raid0.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684
  1. /*
  2. raid0.c : Multiple Devices driver for Linux
  3. Copyright (C) 1994-96 Marc ZYNGIER
  4. <zyngier@ufr-info-p7.ibp.fr> or
  5. <maz@gloups.fdn.fr>
  6. Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
  7. RAID-0 management functions.
  8. This program is free software; you can redistribute it and/or modify
  9. it under the terms of the GNU General Public License as published by
  10. the Free Software Foundation; either version 2, or (at your option)
  11. any later version.
  12. You should have received a copy of the GNU General Public License
  13. (for example /usr/src/linux/COPYING); if not, write to the Free
  14. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. */
  16. #include <linux/blkdev.h>
  17. #include <linux/seq_file.h>
  18. #include "md.h"
  19. #include "raid0.h"
  20. #include "raid5.h"
  21. static void raid0_unplug(struct request_queue *q)
  22. {
  23. mddev_t *mddev = q->queuedata;
  24. raid0_conf_t *conf = mddev->private;
  25. mdk_rdev_t **devlist = conf->devlist;
  26. int raid_disks = conf->strip_zone[0].nb_dev;
  27. int i;
  28. for (i=0; i < raid_disks; i++) {
  29. struct request_queue *r_queue = bdev_get_queue(devlist[i]->bdev);
  30. blk_unplug(r_queue);
  31. }
  32. }
  33. static int raid0_congested(void *data, int bits)
  34. {
  35. mddev_t *mddev = data;
  36. raid0_conf_t *conf = mddev->private;
  37. mdk_rdev_t **devlist = conf->devlist;
  38. int raid_disks = conf->strip_zone[0].nb_dev;
  39. int i, ret = 0;
  40. if (mddev_congested(mddev, bits))
  41. return 1;
  42. for (i = 0; i < raid_disks && !ret ; i++) {
  43. struct request_queue *q = bdev_get_queue(devlist[i]->bdev);
  44. ret |= bdi_congested(&q->backing_dev_info, bits);
  45. }
  46. return ret;
  47. }
  48. /*
  49. * inform the user of the raid configuration
  50. */
  51. static void dump_zones(mddev_t *mddev)
  52. {
  53. int j, k, h;
  54. sector_t zone_size = 0;
  55. sector_t zone_start = 0;
  56. char b[BDEVNAME_SIZE];
  57. raid0_conf_t *conf = mddev->private;
  58. int raid_disks = conf->strip_zone[0].nb_dev;
  59. printk(KERN_INFO "******* %s configuration *********\n",
  60. mdname(mddev));
  61. h = 0;
  62. for (j = 0; j < conf->nr_strip_zones; j++) {
  63. printk(KERN_INFO "zone%d=[", j);
  64. for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
  65. printk("%s/",
  66. bdevname(conf->devlist[j*raid_disks
  67. + k]->bdev, b));
  68. printk("]\n");
  69. zone_size = conf->strip_zone[j].zone_end - zone_start;
  70. printk(KERN_INFO " zone offset=%llukb "
  71. "device offset=%llukb size=%llukb\n",
  72. (unsigned long long)zone_start>>1,
  73. (unsigned long long)conf->strip_zone[j].dev_start>>1,
  74. (unsigned long long)zone_size>>1);
  75. zone_start = conf->strip_zone[j].zone_end;
  76. }
  77. printk(KERN_INFO "**********************************\n\n");
  78. }
  79. static int create_strip_zones(mddev_t *mddev, raid0_conf_t **private_conf)
  80. {
  81. int i, c, err;
  82. sector_t curr_zone_end, sectors;
  83. mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev, **dev;
  84. struct strip_zone *zone;
  85. int cnt;
  86. char b[BDEVNAME_SIZE];
  87. raid0_conf_t *conf = kzalloc(sizeof(*conf), GFP_KERNEL);
  88. if (!conf)
  89. return -ENOMEM;
  90. list_for_each_entry(rdev1, &mddev->disks, same_set) {
  91. printk(KERN_INFO "raid0: looking at %s\n",
  92. bdevname(rdev1->bdev,b));
  93. c = 0;
  94. /* round size to chunk_size */
  95. sectors = rdev1->sectors;
  96. sector_div(sectors, mddev->chunk_sectors);
  97. rdev1->sectors = sectors * mddev->chunk_sectors;
  98. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  99. printk(KERN_INFO "raid0: comparing %s(%llu)",
  100. bdevname(rdev1->bdev,b),
