ll_rw_blk.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/bio.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/highmem.h>
  18. #include <linux/mm.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/string.h>
  21. #include <linux/init.h>
  22. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  23. #include <linux/completion.h>
  24. #include <linux/slab.h>
  25. #include <linux/swap.h>
  26. #include <linux/writeback.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/cpu.h>
  29. #include <linux/blktrace_api.h>
  30. /*
  31. * for max sense size
  32. */
  33. #include <scsi/scsi_cmnd.h>
  34. static void blk_unplug_work(void *data);
  35. static void blk_unplug_timeout(unsigned long data);
  36. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  37. static void init_request_from_bio(struct request *req, struct bio *bio);
  38. static int __make_request(request_queue_t *q, struct bio *bio);
  39. /*
  40. * For the allocated request tables
  41. */
  42. static kmem_cache_t *request_cachep;
  43. /*
  44. * For queue allocation
  45. */
  46. static kmem_cache_t *requestq_cachep;
  47. /*
  48. * For io context allocations
  49. */
  50. static kmem_cache_t *iocontext_cachep;
  51. static wait_queue_head_t congestion_wqh[2] = {
  52. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  53. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  54. };
  55. /*
  56. * Controlling structure to kblockd
  57. */
  58. static struct workqueue_struct *kblockd_workqueue;
  59. unsigned long blk_max_low_pfn, blk_max_pfn;
  60. EXPORT_SYMBOL(blk_max_low_pfn);
  61. EXPORT_SYMBOL(blk_max_pfn);
  62. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  63. /* Amount of time in which a process may batch requests */
  64. #define BLK_BATCH_TIME (HZ/50UL)
  65. /* Number of requests a "batching" process may submit */
  66. #define BLK_BATCH_REQ 32
  67. /*
  68. * Return the threshold (number of used requests) at which the queue is
  69. * considered to be congested. It include a little hysteresis to keep the
  70. * context switch rate down.
  71. */
  72. static inline int queue_congestion_on_threshold(struct request_queue *q)
  73. {
  74. return q->nr_congestion_on;
  75. }
  76. /*
  77. * The threshold at which a queue is considered to be uncongested
  78. */
  79. static inline int queue_congestion_off_threshold(struct request_queue *q)
  80. {
  81. return q->nr_congestion_off;
  82. }
  83. static void blk_queue_congestion_threshold(struct request_queue *q)
  84. {
  85. int nr;
  86. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  87. if (nr > q->nr_requests)
  88. nr = q->nr_requests;
  89. q->nr_congestion_on = nr;
  90. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  91. if (nr < 1)
  92. nr = 1;
  93. q->nr_congestion_off = nr;
  94. }
  95. /*
  96. * A queue has just exitted congestion. Note this in the global counter of
  97. * congested queues, and wake up anyone who was waiting for requests to be
  98. * put back.
  99. */
  100. static void clear_queue_congested(request_queue_t *q, int rw)
  101. {
  102. enum bdi_state bit;
  103. wait_queue_head_t *wqh = &congestion_wqh[rw];
  104. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  105. clear_bit(bit, &q->backing_dev_info.state);
  106. smp_mb__after_clear_bit();
  107. if (waitqueue_active(wqh))
  108. wake_up(wqh);
  109. }
  110. /*
  111. * A queue has just entered congestion. Flag that in the queue's VM-visible
  112. * state flags and increment the global gounter of congested queues.
  113. */
  114. static void set_queue_congested(request_queue_t *q, int rw)
  115. {
  116. enum bdi_state bit;
  117. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  118. set_bit(bit, &q->backing_dev_info.state);
  119. }
  120. /**
  121. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  122. * @bdev: device
  123. *
  124. * Locates the passed device's request queue and returns the address of its
  125. * backing_dev_info
  126. *
  127. * Will return NULL if the request queue cannot be located.
  128. */
  129. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  130. {
  131. struct backing_dev_info *ret = NULL;
  132. request_queue_t *q = bdev_get_queue(bdev);
  133. if (q)
  134. ret = &q->backing_dev_info;
  135. return ret;
  136. }
  137. EXPORT_SYMBOL(blk_get_backing_dev_info);
  138. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  139. {
  140. q->activity_fn = fn;
  141. q->activity_data = data;
  142. }
  143. EXPORT_SYMBOL(blk_queue_activity_fn);
  144. /**
  145. * blk_queue_prep_rq - set a prepare_request function for queue
  146. * @q: queue
  147. * @pfn: prepare_request function
  148. *
  149. * It's possible for a queue to register a prepare_request callback which
  150. * is invoked before the request is handed to the request_fn. The goal of
  151. * the function is to prepare a request for I/O, it can be used to build a
  152. * cdb from the request data for instance.
  153. *
  154. */
  155. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  156. {
  157. q->prep_rq_fn = pfn;
  158. }
  159. EXPORT_SYMBOL(blk_queue_prep_rq);
  160. /**
  161. * blk_queue_merge_bvec - set a merge_bvec function for queue
  162. * @q: queue
  163. * @mbfn: merge_bvec_fn
  164. *
  165. * Usually queues have static limitations on the max sectors or segments that
  166. * we can put in a request. Stacking drivers may have some settings that
  167. * are dynamic, and thus we have to query the queue whether it is ok to
  168. * add a new bio_vec to a bio at a given offset or not. If the block device
  169. * has such limitations, it needs to register a merge_bvec_fn to control
  170. * the size of bio's sent to it. Note that a block device *must* allow a
  171. * single page to be added to an empty bio. The block device driver may want
  172. * to use the bio_split() function to deal with these bio's. By default
  173. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  174. * honored.
  175. */
  176. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  177. {
  178. q->merge_bvec_fn = mbfn;
  179. }
  180. EXPORT_SYMBOL(blk_queue_merge_bvec);
  181. void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
  182. {
  183. q->softirq_done_fn = fn;
  184. }
  185. EXPORT_SYMBOL(blk_queue_softirq_done);
  186. /**
  187. * blk_queue_make_request - define an alternate make_request function for a device
  188. * @q: the request queue for the device to be affected
  189. * @mfn: the alternate make_request function
  190. *
  191. * Description:
  192. * The normal way for &struct bios to be passed to a device
  193. * driver is for them to be collected into requests on a request
  194. * queue, and then to allow the device driver to select requests
  195. * off that queue when it is ready. This works well for many block
  196. * devices. However some block devices (typically virtual devices
  197. * such as md or lvm) do not benefit from the processing on the
  198. * request queue, and are served best by having the requests passed
  199. * directly to them. This can be achieved by providing a function
  200. * to blk_queue_make_request().
  201. *
  202. * Caveat:
  203. * The driver that does this *must* be able to deal appropriately
  204. * with buffers in "highmemory". This can be accomplished by either calling
  205. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  206. * blk_queue_bounce() to create a buffer in normal memory.
  207. **/
  208. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  209. {
  210. /*
  211. * set defaults
  212. */
  213. q->nr_requests = BLKDEV_MAX_RQ;
  214. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  215. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  216. q->make_request_fn = mfn;
  217. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  218. q->backing_dev_info.state = 0;
  219. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  220. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  221. blk_queue_hardsect_size(q, 512);
  222. blk_queue_dma_alignment(q, 511);
  223. blk_queue_congestion_threshold(q);
  224. q->nr_batching = BLK_BATCH_REQ;
  225. q->unplug_thresh = 4; /* hmm */
  226. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  227. if (q->unplug_delay == 0)
  228. q->unplug_delay = 1;
  229. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  230. q->unplug_timer.function = blk_unplug_timeout;
  231. q->unplug_timer.data = (unsigned long)q;
  232. /*
  233. * by default assume old behaviour and bounce for any highmem page
  234. */
  235. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  236. blk_queue_activity_fn(q, NULL, NULL);
  237. }
  238. EXPORT_SYMBOL(blk_queue_make_request);
  239. static inline void rq_init(request_queue_t *q, struct request *rq)
  240. {
  241. INIT_LIST_HEAD(&rq->queuelist);
  242. INIT_LIST_HEAD(&rq->donelist);
  243. rq->errors = 0;
  244. rq->rq_status = RQ_ACTIVE;
  245. rq->bio = rq->biotail = NULL;
  246. INIT_HLIST_NODE(&rq->hash);
  247. RB_CLEAR_NODE(&rq->rb_node);
  248. rq->ioprio = 0;
  249. rq->buffer = NULL;
  250. rq->ref_count = 1;
  251. rq->q = q;
  252. rq->special = NULL;
  253. rq->data_len = 0;
  254. rq->data = NULL;
  255. rq->nr_phys_segments = 0;
  256. rq->sense = NULL;
  257. rq->end_io = NULL;
  258. rq->end_io_data = NULL;
  259. rq->completion_data = NULL;
  260. }
  261. /**
  262. * blk_queue_ordered - does this queue support ordered writes
  263. * @q: the request queue
  264. * @ordered: one of QUEUE_ORDERED_*
  265. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  266. *
  267. * Description:
  268. * For journalled file systems, doing ordered writes on a commit
  269. * block instead of explicitly doing wait_on_buffer (which is bad
  270. * for performance) can be a big win. Block drivers supporting this
  271. * feature should call this function and indicate so.
  272. *
  273. **/
  274. int blk_queue_ordered(request_queue_t *q, unsigned ordered,
  275. prepare_flush_fn *prepare_flush_fn)
  276. {
  277. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  278. prepare_flush_fn == NULL) {
  279. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  280. return -EINVAL;
  281. }
  282. if (ordered != QUEUE_ORDERED_NONE &&
  283. ordered != QUEUE_ORDERED_DRAIN &&
  284. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  285. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  286. ordered != QUEUE_ORDERED_TAG &&
  287. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  288. ordered != QUEUE_ORDERED_TAG_FUA) {
  289. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  290. return -EINVAL;
  291. }
  292. q->ordered = ordered;
  293. q->next_ordered = ordered;
  294. q->prepare_flush_fn = prepare_flush_fn;
  295. return 0;
  296. }
  297. EXPORT_SYMBOL(blk_queue_ordered);
  298. /**
  299. * blk_queue_issue_flush_fn - set function for issuing a flush
  300. * @q: the request queue
  301. * @iff: the function to be called issuing the flush
  302. *
  303. * Description:
  304. * If a driver supports issuing a flush command, the support is notified
  305. * to the block layer by defining it through this call.
  306. *
  307. **/
  308. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  309. {
  310. q->issue_flush_fn = iff;
  311. }
  312. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  313. /*
  314. * Cache flushing for ordered writes handling
  315. */
  316. inline unsigned blk_ordered_cur_seq(request_queue_t *q)
  317. {
  318. if (!q->ordseq)
  319. return 0;
  320. return 1 << ffz(q->ordseq);
  321. }
  322. unsigned blk_ordered_req_seq(struct request *rq)
  323. {
  324. request_queue_t *q = rq->q;
  325. BUG_ON(q->ordseq == 0);
  326. if (rq == &q->pre_flush_rq)
  327. return QUEUE_ORDSEQ_PREFLUSH;
  328. if (rq == &q->bar_rq)
  329. return QUEUE_ORDSEQ_BAR;
  330. if (rq == &q->post_flush_rq)
  331. return QUEUE_ORDSEQ_POSTFLUSH;
  332. if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
  333. (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
  334. return QUEUE_ORDSEQ_DRAIN;
  335. else
  336. return QUEUE_ORDSEQ_DONE;
  337. }
  338. void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
  339. {
  340. struct request *rq;
  341. int uptodate;
  342. if (error && !q->orderr)
  343. q->orderr = error;
  344. BUG_ON(q->ordseq & seq);
  345. q->ordseq |= seq;
  346. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  347. return;
  348. /*
  349. * Okay, sequence complete.
  350. */
  351. rq = q->orig_bar_rq;
  352. uptodate = q->orderr ? q->orderr : 1;
  353. q->ordseq = 0;
  354. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  355. end_that_request_last(rq, uptodate);
  356. }
  357. static void pre_flush_end_io(struct request *rq, int error)
  358. {
  359. elv_completed_request(rq->q, rq);
  360. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  361. }
  362. static void bar_end_io(struct request *rq, int error)
  363. {
  364. elv_completed_request(rq->q, rq);
  365. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  366. }
  367. static void post_flush_end_io(struct request *rq, int error)
  368. {
  369. elv_completed_request(rq->q, rq);
  370. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  371. }
  372. static void queue_flush(request_queue_t *q, unsigned which)
  373. {
  374. struct request *rq;
  375. rq_end_io_fn *end_io;
  376. if (which == QUEUE_ORDERED_PREFLUSH) {
  377. rq = &q->pre_flush_rq;
  378. end_io = pre_flush_end_io;
  379. } else {
  380. rq = &q->post_flush_rq;
  381. end_io = post_flush_end_io;
  382. }
  383. rq->cmd_flags = REQ_HARDBARRIER;
  384. rq_init(q, rq);
  385. rq->elevator_private = NULL;
  386. rq->elevator_private2 = NULL;
  387. rq->rq_disk = q->bar_rq.rq_disk;
  388. rq->end_io = end_io;
  389. q->prepare_flush_fn(q, rq);
  390. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  391. }
  392. static inline struct request *start_ordered(request_queue_t *q,
  393. struct request *rq)
  394. {
  395. q->bi_size = 0;
  396. q->orderr = 0;
  397. q->ordered = q->next_ordered;
  398. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  399. /*
  400. * Prep proxy barrier request.
  401. */
  402. blkdev_dequeue_request(rq);
  403. q->orig_bar_rq = rq;
  404. rq = &q->bar_rq;
  405. rq->cmd_flags = 0;
  406. rq_init(q, rq);
  407. if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
  408. rq->cmd_flags |= REQ_RW;
  409. rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
  410. rq->elevator_private = NULL;
  411. rq->elevator_private2 = NULL;
  412. init_request_from_bio(rq, q->orig_bar_rq->bio);
  413. rq->end_io = bar_end_io;
  414. /*
  415. * Queue ordered sequence. As we stack them at the head, we
  416. * need to queue in reverse order. Note that we rely on that
  417. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  418. * request gets inbetween ordered sequence.
  419. */
  420. if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
  421. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  422. else
  423. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  424. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  425. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  426. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  427. rq = &q->pre_flush_rq;
  428. } else
  429. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  430. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  431. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  432. else
  433. rq = NULL;
  434. return rq;
  435. }
  436. int blk_do_ordered(request_queue_t *q, struct request **rqp)
  437. {
  438. struct request *rq = *rqp;
  439. int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  440. if (!q->ordseq) {
  441. if (!is_barrier)
  442. return 1;
  443. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  444. *rqp = start_ordered(q, rq);
  445. return 1;
  446. } else {
  447. /*
  448. * This can happen when the queue switches to
  449. * ORDERED_NONE while this request is on it.
