perf_counter.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213
  1. /*
  2. * Performance counter x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. *
  10. * For licencing details see kernel-base/COPYING
  11. */
  12. #include <linux/perf_counter.h>
  13. #include <linux/capability.h>
  14. #include <linux/notifier.h>
  15. #include <linux/hardirq.h>
  16. #include <linux/kprobes.h>
  17. #include <linux/module.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/sched.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/apic.h>
  22. #include <asm/stacktrace.h>
  23. #include <asm/nmi.h>
  24. static u64 perf_counter_mask __read_mostly;
  25. struct cpu_hw_counters {
  26. struct perf_counter *counters[X86_PMC_IDX_MAX];
  27. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  28. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  29. unsigned long interrupts;
  30. int enabled;
  31. };
  32. /*
  33. * struct x86_pmu - generic x86 pmu
  34. */
  35. struct x86_pmu {
  36. const char *name;
  37. int version;
  38. int (*handle_irq)(struct pt_regs *, int);
  39. void (*disable_all)(void);
  40. void (*enable_all)(void);
  41. void (*enable)(struct hw_perf_counter *, int);
  42. void (*disable)(struct hw_perf_counter *, int);
  43. unsigned eventsel;
  44. unsigned perfctr;
  45. u64 (*event_map)(int);
  46. u64 (*raw_event)(u64);
  47. int max_events;
  48. int num_counters;
  49. int num_counters_fixed;
  50. int counter_bits;
  51. u64 counter_mask;
  52. u64 max_period;
  53. u64 intel_ctrl;
  54. };
  55. static struct x86_pmu x86_pmu __read_mostly;
  56. static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
  57. .enabled = 1,
  58. };
  59. /*
  60. * Intel PerfMon v3. Used on Core2 and later.
  61. */
  62. static const u64 intel_perfmon_event_map[] =
  63. {
  64. [PERF_COUNT_CPU_CYCLES] = 0x003c,
  65. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  66. [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e,
  67. [PERF_COUNT_CACHE_MISSES] = 0x412e,
  68. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  69. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  70. [PERF_COUNT_BUS_CYCLES] = 0x013c,
  71. };
  72. static u64 intel_pmu_event_map(int event)
  73. {
  74. return intel_perfmon_event_map[event];
  75. }
  76. static u64 intel_pmu_raw_event(u64 event)
  77. {
  78. #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
  79. #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
  80. #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
  81. #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
  82. #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
  83. #define CORE_EVNTSEL_MASK \
  84. (CORE_EVNTSEL_EVENT_MASK | \
  85. CORE_EVNTSEL_UNIT_MASK | \
  86. CORE_EVNTSEL_EDGE_MASK | \
  87. CORE_EVNTSEL_INV_MASK | \
  88. CORE_EVNTSEL_COUNTER_MASK)
  89. return event & CORE_EVNTSEL_MASK;
  90. }
  91. /*
  92. * AMD Performance Monitor K7 and later.
  93. */
  94. static const u64 amd_perfmon_event_map[] =
  95. {
  96. [PERF_COUNT_CPU_CYCLES] = 0x0076,
  97. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  98. [PERF_COUNT_CACHE_REFERENCES] = 0x0080,
  99. [PERF_COUNT_CACHE_MISSES] = 0x0081,
  100. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  101. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  102. };
  103. static u64 amd_pmu_event_map(int event)
  104. {
  105. return amd_perfmon_event_map[event];
  106. }
  107. static u64 amd_pmu_raw_event(u64 event)
  108. {
  109. #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
  110. #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
  111. #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
  112. #define K7_EVNTSEL_INV_MASK 0x000800000ULL
  113. #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
  114. #define K7_EVNTSEL_MASK \
  115. (K7_EVNTSEL_EVENT_MASK | \
  116. K7_EVNTSEL_UNIT_MASK | \
  117. K7_EVNTSEL_EDGE_MASK | \
  118. K7_EVNTSEL_INV_MASK | \
  119. K7_EVNTSEL_COUNTER_MASK)
  120. return event & K7_EVNTSEL_MASK;
  121. }
  122. /*
  123. * Propagate counter elapsed time into the generic counter.