  101. (unsigned long long)rdev1->sectors);
  102. printk(KERN_INFO " with %s(%llu)\n",
  103. bdevname(rdev2->bdev,b),
  104. (unsigned long long)rdev2->sectors);
  105. if (rdev2 == rdev1) {
  106. printk(KERN_INFO "raid0: END\n");
  107. break;
  108. }
  109. if (rdev2->sectors == rdev1->sectors) {
  110. /*
  111. * Not unique, don't count it as a new
  112. * group
  113. */
  114. printk(KERN_INFO "raid0: EQUAL\n");
  115. c = 1;
  116. break;
  117. }
  118. printk(KERN_INFO "raid0: NOT EQUAL\n");
  119. }
  120. if (!c) {
  121. printk(KERN_INFO "raid0: ==> UNIQUE\n");
  122. conf->nr_strip_zones++;
  123. printk(KERN_INFO "raid0: %d zones\n",
  124. conf->nr_strip_zones);
  125. }
  126. }
  127. printk(KERN_INFO "raid0: FINAL %d zones\n", conf->nr_strip_zones);
  128. err = -ENOMEM;
  129. conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
  130. conf->nr_strip_zones, GFP_KERNEL);
  131. if (!conf->strip_zone)
  132. goto abort;
  133. conf->devlist = kzalloc(sizeof(mdk_rdev_t*)*
  134. conf->nr_strip_zones*mddev->raid_disks,
  135. GFP_KERNEL);
  136. if (!conf->devlist)
  137. goto abort;
  138. /* The first zone must contain all devices, so here we check that
  139. * there is a proper alignment of slots to devices and find them all
  140. */
  141. zone = &conf->strip_zone[0];
  142. cnt = 0;
  143. smallest = NULL;
  144. dev = conf->devlist;
  145. err = -EINVAL;
  146. list_for_each_entry(rdev1, &mddev->disks, same_set) {
  147. int j = rdev1->raid_disk;
  148. if (mddev->level == 10)
  149. /* taking over a raid10-n2 array */
  150. j /= 2;
  151. if (j < 0 || j >= mddev->raid_disks) {
  152. printk(KERN_ERR "raid0: bad disk number %d - "
  153. "aborting!\n", j);
  154. goto abort;
  155. }
  156. if (dev[j]) {
  157. printk(KERN_ERR "raid0: multiple devices for %d - "
  158. "aborting!\n", j);
  159. goto abort;
  160. }
  161. dev[j] = rdev1;
  162. disk_stack_limits(mddev->gendisk, rdev1->bdev,
  163. rdev1->data_offset << 9);
  164. /* as we don't honour merge_bvec_fn, we must never risk
  165. * violating it, so limit ->max_segments to 1, lying within
  166. * a single page.
  167. */
  168. if (rdev1->bdev->bd_disk->queue->merge_bvec_fn) {
  169. blk_queue_max_segments(mddev->queue, 1);
  170. blk_queue_segment_boundary(mddev->queue,
  171. PAGE_CACHE_SIZE - 1);
  172. }
  173. if (!smallest || (rdev1->sectors < smallest->sectors))
  174. smallest = rdev1;
  175. cnt++;
  176. }
  177. if (cnt != mddev->raid_disks) {
  178. printk(KERN_ERR "raid0: too few disks (%d of %d) - "
  179. "aborting!\n", cnt, mddev->raid_disks);
  180. goto abort;
  181. }
  182. zone->nb_dev = cnt;
  183. zone->zone_end = smallest->sectors * cnt;
  184. curr_zone_end = zone->zone_end;
  185. /* now do the other zones */
  186. for (i = 1; i < conf->nr_strip_zones; i++)
  187. {
  188. int j;
  189. zone = conf->strip_zone + i;
  190. dev = conf->devlist + i * mddev->raid_disks;
  191. printk(KERN_INFO "raid0: zone %d\n", i);
  192. zone->dev_start = smallest->sectors;
  193. smallest = NULL;
  194. c = 0;
  195. for (j=0; j<cnt; j++) {
  196. rdev = conf->devlist[j];
  197. printk(KERN_INFO "raid0: checking %s ...",
  198. bdevname(rdev->bdev, b));
  199. if (rdev->sectors <= zone->dev_start) {
  200. printk(KERN_INFO " nope.\n");
  201. continue;
  202. }
  203. printk(KERN_INFO " contained as device %d\n", c);
  204. dev[c] = rdev;
  205. c++;
  206. if (!smallest || rdev->sectors < smallest->sectors) {
  207. smallest = rdev;
  208. printk(KERN_INFO " (%llu) is smallest!.\n",
  209. (unsigned long long)rdev->sectors);
  210. }
  211. }
  212. zone->nb_dev = c;
  213. sectors = (smallest->sectors - zone->dev_start) * c;
  214. printk(KERN_INFO "raid0: zone->nb_dev: %d, sectors: %llu\n",