  450. */
  451. blkdev_dequeue_request(rq);
  452. end_that_request_first(rq, -EOPNOTSUPP,
  453. rq->hard_nr_sectors);
  454. end_that_request_last(rq, -EOPNOTSUPP);
  455. *rqp = NULL;
  456. return 0;
  457. }
  458. }
  459. /*
  460. * Ordered sequence in progress
  461. */
  462. /* Special requests are not subject to ordering rules. */
  463. if (!blk_fs_request(rq) &&
  464. rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  465. return 1;
  466. if (q->ordered & QUEUE_ORDERED_TAG) {
  467. /* Ordered by tag. Blocking the next barrier is enough. */
  468. if (is_barrier && rq != &q->bar_rq)
  469. *rqp = NULL;
  470. } else {
  471. /* Ordered by draining. Wait for turn. */
  472. WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  473. if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  474. *rqp = NULL;
  475. }
  476. return 1;
  477. }
  478. static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
  479. {
  480. request_queue_t *q = bio->bi_private;
  481. struct bio_vec *bvec;
  482. int i;
  483. /*
  484. * This is dry run, restore bio_sector and size. We'll finish
  485. * this request again with the original bi_end_io after an
  486. * error occurs or post flush is complete.
  487. */
  488. q->bi_size += bytes;
  489. if (bio->bi_size)
  490. return 1;
  491. /* Rewind bvec's */
  492. bio->bi_idx = 0;
  493. bio_for_each_segment(bvec, bio, i) {
  494. bvec->bv_len += bvec->bv_offset;
  495. bvec->bv_offset = 0;
  496. }
  497. /* Reset bio */
  498. set_bit(BIO_UPTODATE, &bio->bi_flags);
  499. bio->bi_size = q->bi_size;
  500. bio->bi_sector -= (q->bi_size >> 9);
  501. q->bi_size = 0;
  502. return 0;
  503. }
  504. static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
  505. unsigned int nbytes, int error)
  506. {
  507. request_queue_t *q = rq->q;
  508. bio_end_io_t *endio;
  509. void *private;
  510. if (&q->bar_rq != rq)
  511. return 0;
  512. /*
  513. * Okay, this is the barrier request in progress, dry finish it.
  514. */
  515. if (error && !q->orderr)
  516. q->orderr = error;
  517. endio = bio->bi_end_io;
  518. private = bio->bi_private;
  519. bio->bi_end_io = flush_dry_bio_endio;
  520. bio->bi_private = q;
  521. bio_endio(bio, nbytes, error);
  522. bio->bi_end_io = endio;
  523. bio->bi_private = private;
  524. return 1;
  525. }
  526. /**
  527. * blk_queue_bounce_limit - set bounce buffer limit for queue
  528. * @q: the request queue for the device
  529. * @dma_addr: bus address limit
  530. *
  531. * Description:
  532. * Different hardware can have different requirements as to what pages
  533. * it can do I/O directly to. A low level driver can call
  534. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  535. * buffers for doing I/O to pages residing above @page.
  536. **/
  537. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  538. {
  539. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  540. int dma = 0;
  541. q->bounce_gfp = GFP_NOIO;
  542. #if BITS_PER_LONG == 64
  543. /* Assume anything <= 4GB can be handled by IOMMU.
  544. Actually some IOMMUs can handle everything, but I don't
  545. know of a way to test this here. */
  546. if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  547. dma = 1;
  548. q->bounce_pfn = max_low_pfn;
  549. #else
  550. if (bounce_pfn < blk_max_low_pfn)
  551. dma = 1;
  552. q->bounce_pfn = bounce_pfn;
  553. #endif
  554. if (dma) {
  555. init_emergency_isa_pool();
  556. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  557. q->bounce_pfn = bounce_pfn;
  558. }
  559. }
  560. EXPORT_SYMBOL(blk_queue_bounce_limit);
  561. /**
  562. * blk_queue_max_sectors - set max sectors for a request for this queue
  563. * @q: the request queue for the device
  564. * @max_sectors: max sectors in the usual 512b unit
  565. *
  566. * Description:
  567. * Enables a low level driver to set an upper limit on the size of
  568. * received requests.
  569. **/
  570. void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
  571. {
  572. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  573. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  574. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  575. }
  576. if (BLK_DEF_MAX_SECTORS > max_sectors)
  577. q->max_hw_sectors = q->max_sectors = max_sectors;
  578. else {
  579. q->max_sectors = BLK_DEF_MAX_SECTORS;
  580. q->max_hw_sectors = max_sectors;
  581. }
  582. }
  583. EXPORT_SYMBOL(blk_queue_max_sectors);
  584. /**
  585. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  586. * @q: the request queue for the device
  587. * @max_segments: max number of segments
  588. *
  589. * Description:
  590. * Enables a low level driver to set an upper limit on the number of
  591. * physical data segments in a request. This would be the largest sized
  592. * scatter list the driver could handle.
  593. **/
  594. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  595. {
  596. if (!max_segments) {
  597. max_segments = 1;
  598. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  599. }
  600. q->max_phys_segments = max_segments;
  601. }
  602. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  603. /**
  604. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  605. * @q: the request queue for the device
  606. * @max_segments: max number of segments
  607. *
  608. * Description:
  609. * Enables a low level driver to set an upper limit on the number of
  610. * hw data segments in a request. This would be the largest number of
  611. * address/length pairs the host adapter can actually give as once
  612. * to the device.
  613. **/
  614. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  615. {
  616. if (!max_segments) {
  617. max_segments = 1;
  618. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  619. }
  620. q->max_hw_segments = max_segments;
  621. }
  622. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  623. /**
  624. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  625. * @q: the request queue for the device
  626. * @max_size: max size of segment in bytes
  627. *
  628. * Description:
  629. * Enables a low level driver to set an upper limit on the size of a
  630. * coalesced segment
  631. **/
  632. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  633. {
  634. if (max_size < PAGE_CACHE_SIZE) {
  635. max_size = PAGE_CACHE_SIZE;
  636. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  637. }
  638. q->max_segment_size = max_size;
  639. }
  640. EXPORT_SYMBOL(blk_queue_max_segment_size);
  641. /**
  642. * blk_queue_hardsect_size - set hardware sector size for the queue
  643. * @q: the request queue for the device
  644. * @size: the hardware sector size, in bytes
  645. *
  646. * Description:
  647. * This should typically be set to the lowest possible sector size
  648. * that the hardware can operate on (possible without reverting to
  649. * even internal read-modify-write operations). Usually the default
  650. * of 512 covers most hardware.
  651. **/
  652. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  653. {
  654. q->hardsect_size = size;
  655. }
  656. EXPORT_SYMBOL(blk_queue_hardsect_size);
  657. /*
  658. * Returns the minimum that is _not_ zero, unless both are zero.
  659. */
  660. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  661. /**
  662. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  663. * @t: the stacking driver (top)
  664. * @b: the underlying device (bottom)
  665. **/
  666. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  667. {
  668. /* zero is "infinity" */
  669. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  670. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  671. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  672. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  673. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  674. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  675. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  676. clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  677. }
  678. EXPORT_SYMBOL(blk_queue_stack_limits);
  679. /**
  680. * blk_queue_segment_boundary - set boundary rules for segment merging
  681. * @q: the request queue for the device
  682. * @mask: the memory boundary mask
  683. **/
  684. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  685. {
  686. if (mask < PAGE_CACHE_SIZE - 1) {
  687. mask = PAGE_CACHE_SIZE - 1;
  688. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  689. }
  690. q->seg_boundary_mask = mask;
  691. }
  692. EXPORT_SYMBOL(blk_queue_segment_boundary);
  693. /**
  694. * blk_queue_dma_alignment - set dma length and memory alignment
  695. * @q: the request queue for the device
  696. * @mask: alignment mask
  697. *
  698. * description:
  699. * set required memory and length aligment for direct dma transactions.
  700. * this is used when buiding direct io requests for the queue.
  701. *
  702. **/
  703. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  704. {
  705. q->dma_alignment = mask;
  706. }
  707. EXPORT_SYMBOL(blk_queue_dma_alignment);
  708. /**
  709. * blk_queue_find_tag - find a request by its tag and queue
  710. * @q: The request queue for the device
  711. * @tag: The tag of the request
  712. *
  713. * Notes:
  714. * Should be used when a device returns a tag and you want to match
  715. * it with a request.
  716. *
  717. * no locks need be held.
  718. **/
  719. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  720. {
  721. struct blk_queue_tag *bqt = q->queue_tags;
  722. if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
  723. return NULL;
  724. return bqt->tag_index[tag];
  725. }
  726. EXPORT_SYMBOL(blk_queue_find_tag);
  727. /**
  728. * __blk_free_tags - release a given set of tag maintenance info
  729. * @bqt: the tag map to free
  730. *
  731. * Tries to free the specified @bqt@. Returns true if it was
  732. * actually freed and false if there are still references using it
  733. */
  734. static int __blk_free_tags(struct blk_queue_tag *bqt)
  735. {
  736. int retval;
  737. retval = atomic_dec_and_test(&bqt->refcnt);
  738. if (retval) {
  739. BUG_ON(bqt->busy);
  740. BUG_ON(!list_empty(&bqt->busy_list));
  741. kfree(bqt->tag_index);
  742. bqt->tag_index = NULL;
  743. kfree(bqt->tag_map);
  744. bqt->tag_map = NULL;
  745. kfree(bqt);
  746. }
  747. return retval;
  748. }
  749. /**
  750. * __blk_queue_free_tags - release tag maintenance info
  751. * @q: the request queue for the device
  752. *
  753. * Notes:
  754. * blk_cleanup_queue() will take care of calling this function, if tagging
  755. * has been used. So there's no need to call this directly.
  756. **/
  757. static void __blk_queue_free_tags(request_queue_t *q)
  758. {
  759. struct blk_queue_tag *bqt = q->queue_tags;
  760. if (!bqt)
  761. return;
  762. __blk_free_tags(bqt);
  763. q->queue_tags = NULL;
  764. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  765. }
  766. /**
  767. * blk_free_tags - release a given set of tag maintenance info
  768. * @bqt: the tag map to free
  769. *
  770. * For externally managed @bqt@ frees the map. Callers of this
  771. * function must guarantee to have released all the queues that
  772. * might have been using this tag map.
  773. */
  774. void blk_free_tags(struct blk_queue_tag *bqt)
  775. {
  776. if (unlikely(!__blk_free_tags(bqt)))
  777. BUG();
  778. }
  779. EXPORT_SYMBOL(blk_free_tags);
  780. /**
  781. * blk_queue_free_tags - release tag maintenance info
  782. * @q: the request queue for the device
  783. *
  784. * Notes:
  785. * This is used to disabled tagged queuing to a device, yet leave
  786. * queue in function.
  787. **/
  788. void blk_queue_free_tags(request_queue_t *q)
  789. {
  790. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  791. }
  792. EXPORT_SYMBOL(blk_queue_free_tags);
  793. static int
  794. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  795. {
  796. struct request **tag_index;
  797. unsigned long *tag_map;
  798. int nr_ulongs;
  799. if (q && depth > q->nr_requests * 2) {
  800. depth = q->nr_requests * 2;
  801. printk(KERN_ERR "%s: adjusted depth to %d\n",
  802. __FUNCTION__, depth);
  803. }
  804. tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  805. if (!tag_index)
  806. goto fail;
  807. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  808. tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  809. if (!tag_map)
  810. goto fail;
  811. tags->real_max_depth = depth;
  812. tags->max_depth = depth;
  813. tags->tag_index = tag_index;
  814. tags->tag_map = tag_map;
  815. return 0;
  816. fail:
  817. kfree(tag_index);
  818. return -ENOMEM;
  819. }
  820. static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
  821. int depth)
  822. {
  823. struct blk_queue_tag *tags;
  824. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  825. if (!tags)
  826. goto fail;
  827. if (init_tag_map(q, tags, depth))
  828. goto fail;
  829. INIT_LIST_HEAD(&tags->busy_list);
  830. tags->busy = 0;
  831. atomic_set(&tags->refcnt, 1);
  832. return tags;
  833. fail:
  834. kfree(tags);
  835. return NULL;
  836. }
  837. /**
  838. * blk_init_tags - initialize the tag info for an external tag map
  839. * @depth: the maximum queue depth supported
  840. * @tags: the tag to use
  841. **/
  842. struct blk_queue_tag *blk_init_tags(int depth)
  843. {
  844. return __blk_queue_init_tags(NULL, depth);
  845. }
  846. EXPORT_SYMBOL(blk_init_tags);
  847. /**
  848. * blk_queue_init_tags - initialize the queue tag info
  849. * @q: the request queue for the device
  850. * @depth: the maximum queue depth supported
  851. * @tags: the tag to use
  852. **/
  853. int blk_queue_init_tags(request_queue_t *q, int depth,
  854. struct blk_queue_tag *tags)
  855. {
  856. int rc;
  857. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  858. if (!tags && !q->queue_tags) {
  859. tags = __blk_queue_init_tags(q, depth);
  860. if (!tags)
  861. goto fail;
  862. } else if (q->queue_tags) {
  863. if ((rc = blk_queue_resize_tags(q, depth)))
  864. return rc;
  865. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  866. return 0;
  867. } else
  868. atomic_inc(&tags->refcnt);
  869. /*
  870. * assign it, all done
  871. */
  872. q->queue_tags = tags;
  873. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  874. return 0;
  875. fail:
  876. kfree(tags);
  877. return -ENOMEM;
  878. }
  879. EXPORT_SYMBOL(blk_queue_init_tags);
  880. /**
  881. * blk_queue_resize_tags - change the queueing depth
  882. * @q: the request queue for the device
  883. * @new_depth: the new max command queueing depth
  884. *
  885. * Notes:
  886. * Must be called with the queue lock held.
  887. **/
  888. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  889. {
  890. struct blk_queue_tag *bqt = q->queue_tags;
  891. struct request **tag_index;
  892. unsigned long *tag_map;
  893. int max_depth, nr_ulongs;
  894. if (!bqt)
  895. return -ENXIO;
  896. /*
  897. * if we already have large enough real_max_depth. just
  898. * adjust max_depth. *NOTE* as requests with tag value
  899. * between new_depth and real_max_depth can be in-flight, tag
  900. * map can not be shrunk blindly here.
