {
  4126. unsigned long *n = end_of_stack(p);
  4127. while (!*n)
  4128. n++;
  4129. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4130. }
  4131. #endif
  4132. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4133. if (state != TASK_RUNNING)
  4134. show_stack(p, NULL);
  4135. }
  4136. void show_state_filter(unsigned long state_filter)
  4137. {
  4138. struct task_struct *g, *p;
  4139. #if BITS_PER_LONG == 32
  4140. printk(KERN_INFO
  4141. " task PC stack pid father\n");
  4142. #else
  4143. printk(KERN_INFO
  4144. " task PC stack pid father\n");
  4145. #endif
  4146. read_lock(&tasklist_lock);
  4147. do_each_thread(g, p) {
  4148. /*
  4149. * reset the NMI-timeout, listing all files on a slow
  4150. * console might take alot of time:
  4151. */
  4152. touch_nmi_watchdog();
  4153. if (!state_filter || (p->state & state_filter))
  4154. show_task(p);
  4155. } while_each_thread(g, p);
  4156. touch_all_softlockup_watchdogs();
  4157. #ifdef CONFIG_SCHED_DEBUG
  4158. sysrq_sched_debug_show();
  4159. #endif
  4160. read_unlock(&tasklist_lock);
  4161. /*
  4162. * Only show locks if all tasks are dumped:
  4163. */
  4164. if (state_filter == -1)
  4165. debug_show_all_locks();
  4166. }
  4167. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4168. {
  4169. idle->sched_class = &idle_sched_class;
  4170. }
  4171. /**
  4172. * init_idle - set up an idle thread for a given CPU
  4173. * @idle: task in question
  4174. * @cpu: cpu the idle task belongs to
  4175. *
  4176. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4177. * flag, to make booting more robust.
  4178. */
  4179. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4180. {
  4181. struct rq *rq = cpu_rq(cpu);
  4182. unsigned long flags;
  4183. __sched_fork(idle);
  4184. idle->se.exec_start = sched_clock();
  4185. idle->prio = idle->normal_prio = MAX_PRIO;
  4186. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4187. __set_task_cpu(idle, cpu);
  4188. spin_lock_irqsave(&rq->lock, flags);
  4189. rq->curr = rq->idle = idle;
  4190. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4191. idle->oncpu = 1;
  4192. #endif
  4193. spin_unlock_irqrestore(&rq->lock, flags);
  4194. /* Set the preempt count _outside_ the spinlocks! */
  4195. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4196. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4197. #else
  4198. task_thread_info(idle)->preempt_count = 0;
  4199. #endif
  4200. /*
  4201. * The idle tasks have their own, simple scheduling class:
  4202. */
  4203. idle->sched_class = &idle_sched_class;
  4204. }
  4205. /*
  4206. * In a system that switches off the HZ timer nohz_cpu_mask
  4207. * indicates which cpus entered this state. This is used
  4208. * in the rcu update to wait only for active cpus. For system
  4209. * which do not switch off the HZ timer nohz_cpu_mask should
  4210. * always be CPU_MASK_NONE.
  4211. */
  4212. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4213. #ifdef CONFIG_SMP
  4214. /*
  4215. * This is how migration works:
  4216. *
  4217. * 1) we queue a struct migration_req structure in the source CPU's
  4218. * runqueue and wake up that CPU's migration thread.
  4219. * 2) we down() the locked semaphore => thread blocks.
  4220. * 3) migration thread wakes up (implicitly it forces the migrated
  4221. * thread off the CPU)
  4222. * 4) it gets the migration request and checks whether the migrated
  4223. * task is still in the wrong runqueue.
  4224. * 5) if it's in the wrong runqueue then the migration thread removes
  4225. * it and puts it into the right queue.
  4226. * 6) migration thread up()s the semaphore.
  4227. * 7) we wake up and the migration is done.
  4228. */
  4229. /*
  4230. * Change a given task's CPU affinity. Migrate the thread to a
  4231. * proper CPU and schedule it away if the CPU it's executing on
  4232. * is removed from the allowed bitmask.
  4233. *
  4234. * NOTE: the caller must have a valid reference to the task, the
  4235. * task must not exit() & deallocate itself prematurely. The
  4236. * call is not atomic; no spinlocks may be held.
  4237. */
  4238. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4239. {
  4240. struct migration_req req;
  4241. unsigned long flags;
  4242. struct rq *rq;
  4243. int ret = 0;
  4244. rq = task_rq_lock(p, &flags);
  4245. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4246. ret = -EINVAL;
  4247. goto out;
  4248. }
  4249. p->cpus_allowed = new_mask;
  4250. /* Can the task run on the task's current CPU? If so, we're done */
  4251. if (cpu_isset(task_cpu(p), new_mask))
  4252. goto out;
  4253. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4254. /* Need help from migration thread: drop lock and wait. */
  4255. task_rq_unlock(rq, &flags);
  4256. wake_up_process(rq->migration_thread);
  4257. wait_for_completion(&req.done);
  4258. tlb_migrate_finish(p->mm);
  4259. return 0;
  4260. }
  4261. out:
  4262. task_rq_unlock(rq, &flags);
  4263. return ret;
  4264. }
  4265. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4266. /*
  4267. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4268. * this because either it can't run here any more (set_cpus_allowed()
  4269. * away from this CPU, or CPU going down), or because we're
  4270. * attempting to rebalance this task on exec (sched_exec).
  4271. *
  4272. * So we race with normal scheduler movements, but that's OK, as long
  4273. * as the task is no longer on this CPU.
  4274. *
  4275. * Returns non-zero if task was successfully migrated.
  4276. */
  4277. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4278. {
  4279. struct rq *rq_dest, *rq_src;
  4280. int ret = 0, on_rq;
  4281. if (unlikely(cpu_is_offline(dest_cpu)))
  4282. return ret;
  4283. rq_src = cpu_rq(src_cpu);
  4284. rq_dest = cpu_rq(dest_cpu);
  4285. double_rq_lock(rq_src, rq_dest);
  4286. /* Already moved. */
  4287. if (task_cpu(p) != src_cpu)
  4288. goto out;
  4289. /* Affinity changed (again). */
  4290. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4291. goto out;
  4292. on_rq = p->se.on_rq;
  4293. if (on_rq)
  4294. deactivate_task(rq_src, p, 0);
  4295. set_task_cpu(p, dest_cpu);
  4296. if (on_rq) {
  4297. activate_task(rq_dest, p, 0);
  4298. check_preempt_curr(rq_dest, p);
  4299. }
  4300. ret = 1;
  4301. out:
  4302. double_rq_unlock(rq_src, rq_dest);
  4303. return ret;
  4304. }
  4305. /*
  4306. * migration_thread - this is a highprio system thread that performs
  4307. * thread migration by bumping thread off CPU then 'pushing' onto
  4308. * another runqueue.