  124. * Can only be executed on the CPU where the counter is active.
  125. * Returns the delta events processed.
  126. */
  127. static u64
  128. x86_perf_counter_update(struct perf_counter *counter,
  129. struct hw_perf_counter *hwc, int idx)
  130. {
  131. int shift = 64 - x86_pmu.counter_bits;
  132. u64 prev_raw_count, new_raw_count;
  133. s64 delta;
  134. /*
  135. * Careful: an NMI might modify the previous counter value.
  136. *
  137. * Our tactic to handle this is to first atomically read and
  138. * exchange a new raw count - then add that new-prev delta
  139. * count to the generic counter atomically:
  140. */
  141. again:
  142. prev_raw_count = atomic64_read(&hwc->prev_count);
  143. rdmsrl(hwc->counter_base + idx, new_raw_count);
  144. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  145. new_raw_count) != prev_raw_count)
  146. goto again;
  147. /*
  148. * Now we have the new raw value and have updated the prev
  149. * timestamp already. We can now calculate the elapsed delta
  150. * (counter-)time and add that to the generic counter.
  151. *
  152. * Careful, not all hw sign-extends above the physical width
  153. * of the count.
  154. */
  155. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  156. delta >>= shift;
  157. atomic64_add(delta, &counter->count);
  158. atomic64_sub(delta, &hwc->period_left);
  159. return new_raw_count;
  160. }
  161. static atomic_t active_counters;
  162. static DEFINE_MUTEX(pmc_reserve_mutex);
  163. static bool reserve_pmc_hardware(void)
  164. {
  165. int i;
  166. if (nmi_watchdog == NMI_LOCAL_APIC)
  167. disable_lapic_nmi_watchdog();
  168. for (i = 0; i < x86_pmu.num_counters; i++) {
  169. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  170. goto perfctr_fail;
  171. }
  172. for (i = 0; i < x86_pmu.num_counters; i++) {
  173. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  174. goto eventsel_fail;
  175. }
  176. return true;
  177. eventsel_fail:
  178. for (i--; i >= 0; i--)
  179. release_evntsel_nmi(x86_pmu.eventsel + i);
  180. i = x86_pmu.num_counters;
  181. perfctr_fail:
  182. for (i--; i >= 0; i--)
  183. release_perfctr_nmi(x86_pmu.perfctr + i);
  184. if (nmi_watchdog == NMI_LOCAL_APIC)
  185. enable_lapic_nmi_watchdog();
  186. return false;
  187. }
  188. static void release_pmc_hardware(void)
  189. {
  190. int i;
  191. for (i = 0; i < x86_pmu.num_counters; i++) {
  192. release_perfctr_nmi(x86_pmu.perfctr + i);
  193. release_evntsel_nmi(x86_pmu.eventsel + i);
  194. }
  195. if (nmi_watchdog == NMI_LOCAL_APIC)
  196. enable_lapic_nmi_watchdog();
  197. }
  198. static void hw_perf_counter_destroy(struct perf_counter *counter)
  199. {
  200. if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
  201. release_pmc_hardware();
  202. mutex_unlock(&pmc_reserve_mutex);
  203. }
  204. }
  205. static inline int x86_pmu_initialized(void)
  206. {
  207. return x86_pmu.handle_irq != NULL;
  208. }
  209. /*
  210. * Setup the hardware configuration for a given hw_event_type
  211. */
  212. static int __hw_perf_counter_init(struct perf_counter *counter)
  213. {
  214. struct perf_counter_hw_event *hw_event = &counter->hw_event;
  215. struct hw_perf_counter *hwc = &counter->hw;
  216. int err;
  217. if (!x86_pmu_initialized())
  218. return -ENODEV;
  219. err = 0;
  220. if (!atomic_inc_not_zero(&active_counters)) {
  221. mutex_lock(&pmc_reserve_mutex);
  222. if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
  223. err = -EBUSY;
  224. else
  225. atomic_inc(&active_counters);
  226. mutex_unlock(&pmc_reserve_mutex);
  227. }
  228. if (err)
  229. return err;
  230. /*
  231. * Generate PMC IRQs:
  232. * (keep 'enabled' bit clear for now)
  233. */
  234. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  235. /*
  236. * Count user and OS events unless requested not to.