  901. */
  902. if (new_depth <= bqt->real_max_depth) {
  903. bqt->max_depth = new_depth;
  904. return 0;
  905. }
  906. /*
  907. * Currently cannot replace a shared tag map with a new
  908. * one, so error out if this is the case
  909. */
  910. if (atomic_read(&bqt->refcnt) != 1)
  911. return -EBUSY;
  912. /*
  913. * save the old state info, so we can copy it back
  914. */
  915. tag_index = bqt->tag_index;
  916. tag_map = bqt->tag_map;
  917. max_depth = bqt->real_max_depth;
  918. if (init_tag_map(q, bqt, new_depth))
  919. return -ENOMEM;
  920. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  921. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  922. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  923. kfree(tag_index);
  924. kfree(tag_map);
  925. return 0;
  926. }
  927. EXPORT_SYMBOL(blk_queue_resize_tags);
  928. /**
  929. * blk_queue_end_tag - end tag operations for a request
  930. * @q: the request queue for the device
  931. * @rq: the request that has completed
  932. *
  933. * Description:
  934. * Typically called when end_that_request_first() returns 0, meaning
  935. * all transfers have been done for a request. It's important to call
  936. * this function before end_that_request_last(), as that will put the
  937. * request back on the free list thus corrupting the internal tag list.
  938. *
  939. * Notes:
  940. * queue lock must be held.
  941. **/
  942. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  943. {
  944. struct blk_queue_tag *bqt = q->queue_tags;
  945. int tag = rq->tag;
  946. BUG_ON(tag == -1);
  947. if (unlikely(tag >= bqt->real_max_depth))
  948. /*
  949. * This can happen after tag depth has been reduced.
  950. * FIXME: how about a warning or info message here?
  951. */
  952. return;
  953. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  954. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  955. __FUNCTION__, tag);
  956. return;
  957. }
  958. list_del_init(&rq->queuelist);
  959. rq->cmd_flags &= ~REQ_QUEUED;
  960. rq->tag = -1;
  961. if (unlikely(bqt->tag_index[tag] == NULL))
  962. printk(KERN_ERR "%s: tag %d is missing\n",
  963. __FUNCTION__, tag);
  964. bqt->tag_index[tag] = NULL;
  965. bqt->busy--;
  966. }
  967. EXPORT_SYMBOL(blk_queue_end_tag);
  968. /**
  969. * blk_queue_start_tag - find a free tag and assign it
  970. * @q: the request queue for the device
  971. * @rq: the block request that needs tagging
  972. *
  973. * Description:
  974. * This can either be used as a stand-alone helper, or possibly be
  975. * assigned as the queue &prep_rq_fn (in which case &struct request
  976. * automagically gets a tag assigned). Note that this function
  977. * assumes that any type of request can be queued! if this is not
  978. * true for your device, you must check the request type before
  979. * calling this function. The request will also be removed from
  980. * the request queue, so it's the drivers responsibility to readd
  981. * it if it should need to be restarted for some reason.
  982. *
  983. * Notes:
  984. * queue lock must be held.
  985. **/
  986. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  987. {
  988. struct blk_queue_tag *bqt = q->queue_tags;
  989. int tag;
  990. if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
  991. printk(KERN_ERR
  992. "%s: request %p for device [%s] already tagged %d",
  993. __FUNCTION__, rq,
  994. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  995. BUG();
  996. }
  997. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  998. if (tag >= bqt->max_depth)
  999. return 1;
  1000. __set_bit(tag, bqt->tag_map);
  1001. rq->cmd_flags |= REQ_QUEUED;
  1002. rq->tag = tag;
  1003. bqt->tag_index[tag] = rq;
  1004. blkdev_dequeue_request(rq);
  1005. list_add(&rq->queuelist, &bqt->busy_list);
  1006. bqt->busy++;
  1007. return 0;
  1008. }
  1009. EXPORT_SYMBOL(blk_queue_start_tag);
  1010. /**
  1011. * blk_queue_invalidate_tags - invalidate all pending tags
  1012. * @q: the request queue for the device
  1013. *
  1014. * Description:
  1015. * Hardware conditions may dictate a need to stop all pending requests.
  1016. * In this case, we will safely clear the block side of the tag queue and
  1017. * readd all requests to the request queue in the right order.
  1018. *
  1019. * Notes:
  1020. * queue lock must be held.
  1021. **/
  1022. void blk_queue_invalidate_tags(request_queue_t *q)
  1023. {
  1024. struct blk_queue_tag *bqt = q->queue_tags;
  1025. struct list_head *tmp, *n;
  1026. struct request *rq;
  1027. list_for_each_safe(tmp, n, &bqt->busy_list) {
  1028. rq = list_entry_rq(tmp);
  1029. if (rq->tag == -1) {
  1030. printk(KERN_ERR
  1031. "%s: bad tag found on list\n", __FUNCTION__);
  1032. list_del_init(&rq->queuelist);
  1033. rq->cmd_flags &= ~REQ_QUEUED;
  1034. } else
  1035. blk_queue_end_tag(q, rq);
  1036. rq->cmd_flags &= ~REQ_STARTED;
  1037. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  1038. }
  1039. }
  1040. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  1041. void blk_dump_rq_flags(struct request *rq, char *msg)
  1042. {
  1043. int bit;
  1044. printk("%s: dev %s: type=%x, flags=%x\n", msg,
  1045. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
  1046. rq->cmd_flags);
  1047. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1048. rq->nr_sectors,
  1049. rq->current_nr_sectors);
  1050. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1051. if (blk_pc_request(rq)) {
  1052. printk("cdb: ");
  1053. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1054. printk("%02x ", rq->cmd[bit]);
  1055. printk("\n");
  1056. }
  1057. }
  1058. EXPORT_SYMBOL(blk_dump_rq_flags);
  1059. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  1060. {
  1061. struct bio_vec *bv, *bvprv = NULL;
  1062. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  1063. int high, highprv = 1;
  1064. if (unlikely(!bio->bi_io_vec))
  1065. return;
  1066. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1067. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  1068. bio_for_each_segment(bv, bio, i) {
  1069. /*
  1070. * the trick here is making sure that a high page is never
  1071. * considered part of another segment, since that might
  1072. * change with the bounce page.
  1073. */
  1074. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  1075. if (high || highprv)
  1076. goto new_hw_segment;
  1077. if (cluster) {
  1078. if (seg_size + bv->bv_len > q->max_segment_size)
  1079. goto new_segment;
  1080. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1081. goto new_segment;
  1082. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1083. goto new_segment;
  1084. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1085. goto new_hw_segment;
  1086. seg_size += bv->bv_len;
  1087. hw_seg_size += bv->bv_len;
  1088. bvprv = bv;
  1089. continue;
  1090. }
  1091. new_segment:
  1092. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1093. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  1094. hw_seg_size += bv->bv_len;
  1095. } else {
  1096. new_hw_segment:
  1097. if (hw_seg_size > bio->bi_hw_front_size)
  1098. bio->bi_hw_front_size = hw_seg_size;
  1099. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1100. nr_hw_segs++;
  1101. }
  1102. nr_phys_segs++;
  1103. bvprv = bv;
  1104. seg_size = bv->bv_len;
  1105. highprv = high;
  1106. }
  1107. if (hw_seg_size > bio->bi_hw_back_size)
  1108. bio->bi_hw_back_size = hw_seg_size;
  1109. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  1110. bio->bi_hw_front_size = hw_seg_size;
  1111. bio->bi_phys_segments = nr_phys_segs;
  1112. bio->bi_hw_segments = nr_hw_segs;
  1113. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1114. }
  1115. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  1116. struct bio *nxt)
  1117. {
  1118. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1119. return 0;
  1120. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1121. return 0;
  1122. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1123. return 0;
  1124. /*
  1125. * bio and nxt are contigous in memory, check if the queue allows
  1126. * these two to be merged into one
  1127. */
  1128. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1129. return 1;
  1130. return 0;
  1131. }
  1132. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1133. struct bio *nxt)
  1134. {
  1135. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1136. blk_recount_segments(q, bio);
  1137. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1138. blk_recount_segments(q, nxt);
  1139. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1140. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1141. return 0;
  1142. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1143. return 0;
  1144. return 1;
  1145. }
  1146. /*
  1147. * map a request to scatterlist, return number of sg entries setup. Caller
  1148. * must make sure sg can hold rq->nr_phys_segments entries
  1149. */
  1150. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1151. {
  1152. struct bio_vec *bvec, *bvprv;
  1153. struct bio *bio;
  1154. int nsegs, i, cluster;
  1155. nsegs = 0;
  1156. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1157. /*
  1158. * for each bio in rq
  1159. */
  1160. bvprv = NULL;
  1161. rq_for_each_bio(bio, rq) {
  1162. /*
  1163. * for each segment in bio
  1164. */
  1165. bio_for_each_segment(bvec, bio, i) {
  1166. int nbytes = bvec->bv_len;
  1167. if (bvprv && cluster) {
  1168. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1169. goto new_segment;
  1170. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1171. goto new_segment;
  1172. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1173. goto new_segment;
  1174. sg[nsegs - 1].length += nbytes;
  1175. } else {
  1176. new_segment:
  1177. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1178. sg[nsegs].page = bvec->bv_page;
  1179. sg[nsegs].length = nbytes;
  1180. sg[nsegs].offset = bvec->bv_offset;
  1181. nsegs++;
  1182. }
  1183. bvprv = bvec;
  1184. } /* segments in bio */
  1185. } /* bios in rq */
  1186. return nsegs;
  1187. }
  1188. EXPORT_SYMBOL(blk_rq_map_sg);
  1189. /*
  1190. * the standard queue merge functions, can be overridden with device
  1191. * specific ones if so desired
  1192. */
  1193. static inline int ll_new_mergeable(request_queue_t *q,
  1194. struct request *req,
  1195. struct bio *bio)
  1196. {
  1197. int nr_phys_segs = bio_phys_segments(q, bio);
  1198. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1199. req->cmd_flags |= REQ_NOMERGE;
  1200. if (req == q->last_merge)
  1201. q->last_merge = NULL;
  1202. return 0;
  1203. }
  1204. /*
  1205. * A hw segment is just getting larger, bump just the phys
  1206. * counter.
  1207. */
  1208. req->nr_phys_segments += nr_phys_segs;
  1209. return 1;
  1210. }
  1211. static inline int ll_new_hw_segment(request_queue_t *q,
  1212. struct request *req,
  1213. struct bio *bio)
  1214. {
  1215. int nr_hw_segs = bio_hw_segments(q, bio);
  1216. int nr_phys_segs = bio_phys_segments(q, bio);
  1217. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1218. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1219. req->cmd_flags |= REQ_NOMERGE;
  1220. if (req == q->last_merge)
  1221. q->last_merge = NULL;
  1222. return 0;
  1223. }
  1224. /*
  1225. * This will form the start of a new hw segment. Bump both
  1226. * counters.
  1227. */
  1228. req->nr_hw_segments += nr_hw_segs;
  1229. req->nr_phys_segments += nr_phys_segs;
  1230. return 1;
  1231. }
  1232. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1233. struct bio *bio)
  1234. {
  1235. unsigned short max_sectors;
  1236. int len;
  1237. if (unlikely(blk_pc_request(req)))
  1238. max_sectors = q->max_hw_sectors;
  1239. else
  1240. max_sectors = q->max_sectors;
  1241. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1242. req->cmd_flags |= REQ_NOMERGE;
  1243. if (req == q->last_merge)
  1244. q->last_merge = NULL;
  1245. return 0;
  1246. }
  1247. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1248. blk_recount_segments(q, req->biotail);
  1249. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1250. blk_recount_segments(q, bio);
  1251. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1252. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1253. !BIOVEC_VIRT_OVERSIZE(len)) {
  1254. int mergeable = ll_new_mergeable(q, req, bio);
  1255. if (mergeable) {
  1256. if (req->nr_hw_segments == 1)
  1257. req->bio->bi_hw_front_size = len;
  1258. if (bio->bi_hw_segments == 1)
  1259. bio->bi_hw_back_size = len;
  1260. }
  1261. return mergeable;
  1262. }
  1263. return ll_new_hw_segment(q, req, bio);
  1264. }
  1265. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1266. struct bio *bio)
  1267. {
  1268. unsigned short max_sectors;
  1269. int len;
  1270. if (unlikely(blk_pc_request(req)))
  1271. max_sectors = q->max_hw_sectors;
  1272. else
  1273. max_sectors = q->max_sectors;
  1274. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1275. req->cmd_flags |= REQ_NOMERGE;
  1276. if (req == q->last_merge)
  1277. q->last_merge = NULL;
  1278. return 0;
  1279. }
  1280. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1281. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1282. blk_recount_segments(q, bio);
  1283. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1284. blk_recount_segments(q, req->bio);
  1285. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1286. !BIOVEC_VIRT_OVERSIZE(len)) {
  1287. int mergeable = ll_new_mergeable(q, req, bio);
  1288. if (mergeable) {
  1289. if (bio->bi_hw_segments == 1)
  1290. bio->bi_hw_front_size = len;
  1291. if (req->nr_hw_segments == 1)
  1292. req->biotail->bi_hw_back_size = len;
  1293. }
  1294. return mergeable;
  1295. }
  1296. return ll_new_hw_segment(q, req, bio);
  1297. }
  1298. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1299. struct request *next)
  1300. {
  1301. int total_phys_segments;
  1302. int total_hw_segments;
  1303. /*
  1304. * First check if the either of the requests are re-queued
  1305. * requests. Can't merge them if they are.
  1306. */
  1307. if (req->special || next->special)
  1308. return 0;
  1309. /*
  1310. * Will it become too large?
  1311. */
  1312. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1313. return 0;
  1314. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1315. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1316. total_phys_segments--;
  1317. if (total_phys_segments > q->max_phys_segments)
  1318. return 0;
  1319. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1320. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1321. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1322. /*
  1323. * propagate the combined length to the end of the requests
  1324. */
  1325. if (req->nr_hw_segments == 1)
  1326. req->bio->bi_hw_front_size = len;
  1327. if (next->nr_hw_segments == 1)
  1328. next->biotail->bi_hw_back_size = len;
  1329. total_hw_segments--;
  1330. }
  1331. if (total_hw_segments > q->max_hw_segments)
  1332. return 0;
  1333. /* Merge is OK... */
  1334. req->nr_phys_segments = total_phys_segments;
  1335. req->nr_hw_segments = total_hw_segments;
  1336. return 1;
  1337. }
  1338. /*
  1339. * "plug" the device if there are no outstanding requests: this will
  1340. * force the transfer to start only after we have put all the requests
  1341. * on the list.
  1342. *
  1343. * This is called with interrupts off and no requests on the queue and
  1344. * with the queue lock held.