  4309. */
  4310. static int migration_thread(void *data)
  4311. {
  4312. int cpu = (long)data;
  4313. struct rq *rq;
  4314. rq = cpu_rq(cpu);
  4315. BUG_ON(rq->migration_thread != current);
  4316. set_current_state(TASK_INTERRUPTIBLE);
  4317. while (!kthread_should_stop()) {
  4318. struct migration_req *req;
  4319. struct list_head *head;
  4320. spin_lock_irq(&rq->lock);
  4321. if (cpu_is_offline(cpu)) {
  4322. spin_unlock_irq(&rq->lock);
  4323. goto wait_to_die;
  4324. }
  4325. if (rq->active_balance) {
  4326. active_load_balance(rq, cpu);
  4327. rq->active_balance = 0;
  4328. }
  4329. head = &rq->migration_queue;
  4330. if (list_empty(head)) {
  4331. spin_unlock_irq(&rq->lock);
  4332. schedule();
  4333. set_current_state(TASK_INTERRUPTIBLE);
  4334. continue;
  4335. }
  4336. req = list_entry(head->next, struct migration_req, list);
  4337. list_del_init(head->next);
  4338. spin_unlock(&rq->lock);
  4339. __migrate_task(req->task, cpu, req->dest_cpu);
  4340. local_irq_enable();
  4341. complete(&req->done);
  4342. }
  4343. __set_current_state(TASK_RUNNING);
  4344. return 0;
  4345. wait_to_die:
  4346. /* Wait for kthread_stop */
  4347. set_current_state(TASK_INTERRUPTIBLE);
  4348. while (!kthread_should_stop()) {
  4349. schedule();
  4350. set_current_state(TASK_INTERRUPTIBLE);
  4351. }
  4352. __set_current_state(TASK_RUNNING);
  4353. return 0;
  4354. }
  4355. #ifdef CONFIG_HOTPLUG_CPU
  4356. /*
  4357. * Figure out where task on dead CPU should go, use force if neccessary.
  4358. * NOTE: interrupts should be disabled by the caller
  4359. */
  4360. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4361. {
  4362. unsigned long flags;
  4363. cpumask_t mask;
  4364. struct rq *rq;
  4365. int dest_cpu;
  4366. restart:
  4367. /* On same node? */
  4368. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4369. cpus_and(mask, mask, p->cpus_allowed);
  4370. dest_cpu = any_online_cpu(mask);
  4371. /* On any allowed CPU? */
  4372. if (dest_cpu == NR_CPUS)
  4373. dest_cpu = any_online_cpu(p->cpus_allowed);
  4374. /* No more Mr. Nice Guy. */
  4375. if (dest_cpu == NR_CPUS) {
  4376. rq = task_rq_lock(p, &flags);
  4377. cpus_setall(p->cpus_allowed);
  4378. dest_cpu = any_online_cpu(p->cpus_allowed);
  4379. task_rq_unlock(rq, &flags);
  4380. /*
  4381. * Don't tell them about moving exiting tasks or
  4382. * kernel threads (both mm NULL), since they never
  4383. * leave kernel.
  4384. */
  4385. if (p->mm && printk_ratelimit())
  4386. printk(KERN_INFO "process %d (%s) no "
  4387. "longer affine to cpu%d\n",
  4388. p->pid, p->comm, dead_cpu);
  4389. }
  4390. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4391. goto restart;
  4392. }
  4393. /*
  4394. * While a dead CPU has no uninterruptible tasks queued at this point,
  4395. * it might still have a nonzero ->nr_uninterruptible counter, because
  4396. * for performance reasons the counter is not stricly tracking tasks to
  4397. * their home CPUs. So we just add the counter to another CPU's counter,
  4398. * to keep the global sum constant after CPU-down:
  4399. */
  4400. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4401. {
  4402. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4403. unsigned long flags;
  4404. local_irq_save(flags);
  4405. double_rq_lock(rq_src, rq_dest);
  4406. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4407. rq_src->nr_uninterruptible = 0;
  4408. double_rq_unlock(rq_src, rq_dest);
  4409. local_irq_restore(flags);
  4410. }
  4411. /* Run through task list and migrate tasks from the dead cpu. */
  4412. static void migrate_live_tasks(int src_cpu)
  4413. {
  4414. struct task_struct *p, *t;
  4415. write_lock_irq(&tasklist_lock);
  4416. do_each_thread(t, p) {
  4417. if (p == current)
  4418. continue;
  4419. if (task_cpu(p) == src_cpu)
  4420. move_task_off_dead_cpu(src_cpu, p);
  4421. } while_each_thread(t, p);
  4422. write_unlock_irq(&tasklist_lock);
  4423. }
  4424. /*
  4425. * Schedules idle task to be the next runnable task on current CPU.
  4426. * It does so by boosting its priority to highest possible and adding it to
  4427. * the _front_ of the runqueue. Used by CPU offline code.
  4428. */
  4429. void sched_idle_next(void)
  4430. {
  4431. int this_cpu = smp_processor_id();
  4432. struct rq *rq = cpu_rq(this_cpu);
  4433. struct task_struct *p = rq->idle;
  4434. unsigned long flags;
  4435. /* cpu has to be offline */
  4436. BUG_ON(cpu_online(this_cpu));
  4437. /*
  4438. * Strictly not necessary since rest of the CPUs are stopped by now
  4439. * and interrupts disabled on the current cpu.
  4440. */
  4441. spin_lock_irqsave(&rq->lock, flags);
  4442. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4443. /* Add idle task to the _front_ of its priority queue: */
  4444. activate_idle_task(p, rq);
  4445. spin_unlock_irqrestore(&rq->lock, flags);
  4446. }
  4447. /*
  4448. * Ensures that the idle task is using init_mm right before its cpu goes
  4449. * offline.
  4450. */
  4451. void idle_task_exit(void)
  4452. {
  4453. struct mm_struct *mm = current->active_mm;
  4454. BUG_ON(cpu_online(smp_processor_id()));
  4455. if (mm != &init_mm)
  4456. switch_mm(mm, &init_mm, current);
  4457. mmdrop(mm);
  4458. }
  4459. /* called under rq->lock with disabled interrupts */
  4460. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4461. {
  4462. struct rq *rq = cpu_rq(dead_cpu);
  4463. /* Must be exiting, otherwise would be on tasklist. */
  4464. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4465. /* Cannot have done final schedule yet: would have vanished. */
  4466. BUG_ON(p->state == TASK_DEAD);
  4467. get_task_struct(p);
  4468. /*
  4469. * Drop lock around migration; if someone else moves it,
  4470. * that's OK. No task can be added to this CPU, so iteration is
  4471. * fine.
