mmu.c 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "kvm_cache_regs.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. #include <asm/vmx.h>
  34. /*
  35. * When setting this variable to true it enables Two-Dimensional-Paging
  36. * where the hardware walks 2 page tables:
  37. * 1. the guest-virtual to guest-physical
  38. * 2. while doing 1. it walks guest-physical to host-physical
  39. * If the hardware supports that we don't need to do shadow paging.
  40. */
  41. bool tdp_enabled = false;
  42. #undef MMU_DEBUG
  43. #undef AUDIT
  44. #ifdef AUDIT
  45. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  46. #else
  47. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  48. #endif
  49. #ifdef MMU_DEBUG
  50. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  51. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  52. #else
  53. #define pgprintk(x...) do { } while (0)
  54. #define rmap_printk(x...) do { } while (0)
  55. #endif
  56. #if defined(MMU_DEBUG) || defined(AUDIT)
  57. static int dbg = 0;
  58. module_param(dbg, bool, 0644);
  59. #endif
  60. static int oos_shadow = 1;
  61. module_param(oos_shadow, bool, 0644);
  62. #ifndef MMU_DEBUG
  63. #define ASSERT(x) do { } while (0)
  64. #else
  65. #define ASSERT(x) \
  66. if (!(x)) { \
  67. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  68. __FILE__, __LINE__, #x); \
  69. }
  70. #endif
  71. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  72. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  73. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  74. #define PT64_LEVEL_BITS 9
  75. #define PT64_LEVEL_SHIFT(level) \
  76. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  77. #define PT64_LEVEL_MASK(level) \
  78. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  79. #define PT64_INDEX(address, level)\
  80. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  81. #define PT32_LEVEL_BITS 10
  82. #define PT32_LEVEL_SHIFT(level) \
  83. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  84. #define PT32_LEVEL_MASK(level) \
  85. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  86. #define PT32_INDEX(address, level)\
  87. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  88. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  89. #define PT64_DIR_BASE_ADDR_MASK \
  90. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  91. #define PT32_BASE_ADDR_MASK PAGE_MASK
  92. #define PT32_DIR_BASE_ADDR_MASK \
  93. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  94. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  95. | PT64_NX_MASK)
  96. #define PFERR_PRESENT_MASK (1U << 0)
  97. #define PFERR_WRITE_MASK (1U << 1)
  98. #define PFERR_USER_MASK (1U << 2)
  99. #define PFERR_RSVD_MASK (1U << 3)
  100. #define PFERR_FETCH_MASK (1U << 4)
  101. #define PT_DIRECTORY_LEVEL 2
  102. #define PT_PAGE_TABLE_LEVEL 1
  103. #define RMAP_EXT 4
  104. #define ACC_EXEC_MASK 1
  105. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  106. #define ACC_USER_MASK PT_USER_MASK
  107. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  108. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  109. struct kvm_rmap_desc {
  110. u64 *sptes[RMAP_EXT];
  111. struct kvm_rmap_desc *more;
  112. };
  113. struct kvm_shadow_walk_iterator {
  114. u64 addr;
  115. hpa_t shadow_addr;
  116. int level;
  117. u64 *sptep;
  118. unsigned index;
  119. };
  120. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  121. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  122. shadow_walk_okay(&(_walker)); \
  123. shadow_walk_next(&(_walker)))
  124. struct kvm_unsync_walk {
  125. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  126. };
  127. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  128. static struct kmem_cache *pte_chain_cache;
  129. static struct kmem_cache *rmap_desc_cache;
  130. static struct kmem_cache *mmu_page_header_cache;
  131. static u64 __read_mostly shadow_trap_nonpresent_pte;
  132. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  133. static u64 __read_mostly shadow_base_present_pte;
  134. static u64 __read_mostly shadow_nx_mask;
  135. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  136. static u64 __read_mostly shadow_user_mask;
  137. static u64 __read_mostly shadow_accessed_mask;
  138. static u64 __read_mostly shadow_dirty_mask;
  139. static inline u64 rsvd_bits(int s, int e)
  140. {
  141. return ((1ULL << (e - s + 1)) - 1) << s;
  142. }
  143. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  144. {
  145. shadow_trap_nonpresent_pte = trap_pte;
  146. shadow_notrap_nonpresent_pte = notrap_pte;
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  149. void kvm_mmu_set_base_ptes(u64 base_pte)
  150. {
  151. shadow_base_present_pte = base_pte;
  152. }
  153. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  154. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  155. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  156. {
  157. shadow_user_mask = user_mask;
  158. shadow_accessed_mask = accessed_mask;
  159. shadow_dirty_mask = dirty_mask;
  160. shadow_nx_mask = nx_mask;
  161. shadow_x_mask = x_mask;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  164. static int is_write_protection(struct kvm_vcpu *vcpu)
  165. {
  166. return vcpu->arch.cr0 & X86_CR0_WP;
  167. }
  168. static int is_cpuid_PSE36(void)
  169. {
  170. return 1;
  171. }
  172. static int is_nx(struct kvm_vcpu *vcpu)
  173. {
  174. return vcpu->arch.shadow_efer & EFER_NX;
  175. }
  176. static int is_shadow_present_pte(u64 pte)
  177. {
  178. return pte != shadow_trap_nonpresent_pte
  179. && pte != shadow_notrap_nonpresent_pte;
  180. }
  181. static int is_large_pte(u64 pte)
  182. {
  183. return pte & PT_PAGE_SIZE_MASK;
  184. }
  185. static int is_writeble_pte(unsigned long pte)
  186. {
  187. return pte & PT_WRITABLE_MASK;
  188. }
  189. static int is_dirty_gpte(unsigned long pte)
  190. {
  191. return pte & PT_DIRTY_MASK;
  192. }
  193. static int is_rmap_spte(u64 pte)
  194. {
  195. return is_shadow_present_pte(pte);
  196. }
  197. static int is_last_spte(u64 pte, int level)
  198. {
  199. if (level == PT_PAGE_TABLE_LEVEL)
  200. return 1;
  201. if (level == PT_DIRECTORY_LEVEL && is_large_pte(pte))
  202. return 1;
  203. return 0;
  204. }
  205. static pfn_t spte_to_pfn(u64 pte)
  206. {
  207. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  208. }
  209. static gfn_t pse36_gfn_delta(u32 gpte)
  210. {
  211. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  212. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  213. }
  214. static void __set_spte(u64 *sptep, u64 spte)
  215. {
  216. #ifdef CONFIG_X86_64
  217. set_64bit((unsigned long *)sptep, spte);
  218. #else
  219. set_64bit((unsigned long long *)sptep, spte);
  220. #endif
  221. }
  222. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  223. struct kmem_cache *base_cache, int min)
  224. {
  225. void *obj;
  226. if (cache->nobjs >= min)
  227. return 0;
  228. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  229. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  230. if (!obj)
  231. return -ENOMEM;
  232. cache->objects[cache->nobjs++] = obj;
  233. }
  234. return 0;
  235. }
  236. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  237. {
  238. while (mc->nobjs)
  239. kfree(mc->objects[--mc->nobjs]);
  240. }
  241. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  242. int min)
  243. {
  244. struct page *page;
  245. if (cache->nobjs >= min)
  246. return 0;
  247. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  248. page = alloc_page(GFP_KERNEL);
  249. if (!page)
  250. return -ENOMEM;
  251. set_page_private(page, 0);
  252. cache->objects[cache->nobjs++] = page_address(page);
  253. }
  254. return 0;
  255. }
  256. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  257. {
  258. while (mc->nobjs)
  259. free_page((unsigned long)mc->objects[--mc->nobjs]);
  260. }
  261. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  262. {
  263. int r;
  264. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  265. pte_chain_cache, 4);
  266. if (r)
  267. goto out;
  268. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  269. rmap_desc_cache, 4);
  270. if (r)
  271. goto out;
  272. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  273. if (r)
  274. goto out;
  275. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  276. mmu_page_header_cache, 4);
  277. out:
  278. return r;
  279. }
  280. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  281. {
  282. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  283. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  284. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  285. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  286. }
  287. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  288. size_t size)
  289. {
  290. void *p;
  291. BUG_ON(!mc->nobjs);
  292. p = mc->objects[--mc->nobjs];
  293. return p;
  294. }
  295. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  296. {
  297. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  298. sizeof(struct kvm_pte_chain));
  299. }
  300. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  301. {
  302. kfree(pc);
  303. }
  304. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  305. {
  306. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  307. sizeof(struct kvm_rmap_desc));
  308. }
  309. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  310. {
  311. kfree(rd);
  312. }
  313. /*
  314. * Return the pointer to the largepage write count for a given
  315. * gfn, handling slots that are not large page aligned.
  316. */
  317. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  318. {
  319. unsigned long idx;
  320. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  321. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  322. return &slot->lpage_info[idx].write_count;
  323. }
  324. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  325. {
  326. int *write_count;
  327. gfn = unalias_gfn(kvm, gfn);
  328. write_count = slot_largepage_idx(gfn,
  329. gfn_to_memslot_unaliased(kvm, gfn));
  330. *write_count += 1;
  331. }
  332. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  333. {
  334. int *write_count;
  335. gfn = unalias_gfn(kvm, gfn);
  336. write_count = slot_largepage_idx(gfn,
  337. gfn_to_memslot_unaliased(kvm, gfn));
  338. *write_count -= 1;
  339. WARN_ON(*write_count < 0);
  340. }
  341. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  342. {
  343. struct kvm_memory_slot *slot;
  344. int *largepage_idx;
  345. gfn = unalias_gfn(kvm, gfn);
  346. slot = gfn_to_memslot_unaliased(kvm, gfn);
  347. if (slot) {
  348. largepage_idx = slot_largepage_idx(gfn, slot);
  349. return *largepage_idx;
  350. }
  351. return 1;
  352. }
  353. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  354. {
  355. struct vm_area_struct *vma;
  356. unsigned long addr;
  357. int ret = 0;
  358. addr = gfn_to_hva(kvm, gfn);
  359. if (kvm_is_error_hva(addr))
  360. return ret;
  361. down_read(&current->mm->mmap_sem);
  362. vma = find_vma(current->mm, addr);
  363. if (vma && is_vm_hugetlb_page(vma))
  364. ret = 1;
  365. up_read(&current->mm->mmap_sem);
  366. return ret;
  367. }
  368. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  369. {
  370. struct kvm_memory_slot *slot;
  371. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  372. return 0;
  373. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  374. return 0;
  375. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  376. if (slot && slot->dirty_bitmap)
  377. return 0;
  378. return 1;
  379. }
  380. /*
  381. * Take gfn and return the reverse mapping to it.
  382. * Note: gfn must be unaliased before this function get called
  383. */
  384. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  385. {
  386. struct kvm_memory_slot *slot;
  387. unsigned long idx;
  388. slot = gfn_to_memslot(kvm, gfn);
  389. if (!lpage)
  390. return &slot->rmap[gfn - slot->base_gfn];
  391. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  392. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  393. return &slot->lpage_info[idx].rmap_pde;
  394. }
  395. /*
  396. * Reverse mapping data structures:
  397. *
  398. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  399. * that points to page_address(page).
  400. *
  401. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  402. * containing more mappings.
