eeprom_4k.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "ar9002_phy.h"
  18. static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
  19. {
  20. return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
  21. }
  22. static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
  23. {
  24. return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
  25. }
  26. static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  27. {
  28. #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  29. struct ath_common *common = ath9k_hw_common(ah);
  30. u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  31. int addr, eep_start_loc = 0;
  32. eep_start_loc = 64;
  33. if (!ath9k_hw_use_flash(ah)) {
  34. ath_print(common, ATH_DBG_EEPROM,
  35. "Reading from EEPROM, not flash\n");
  36. }
  37. for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  38. if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
  39. ath_print(common, ATH_DBG_EEPROM,
  40. "Unable to read eeprom region\n");
  41. return false;
  42. }
  43. eep_data++;
  44. }
  45. return true;
  46. #undef SIZE_EEPROM_4K
  47. }
  48. static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
  49. {
  50. #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  51. struct ath_common *common = ath9k_hw_common(ah);
  52. struct ar5416_eeprom_4k *eep =
  53. (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
  54. u16 *eepdata, temp, magic, magic2;
  55. u32 sum = 0, el;
  56. bool need_swap = false;
  57. int i, addr;
  58. if (!ath9k_hw_use_flash(ah)) {
  59. if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  60. &magic)) {
  61. ath_print(common, ATH_DBG_FATAL,
  62. "Reading Magic # failed\n");
  63. return false;
  64. }
  65. ath_print(common, ATH_DBG_EEPROM,
  66. "Read Magic = 0x%04X\n", magic);
  67. if (magic != AR5416_EEPROM_MAGIC) {
  68. magic2 = swab16(magic);
  69. if (magic2 == AR5416_EEPROM_MAGIC) {
  70. need_swap = true;
  71. eepdata = (u16 *) (&ah->eeprom);
  72. for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
  73. temp = swab16(*eepdata);
  74. *eepdata = temp;
  75. eepdata++;
  76. }
  77. } else {
  78. ath_print(common, ATH_DBG_FATAL,
  79. "Invalid EEPROM Magic. "
  80. "endianness mismatch.\n");
  81. return -EINVAL;
  82. }
  83. }
  84. }
  85. ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
  86. need_swap ? "True" : "False");
  87. if (need_swap)
  88. el = swab16(ah->eeprom.map4k.baseEepHeader.length);
  89. else
  90. el = ah->eeprom.map4k.baseEepHeader.length;
  91. if (el > sizeof(struct ar5416_eeprom_4k))
  92. el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
  93. else
  94. el = el / sizeof(u16);
  95. eepdata = (u16 *)(&ah->eeprom);
  96. for (i = 0; i < el; i++)
  97. sum ^= *eepdata++;
  98. if (need_swap) {
  99. u32 integer;
  100. u16 word;
  101. ath_print(common, ATH_DBG_EEPROM,
  102. "EEPROM Endianness is not native.. Changing\n");
  103. word = swab16(eep->baseEepHeader.length);
  104. eep->baseEepHeader.length = word;
  105. word = swab16(eep->baseEepHeader.checksum);
  106. eep->baseEepHeader.checksum = word;
  107. word = swab16(eep->baseEepHeader.version);
  108. eep->baseEepHeader.version = word;
  109. word = swab16(eep->baseEepHeader.regDmn[0]);
  110. eep->baseEepHeader.regDmn[0] = word;
  111. word = swab16(eep->baseEepHeader.regDmn[1]);
  112. eep->baseEepHeader.regDmn[1] = word;
  113. word = swab16(eep->baseEepHeader.rfSilent);
  114. eep->baseEepHeader.rfSilent = word;
  115. word = swab16(eep->baseEepHeader.blueToothOptions);
  116. eep->baseEepHeader.blueToothOptions = word;
  117. word = swab16(eep->baseEepHeader.deviceCap);
  118. eep->baseEepHeader.deviceCap = word;
  119. integer = swab32(eep->modalHeader.antCtrlCommon);
  120. eep->modalHeader.antCtrlCommon = integer;
  121. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  122. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  123. eep->modalHeader.antCtrlChain[i] = integer;
  124. }
  125. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  126. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  127. eep->modalHeader.spurChans[i].spurChan = word;
  128. }
  129. }
  130. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  131. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  132. ath_print(common, ATH_DBG_FATAL,
  133. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  134. sum, ah->eep_ops->get_eeprom_ver(ah));