  1345. */
  1346. void blk_plug_device(request_queue_t *q)
  1347. {
  1348. WARN_ON(!irqs_disabled());
  1349. /*
  1350. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1351. * which will restart the queueing
  1352. */
  1353. if (blk_queue_stopped(q))
  1354. return;
  1355. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
  1356. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1357. blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
  1358. }
  1359. }
  1360. EXPORT_SYMBOL(blk_plug_device);
  1361. /*
  1362. * remove the queue from the plugged list, if present. called with
  1363. * queue lock held and interrupts disabled.
  1364. */
  1365. int blk_remove_plug(request_queue_t *q)
  1366. {
  1367. WARN_ON(!irqs_disabled());
  1368. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1369. return 0;
  1370. del_timer(&q->unplug_timer);
  1371. return 1;
  1372. }
  1373. EXPORT_SYMBOL(blk_remove_plug);
  1374. /*
  1375. * remove the plug and let it rip..
  1376. */
  1377. void __generic_unplug_device(request_queue_t *q)
  1378. {
  1379. if (unlikely(blk_queue_stopped(q)))
  1380. return;
  1381. if (!blk_remove_plug(q))
  1382. return;
  1383. q->request_fn(q);
  1384. }
  1385. EXPORT_SYMBOL(__generic_unplug_device);
  1386. /**
  1387. * generic_unplug_device - fire a request queue
  1388. * @q: The &request_queue_t in question
  1389. *
  1390. * Description:
  1391. * Linux uses plugging to build bigger requests queues before letting
  1392. * the device have at them. If a queue is plugged, the I/O scheduler
  1393. * is still adding and merging requests on the queue. Once the queue
  1394. * gets unplugged, the request_fn defined for the queue is invoked and
  1395. * transfers started.
  1396. **/
  1397. void generic_unplug_device(request_queue_t *q)
  1398. {
  1399. spin_lock_irq(q->queue_lock);
  1400. __generic_unplug_device(q);
  1401. spin_unlock_irq(q->queue_lock);
  1402. }
  1403. EXPORT_SYMBOL(generic_unplug_device);
  1404. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1405. struct page *page)
  1406. {
  1407. request_queue_t *q = bdi->unplug_io_data;
  1408. /*
  1409. * devices don't necessarily have an ->unplug_fn defined
  1410. */
  1411. if (q->unplug_fn) {
  1412. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1413. q->rq.count[READ] + q->rq.count[WRITE]);
  1414. q->unplug_fn(q);
  1415. }
  1416. }
  1417. static void blk_unplug_work(void *data)
  1418. {
  1419. request_queue_t *q = data;
  1420. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1421. q->rq.count[READ] + q->rq.count[WRITE]);
  1422. q->unplug_fn(q);
  1423. }
  1424. static void blk_unplug_timeout(unsigned long data)
  1425. {
  1426. request_queue_t *q = (request_queue_t *)data;
  1427. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
  1428. q->rq.count[READ] + q->rq.count[WRITE]);
  1429. kblockd_schedule_work(&q->unplug_work);
  1430. }
  1431. /**
  1432. * blk_start_queue - restart a previously stopped queue
  1433. * @q: The &request_queue_t in question
  1434. *
  1435. * Description:
  1436. * blk_start_queue() will clear the stop flag on the queue, and call
  1437. * the request_fn for the queue if it was in a stopped state when
  1438. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1439. **/
  1440. void blk_start_queue(request_queue_t *q)
  1441. {
  1442. WARN_ON(!irqs_disabled());
  1443. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1444. /*
  1445. * one level of recursion is ok and is much faster than kicking
  1446. * the unplug handling
  1447. */
  1448. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1449. q->request_fn(q);
  1450. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1451. } else {
  1452. blk_plug_device(q);
  1453. kblockd_schedule_work(&q->unplug_work);
  1454. }
  1455. }
  1456. EXPORT_SYMBOL(blk_start_queue);
  1457. /**
  1458. * blk_stop_queue - stop a queue
  1459. * @q: The &request_queue_t in question
  1460. *
  1461. * Description:
  1462. * The Linux block layer assumes that a block driver will consume all
  1463. * entries on the request queue when the request_fn strategy is called.
  1464. * Often this will not happen, because of hardware limitations (queue
  1465. * depth settings). If a device driver gets a 'queue full' response,
  1466. * or if it simply chooses not to queue more I/O at one point, it can
  1467. * call this function to prevent the request_fn from being called until
  1468. * the driver has signalled it's ready to go again. This happens by calling
  1469. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1470. **/
  1471. void blk_stop_queue(request_queue_t *q)
  1472. {
  1473. blk_remove_plug(q);
  1474. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1475. }
  1476. EXPORT_SYMBOL(blk_stop_queue);
  1477. /**
  1478. * blk_sync_queue - cancel any pending callbacks on a queue
  1479. * @q: the queue
  1480. *
  1481. * Description:
  1482. * The block layer may perform asynchronous callback activity
  1483. * on a queue, such as calling the unplug function after a timeout.
  1484. * A block device may call blk_sync_queue to ensure that any
  1485. * such activity is cancelled, thus allowing it to release resources
  1486. * the the callbacks might use. The caller must already have made sure
  1487. * that its ->make_request_fn will not re-add plugging prior to calling
  1488. * this function.
  1489. *
  1490. */
  1491. void blk_sync_queue(struct request_queue *q)
  1492. {
  1493. del_timer_sync(&q->unplug_timer);
  1494. kblockd_flush();
  1495. }
  1496. EXPORT_SYMBOL(blk_sync_queue);
  1497. /**
  1498. * blk_run_queue - run a single device queue
  1499. * @q: The queue to run
  1500. */
  1501. void blk_run_queue(struct request_queue *q)
  1502. {
  1503. unsigned long flags;
  1504. spin_lock_irqsave(q->queue_lock, flags);
  1505. blk_remove_plug(q);
  1506. /*
  1507. * Only recurse once to avoid overrunning the stack, let the unplug
  1508. * handling reinvoke the handler shortly if we already got there.
  1509. */
  1510. if (!elv_queue_empty(q)) {
  1511. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1512. q->request_fn(q);
  1513. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1514. } else {
  1515. blk_plug_device(q);
  1516. kblockd_schedule_work(&q->unplug_work);
  1517. }
  1518. }
  1519. spin_unlock_irqrestore(q->queue_lock, flags);
  1520. }
  1521. EXPORT_SYMBOL(blk_run_queue);
  1522. /**
  1523. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1524. * @kobj: the kobj belonging of the request queue to be released
  1525. *
  1526. * Description:
  1527. * blk_cleanup_queue is the pair to blk_init_queue() or
  1528. * blk_queue_make_request(). It should be called when a request queue is
  1529. * being released; typically when a block device is being de-registered.
  1530. * Currently, its primary task it to free all the &struct request
  1531. * structures that were allocated to the queue and the queue itself.
  1532. *
  1533. * Caveat:
  1534. * Hopefully the low level driver will have finished any
  1535. * outstanding requests first...
  1536. **/
  1537. static void blk_release_queue(struct kobject *kobj)
  1538. {
  1539. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  1540. struct request_list *rl = &q->rq;
  1541. blk_sync_queue(q);
  1542. if (rl->rq_pool)
  1543. mempool_destroy(rl->rq_pool);
  1544. if (q->queue_tags)
  1545. __blk_queue_free_tags(q);
  1546. blk_trace_shutdown(q);
  1547. kmem_cache_free(requestq_cachep, q);
  1548. }
  1549. void blk_put_queue(request_queue_t *q)
  1550. {
  1551. kobject_put(&q->kobj);
  1552. }
  1553. EXPORT_SYMBOL(blk_put_queue);
  1554. void blk_cleanup_queue(request_queue_t * q)
  1555. {
  1556. mutex_lock(&q->sysfs_lock);
  1557. set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
  1558. mutex_unlock(&q->sysfs_lock);
  1559. if (q->elevator)
  1560. elevator_exit(q->elevator);
  1561. blk_put_queue(q);
  1562. }
  1563. EXPORT_SYMBOL(blk_cleanup_queue);
  1564. static int blk_init_free_list(request_queue_t *q)
  1565. {
  1566. struct request_list *rl = &q->rq;
  1567. rl->count[READ] = rl->count[WRITE] = 0;
  1568. rl->starved[READ] = rl->starved[WRITE] = 0;
  1569. rl->elvpriv = 0;
  1570. init_waitqueue_head(&rl->wait[READ]);
  1571. init_waitqueue_head(&rl->wait[WRITE]);
  1572. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1573. mempool_free_slab, request_cachep, q->node);
  1574. if (!rl->rq_pool)
  1575. return -ENOMEM;
  1576. return 0;
  1577. }
  1578. request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
  1579. {
  1580. return blk_alloc_queue_node(gfp_mask, -1);
  1581. }
  1582. EXPORT_SYMBOL(blk_alloc_queue);
  1583. static struct kobj_type queue_ktype;
  1584. request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1585. {
  1586. request_queue_t *q;
  1587. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1588. if (!q)
  1589. return NULL;
  1590. memset(q, 0, sizeof(*q));
  1591. init_timer(&q->unplug_timer);
  1592. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  1593. q->kobj.ktype = &queue_ktype;
  1594. kobject_init(&q->kobj);
  1595. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1596. q->backing_dev_info.unplug_io_data = q;
  1597. mutex_init(&q->sysfs_lock);
  1598. return q;
  1599. }
  1600. EXPORT_SYMBOL(blk_alloc_queue_node);
  1601. /**
  1602. * blk_init_queue - prepare a request queue for use with a block device
  1603. * @rfn: The function to be called to process requests that have been
  1604. * placed on the queue.
  1605. * @lock: Request queue spin lock
  1606. *
  1607. * Description:
  1608. * If a block device wishes to use the standard request handling procedures,
  1609. * which sorts requests and coalesces adjacent requests, then it must
  1610. * call blk_init_queue(). The function @rfn will be called when there
  1611. * are requests on the queue that need to be processed. If the device
  1612. * supports plugging, then @rfn may not be called immediately when requests
  1613. * are available on the queue, but may be called at some time later instead.
  1614. * Plugged queues are generally unplugged when a buffer belonging to one
  1615. * of the requests on the queue is needed, or due to memory pressure.
  1616. *
  1617. * @rfn is not required, or even expected, to remove all requests off the
  1618. * queue, but only as many as it can handle at a time. If it does leave
  1619. * requests on the queue, it is responsible for arranging that the requests
  1620. * get dealt with eventually.
  1621. *
  1622. * The queue spin lock must be held while manipulating the requests on the
  1623. * request queue; this lock will be taken also from interrupt context, so irq
  1624. * disabling is needed for it.
  1625. *
  1626. * Function returns a pointer to the initialized request queue, or NULL if
  1627. * it didn't succeed.
  1628. *
  1629. * Note:
  1630. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1631. * when the block device is deactivated (such as at module unload).
  1632. **/
  1633. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1634. {
  1635. return blk_init_queue_node(rfn, lock, -1);
  1636. }
  1637. EXPORT_SYMBOL(blk_init_queue);
  1638. request_queue_t *
  1639. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1640. {
  1641. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1642. if (!q)
  1643. return NULL;
  1644. q->node = node_id;
  1645. if (blk_init_free_list(q)) {
  1646. kmem_cache_free(requestq_cachep, q);
  1647. return NULL;
  1648. }
  1649. /*
  1650. * if caller didn't supply a lock, they get per-queue locking with
  1651. * our embedded lock
  1652. */
  1653. if (!lock) {
  1654. spin_lock_init(&q->__queue_lock);
  1655. lock = &q->__queue_lock;
  1656. }
  1657. q->request_fn = rfn;
  1658. q->back_merge_fn = ll_back_merge_fn;
  1659. q->front_merge_fn = ll_front_merge_fn;
  1660. q->merge_requests_fn = ll_merge_requests_fn;
  1661. q->prep_rq_fn = NULL;
  1662. q->unplug_fn = generic_unplug_device;
  1663. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1664. q->queue_lock = lock;
  1665. blk_queue_segment_boundary(q, 0xffffffff);
  1666. blk_queue_make_request(q, __make_request);
  1667. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1668. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1669. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1670. /*
  1671. * all done
  1672. */
  1673. if (!elevator_init(q, NULL)) {
  1674. blk_queue_congestion_threshold(q);
  1675. return q;
  1676. }
  1677. blk_put_queue(q);
  1678. return NULL;
  1679. }
  1680. EXPORT_SYMBOL(blk_init_queue_node);
  1681. int blk_get_queue(request_queue_t *q)
  1682. {
  1683. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1684. kobject_get(&q->kobj);
  1685. return 0;
  1686. }
  1687. return 1;
  1688. }
  1689. EXPORT_SYMBOL(blk_get_queue);
  1690. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1691. {
  1692. if (rq->cmd_flags & REQ_ELVPRIV)
  1693. elv_put_request(q, rq);
  1694. mempool_free(rq, q->rq.rq_pool);
  1695. }
  1696. static inline struct request *
  1697. blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
  1698. int priv, gfp_t gfp_mask)
  1699. {
  1700. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1701. if (!rq)
  1702. return NULL;
  1703. /*
  1704. * first three bits are identical in rq->cmd_flags and bio->bi_rw,
  1705. * see bio.h and blkdev.h
  1706. */
  1707. rq->cmd_flags = rw | REQ_ALLOCED;
  1708. if (priv) {
  1709. if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
  1710. mempool_free(rq, q->rq.rq_pool);
  1711. return NULL;
  1712. }
  1713. rq->cmd_flags |= REQ_ELVPRIV;
  1714. }
  1715. return rq;
  1716. }
  1717. /*
  1718. * ioc_batching returns true if the ioc is a valid batching request and
  1719. * should be given priority access to a request.
  1720. */
  1721. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1722. {
  1723. if (!ioc)
  1724. return 0;
  1725. /*
  1726. * Make sure the process is able to allocate at least 1 request
  1727. * even if the batch times out, otherwise we could theoretically
  1728. * lose wakeups.
  1729. */
  1730. return ioc->nr_batch_requests == q->nr_batching ||
  1731. (ioc->nr_batch_requests > 0
  1732. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1733. }
  1734. /*
  1735. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1736. * will cause the process to be a "batcher" on all queues in the system. This
  1737. * is the behaviour we want though - once it gets a wakeup it should be given
  1738. * a nice run.