  403. *
  404. * Returns the number of rmap entries before the spte was added or zero if
  405. * the spte was not added.
  406. *
  407. */
  408. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  409. {
  410. struct kvm_mmu_page *sp;
  411. struct kvm_rmap_desc *desc;
  412. unsigned long *rmapp;
  413. int i, count = 0;
  414. if (!is_rmap_spte(*spte))
  415. return count;
  416. gfn = unalias_gfn(vcpu->kvm, gfn);
  417. sp = page_header(__pa(spte));
  418. sp->gfns[spte - sp->spt] = gfn;
  419. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  420. if (!*rmapp) {
  421. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  422. *rmapp = (unsigned long)spte;
  423. } else if (!(*rmapp & 1)) {
  424. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  425. desc = mmu_alloc_rmap_desc(vcpu);
  426. desc->sptes[0] = (u64 *)*rmapp;
  427. desc->sptes[1] = spte;
  428. *rmapp = (unsigned long)desc | 1;
  429. } else {
  430. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  431. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  432. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  433. desc = desc->more;
  434. count += RMAP_EXT;
  435. }
  436. if (desc->sptes[RMAP_EXT-1]) {
  437. desc->more = mmu_alloc_rmap_desc(vcpu);
  438. desc = desc->more;
  439. }
  440. for (i = 0; desc->sptes[i]; ++i)
  441. ;
  442. desc->sptes[i] = spte;
  443. }
  444. return count;
  445. }
  446. static void rmap_desc_remove_entry(unsigned long *rmapp,
  447. struct kvm_rmap_desc *desc,
  448. int i,
  449. struct kvm_rmap_desc *prev_desc)
  450. {
  451. int j;
  452. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  453. ;
  454. desc->sptes[i] = desc->sptes[j];
  455. desc->sptes[j] = NULL;
  456. if (j != 0)
  457. return;
  458. if (!prev_desc && !desc->more)
  459. *rmapp = (unsigned long)desc->sptes[0];
  460. else
  461. if (prev_desc)
  462. prev_desc->more = desc->more;
  463. else
  464. *rmapp = (unsigned long)desc->more | 1;
  465. mmu_free_rmap_desc(desc);
  466. }
  467. static void rmap_remove(struct kvm *kvm, u64 *spte)
  468. {
  469. struct kvm_rmap_desc *desc;
  470. struct kvm_rmap_desc *prev_desc;
  471. struct kvm_mmu_page *sp;
  472. pfn_t pfn;
  473. unsigned long *rmapp;
  474. int i;
  475. if (!is_rmap_spte(*spte))
  476. return;
  477. sp = page_header(__pa(spte));
  478. pfn = spte_to_pfn(*spte);
  479. if (*spte & shadow_accessed_mask)
  480. kvm_set_pfn_accessed(pfn);
  481. if (is_writeble_pte(*spte))
  482. kvm_release_pfn_dirty(pfn);
  483. else
  484. kvm_release_pfn_clean(pfn);
  485. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  486. if (!*rmapp) {
  487. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  488. BUG();
  489. } else if (!(*rmapp & 1)) {
  490. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  491. if ((u64 *)*rmapp != spte) {
  492. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  493. spte, *spte);
  494. BUG();
  495. }
  496. *rmapp = 0;
  497. } else {
  498. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  499. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  500. prev_desc = NULL;
  501. while (desc) {
  502. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  503. if (desc->sptes[i] == spte) {
  504. rmap_desc_remove_entry(rmapp,
  505. desc, i,
  506. prev_desc);
  507. return;
  508. }
  509. prev_desc = desc;
  510. desc = desc->more;
  511. }
  512. BUG();
  513. }
  514. }
  515. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  516. {
  517. struct kvm_rmap_desc *desc;
  518. struct kvm_rmap_desc *prev_desc;
  519. u64 *prev_spte;
  520. int i;
  521. if (!*rmapp)
  522. return NULL;
  523. else if (!(*rmapp & 1)) {
  524. if (!spte)
  525. return (u64 *)*rmapp;
  526. return NULL;
  527. }
  528. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  529. prev_desc = NULL;
  530. prev_spte = NULL;
  531. while (desc) {
  532. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  533. if (prev_spte == spte)
  534. return desc->sptes[i];
  535. prev_spte = desc->sptes[i];
  536. }
  537. desc = desc->more;
  538. }
  539. return NULL;
  540. }
  541. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  542. {
  543. unsigned long *rmapp;
  544. u64 *spte;
  545. int write_protected = 0;
  546. gfn = unalias_gfn(kvm, gfn);
  547. rmapp = gfn_to_rmap(kvm, gfn, 0);
  548. spte = rmap_next(kvm, rmapp, NULL);
  549. while (spte) {
  550. BUG_ON(!spte);
  551. BUG_ON(!(*spte & PT_PRESENT_MASK));
  552. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  553. if (is_writeble_pte(*spte)) {
  554. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  555. write_protected = 1;
  556. }
  557. spte = rmap_next(kvm, rmapp, spte);
  558. }
  559. if (write_protected) {
  560. pfn_t pfn;
  561. spte = rmap_next(kvm, rmapp, NULL);
  562. pfn = spte_to_pfn(*spte);
  563. kvm_set_pfn_dirty(pfn);
  564. }
  565. /* check for huge page mappings */
  566. rmapp = gfn_to_rmap(kvm, gfn, 1);
  567. spte = rmap_next(kvm, rmapp, NULL);
  568. while (spte) {
  569. BUG_ON(!spte);
  570. BUG_ON(!(*spte & PT_PRESENT_MASK));
  571. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  572. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  573. if (is_writeble_pte(*spte)) {
  574. rmap_remove(kvm, spte);
  575. --kvm->stat.lpages;
  576. __set_spte(spte, shadow_trap_nonpresent_pte);
  577. spte = NULL;
  578. write_protected = 1;
  579. }
  580. spte = rmap_next(kvm, rmapp, spte);
  581. }
  582. return write_protected;
  583. }
  584. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  585. {
  586. u64 *spte;
  587. int need_tlb_flush = 0;
  588. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  589. BUG_ON(!(*spte & PT_PRESENT_MASK));
  590. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  591. rmap_remove(kvm, spte);
  592. __set_spte(spte, shadow_trap_nonpresent_pte);
  593. need_tlb_flush = 1;
  594. }
  595. return need_tlb_flush;
  596. }
  597. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  598. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  599. {
  600. int i;
  601. int retval = 0;
  602. /*
  603. * If mmap_sem isn't taken, we can look the memslots with only
  604. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  605. */
  606. for (i = 0; i < kvm->nmemslots; i++) {
  607. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  608. unsigned long start = memslot->userspace_addr;
  609. unsigned long end;
  610. /* mmu_lock protects userspace_addr */
  611. if (!start)
  612. continue;
  613. end = start + (memslot->npages << PAGE_SHIFT);
  614. if (hva >= start && hva < end) {
  615. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  616. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  617. retval |= handler(kvm,
  618. &memslot->lpage_info[
  619. gfn_offset /
  620. KVM_PAGES_PER_HPAGE].rmap_pde);
  621. }
  622. }
  623. return retval;
  624. }
  625. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  626. {
  627. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  628. }
  629. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  630. {
  631. u64 *spte;
  632. int young = 0;
  633. /* always return old for EPT */
  634. if (!shadow_accessed_mask)
  635. return 0;
  636. spte = rmap_next(kvm, rmapp, NULL);
  637. while (spte) {
  638. int _young;
  639. u64 _spte = *spte;
  640. BUG_ON(!(_spte & PT_PRESENT_MASK));
  641. _young = _spte & PT_ACCESSED_MASK;
  642. if (_young) {
  643. young = 1;
  644. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  645. }
  646. spte = rmap_next(kvm, rmapp, spte);
  647. }
  648. return young;
  649. }
  650. #define RMAP_RECYCLE_THRESHOLD 1000
  651. static void rmap_recycle(struct kvm_vcpu *vcpu, gfn_t gfn, int lpage)
  652. {
  653. unsigned long *rmapp;
  654. gfn = unalias_gfn(vcpu->kvm, gfn);
  655. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  656. kvm_unmap_rmapp(vcpu->kvm, rmapp);
  657. kvm_flush_remote_tlbs(vcpu->kvm);
  658. }
  659. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  660. {
  661. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  662. }
  663. #ifdef MMU_DEBUG
  664. static int is_empty_shadow_page(u64 *spt)
  665. {
  666. u64 *pos;
  667. u64 *end;
  668. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  669. if (is_shadow_present_pte(*pos)) {
  670. printk(KERN_ERR "%s: %p %llx\n", __func__,
  671. pos, *pos);
  672. return 0;
  673. }
  674. return 1;
  675. }
  676. #endif
  677. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  678. {
  679. ASSERT(is_empty_shadow_page(sp->spt));
  680. list_del(&sp->link);
  681. __free_page(virt_to_page(sp->spt));
  682. __free_page(virt_to_page(sp->gfns));
  683. kfree(sp);
  684. ++kvm->arch.n_free_mmu_pages;
  685. }
  686. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  687. {
  688. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  689. }
  690. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  691. u64 *parent_pte)
  692. {
  693. struct kvm_mmu_page *sp;
  694. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  695. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  696. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  697. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  698. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  699. INIT_LIST_HEAD(&sp->oos_link);
  700. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  701. sp->multimapped = 0;
  702. sp->parent_pte = parent_pte;
  703. --vcpu->kvm->arch.n_free_mmu_pages;
  704. return sp;
  705. }
  706. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  707. struct kvm_mmu_page *sp, u64 *parent_pte)
  708. {
  709. struct kvm_pte_chain *pte_chain;
  710. struct hlist_node *node;
  711. int i;
  712. if (!parent_pte)
  713. return;
  714. if (!sp->multimapped) {
  715. u64 *old = sp->parent_pte;
  716. if (!old) {
  717. sp->parent_pte = parent_pte;
  718. return;
  719. }
  720. sp->multimapped = 1;
  721. pte_chain = mmu_alloc_pte_chain(vcpu);
  722. INIT_HLIST_HEAD(&sp->parent_ptes);
  723. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  724. pte_chain->parent_ptes[0] = old;
  725. }
  726. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  727. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  728. continue;
  729. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  730. if (!pte_chain->parent_ptes[i]) {
  731. pte_chain->parent_ptes[i] = parent_pte;
  732. return;
  733. }
  734. }
  735. pte_chain = mmu_alloc_pte_chain(vcpu);
  736. BUG_ON(!pte_chain);
  737. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  738. pte_chain->parent_ptes[0] = parent_pte;
  739. }
  740. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  741. u64 *parent_pte)
  742. {
  743. struct kvm_pte_chain *pte_chain;
  744. struct hlist_node *node;
  745. int i;
  746. if (!sp->multimapped) {
  747. BUG_ON(sp->parent_pte != parent_pte);
  748. sp->parent_pte = NULL;
  749. return;
  750. }
  751. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  752. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  753. if (!pte_chain->parent_ptes[i])
  754. break;
  755. if (pte_chain->parent_ptes[i] != parent_pte)
  756. continue;
  757. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  758. && pte_chain->parent_ptes[i + 1]) {