  135. return -EINVAL;
  136. }
  137. return 0;
  138. #undef EEPROM_4K_SIZE
  139. }
  140. static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
  141. enum eeprom_param param)
  142. {
  143. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  144. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  145. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  146. switch (param) {
  147. case EEP_NFTHRESH_2:
  148. return pModal->noiseFloorThreshCh[0];
  149. case EEP_MAC_LSW:
  150. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  151. case EEP_MAC_MID:
  152. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  153. case EEP_MAC_MSW:
  154. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  155. case EEP_REG_0:
  156. return pBase->regDmn[0];
  157. case EEP_REG_1:
  158. return pBase->regDmn[1];
  159. case EEP_OP_CAP:
  160. return pBase->deviceCap;
  161. case EEP_OP_MODE:
  162. return pBase->opCapFlags;
  163. case EEP_RF_SILENT:
  164. return pBase->rfSilent;
  165. case EEP_OB_2:
  166. return pModal->ob_0;
  167. case EEP_DB_2:
  168. return pModal->db1_1;
  169. case EEP_MINOR_REV:
  170. return pBase->version & AR5416_EEP_VER_MINOR_MASK;
  171. case EEP_TX_MASK:
  172. return pBase->txMask;
  173. case EEP_RX_MASK:
  174. return pBase->rxMask;
  175. case EEP_FRAC_N_5G:
  176. return 0;
  177. case EEP_PWR_TABLE_OFFSET:
  178. return AR5416_PWR_TABLE_OFFSET_DB;
  179. default:
  180. return 0;
  181. }
  182. }
  183. static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
  184. struct ath9k_channel *chan,
  185. struct cal_data_per_freq_4k *pRawDataSet,
  186. u8 *bChans, u16 availPiers,
  187. u16 tPdGainOverlap, int16_t *pMinCalPower,
  188. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  189. u16 numXpdGains)
  190. {
  191. #define TMP_VAL_VPD_TABLE \
  192. ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
  193. int i, j, k;
  194. int16_t ss;
  195. u16 idxL = 0, idxR = 0, numPiers;
  196. static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
  197. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  198. static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
  199. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  200. static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
  201. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  202. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  203. u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  204. u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  205. int16_t vpdStep;
  206. int16_t tmpVal;
  207. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  208. bool match;
  209. int16_t minDelta = 0;
  210. struct chan_centers centers;
  211. #define PD_GAIN_BOUNDARY_DEFAULT 58;
  212. ath9k_hw_get_channel_centers(ah, chan, &centers);
  213. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  214. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  215. break;
  216. }
  217. match = ath9k_hw_get_lower_upper_index(
  218. (u8)FREQ2FBIN(centers.synth_center,
  219. IS_CHAN_2GHZ(chan)), bChans, numPiers,
  220. &idxL, &idxR);
  221. if (match) {
  222. for (i = 0; i < numXpdGains; i++) {
  223. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  224. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  225. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  226. pRawDataSet[idxL].pwrPdg[i],
  227. pRawDataSet[idxL].vpdPdg[i],
  228. AR5416_EEP4K_PD_GAIN_ICEPTS,
  229. vpdTableI[i]);
  230. }
  231. } else {
  232. for (i = 0; i < numXpdGains; i++) {
  233. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  234. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  235. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  236. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  237. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  238. maxPwrT4[i] =
  239. min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
  240. pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
  241. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  242. pPwrL, pVpdL,
  243. AR5416_EEP4K_PD_GAIN_ICEPTS,
  244. vpdTableL[i]);
  245. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  246. pPwrR, pVpdR,
  247. AR5416_EEP4K_PD_GAIN_ICEPTS,
  248. vpdTableR[i]);
  249. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  250. vpdTableI[i][j] =
  251. (u8)(ath9k_hw_interpolate((u16)