  1739. */
  1740. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1741. {
  1742. if (!ioc || ioc_batching(q, ioc))
  1743. return;
  1744. ioc->nr_batch_requests = q->nr_batching;
  1745. ioc->last_waited = jiffies;
  1746. }
  1747. static void __freed_request(request_queue_t *q, int rw)
  1748. {
  1749. struct request_list *rl = &q->rq;
  1750. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1751. clear_queue_congested(q, rw);
  1752. if (rl->count[rw] + 1 <= q->nr_requests) {
  1753. if (waitqueue_active(&rl->wait[rw]))
  1754. wake_up(&rl->wait[rw]);
  1755. blk_clear_queue_full(q, rw);
  1756. }
  1757. }
  1758. /*
  1759. * A request has just been released. Account for it, update the full and
  1760. * congestion status, wake up any waiters. Called under q->queue_lock.
  1761. */
  1762. static void freed_request(request_queue_t *q, int rw, int priv)
  1763. {
  1764. struct request_list *rl = &q->rq;
  1765. rl->count[rw]--;
  1766. if (priv)
  1767. rl->elvpriv--;
  1768. __freed_request(q, rw);
  1769. if (unlikely(rl->starved[rw ^ 1]))
  1770. __freed_request(q, rw ^ 1);
  1771. }
  1772. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1773. /*
  1774. * Get a free request, queue_lock must be held.
  1775. * Returns NULL on failure, with queue_lock held.
  1776. * Returns !NULL on success, with queue_lock *not held*.
  1777. */
  1778. static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
  1779. gfp_t gfp_mask)
  1780. {
  1781. struct request *rq = NULL;
  1782. struct request_list *rl = &q->rq;
  1783. struct io_context *ioc = NULL;
  1784. int may_queue, priv;
  1785. may_queue = elv_may_queue(q, rw, bio);
  1786. if (may_queue == ELV_MQUEUE_NO)
  1787. goto rq_starved;
  1788. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1789. if (rl->count[rw]+1 >= q->nr_requests) {
  1790. ioc = current_io_context(GFP_ATOMIC);
  1791. /*
  1792. * The queue will fill after this allocation, so set
  1793. * it as full, and mark this process as "batching".
  1794. * This process will be allowed to complete a batch of
  1795. * requests, others will be blocked.
  1796. */
  1797. if (!blk_queue_full(q, rw)) {
  1798. ioc_set_batching(q, ioc);
  1799. blk_set_queue_full(q, rw);
  1800. } else {
  1801. if (may_queue != ELV_MQUEUE_MUST
  1802. && !ioc_batching(q, ioc)) {
  1803. /*
  1804. * The queue is full and the allocating
  1805. * process is not a "batcher", and not
  1806. * exempted by the IO scheduler
  1807. */
  1808. goto out;
  1809. }
  1810. }
  1811. }
  1812. set_queue_congested(q, rw);
  1813. }
  1814. /*
  1815. * Only allow batching queuers to allocate up to 50% over the defined
  1816. * limit of requests, otherwise we could have thousands of requests
  1817. * allocated with any setting of ->nr_requests
  1818. */
  1819. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1820. goto out;
  1821. rl->count[rw]++;
  1822. rl->starved[rw] = 0;
  1823. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1824. if (priv)
  1825. rl->elvpriv++;
  1826. spin_unlock_irq(q->queue_lock);
  1827. rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
  1828. if (unlikely(!rq)) {
  1829. /*
  1830. * Allocation failed presumably due to memory. Undo anything
  1831. * we might have messed up.
  1832. *
  1833. * Allocating task should really be put onto the front of the
  1834. * wait queue, but this is pretty rare.
  1835. */
  1836. spin_lock_irq(q->queue_lock);
  1837. freed_request(q, rw, priv);
  1838. /*
  1839. * in the very unlikely event that allocation failed and no
  1840. * requests for this direction was pending, mark us starved
  1841. * so that freeing of a request in the other direction will
  1842. * notice us. another possible fix would be to split the
  1843. * rq mempool into READ and WRITE
  1844. */
  1845. rq_starved:
  1846. if (unlikely(rl->count[rw] == 0))
  1847. rl->starved[rw] = 1;
  1848. goto out;
  1849. }
  1850. /*
  1851. * ioc may be NULL here, and ioc_batching will be false. That's
  1852. * OK, if the queue is under the request limit then requests need
  1853. * not count toward the nr_batch_requests limit. There will always
  1854. * be some limit enforced by BLK_BATCH_TIME.
  1855. */
  1856. if (ioc_batching(q, ioc))
  1857. ioc->nr_batch_requests--;
  1858. rq_init(q, rq);
  1859. blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
  1860. out:
  1861. return rq;
  1862. }
  1863. /*
  1864. * No available requests for this queue, unplug the device and wait for some
  1865. * requests to become available.
  1866. *
  1867. * Called with q->queue_lock held, and returns with it unlocked.
  1868. */
  1869. static struct request *get_request_wait(request_queue_t *q, int rw,
  1870. struct bio *bio)
  1871. {
  1872. struct request *rq;
  1873. rq = get_request(q, rw, bio, GFP_NOIO);
  1874. while (!rq) {
  1875. DEFINE_WAIT(wait);
  1876. struct request_list *rl = &q->rq;
  1877. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1878. TASK_UNINTERRUPTIBLE);
  1879. rq = get_request(q, rw, bio, GFP_NOIO);
  1880. if (!rq) {
  1881. struct io_context *ioc;
  1882. blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
  1883. __generic_unplug_device(q);
  1884. spin_unlock_irq(q->queue_lock);
  1885. io_schedule();
  1886. /*
  1887. * After sleeping, we become a "batching" process and
  1888. * will be able to allocate at least one request, and
  1889. * up to a big batch of them for a small period time.
  1890. * See ioc_batching, ioc_set_batching
  1891. */
  1892. ioc = current_io_context(GFP_NOIO);
  1893. ioc_set_batching(q, ioc);
  1894. spin_lock_irq(q->queue_lock);
  1895. }
  1896. finish_wait(&rl->wait[rw], &wait);
  1897. }
  1898. return rq;
  1899. }
  1900. struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
  1901. {
  1902. struct request *rq;
  1903. BUG_ON(rw != READ && rw != WRITE);
  1904. spin_lock_irq(q->queue_lock);
  1905. if (gfp_mask & __GFP_WAIT) {
  1906. rq = get_request_wait(q, rw, NULL);
  1907. } else {
  1908. rq = get_request(q, rw, NULL, gfp_mask);
  1909. if (!rq)
  1910. spin_unlock_irq(q->queue_lock);
  1911. }
  1912. /* q->queue_lock is unlocked at this point */
  1913. return rq;
  1914. }
  1915. EXPORT_SYMBOL(blk_get_request);
  1916. /**
  1917. * blk_requeue_request - put a request back on queue
  1918. * @q: request queue where request should be inserted
  1919. * @rq: request to be inserted
  1920. *
  1921. * Description:
  1922. * Drivers often keep queueing requests until the hardware cannot accept
  1923. * more, when that condition happens we need to put the request back
  1924. * on the queue. Must be called with queue lock held.
  1925. */
  1926. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1927. {
  1928. blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
  1929. if (blk_rq_tagged(rq))
  1930. blk_queue_end_tag(q, rq);
  1931. elv_requeue_request(q, rq);
  1932. }
  1933. EXPORT_SYMBOL(blk_requeue_request);
  1934. /**
  1935. * blk_insert_request - insert a special request in to a request queue
  1936. * @q: request queue where request should be inserted
  1937. * @rq: request to be inserted
  1938. * @at_head: insert request at head or tail of queue
  1939. * @data: private data
  1940. *
  1941. * Description:
  1942. * Many block devices need to execute commands asynchronously, so they don't
  1943. * block the whole kernel from preemption during request execution. This is
  1944. * accomplished normally by inserting aritficial requests tagged as
  1945. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1946. * scheduled for actual execution by the request queue.
  1947. *
  1948. * We have the option of inserting the head or the tail of the queue.
  1949. * Typically we use the tail for new ioctls and so forth. We use the head
  1950. * of the queue for things like a QUEUE_FULL message from a device, or a
  1951. * host that is unable to accept a particular command.
  1952. */
  1953. void blk_insert_request(request_queue_t *q, struct request *rq,
  1954. int at_head, void *data)
  1955. {
  1956. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1957. unsigned long flags;
  1958. /*
  1959. * tell I/O scheduler that this isn't a regular read/write (ie it
  1960. * must not attempt merges on this) and that it acts as a soft
  1961. * barrier
  1962. */
  1963. rq->cmd_type = REQ_TYPE_SPECIAL;
  1964. rq->cmd_flags |= REQ_SOFTBARRIER;
  1965. rq->special = data;
  1966. spin_lock_irqsave(q->queue_lock, flags);
  1967. /*
  1968. * If command is tagged, release the tag
  1969. */
  1970. if (blk_rq_tagged(rq))
  1971. blk_queue_end_tag(q, rq);
  1972. drive_stat_acct(rq, rq->nr_sectors, 1);
  1973. __elv_add_request(q, rq, where, 0);
  1974. if (blk_queue_plugged(q))
  1975. __generic_unplug_device(q);
  1976. else
  1977. q->request_fn(q);
  1978. spin_unlock_irqrestore(q->queue_lock, flags);
  1979. }
  1980. EXPORT_SYMBOL(blk_insert_request);
  1981. /**
  1982. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1983. * @q: request queue where request should be inserted
  1984. * @rq: request structure to fill
  1985. * @ubuf: the user buffer
  1986. * @len: length of user data
  1987. *
  1988. * Description:
  1989. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1990. * a kernel bounce buffer is used.
  1991. *
  1992. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1993. * still in process context.
  1994. *
  1995. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1996. * before being submitted to the device, as pages mapped may be out of
  1997. * reach. It's the callers responsibility to make sure this happens. The
  1998. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1999. * unmapping.
  2000. */
  2001. int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
  2002. unsigned int len)
  2003. {
  2004. unsigned long uaddr;
  2005. struct bio *bio;
  2006. int reading;
  2007. if (len > (q->max_hw_sectors << 9))
  2008. return -EINVAL;
  2009. if (!len || !ubuf)
  2010. return -EINVAL;
  2011. reading = rq_data_dir(rq) == READ;
  2012. /*
  2013. * if alignment requirement is satisfied, map in user pages for
  2014. * direct dma. else, set up kernel bounce buffers
  2015. */
  2016. uaddr = (unsigned long) ubuf;
  2017. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  2018. bio = bio_map_user(q, NULL, uaddr, len, reading);
  2019. else
  2020. bio = bio_copy_user(q, uaddr, len, reading);
  2021. if (!IS_ERR(bio)) {
  2022. rq->bio = rq->biotail = bio;
  2023. blk_rq_bio_prep(q, rq, bio);
  2024. rq->buffer = rq->data = NULL;
  2025. rq->data_len = len;
  2026. return 0;
  2027. }
  2028. /*
  2029. * bio is the err-ptr
  2030. */
  2031. return PTR_ERR(bio);
  2032. }
  2033. EXPORT_SYMBOL(blk_rq_map_user);
  2034. /**
  2035. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  2036. * @q: request queue where request should be inserted
  2037. * @rq: request to map data to
  2038. * @iov: pointer to the iovec
  2039. * @iov_count: number of elements in the iovec
  2040. *
  2041. * Description:
  2042. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2043. * a kernel bounce buffer is used.
  2044. *
  2045. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2046. * still in process context.
  2047. *
  2048. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2049. * before being submitted to the device, as pages mapped may be out of
  2050. * reach. It's the callers responsibility to make sure this happens. The
  2051. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2052. * unmapping.
  2053. */
  2054. int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
  2055. struct sg_iovec *iov, int iov_count)
  2056. {
  2057. struct bio *bio;
  2058. if (!iov || iov_count <= 0)
  2059. return -EINVAL;
  2060. /* we don't allow misaligned data like bio_map_user() does. If the
  2061. * user is using sg, they're expected to know the alignment constraints
  2062. * and respect them accordingly */
  2063. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  2064. if (IS_ERR(bio))
  2065. return PTR_ERR(bio);
  2066. rq->bio = rq->biotail = bio;
  2067. blk_rq_bio_prep(q, rq, bio);
  2068. rq->buffer = rq->data = NULL;
  2069. rq->data_len = bio->bi_size;
  2070. return 0;
  2071. }
  2072. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2073. /**
  2074. * blk_rq_unmap_user - unmap a request with user data
  2075. * @bio: bio to be unmapped
  2076. * @ulen: length of user buffer
  2077. *
  2078. * Description:
  2079. * Unmap a bio previously mapped by blk_rq_map_user().
  2080. */
  2081. int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
  2082. {
  2083. int ret = 0;
  2084. if (bio) {
  2085. if (bio_flagged(bio, BIO_USER_MAPPED))
  2086. bio_unmap_user(bio);
  2087. else
  2088. ret = bio_uncopy_user(bio);
  2089. }
  2090. return 0;
  2091. }
  2092. EXPORT_SYMBOL(blk_rq_unmap_user);
  2093. /**
  2094. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2095. * @q: request queue where request should be inserted
  2096. * @rq: request to fill
  2097. * @kbuf: the kernel buffer
  2098. * @len: length of user data
  2099. * @gfp_mask: memory allocation flags
  2100. */
  2101. int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
  2102. unsigned int len, gfp_t gfp_mask)
  2103. {
  2104. struct bio *bio;
  2105. if (len > (q->max_hw_sectors << 9))
  2106. return -EINVAL;
  2107. if (!len || !kbuf)
  2108. return -EINVAL;
  2109. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2110. if (IS_ERR(bio))
  2111. return PTR_ERR(bio);
  2112. if (rq_data_dir(rq) == WRITE)
  2113. bio->bi_rw |= (1 << BIO_RW);
  2114. rq->bio = rq->biotail = bio;
  2115. blk_rq_bio_prep(q, rq, bio);
  2116. rq->buffer = rq->data = NULL;
  2117. rq->data_len = len;
  2118. return 0;
  2119. }
  2120. EXPORT_SYMBOL(blk_rq_map_kern);
  2121. /**
  2122. * blk_execute_rq_nowait - insert a request into queue for execution
  2123. * @q: queue to insert the request in
  2124. * @bd_disk: matching gendisk
  2125. * @rq: request to insert
  2126. * @at_head: insert request at head or tail of queue
  2127. * @done: I/O completion handler
  2128. *
  2129. * Description:
  2130. * Insert a fully prepared request at the back of the io scheduler queue
  2131. * for execution. Don't wait for completion.