  759. pte_chain->parent_ptes[i]
  760. = pte_chain->parent_ptes[i + 1];
  761. ++i;
  762. }
  763. pte_chain->parent_ptes[i] = NULL;
  764. if (i == 0) {
  765. hlist_del(&pte_chain->link);
  766. mmu_free_pte_chain(pte_chain);
  767. if (hlist_empty(&sp->parent_ptes)) {
  768. sp->multimapped = 0;
  769. sp->parent_pte = NULL;
  770. }
  771. }
  772. return;
  773. }
  774. BUG();
  775. }
  776. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  777. mmu_parent_walk_fn fn)
  778. {
  779. struct kvm_pte_chain *pte_chain;
  780. struct hlist_node *node;
  781. struct kvm_mmu_page *parent_sp;
  782. int i;
  783. if (!sp->multimapped && sp->parent_pte) {
  784. parent_sp = page_header(__pa(sp->parent_pte));
  785. fn(vcpu, parent_sp);
  786. mmu_parent_walk(vcpu, parent_sp, fn);
  787. return;
  788. }
  789. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  790. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  791. if (!pte_chain->parent_ptes[i])
  792. break;
  793. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  794. fn(vcpu, parent_sp);
  795. mmu_parent_walk(vcpu, parent_sp, fn);
  796. }
  797. }
  798. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  799. {
  800. unsigned int index;
  801. struct kvm_mmu_page *sp = page_header(__pa(spte));
  802. index = spte - sp->spt;
  803. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  804. sp->unsync_children++;
  805. WARN_ON(!sp->unsync_children);
  806. }
  807. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  808. {
  809. struct kvm_pte_chain *pte_chain;
  810. struct hlist_node *node;
  811. int i;
  812. if (!sp->parent_pte)
  813. return;
  814. if (!sp->multimapped) {
  815. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  816. return;
  817. }
  818. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  819. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  820. if (!pte_chain->parent_ptes[i])
  821. break;
  822. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  823. }
  824. }
  825. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  826. {
  827. kvm_mmu_update_parents_unsync(sp);
  828. return 1;
  829. }
  830. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  831. struct kvm_mmu_page *sp)
  832. {
  833. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  834. kvm_mmu_update_parents_unsync(sp);
  835. }
  836. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  837. struct kvm_mmu_page *sp)
  838. {
  839. int i;
  840. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  841. sp->spt[i] = shadow_trap_nonpresent_pte;
  842. }
  843. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  844. struct kvm_mmu_page *sp)
  845. {
  846. return 1;
  847. }
  848. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  849. {
  850. }
  851. #define KVM_PAGE_ARRAY_NR 16
  852. struct kvm_mmu_pages {
  853. struct mmu_page_and_offset {
  854. struct kvm_mmu_page *sp;
  855. unsigned int idx;
  856. } page[KVM_PAGE_ARRAY_NR];
  857. unsigned int nr;
  858. };
  859. #define for_each_unsync_children(bitmap, idx) \
  860. for (idx = find_first_bit(bitmap, 512); \
  861. idx < 512; \
  862. idx = find_next_bit(bitmap, 512, idx+1))
  863. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  864. int idx)
  865. {
  866. int i;
  867. if (sp->unsync)
  868. for (i=0; i < pvec->nr; i++)
  869. if (pvec->page[i].sp == sp)
  870. return 0;
  871. pvec->page[pvec->nr].sp = sp;
  872. pvec->page[pvec->nr].idx = idx;
  873. pvec->nr++;
  874. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  875. }
  876. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  877. struct kvm_mmu_pages *pvec)
  878. {
  879. int i, ret, nr_unsync_leaf = 0;
  880. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  881. u64 ent = sp->spt[i];
  882. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  883. struct kvm_mmu_page *child;
  884. child = page_header(ent & PT64_BASE_ADDR_MASK);
  885. if (child->unsync_children) {
  886. if (mmu_pages_add(pvec, child, i))
  887. return -ENOSPC;
  888. ret = __mmu_unsync_walk(child, pvec);
  889. if (!ret)
  890. __clear_bit(i, sp->unsync_child_bitmap);
  891. else if (ret > 0)
  892. nr_unsync_leaf += ret;
  893. else
  894. return ret;
  895. }
  896. if (child->unsync) {
  897. nr_unsync_leaf++;
  898. if (mmu_pages_add(pvec, child, i))
  899. return -ENOSPC;
  900. }
  901. }
  902. }
  903. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  904. sp->unsync_children = 0;
  905. return nr_unsync_leaf;
  906. }
  907. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  908. struct kvm_mmu_pages *pvec)
  909. {
  910. if (!sp->unsync_children)
  911. return 0;
  912. mmu_pages_add(pvec, sp, 0);
  913. return __mmu_unsync_walk(sp, pvec);
  914. }
  915. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  916. {
  917. unsigned index;
  918. struct hlist_head *bucket;
  919. struct kvm_mmu_page *sp;
  920. struct hlist_node *node;
  921. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  922. index = kvm_page_table_hashfn(gfn);
  923. bucket = &kvm->arch.mmu_page_hash[index];
  924. hlist_for_each_entry(sp, node, bucket, hash_link)
  925. if (sp->gfn == gfn && !sp->role.direct
  926. && !sp->role.invalid) {
  927. pgprintk("%s: found role %x\n",
  928. __func__, sp->role.word);
  929. return sp;
  930. }
  931. return NULL;
  932. }
  933. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  934. {
  935. WARN_ON(!sp->unsync);
  936. sp->unsync = 0;
  937. --kvm->stat.mmu_unsync;
  938. }
  939. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  940. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  941. {
  942. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  943. kvm_mmu_zap_page(vcpu->kvm, sp);
  944. return 1;
  945. }
  946. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  947. kvm_flush_remote_tlbs(vcpu->kvm);
  948. kvm_unlink_unsync_page(vcpu->kvm, sp);
  949. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  950. kvm_mmu_zap_page(vcpu->kvm, sp);
  951. return 1;
  952. }
  953. kvm_mmu_flush_tlb(vcpu);
  954. return 0;
  955. }
  956. struct mmu_page_path {
  957. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  958. unsigned int idx[PT64_ROOT_LEVEL-1];
  959. };
  960. #define for_each_sp(pvec, sp, parents, i) \
  961. for (i = mmu_pages_next(&pvec, &parents, -1), \
  962. sp = pvec.page[i].sp; \
  963. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  964. i = mmu_pages_next(&pvec, &parents, i))
  965. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  966. struct mmu_page_path *parents,
  967. int i)
  968. {
  969. int n;
  970. for (n = i+1; n < pvec->nr; n++) {
  971. struct kvm_mmu_page *sp = pvec->page[n].sp;
  972. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  973. parents->idx[0] = pvec->page[n].idx;
  974. return n;
  975. }
  976. parents->parent[sp->role.level-2] = sp;
  977. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  978. }
  979. return n;
  980. }
  981. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  982. {
  983. struct kvm_mmu_page *sp;
  984. unsigned int level = 0;
  985. do {
  986. unsigned int idx = parents->idx[level];
  987. sp = parents->parent[level];
  988. if (!sp)
  989. return;
  990. --sp->unsync_children;
  991. WARN_ON((int)sp->unsync_children < 0);
  992. __clear_bit(idx, sp->unsync_child_bitmap);
  993. level++;
  994. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  995. }
  996. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  997. struct mmu_page_path *parents,
  998. struct kvm_mmu_pages *pvec)
  999. {
  1000. parents->parent[parent->role.level-1] = NULL;
  1001. pvec->nr = 0;
  1002. }
  1003. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1004. struct kvm_mmu_page *parent)
  1005. {
  1006. int i;
  1007. struct kvm_mmu_page *sp;
  1008. struct mmu_page_path parents;
  1009. struct kvm_mmu_pages pages;
  1010. kvm_mmu_pages_init(parent, &parents, &pages);
  1011. while (mmu_unsync_walk(parent, &pages)) {
  1012. int protected = 0;
  1013. for_each_sp(pages, sp, parents, i)
  1014. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1015. if (protected)
  1016. kvm_flush_remote_tlbs(vcpu->kvm);
  1017. for_each_sp(pages, sp, parents, i) {
  1018. kvm_sync_page(vcpu, sp);
  1019. mmu_pages_clear_parents(&parents);
  1020. }
  1021. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1022. kvm_mmu_pages_init(parent, &parents, &pages);
  1023. }
  1024. }
  1025. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1026. gfn_t gfn,
  1027. gva_t gaddr,
  1028. unsigned level,
  1029. int direct,
  1030. unsigned access,
  1031. u64 *parent_pte)
  1032. {
  1033. union kvm_mmu_page_role role;
  1034. unsigned index;
  1035. unsigned quadrant;
  1036. struct hlist_head *bucket;
  1037. struct kvm_mmu_page *sp;
  1038. struct hlist_node *node, *tmp;
  1039. role = vcpu->arch.mmu.base_role;
  1040. role.level = level;
  1041. role.direct = direct;
  1042. role.access = access;
  1043. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1044. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1045. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1046. role.quadrant = quadrant;
  1047. }
  1048. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  1049. gfn, role.word);
  1050. index = kvm_page_table_hashfn(gfn);
  1051. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1052. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1053. if (sp->gfn == gfn) {
  1054. if (sp->unsync)
  1055. if (kvm_sync_page(vcpu, sp))
  1056. continue;
  1057. if (sp->role.word != role.word)
  1058. continue;
  1059. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1060. if (sp->unsync_children) {
  1061. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1062. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1063. }
  1064. pgprintk("%s: found\n", __func__);
  1065. return sp;
  1066. }
  1067. ++vcpu->kvm->stat.mmu_cache_miss;
  1068. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1069. if (!sp)
  1070. return sp;
  1071. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  1072. sp->gfn = gfn;
  1073. sp->role = role;
  1074. hlist_add_head(&sp->hash_link, bucket);
  1075. if (!direct) {
  1076. if (rmap_write_protect(vcpu->kvm, gfn))
  1077. kvm_flush_remote_tlbs(vcpu->kvm);
  1078. account_shadowed(vcpu->kvm, gfn);
  1079. }
  1080. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1081. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1082. else
  1083. nonpaging_prefetch_page(vcpu, sp);
  1084. return sp;
  1085. }
  1086. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1087. struct kvm_vcpu *vcpu, u64 addr)
  1088. {
  1089. iterator->addr = addr;
  1090. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1091. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1092. if (iterator->level == PT32E_ROOT_LEVEL) {
  1093. iterator->shadow_addr
  1094. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1095. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1096. --iterator->level;
  1097. if (!iterator->shadow_addr)
  1098. iterator->level = 0;
  1099. }
  1100. }
  1101. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1102. {
  1103. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1104. return false;