  215. zone->nb_dev, (unsigned long long)sectors);
  216. curr_zone_end += sectors;
  217. zone->zone_end = curr_zone_end;
  218. printk(KERN_INFO "raid0: current zone start: %llu\n",
  219. (unsigned long long)smallest->sectors);
  220. }
  221. mddev->queue->unplug_fn = raid0_unplug;
  222. mddev->queue->backing_dev_info.congested_fn = raid0_congested;
  223. mddev->queue->backing_dev_info.congested_data = mddev;
  224. /*
  225. * now since we have the hard sector sizes, we can make sure
  226. * chunk size is a multiple of that sector size
  227. */
  228. if ((mddev->chunk_sectors << 9) % queue_logical_block_size(mddev->queue)) {
  229. printk(KERN_ERR "%s chunk_size of %d not valid\n",
  230. mdname(mddev),
  231. mddev->chunk_sectors << 9);
  232. goto abort;
  233. }
  234. blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
  235. blk_queue_io_opt(mddev->queue,
  236. (mddev->chunk_sectors << 9) * mddev->raid_disks);
  237. printk(KERN_INFO "raid0: done.\n");
  238. *private_conf = conf;
  239. return 0;
  240. abort:
  241. kfree(conf->strip_zone);
  242. kfree(conf->devlist);
  243. kfree(conf);
  244. *private_conf = NULL;
  245. return err;
  246. }
  247. /**
  248. * raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
  249. * @q: request queue
  250. * @bvm: properties of new bio
  251. * @biovec: the request that could be merged to it.
  252. *
  253. * Return amount of bytes we can accept at this offset
  254. */
  255. static int raid0_mergeable_bvec(struct request_queue *q,
  256. struct bvec_merge_data *bvm,
  257. struct bio_vec *biovec)
  258. {
  259. mddev_t *mddev = q->queuedata;
  260. sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
  261. int max;
  262. unsigned int chunk_sectors = mddev->chunk_sectors;
  263. unsigned int bio_sectors = bvm->bi_size >> 9;
  264. if (is_power_of_2(chunk_sectors))
  265. max = (chunk_sectors - ((sector & (chunk_sectors-1))
  266. + bio_sectors)) << 9;
  267. else
  268. max = (chunk_sectors - (sector_div(sector, chunk_sectors)
  269. + bio_sectors)) << 9;
  270. if (max < 0) max = 0; /* bio_add cannot handle a negative return */
  271. if (max <= biovec->bv_len && bio_sectors == 0)
  272. return biovec->bv_len;
  273. else
  274. return max;
  275. }
  276. static sector_t raid0_size(mddev_t *mddev, sector_t sectors, int raid_disks)
  277. {
  278. sector_t array_sectors = 0;
  279. mdk_rdev_t *rdev;
  280. WARN_ONCE(sectors || raid_disks,
  281. "%s does not support generic reshape\n", __func__);
  282. list_for_each_entry(rdev, &mddev->disks, same_set)
  283. array_sectors += rdev->sectors;
  284. return array_sectors;
  285. }
  286. static int raid0_run(mddev_t *mddev)
  287. {
  288. raid0_conf_t *conf;
  289. int ret;
  290. if (mddev->chunk_sectors == 0) {
  291. printk(KERN_ERR "md/raid0: chunk size must be set.\n");
  292. return -EINVAL;
  293. }
  294. if (md_check_no_bitmap(mddev))
  295. return -EINVAL;
  296. blk_queue_max_hw_sectors(mddev->queue, mddev->chunk_sectors);
  297. mddev->queue->queue_lock = &mddev->queue->__queue_lock;
  298. /* if private is not null, we are here after takeover */
  299. if (mddev->private == NULL) {
  300. ret = create_strip_zones(mddev, &conf);
  301. if (ret < 0)
  302. return ret;
  303. mddev->private = conf;
  304. }
  305. conf = mddev->private;
  306. if (conf->scale_raid_disks) {
  307. int i;
  308. for (i=0; i < conf->strip_zone[0].nb_dev; i++)
  309. conf->devlist[i]->raid_disk /= conf->scale_raid_disks;
  310. /* FIXME update sysfs rd links */
  311. }
  312. /* calculate array device size */
  313. md_set_array_sectors(mddev, raid0_size(mddev, 0, 0));
  314. printk(KERN_INFO "raid0 : md_size is %llu sectors.\n",
  315. (unsigned long long)mddev->array_sectors);
  316. /* calculate the max read-ahead size.