  4472. * NOTE: interrupts should be left disabled --dev@
  4473. */
  4474. spin_unlock(&rq->lock);
  4475. move_task_off_dead_cpu(dead_cpu, p);
  4476. spin_lock(&rq->lock);
  4477. put_task_struct(p);
  4478. }
  4479. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4480. static void migrate_dead_tasks(unsigned int dead_cpu)
  4481. {
  4482. struct rq *rq = cpu_rq(dead_cpu);
  4483. struct task_struct *next;
  4484. for ( ; ; ) {
  4485. if (!rq->nr_running)
  4486. break;
  4487. update_rq_clock(rq);
  4488. next = pick_next_task(rq, rq->curr);
  4489. if (!next)
  4490. break;
  4491. migrate_dead(dead_cpu, next);
  4492. }
  4493. }
  4494. #endif /* CONFIG_HOTPLUG_CPU */
  4495. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4496. static struct ctl_table sd_ctl_dir[] = {
  4497. {
  4498. .procname = "sched_domain",
  4499. .mode = 0555,
  4500. },
  4501. {0,},
  4502. };
  4503. static struct ctl_table sd_ctl_root[] = {
  4504. {
  4505. .ctl_name = CTL_KERN,
  4506. .procname = "kernel",
  4507. .mode = 0555,
  4508. .child = sd_ctl_dir,
  4509. },
  4510. {0,},
  4511. };
  4512. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4513. {
  4514. struct ctl_table *entry =
  4515. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4516. BUG_ON(!entry);
  4517. memset(entry, 0, n * sizeof(struct ctl_table));
  4518. return entry;
  4519. }
  4520. static void
  4521. set_table_entry(struct ctl_table *entry,
  4522. const char *procname, void *data, int maxlen,
  4523. mode_t mode, proc_handler *proc_handler)
  4524. {
  4525. entry->procname = procname;
  4526. entry->data = data;
  4527. entry->maxlen = maxlen;
  4528. entry->mode = mode;
  4529. entry->proc_handler = proc_handler;
  4530. }
  4531. static struct ctl_table *
  4532. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4533. {
  4534. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4535. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4536. sizeof(long), 0644, proc_doulongvec_minmax);
  4537. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4538. sizeof(long), 0644, proc_doulongvec_minmax);
  4539. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4540. sizeof(int), 0644, proc_dointvec_minmax);
  4541. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4542. sizeof(int), 0644, proc_dointvec_minmax);
  4543. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4544. sizeof(int), 0644, proc_dointvec_minmax);
  4545. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4546. sizeof(int), 0644, proc_dointvec_minmax);
  4547. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4548. sizeof(int), 0644, proc_dointvec_minmax);
  4549. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4550. sizeof(int), 0644, proc_dointvec_minmax);
  4551. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4552. sizeof(int), 0644, proc_dointvec_minmax);
  4553. set_table_entry(&table[10], "cache_nice_tries",
  4554. &sd->cache_nice_tries,
  4555. sizeof(int), 0644, proc_dointvec_minmax);
  4556. set_table_entry(&table[12], "flags", &sd->flags,
  4557. sizeof(int), 0644, proc_dointvec_minmax);
  4558. return table;
  4559. }
  4560. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4561. {
  4562. struct ctl_table *entry, *table;
  4563. struct sched_domain *sd;
  4564. int domain_num = 0, i;
  4565. char buf[32];
  4566. for_each_domain(cpu, sd)
  4567. domain_num++;
  4568. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4569. i = 0;
  4570. for_each_domain(cpu, sd) {
  4571. snprintf(buf, 32, "domain%d", i);
  4572. entry->procname = kstrdup(buf, GFP_KERNEL);
  4573. entry->mode = 0555;
  4574. entry->child = sd_alloc_ctl_domain_table(sd);
  4575. entry++;
  4576. i++;
  4577. }
  4578. return table;
  4579. }
  4580. static struct ctl_table_header *sd_sysctl_header;
  4581. static void init_sched_domain_sysctl(void)
  4582. {
  4583. int i, cpu_num = num_online_cpus();
  4584. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4585. char buf[32];
  4586. sd_ctl_dir[0].child = entry;
  4587. for (i = 0; i < cpu_num; i++, entry++) {
  4588. snprintf(buf, 32, "cpu%d", i);
  4589. entry->procname = kstrdup(buf, GFP_KERNEL);
  4590. entry->mode = 0555;
  4591. entry->child = sd_alloc_ctl_cpu_table(i);
  4592. }
  4593. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4594. }
  4595. #else
  4596. static void init_sched_domain_sysctl(void)
  4597. {
  4598. }
  4599. #endif
  4600. /*
  4601. * migration_call - callback that gets triggered when a CPU is added.
  4602. * Here we can start up the necessary migration thread for the new CPU.
  4603. */
  4604. static int __cpuinit
  4605. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4606. {
  4607. struct task_struct *p;
  4608. int cpu = (long)hcpu;
  4609. unsigned long flags;
  4610. struct rq *rq;
  4611. switch (action) {
  4612. case CPU_LOCK_ACQUIRE:
  4613. mutex_lock(&sched_hotcpu_mutex);
  4614. break;
  4615. case CPU_UP_PREPARE:
  4616. case CPU_UP_PREPARE_FROZEN:
  4617. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4618. if (IS_ERR(p))
  4619. return NOTIFY_BAD;
  4620. kthread_bind(p, cpu);
  4621. /* Must be high prio: stop_machine expects to yield to it. */
  4622. rq = task_rq_lock(p, &flags);
  4623. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4624. task_rq_unlock(rq, &flags);
  4625. cpu_rq(cpu)->migration_thread = p;
  4626. break;
  4627. case CPU_ONLINE:
  4628. case CPU_ONLINE_FROZEN:
  4629. /* Strictly unneccessary, as first user will wake it. */
  4630. wake_up_process(cpu_rq(cpu)->migration_thread);
  4631. break;
  4632. #ifdef CONFIG_HOTPLUG_CPU
  4633. case CPU_UP_CANCELED:
  4634. case CPU_UP_CANCELED_FROZEN:
  4635. if (!cpu_rq(cpu)->migration_thread)
  4636. break;
  4637. /* Unbind it from offline cpu so it can run. Fall thru. */
  4638. kthread_bind(cpu_rq(cpu)->migration_thread,
  4639. any_online_cpu(cpu_online_map));
  4640. kthread_stop(cpu_rq(cpu)->migration_thread);
  4641. cpu_rq(cpu)->migration_thread = NULL;
  4642. break;
  4643. case CPU_DEAD:
  4644. case CPU_DEAD_FROZEN:
  4645. migrate_live_tasks(cpu);
  4646. rq = cpu_rq(cpu);
  4647. kthread_stop(rq->migration_thread);
  4648. rq->migration_thread = NULL;
  4649. /* Idle task back to normal (off runqueue, low prio) */
  4650. rq = task_rq_lock(rq->idle, &flags);
  4651. update_rq_clock(rq);
  4652. deactivate_task(rq, rq->idle, 0);
  4653. rq->idle->static_prio = MAX_PRIO;
  4654. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4655. rq->idle->sched_class = &idle_sched_class;
  4656. migrate_dead_tasks(cpu);
  4657. task_rq_unlock(rq, &flags);
  4658. migrate_nr_uninterruptible(rq);
  4659. BUG_ON(rq->nr_running != 0);
  4660. /* No need to migrate the tasks: it was best-effort if
  4661. * they didn't take sched_hotcpu_mutex. Just wake up
  4662. * the requestors. */
  4663. spin_lock_irq(&rq->lock);
  4664. while (!list_empty(&rq->migration_queue)) {
  4665. struct migration_req *req;
  4666. req = list_entry(rq->migration_queue.next,
  4667. struct migration_req, list);
  4668. list_del_init(&req->list);
  4669. complete(&req->done);
  4670. }
  4671. spin_unlock_irq(&rq->lock);
  4672. break;
  4673. #endif
  4674. case CPU_LOCK_RELEASE:
  4675. mutex_unlock(&sched_hotcpu_mutex);
  4676. break;
  4677. }
  4678. return NOTIFY_OK;
  4679. }
  4680. /* Register at highest priority so that task migration (migrate_all_tasks)
  4681. * happens before everything else.