  1105. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1106. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1107. return true;
  1108. }
  1109. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1110. {
  1111. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1112. --iterator->level;
  1113. }
  1114. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1115. struct kvm_mmu_page *sp)
  1116. {
  1117. unsigned i;
  1118. u64 *pt;
  1119. u64 ent;
  1120. pt = sp->spt;
  1121. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1122. ent = pt[i];
  1123. if (is_shadow_present_pte(ent)) {
  1124. if (!is_last_spte(ent, sp->role.level)) {
  1125. ent &= PT64_BASE_ADDR_MASK;
  1126. mmu_page_remove_parent_pte(page_header(ent),
  1127. &pt[i]);
  1128. } else {
  1129. if (is_large_pte(ent))
  1130. --kvm->stat.lpages;
  1131. rmap_remove(kvm, &pt[i]);
  1132. }
  1133. }
  1134. pt[i] = shadow_trap_nonpresent_pte;
  1135. }
  1136. }
  1137. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1138. {
  1139. mmu_page_remove_parent_pte(sp, parent_pte);
  1140. }
  1141. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1142. {
  1143. int i;
  1144. struct kvm_vcpu *vcpu;
  1145. kvm_for_each_vcpu(i, vcpu, kvm)
  1146. vcpu->arch.last_pte_updated = NULL;
  1147. }
  1148. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1149. {
  1150. u64 *parent_pte;
  1151. while (sp->multimapped || sp->parent_pte) {
  1152. if (!sp->multimapped)
  1153. parent_pte = sp->parent_pte;
  1154. else {
  1155. struct kvm_pte_chain *chain;
  1156. chain = container_of(sp->parent_ptes.first,
  1157. struct kvm_pte_chain, link);
  1158. parent_pte = chain->parent_ptes[0];
  1159. }
  1160. BUG_ON(!parent_pte);
  1161. kvm_mmu_put_page(sp, parent_pte);
  1162. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1163. }
  1164. }
  1165. static int mmu_zap_unsync_children(struct kvm *kvm,
  1166. struct kvm_mmu_page *parent)
  1167. {
  1168. int i, zapped = 0;
  1169. struct mmu_page_path parents;
  1170. struct kvm_mmu_pages pages;
  1171. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1172. return 0;
  1173. kvm_mmu_pages_init(parent, &parents, &pages);
  1174. while (mmu_unsync_walk(parent, &pages)) {
  1175. struct kvm_mmu_page *sp;
  1176. for_each_sp(pages, sp, parents, i) {
  1177. kvm_mmu_zap_page(kvm, sp);
  1178. mmu_pages_clear_parents(&parents);
  1179. }
  1180. zapped += pages.nr;
  1181. kvm_mmu_pages_init(parent, &parents, &pages);
  1182. }
  1183. return zapped;
  1184. }
  1185. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1186. {
  1187. int ret;
  1188. ++kvm->stat.mmu_shadow_zapped;
  1189. ret = mmu_zap_unsync_children(kvm, sp);
  1190. kvm_mmu_page_unlink_children(kvm, sp);
  1191. kvm_mmu_unlink_parents(kvm, sp);
  1192. kvm_flush_remote_tlbs(kvm);
  1193. if (!sp->role.invalid && !sp->role.direct)
  1194. unaccount_shadowed(kvm, sp->gfn);
  1195. if (sp->unsync)
  1196. kvm_unlink_unsync_page(kvm, sp);
  1197. if (!sp->root_count) {
  1198. hlist_del(&sp->hash_link);
  1199. kvm_mmu_free_page(kvm, sp);
  1200. } else {
  1201. sp->role.invalid = 1;
  1202. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1203. kvm_reload_remote_mmus(kvm);
  1204. }
  1205. kvm_mmu_reset_last_pte_updated(kvm);
  1206. return ret;
  1207. }
  1208. /*
  1209. * Changing the number of mmu pages allocated to the vm
  1210. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1211. */
  1212. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1213. {
  1214. int used_pages;
  1215. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1216. used_pages = max(0, used_pages);
  1217. /*
  1218. * If we set the number of mmu pages to be smaller be than the
  1219. * number of actived pages , we must to free some mmu pages before we
  1220. * change the value
  1221. */
  1222. if (used_pages > kvm_nr_mmu_pages) {
  1223. while (used_pages > kvm_nr_mmu_pages) {
  1224. struct kvm_mmu_page *page;
  1225. page = container_of(kvm->arch.active_mmu_pages.prev,
  1226. struct kvm_mmu_page, link);
  1227. kvm_mmu_zap_page(kvm, page);
  1228. used_pages--;
  1229. }
  1230. kvm->arch.n_free_mmu_pages = 0;
  1231. }
  1232. else
  1233. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1234. - kvm->arch.n_alloc_mmu_pages;
  1235. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1236. }
  1237. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1238. {
  1239. unsigned index;
  1240. struct hlist_head *bucket;
  1241. struct kvm_mmu_page *sp;
  1242. struct hlist_node *node, *n;
  1243. int r;
  1244. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1245. r = 0;
  1246. index = kvm_page_table_hashfn(gfn);
  1247. bucket = &kvm->arch.mmu_page_hash[index];
  1248. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1249. if (sp->gfn == gfn && !sp->role.direct) {
  1250. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1251. sp->role.word);
  1252. r = 1;
  1253. if (kvm_mmu_zap_page(kvm, sp))
  1254. n = bucket->first;
  1255. }
  1256. return r;
  1257. }
  1258. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1259. {
  1260. unsigned index;
  1261. struct hlist_head *bucket;
  1262. struct kvm_mmu_page *sp;
  1263. struct hlist_node *node, *nn;
  1264. index = kvm_page_table_hashfn(gfn);
  1265. bucket = &kvm->arch.mmu_page_hash[index];
  1266. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1267. if (sp->gfn == gfn && !sp->role.direct
  1268. && !sp->role.invalid) {
  1269. pgprintk("%s: zap %lx %x\n",
  1270. __func__, gfn, sp->role.word);
  1271. kvm_mmu_zap_page(kvm, sp);
  1272. }
  1273. }
  1274. }
  1275. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1276. {
  1277. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1278. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1279. __set_bit(slot, sp->slot_bitmap);
  1280. }
  1281. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1282. {
  1283. int i;
  1284. u64 *pt = sp->spt;
  1285. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1286. return;
  1287. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1288. if (pt[i] == shadow_notrap_nonpresent_pte)
  1289. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1290. }
  1291. }
  1292. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1293. {
  1294. struct page *page;
  1295. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1296. if (gpa == UNMAPPED_GVA)
  1297. return NULL;
  1298. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1299. return page;
  1300. }
  1301. /*
  1302. * The function is based on mtrr_type_lookup() in
  1303. * arch/x86/kernel/cpu/mtrr/generic.c
  1304. */
  1305. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1306. u64 start, u64 end)
  1307. {
  1308. int i;
  1309. u64 base, mask;
  1310. u8 prev_match, curr_match;
  1311. int num_var_ranges = KVM_NR_VAR_MTRR;
  1312. if (!mtrr_state->enabled)
  1313. return 0xFF;
  1314. /* Make end inclusive end, instead of exclusive */
  1315. end--;
  1316. /* Look in fixed ranges. Just return the type as per start */
  1317. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1318. int idx;
  1319. if (start < 0x80000) {
  1320. idx = 0;
  1321. idx += (start >> 16);
  1322. return mtrr_state->fixed_ranges[idx];
  1323. } else if (start < 0xC0000) {
  1324. idx = 1 * 8;
  1325. idx += ((start - 0x80000) >> 14);
  1326. return mtrr_state->fixed_ranges[idx];
  1327. } else if (start < 0x1000000) {
  1328. idx = 3 * 8;
  1329. idx += ((start - 0xC0000) >> 12);
  1330. return mtrr_state->fixed_ranges[idx];
  1331. }
  1332. }
  1333. /*
  1334. * Look in variable ranges
  1335. * Look of multiple ranges matching this address and pick type
  1336. * as per MTRR precedence
  1337. */
  1338. if (!(mtrr_state->enabled & 2))
  1339. return mtrr_state->def_type;
  1340. prev_match = 0xFF;
  1341. for (i = 0; i < num_var_ranges; ++i) {
  1342. unsigned short start_state, end_state;
  1343. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1344. continue;
  1345. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1346. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1347. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1348. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1349. start_state = ((start & mask) == (base & mask));
  1350. end_state = ((end & mask) == (base & mask));
  1351. if (start_state != end_state)
  1352. return 0xFE;
  1353. if ((start & mask) != (base & mask))
  1354. continue;
  1355. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1356. if (prev_match == 0xFF) {
  1357. prev_match = curr_match;
  1358. continue;
  1359. }
  1360. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1361. curr_match == MTRR_TYPE_UNCACHABLE)
  1362. return MTRR_TYPE_UNCACHABLE;
  1363. if ((prev_match == MTRR_TYPE_WRBACK &&
  1364. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1365. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1366. curr_match == MTRR_TYPE_WRBACK)) {
  1367. prev_match = MTRR_TYPE_WRTHROUGH;
  1368. curr_match = MTRR_TYPE_WRTHROUGH;
  1369. }
  1370. if (prev_match != curr_match)
  1371. return MTRR_TYPE_UNCACHABLE;
  1372. }
  1373. if (prev_match != 0xFF)
  1374. return prev_match;
  1375. return mtrr_state->def_type;
  1376. }
  1377. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1378. {
  1379. u8 mtrr;
  1380. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1381. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1382. if (mtrr == 0xfe || mtrr == 0xff)
  1383. mtrr = MTRR_TYPE_WRBACK;
  1384. return mtrr;
  1385. }
  1386. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1387. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1388. {
  1389. unsigned index;
  1390. struct hlist_head *bucket;
  1391. struct kvm_mmu_page *s;
  1392. struct hlist_node *node, *n;
  1393. index = kvm_page_table_hashfn(sp->gfn);
  1394. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1395. /* don't unsync if pagetable is shadowed with multiple roles */
  1396. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1397. if (s->gfn != sp->gfn || s->role.direct)
  1398. continue;
  1399. if (s->role.word != sp->role.word)
  1400. return 1;
  1401. }
  1402. ++vcpu->kvm->stat.mmu_unsync;
  1403. sp->unsync = 1;
  1404. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1405. mmu_convert_notrap(sp);
  1406. return 0;
  1407. }
  1408. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1409. bool can_unsync)
  1410. {
  1411. struct kvm_mmu_page *shadow;
  1412. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1413. if (shadow) {
  1414. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1415. return 1;
  1416. if (shadow->unsync)
  1417. return 0;
  1418. if (can_unsync && oos_shadow)
  1419. return kvm_unsync_page(vcpu, shadow);
  1420. return 1;
  1421. }
  1422. return 0;
  1423. }
  1424. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1425. unsigned pte_access, int user_fault,
  1426. int write_fault, int dirty, int largepage,
  1427. gfn_t gfn, pfn_t pfn, bool speculative,
  1428. bool can_unsync)
  1429. {
  1430. u64 spte;
  1431. int ret = 0;
  1432. /*
  1433. * We don't set the accessed bit, since we sometimes want to see
  1434. * whether the guest actually used the pte (in order to detect
  1435. * demand paging).