  2132. */
  2133. void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
  2134. struct request *rq, int at_head,
  2135. rq_end_io_fn *done)
  2136. {
  2137. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2138. rq->rq_disk = bd_disk;
  2139. rq->cmd_flags |= REQ_NOMERGE;
  2140. rq->end_io = done;
  2141. WARN_ON(irqs_disabled());
  2142. spin_lock_irq(q->queue_lock);
  2143. __elv_add_request(q, rq, where, 1);
  2144. __generic_unplug_device(q);
  2145. spin_unlock_irq(q->queue_lock);
  2146. }
  2147. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2148. /**
  2149. * blk_execute_rq - insert a request into queue for execution
  2150. * @q: queue to insert the request in
  2151. * @bd_disk: matching gendisk
  2152. * @rq: request to insert
  2153. * @at_head: insert request at head or tail of queue
  2154. *
  2155. * Description:
  2156. * Insert a fully prepared request at the back of the io scheduler queue
  2157. * for execution and wait for completion.
  2158. */
  2159. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  2160. struct request *rq, int at_head)
  2161. {
  2162. DECLARE_COMPLETION_ONSTACK(wait);
  2163. char sense[SCSI_SENSE_BUFFERSIZE];
  2164. int err = 0;
  2165. /*
  2166. * we need an extra reference to the request, so we can look at
  2167. * it after io completion
  2168. */
  2169. rq->ref_count++;
  2170. if (!rq->sense) {
  2171. memset(sense, 0, sizeof(sense));
  2172. rq->sense = sense;
  2173. rq->sense_len = 0;
  2174. }
  2175. rq->end_io_data = &wait;
  2176. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2177. wait_for_completion(&wait);
  2178. if (rq->errors)
  2179. err = -EIO;
  2180. return err;
  2181. }
  2182. EXPORT_SYMBOL(blk_execute_rq);
  2183. /**
  2184. * blkdev_issue_flush - queue a flush
  2185. * @bdev: blockdev to issue flush for
  2186. * @error_sector: error sector
  2187. *
  2188. * Description:
  2189. * Issue a flush for the block device in question. Caller can supply
  2190. * room for storing the error offset in case of a flush error, if they
  2191. * wish to. Caller must run wait_for_completion() on its own.
  2192. */
  2193. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2194. {
  2195. request_queue_t *q;
  2196. if (bdev->bd_disk == NULL)
  2197. return -ENXIO;
  2198. q = bdev_get_queue(bdev);
  2199. if (!q)
  2200. return -ENXIO;
  2201. if (!q->issue_flush_fn)
  2202. return -EOPNOTSUPP;
  2203. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2204. }
  2205. EXPORT_SYMBOL(blkdev_issue_flush);
  2206. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2207. {
  2208. int rw = rq_data_dir(rq);
  2209. if (!blk_fs_request(rq) || !rq->rq_disk)
  2210. return;
  2211. if (!new_io) {
  2212. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2213. } else {
  2214. disk_round_stats(rq->rq_disk);
  2215. rq->rq_disk->in_flight++;
  2216. }
  2217. }
  2218. /*
  2219. * add-request adds a request to the linked list.
  2220. * queue lock is held and interrupts disabled, as we muck with the
  2221. * request queue list.
  2222. */
  2223. static inline void add_request(request_queue_t * q, struct request * req)
  2224. {
  2225. drive_stat_acct(req, req->nr_sectors, 1);
  2226. if (q->activity_fn)
  2227. q->activity_fn(q->activity_data, rq_data_dir(req));
  2228. /*
  2229. * elevator indicated where it wants this request to be
  2230. * inserted at elevator_merge time
  2231. */
  2232. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2233. }
  2234. /*
  2235. * disk_round_stats() - Round off the performance stats on a struct
  2236. * disk_stats.
  2237. *
  2238. * The average IO queue length and utilisation statistics are maintained
  2239. * by observing the current state of the queue length and the amount of
  2240. * time it has been in this state for.
  2241. *
  2242. * Normally, that accounting is done on IO completion, but that can result
  2243. * in more than a second's worth of IO being accounted for within any one
  2244. * second, leading to >100% utilisation. To deal with that, we call this
  2245. * function to do a round-off before returning the results when reading
  2246. * /proc/diskstats. This accounts immediately for all queue usage up to
  2247. * the current jiffies and restarts the counters again.
  2248. */
  2249. void disk_round_stats(struct gendisk *disk)
  2250. {
  2251. unsigned long now = jiffies;
  2252. if (now == disk->stamp)
  2253. return;
  2254. if (disk->in_flight) {
  2255. __disk_stat_add(disk, time_in_queue,
  2256. disk->in_flight * (now - disk->stamp));
  2257. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2258. }
  2259. disk->stamp = now;
  2260. }
  2261. EXPORT_SYMBOL_GPL(disk_round_stats);
  2262. /*
  2263. * queue lock must be held
  2264. */
  2265. void __blk_put_request(request_queue_t *q, struct request *req)
  2266. {
  2267. if (unlikely(!q))
  2268. return;
  2269. if (unlikely(--req->ref_count))
  2270. return;
  2271. elv_completed_request(q, req);
  2272. req->rq_status = RQ_INACTIVE;
  2273. /*
  2274. * Request may not have originated from ll_rw_blk. if not,
  2275. * it didn't come out of our reserved rq pools
  2276. */
  2277. if (req->cmd_flags & REQ_ALLOCED) {
  2278. int rw = rq_data_dir(req);
  2279. int priv = req->cmd_flags & REQ_ELVPRIV;
  2280. BUG_ON(!list_empty(&req->queuelist));
  2281. BUG_ON(!hlist_unhashed(&req->hash));
  2282. blk_free_request(q, req);
  2283. freed_request(q, rw, priv);
  2284. }
  2285. }
  2286. EXPORT_SYMBOL_GPL(__blk_put_request);
  2287. void blk_put_request(struct request *req)
  2288. {
  2289. unsigned long flags;
  2290. request_queue_t *q = req->q;
  2291. /*
  2292. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2293. * following if (q) test.
  2294. */
  2295. if (q) {
  2296. spin_lock_irqsave(q->queue_lock, flags);
  2297. __blk_put_request(q, req);
  2298. spin_unlock_irqrestore(q->queue_lock, flags);
  2299. }
  2300. }
  2301. EXPORT_SYMBOL(blk_put_request);
  2302. /**
  2303. * blk_end_sync_rq - executes a completion event on a request
  2304. * @rq: request to complete
  2305. * @error: end io status of the request
  2306. */
  2307. void blk_end_sync_rq(struct request *rq, int error)
  2308. {
  2309. struct completion *waiting = rq->end_io_data;
  2310. rq->end_io_data = NULL;
  2311. __blk_put_request(rq->q, rq);
  2312. /*
  2313. * complete last, if this is a stack request the process (and thus
  2314. * the rq pointer) could be invalid right after this complete()
  2315. */
  2316. complete(waiting);
  2317. }
  2318. EXPORT_SYMBOL(blk_end_sync_rq);
  2319. /**
  2320. * blk_congestion_wait - wait for a queue to become uncongested
  2321. * @rw: READ or WRITE
  2322. * @timeout: timeout in jiffies
  2323. *
  2324. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2325. * If no queues are congested then just wait for the next request to be
  2326. * returned.
  2327. */
  2328. long blk_congestion_wait(int rw, long timeout)
  2329. {
  2330. long ret;
  2331. DEFINE_WAIT(wait);
  2332. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2333. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2334. ret = io_schedule_timeout(timeout);
  2335. finish_wait(wqh, &wait);
  2336. return ret;
  2337. }
  2338. EXPORT_SYMBOL(blk_congestion_wait);
  2339. /**
  2340. * blk_congestion_end - wake up sleepers on a congestion queue
  2341. * @rw: READ or WRITE
  2342. */
  2343. void blk_congestion_end(int rw)
  2344. {
  2345. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2346. if (waitqueue_active(wqh))
  2347. wake_up(wqh);
  2348. }
  2349. /*
  2350. * Has to be called with the request spinlock acquired
  2351. */
  2352. static int attempt_merge(request_queue_t *q, struct request *req,
  2353. struct request *next)
  2354. {
  2355. if (!rq_mergeable(req) || !rq_mergeable(next))
  2356. return 0;
  2357. /*
  2358. * not contiguous
  2359. */
  2360. if (req->sector + req->nr_sectors != next->sector)
  2361. return 0;
  2362. if (rq_data_dir(req) != rq_data_dir(next)
  2363. || req->rq_disk != next->rq_disk
  2364. || next->special)
  2365. return 0;
  2366. /*
  2367. * If we are allowed to merge, then append bio list
  2368. * from next to rq and release next. merge_requests_fn
  2369. * will have updated segment counts, update sector
  2370. * counts here.
  2371. */
  2372. if (!q->merge_requests_fn(q, req, next))
  2373. return 0;
  2374. /*
  2375. * At this point we have either done a back merge
  2376. * or front merge. We need the smaller start_time of
  2377. * the merged requests to be the current request
  2378. * for accounting purposes.
  2379. */
  2380. if (time_after(req->start_time, next->start_time))
  2381. req->start_time = next->start_time;
  2382. req->biotail->bi_next = next->bio;
  2383. req->biotail = next->biotail;
  2384. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2385. elv_merge_requests(q, req, next);
  2386. if (req->rq_disk) {
  2387. disk_round_stats(req->rq_disk);
  2388. req->rq_disk->in_flight--;
  2389. }
  2390. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2391. __blk_put_request(q, next);
  2392. return 1;
  2393. }
  2394. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2395. {
  2396. struct request *next = elv_latter_request(q, rq);
  2397. if (next)
  2398. return attempt_merge(q, rq, next);
  2399. return 0;
  2400. }
  2401. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2402. {
  2403. struct request *prev = elv_former_request(q, rq);
  2404. if (prev)
  2405. return attempt_merge(q, prev, rq);
  2406. return 0;
  2407. }
  2408. static void init_request_from_bio(struct request *req, struct bio *bio)
  2409. {
  2410. req->cmd_type = REQ_TYPE_FS;
  2411. /*
  2412. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2413. */
  2414. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2415. req->cmd_flags |= REQ_FAILFAST;
  2416. /*
  2417. * REQ_BARRIER implies no merging, but lets make it explicit
  2418. */
  2419. if (unlikely(bio_barrier(bio)))
  2420. req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2421. if (bio_sync(bio))
  2422. req->cmd_flags |= REQ_RW_SYNC;
  2423. req->errors = 0;
  2424. req->hard_sector = req->sector = bio->bi_sector;
  2425. req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
  2426. req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
  2427. req->nr_phys_segments = bio_phys_segments(req->q, bio);
  2428. req->nr_hw_segments = bio_hw_segments(req->q, bio);
  2429. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2430. req->bio = req->biotail = bio;
  2431. req->ioprio = bio_prio(bio);
  2432. req->rq_disk = bio->bi_bdev->bd_disk;
  2433. req->start_time = jiffies;
  2434. }
  2435. static int __make_request(request_queue_t *q, struct bio *bio)
  2436. {
  2437. struct request *req;
  2438. int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
  2439. unsigned short prio;
  2440. sector_t sector;
  2441. sector = bio->bi_sector;
  2442. nr_sectors = bio_sectors(bio);
  2443. cur_nr_sectors = bio_cur_sectors(bio);
  2444. prio = bio_prio(bio);
  2445. rw = bio_data_dir(bio);
  2446. sync = bio_sync(bio);
  2447. /*
  2448. * low level driver can indicate that it wants pages above a
  2449. * certain limit bounced to low memory (ie for highmem, or even
  2450. * ISA dma in theory)
  2451. */
  2452. blk_queue_bounce(q, &bio);
  2453. spin_lock_prefetch(q->queue_lock);
  2454. barrier = bio_barrier(bio);
  2455. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2456. err = -EOPNOTSUPP;
  2457. goto end_io;
  2458. }
  2459. spin_lock_irq(q->queue_lock);
  2460. if (unlikely(barrier) || elv_queue_empty(q))
  2461. goto get_rq;
  2462. el_ret = elv_merge(q, &req, bio);
  2463. switch (el_ret) {
  2464. case ELEVATOR_BACK_MERGE:
  2465. BUG_ON(!rq_mergeable(req));
  2466. if (!q->back_merge_fn(q, req, bio))
  2467. break;
  2468. blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
  2469. req->biotail->bi_next = bio;
  2470. req->biotail = bio;
  2471. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2472. req->ioprio = ioprio_best(req->ioprio, prio);
  2473. drive_stat_acct(req, nr_sectors, 0);
  2474. if (!attempt_back_merge(q, req))
  2475. elv_merged_request(q, req, el_ret);
  2476. goto out;
  2477. case ELEVATOR_FRONT_MERGE:
  2478. BUG_ON(!rq_mergeable(req));
  2479. if (!q->front_merge_fn(q, req, bio))
  2480. break;
  2481. blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
  2482. bio->bi_next = req->bio;
  2483. req->bio = bio;
  2484. /*
  2485. * may not be valid. if the low level driver said
  2486. * it didn't need a bounce buffer then it better
  2487. * not touch req->buffer either...
  2488. */
  2489. req->buffer = bio_data(bio);
  2490. req->current_nr_sectors = cur_nr_sectors;
  2491. req->hard_cur_sectors = cur_nr_sectors;
  2492. req->sector = req->hard_sector = sector;
  2493. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2494. req->ioprio = ioprio_best(req->ioprio, prio);
  2495. drive_stat_acct(req, nr_sectors, 0);
  2496. if (!attempt_front_merge(q, req))
  2497. elv_merged_request(q, req, el_ret);
  2498. goto out;
  2499. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2500. default:
  2501. ;
  2502. }
  2503. get_rq:
  2504. /*
  2505. * Grab a free request. This is might sleep but can not fail.
  2506. * Returns with the queue unlocked.
  2507. */
  2508. req = get_request_wait(q, rw, bio);
  2509. /*
  2510. * After dropping the lock and possibly sleeping here, our request
  2511. * may now be mergeable after it had proven unmergeable (above).
  2512. * We don't worry about that case for efficiency. It won't happen
  2513. * often, and the elevators are able to handle it.
  2514. */
  2515. init_request_from_bio(req, bio);
  2516. spin_lock_irq(q->queue_lock);
  2517. if (elv_queue_empty(q))
  2518. blk_plug_device(q);
  2519. add_request(q, req);
  2520. out:
  2521. if (sync)
  2522. __generic_unplug_device(q);
  2523. spin_unlock_irq(q->queue_lock);
  2524. return 0;
  2525. end_io:
  2526. bio_endio(bio, nr_sectors << 9, err);
  2527. return 0;
  2528. }
  2529. /*
  2530. * If bio->bi_dev is a partition, remap the location
  2531. */
  2532. static inline void blk_partition_remap(struct bio *bio)
  2533. {
  2534. struct block_device *bdev = bio->bi_bdev;
  2535. if (bdev != bdev->bd_contains) {
  2536. struct hd_struct *p = bdev->bd_part;
  2537. const int rw = bio_data_dir(bio);
  2538. p->sectors[rw] += bio_sectors(bio);
  2539. p->ios[rw]++;
  2540. bio->bi_sector += p->start_sect;
  2541. bio->bi_bdev = bdev->bd_contains;
  2542. }
  2543. }
  2544. static void handle_bad_sector(struct bio *bio)
  2545. {
  2546. char b[BDEVNAME_SIZE];
  2547. printk(KERN_INFO "attempt to access beyond end of device\n");
  2548. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2549. bdevname(bio->bi_bdev, b),
  2550. bio->bi_rw,
  2551. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2552. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2553. set_bit(BIO_EOF, &bio->bi_flags);
  2554. }
  2555. /**
  2556. * generic_make_request: hand a buffer to its device driver for I/O
  2557. * @bio: The bio describing the location in memory and on the device.