  237. */
  238. if (!hw_event->exclude_user)
  239. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  240. if (!hw_event->exclude_kernel)
  241. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  242. /*
  243. * If privileged enough, allow NMI events:
  244. */
  245. hwc->nmi = 0;
  246. if (hw_event->nmi) {
  247. if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
  248. return -EACCES;
  249. hwc->nmi = 1;
  250. }
  251. perf_counters_lapic_init(hwc->nmi);
  252. if (!hwc->irq_period)
  253. hwc->irq_period = x86_pmu.max_period;
  254. atomic64_set(&hwc->period_left,
  255. min(x86_pmu.max_period, hwc->irq_period));
  256. /*
  257. * Raw event type provide the config in the event structure
  258. */
  259. if (perf_event_raw(hw_event)) {
  260. hwc->config |= x86_pmu.raw_event(perf_event_config(hw_event));
  261. } else {
  262. if (perf_event_id(hw_event) >= x86_pmu.max_events)
  263. return -EINVAL;
  264. /*
  265. * The generic map:
  266. */
  267. hwc->config |= x86_pmu.event_map(perf_event_id(hw_event));
  268. }
  269. counter->destroy = hw_perf_counter_destroy;
  270. return 0;
  271. }
  272. static void intel_pmu_disable_all(void)
  273. {
  274. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  275. }
  276. static void amd_pmu_disable_all(void)
  277. {
  278. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  279. int idx;
  280. if (!cpuc->enabled)
  281. return;
  282. cpuc->enabled = 0;
  283. /*
  284. * ensure we write the disable before we start disabling the
  285. * counters proper, so that amd_pmu_enable_counter() does the
  286. * right thing.
  287. */
  288. barrier();
  289. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  290. u64 val;
  291. if (!test_bit(idx, cpuc->active_mask))
  292. continue;
  293. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  294. if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
  295. continue;
  296. val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
  297. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  298. }
  299. }
  300. void hw_perf_disable(void)
  301. {
  302. if (!x86_pmu_initialized())
  303. return;
  304. return x86_pmu.disable_all();
  305. }
  306. static void intel_pmu_enable_all(void)
  307. {
  308. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  309. }
  310. static void amd_pmu_enable_all(void)
  311. {
  312. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  313. int idx;
  314. if (cpuc->enabled)
  315. return;
  316. cpuc->enabled = 1;
  317. barrier();
  318. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  319. u64 val;
  320. if (!test_bit(idx, cpuc->active_mask))
  321. continue;
  322. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  323. if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
  324. continue;
  325. val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
  326. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  327. }
  328. }
  329. void hw_perf_enable(void)
  330. {
  331. if (!x86_pmu_initialized())
  332. return;
  333. x86_pmu.enable_all();
  334. }
  335. static inline u64 intel_pmu_get_status(void)
  336. {
  337. u64 status;
  338. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  339. return status;
  340. }
  341. static inline void intel_pmu_ack_status(u64 ack)
  342. {
  343. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  344. }
  345. static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  346. {
  347. int err;
  348. err = checking_wrmsrl(hwc->config_base + idx,
  349. hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
  350. }
  351. static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  352. {
  353. int err;
  354. err = checking_wrmsrl(hwc->config_base + idx,
  355. hwc->config);
  356. }
  357. static inline void
  358. intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
  359. {
  360. int idx = __idx - X86_PMC_IDX_FIXED;
  361. u64 ctrl_val, mask;
  362. int err;
  363. mask = 0xfULL << (idx * 4);
  364. rdmsrl(hwc->config_base, ctrl_val);
  365. ctrl_val &= ~mask;
  366. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  367. }
  368. static inline void
  369. intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  370. {
  371. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  372. intel_pmu_disable_fixed(hwc, idx);
  373. return;
  374. }
  375. x86_pmu_disable_counter(hwc, idx);
  376. }
  377. static inline void
  378. amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  379. {
  380. x86_pmu_disable_counter(hwc, idx);
  381. }
  382. static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
  383. /*
  384. * Set the next IRQ period, based on the hwc->period_left value.