  1436. */
  1437. spte = shadow_base_present_pte | shadow_dirty_mask;
  1438. if (!speculative)
  1439. spte |= shadow_accessed_mask;
  1440. if (!dirty)
  1441. pte_access &= ~ACC_WRITE_MASK;
  1442. if (pte_access & ACC_EXEC_MASK)
  1443. spte |= shadow_x_mask;
  1444. else
  1445. spte |= shadow_nx_mask;
  1446. if (pte_access & ACC_USER_MASK)
  1447. spte |= shadow_user_mask;
  1448. if (largepage)
  1449. spte |= PT_PAGE_SIZE_MASK;
  1450. if (tdp_enabled)
  1451. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1452. kvm_is_mmio_pfn(pfn));
  1453. spte |= (u64)pfn << PAGE_SHIFT;
  1454. if ((pte_access & ACC_WRITE_MASK)
  1455. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1456. if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
  1457. ret = 1;
  1458. spte = shadow_trap_nonpresent_pte;
  1459. goto set_pte;
  1460. }
  1461. spte |= PT_WRITABLE_MASK;
  1462. /*
  1463. * Optimization: for pte sync, if spte was writable the hash
  1464. * lookup is unnecessary (and expensive). Write protection
  1465. * is responsibility of mmu_get_page / kvm_sync_page.
  1466. * Same reasoning can be applied to dirty page accounting.
  1467. */
  1468. if (!can_unsync && is_writeble_pte(*sptep))
  1469. goto set_pte;
  1470. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1471. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1472. __func__, gfn);
  1473. ret = 1;
  1474. pte_access &= ~ACC_WRITE_MASK;
  1475. if (is_writeble_pte(spte))
  1476. spte &= ~PT_WRITABLE_MASK;
  1477. }
  1478. }
  1479. if (pte_access & ACC_WRITE_MASK)
  1480. mark_page_dirty(vcpu->kvm, gfn);
  1481. set_pte:
  1482. __set_spte(sptep, spte);
  1483. return ret;
  1484. }
  1485. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1486. unsigned pt_access, unsigned pte_access,
  1487. int user_fault, int write_fault, int dirty,
  1488. int *ptwrite, int largepage, gfn_t gfn,
  1489. pfn_t pfn, bool speculative)
  1490. {
  1491. int was_rmapped = 0;
  1492. int was_writeble = is_writeble_pte(*sptep);
  1493. int rmap_count;
  1494. pgprintk("%s: spte %llx access %x write_fault %d"
  1495. " user_fault %d gfn %lx\n",
  1496. __func__, *sptep, pt_access,
  1497. write_fault, user_fault, gfn);
  1498. if (is_rmap_spte(*sptep)) {
  1499. /*
  1500. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1501. * the parent of the now unreachable PTE.
  1502. */
  1503. if (largepage && !is_large_pte(*sptep)) {
  1504. struct kvm_mmu_page *child;
  1505. u64 pte = *sptep;
  1506. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1507. mmu_page_remove_parent_pte(child, sptep);
  1508. } else if (pfn != spte_to_pfn(*sptep)) {
  1509. pgprintk("hfn old %lx new %lx\n",
  1510. spte_to_pfn(*sptep), pfn);
  1511. rmap_remove(vcpu->kvm, sptep);
  1512. } else
  1513. was_rmapped = 1;
  1514. }
  1515. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1516. dirty, largepage, gfn, pfn, speculative, true)) {
  1517. if (write_fault)
  1518. *ptwrite = 1;
  1519. kvm_x86_ops->tlb_flush(vcpu);
  1520. }
  1521. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1522. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1523. is_large_pte(*sptep)? "2MB" : "4kB",
  1524. is_present_pte(*sptep)?"RW":"R", gfn,
  1525. *shadow_pte, sptep);
  1526. if (!was_rmapped && is_large_pte(*sptep))
  1527. ++vcpu->kvm->stat.lpages;
  1528. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1529. if (!was_rmapped) {
  1530. rmap_count = rmap_add(vcpu, sptep, gfn, largepage);
  1531. if (!is_rmap_spte(*sptep))
  1532. kvm_release_pfn_clean(pfn);
  1533. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1534. rmap_recycle(vcpu, gfn, largepage);
  1535. } else {
  1536. if (was_writeble)
  1537. kvm_release_pfn_dirty(pfn);
  1538. else
  1539. kvm_release_pfn_clean(pfn);
  1540. }
  1541. if (speculative) {
  1542. vcpu->arch.last_pte_updated = sptep;
  1543. vcpu->arch.last_pte_gfn = gfn;
  1544. }
  1545. }
  1546. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1547. {
  1548. }
  1549. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1550. int largepage, gfn_t gfn, pfn_t pfn)
  1551. {
  1552. struct kvm_shadow_walk_iterator iterator;
  1553. struct kvm_mmu_page *sp;
  1554. int pt_write = 0;
  1555. gfn_t pseudo_gfn;
  1556. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1557. if (iterator.level == PT_PAGE_TABLE_LEVEL
  1558. || (largepage && iterator.level == PT_DIRECTORY_LEVEL)) {
  1559. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1560. 0, write, 1, &pt_write,
  1561. largepage, gfn, pfn, false);
  1562. ++vcpu->stat.pf_fixed;
  1563. break;
  1564. }
  1565. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1566. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1567. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1568. iterator.level - 1,
  1569. 1, ACC_ALL, iterator.sptep);
  1570. if (!sp) {
  1571. pgprintk("nonpaging_map: ENOMEM\n");
  1572. kvm_release_pfn_clean(pfn);
  1573. return -ENOMEM;
  1574. }
  1575. __set_spte(iterator.sptep,
  1576. __pa(sp->spt)
  1577. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1578. | shadow_user_mask | shadow_x_mask);
  1579. }
  1580. }
  1581. return pt_write;
  1582. }
  1583. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1584. {
  1585. int r;
  1586. int largepage = 0;
  1587. pfn_t pfn;
  1588. unsigned long mmu_seq;
  1589. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1590. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1591. largepage = 1;
  1592. }
  1593. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1594. smp_rmb();
  1595. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1596. /* mmio */
  1597. if (is_error_pfn(pfn)) {
  1598. kvm_release_pfn_clean(pfn);
  1599. return 1;
  1600. }
  1601. spin_lock(&vcpu->kvm->mmu_lock);
  1602. if (mmu_notifier_retry(vcpu, mmu_seq))
  1603. goto out_unlock;
  1604. kvm_mmu_free_some_pages(vcpu);
  1605. r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
  1606. spin_unlock(&vcpu->kvm->mmu_lock);
  1607. return r;
  1608. out_unlock:
  1609. spin_unlock(&vcpu->kvm->mmu_lock);
  1610. kvm_release_pfn_clean(pfn);
  1611. return 0;
  1612. }
  1613. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1614. {
  1615. int i;
  1616. struct kvm_mmu_page *sp;
  1617. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1618. return;
  1619. spin_lock(&vcpu->kvm->mmu_lock);
  1620. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1621. hpa_t root = vcpu->arch.mmu.root_hpa;
  1622. sp = page_header(root);
  1623. --sp->root_count;
  1624. if (!sp->root_count && sp->role.invalid)
  1625. kvm_mmu_zap_page(vcpu->kvm, sp);
  1626. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1627. spin_unlock(&vcpu->kvm->mmu_lock);
  1628. return;
  1629. }
  1630. for (i = 0; i < 4; ++i) {
  1631. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1632. if (root) {
  1633. root &= PT64_BASE_ADDR_MASK;
  1634. sp = page_header(root);
  1635. --sp->root_count;
  1636. if (!sp->root_count && sp->role.invalid)
  1637. kvm_mmu_zap_page(vcpu->kvm, sp);
  1638. }
  1639. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1640. }
  1641. spin_unlock(&vcpu->kvm->mmu_lock);
  1642. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1643. }
  1644. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1645. {
  1646. int ret = 0;
  1647. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1648. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1649. ret = 1;
  1650. }
  1651. return ret;
  1652. }
  1653. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1654. {
  1655. int i;
  1656. gfn_t root_gfn;
  1657. struct kvm_mmu_page *sp;
  1658. int direct = 0;
  1659. u64 pdptr;
  1660. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1661. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1662. hpa_t root = vcpu->arch.mmu.root_hpa;
  1663. ASSERT(!VALID_PAGE(root));
  1664. if (tdp_enabled)
  1665. direct = 1;
  1666. if (mmu_check_root(vcpu, root_gfn))
  1667. return 1;
  1668. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1669. PT64_ROOT_LEVEL, direct,
  1670. ACC_ALL, NULL);
  1671. root = __pa(sp->spt);
  1672. ++sp->root_count;
  1673. vcpu->arch.mmu.root_hpa = root;
  1674. return 0;
  1675. }
  1676. direct = !is_paging(vcpu);
  1677. if (tdp_enabled)
  1678. direct = 1;
  1679. for (i = 0; i < 4; ++i) {
  1680. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1681. ASSERT(!VALID_PAGE(root));
  1682. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1683. pdptr = kvm_pdptr_read(vcpu, i);
  1684. if (!is_present_gpte(pdptr)) {
  1685. vcpu->arch.mmu.pae_root[i] = 0;
  1686. continue;
  1687. }
  1688. root_gfn = pdptr >> PAGE_SHIFT;
  1689. } else if (vcpu->arch.mmu.root_level == 0)
  1690. root_gfn = 0;
  1691. if (mmu_check_root(vcpu, root_gfn))
  1692. return 1;
  1693. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1694. PT32_ROOT_LEVEL, direct,
  1695. ACC_ALL, NULL);
  1696. root = __pa(sp->spt);
  1697. ++sp->root_count;
  1698. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1699. }
  1700. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1701. return 0;
  1702. }
  1703. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1704. {
  1705. int i;
  1706. struct kvm_mmu_page *sp;
  1707. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1708. return;
  1709. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1710. hpa_t root = vcpu->arch.mmu.root_hpa;
  1711. sp = page_header(root);
  1712. mmu_sync_children(vcpu, sp);
  1713. return;
  1714. }
  1715. for (i = 0; i < 4; ++i) {
  1716. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1717. if (root && VALID_PAGE(root)) {
  1718. root &= PT64_BASE_ADDR_MASK;
  1719. sp = page_header(root);
  1720. mmu_sync_children(vcpu, sp);
  1721. }
  1722. }
  1723. }
  1724. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1725. {
  1726. spin_lock(&vcpu->kvm->mmu_lock);
  1727. mmu_sync_roots(vcpu);
  1728. spin_unlock(&vcpu->kvm->mmu_lock);
  1729. }
  1730. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1731. {
  1732. return vaddr;
  1733. }
  1734. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1735. u32 error_code)
  1736. {
  1737. gfn_t gfn;
  1738. int r;
  1739. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1740. r = mmu_topup_memory_caches(vcpu);
  1741. if (r)
  1742. return r;
  1743. ASSERT(vcpu);
  1744. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1745. gfn = gva >> PAGE_SHIFT;
  1746. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1747. error_code & PFERR_WRITE_MASK, gfn);
  1748. }
  1749. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1750. u32 error_code)
  1751. {
  1752. pfn_t pfn;
  1753. int r;
  1754. int largepage = 0;
  1755. gfn_t gfn = gpa >> PAGE_SHIFT;
  1756. unsigned long mmu_seq;
  1757. ASSERT(vcpu);
  1758. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1759. r = mmu_topup_memory_caches(vcpu);
  1760. if (r)
  1761. return r;
  1762. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1763. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1764. largepage = 1;
  1765. }
  1766. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1767. smp_rmb();
  1768. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1769. if (is_error_pfn(pfn)) {
  1770. kvm_release_pfn_clean(pfn);
  1771. return 1;
  1772. }
  1773. spin_lock(&vcpu->kvm->mmu_lock);
  1774. if (mmu_notifier_retry(vcpu, mmu_seq))
  1775. goto out_unlock;
