page_alloc.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/config.h>
  17. #include <linux/stddef.h>
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/notifier.h>
  31. #include <linux/topology.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cpuset.h>
  35. #include <linux/memory_hotplug.h>
  36. #include <linux/nodemask.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/mempolicy.h>
  39. #include <asm/tlbflush.h>
  40. #include "internal.h"
  41. /*
  42. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  43. * initializer cleaner
  44. */
  45. nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
  46. EXPORT_SYMBOL(node_online_map);
  47. nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
  48. EXPORT_SYMBOL(node_possible_map);
  49. struct pglist_data *pgdat_list __read_mostly;
  50. unsigned long totalram_pages __read_mostly;
  51. unsigned long totalhigh_pages __read_mostly;
  52. long nr_swap_pages;
  53. int percpu_pagelist_fraction;
  54. static void fastcall free_hot_cold_page(struct page *page, int cold);
  55. /*
  56. * results with 256, 32 in the lowmem_reserve sysctl:
  57. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  58. * 1G machine -> (16M dma, 784M normal, 224M high)
  59. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  60. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  61. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  62. *
  63. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  64. * don't need any ZONE_NORMAL reservation
  65. */
  66. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
  67. EXPORT_SYMBOL(totalram_pages);
  68. /*
  69. * Used by page_zone() to look up the address of the struct zone whose
  70. * id is encoded in the upper bits of page->flags
  71. */
  72. struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
  73. EXPORT_SYMBOL(zone_table);
  74. static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
  75. int min_free_kbytes = 1024;
  76. unsigned long __initdata nr_kernel_pages;
  77. unsigned long __initdata nr_all_pages;
  78. #ifdef CONFIG_DEBUG_VM
  79. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  80. {
  81. int ret = 0;
  82. unsigned seq;
  83. unsigned long pfn = page_to_pfn(page);
  84. do {
  85. seq = zone_span_seqbegin(zone);
  86. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  87. ret = 1;
  88. else if (pfn < zone->zone_start_pfn)
  89. ret = 1;
  90. } while (zone_span_seqretry(zone, seq));
  91. return ret;
  92. }
  93. static int page_is_consistent(struct zone *zone, struct page *page)
  94. {
  95. #ifdef CONFIG_HOLES_IN_ZONE
  96. if (!pfn_valid(page_to_pfn(page)))
  97. return 0;
  98. #endif
  99. if (zone != page_zone(page))
  100. return 0;
  101. return 1;
  102. }
  103. /*
  104. * Temporary debugging check for pages not lying within a given zone.
  105. */
  106. static int bad_range(struct zone *zone, struct page *page)
  107. {
  108. if (page_outside_zone_boundaries(zone, page))
  109. return 1;
  110. if (!page_is_consistent(zone, page))
  111. return 1;
  112. return 0;
  113. }
  114. #else
  115. static inline int bad_range(struct zone *zone, struct page *page)
  116. {
  117. return 0;
  118. }
  119. #endif
  120. static void bad_page(struct page *page)
  121. {
  122. printk(KERN_EMERG "Bad page state in process '%s'\n"
  123. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  124. "Trying to fix it up, but a reboot is needed\n"
  125. "Backtrace:\n",
  126. current->comm, page, (int)(2*sizeof(unsigned long)),
  127. (unsigned long)page->flags, page->mapping,
  128. page_mapcount(page), page_count(page));
  129. dump_stack();
  130. page->flags &= ~(1 << PG_lru |
  131. 1 << PG_private |
  132. 1 << PG_locked |
  133. 1 << PG_active |
  134. 1 << PG_dirty |
  135. 1 << PG_reclaim |
  136. 1 << PG_slab |
  137. 1 << PG_swapcache |
  138. 1 << PG_writeback );
  139. set_page_count(page, 0);
  140. reset_page_mapcount(page);
  141. page->mapping = NULL;
  142. add_taint(TAINT_BAD_PAGE);
  143. }
  144. /*
  145. * Higher-order pages are called "compound pages". They are structured thusly:
  146. *
  147. * The first PAGE_SIZE page is called the "head page".
  148. *
  149. * The remaining PAGE_SIZE pages are called "tail pages".
  150. *
  151. * All pages have PG_compound set. All pages have their ->private pointing at
  152. * the head page (even the head page has this).
  153. *
  154. * The first tail page's ->mapping, if non-zero, holds the address of the
  155. * compound page's put_page() function.
  156. *
  157. * The order of the allocation is stored in the first tail page's ->index
  158. * This is only for debug at present. This usage means that zero-order pages
  159. * may not be compound.