  385. * To be called with the counter disabled in hw:
  386. */
  387. static void
  388. x86_perf_counter_set_period(struct perf_counter *counter,
  389. struct hw_perf_counter *hwc, int idx)
  390. {
  391. s64 left = atomic64_read(&hwc->period_left);
  392. s64 period = min(x86_pmu.max_period, hwc->irq_period);
  393. int err;
  394. /*
  395. * If we are way outside a reasoable range then just skip forward:
  396. */
  397. if (unlikely(left <= -period)) {
  398. left = period;
  399. atomic64_set(&hwc->period_left, left);
  400. }
  401. if (unlikely(left <= 0)) {
  402. left += period;
  403. atomic64_set(&hwc->period_left, left);
  404. }
  405. /*
  406. * Quirk: certain CPUs dont like it if just 1 event is left:
  407. */
  408. if (unlikely(left < 2))
  409. left = 2;
  410. per_cpu(prev_left[idx], smp_processor_id()) = left;
  411. /*
  412. * The hw counter starts counting from this counter offset,
  413. * mark it to be able to extra future deltas:
  414. */
  415. atomic64_set(&hwc->prev_count, (u64)-left);
  416. err = checking_wrmsrl(hwc->counter_base + idx,
  417. (u64)(-left) & x86_pmu.counter_mask);
  418. }
  419. static inline void
  420. intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
  421. {
  422. int idx = __idx - X86_PMC_IDX_FIXED;
  423. u64 ctrl_val, bits, mask;
  424. int err;
  425. /*
  426. * Enable IRQ generation (0x8),
  427. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  428. * if requested:
  429. */
  430. bits = 0x8ULL;
  431. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  432. bits |= 0x2;
  433. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  434. bits |= 0x1;
  435. bits <<= (idx * 4);
  436. mask = 0xfULL << (idx * 4);
  437. rdmsrl(hwc->config_base, ctrl_val);
  438. ctrl_val &= ~mask;
  439. ctrl_val |= bits;
  440. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  441. }
  442. static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  443. {
  444. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  445. intel_pmu_enable_fixed(hwc, idx);
  446. return;
  447. }
  448. x86_pmu_enable_counter(hwc, idx);
  449. }
  450. static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  451. {
  452. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  453. if (cpuc->enabled)
  454. x86_pmu_enable_counter(hwc, idx);
  455. else
  456. x86_pmu_disable_counter(hwc, idx);
  457. }
  458. static int
  459. fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
  460. {
  461. unsigned int event;
  462. if (!x86_pmu.num_counters_fixed)
  463. return -1;
  464. if (unlikely(hwc->nmi))
  465. return -1;
  466. event = hwc->config & ARCH_PERFMON_EVENT_MASK;
  467. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_INSTRUCTIONS)))
  468. return X86_PMC_IDX_FIXED_INSTRUCTIONS;
  469. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_CPU_CYCLES)))
  470. return X86_PMC_IDX_FIXED_CPU_CYCLES;
  471. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_BUS_CYCLES)))
  472. return X86_PMC_IDX_FIXED_BUS_CYCLES;
  473. return -1;
  474. }
  475. /*
  476. * Find a PMC slot for the freshly enabled / scheduled in counter:
  477. */
  478. static int x86_pmu_enable(struct perf_counter *counter)
  479. {
  480. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  481. struct hw_perf_counter *hwc = &counter->hw;
  482. int idx;
  483. idx = fixed_mode_idx(counter, hwc);
  484. if (idx >= 0) {
  485. /*
  486. * Try to get the fixed counter, if that is already taken
  487. * then try to get a generic counter:
  488. */
  489. if (test_and_set_bit(idx, cpuc->used_mask))
  490. goto try_generic;
  491. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  492. /*
  493. * We set it so that counter_base + idx in wrmsr/rdmsr maps to
  494. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  495. */
  496. hwc->counter_base =
  497. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  498. hwc->idx = idx;
  499. } else {