  4682. */
  4683. static struct notifier_block __cpuinitdata migration_notifier = {
  4684. .notifier_call = migration_call,
  4685. .priority = 10
  4686. };
  4687. int __init migration_init(void)
  4688. {
  4689. void *cpu = (void *)(long)smp_processor_id();
  4690. int err;
  4691. /* Start one for the boot CPU: */
  4692. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4693. BUG_ON(err == NOTIFY_BAD);
  4694. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4695. register_cpu_notifier(&migration_notifier);
  4696. return 0;
  4697. }
  4698. #endif
  4699. #ifdef CONFIG_SMP
  4700. /* Number of possible processor ids */
  4701. int nr_cpu_ids __read_mostly = NR_CPUS;
  4702. EXPORT_SYMBOL(nr_cpu_ids);
  4703. #undef SCHED_DOMAIN_DEBUG
  4704. #ifdef SCHED_DOMAIN_DEBUG
  4705. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4706. {
  4707. int level = 0;
  4708. if (!sd) {
  4709. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4710. return;
  4711. }
  4712. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4713. do {
  4714. int i;
  4715. char str[NR_CPUS];
  4716. struct sched_group *group = sd->groups;
  4717. cpumask_t groupmask;
  4718. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4719. cpus_clear(groupmask);
  4720. printk(KERN_DEBUG);
  4721. for (i = 0; i < level + 1; i++)
  4722. printk(" ");
  4723. printk("domain %d: ", level);
  4724. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4725. printk("does not load-balance\n");
  4726. if (sd->parent)
  4727. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4728. " has parent");
  4729. break;
  4730. }
  4731. printk("span %s\n", str);
  4732. if (!cpu_isset(cpu, sd->span))
  4733. printk(KERN_ERR "ERROR: domain->span does not contain "
  4734. "CPU%d\n", cpu);
  4735. if (!cpu_isset(cpu, group->cpumask))
  4736. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4737. " CPU%d\n", cpu);
  4738. printk(KERN_DEBUG);
  4739. for (i = 0; i < level + 2; i++)
  4740. printk(" ");
  4741. printk("groups:");
  4742. do {
  4743. if (!group) {
  4744. printk("\n");
  4745. printk(KERN_ERR "ERROR: group is NULL\n");
  4746. break;
  4747. }
  4748. if (!group->__cpu_power) {
  4749. printk("\n");
  4750. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4751. "set\n");
  4752. }
  4753. if (!cpus_weight(group->cpumask)) {
  4754. printk("\n");
  4755. printk(KERN_ERR "ERROR: empty group\n");
  4756. }
  4757. if (cpus_intersects(groupmask, group->cpumask)) {
  4758. printk("\n");
  4759. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4760. }
  4761. cpus_or(groupmask, groupmask, group->cpumask);
  4762. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4763. printk(" %s", str);
  4764. group = group->next;
  4765. } while (group != sd->groups);
  4766. printk("\n");
  4767. if (!cpus_equal(sd->span, groupmask))
  4768. printk(KERN_ERR "ERROR: groups don't span "
  4769. "domain->span\n");
  4770. level++;
  4771. sd = sd->parent;
  4772. if (!sd)
  4773. continue;
  4774. if (!cpus_subset(groupmask, sd->span))
  4775. printk(KERN_ERR "ERROR: parent span is not a superset "
  4776. "of domain->span\n");
  4777. } while (sd);
  4778. }
  4779. #else
  4780. # define sched_domain_debug(sd, cpu) do { } while (0)
  4781. #endif
  4782. static int sd_degenerate(struct sched_domain *sd)
  4783. {
  4784. if (cpus_weight(sd->span) == 1)
  4785. return 1;
  4786. /* Following flags need at least 2 groups */
  4787. if (sd->flags & (SD_LOAD_BALANCE |
  4788. SD_BALANCE_NEWIDLE |
  4789. SD_BALANCE_FORK |
  4790. SD_BALANCE_EXEC |
  4791. SD_SHARE_CPUPOWER |
  4792. SD_SHARE_PKG_RESOURCES)) {
  4793. if (sd->groups != sd->groups->next)
  4794. return 0;
  4795. }
  4796. /* Following flags don't use groups */
  4797. if (sd->flags & (SD_WAKE_IDLE |
  4798. SD_WAKE_AFFINE |
  4799. SD_WAKE_BALANCE))
  4800. return 0;
  4801. return 1;
  4802. }
  4803. static int
  4804. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4805. {
  4806. unsigned long cflags = sd->flags, pflags = parent->flags;
  4807. if (sd_degenerate(parent))
  4808. return 1;
  4809. if (!cpus_equal(sd->span, parent->span))
  4810. return 0;
  4811. /* Does parent contain flags not in child? */
  4812. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4813. if (cflags & SD_WAKE_AFFINE)
  4814. pflags &= ~SD_WAKE_BALANCE;
  4815. /* Flags needing groups don't count if only 1 group in parent */
  4816. if (parent->groups == parent->groups->next) {
  4817. pflags &= ~(SD_LOAD_BALANCE |
  4818. SD_BALANCE_NEWIDLE |
  4819. SD_BALANCE_FORK |
  4820. SD_BALANCE_EXEC |
  4821. SD_SHARE_CPUPOWER |
  4822. SD_SHARE_PKG_RESOURCES);
  4823. }
  4824. if (~cflags & pflags)
  4825. return 0;
  4826. return 1;
  4827. }
  4828. /*
  4829. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4830. * hold the hotplug lock.
  4831. */
  4832. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4833. {
  4834. struct rq *rq = cpu_rq(cpu);
  4835. struct sched_domain *tmp;
  4836. /* Remove the sched domains which do not contribute to scheduling. */
  4837. for (tmp = sd; tmp; tmp = tmp->parent) {
  4838. struct sched_domain *parent = tmp->parent;
  4839. if (!parent)
  4840. break;
  4841. if (sd_parent_degenerate(tmp, parent)) {
  4842. tmp->parent = parent->parent;
  4843. if (parent->parent)
  4844. parent->parent->child = tmp;
  4845. }
  4846. }
  4847. if (sd && sd_degenerate(sd)) {
  4848. sd = sd->parent;
  4849. if (sd)
  4850. sd->child = NULL;
  4851. }
  4852. sched_domain_debug(sd, cpu);
  4853. rcu_assign_pointer(rq->sd, sd);
  4854. }
  4855. /* cpus with isolated domains */
  4856. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4857. /* Setup the mask of cpus configured for isolated domains */
  4858. static int __init isolated_cpu_setup(char *str)
  4859. {
  4860. int ints[NR_CPUS], i;
  4861. str = get_options(str, ARRAY_SIZE(ints), ints);
  4862. cpus_clear(cpu_isolated_map);
  4863. for (i = 1; i <= ints[0]; i++)
  4864. if (ints[i] < NR_CPUS)
  4865. cpu_set(ints[i], cpu_isolated_map);
  4866. return 1;
  4867. }
  4868. __setup ("isolcpus=", isolated_cpu_setup);
  4869. /*
  4870. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4871. * to a function which identifies what group(along with sched group) a CPU
  4872. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4873. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4874. *
  4875. * init_sched_build_groups will build a circular linked list of the groups
  4876. * covered by the given span, and will set each group's ->cpumask correctly,
  4877. * and ->cpu_power to 0.
  4878. */
  4879. static void
  4880. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4881. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4882. struct sched_group **sg))
  4883. {
  4884. struct sched_group *first = NULL, *last = NULL;
  4885. cpumask_t covered = CPU_MASK_NONE;
  4886. int i;
  4887. for_each_cpu_mask(i, span) {
  4888. struct sched_group *sg;
  4889. int group = group_fn(i, cpu_map, &sg);
  4890. int j;
  4891. if (cpu_isset(i, covered))
  4892. continue;
  4893. sg->cpumask = CPU_MASK_NONE;
  4894. sg->__cpu_power = 0;
  4895. for_each_cpu_mask(j, span) {
  4896. if (group_fn(j, cpu_map, NULL) != group)
  4897. continue;
  4898. cpu_set(j, covered);
  4899. cpu_set(j, sg->cpumask);
  4900. }
  4901. if (!first)
  4902. first = sg;
  4903. if (last)
  4904. last->next = sg;
  4905. last = sg;
  4906. }
  4907. last->next = first;
  4908. }
  4909. #define SD_NODES_PER_DOMAIN 16
  4910. #ifdef CONFIG_NUMA
  4911. /**
  4912. * find_next_best_node - find the next node to include in a sched_domain
  4913. * @node: node whose sched_domain we're building
  4914. * @used_nodes: nodes already in the sched_domain
  4915. *
  4916. * Find the next node to include in a given scheduling domain. Simply
  4917. * finds the closest node not already in the @used_nodes map.
  4918. *
  4919. * Should use nodemask_t.