  252. FREQ2FBIN(centers.
  253. synth_center,
  254. IS_CHAN_2GHZ
  255. (chan)),
  256. bChans[idxL], bChans[idxR],
  257. vpdTableL[i][j], vpdTableR[i][j]));
  258. }
  259. }
  260. }
  261. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  262. k = 0;
  263. for (i = 0; i < numXpdGains; i++) {
  264. if (i == (numXpdGains - 1))
  265. pPdGainBoundaries[i] =
  266. (u16)(maxPwrT4[i] / 2);
  267. else
  268. pPdGainBoundaries[i] =
  269. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  270. pPdGainBoundaries[i] =
  271. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  272. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  273. minDelta = pPdGainBoundaries[0] - 23;
  274. pPdGainBoundaries[0] = 23;
  275. } else {
  276. minDelta = 0;
  277. }
  278. if (i == 0) {
  279. if (AR_SREV_9280_10_OR_LATER(ah))
  280. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  281. else
  282. ss = 0;
  283. } else {
  284. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  285. (minPwrT4[i] / 2)) -
  286. tPdGainOverlap + 1 + minDelta);
  287. }
  288. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  289. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  290. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  291. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  292. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  293. ss++;
  294. }
  295. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  296. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  297. (minPwrT4[i] / 2));
  298. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  299. tgtIndex : sizeCurrVpdTable;
  300. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
  301. pPDADCValues[k++] = vpdTableI[i][ss++];
  302. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  303. vpdTableI[i][sizeCurrVpdTable - 2]);
  304. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  305. if (tgtIndex >= maxIndex) {
  306. while ((ss <= tgtIndex) &&
  307. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  308. tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
  309. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  310. 255 : tmpVal);
  311. ss++;
  312. }
  313. }
  314. }
  315. while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
  316. pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
  317. i++;
  318. }
  319. while (k < AR5416_NUM_PDADC_VALUES) {
  320. pPDADCValues[k] = pPDADCValues[k - 1];
  321. k++;
  322. }
  323. return;
  324. #undef TMP_VAL_VPD_TABLE
  325. }
  326. static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
  327. struct ath9k_channel *chan,
  328. int16_t *pTxPowerIndexOffset)
  329. {
  330. struct ath_common *common = ath9k_hw_common(ah);
  331. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  332. struct cal_data_per_freq_4k *pRawDataset;
  333. u8 *pCalBChans = NULL;
  334. u16 pdGainOverlap_t2;
  335. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  336. u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
  337. u16 numPiers, i, j;
  338. int16_t tMinCalPower;
  339. u16 numXpdGain, xpdMask;
  340. u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
  341. u32 reg32, regOffset, regChainOffset;
  342. xpdMask = pEepData->modalHeader.xpdGain;
  343. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  344. AR5416_EEP_MINOR_VER_2) {
  345. pdGainOverlap_t2 =
  346. pEepData->modalHeader.pdGainOverlap;
  347. } else {
  348. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  349. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  350. }
  351. pCalBChans = pEepData->calFreqPier2G;
  352. numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
  353. numXpdGain = 0;
  354. for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
  355. if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
  356. if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
  357. break;
  358. xpdGainValues[numXpdGain] =
  359. (u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
  360. numXpdGain++;
  361. }
  362. }
  363. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  364. (numXpdGain - 1) & 0x3);
  365. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  366. xpdGainValues[0]);
  367. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  368. xpdGainValues[1]);
  369. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
  370. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  371. if (AR_SREV_5416_20_OR_LATER(ah) &&
  372. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  373. (i != 0)) {
  374. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  375. } else
  376. regChainOffset = i * 0x1000;
  377. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  378. pRawDataset = pEepData->calPierData2G[i];
  379. ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
  380. pRawDataset, pCalBChans,
  381. numPiers, pdGainOverlap_t2,
  382. &tMinCalPower, gainBoundaries,
  383. pdadcValues, numXpdGain);
  384. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