  500. idx = hwc->idx;
  501. /* Try to get the previous generic counter again */
  502. if (test_and_set_bit(idx, cpuc->used_mask)) {
  503. try_generic:
  504. idx = find_first_zero_bit(cpuc->used_mask,
  505. x86_pmu.num_counters);
  506. if (idx == x86_pmu.num_counters)
  507. return -EAGAIN;
  508. set_bit(idx, cpuc->used_mask);
  509. hwc->idx = idx;
  510. }
  511. hwc->config_base = x86_pmu.eventsel;
  512. hwc->counter_base = x86_pmu.perfctr;
  513. }
  514. x86_pmu.disable(hwc, idx);
  515. cpuc->counters[idx] = counter;
  516. set_bit(idx, cpuc->active_mask);
  517. x86_perf_counter_set_period(counter, hwc, idx);
  518. x86_pmu.enable(hwc, idx);
  519. return 0;
  520. }
  521. void perf_counter_print_debug(void)
  522. {
  523. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  524. struct cpu_hw_counters *cpuc;
  525. unsigned long flags;
  526. int cpu, idx;
  527. if (!x86_pmu.num_counters)
  528. return;
  529. local_irq_save(flags);
  530. cpu = smp_processor_id();
  531. cpuc = &per_cpu(cpu_hw_counters, cpu);
  532. if (x86_pmu.version >= 2) {
  533. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  534. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  535. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  536. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  537. pr_info("\n");
  538. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  539. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  540. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  541. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  542. }
  543. pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
  544. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  545. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  546. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  547. prev_left = per_cpu(prev_left[idx], cpu);
  548. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  549. cpu, idx, pmc_ctrl);
  550. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  551. cpu, idx, pmc_count);
  552. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  553. cpu, idx, prev_left);
  554. }
  555. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  556. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  557. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  558. cpu, idx, pmc_count);
  559. }
  560. local_irq_restore(flags);
  561. }
  562. static void x86_pmu_disable(struct perf_counter *counter)
  563. {
  564. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  565. struct hw_perf_counter *hwc = &counter->hw;
  566. int idx = hwc->idx;
  567. /*
  568. * Must be done before we disable, otherwise the nmi handler
  569. * could reenable again:
  570. */
  571. clear_bit(idx, cpuc->active_mask);
  572. x86_pmu.disable(hwc, idx);
  573. /*
  574. * Make sure the cleared pointer becomes visible before we
  575. * (potentially) free the counter:
  576. */
  577. barrier();
  578. /*
  579. * Drain the remaining delta count out of a counter
  580. * that we are disabling:
  581. */
  582. x86_perf_counter_update(counter, hwc, idx);
  583. cpuc->counters[idx] = NULL;
  584. clear_bit(idx, cpuc->used_mask);
  585. }
  586. /*
  587. * Save and restart an expired counter. Called by NMI contexts,
  588. * so it has to be careful about preempting normal counter ops:
  589. */
  590. static void intel_pmu_save_and_restart(struct perf_counter *counter)
  591. {
  592. struct hw_perf_counter *hwc = &counter->hw;
  593. int idx = hwc->idx;
  594. x86_perf_counter_update(counter, hwc, idx);
  595. x86_perf_counter_set_period(counter, hwc, idx);
  596. if (counter->state == PERF_COUNTER_STATE_ACTIVE)
  597. intel_pmu_enable_counter(hwc, idx);
  598. }
  599. /*
  600. * This handler is triggered by the local APIC, so the APIC IRQ handling
  601. * rules apply:
  602. */
  603. static int intel_pmu_handle_irq(struct pt_regs *regs, int nmi)
  604. {
  605. struct cpu_hw_counters *cpuc;