  4920. */
  4921. static int find_next_best_node(int node, unsigned long *used_nodes)
  4922. {
  4923. int i, n, val, min_val, best_node = 0;
  4924. min_val = INT_MAX;
  4925. for (i = 0; i < MAX_NUMNODES; i++) {
  4926. /* Start at @node */
  4927. n = (node + i) % MAX_NUMNODES;
  4928. if (!nr_cpus_node(n))
  4929. continue;
  4930. /* Skip already used nodes */
  4931. if (test_bit(n, used_nodes))
  4932. continue;
  4933. /* Simple min distance search */
  4934. val = node_distance(node, n);
  4935. if (val < min_val) {
  4936. min_val = val;
  4937. best_node = n;
  4938. }
  4939. }
  4940. set_bit(best_node, used_nodes);
  4941. return best_node;
  4942. }
  4943. /**
  4944. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4945. * @node: node whose cpumask we're constructing
  4946. * @size: number of nodes to include in this span
  4947. *
  4948. * Given a node, construct a good cpumask for its sched_domain to span. It
  4949. * should be one that prevents unnecessary balancing, but also spreads tasks
  4950. * out optimally.
  4951. */
  4952. static cpumask_t sched_domain_node_span(int node)
  4953. {
  4954. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4955. cpumask_t span, nodemask;
  4956. int i;
  4957. cpus_clear(span);
  4958. bitmap_zero(used_nodes, MAX_NUMNODES);
  4959. nodemask = node_to_cpumask(node);
  4960. cpus_or(span, span, nodemask);
  4961. set_bit(node, used_nodes);
  4962. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4963. int next_node = find_next_best_node(node, used_nodes);
  4964. nodemask = node_to_cpumask(next_node);
  4965. cpus_or(span, span, nodemask);
  4966. }
  4967. return span;
  4968. }
  4969. #endif
  4970. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4971. /*
  4972. * SMT sched-domains:
  4973. */
  4974. #ifdef CONFIG_SCHED_SMT
  4975. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4976. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4977. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4978. struct sched_group **sg)
  4979. {
  4980. if (sg)
  4981. *sg = &per_cpu(sched_group_cpus, cpu);
  4982. return cpu;
  4983. }
  4984. #endif
  4985. /*
  4986. * multi-core sched-domains:
  4987. */
  4988. #ifdef CONFIG_SCHED_MC
  4989. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  4990. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  4991. #endif
  4992. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  4993. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4994. struct sched_group **sg)
  4995. {
  4996. int group;
  4997. cpumask_t mask = cpu_sibling_map[cpu];
  4998. cpus_and(mask, mask, *cpu_map);
  4999. group = first_cpu(mask);
  5000. if (sg)
  5001. *sg = &per_cpu(sched_group_core, group);
  5002. return group;
  5003. }
  5004. #elif defined(CONFIG_SCHED_MC)
  5005. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5006. struct sched_group **sg)
  5007. {
  5008. if (sg)
  5009. *sg = &per_cpu(sched_group_core, cpu);
  5010. return cpu;
  5011. }
  5012. #endif
  5013. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5014. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5015. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5016. struct sched_group **sg)
  5017. {
  5018. int group;
  5019. #ifdef CONFIG_SCHED_MC
  5020. cpumask_t mask = cpu_coregroup_map(cpu);
  5021. cpus_and(mask, mask, *cpu_map);
  5022. group = first_cpu(mask);
  5023. #elif defined(CONFIG_SCHED_SMT)
  5024. cpumask_t mask = cpu_sibling_map[cpu];
  5025. cpus_and(mask, mask, *cpu_map);
  5026. group = first_cpu(mask);
  5027. #else
  5028. group = cpu;
  5029. #endif
  5030. if (sg)
  5031. *sg = &per_cpu(sched_group_phys, group);
  5032. return group;
  5033. }
  5034. #ifdef CONFIG_NUMA
  5035. /*
  5036. * The init_sched_build_groups can't handle what we want to do with node
  5037. * groups, so roll our own. Now each node has its own list of groups which
  5038. * gets dynamically allocated.
  5039. */
  5040. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5041. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5042. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5043. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5044. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5045. struct sched_group **sg)
  5046. {
  5047. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5048. int group;
  5049. cpus_and(nodemask, nodemask, *cpu_map);
  5050. group = first_cpu(nodemask);
  5051. if (sg)
  5052. *sg = &per_cpu(sched_group_allnodes, group);
  5053. return group;
  5054. }
  5055. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5056. {
  5057. struct sched_group *sg = group_head;
  5058. int j;
  5059. if (!sg)
  5060. return;
  5061. next_sg:
  5062. for_each_cpu_mask(j, sg->cpumask) {
  5063. struct sched_domain *sd;
  5064. sd = &per_cpu(phys_domains, j);
  5065. if (j != first_cpu(sd->groups->cpumask)) {
  5066. /*
  5067. * Only add "power" once for each
  5068. * physical package.
  5069. */
  5070. continue;
  5071. }
  5072. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5073. }
  5074. sg = sg->next;
  5075. if (sg != group_head)
  5076. goto next_sg;
  5077. }
  5078. #endif
  5079. #ifdef CONFIG_NUMA
  5080. /* Free memory allocated for various sched_group structures */
  5081. static void free_sched_groups(const cpumask_t *cpu_map)
  5082. {
  5083. int cpu, i;
  5084. for_each_cpu_mask(cpu, *cpu_map) {
  5085. struct sched_group **sched_group_nodes
  5086. = sched_group_nodes_bycpu[cpu];
  5087. if (!sched_group_nodes)
  5088. continue;
  5089. for (i = 0; i < MAX_NUMNODES; i++) {
  5090. cpumask_t nodemask = node_to_cpumask(i);
  5091. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5092. cpus_and(nodemask, nodemask, *cpu_map);
  5093. if (cpus_empty(nodemask))
  5094. continue;
  5095. if (sg == NULL)
  5096. continue;
  5097. sg = sg->next;
  5098. next_sg:
  5099. oldsg = sg;
  5100. sg = sg->next;
  5101. kfree(oldsg);
  5102. if (oldsg != sched_group_nodes[i])
  5103. goto next_sg;
  5104. }
  5105. kfree(sched_group_nodes);
  5106. sched_group_nodes_bycpu[cpu] = NULL;
  5107. }
  5108. }
  5109. #else
  5110. static void free_sched_groups(const cpumask_t *cpu_map)
  5111. {
  5112. }
  5113. #endif
  5114. /*
  5115. * Initialize sched groups cpu_power.
  5116. *
  5117. * cpu_power indicates the capacity of sched group, which is used while
  5118. * distributing the load between different sched groups in a sched domain.
  5119. * Typically cpu_power for all the groups in a sched domain will be same unless
  5120. * there are asymmetries in the topology. If there are asymmetries, group
  5121. * having more cpu_power will pickup more load compared to the group having
  5122. * less cpu_power.
  5123. *
  5124. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5125. * the maximum number of tasks a group can handle in the presence of other idle
  5126. * or lightly loaded groups in the same sched domain.
  5127. */
  5128. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5129. {
  5130. struct sched_domain *child;
  5131. struct sched_group *group;
  5132. WARN_ON(!sd || !sd->groups);
  5133. if (cpu != first_cpu(sd->groups->cpumask))
  5134. return;
  5135. child = sd->child;
  5136. sd->groups->__cpu_power = 0;
  5137. /*
  5138. * For perf policy, if the groups in child domain share resources
  5139. * (for example cores sharing some portions of the cache hierarchy
  5140. * or SMT), then set this domain groups cpu_power such that each group
  5141. * can handle only one task, when there are other idle groups in the
  5142. * same sched domain.