  317. * For read-ahead of large files to be effective, we need to
  318. * readahead at least twice a whole stripe. i.e. number of devices
  319. * multiplied by chunk size times 2.
  320. * If an individual device has an ra_pages greater than the
  321. * chunk size, then we will not drive that device as hard as it
  322. * wants. We consider this a configuration error: a larger
  323. * chunksize should be used in that case.
  324. */
  325. {
  326. int stripe = mddev->raid_disks *
  327. (mddev->chunk_sectors << 9) / PAGE_SIZE;
  328. if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
  329. mddev->queue->backing_dev_info.ra_pages = 2* stripe;
  330. }
  331. blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
  332. dump_zones(mddev);
  333. md_integrity_register(mddev);
  334. return 0;
  335. }
  336. static int raid0_stop(mddev_t *mddev)
  337. {
  338. raid0_conf_t *conf = mddev->private;
  339. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  340. kfree(conf->strip_zone);
  341. kfree(conf->devlist);
  342. kfree(conf);
  343. mddev->private = NULL;
  344. return 0;
  345. }
  346. /* Find the zone which holds a particular offset
  347. * Update *sectorp to be an offset in that zone
  348. */
  349. static struct strip_zone *find_zone(struct raid0_private_data *conf,
  350. sector_t *sectorp)
  351. {
  352. int i;
  353. struct strip_zone *z = conf->strip_zone;
  354. sector_t sector = *sectorp;
  355. for (i = 0; i < conf->nr_strip_zones; i++)
  356. if (sector < z[i].zone_end) {
  357. if (i)
  358. *sectorp = sector - z[i-1].zone_end;
  359. return z + i;
  360. }
  361. BUG();
  362. }
  363. /*
  364. * remaps the bio to the target device. we separate two flows.
  365. * power 2 flow and a general flow for the sake of perfromance
  366. */
  367. static mdk_rdev_t *map_sector(mddev_t *mddev, struct strip_zone *zone,
  368. sector_t sector, sector_t *sector_offset)
  369. {
  370. unsigned int sect_in_chunk;
  371. sector_t chunk;
  372. raid0_conf_t *conf = mddev->private;
  373. int raid_disks = conf->strip_zone[0].nb_dev;
  374. unsigned int chunk_sects = mddev->chunk_sectors;
  375. if (is_power_of_2(chunk_sects)) {
  376. int chunksect_bits = ffz(~chunk_sects);
  377. /* find the sector offset inside the chunk */
  378. sect_in_chunk = sector & (chunk_sects - 1);
  379. sector >>= chunksect_bits;
  380. /* chunk in zone */
  381. chunk = *sector_offset;
  382. /* quotient is the chunk in real device*/
  383. sector_div(chunk, zone->nb_dev << chunksect_bits);
  384. } else{
  385. sect_in_chunk = sector_div(sector, chunk_sects);
  386. chunk = *sector_offset;
  387. sector_div(chunk, chunk_sects * zone->nb_dev);
  388. }
  389. /*
  390. * position the bio over the real device
  391. * real sector = chunk in device + starting of zone
  392. * + the position in the chunk
  393. */
  394. *sector_offset = (chunk * chunk_sects) + sect_in_chunk;
  395. return conf->devlist[(zone - conf->strip_zone)*raid_disks
  396. + sector_div(sector, zone->nb_dev)];
  397. }
  398. /*
  399. * Is io distribute over 1 or more chunks ?