  606. struct cpu_hw_counters;
  607. int bit, cpu, loops;
  608. u64 ack, status;
  609. cpu = smp_processor_id();
  610. cpuc = &per_cpu(cpu_hw_counters, cpu);
  611. perf_disable();
  612. status = intel_pmu_get_status();
  613. if (!status) {
  614. perf_enable();
  615. return 0;
  616. }
  617. loops = 0;
  618. again:
  619. if (++loops > 100) {
  620. WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
  621. perf_counter_print_debug();
  622. return 1;
  623. }
  624. inc_irq_stat(apic_perf_irqs);
  625. ack = status;
  626. for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  627. struct perf_counter *counter = cpuc->counters[bit];
  628. clear_bit(bit, (unsigned long *) &status);
  629. if (!test_bit(bit, cpuc->active_mask))
  630. continue;
  631. intel_pmu_save_and_restart(counter);
  632. if (perf_counter_overflow(counter, nmi, regs, 0))
  633. intel_pmu_disable_counter(&counter->hw, bit);
  634. }
  635. intel_pmu_ack_status(ack);
  636. /*
  637. * Repeat if there is more work to be done:
  638. */
  639. status = intel_pmu_get_status();
  640. if (status)
  641. goto again;
  642. perf_enable();
  643. return 1;
  644. }
  645. static int amd_pmu_handle_irq(struct pt_regs *regs, int nmi)
  646. {
  647. int cpu, idx, handled = 0;
  648. struct cpu_hw_counters *cpuc;
  649. struct perf_counter *counter;
  650. struct hw_perf_counter *hwc;
  651. u64 val;
  652. cpu = smp_processor_id();
  653. cpuc = &per_cpu(cpu_hw_counters, cpu);
  654. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  655. if (!test_bit(idx, cpuc->active_mask))
  656. continue;
  657. counter = cpuc->counters[idx];
  658. hwc = &counter->hw;
  659. if (counter->hw_event.nmi != nmi)
  660. continue;
  661. val = x86_perf_counter_update(counter, hwc, idx);
  662. if (val & (1ULL << (x86_pmu.counter_bits - 1)))
  663. continue;
  664. /* counter overflow */
  665. x86_perf_counter_set_period(counter, hwc, idx);
  666. handled = 1;
  667. inc_irq_stat(apic_perf_irqs);
  668. if (perf_counter_overflow(counter, nmi, regs, 0))
  669. amd_pmu_disable_counter(hwc, idx);
  670. }
  671. return handled;
  672. }
  673. void smp_perf_counter_interrupt(struct pt_regs *regs)
  674. {
  675. irq_enter();
  676. apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
  677. ack_APIC_irq();
  678. x86_pmu.handle_irq(regs, 0);
  679. irq_exit();
  680. }
  681. void smp_perf_pending_interrupt(struct pt_regs *regs)
  682. {
  683. irq_enter();
  684. ack_APIC_irq();
  685. inc_irq_stat(apic_pending_irqs);
  686. perf_counter_do_pending();
  687. irq_exit();
  688. }
  689. void set_perf_counter_pending(void)
  690. {
  691. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  692. }
  693. void perf_counters_lapic_init(int nmi)
  694. {
  695. u32 apic_val;
  696. if (!x86_pmu_initialized())
  697. return;
  698. /*
  699. * Enable the performance counter vector in the APIC LVT:
  700. */
  701. apic_val = apic_read(APIC_LVTERR);
  702. apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED);
  703. if (nmi)
  704. apic_write(APIC_LVTPC, APIC_DM_NMI);
  705. else
  706. apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
  707. apic_write(APIC_LVTERR, apic_val);
  708. }
  709. static int __kprobes
  710. perf_counter_nmi_handler(struct notifier_block *self,
  711. unsigned long cmd, void *__args)
  712. {
  713. struct die_args *args = __args;
  714. struct pt_regs *regs;
  715. if (!atomic_read(&active_counters))
  716. return NOTIFY_DONE;
  717. switch (cmd) {
  718. case DIE_NMI:
  719. case DIE_NMI_IPI:
  720. break;
  721. default:
  722. return NOTIFY_DONE;
  723. }
  724. regs = args->regs;
  725. apic_write(APIC_LVTPC, APIC_DM_NMI);
  726. /*
  727. * Can't rely on the handled return value to say it was our NMI, two
  728. * counters could trigger 'simultaneously' raising two back-to-back NMIs.
  729. *
  730. * If the first NMI handles both, the latter will be empty and daze
  731. * the CPU.