  2558. *
  2559. * generic_make_request() is used to make I/O requests of block
  2560. * devices. It is passed a &struct bio, which describes the I/O that needs
  2561. * to be done.
  2562. *
  2563. * generic_make_request() does not return any status. The
  2564. * success/failure status of the request, along with notification of
  2565. * completion, is delivered asynchronously through the bio->bi_end_io
  2566. * function described (one day) else where.
  2567. *
  2568. * The caller of generic_make_request must make sure that bi_io_vec
  2569. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2570. * set to describe the device address, and the
  2571. * bi_end_io and optionally bi_private are set to describe how
  2572. * completion notification should be signaled.
  2573. *
  2574. * generic_make_request and the drivers it calls may use bi_next if this
  2575. * bio happens to be merged with someone else, and may change bi_dev and
  2576. * bi_sector for remaps as it sees fit. So the values of these fields
  2577. * should NOT be depended on after the call to generic_make_request.
  2578. */
  2579. void generic_make_request(struct bio *bio)
  2580. {
  2581. request_queue_t *q;
  2582. sector_t maxsector;
  2583. int ret, nr_sectors = bio_sectors(bio);
  2584. dev_t old_dev;
  2585. might_sleep();
  2586. /* Test device or partition size, when known. */
  2587. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2588. if (maxsector) {
  2589. sector_t sector = bio->bi_sector;
  2590. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2591. /*
  2592. * This may well happen - the kernel calls bread()
  2593. * without checking the size of the device, e.g., when
  2594. * mounting a device.
  2595. */
  2596. handle_bad_sector(bio);
  2597. goto end_io;
  2598. }
  2599. }
  2600. /*
  2601. * Resolve the mapping until finished. (drivers are
  2602. * still free to implement/resolve their own stacking
  2603. * by explicitly returning 0)
  2604. *
  2605. * NOTE: we don't repeat the blk_size check for each new device.
  2606. * Stacking drivers are expected to know what they are doing.
  2607. */
  2608. maxsector = -1;
  2609. old_dev = 0;
  2610. do {
  2611. char b[BDEVNAME_SIZE];
  2612. q = bdev_get_queue(bio->bi_bdev);
  2613. if (!q) {
  2614. printk(KERN_ERR
  2615. "generic_make_request: Trying to access "
  2616. "nonexistent block-device %s (%Lu)\n",
  2617. bdevname(bio->bi_bdev, b),
  2618. (long long) bio->bi_sector);
  2619. end_io:
  2620. bio_endio(bio, bio->bi_size, -EIO);
  2621. break;
  2622. }
  2623. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2624. printk("bio too big device %s (%u > %u)\n",
  2625. bdevname(bio->bi_bdev, b),
  2626. bio_sectors(bio),
  2627. q->max_hw_sectors);
  2628. goto end_io;
  2629. }
  2630. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2631. goto end_io;
  2632. /*
  2633. * If this device has partitions, remap block n
  2634. * of partition p to block n+start(p) of the disk.
  2635. */
  2636. blk_partition_remap(bio);
  2637. if (maxsector != -1)
  2638. blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
  2639. maxsector);
  2640. blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
  2641. maxsector = bio->bi_sector;
  2642. old_dev = bio->bi_bdev->bd_dev;
  2643. ret = q->make_request_fn(q, bio);
  2644. } while (ret);
  2645. }
  2646. EXPORT_SYMBOL(generic_make_request);
  2647. /**
  2648. * submit_bio: submit a bio to the block device layer for I/O
  2649. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2650. * @bio: The &struct bio which describes the I/O
  2651. *
  2652. * submit_bio() is very similar in purpose to generic_make_request(), and
  2653. * uses that function to do most of the work. Both are fairly rough
  2654. * interfaces, @bio must be presetup and ready for I/O.
  2655. *
  2656. */
  2657. void submit_bio(int rw, struct bio *bio)
  2658. {
  2659. int count = bio_sectors(bio);
  2660. BIO_BUG_ON(!bio->bi_size);
  2661. BIO_BUG_ON(!bio->bi_io_vec);
  2662. bio->bi_rw |= rw;
  2663. if (rw & WRITE)
  2664. count_vm_events(PGPGOUT, count);
  2665. else
  2666. count_vm_events(PGPGIN, count);
  2667. if (unlikely(block_dump)) {
  2668. char b[BDEVNAME_SIZE];
  2669. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2670. current->comm, current->pid,
  2671. (rw & WRITE) ? "WRITE" : "READ",
  2672. (unsigned long long)bio->bi_sector,
  2673. bdevname(bio->bi_bdev,b));
  2674. }
  2675. generic_make_request(bio);
  2676. }
  2677. EXPORT_SYMBOL(submit_bio);
  2678. static void blk_recalc_rq_segments(struct request *rq)
  2679. {
  2680. struct bio *bio, *prevbio = NULL;
  2681. int nr_phys_segs, nr_hw_segs;
  2682. unsigned int phys_size, hw_size;
  2683. request_queue_t *q = rq->q;
  2684. if (!rq->bio)
  2685. return;
  2686. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2687. rq_for_each_bio(bio, rq) {
  2688. /* Force bio hw/phys segs to be recalculated. */
  2689. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2690. nr_phys_segs += bio_phys_segments(q, bio);
  2691. nr_hw_segs += bio_hw_segments(q, bio);
  2692. if (prevbio) {
  2693. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2694. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2695. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2696. pseg <= q->max_segment_size) {
  2697. nr_phys_segs--;
  2698. phys_size += prevbio->bi_size + bio->bi_size;
  2699. } else
  2700. phys_size = 0;
  2701. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2702. hseg <= q->max_segment_size) {
  2703. nr_hw_segs--;
  2704. hw_size += prevbio->bi_size + bio->bi_size;
  2705. } else
  2706. hw_size = 0;
  2707. }
  2708. prevbio = bio;
  2709. }
  2710. rq->nr_phys_segments = nr_phys_segs;
  2711. rq->nr_hw_segments = nr_hw_segs;
  2712. }
  2713. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2714. {
  2715. if (blk_fs_request(rq)) {
  2716. rq->hard_sector += nsect;
  2717. rq->hard_nr_sectors -= nsect;
  2718. /*
  2719. * Move the I/O submission pointers ahead if required.
  2720. */
  2721. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2722. (rq->sector <= rq->hard_sector)) {
  2723. rq->sector = rq->hard_sector;
  2724. rq->nr_sectors = rq->hard_nr_sectors;
  2725. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2726. rq->current_nr_sectors = rq->hard_cur_sectors;
  2727. rq->buffer = bio_data(rq->bio);
  2728. }
  2729. /*
  2730. * if total number of sectors is less than the first segment
  2731. * size, something has gone terribly wrong
  2732. */
  2733. if (rq->nr_sectors < rq->current_nr_sectors) {
  2734. printk("blk: request botched\n");
  2735. rq->nr_sectors = rq->current_nr_sectors;
  2736. }
  2737. }
  2738. }
  2739. static int __end_that_request_first(struct request *req, int uptodate,
  2740. int nr_bytes)
  2741. {
  2742. int total_bytes, bio_nbytes, error, next_idx = 0;
  2743. struct bio *bio;
  2744. blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
  2745. /*
  2746. * extend uptodate bool to allow < 0 value to be direct io error
  2747. */
  2748. error = 0;
  2749. if (end_io_error(uptodate))
  2750. error = !uptodate ? -EIO : uptodate;
  2751. /*
  2752. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2753. * sense key with us all the way through
  2754. */
  2755. if (!blk_pc_request(req))
  2756. req->errors = 0;
  2757. if (!uptodate) {
  2758. if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
  2759. printk("end_request: I/O error, dev %s, sector %llu\n",
  2760. req->rq_disk ? req->rq_disk->disk_name : "?",
  2761. (unsigned long long)req->sector);
  2762. }
  2763. if (blk_fs_request(req) && req->rq_disk) {
  2764. const int rw = rq_data_dir(req);
  2765. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2766. }
  2767. total_bytes = bio_nbytes = 0;
  2768. while ((bio = req->bio) != NULL) {
  2769. int nbytes;
  2770. if (nr_bytes >= bio->bi_size) {
  2771. req->bio = bio->bi_next;
  2772. nbytes = bio->bi_size;
  2773. if (!ordered_bio_endio(req, bio, nbytes, error))
  2774. bio_endio(bio, nbytes, error);
  2775. next_idx = 0;
  2776. bio_nbytes = 0;
  2777. } else {
  2778. int idx = bio->bi_idx + next_idx;
  2779. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2780. blk_dump_rq_flags(req, "__end_that");
  2781. printk("%s: bio idx %d >= vcnt %d\n",
  2782. __FUNCTION__,
  2783. bio->bi_idx, bio->bi_vcnt);
  2784. break;
  2785. }
  2786. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2787. BIO_BUG_ON(nbytes > bio->bi_size);
  2788. /*
  2789. * not a complete bvec done
  2790. */
  2791. if (unlikely(nbytes > nr_bytes)) {
  2792. bio_nbytes += nr_bytes;
  2793. total_bytes += nr_bytes;
  2794. break;
  2795. }
  2796. /*
  2797. * advance to the next vector
  2798. */
  2799. next_idx++;
  2800. bio_nbytes += nbytes;
  2801. }
  2802. total_bytes += nbytes;
  2803. nr_bytes -= nbytes;
  2804. if ((bio = req->bio)) {
  2805. /*
  2806. * end more in this run, or just return 'not-done'
  2807. */
  2808. if (unlikely(nr_bytes <= 0))
  2809. break;
  2810. }
  2811. }
  2812. /*
  2813. * completely done
  2814. */
  2815. if (!req->bio)
  2816. return 0;
  2817. /*
  2818. * if the request wasn't completed, update state
  2819. */
  2820. if (bio_nbytes) {
  2821. if (!ordered_bio_endio(req, bio, bio_nbytes, error))
  2822. bio_endio(bio, bio_nbytes, error);
  2823. bio->bi_idx += next_idx;
  2824. bio_iovec(bio)->bv_offset += nr_bytes;
  2825. bio_iovec(bio)->bv_len -= nr_bytes;
  2826. }
  2827. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2828. blk_recalc_rq_segments(req);
  2829. return 1;
  2830. }
  2831. /**
  2832. * end_that_request_first - end I/O on a request
  2833. * @req: the request being processed
  2834. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2835. * @nr_sectors: number of sectors to end I/O on
  2836. *
  2837. * Description:
  2838. * Ends I/O on a number of sectors attached to @req, and sets it up
  2839. * for the next range of segments (if any) in the cluster.
  2840. *
  2841. * Return:
  2842. * 0 - we are done with this request, call end_that_request_last()
  2843. * 1 - still buffers pending for this request
  2844. **/
  2845. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2846. {
  2847. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2848. }
  2849. EXPORT_SYMBOL(end_that_request_first);
  2850. /**
  2851. * end_that_request_chunk - end I/O on a request
  2852. * @req: the request being processed
  2853. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2854. * @nr_bytes: number of bytes to complete
  2855. *
  2856. * Description:
  2857. * Ends I/O on a number of bytes attached to @req, and sets it up
  2858. * for the next range of segments (if any). Like end_that_request_first(),
  2859. * but deals with bytes instead of sectors.
  2860. *
  2861. * Return:
  2862. * 0 - we are done with this request, call end_that_request_last()
  2863. * 1 - still buffers pending for this request
  2864. **/
  2865. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2866. {
  2867. return __end_that_request_first(req, uptodate, nr_bytes);
  2868. }
  2869. EXPORT_SYMBOL(end_that_request_chunk);
  2870. /*
  2871. * splice the completion data to a local structure and hand off to
  2872. * process_completion_queue() to complete the requests
  2873. */
  2874. static void blk_done_softirq(struct softirq_action *h)
  2875. {
  2876. struct list_head *cpu_list, local_list;
  2877. local_irq_disable();
  2878. cpu_list = &__get_cpu_var(blk_cpu_done);
  2879. list_replace_init(cpu_list, &local_list);
  2880. local_irq_enable();
  2881. while (!list_empty(&local_list)) {
  2882. struct request *rq = list_entry(local_list.next, struct request, donelist);
  2883. list_del_init(&rq->donelist);
  2884. rq->q->softirq_done_fn(rq);
  2885. }
  2886. }
  2887. #ifdef CONFIG_HOTPLUG_CPU
  2888. static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
  2889. void *hcpu)
  2890. {
  2891. /*
  2892. * If a CPU goes away, splice its entries to the current CPU
  2893. * and trigger a run of the softirq
  2894. */
  2895. if (action == CPU_DEAD) {
  2896. int cpu = (unsigned long) hcpu;
  2897. local_irq_disable();
  2898. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  2899. &__get_cpu_var(blk_cpu_done));
  2900. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2901. local_irq_enable();
  2902. }
  2903. return NOTIFY_OK;
  2904. }
  2905. static struct notifier_block __devinitdata blk_cpu_notifier = {
  2906. .notifier_call = blk_cpu_notify,
  2907. };
  2908. #endif /* CONFIG_HOTPLUG_CPU */
  2909. /**
  2910. * blk_complete_request - end I/O on a request
  2911. * @req: the request being processed
  2912. *
  2913. * Description:
  2914. * Ends all I/O on a request. It does not handle partial completions,
  2915. * unless the driver actually implements this in its completion callback
  2916. * through requeueing. Theh actual completion happens out-of-order,
  2917. * through a softirq handler. The user must have registered a completion
  2918. * callback through blk_queue_softirq_done().