  5143. */
  5144. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5145. (child->flags &
  5146. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5147. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5148. return;
  5149. }
  5150. /*
  5151. * add cpu_power of each child group to this groups cpu_power
  5152. */
  5153. group = child->groups;
  5154. do {
  5155. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5156. group = group->next;
  5157. } while (group != child->groups);
  5158. }
  5159. /*
  5160. * Build sched domains for a given set of cpus and attach the sched domains
  5161. * to the individual cpus
  5162. */
  5163. static int build_sched_domains(const cpumask_t *cpu_map)
  5164. {
  5165. int i;
  5166. #ifdef CONFIG_NUMA
  5167. struct sched_group **sched_group_nodes = NULL;
  5168. int sd_allnodes = 0;
  5169. /*
  5170. * Allocate the per-node list of sched groups
  5171. */
  5172. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5173. GFP_KERNEL);
  5174. if (!sched_group_nodes) {
  5175. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5176. return -ENOMEM;
  5177. }
  5178. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5179. #endif
  5180. /*
  5181. * Set up domains for cpus specified by the cpu_map.
  5182. */
  5183. for_each_cpu_mask(i, *cpu_map) {
  5184. struct sched_domain *sd = NULL, *p;
  5185. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5186. cpus_and(nodemask, nodemask, *cpu_map);
  5187. #ifdef CONFIG_NUMA
  5188. if (cpus_weight(*cpu_map) >
  5189. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5190. sd = &per_cpu(allnodes_domains, i);
  5191. *sd = SD_ALLNODES_INIT;
  5192. sd->span = *cpu_map;
  5193. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5194. p = sd;
  5195. sd_allnodes = 1;
  5196. } else
  5197. p = NULL;
  5198. sd = &per_cpu(node_domains, i);
  5199. *sd = SD_NODE_INIT;
  5200. sd->span = sched_domain_node_span(cpu_to_node(i));
  5201. sd->parent = p;
  5202. if (p)
  5203. p->child = sd;
  5204. cpus_and(sd->span, sd->span, *cpu_map);
  5205. #endif
  5206. p = sd;
  5207. sd = &per_cpu(phys_domains, i);
  5208. *sd = SD_CPU_INIT;
  5209. sd->span = nodemask;
  5210. sd->parent = p;
  5211. if (p)
  5212. p->child = sd;
  5213. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5214. #ifdef CONFIG_SCHED_MC
  5215. p = sd;
  5216. sd = &per_cpu(core_domains, i);
  5217. *sd = SD_MC_INIT;
  5218. sd->span = cpu_coregroup_map(i);
  5219. cpus_and(sd->span, sd->span, *cpu_map);
  5220. sd->parent = p;
  5221. p->child = sd;
  5222. cpu_to_core_group(i, cpu_map, &sd->groups);
  5223. #endif
  5224. #ifdef CONFIG_SCHED_SMT
  5225. p = sd;
  5226. sd = &per_cpu(cpu_domains, i);
  5227. *sd = SD_SIBLING_INIT;
  5228. sd->span = cpu_sibling_map[i];
  5229. cpus_and(sd->span, sd->span, *cpu_map);
  5230. sd->parent = p;
  5231. p->child = sd;
  5232. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5233. #endif
  5234. }
  5235. #ifdef CONFIG_SCHED_SMT
  5236. /* Set up CPU (sibling) groups */
  5237. for_each_cpu_mask(i, *cpu_map) {
  5238. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5239. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5240. if (i != first_cpu(this_sibling_map))
  5241. continue;
  5242. init_sched_build_groups(this_sibling_map, cpu_map,
  5243. &cpu_to_cpu_group);
  5244. }
  5245. #endif
  5246. #ifdef CONFIG_SCHED_MC
  5247. /* Set up multi-core groups */
  5248. for_each_cpu_mask(i, *cpu_map) {
  5249. cpumask_t this_core_map = cpu_coregroup_map(i);
  5250. cpus_and(this_core_map, this_core_map, *cpu_map);
  5251. if (i != first_cpu(this_core_map))
  5252. continue;
  5253. init_sched_build_groups(this_core_map, cpu_map,
  5254. &cpu_to_core_group);
  5255. }
  5256. #endif
  5257. /* Set up physical groups */
  5258. for (i = 0; i < MAX_NUMNODES; i++) {
  5259. cpumask_t nodemask = node_to_cpumask(i);
  5260. cpus_and(nodemask, nodemask, *cpu_map);
  5261. if (cpus_empty(nodemask))
  5262. continue;
  5263. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5264. }
  5265. #ifdef CONFIG_NUMA
  5266. /* Set up node groups */
  5267. if (sd_allnodes)
  5268. init_sched_build_groups(*cpu_map, cpu_map,
  5269. &cpu_to_allnodes_group);
  5270. for (i = 0; i < MAX_NUMNODES; i++) {
  5271. /* Set up node groups */
  5272. struct sched_group *sg, *prev;
  5273. cpumask_t nodemask = node_to_cpumask(i);
  5274. cpumask_t domainspan;
  5275. cpumask_t covered = CPU_MASK_NONE;
  5276. int j;
  5277. cpus_and(nodemask, nodemask, *cpu_map);
  5278. if (cpus_empty(nodemask)) {
  5279. sched_group_nodes[i] = NULL;
  5280. continue;
  5281. }
  5282. domainspan = sched_domain_node_span(i);
  5283. cpus_and(domainspan, domainspan, *cpu_map);
  5284. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5285. if (!sg) {
  5286. printk(KERN_WARNING "Can not alloc domain group for "
  5287. "node %d\n", i);
  5288. goto error;
  5289. }
  5290. sched_group_nodes[i] = sg;
  5291. for_each_cpu_mask(j, nodemask) {
  5292. struct sched_domain *sd;
  5293. sd = &per_cpu(node_domains, j);
  5294. sd->groups = sg;
  5295. }
  5296. sg->__cpu_power = 0;
  5297. sg->cpumask = nodemask;
  5298. sg->next = sg;
  5299. cpus_or(covered, covered, nodemask);
  5300. prev = sg;
  5301. for (j = 0; j < MAX_NUMNODES; j++) {
  5302. cpumask_t tmp, notcovered;
  5303. int n = (i + j) % MAX_NUMNODES;
  5304. cpus_complement(notcovered, covered);
  5305. cpus_and(tmp, notcovered, *cpu_map);
  5306. cpus_and(tmp, tmp, domainspan);
  5307. if (cpus_empty(tmp))
  5308. break;
  5309. nodemask = node_to_cpumask(n);
  5310. cpus_and(tmp, tmp, nodemask);
  5311. if (cpus_empty(tmp))
  5312. continue;
  5313. sg = kmalloc_node(sizeof(struct sched_group),
  5314. GFP_KERNEL, i);
  5315. if (!sg) {
  5316. printk(KERN_WARNING
  5317. "Can not alloc domain group for node %d\n", j);
  5318. goto error;
  5319. }
  5320. sg->__cpu_power = 0;
  5321. sg->cpumask = tmp;
  5322. sg->next = prev->next;
  5323. cpus_or(covered, covered, tmp);
  5324. prev->next = sg;
  5325. prev = sg;
  5326. }
  5327. }
  5328. #endif
  5329. /* Calculate CPU power for physical packages and nodes */
  5330. #ifdef CONFIG_SCHED_SMT
  5331. for_each_cpu_mask(i, *cpu_map) {
  5332. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5333. init_sched_groups_power(i, sd);
  5334. }
  5335. #endif
  5336. #ifdef CONFIG_SCHED_MC
  5337. for_each_cpu_mask(i, *cpu_map) {
  5338. struct sched_domain *sd = &per_cpu(core_domains, i);
  5339. init_sched_groups_power(i, sd);
  5340. }
  5341. #endif
  5342. for_each_cpu_mask(i, *cpu_map) {
  5343. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5344. init_sched_groups_power(i, sd);
  5345. }
  5346. #ifdef CONFIG_NUMA
  5347. for (i = 0; i < MAX_NUMNODES; i++)
  5348. init_numa_sched_groups_power(sched_group_nodes[i]);
  5349. if (sd_allnodes) {
  5350. struct sched_group *sg;
  5351. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5352. init_numa_sched_groups_power(sg);
  5353. }
  5354. #endif
  5355. /* Attach the domains */
  5356. for_each_cpu_mask(i, *cpu_map) {
  5357. struct sched_domain *sd;
  5358. #ifdef CONFIG_SCHED_SMT
  5359. sd = &per_cpu(cpu_domains, i);
  5360. #elif defined(CONFIG_SCHED_MC)
  5361. sd = &per_cpu(core_domains, i);
  5362. #else
  5363. sd = &per_cpu(phys_domains, i);
  5364. #endif
  5365. cpu_attach_domain(sd, i);
  5366. }
  5367. return 0;
  5368. #ifdef CONFIG_NUMA
  5369. error:
  5370. free_sched_groups(cpu_map);
  5371. return -ENOMEM;
  5372. #endif
  5373. }
  5374. /*
  5375. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5376. */
  5377. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5378. {
  5379. cpumask_t cpu_default_map;
  5380. int err;
  5381. /*
  5382. * Setup mask for cpus without special case scheduling requirements.