  1776. kvm_mmu_free_some_pages(vcpu);
  1777. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1778. largepage, gfn, pfn);
  1779. spin_unlock(&vcpu->kvm->mmu_lock);
  1780. return r;
  1781. out_unlock:
  1782. spin_unlock(&vcpu->kvm->mmu_lock);
  1783. kvm_release_pfn_clean(pfn);
  1784. return 0;
  1785. }
  1786. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1787. {
  1788. mmu_free_roots(vcpu);
  1789. }
  1790. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1791. {
  1792. struct kvm_mmu *context = &vcpu->arch.mmu;
  1793. context->new_cr3 = nonpaging_new_cr3;
  1794. context->page_fault = nonpaging_page_fault;
  1795. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1796. context->free = nonpaging_free;
  1797. context->prefetch_page = nonpaging_prefetch_page;
  1798. context->sync_page = nonpaging_sync_page;
  1799. context->invlpg = nonpaging_invlpg;
  1800. context->root_level = 0;
  1801. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1802. context->root_hpa = INVALID_PAGE;
  1803. return 0;
  1804. }
  1805. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1806. {
  1807. ++vcpu->stat.tlb_flush;
  1808. kvm_x86_ops->tlb_flush(vcpu);
  1809. }
  1810. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1811. {
  1812. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1813. mmu_free_roots(vcpu);
  1814. }
  1815. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1816. u64 addr,
  1817. u32 err_code)
  1818. {
  1819. kvm_inject_page_fault(vcpu, addr, err_code);
  1820. }
  1821. static void paging_free(struct kvm_vcpu *vcpu)
  1822. {
  1823. nonpaging_free(vcpu);
  1824. }
  1825. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1826. {
  1827. int bit7;
  1828. bit7 = (gpte >> 7) & 1;
  1829. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1830. }
  1831. #define PTTYPE 64
  1832. #include "paging_tmpl.h"
  1833. #undef PTTYPE
  1834. #define PTTYPE 32
  1835. #include "paging_tmpl.h"
  1836. #undef PTTYPE
  1837. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1838. {
  1839. struct kvm_mmu *context = &vcpu->arch.mmu;
  1840. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1841. u64 exb_bit_rsvd = 0;
  1842. if (!is_nx(vcpu))
  1843. exb_bit_rsvd = rsvd_bits(63, 63);
  1844. switch (level) {
  1845. case PT32_ROOT_LEVEL:
  1846. /* no rsvd bits for 2 level 4K page table entries */
  1847. context->rsvd_bits_mask[0][1] = 0;
  1848. context->rsvd_bits_mask[0][0] = 0;
  1849. if (is_cpuid_PSE36())
  1850. /* 36bits PSE 4MB page */
  1851. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1852. else
  1853. /* 32 bits PSE 4MB page */
  1854. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1855. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1856. break;
  1857. case PT32E_ROOT_LEVEL:
  1858. context->rsvd_bits_mask[0][2] =
  1859. rsvd_bits(maxphyaddr, 63) |
  1860. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1861. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1862. rsvd_bits(maxphyaddr, 62); /* PDE */
  1863. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1864. rsvd_bits(maxphyaddr, 62); /* PTE */
  1865. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1866. rsvd_bits(maxphyaddr, 62) |
  1867. rsvd_bits(13, 20); /* large page */
  1868. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1869. break;
  1870. case PT64_ROOT_LEVEL:
  1871. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1872. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1873. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1874. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1875. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1876. rsvd_bits(maxphyaddr, 51);
  1877. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1878. rsvd_bits(maxphyaddr, 51);
  1879. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1880. context->rsvd_bits_mask[1][2] = context->rsvd_bits_mask[0][2];
  1881. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1882. rsvd_bits(maxphyaddr, 51) |
  1883. rsvd_bits(13, 20); /* large page */
  1884. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1885. break;
  1886. }
  1887. }
  1888. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1889. {
  1890. struct kvm_mmu *context = &vcpu->arch.mmu;
  1891. ASSERT(is_pae(vcpu));
  1892. context->new_cr3 = paging_new_cr3;
  1893. context->page_fault = paging64_page_fault;
  1894. context->gva_to_gpa = paging64_gva_to_gpa;
  1895. context->prefetch_page = paging64_prefetch_page;
  1896. context->sync_page = paging64_sync_page;
  1897. context->invlpg = paging64_invlpg;
  1898. context->free = paging_free;
  1899. context->root_level = level;
  1900. context->shadow_root_level = level;
  1901. context->root_hpa = INVALID_PAGE;
  1902. return 0;
  1903. }
  1904. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1905. {
  1906. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  1907. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1908. }
  1909. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1910. {
  1911. struct kvm_mmu *context = &vcpu->arch.mmu;
  1912. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  1913. context->new_cr3 = paging_new_cr3;
  1914. context->page_fault = paging32_page_fault;
  1915. context->gva_to_gpa = paging32_gva_to_gpa;
  1916. context->free = paging_free;
  1917. context->prefetch_page = paging32_prefetch_page;
  1918. context->sync_page = paging32_sync_page;
  1919. context->invlpg = paging32_invlpg;
  1920. context->root_level = PT32_ROOT_LEVEL;
  1921. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1922. context->root_hpa = INVALID_PAGE;
  1923. return 0;
  1924. }
  1925. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1926. {
  1927. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  1928. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1929. }
  1930. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1931. {
  1932. struct kvm_mmu *context = &vcpu->arch.mmu;
  1933. context->new_cr3 = nonpaging_new_cr3;
  1934. context->page_fault = tdp_page_fault;
  1935. context->free = nonpaging_free;
  1936. context->prefetch_page = nonpaging_prefetch_page;
  1937. context->sync_page = nonpaging_sync_page;
  1938. context->invlpg = nonpaging_invlpg;
  1939. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1940. context->root_hpa = INVALID_PAGE;
  1941. if (!is_paging(vcpu)) {
  1942. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1943. context->root_level = 0;
  1944. } else if (is_long_mode(vcpu)) {
  1945. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  1946. context->gva_to_gpa = paging64_gva_to_gpa;
  1947. context->root_level = PT64_ROOT_LEVEL;
  1948. } else if (is_pae(vcpu)) {
  1949. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  1950. context->gva_to_gpa = paging64_gva_to_gpa;
  1951. context->root_level = PT32E_ROOT_LEVEL;
  1952. } else {
  1953. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  1954. context->gva_to_gpa = paging32_gva_to_gpa;
  1955. context->root_level = PT32_ROOT_LEVEL;
  1956. }
  1957. return 0;
  1958. }
  1959. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1960. {
  1961. int r;
  1962. ASSERT(vcpu);
  1963. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1964. if (!is_paging(vcpu))
  1965. r = nonpaging_init_context(vcpu);
  1966. else if (is_long_mode(vcpu))
  1967. r = paging64_init_context(vcpu);
  1968. else if (is_pae(vcpu))
  1969. r = paging32E_init_context(vcpu);
  1970. else
  1971. r = paging32_init_context(vcpu);
  1972. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  1973. return r;
  1974. }
  1975. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1976. {
  1977. vcpu->arch.update_pte.pfn = bad_pfn;
  1978. if (tdp_enabled)
  1979. return init_kvm_tdp_mmu(vcpu);
  1980. else
  1981. return init_kvm_softmmu(vcpu);
  1982. }
  1983. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1984. {
  1985. ASSERT(vcpu);
  1986. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1987. vcpu->arch.mmu.free(vcpu);
  1988. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1989. }
  1990. }
  1991. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1992. {
  1993. destroy_kvm_mmu(vcpu);
  1994. return init_kvm_mmu(vcpu);
  1995. }
  1996. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1997. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1998. {
  1999. int r;
  2000. r = mmu_topup_memory_caches(vcpu);
  2001. if (r)
  2002. goto out;
  2003. spin_lock(&vcpu->kvm->mmu_lock);
  2004. kvm_mmu_free_some_pages(vcpu);
  2005. r = mmu_alloc_roots(vcpu);
  2006. mmu_sync_roots(vcpu);
  2007. spin_unlock(&vcpu->kvm->mmu_lock);
  2008. if (r)
  2009. goto out;
  2010. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2011. kvm_mmu_flush_tlb(vcpu);
  2012. out:
  2013. return r;
  2014. }
  2015. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2016. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2017. {
  2018. mmu_free_roots(vcpu);
  2019. }
  2020. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2021. struct kvm_mmu_page *sp,
  2022. u64 *spte)
  2023. {
  2024. u64 pte;
  2025. struct kvm_mmu_page *child;
  2026. pte = *spte;
  2027. if (is_shadow_present_pte(pte)) {
  2028. if (is_last_spte(pte, sp->role.level))
  2029. rmap_remove(vcpu->kvm, spte);
  2030. else {
  2031. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2032. mmu_page_remove_parent_pte(child, spte);
  2033. }
  2034. }
  2035. __set_spte(spte, shadow_trap_nonpresent_pte);
  2036. if (is_large_pte(pte))
  2037. --vcpu->kvm->stat.lpages;
  2038. }
  2039. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2040. struct kvm_mmu_page *sp,
  2041. u64 *spte,
  2042. const void *new)
  2043. {
  2044. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2045. if (!vcpu->arch.update_pte.largepage ||
  2046. sp->role.glevels == PT32_ROOT_LEVEL) {
  2047. ++vcpu->kvm->stat.mmu_pde_zapped;
  2048. return;
  2049. }
  2050. }
  2051. ++vcpu->kvm->stat.mmu_pte_updated;
  2052. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2053. paging32_update_pte(vcpu, sp, spte, new);
  2054. else
  2055. paging64_update_pte(vcpu, sp, spte, new);
  2056. }
  2057. static bool need_remote_flush(u64 old, u64 new)
  2058. {
  2059. if (!is_shadow_present_pte(old))
  2060. return false;
  2061. if (!is_shadow_present_pte(new))
  2062. return true;
  2063. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2064. return true;
  2065. old ^= PT64_NX_MASK;
  2066. new ^= PT64_NX_MASK;
  2067. return (old & ~new & PT64_PERM_MASK) != 0;
  2068. }
  2069. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2070. {
  2071. if (need_remote_flush(old, new))
  2072. kvm_flush_remote_tlbs(vcpu->kvm);
  2073. else
  2074. kvm_mmu_flush_tlb(vcpu);
  2075. }
  2076. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2077. {
  2078. u64 *spte = vcpu->arch.last_pte_updated;
  2079. return !!(spte && (*spte & shadow_accessed_mask));
  2080. }
  2081. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2082. const u8 *new, int bytes)
  2083. {
  2084. gfn_t gfn;
  2085. int r;
  2086. u64 gpte = 0;
  2087. pfn_t pfn;
  2088. vcpu->arch.update_pte.largepage = 0;
  2089. if (bytes != 4 && bytes != 8)
  2090. return;
  2091. /*
  2092. * Assume that the pte write on a page table of the same type
  2093. * as the current vcpu paging mode. This is nearly always true
  2094. * (might be false while changing modes). Note it is verified later
  2095. * by update_pte().