  385. REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
  386. SM(pdGainOverlap_t2,
  387. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  388. | SM(gainBoundaries[0],
  389. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  390. | SM(gainBoundaries[1],
  391. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  392. | SM(gainBoundaries[2],
  393. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  394. | SM(gainBoundaries[3],
  395. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  396. }
  397. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  398. for (j = 0; j < 32; j++) {
  399. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  400. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  401. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  402. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  403. REG_WRITE(ah, regOffset, reg32);
  404. ath_print(common, ATH_DBG_EEPROM,
  405. "PDADC (%d,%4x): %4.4x %8.8x\n",
  406. i, regChainOffset, regOffset,
  407. reg32);
  408. ath_print(common, ATH_DBG_EEPROM,
  409. "PDADC: Chain %d | "
  410. "PDADC %3d Value %3d | "
  411. "PDADC %3d Value %3d | "
  412. "PDADC %3d Value %3d | "
  413. "PDADC %3d Value %3d |\n",
  414. i, 4 * j, pdadcValues[4 * j],
  415. 4 * j + 1, pdadcValues[4 * j + 1],
  416. 4 * j + 2, pdadcValues[4 * j + 2],
  417. 4 * j + 3,
  418. pdadcValues[4 * j + 3]);
  419. regOffset += 4;
  420. }
  421. }
  422. }
  423. *pTxPowerIndexOffset = 0;
  424. }
  425. static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
  426. struct ath9k_channel *chan,
  427. int16_t *ratesArray,
  428. u16 cfgCtl,
  429. u16 AntennaReduction,
  430. u16 twiceMaxRegulatoryPower,
  431. u16 powerLimit)
  432. {
  433. #define CMP_TEST_GRP \
  434. (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  435. pEepData->ctlIndex[i]) \
  436. || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  437. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  438. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  439. int i;
  440. int16_t twiceLargestAntenna;
  441. u16 twiceMinEdgePower;
  442. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  443. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  444. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  445. struct chan_centers centers;
  446. struct cal_ctl_data_4k *rep;
  447. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  448. static const u16 tpScaleReductionTable[5] =
  449. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  450. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  451. 0, { 0, 0, 0, 0}
  452. };
  453. struct cal_target_power_leg targetPowerOfdmExt = {
  454. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  455. 0, { 0, 0, 0, 0 }
  456. };
  457. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  458. 0, {0, 0, 0, 0}
  459. };
  460. u16 ctlModesFor11g[] =
  461. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  462. CTL_2GHT40
  463. };
  464. ath9k_hw_get_channel_centers(ah, chan, &centers);
  465. twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
  466. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  467. twiceLargestAntenna, 0);
  468. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  469. if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
  470. maxRegAllowedPower -=
  471. (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
  472. }
  473. scaledPower = min(powerLimit, maxRegAllowedPower);
  474. scaledPower = max((u16)0, scaledPower);
  475. numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  476. pCtlMode = ctlModesFor11g;
  477. ath9k_hw_get_legacy_target_powers(ah, chan,
  478. pEepData->calTargetPowerCck,
  479. AR5416_NUM_2G_CCK_TARGET_POWERS,
  480. &targetPowerCck, 4, false);
  481. ath9k_hw_get_legacy_target_powers(ah, chan,
  482. pEepData->calTargetPower2G,
  483. AR5416_NUM_2G_20_TARGET_POWERS,
  484. &targetPowerOfdm, 4, false);
  485. ath9k_hw_get_target_powers(ah, chan,
  486. pEepData->calTargetPower2GHT20,
  487. AR5416_NUM_2G_20_TARGET_POWERS,
  488. &targetPowerHt20, 8, false);
  489. if (IS_CHAN_HT40(chan)) {
  490. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  491. ath9k_hw_get_target_powers(ah, chan,
  492. pEepData->calTargetPower2GHT40,
  493. AR5416_NUM_2G_40_TARGET_POWERS,
  494. &targetPowerHt40, 8, true);
  495. ath9k_hw_get_legacy_target_powers(ah, chan,
  496. pEepData->calTargetPowerCck,
  497. AR5416_NUM_2G_CCK_TARGET_POWERS,
  498. &targetPowerCckExt, 4, true);
  499. ath9k_hw_get_legacy_target_powers(ah, chan,
  500. pEepData->calTargetPower2G,
  501. AR5416_NUM_2G_20_TARGET_POWERS,
  502. &targetPowerOfdmExt, 4, true);
  503. }
  504. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  505. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  506. (pCtlMode[ctlMode] == CTL_2GHT40);
  507. if (isHt40CtlMode)
  508. freq = centers.synth_center;
  509. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  510. freq = centers.ext_center;
  511. else
  512. freq = centers.ctl_center;