  5383. * For now this just excludes isolated cpus, but could be used to
  5384. * exclude other special cases in the future.
  5385. */
  5386. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5387. err = build_sched_domains(&cpu_default_map);
  5388. return err;
  5389. }
  5390. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5391. {
  5392. free_sched_groups(cpu_map);
  5393. }
  5394. /*
  5395. * Detach sched domains from a group of cpus specified in cpu_map
  5396. * These cpus will now be attached to the NULL domain
  5397. */
  5398. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5399. {
  5400. int i;
  5401. for_each_cpu_mask(i, *cpu_map)
  5402. cpu_attach_domain(NULL, i);
  5403. synchronize_sched();
  5404. arch_destroy_sched_domains(cpu_map);
  5405. }
  5406. /*
  5407. * Partition sched domains as specified by the cpumasks below.
  5408. * This attaches all cpus from the cpumasks to the NULL domain,
  5409. * waits for a RCU quiescent period, recalculates sched
  5410. * domain information and then attaches them back to the
  5411. * correct sched domains
  5412. * Call with hotplug lock held
  5413. */
  5414. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5415. {
  5416. cpumask_t change_map;
  5417. int err = 0;
  5418. cpus_and(*partition1, *partition1, cpu_online_map);
  5419. cpus_and(*partition2, *partition2, cpu_online_map);
  5420. cpus_or(change_map, *partition1, *partition2);
  5421. /* Detach sched domains from all of the affected cpus */
  5422. detach_destroy_domains(&change_map);
  5423. if (!cpus_empty(*partition1))
  5424. err = build_sched_domains(partition1);
  5425. if (!err && !cpus_empty(*partition2))
  5426. err = build_sched_domains(partition2);
  5427. return err;
  5428. }
  5429. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5430. static int arch_reinit_sched_domains(void)
  5431. {
  5432. int err;
  5433. mutex_lock(&sched_hotcpu_mutex);
  5434. detach_destroy_domains(&cpu_online_map);
  5435. err = arch_init_sched_domains(&cpu_online_map);
  5436. mutex_unlock(&sched_hotcpu_mutex);
  5437. return err;
  5438. }
  5439. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5440. {
  5441. int ret;
  5442. if (buf[0] != '0' && buf[0] != '1')
  5443. return -EINVAL;
  5444. if (smt)
  5445. sched_smt_power_savings = (buf[0] == '1');
  5446. else
  5447. sched_mc_power_savings = (buf[0] == '1');
  5448. ret = arch_reinit_sched_domains();
  5449. return ret ? ret : count;
  5450. }
  5451. #ifdef CONFIG_SCHED_MC
  5452. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5453. {
  5454. return sprintf(page, "%u\n", sched_mc_power_savings);
  5455. }
  5456. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5457. const char *buf, size_t count)
  5458. {
  5459. return sched_power_savings_store(buf, count, 0);
  5460. }
  5461. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5462. sched_mc_power_savings_store);
  5463. #endif
  5464. #ifdef CONFIG_SCHED_SMT
  5465. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5466. {
  5467. return sprintf(page, "%u\n", sched_smt_power_savings);
  5468. }
  5469. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5470. const char *buf, size_t count)
  5471. {
  5472. return sched_power_savings_store(buf, count, 1);
  5473. }
  5474. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5475. sched_smt_power_savings_store);
  5476. #endif
  5477. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5478. {
  5479. int err = 0;
  5480. #ifdef CONFIG_SCHED_SMT
  5481. if (smt_capable())
  5482. err = sysfs_create_file(&cls->kset.kobj,
  5483. &attr_sched_smt_power_savings.attr);
  5484. #endif
  5485. #ifdef CONFIG_SCHED_MC
  5486. if (!err && mc_capable())
  5487. err = sysfs_create_file(&cls->kset.kobj,
  5488. &attr_sched_mc_power_savings.attr);
  5489. #endif
  5490. return err;
  5491. }
  5492. #endif
  5493. /*
  5494. * Force a reinitialization of the sched domains hierarchy. The domains
  5495. * and groups cannot be updated in place without racing with the balancing
  5496. * code, so we temporarily attach all running cpus to the NULL domain
  5497. * which will prevent rebalancing while the sched domains are recalculated.
  5498. */
  5499. static int update_sched_domains(struct notifier_block *nfb,
  5500. unsigned long action, void *hcpu)
  5501. {
  5502. switch (action) {
  5503. case CPU_UP_PREPARE:
  5504. case CPU_UP_PREPARE_FROZEN:
  5505. case CPU_DOWN_PREPARE:
  5506. case CPU_DOWN_PREPARE_FROZEN:
  5507. detach_destroy_domains(&cpu_online_map);
  5508. return NOTIFY_OK;
  5509. case CPU_UP_CANCELED:
  5510. case CPU_UP_CANCELED_FROZEN:
  5511. case CPU_DOWN_FAILED:
  5512. case CPU_DOWN_FAILED_FROZEN:
  5513. case CPU_ONLINE:
  5514. case CPU_ONLINE_FROZEN:
  5515. case CPU_DEAD:
  5516. case CPU_DEAD_FROZEN:
  5517. /*
  5518. * Fall through and re-initialise the domains.