  2096. */
  2097. if (is_pae(vcpu)) {
  2098. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2099. if ((bytes == 4) && (gpa % 4 == 0)) {
  2100. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2101. if (r)
  2102. return;
  2103. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2104. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2105. memcpy((void *)&gpte, new, 8);
  2106. }
  2107. } else {
  2108. if ((bytes == 4) && (gpa % 4 == 0))
  2109. memcpy((void *)&gpte, new, 4);
  2110. }
  2111. if (!is_present_gpte(gpte))
  2112. return;
  2113. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2114. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  2115. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  2116. vcpu->arch.update_pte.largepage = 1;
  2117. }
  2118. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2119. smp_rmb();
  2120. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2121. if (is_error_pfn(pfn)) {
  2122. kvm_release_pfn_clean(pfn);
  2123. return;
  2124. }
  2125. vcpu->arch.update_pte.gfn = gfn;
  2126. vcpu->arch.update_pte.pfn = pfn;
  2127. }
  2128. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2129. {
  2130. u64 *spte = vcpu->arch.last_pte_updated;
  2131. if (spte
  2132. && vcpu->arch.last_pte_gfn == gfn
  2133. && shadow_accessed_mask
  2134. && !(*spte & shadow_accessed_mask)
  2135. && is_shadow_present_pte(*spte))
  2136. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2137. }
  2138. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2139. const u8 *new, int bytes,
  2140. bool guest_initiated)
  2141. {
  2142. gfn_t gfn = gpa >> PAGE_SHIFT;
  2143. struct kvm_mmu_page *sp;
  2144. struct hlist_node *node, *n;
  2145. struct hlist_head *bucket;
  2146. unsigned index;
  2147. u64 entry, gentry;
  2148. u64 *spte;
  2149. unsigned offset = offset_in_page(gpa);
  2150. unsigned pte_size;
  2151. unsigned page_offset;
  2152. unsigned misaligned;
  2153. unsigned quadrant;
  2154. int level;
  2155. int flooded = 0;
  2156. int npte;
  2157. int r;
  2158. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2159. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2160. spin_lock(&vcpu->kvm->mmu_lock);
  2161. kvm_mmu_access_page(vcpu, gfn);
  2162. kvm_mmu_free_some_pages(vcpu);
  2163. ++vcpu->kvm->stat.mmu_pte_write;
  2164. kvm_mmu_audit(vcpu, "pre pte write");
  2165. if (guest_initiated) {
  2166. if (gfn == vcpu->arch.last_pt_write_gfn
  2167. && !last_updated_pte_accessed(vcpu)) {
  2168. ++vcpu->arch.last_pt_write_count;
  2169. if (vcpu->arch.last_pt_write_count >= 3)
  2170. flooded = 1;
  2171. } else {
  2172. vcpu->arch.last_pt_write_gfn = gfn;
  2173. vcpu->arch.last_pt_write_count = 1;
  2174. vcpu->arch.last_pte_updated = NULL;
  2175. }
  2176. }
  2177. index = kvm_page_table_hashfn(gfn);
  2178. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2179. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2180. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2181. continue;
  2182. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2183. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2184. misaligned |= bytes < 4;
  2185. if (misaligned || flooded) {
  2186. /*
  2187. * Misaligned accesses are too much trouble to fix
  2188. * up; also, they usually indicate a page is not used
  2189. * as a page table.
  2190. *
  2191. * If we're seeing too many writes to a page,
  2192. * it may no longer be a page table, or we may be
  2193. * forking, in which case it is better to unmap the
  2194. * page.
  2195. */
  2196. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2197. gpa, bytes, sp->role.word);
  2198. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2199. n = bucket->first;
  2200. ++vcpu->kvm->stat.mmu_flooded;
  2201. continue;
  2202. }
  2203. page_offset = offset;
  2204. level = sp->role.level;
  2205. npte = 1;
  2206. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2207. page_offset <<= 1; /* 32->64 */
  2208. /*
  2209. * A 32-bit pde maps 4MB while the shadow pdes map
  2210. * only 2MB. So we need to double the offset again
  2211. * and zap two pdes instead of one.
  2212. */
  2213. if (level == PT32_ROOT_LEVEL) {
  2214. page_offset &= ~7; /* kill rounding error */
  2215. page_offset <<= 1;
  2216. npte = 2;
  2217. }
  2218. quadrant = page_offset >> PAGE_SHIFT;
  2219. page_offset &= ~PAGE_MASK;
  2220. if (quadrant != sp->role.quadrant)
  2221. continue;
  2222. }
  2223. spte = &sp->spt[page_offset / sizeof(*spte)];
  2224. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2225. gentry = 0;
  2226. r = kvm_read_guest_atomic(vcpu->kvm,
  2227. gpa & ~(u64)(pte_size - 1),
  2228. &gentry, pte_size);
  2229. new = (const void *)&gentry;
  2230. if (r < 0)
  2231. new = NULL;
  2232. }
  2233. while (npte--) {
  2234. entry = *spte;
  2235. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2236. if (new)
  2237. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2238. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2239. ++spte;
  2240. }
  2241. }
  2242. kvm_mmu_audit(vcpu, "post pte write");
  2243. spin_unlock(&vcpu->kvm->mmu_lock);
  2244. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2245. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2246. vcpu->arch.update_pte.pfn = bad_pfn;
  2247. }
  2248. }
  2249. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2250. {
  2251. gpa_t gpa;
  2252. int r;
  2253. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2254. spin_lock(&vcpu->kvm->mmu_lock);
  2255. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2256. spin_unlock(&vcpu->kvm->mmu_lock);
  2257. return r;
  2258. }
  2259. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2260. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2261. {
  2262. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  2263. struct kvm_mmu_page *sp;
  2264. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2265. struct kvm_mmu_page, link);
  2266. kvm_mmu_zap_page(vcpu->kvm, sp);
  2267. ++vcpu->kvm->stat.mmu_recycled;
  2268. }
  2269. }
  2270. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2271. {
  2272. int r;
  2273. enum emulation_result er;
  2274. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2275. if (r < 0)
  2276. goto out;
  2277. if (!r) {
  2278. r = 1;
  2279. goto out;
  2280. }
  2281. r = mmu_topup_memory_caches(vcpu);
  2282. if (r)
  2283. goto out;
  2284. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  2285. switch (er) {
  2286. case EMULATE_DONE:
  2287. return 1;
  2288. case EMULATE_DO_MMIO:
  2289. ++vcpu->stat.mmio_exits;
  2290. return 0;
  2291. case EMULATE_FAIL:
  2292. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2293. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2294. return 0;
  2295. default:
  2296. BUG();
  2297. }
  2298. out:
  2299. return r;
  2300. }
  2301. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2302. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2303. {
  2304. vcpu->arch.mmu.invlpg(vcpu, gva);
  2305. kvm_mmu_flush_tlb(vcpu);
  2306. ++vcpu->stat.invlpg;
  2307. }
  2308. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2309. void kvm_enable_tdp(void)
  2310. {
  2311. tdp_enabled = true;
  2312. }
  2313. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2314. void kvm_disable_tdp(void)
  2315. {
  2316. tdp_enabled = false;
  2317. }
  2318. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2319. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2320. {
  2321. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2322. }
  2323. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2324. {
  2325. struct page *page;
  2326. int i;
  2327. ASSERT(vcpu);
  2328. if (vcpu->kvm->arch.n_requested_mmu_pages)
  2329. vcpu->kvm->arch.n_free_mmu_pages =
  2330. vcpu->kvm->arch.n_requested_mmu_pages;
  2331. else
  2332. vcpu->kvm->arch.n_free_mmu_pages =
  2333. vcpu->kvm->arch.n_alloc_mmu_pages;
  2334. /*
  2335. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2336. * Therefore we need to allocate shadow page tables in the first
  2337. * 4GB of memory, which happens to fit the DMA32 zone.
  2338. */
  2339. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2340. if (!page)
  2341. goto error_1;
  2342. vcpu->arch.mmu.pae_root = page_address(page);
  2343. for (i = 0; i < 4; ++i)
  2344. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2345. return 0;
  2346. error_1:
  2347. free_mmu_pages(vcpu);
  2348. return -ENOMEM;
  2349. }
  2350. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2351. {
  2352. ASSERT(vcpu);
  2353. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2354. return alloc_mmu_pages(vcpu);
  2355. }
  2356. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2357. {
  2358. ASSERT(vcpu);
  2359. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2360. return init_kvm_mmu(vcpu);
  2361. }
  2362. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2363. {
  2364. ASSERT(vcpu);
  2365. destroy_kvm_mmu(vcpu);
  2366. free_mmu_pages(vcpu);
  2367. mmu_free_memory_caches(vcpu);
  2368. }
  2369. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2370. {
  2371. struct kvm_mmu_page *sp;
  2372. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2373. int i;
  2374. u64 *pt;
  2375. if (!test_bit(slot, sp->slot_bitmap))
  2376. continue;
  2377. pt = sp->spt;
  2378. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2379. /* avoid RMW */
  2380. if (pt[i] & PT_WRITABLE_MASK)
  2381. pt[i] &= ~PT_WRITABLE_MASK;
  2382. }
  2383. kvm_flush_remote_tlbs(kvm);
  2384. }
  2385. void kvm_mmu_zap_all(struct kvm *kvm)
  2386. {
  2387. struct kvm_mmu_page *sp, *node;
  2388. spin_lock(&kvm->mmu_lock);
  2389. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2390. if (kvm_mmu_zap_page(kvm, sp))
  2391. node = container_of(kvm->arch.active_mmu_pages.next,
  2392. struct kvm_mmu_page, link);
  2393. spin_unlock(&kvm->mmu_lock);
  2394. kvm_flush_remote_tlbs(kvm);
  2395. }
  2396. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2397. {
  2398. struct kvm_mmu_page *page;
  2399. page = container_of(kvm->arch.active_mmu_pages.prev,
  2400. struct kvm_mmu_page, link);
  2401. kvm_mmu_zap_page(kvm, page);
  2402. }
  2403. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2404. {
  2405. struct kvm *kvm;
  2406. struct kvm *kvm_freed = NULL;
  2407. int cache_count = 0;
  2408. spin_lock(&kvm_lock);
  2409. list_for_each_entry(kvm, &vm_list, vm_list) {
  2410. int npages;
  2411. if (!down_read_trylock(&kvm->slots_lock))
  2412. continue;
  2413. spin_lock(&kvm->mmu_lock);
  2414. npages = kvm->arch.n_alloc_mmu_pages -
  2415. kvm->arch.n_free_mmu_pages;
  2416. cache_count += npages;
  2417. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2418. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2419. cache_count--;
  2420. kvm_freed = kvm;
  2421. }
  2422. nr_to_scan--;
  2423. spin_unlock(&kvm->mmu_lock);
  2424. up_read(&kvm->slots_lock);
  2425. }
  2426. if (kvm_freed)
  2427. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2428. spin_unlock(&kvm_lock);
  2429. return cache_count;
  2430. }
  2431. static struct shrinker mmu_shrinker = {
  2432. .shrink = mmu_shrink,
  2433. .seeks = DEFAULT_SEEKS * 10,
  2434. };
  2435. static void mmu_destroy_caches(void)
  2436. {
  2437. if (pte_chain_cache)
  2438. kmem_cache_destroy(pte_chain_cache);
  2439. if (rmap_desc_cache)
  2440. kmem_cache_destroy(rmap_desc_cache);
  2441. if (mmu_page_header_cache)
  2442. kmem_cache_destroy(mmu_page_header_cache);
  2443. }
  2444. void kvm_mmu_module_exit(void)
  2445. {
  2446. mmu_destroy_caches();
  2447. unregister_shrinker(&mmu_shrinker);
  2448. }
  2449. int kvm_mmu_module_init(void)
  2450. {
  2451. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2452. sizeof(struct kvm_pte_chain),
  2453. 0, 0, NULL);
  2454. if (!pte_chain_cache)
  2455. goto nomem;
  2456. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2457. sizeof(struct kvm_rmap_desc),
  2458. 0, 0, NULL);
  2459. if (!rmap_desc_cache)
  2460. goto nomem;
  2461. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2462. sizeof(struct kvm_mmu_page),
  2463. 0, 0, NULL);
  2464. if (!mmu_page_header_cache)
  2465. goto nomem;
  2466. register_shrinker(&mmu_shrinker);
  2467. return 0;
  2468. nomem:
  2469. mmu_destroy_caches();
  2470. return -ENOMEM;
  2471. }
  2472. /*
  2473. * Caculate mmu pages needed for kvm.