  513. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  514. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  515. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  516. for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
  517. pEepData->ctlIndex[i]; i++) {
  518. if (CMP_TEST_GRP) {
  519. rep = &(pEepData->ctlData[i]);
  520. twiceMinEdgePower = ath9k_hw_get_max_edge_power(
  521. freq,
  522. rep->ctlEdges[
  523. ar5416_get_ntxchains(ah->txchainmask) - 1],
  524. IS_CHAN_2GHZ(chan),
  525. AR5416_EEP4K_NUM_BAND_EDGES);
  526. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  527. twiceMaxEdgePower =
  528. min(twiceMaxEdgePower,
  529. twiceMinEdgePower);
  530. } else {
  531. twiceMaxEdgePower = twiceMinEdgePower;
  532. break;
  533. }
  534. }
  535. }
  536. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  537. switch (pCtlMode[ctlMode]) {
  538. case CTL_11B:
  539. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  540. targetPowerCck.tPow2x[i] =
  541. min((u16)targetPowerCck.tPow2x[i],
  542. minCtlPower);
  543. }
  544. break;
  545. case CTL_11G:
  546. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  547. targetPowerOfdm.tPow2x[i] =
  548. min((u16)targetPowerOfdm.tPow2x[i],
  549. minCtlPower);
  550. }
  551. break;
  552. case CTL_2GHT20:
  553. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  554. targetPowerHt20.tPow2x[i] =
  555. min((u16)targetPowerHt20.tPow2x[i],
  556. minCtlPower);
  557. }
  558. break;
  559. case CTL_11B_EXT:
  560. targetPowerCckExt.tPow2x[0] =
  561. min((u16)targetPowerCckExt.tPow2x[0],
  562. minCtlPower);
  563. break;
  564. case CTL_11G_EXT:
  565. targetPowerOfdmExt.tPow2x[0] =
  566. min((u16)targetPowerOfdmExt.tPow2x[0],
  567. minCtlPower);
  568. break;
  569. case CTL_2GHT40:
  570. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  571. targetPowerHt40.tPow2x[i] =
  572. min((u16)targetPowerHt40.tPow2x[i],
  573. minCtlPower);
  574. }
  575. break;
  576. default:
  577. break;
  578. }
  579. }
  580. ratesArray[rate6mb] =
  581. ratesArray[rate9mb] =
  582. ratesArray[rate12mb] =
  583. ratesArray[rate18mb] =
  584. ratesArray[rate24mb] =
  585. targetPowerOfdm.tPow2x[0];
  586. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  587. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  588. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  589. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  590. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  591. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  592. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  593. ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  594. ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  595. ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  596. if (IS_CHAN_HT40(chan)) {
  597. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  598. ratesArray[rateHt40_0 + i] =
  599. targetPowerHt40.tPow2x[i];
  600. }
  601. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  602. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  603. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  604. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  605. }
  606. #undef CMP_TEST_GRP
  607. }
  608. static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
  609. struct ath9k_channel *chan,
  610. u16 cfgCtl,
  611. u8 twiceAntennaReduction,
  612. u8 twiceMaxRegulatoryPower,
  613. u8 powerLimit)
  614. {
  615. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  616. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  617. struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
  618. int16_t ratesArray[Ar5416RateSize];
  619. int16_t txPowerIndexOffset = 0;
  620. u8 ht40PowerIncForPdadc = 2;
  621. int i;
  622. memset(ratesArray, 0, sizeof(ratesArray));
  623. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  624. AR5416_EEP_MINOR_VER_2) {
  625. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  626. }
  627. ath9k_hw_set_4k_power_per_rate_table(ah, chan,
  628. &ratesArray[0], cfgCtl,
  629. twiceAntennaReduction,
  630. twiceMaxRegulatoryPower,
  631. powerLimit);
  632. ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
  633. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  634. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  635. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  636. ratesArray[i] = AR5416_MAX_RATE_POWER;
  637. }
  638. /* Update regulatory */
  639. i = rate6mb;
  640. if (IS_CHAN_HT40(chan))
  641. i = rateHt40_0;
  642. else if (IS_CHAN_HT20(chan))
  643. i = rateHt20_0;
  644. regulatory->max_power_level = ratesArray[i];
  645. if (AR_SREV_9280_10_OR_LATER(ah)) {
  646. for (i = 0; i < Ar5416RateSize; i++)
  647. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
  648. }
  649. /* OFDM power per rate */