  400. */
  401. static inline int is_io_in_chunk_boundary(mddev_t *mddev,
  402. unsigned int chunk_sects, struct bio *bio)
  403. {
  404. if (likely(is_power_of_2(chunk_sects))) {
  405. return chunk_sects >= ((bio->bi_sector & (chunk_sects-1))
  406. + (bio->bi_size >> 9));
  407. } else{
  408. sector_t sector = bio->bi_sector;
  409. return chunk_sects >= (sector_div(sector, chunk_sects)
  410. + (bio->bi_size >> 9));
  411. }
  412. }
  413. static int raid0_make_request(struct request_queue *q, struct bio *bio)
  414. {
  415. mddev_t *mddev = q->queuedata;
  416. unsigned int chunk_sects;
  417. sector_t sector_offset;
  418. struct strip_zone *zone;
  419. mdk_rdev_t *tmp_dev;
  420. if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
  421. md_barrier_request(mddev, bio);
  422. return 0;
  423. }
  424. chunk_sects = mddev->chunk_sectors;
  425. if (unlikely(!is_io_in_chunk_boundary(mddev, chunk_sects, bio))) {
  426. sector_t sector = bio->bi_sector;
  427. struct bio_pair *bp;
  428. /* Sanity check -- queue functions should prevent this happening */
  429. if (bio->bi_vcnt != 1 ||
  430. bio->bi_idx != 0)
  431. goto bad_map;
  432. /* This is a one page bio that upper layers
  433. * refuse to split for us, so we need to split it.
  434. */
  435. if (likely(is_power_of_2(chunk_sects)))
  436. bp = bio_split(bio, chunk_sects - (sector &
  437. (chunk_sects-1)));
  438. else
  439. bp = bio_split(bio, chunk_sects -
  440. sector_div(sector, chunk_sects));
  441. if (raid0_make_request(q, &bp->bio1))
  442. generic_make_request(&bp->bio1);
  443. if (raid0_make_request(q, &bp->bio2))
  444. generic_make_request(&bp->bio2);
  445. bio_pair_release(bp);
  446. return 0;
  447. }
  448. sector_offset = bio->bi_sector;
  449. zone = find_zone(mddev->private, &sector_offset);
  450. tmp_dev = map_sector(mddev, zone, bio->bi_sector,
  451. &sector_offset);
  452. bio->bi_bdev = tmp_dev->bdev;
  453. bio->bi_sector = sector_offset + zone->dev_start +
  454. tmp_dev->data_offset;
  455. /*
  456. * Let the main block layer submit the IO and resolve recursion:
  457. */
  458. return 1;
  459. bad_map:
  460. printk("raid0_make_request bug: can't convert block across chunks"
  461. " or bigger than %dk %llu %d\n", chunk_sects / 2,
  462. (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
  463. bio_io_error(bio);
  464. return 0;
  465. }
  466. static void raid0_status(struct seq_file *seq, mddev_t *mddev)
  467. {
  468. #undef MD_DEBUG
  469. #ifdef MD_DEBUG
  470. int j, k, h;
  471. char b[BDEVNAME_SIZE];
  472. raid0_conf_t *conf = mddev->private;
  473. int raid_disks = conf->strip_zone[0].nb_dev;
  474. sector_t zone_size;
  475. sector_t zone_start = 0;
  476. h = 0;
  477. for (j = 0; j < conf->nr_strip_zones; j++) {
  478. seq_printf(seq, " z%d", j);
  479. seq_printf(seq, "=[");
  480. for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
  481. seq_printf(seq, "%s/", bdevname(
  482. conf->devlist[j*raid_disks + k]
  483. ->bdev, b));
  484. zone_size = conf->strip_zone[j].zone_end - zone_start;
  485. seq_printf(seq, "] ze=%lld ds=%lld s=%lld\n",
  486. (unsigned long long)zone_start>>1,
  487. (unsigned long long)conf->strip_zone[j].dev_start>>1,
  488. (unsigned long long)zone_size>>1);
  489. zone_start = conf->strip_zone[j].zone_end;
  490. }
  491. #endif
  492. seq_printf(seq, " %dk chunks", mddev->chunk_sectors / 2);
  493. return;
  494. }
  495. static void *raid0_takeover_raid5(mddev_t *mddev)
  496. {
  497. mdk_rdev_t *rdev;
  498. raid0_conf_t *priv_conf;