  2474. */
  2475. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2476. {
  2477. int i;
  2478. unsigned int nr_mmu_pages;
  2479. unsigned int nr_pages = 0;
  2480. for (i = 0; i < kvm->nmemslots; i++)
  2481. nr_pages += kvm->memslots[i].npages;
  2482. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2483. nr_mmu_pages = max(nr_mmu_pages,
  2484. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2485. return nr_mmu_pages;
  2486. }
  2487. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2488. unsigned len)
  2489. {
  2490. if (len > buffer->len)
  2491. return NULL;
  2492. return buffer->ptr;
  2493. }
  2494. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2495. unsigned len)
  2496. {
  2497. void *ret;
  2498. ret = pv_mmu_peek_buffer(buffer, len);
  2499. if (!ret)
  2500. return ret;
  2501. buffer->ptr += len;
  2502. buffer->len -= len;
  2503. buffer->processed += len;
  2504. return ret;
  2505. }
  2506. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2507. gpa_t addr, gpa_t value)
  2508. {
  2509. int bytes = 8;
  2510. int r;
  2511. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2512. bytes = 4;
  2513. r = mmu_topup_memory_caches(vcpu);
  2514. if (r)
  2515. return r;
  2516. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2517. return -EFAULT;
  2518. return 1;
  2519. }
  2520. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2521. {
  2522. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2523. return 1;
  2524. }
  2525. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2526. {
  2527. spin_lock(&vcpu->kvm->mmu_lock);
  2528. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2529. spin_unlock(&vcpu->kvm->mmu_lock);
  2530. return 1;
  2531. }
  2532. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2533. struct kvm_pv_mmu_op_buffer *buffer)
  2534. {
  2535. struct kvm_mmu_op_header *header;
  2536. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2537. if (!header)
  2538. return 0;
  2539. switch (header->op) {
  2540. case KVM_MMU_OP_WRITE_PTE: {
  2541. struct kvm_mmu_op_write_pte *wpte;
  2542. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2543. if (!wpte)
  2544. return 0;
  2545. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2546. wpte->pte_val);
  2547. }
  2548. case KVM_MMU_OP_FLUSH_TLB: {
  2549. struct kvm_mmu_op_flush_tlb *ftlb;
  2550. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2551. if (!ftlb)
  2552. return 0;
  2553. return kvm_pv_mmu_flush_tlb(vcpu);
  2554. }
  2555. case KVM_MMU_OP_RELEASE_PT: {
  2556. struct kvm_mmu_op_release_pt *rpt;
  2557. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2558. if (!rpt)
  2559. return 0;
  2560. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2561. }
  2562. default: return 0;
  2563. }
  2564. }
  2565. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2566. gpa_t addr, unsigned long *ret)
  2567. {
  2568. int r;
  2569. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2570. buffer->ptr = buffer->buf;
  2571. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2572. buffer->processed = 0;
  2573. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2574. if (r)
  2575. goto out;
  2576. while (buffer->len) {
  2577. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2578. if (r < 0)
  2579. goto out;
  2580. if (r == 0)
  2581. break;
  2582. }
  2583. r = 1;
  2584. out:
  2585. *ret = buffer->processed;
  2586. return r;
  2587. }
  2588. #ifdef AUDIT
  2589. static const char *audit_msg;
  2590. static gva_t canonicalize(gva_t gva)
  2591. {
  2592. #ifdef CONFIG_X86_64
  2593. gva = (long long)(gva << 16) >> 16;
  2594. #endif
  2595. return gva;
  2596. }
  2597. typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
  2598. u64 *sptep);
  2599. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2600. inspect_spte_fn fn)
  2601. {
  2602. int i;
  2603. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2604. u64 ent = sp->spt[i];
  2605. if (is_shadow_present_pte(ent)) {
  2606. if (sp->role.level > 1 && !is_large_pte(ent)) {
  2607. struct kvm_mmu_page *child;
  2608. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2609. __mmu_spte_walk(kvm, child, fn);
  2610. }
  2611. if (sp->role.level == 1)
  2612. fn(kvm, sp, &sp->spt[i]);
  2613. }
  2614. }
  2615. }
  2616. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2617. {
  2618. int i;
  2619. struct kvm_mmu_page *sp;
  2620. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2621. return;
  2622. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2623. hpa_t root = vcpu->arch.mmu.root_hpa;
  2624. sp = page_header(root);
  2625. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2626. return;
  2627. }
  2628. for (i = 0; i < 4; ++i) {
  2629. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2630. if (root && VALID_PAGE(root)) {
  2631. root &= PT64_BASE_ADDR_MASK;
  2632. sp = page_header(root);
  2633. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2634. }
  2635. }
  2636. return;
  2637. }
  2638. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2639. gva_t va, int level)
  2640. {
  2641. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2642. int i;
  2643. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2644. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2645. u64 ent = pt[i];
  2646. if (ent == shadow_trap_nonpresent_pte)
  2647. continue;
  2648. va = canonicalize(va);
  2649. if (level > 1) {
  2650. if (is_shadow_present_pte(ent))
  2651. audit_mappings_page(vcpu, ent, va, level - 1);
  2652. } else {
  2653. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2654. gfn_t gfn = gpa >> PAGE_SHIFT;
  2655. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2656. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2657. if (is_shadow_present_pte(ent)
  2658. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2659. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2660. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2661. audit_msg, vcpu->arch.mmu.root_level,
  2662. va, gpa, hpa, ent,
  2663. is_shadow_present_pte(ent));
  2664. else if (ent == shadow_notrap_nonpresent_pte
  2665. && !is_error_hpa(hpa))
  2666. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2667. " valid guest gva %lx\n", audit_msg, va);
  2668. kvm_release_pfn_clean(pfn);
  2669. }
  2670. }
  2671. }
  2672. static void audit_mappings(struct kvm_vcpu *vcpu)
  2673. {
  2674. unsigned i;
  2675. if (vcpu->arch.mmu.root_level == 4)
  2676. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2677. else
  2678. for (i = 0; i < 4; ++i)
  2679. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2680. audit_mappings_page(vcpu,
  2681. vcpu->arch.mmu.pae_root[i],
  2682. i << 30,
  2683. 2);
  2684. }
  2685. static int count_rmaps(struct kvm_vcpu *vcpu)
  2686. {
  2687. int nmaps = 0;
  2688. int i, j, k;
  2689. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2690. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2691. struct kvm_rmap_desc *d;
  2692. for (j = 0; j < m->npages; ++j) {
  2693. unsigned long *rmapp = &m->rmap[j];
  2694. if (!*rmapp)
  2695. continue;
  2696. if (!(*rmapp & 1)) {
  2697. ++nmaps;
  2698. continue;
  2699. }
  2700. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2701. while (d) {
  2702. for (k = 0; k < RMAP_EXT; ++k)
  2703. if (d->sptes[k])
  2704. ++nmaps;
  2705. else
  2706. break;
  2707. d = d->more;
  2708. }
  2709. }
  2710. }
  2711. return nmaps;
  2712. }
  2713. void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
  2714. {
  2715. unsigned long *rmapp;
  2716. struct kvm_mmu_page *rev_sp;
  2717. gfn_t gfn;
  2718. if (*sptep & PT_WRITABLE_MASK) {
  2719. rev_sp = page_header(__pa(sptep));
  2720. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2721. if (!gfn_to_memslot(kvm, gfn)) {
  2722. if (!printk_ratelimit())
  2723. return;
  2724. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2725. audit_msg, gfn);
  2726. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2727. audit_msg, sptep - rev_sp->spt,
  2728. rev_sp->gfn);
  2729. dump_stack();
  2730. return;
  2731. }
  2732. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt], 0);
  2733. if (!*rmapp) {
  2734. if (!printk_ratelimit())
  2735. return;
  2736. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2737. audit_msg, *sptep);
  2738. dump_stack();
  2739. }
  2740. }
  2741. }
  2742. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2743. {
  2744. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2745. }
  2746. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2747. {
  2748. struct kvm_mmu_page *sp;
  2749. int i;
  2750. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2751. u64 *pt = sp->spt;
  2752. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2753. continue;
  2754. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2755. u64 ent = pt[i];
  2756. if (!(ent & PT_PRESENT_MASK))
  2757. continue;
  2758. if (!(ent & PT_WRITABLE_MASK))
  2759. continue;
  2760. inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
  2761. }
  2762. }
  2763. return;
  2764. }
  2765. static void audit_rmap(struct kvm_vcpu *vcpu)
  2766. {
  2767. check_writable_mappings_rmap(vcpu);
  2768. count_rmaps(vcpu);
  2769. }
  2770. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2771. {
  2772. struct kvm_mmu_page *sp;
  2773. struct kvm_memory_slot *slot;
  2774. unsigned long *rmapp;
  2775. u64 *spte;
  2776. gfn_t gfn;
  2777. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2778. if (sp->role.direct)
  2779. continue;
  2780. if (sp->unsync)
  2781. continue;
  2782. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2783. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2784. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2785. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2786. while (spte) {
  2787. if (*spte & PT_WRITABLE_MASK)
  2788. printk(KERN_ERR "%s: (%s) shadow page has "
  2789. "writable mappings: gfn %lx role %x\n",
  2790. __func__, audit_msg, sp->gfn,
  2791. sp->role.word);
  2792. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2793. }
  2794. }
  2795. }
  2796. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2797. {
  2798. int olddbg = dbg;
  2799. dbg = 0;
  2800. audit_msg = msg;
  2801. audit_rmap(vcpu);
  2802. audit_write_protection(vcpu);
  2803. audit_mappings(vcpu);
  2804. audit_writable_sptes_have_rmaps(vcpu);
  2805. dbg = olddbg;
  2806. }
  2807. #endif