  650. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  651. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  652. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  653. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  654. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  655. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  656. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  657. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  658. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  659. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  660. /* CCK power per rate */
  661. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  662. ATH9K_POW_SM(ratesArray[rate2s], 24)
  663. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  664. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  665. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  666. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  667. ATH9K_POW_SM(ratesArray[rate11s], 24)
  668. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  669. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  670. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  671. /* HT20 power per rate */
  672. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  673. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  674. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  675. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  676. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  677. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  678. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  679. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  680. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  681. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  682. /* HT40 power per rate */
  683. if (IS_CHAN_HT40(chan)) {
  684. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  685. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  686. ht40PowerIncForPdadc, 24)
  687. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  688. ht40PowerIncForPdadc, 16)
  689. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  690. ht40PowerIncForPdadc, 8)
  691. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  692. ht40PowerIncForPdadc, 0));
  693. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  694. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  695. ht40PowerIncForPdadc, 24)
  696. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  697. ht40PowerIncForPdadc, 16)
  698. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  699. ht40PowerIncForPdadc, 8)
  700. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  701. ht40PowerIncForPdadc, 0));
  702. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  703. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  704. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  705. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  706. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  707. }
  708. }
  709. static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
  710. struct ath9k_channel *chan)
  711. {
  712. struct modal_eep_4k_header *pModal;
  713. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  714. u8 biaslevel;
  715. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  716. return;
  717. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  718. return;
  719. pModal = &eep->modalHeader;
  720. if (pModal->xpaBiasLvl != 0xff) {
  721. biaslevel = pModal->xpaBiasLvl;
  722. INI_RA(&ah->iniAddac, 7, 1) =
  723. (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
  724. }
  725. }
  726. static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
  727. struct modal_eep_4k_header *pModal,
  728. struct ar5416_eeprom_4k *eep,
  729. u8 txRxAttenLocal)
  730. {
  731. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
  732. pModal->antCtrlChain[0]);
  733. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
  734. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
  735. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  736. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  737. SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  738. SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  739. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  740. AR5416_EEP_MINOR_VER_3) {
  741. txRxAttenLocal = pModal->txRxAttenCh[0];
  742. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  743. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  744. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  745. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  746. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  747. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  748. pModal->xatten2Margin[0]);
  749. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  750. AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  751. /* Set the block 1 value to block 0 value */
  752. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  753. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  754. pModal->bswMargin[0]);