  5519. */
  5520. break;
  5521. default:
  5522. return NOTIFY_DONE;
  5523. }
  5524. /* The hotplug lock is already held by cpu_up/cpu_down */
  5525. arch_init_sched_domains(&cpu_online_map);
  5526. return NOTIFY_OK;
  5527. }
  5528. void __init sched_init_smp(void)
  5529. {
  5530. cpumask_t non_isolated_cpus;
  5531. mutex_lock(&sched_hotcpu_mutex);
  5532. arch_init_sched_domains(&cpu_online_map);
  5533. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5534. if (cpus_empty(non_isolated_cpus))
  5535. cpu_set(smp_processor_id(), non_isolated_cpus);
  5536. mutex_unlock(&sched_hotcpu_mutex);
  5537. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5538. hotcpu_notifier(update_sched_domains, 0);
  5539. init_sched_domain_sysctl();
  5540. /* Move init over to a non-isolated CPU */
  5541. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5542. BUG();
  5543. }
  5544. #else
  5545. void __init sched_init_smp(void)
  5546. {
  5547. }
  5548. #endif /* CONFIG_SMP */
  5549. int in_sched_functions(unsigned long addr)
  5550. {
  5551. /* Linker adds these: start and end of __sched functions */
  5552. extern char __sched_text_start[], __sched_text_end[];
  5553. return in_lock_functions(addr) ||
  5554. (addr >= (unsigned long)__sched_text_start
  5555. && addr < (unsigned long)__sched_text_end);
  5556. }
  5557. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5558. {
  5559. cfs_rq->tasks_timeline = RB_ROOT;
  5560. cfs_rq->fair_clock = 1;
  5561. #ifdef CONFIG_FAIR_GROUP_SCHED
  5562. cfs_rq->rq = rq;
  5563. #endif
  5564. }
  5565. void __init sched_init(void)
  5566. {
  5567. int highest_cpu = 0;
  5568. int i, j;
  5569. /*
  5570. * Link up the scheduling class hierarchy:
  5571. */
  5572. rt_sched_class.next = &fair_sched_class;
  5573. fair_sched_class.next = &idle_sched_class;
  5574. idle_sched_class.next = NULL;
  5575. for_each_possible_cpu(i) {
  5576. struct rt_prio_array *array;
  5577. struct rq *rq;
  5578. rq = cpu_rq(i);
  5579. spin_lock_init(&rq->lock);
  5580. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5581. rq->nr_running = 0;
  5582. rq->clock = 1;
  5583. init_cfs_rq(&rq->cfs, rq);
  5584. #ifdef CONFIG_FAIR_GROUP_SCHED
  5585. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5586. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5587. #endif
  5588. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5589. rq->cpu_load[j] = 0;
  5590. #ifdef CONFIG_SMP
  5591. rq->sd = NULL;
  5592. rq->active_balance = 0;
  5593. rq->next_balance = jiffies;
  5594. rq->push_cpu = 0;
  5595. rq->cpu = i;
  5596. rq->migration_thread = NULL;
  5597. INIT_LIST_HEAD(&rq->migration_queue);
  5598. #endif
  5599. atomic_set(&rq->nr_iowait, 0);
  5600. array = &rq->rt.active;
  5601. for (j = 0; j < MAX_RT_PRIO; j++) {
  5602. INIT_LIST_HEAD(array->queue + j);
  5603. __clear_bit(j, array->bitmap);
  5604. }
  5605. highest_cpu = i;
  5606. /* delimiter for bitsearch: */
  5607. __set_bit(MAX_RT_PRIO, array->bitmap);
  5608. }
  5609. set_load_weight(&init_task);
  5610. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5611. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5612. #endif
  5613. #ifdef CONFIG_SMP
  5614. nr_cpu_ids = highest_cpu + 1;
  5615. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5616. #endif
  5617. #ifdef CONFIG_RT_MUTEXES
  5618. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5619. #endif
  5620. /*
  5621. * The boot idle thread does lazy MMU switching as well:
  5622. */
  5623. atomic_inc(&init_mm.mm_count);
  5624. enter_lazy_tlb(&init_mm, current);
  5625. /*
  5626. * Make us the idle thread. Technically, schedule() should not be
  5627. * called from this thread, however somewhere below it might be,
  5628. * but because we are the idle thread, we just pick up running again
  5629. * when this runqueue becomes "idle".
  5630. */
  5631. init_idle(current, smp_processor_id());
  5632. /*
  5633. * During early bootup we pretend to be a normal task:
  5634. */
  5635. current->sched_class = &fair_sched_class;
  5636. }
  5637. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5638. void __might_sleep(char *file, int line)
  5639. {
  5640. #ifdef in_atomic
  5641. static unsigned long prev_jiffy; /* ratelimiting */
  5642. if ((in_atomic() || irqs_disabled()) &&
  5643. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5644. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5645. return;
  5646. prev_jiffy = jiffies;
  5647. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5648. " context at %s:%d\n", file, line);
  5649. printk("in_atomic():%d, irqs_disabled():%d\n",
  5650. in_atomic(), irqs_disabled());
  5651. debug_show_held_locks(current);
  5652. if (irqs_disabled())
  5653. print_irqtrace_events(current);
  5654. dump_stack();
  5655. }
  5656. #endif
  5657. }
  5658. EXPORT_SYMBOL(__might_sleep);
  5659. #endif
  5660. #ifdef CONFIG_MAGIC_SYSRQ
  5661. void normalize_rt_tasks(void)
  5662. {
  5663. struct task_struct *g, *p;
  5664. unsigned long flags;
  5665. struct rq *rq;
  5666. int on_rq;
  5667. read_lock_irq(&tasklist_lock);
  5668. do_each_thread(g, p) {
  5669. p->se.fair_key = 0;
  5670. p->se.wait_runtime = 0;
  5671. p->se.exec_start = 0;
  5672. p->se.wait_start_fair = 0;
  5673. p->se.sleep_start_fair = 0;
  5674. #ifdef CONFIG_SCHEDSTATS
  5675. p->se.wait_start = 0;
  5676. p->se.sleep_start = 0;
  5677. p->se.block_start = 0;
  5678. #endif
  5679. task_rq(p)->cfs.fair_clock = 0;
  5680. task_rq(p)->clock = 0;
  5681. if (!rt_task(p)) {
  5682. /*
  5683. * Renice negative nice level userspace
  5684. * tasks back to 0:
  5685. */
  5686. if (TASK_NICE(p) < 0 && p->mm)
  5687. set_user_nice(p, 0);
  5688. continue;
  5689. }
  5690. spin_lock_irqsave(&p->pi_lock, flags);
  5691. rq = __task_rq_lock(p);
  5692. #ifdef CONFIG_SMP
  5693. /*
  5694. * Do not touch the migration thread:
  5695. */
  5696. if (p == rq->migration_thread)
  5697. goto out_unlock;
  5698. #endif
  5699. update_rq_clock(rq);
  5700. on_rq = p->se.on_rq;
  5701. if (on_rq)
  5702. deactivate_task(rq, p, 0);
  5703. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5704. if (on_rq) {
  5705. activate_task(rq, p, 0);
  5706. resched_task(rq->curr);
  5707. }
  5708. #ifdef CONFIG_SMP
  5709. out_unlock:
  5710. #endif
  5711. __task_rq_unlock(rq);
  5712. spin_unlock_irqrestore(&p->pi_lock, flags);
  5713. } while_each_thread(g, p);
  5714. read_unlock_irq(&tasklist_lock);
  5715. }
  5716. #endif /* CONFIG_MAGIC_SYSRQ */
  5717. #ifdef CONFIG_IA64
  5718. /*
  5719. * These functions are only useful for the IA64 MCA handling.
  5720. *
  5721. * They can only be called when the whole system has been
  5722. * stopped - every CPU needs to be quiescent, and no scheduling
  5723. * activity can take place. Using them for anything else would
  5724. * be a serious bug, and as a result, they aren't even visible
  5725. * under any other configuration.
  5726. */
  5727. /**
  5728. * curr_task - return the current task for a given cpu.
  5729. * @cpu: the processor in question.
  5730. *
  5731. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5732. */
  5733. struct task_struct *curr_task(int cpu)
  5734. {
  5735. return cpu_curr(cpu);
  5736. }
  5737. /**
  5738. * set_curr_task - set the current task for a given cpu.
  5739. * @cpu: the processor in question.
  5740. * @p: the task pointer to set.
  5741. *
  5742. * Description: This function must only be used when non-maskable interrupts
  5743. * are serviced on a separate stack. It allows the architecture to switch the
  5744. * notion of the current task on a cpu in a non-blocking manner. This function
  5745. * must be called with all CPU's synchronized, and interrupts disabled, the
  5746. * and caller must save the original value of the current task (see
  5747. * curr_task() above) and restore that value before reenabling interrupts and
  5748. * re-starting the system.
  5749. *
  5750. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5751. */
  5752. void set_curr_task(int cpu, struct task_struct *p)
  5753. {
  5754. cpu_curr(cpu) = p;
  5755. }
  5756. #endif