  2919. **/
  2920. void blk_complete_request(struct request *req)
  2921. {
  2922. struct list_head *cpu_list;
  2923. unsigned long flags;
  2924. BUG_ON(!req->q->softirq_done_fn);
  2925. local_irq_save(flags);
  2926. cpu_list = &__get_cpu_var(blk_cpu_done);
  2927. list_add_tail(&req->donelist, cpu_list);
  2928. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2929. local_irq_restore(flags);
  2930. }
  2931. EXPORT_SYMBOL(blk_complete_request);
  2932. /*
  2933. * queue lock must be held
  2934. */
  2935. void end_that_request_last(struct request *req, int uptodate)
  2936. {
  2937. struct gendisk *disk = req->rq_disk;
  2938. int error;
  2939. /*
  2940. * extend uptodate bool to allow < 0 value to be direct io error
  2941. */
  2942. error = 0;
  2943. if (end_io_error(uptodate))
  2944. error = !uptodate ? -EIO : uptodate;
  2945. if (unlikely(laptop_mode) && blk_fs_request(req))
  2946. laptop_io_completion();
  2947. /*
  2948. * Account IO completion. bar_rq isn't accounted as a normal
  2949. * IO on queueing nor completion. Accounting the containing
  2950. * request is enough.
  2951. */
  2952. if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
  2953. unsigned long duration = jiffies - req->start_time;
  2954. const int rw = rq_data_dir(req);
  2955. __disk_stat_inc(disk, ios[rw]);
  2956. __disk_stat_add(disk, ticks[rw], duration);
  2957. disk_round_stats(disk);
  2958. disk->in_flight--;
  2959. }
  2960. if (req->end_io)
  2961. req->end_io(req, error);
  2962. else
  2963. __blk_put_request(req->q, req);
  2964. }
  2965. EXPORT_SYMBOL(end_that_request_last);
  2966. void end_request(struct request *req, int uptodate)
  2967. {
  2968. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2969. add_disk_randomness(req->rq_disk);
  2970. blkdev_dequeue_request(req);
  2971. end_that_request_last(req, uptodate);
  2972. }
  2973. }
  2974. EXPORT_SYMBOL(end_request);
  2975. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2976. {
  2977. /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
  2978. rq->cmd_flags |= (bio->bi_rw & 3);
  2979. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2980. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2981. rq->current_nr_sectors = bio_cur_sectors(bio);
  2982. rq->hard_cur_sectors = rq->current_nr_sectors;
  2983. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2984. rq->buffer = bio_data(bio);
  2985. rq->bio = rq->biotail = bio;
  2986. }
  2987. EXPORT_SYMBOL(blk_rq_bio_prep);
  2988. int kblockd_schedule_work(struct work_struct *work)
  2989. {
  2990. return queue_work(kblockd_workqueue, work);
  2991. }
  2992. EXPORT_SYMBOL(kblockd_schedule_work);
  2993. void kblockd_flush(void)
  2994. {
  2995. flush_workqueue(kblockd_workqueue);
  2996. }
  2997. EXPORT_SYMBOL(kblockd_flush);
  2998. int __init blk_dev_init(void)
  2999. {
  3000. int i;
  3001. kblockd_workqueue = create_workqueue("kblockd");
  3002. if (!kblockd_workqueue)
  3003. panic("Failed to create kblockd\n");
  3004. request_cachep = kmem_cache_create("blkdev_requests",
  3005. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  3006. requestq_cachep = kmem_cache_create("blkdev_queue",
  3007. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  3008. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  3009. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  3010. for_each_possible_cpu(i)
  3011. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  3012. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  3013. register_hotcpu_notifier(&blk_cpu_notifier);
  3014. blk_max_low_pfn = max_low_pfn;
  3015. blk_max_pfn = max_pfn;
  3016. return 0;
  3017. }
  3018. /*
  3019. * IO Context helper functions
  3020. */
  3021. void put_io_context(struct io_context *ioc)
  3022. {
  3023. if (ioc == NULL)
  3024. return;
  3025. BUG_ON(atomic_read(&ioc->refcount) == 0);
  3026. if (atomic_dec_and_test(&ioc->refcount)) {
  3027. struct cfq_io_context *cic;
  3028. rcu_read_lock();
  3029. if (ioc->aic && ioc->aic->dtor)
  3030. ioc->aic->dtor(ioc->aic);
  3031. if (ioc->cic_root.rb_node != NULL) {
  3032. struct rb_node *n = rb_first(&ioc->cic_root);
  3033. cic = rb_entry(n, struct cfq_io_context, rb_node);
  3034. cic->dtor(ioc);
  3035. }
  3036. rcu_read_unlock();
  3037. kmem_cache_free(iocontext_cachep, ioc);
  3038. }
  3039. }
  3040. EXPORT_SYMBOL(put_io_context);
  3041. /* Called by the exitting task */
  3042. void exit_io_context(void)
  3043. {
  3044. unsigned long flags;
  3045. struct io_context *ioc;
  3046. struct cfq_io_context *cic;
  3047. local_irq_save(flags);
  3048. task_lock(current);
  3049. ioc = current->io_context;
  3050. current->io_context = NULL;
  3051. ioc->task = NULL;
  3052. task_unlock(current);
  3053. local_irq_restore(flags);
  3054. if (ioc->aic && ioc->aic->exit)
  3055. ioc->aic->exit(ioc->aic);
  3056. if (ioc->cic_root.rb_node != NULL) {
  3057. cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
  3058. cic->exit(ioc);
  3059. }
  3060. put_io_context(ioc);
  3061. }
  3062. /*
  3063. * If the current task has no IO context then create one and initialise it.
  3064. * Otherwise, return its existing IO context.
  3065. *
  3066. * This returned IO context doesn't have a specifically elevated refcount,
  3067. * but since the current task itself holds a reference, the context can be
  3068. * used in general code, so long as it stays within `current` context.
  3069. */
  3070. struct io_context *current_io_context(gfp_t gfp_flags)
  3071. {
  3072. struct task_struct *tsk = current;
  3073. struct io_context *ret;
  3074. ret = tsk->io_context;
  3075. if (likely(ret))
  3076. return ret;
  3077. ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
  3078. if (ret) {
  3079. atomic_set(&ret->refcount, 1);
  3080. ret->task = current;
  3081. ret->set_ioprio = NULL;
  3082. ret->last_waited = jiffies; /* doesn't matter... */
  3083. ret->nr_batch_requests = 0; /* because this is 0 */
  3084. ret->aic = NULL;
  3085. ret->cic_root.rb_node = NULL;
  3086. /* make sure set_task_ioprio() sees the settings above */
  3087. smp_wmb();
  3088. tsk->io_context = ret;
  3089. }
  3090. return ret;
  3091. }
  3092. EXPORT_SYMBOL(current_io_context);
  3093. /*
  3094. * If the current task has no IO context then create one and initialise it.
  3095. * If it does have a context, take a ref on it.
  3096. *
  3097. * This is always called in the context of the task which submitted the I/O.
  3098. */
  3099. struct io_context *get_io_context(gfp_t gfp_flags)
  3100. {
  3101. struct io_context *ret;
  3102. ret = current_io_context(gfp_flags);
  3103. if (likely(ret))
  3104. atomic_inc(&ret->refcount);
  3105. return ret;
  3106. }
  3107. EXPORT_SYMBOL(get_io_context);
  3108. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3109. {
  3110. struct io_context *src = *psrc;
  3111. struct io_context *dst = *pdst;
  3112. if (src) {
  3113. BUG_ON(atomic_read(&src->refcount) == 0);
  3114. atomic_inc(&src->refcount);
  3115. put_io_context(dst);
  3116. *pdst = src;
  3117. }
  3118. }
  3119. EXPORT_SYMBOL(copy_io_context);
  3120. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3121. {
  3122. struct io_context *temp;
  3123. temp = *ioc1;
  3124. *ioc1 = *ioc2;
  3125. *ioc2 = temp;
  3126. }
  3127. EXPORT_SYMBOL(swap_io_context);
  3128. /*
  3129. * sysfs parts below
  3130. */
  3131. struct queue_sysfs_entry {
  3132. struct attribute attr;
  3133. ssize_t (*show)(struct request_queue *, char *);
  3134. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3135. };
  3136. static ssize_t
  3137. queue_var_show(unsigned int var, char *page)
  3138. {
  3139. return sprintf(page, "%d\n", var);
  3140. }
  3141. static ssize_t
  3142. queue_var_store(unsigned long *var, const char *page, size_t count)
  3143. {
  3144. char *p = (char *) page;
  3145. *var = simple_strtoul(p, &p, 10);
  3146. return count;
  3147. }
  3148. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3149. {
  3150. return queue_var_show(q->nr_requests, (page));
  3151. }
  3152. static ssize_t
  3153. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3154. {
  3155. struct request_list *rl = &q->rq;
  3156. unsigned long nr;
  3157. int ret = queue_var_store(&nr, page, count);
  3158. if (nr < BLKDEV_MIN_RQ)
  3159. nr = BLKDEV_MIN_RQ;
  3160. spin_lock_irq(q->queue_lock);
  3161. q->nr_requests = nr;
  3162. blk_queue_congestion_threshold(q);
  3163. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3164. set_queue_congested(q, READ);
  3165. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3166. clear_queue_congested(q, READ);
  3167. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3168. set_queue_congested(q, WRITE);
  3169. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3170. clear_queue_congested(q, WRITE);
  3171. if (rl->count[READ] >= q->nr_requests) {
  3172. blk_set_queue_full(q, READ);
  3173. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3174. blk_clear_queue_full(q, READ);
  3175. wake_up(&rl->wait[READ]);
  3176. }
  3177. if (rl->count[WRITE] >= q->nr_requests) {
  3178. blk_set_queue_full(q, WRITE);
  3179. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3180. blk_clear_queue_full(q, WRITE);
  3181. wake_up(&rl->wait[WRITE]);
  3182. }
  3183. spin_unlock_irq(q->queue_lock);
  3184. return ret;
  3185. }
  3186. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3187. {
  3188. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3189. return queue_var_show(ra_kb, (page));
  3190. }
  3191. static ssize_t
  3192. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3193. {
  3194. unsigned long ra_kb;
  3195. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3196. spin_lock_irq(q->queue_lock);
  3197. if (ra_kb > (q->max_sectors >> 1))
  3198. ra_kb = (q->max_sectors >> 1);
  3199. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3200. spin_unlock_irq(q->queue_lock);
  3201. return ret;
  3202. }
  3203. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3204. {
  3205. int max_sectors_kb = q->max_sectors >> 1;
  3206. return queue_var_show(max_sectors_kb, (page));
  3207. }
  3208. static ssize_t
  3209. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3210. {
  3211. unsigned long max_sectors_kb,
  3212. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3213. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3214. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3215. int ra_kb;
  3216. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3217. return -EINVAL;
  3218. /*
  3219. * Take the queue lock to update the readahead and max_sectors
  3220. * values synchronously:
  3221. */
  3222. spin_lock_irq(q->queue_lock);
  3223. /*
  3224. * Trim readahead window as well, if necessary:
  3225. */
  3226. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3227. if (ra_kb > max_sectors_kb)
  3228. q->backing_dev_info.ra_pages =
  3229. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  3230. q->max_sectors = max_sectors_kb << 1;
  3231. spin_unlock_irq(q->queue_lock);
  3232. return ret;
  3233. }
  3234. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3235. {
  3236. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3237. return queue_var_show(max_hw_sectors_kb, (page));
  3238. }
  3239. static struct queue_sysfs_entry queue_requests_entry = {
  3240. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3241. .show = queue_requests_show,
  3242. .store = queue_requests_store,
  3243. };
  3244. static struct queue_sysfs_entry queue_ra_entry = {
  3245. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3246. .show = queue_ra_show,
  3247. .store = queue_ra_store,
  3248. };
  3249. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3250. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3251. .show = queue_max_sectors_show,
  3252. .store = queue_max_sectors_store,
  3253. };
  3254. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3255. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3256. .show = queue_max_hw_sectors_show,
  3257. };
  3258. static struct queue_sysfs_entry queue_iosched_entry = {
  3259. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3260. .show = elv_iosched_show,
  3261. .store = elv_iosched_store,
  3262. };
  3263. static struct attribute *default_attrs[] = {
  3264. &queue_requests_entry.attr,
  3265. &queue_ra_entry.attr,
  3266. &queue_max_hw_sectors_entry.attr,
  3267. &queue_max_sectors_entry.attr,
  3268. &queue_iosched_entry.attr,
  3269. NULL,
  3270. };
  3271. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3272. static ssize_t
  3273. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3274. {
  3275. struct queue_sysfs_entry *entry = to_queue(attr);
  3276. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  3277. ssize_t res;
  3278. if (!entry->show)
  3279. return -EIO;
  3280. mutex_lock(&q->sysfs_lock);
  3281. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3282. mutex_unlock(&q->sysfs_lock);
  3283. return -ENOENT;
  3284. }
  3285. res = entry->show(q, page);
  3286. mutex_unlock(&q->sysfs_lock);
  3287. return res;
  3288. }
  3289. static ssize_t
  3290. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3291. const char *page, size_t length)
  3292. {
  3293. struct queue_sysfs_entry *entry = to_queue(attr);
  3294. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  3295. ssize_t res;
  3296. if (!entry->store)
  3297. return -EIO;
  3298. mutex_lock(&q->sysfs_lock);
  3299. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3300. mutex_unlock(&q->sysfs_lock);
  3301. return -ENOENT;
  3302. }
  3303. res = entry->store(q, page, length);
  3304. mutex_unlock(&q->sysfs_lock);
  3305. return res;
  3306. }
  3307. static struct sysfs_ops queue_sysfs_ops = {
  3308. .show = queue_attr_show,
  3309. .store = queue_attr_store,
  3310. };
  3311. static struct kobj_type queue_ktype = {
  3312. .sysfs_ops = &queue_sysfs_ops,
  3313. .default_attrs = default_attrs,
  3314. .release = blk_release_queue,
  3315. };
  3316. int blk_register_queue(struct gendisk *disk)
  3317. {
  3318. int ret;
  3319. request_queue_t *q = disk->queue;
  3320. if (!q || !q->request_fn)
  3321. return -ENXIO;
  3322. q->kobj.parent = kobject_get(&disk->kobj);
  3323. ret = kobject_add(&q->kobj);
  3324. if (ret < 0)
  3325. return ret;
  3326. kobject_uevent(&q->kobj, KOBJ_ADD);
  3327. ret = elv_register_queue(q);
  3328. if (ret) {
  3329. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3330. kobject_del(&q->kobj);
  3331. return ret;
  3332. }
  3333. return 0;
  3334. }
  3335. void blk_unregister_queue(struct gendisk *disk)
  3336. {
  3337. request_queue_t *q = disk->queue;
  3338. if (q && q->request_fn) {
  3339. elv_unregister_queue(q);
  3340. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3341. kobject_del(&q->kobj);
  3342. kobject_put(&disk->kobj);
  3343. }
  3344. }