  755. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  756. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  757. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  758. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  759. pModal->xatten2Margin[0]);
  760. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  761. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  762. pModal->xatten2Db[0]);
  763. }
  764. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  765. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  766. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  767. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  768. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  769. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  770. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  771. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  772. if (AR_SREV_9285_11(ah))
  773. REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
  774. }
  775. /*
  776. * Read EEPROM header info and program the device for correct operation
  777. * given the channel value.
  778. */
  779. static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
  780. struct ath9k_channel *chan)
  781. {
  782. struct modal_eep_4k_header *pModal;
  783. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  784. u8 txRxAttenLocal;
  785. u8 ob[5], db1[5], db2[5];
  786. u8 ant_div_control1, ant_div_control2;
  787. u32 regVal;
  788. pModal = &eep->modalHeader;
  789. txRxAttenLocal = 23;
  790. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  791. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  792. /* Single chain for 4K EEPROM*/
  793. ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
  794. /* Initialize Ant Diversity settings from EEPROM */
  795. if (pModal->version >= 3) {
  796. ant_div_control1 = pModal->antdiv_ctl1;
  797. ant_div_control2 = pModal->antdiv_ctl2;
  798. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  799. regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
  800. regVal |= SM(ant_div_control1,
  801. AR_PHY_9285_ANT_DIV_CTL);
  802. regVal |= SM(ant_div_control2,
  803. AR_PHY_9285_ANT_DIV_ALT_LNACONF);
  804. regVal |= SM((ant_div_control2 >> 2),
  805. AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
  806. regVal |= SM((ant_div_control1 >> 1),
  807. AR_PHY_9285_ANT_DIV_ALT_GAINTB);
  808. regVal |= SM((ant_div_control1 >> 2),
  809. AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
  810. REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
  811. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  812. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  813. regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  814. regVal |= SM((ant_div_control1 >> 3),
  815. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  816. REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
  817. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  818. }
  819. if (pModal->version >= 2) {
  820. ob[0] = pModal->ob_0;
  821. ob[1] = pModal->ob_1;
  822. ob[2] = pModal->ob_2;
  823. ob[3] = pModal->ob_3;
  824. ob[4] = pModal->ob_4;
  825. db1[0] = pModal->db1_0;
  826. db1[1] = pModal->db1_1;
  827. db1[2] = pModal->db1_2;
  828. db1[3] = pModal->db1_3;
  829. db1[4] = pModal->db1_4;
  830. db2[0] = pModal->db2_0;
  831. db2[1] = pModal->db2_1;
  832. db2[2] = pModal->db2_2;
  833. db2[3] = pModal->db2_3;
  834. db2[4] = pModal->db2_4;
  835. } else if (pModal->version == 1) {
  836. ob[0] = pModal->ob_0;
  837. ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
  838. db1[0] = pModal->db1_0;
  839. db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
  840. db2[0] = pModal->db2_0;
  841. db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
  842. } else {
  843. int i;
  844. for (i = 0; i < 5; i++) {
  845. ob[i] = pModal->ob_0;
  846. db1[i] = pModal->db1_0;
  847. db2[i] = pModal->db1_0;
  848. }
  849. }
  850. if (AR_SREV_9271(ah)) {
  851. ath9k_hw_analog_shift_rmw(ah,
  852. AR9285_AN_RF2G3,
  853. AR9271_AN_RF2G3_OB_cck,
  854. AR9271_AN_RF2G3_OB_cck_S,
  855. ob[0]);
  856. ath9k_hw_analog_shift_rmw(ah,
  857. AR9285_AN_RF2G3,
  858. AR9271_AN_RF2G3_OB_psk,
  859. AR9271_AN_RF2G3_OB_psk_S,
  860. ob[1]);
  861. ath9k_hw_analog_shift_rmw(ah,
  862. AR9285_AN_RF2G3,
  863. AR9271_AN_RF2G3_OB_qam,
  864. AR9271_AN_RF2G3_OB_qam_S,
  865. ob[2]);
  866. ath9k_hw_analog_shift_rmw(ah,
  867. AR9285_AN_RF2G3,
  868. AR9271_AN_RF2G3_DB_1,
  869. AR9271_AN_RF2G3_DB_1_S,
  870. db1[0]);
  871. ath9k_hw_analog_shift_rmw(ah,
  872. AR9285_AN_RF2G4,
  873. AR9271_AN_RF2G4_DB_2,
  874. AR9271_AN_RF2G4_DB_2_S,
  875. db2[0]);
  876. } else {
  877. ath9k_hw_analog_shift_rmw(ah,
  878. AR9285_AN_RF2G3,
  879. AR9285_AN_RF2G3_OB_0,
  880. AR9285_AN_RF2G3_OB_0_S,
  881. ob[0]);
  882. ath9k_hw_analog_shift_rmw(ah,
  883. AR9285_AN_RF2G3,
  884. AR9285_AN_RF2G3_OB_1,
  885. AR9285_AN_RF2G3_OB_1_S,
  886. ob[1]);
  887. ath9k_hw_analog_shift_rmw(ah,
  888. AR9285_AN_RF2G3,
  889. AR9285_AN_RF2G3_OB_2,
  890. AR9285_AN_RF2G3_OB_2_S,
  891. ob[2]);
  892. ath9k_hw_analog_shift_rmw(ah,