  732. */
  733. x86_pmu.handle_irq(regs, 1);
  734. return NOTIFY_STOP;
  735. }
  736. static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
  737. .notifier_call = perf_counter_nmi_handler,
  738. .next = NULL,
  739. .priority = 1
  740. };
  741. static struct x86_pmu intel_pmu = {
  742. .name = "Intel",
  743. .handle_irq = intel_pmu_handle_irq,
  744. .disable_all = intel_pmu_disable_all,
  745. .enable_all = intel_pmu_enable_all,
  746. .enable = intel_pmu_enable_counter,
  747. .disable = intel_pmu_disable_counter,
  748. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  749. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  750. .event_map = intel_pmu_event_map,
  751. .raw_event = intel_pmu_raw_event,
  752. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  753. /*
  754. * Intel PMCs cannot be accessed sanely above 32 bit width,
  755. * so we install an artificial 1<<31 period regardless of
  756. * the generic counter period:
  757. */
  758. .max_period = (1ULL << 31) - 1,
  759. };
  760. static struct x86_pmu amd_pmu = {
  761. .name = "AMD",
  762. .handle_irq = amd_pmu_handle_irq,
  763. .disable_all = amd_pmu_disable_all,
  764. .enable_all = amd_pmu_enable_all,
  765. .enable = amd_pmu_enable_counter,
  766. .disable = amd_pmu_disable_counter,
  767. .eventsel = MSR_K7_EVNTSEL0,
  768. .perfctr = MSR_K7_PERFCTR0,
  769. .event_map = amd_pmu_event_map,
  770. .raw_event = amd_pmu_raw_event,
  771. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  772. .num_counters = 4,
  773. .counter_bits = 48,
  774. .counter_mask = (1ULL << 48) - 1,
  775. /* use highest bit to detect overflow */
  776. .max_period = (1ULL << 47) - 1,
  777. };
  778. static int intel_pmu_init(void)
  779. {
  780. union cpuid10_edx edx;
  781. union cpuid10_eax eax;
  782. unsigned int unused;
  783. unsigned int ebx;
  784. int version;
  785. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
  786. return -ENODEV;
  787. /*
  788. * Check whether the Architectural PerfMon supports
  789. * Branch Misses Retired Event or not.
  790. */
  791. cpuid(10, &eax.full, &ebx, &unused, &edx.full);
  792. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  793. return -ENODEV;
  794. version = eax.split.version_id;
  795. if (version < 2)
  796. return -ENODEV;
  797. x86_pmu = intel_pmu;
  798. x86_pmu.version = version;
  799. x86_pmu.num_counters = eax.split.num_counters;
  800. /*
  801. * Quirk: v2 perfmon does not report fixed-purpose counters, so
  802. * assume at least 3 counters:
  803. */
  804. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  805. x86_pmu.counter_bits = eax.split.bit_width;
  806. x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
  807. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  808. return 0;
  809. }
  810. static int amd_pmu_init(void)
  811. {
  812. x86_pmu = amd_pmu;
  813. return 0;
  814. }
  815. void __init init_hw_perf_counters(void)
  816. {
  817. int err;
  818. switch (boot_cpu_data.x86_vendor) {
  819. case X86_VENDOR_INTEL:
  820. err = intel_pmu_init();
  821. break;
  822. case X86_VENDOR_AMD:
  823. err = amd_pmu_init();
  824. break;
  825. default:
  826. return;
  827. }
  828. if (err != 0)
  829. return;
  830. pr_info("%s Performance Monitoring support detected.\n", x86_pmu.name);
  831. pr_info("... version: %d\n", x86_pmu.version);
  832. pr_info("... bit width: %d\n", x86_pmu.counter_bits);
  833. pr_info("... num counters: %d\n", x86_pmu.num_counters);
  834. if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
  835. x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
  836. WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
  837. x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
  838. }
  839. perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
  840. perf_max_counters = x86_pmu.num_counters;
  841. pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
  842. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  843. if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
  844. x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
  845. WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
  846. x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
  847. }
  848. pr_info("... fixed counters: %d\n", x86_pmu.num_counters_fixed);
  849. perf_counter_mask |=