  499. if (mddev->degraded != 1) {
  500. printk(KERN_ERR "md: raid5 must be degraded! Degraded disks: %d\n",
  501. mddev->degraded);
  502. return ERR_PTR(-EINVAL);
  503. }
  504. list_for_each_entry(rdev, &mddev->disks, same_set) {
  505. /* check slot number for a disk */
  506. if (rdev->raid_disk == mddev->raid_disks-1) {
  507. printk(KERN_ERR "md: raid5 must have missing parity disk!\n");
  508. return ERR_PTR(-EINVAL);
  509. }
  510. }
  511. /* Set new parameters */
  512. mddev->new_level = 0;
  513. mddev->new_chunk_sectors = mddev->chunk_sectors;
  514. mddev->raid_disks--;
  515. mddev->delta_disks = -1;
  516. /* make sure it will be not marked as dirty */
  517. mddev->recovery_cp = MaxSector;
  518. create_strip_zones(mddev, &priv_conf);
  519. return priv_conf;
  520. }
  521. static void *raid0_takeover_raid10(mddev_t *mddev)
  522. {
  523. raid0_conf_t *priv_conf;
  524. /* Check layout:
  525. * - far_copies must be 1
  526. * - near_copies must be 2
  527. * - disks number must be even
  528. * - all mirrors must be already degraded
  529. */
  530. if (mddev->layout != ((1 << 8) + 2)) {
  531. printk(KERN_ERR "md: Raid0 cannot takover layout: %x\n",
  532. mddev->layout);
  533. return ERR_PTR(-EINVAL);
  534. }
  535. if (mddev->raid_disks & 1) {
  536. printk(KERN_ERR "md: Raid0 cannot takover Raid10 with odd disk number.\n");
  537. return ERR_PTR(-EINVAL);
  538. }
  539. if (mddev->degraded != (mddev->raid_disks>>1)) {
  540. printk(KERN_ERR "md: All mirrors must be already degraded!\n");
  541. return ERR_PTR(-EINVAL);
  542. }
  543. /* Set new parameters */
  544. mddev->new_level = 0;
  545. mddev->new_chunk_sectors = mddev->chunk_sectors;
  546. mddev->delta_disks = - mddev->raid_disks / 2;
  547. mddev->raid_disks += mddev->delta_disks;
  548. mddev->degraded = 0;
  549. /* make sure it will be not marked as dirty */
  550. mddev->recovery_cp = MaxSector;
  551. create_strip_zones(mddev, &priv_conf);
  552. priv_conf->scale_raid_disks = 2;
  553. return priv_conf;
  554. }
  555. static void *raid0_takeover(mddev_t *mddev)
  556. {
  557. /* raid0 can take over:
  558. * raid5 - providing it is Raid4 layout and one disk is faulty
  559. * raid10 - assuming we have all necessary active disks
  560. */
  561. if (mddev->level == 5) {
  562. if (mddev->layout == ALGORITHM_PARITY_N)
  563. return raid0_takeover_raid5(mddev);
  564. printk(KERN_ERR "md: Raid can only takeover Raid5 with layout: %d\n",
  565. ALGORITHM_PARITY_N);
  566. }
  567. if (mddev->level == 10)
  568. return raid0_takeover_raid10(mddev);
  569. return ERR_PTR(-EINVAL);
  570. }
  571. static void raid0_quiesce(mddev_t *mddev, int state)
  572. {
  573. }
  574. static struct mdk_personality raid0_personality=
  575. {
  576. .name = "raid0",
  577. .level = 0,
  578. .owner = THIS_MODULE,
  579. .make_request = raid0_make_request,
  580. .run = raid0_run,
  581. .stop = raid0_stop,
  582. .status = raid0_status,
  583. .size = raid0_size,
  584. .takeover = raid0_takeover,
  585. .quiesce = raid0_quiesce,
  586. };
  587. static int __init raid0_init (void)
  588. {
  589. return register_md_personality (&raid0_personality);
  590. }
  591. static void raid0_exit (void)
  592. {
  593. unregister_md_personality (&raid0_personality);
  594. }
  595. module_init(raid0_init);
  596. module_exit(raid0_exit);
  597. MODULE_LICENSE("GPL");
  598. MODULE_DESCRIPTION("RAID0 (striping) personality for MD");
  599. MODULE_ALIAS("md-personality-2"); /* RAID0 */
  600. MODULE_ALIAS("md-raid0");
  601. MODULE_ALIAS("md-level-0");