  893. AR9285_AN_RF2G3,
  894. AR9285_AN_RF2G3_OB_3,
  895. AR9285_AN_RF2G3_OB_3_S,
  896. ob[3]);
  897. ath9k_hw_analog_shift_rmw(ah,
  898. AR9285_AN_RF2G3,
  899. AR9285_AN_RF2G3_OB_4,
  900. AR9285_AN_RF2G3_OB_4_S,
  901. ob[4]);
  902. ath9k_hw_analog_shift_rmw(ah,
  903. AR9285_AN_RF2G3,
  904. AR9285_AN_RF2G3_DB1_0,
  905. AR9285_AN_RF2G3_DB1_0_S,
  906. db1[0]);
  907. ath9k_hw_analog_shift_rmw(ah,
  908. AR9285_AN_RF2G3,
  909. AR9285_AN_RF2G3_DB1_1,
  910. AR9285_AN_RF2G3_DB1_1_S,
  911. db1[1]);
  912. ath9k_hw_analog_shift_rmw(ah,
  913. AR9285_AN_RF2G3,
  914. AR9285_AN_RF2G3_DB1_2,
  915. AR9285_AN_RF2G3_DB1_2_S,
  916. db1[2]);
  917. ath9k_hw_analog_shift_rmw(ah,
  918. AR9285_AN_RF2G4,
  919. AR9285_AN_RF2G4_DB1_3,
  920. AR9285_AN_RF2G4_DB1_3_S,
  921. db1[3]);
  922. ath9k_hw_analog_shift_rmw(ah,
  923. AR9285_AN_RF2G4,
  924. AR9285_AN_RF2G4_DB1_4,
  925. AR9285_AN_RF2G4_DB1_4_S, db1[4]);
  926. ath9k_hw_analog_shift_rmw(ah,
  927. AR9285_AN_RF2G4,
  928. AR9285_AN_RF2G4_DB2_0,
  929. AR9285_AN_RF2G4_DB2_0_S,
  930. db2[0]);
  931. ath9k_hw_analog_shift_rmw(ah,
  932. AR9285_AN_RF2G4,
  933. AR9285_AN_RF2G4_DB2_1,
  934. AR9285_AN_RF2G4_DB2_1_S,
  935. db2[1]);
  936. ath9k_hw_analog_shift_rmw(ah,
  937. AR9285_AN_RF2G4,
  938. AR9285_AN_RF2G4_DB2_2,
  939. AR9285_AN_RF2G4_DB2_2_S,
  940. db2[2]);
  941. ath9k_hw_analog_shift_rmw(ah,
  942. AR9285_AN_RF2G4,
  943. AR9285_AN_RF2G4_DB2_3,
  944. AR9285_AN_RF2G4_DB2_3_S,
  945. db2[3]);
  946. ath9k_hw_analog_shift_rmw(ah,
  947. AR9285_AN_RF2G4,
  948. AR9285_AN_RF2G4_DB2_4,
  949. AR9285_AN_RF2G4_DB2_4_S,
  950. db2[4]);
  951. }
  952. if (AR_SREV_9285_11(ah))
  953. REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
  954. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  955. pModal->switchSettling);
  956. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  957. pModal->adcDesiredSize);
  958. REG_WRITE(ah, AR_PHY_RF_CTL4,
  959. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  960. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  961. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
  962. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  963. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  964. pModal->txEndToRxOn);
  965. if (AR_SREV_9271_10(ah))
  966. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  967. pModal->txEndToRxOn);
  968. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  969. pModal->thresh62);
  970. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  971. pModal->thresh62);
  972. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  973. AR5416_EEP_MINOR_VER_2) {
  974. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
  975. pModal->txFrameToDataStart);
  976. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  977. pModal->txFrameToPaOn);
  978. }
  979. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  980. AR5416_EEP_MINOR_VER_3) {
  981. if (IS_CHAN_HT40(chan))
  982. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  983. AR_PHY_SETTLING_SWITCH,
  984. pModal->swSettleHt40);
  985. }
  986. }
  987. static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
  988. struct ath9k_channel *chan)
  989. {
  990. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  991. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  992. return pModal->antCtrlCommon & 0xFFFF;
  993. }
  994. static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
  995. enum ieee80211_band freq_band)
  996. {
  997. return 1;
  998. }
  999. static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  1000. {
  1001. #define EEP_MAP4K_SPURCHAN \
  1002. (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
  1003. struct ath_common *common = ath9k_hw_common(ah);
  1004. u16 spur_val = AR_NO_SPUR;
  1005. ath_print(common, ATH_DBG_ANI,
  1006. "Getting spur idx %d is2Ghz. %d val %x\n",
  1007. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  1008. switch (ah->config.spurmode) {
  1009. case SPUR_DISABLE:
  1010. break;
  1011. case SPUR_ENABLE_IOCTL:
  1012. spur_val = ah->config.spurchans[i][is2GHz];
  1013. ath_print(common, ATH_DBG_ANI,
  1014. "Getting spur val from new loc. %d\n", spur_val);
  1015. break;
  1016. case SPUR_ENABLE_EEPROM:
  1017. spur_val = EEP_MAP4K_SPURCHAN;
  1018. break;
  1019. }
  1020. return spur_val;
  1021. #undef EEP_MAP4K_SPURCHAN
  1022. }
  1023. const struct eeprom_ops eep_4k_ops = {
  1024. .check_eeprom = ath9k_hw_4k_check_eeprom,
  1025. .get_eeprom = ath9k_hw_4k_get_eeprom,
  1026. .fill_eeprom = ath9k_hw_4k_fill_eeprom,
  1027. .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
  1028. .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
  1029. .get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
  1030. .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
  1031. .set_board_values = ath9k_hw_4k_set_board_values,
  1032. .set_addac = ath9k_hw_4k_set_addac,
  1033. .set_txpower = ath9k_hw_4k_set_txpower,
  1034. .get_spur_channel = ath9k_hw_4k_get_spur_channel
  1035. };