  850. ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
  851. pr_info("... counter mask: %016Lx\n", perf_counter_mask);
  852. perf_counters_lapic_init(1);
  853. register_die_notifier(&perf_counter_nmi_notifier);
  854. }
  855. static inline void x86_pmu_read(struct perf_counter *counter)
  856. {
  857. x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
  858. }
  859. static const struct pmu pmu = {
  860. .enable = x86_pmu_enable,
  861. .disable = x86_pmu_disable,
  862. .read = x86_pmu_read,
  863. };
  864. const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
  865. {
  866. int err;
  867. err = __hw_perf_counter_init(counter);
  868. if (err)
  869. return ERR_PTR(err);
  870. return &pmu;
  871. }
  872. /*
  873. * callchain support
  874. */
  875. static inline
  876. void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
  877. {
  878. if (entry->nr < MAX_STACK_DEPTH)
  879. entry->ip[entry->nr++] = ip;
  880. }
  881. static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
  882. static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
  883. static void
  884. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  885. {
  886. /* Ignore warnings */
  887. }
  888. static void backtrace_warning(void *data, char *msg)
  889. {
  890. /* Ignore warnings */
  891. }
  892. static int backtrace_stack(void *data, char *name)
  893. {
  894. /* Don't bother with IRQ stacks for now */
  895. return -1;
  896. }
  897. static void backtrace_address(void *data, unsigned long addr, int reliable)
  898. {
  899. struct perf_callchain_entry *entry = data;
  900. if (reliable)
  901. callchain_store(entry, addr);
  902. }
  903. static const struct stacktrace_ops backtrace_ops = {
  904. .warning = backtrace_warning,
  905. .warning_symbol = backtrace_warning_symbol,
  906. .stack = backtrace_stack,
  907. .address = backtrace_address,
  908. };
  909. static void
  910. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  911. {
  912. unsigned long bp;
  913. char *stack;
  914. int nr = entry->nr;
  915. callchain_store(entry, instruction_pointer(regs));
  916. stack = ((char *)regs + sizeof(struct pt_regs));
  917. #ifdef CONFIG_FRAME_POINTER
  918. bp = frame_pointer(regs);
  919. #else
  920. bp = 0;
  921. #endif
  922. dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry);
  923. entry->kernel = entry->nr - nr;
  924. }
  925. struct stack_frame {
  926. const void __user *next_fp;
  927. unsigned long return_address;
  928. };
  929. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  930. {
  931. int ret;
  932. if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
  933. return 0;
  934. ret = 1;
  935. pagefault_disable();
  936. if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
  937. ret = 0;
  938. pagefault_enable();
  939. return ret;
  940. }
  941. static void
  942. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  943. {
  944. struct stack_frame frame;
  945. const void __user *fp;
  946. int nr = entry->nr;
  947. regs = (struct pt_regs *)current->thread.sp0 - 1;
  948. fp = (void __user *)regs->bp;
  949. callchain_store(entry, regs->ip);
  950. while (entry->nr < MAX_STACK_DEPTH) {
  951. frame.next_fp = NULL;
  952. frame.return_address = 0;
  953. if (!copy_stack_frame(fp, &frame))
  954. break;
  955. if ((unsigned long)fp < user_stack_pointer(regs))
  956. break;
  957. callchain_store(entry, frame.return_address);
  958. fp = frame.next_fp;
  959. }
  960. entry->user = entry->nr - nr;
  961. }
  962. static void
  963. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  964. {
  965. int is_user;
  966. if (!regs)
  967. return;
  968. is_user = user_mode(regs);
  969. if (!current || current->pid == 0)
  970. return;
  971. if (is_user && current->state != TASK_RUNNING)
  972. return;
  973. if (!is_user)
  974. perf_callchain_kernel(regs, entry);
  975. if (current->mm)
  976. perf_callchain_user(regs, entry);
  977. }
  978. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  979. {
  980. struct perf_callchain_entry *entry;
  981. if (in_nmi())
  982. entry = &__get_cpu_var(nmi_entry);
  983. else
  984. entry = &__get_cpu_var(irq_entry);
  985. entry->nr = 0;
  986. entry->hv = 0;
  987. entry->kernel = 0;
  988. entry->user = 0;
  989. perf_do_callchain(regs, entry);
  990. return entry;
  991. }