  160. */
  161. static void prep_compound_page(struct page *page, unsigned long order)
  162. {
  163. int i;
  164. int nr_pages = 1 << order;
  165. page[1].mapping = NULL;
  166. page[1].index = order;
  167. for (i = 0; i < nr_pages; i++) {
  168. struct page *p = page + i;
  169. SetPageCompound(p);
  170. set_page_private(p, (unsigned long)page);
  171. }
  172. }
  173. static void destroy_compound_page(struct page *page, unsigned long order)
  174. {
  175. int i;
  176. int nr_pages = 1 << order;
  177. if (unlikely(page[1].index != order))
  178. bad_page(page);
  179. for (i = 0; i < nr_pages; i++) {
  180. struct page *p = page + i;
  181. if (unlikely(!PageCompound(p) |
  182. (page_private(p) != (unsigned long)page)))
  183. bad_page(page);
  184. ClearPageCompound(p);
  185. }
  186. }
  187. /*
  188. * function for dealing with page's order in buddy system.
  189. * zone->lock is already acquired when we use these.
  190. * So, we don't need atomic page->flags operations here.
  191. */
  192. static inline unsigned long page_order(struct page *page) {
  193. return page_private(page);
  194. }
  195. static inline void set_page_order(struct page *page, int order) {
  196. set_page_private(page, order);
  197. __SetPagePrivate(page);
  198. }
  199. static inline void rmv_page_order(struct page *page)
  200. {
  201. __ClearPagePrivate(page);
  202. set_page_private(page, 0);
  203. }
  204. /*
  205. * Locate the struct page for both the matching buddy in our
  206. * pair (buddy1) and the combined O(n+1) page they form (page).
  207. *
  208. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  209. * the following equation:
  210. * B2 = B1 ^ (1 << O)
  211. * For example, if the starting buddy (buddy2) is #8 its order
  212. * 1 buddy is #10:
  213. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  214. *
  215. * 2) Any buddy B will have an order O+1 parent P which
  216. * satisfies the following equation:
  217. * P = B & ~(1 << O)
  218. *
  219. * Assumption: *_mem_map is contigious at least up to MAX_ORDER
  220. */
  221. static inline struct page *
  222. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  223. {
  224. unsigned long buddy_idx = page_idx ^ (1 << order);
  225. return page + (buddy_idx - page_idx);
  226. }
  227. static inline unsigned long
  228. __find_combined_index(unsigned long page_idx, unsigned int order)
  229. {
  230. return (page_idx & ~(1 << order));
  231. }
  232. /*
  233. * This function checks whether a page is free && is the buddy
  234. * we can do coalesce a page and its buddy if
  235. * (a) the buddy is not in a hole &&
  236. * (b) the buddy is free &&
  237. * (c) the buddy is on the buddy system &&
  238. * (d) a page and its buddy have the same order.
  239. * for recording page's order, we use page_private(page) and PG_private.
  240. *
  241. */
  242. static inline int page_is_buddy(struct page *page, int order)
  243. {
  244. #ifdef CONFIG_HOLES_IN_ZONE
  245. if (!pfn_valid(page_to_pfn(page)))
  246. return 0;
  247. #endif
  248. if (PagePrivate(page) &&
  249. (page_order(page) == order) &&
  250. page_count(page) == 0)
  251. return 1;
  252. return 0;
  253. }
  254. /*
  255. * Freeing function for a buddy system allocator.
  256. *
  257. * The concept of a buddy system is to maintain direct-mapped table
  258. * (containing bit values) for memory blocks of various "orders".
  259. * The bottom level table contains the map for the smallest allocatable
  260. * units of memory (here, pages), and each level above it describes
  261. * pairs of units from the levels below, hence, "buddies".
  262. * At a high level, all that happens here is marking the table entry
  263. * at the bottom level available, and propagating the changes upward
  264. * as necessary, plus some accounting needed to play nicely with other
  265. * parts of the VM system.
  266. * At each level, we keep a list of pages, which are heads of continuous
  267. * free pages of length of (1 << order) and marked with PG_Private.Page's
  268. * order is recorded in page_private(page) field.
  269. * So when we are allocating or freeing one, we can derive the state of the
  270. * other. That is, if we allocate a small block, and both were
  271. * free, the remainder of the region must be split into blocks.
  272. * If a block is freed, and its buddy is also free, then this
  273. * triggers coalescing into a block of larger size.
  274. *
  275. * -- wli
  276. */
  277. static inline void __free_one_page(struct page *page,
  278. struct zone *zone, unsigned int order)
  279. {
  280. unsigned long page_idx;
  281. int order_size = 1 << order;
  282. if (unlikely(PageCompound(page)))
  283. destroy_compound_page(page, order);
  284. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  285. BUG_ON(page_idx & (order_size - 1));
  286. BUG_ON(bad_range(zone, page));
  287. zone->free_pages += order_size;
  288. while (order < MAX_ORDER-1) {
  289. unsigned long combined_idx;
  290. struct free_area *area;
  291. struct page *buddy;
  292. buddy = __page_find_buddy(page, page_idx, order);
  293. if (!page_is_buddy(buddy, order))
  294. break; /* Move the buddy up one level. */
  295. list_del(&buddy->lru);
  296. area = zone->free_area + order;
  297. area->nr_free--;
  298. rmv_page_order(buddy);
  299. combined_idx = __find_combined_index(page_idx, order);
  300. page = page + (combined_idx - page_idx);
  301. page_idx = combined_idx;
  302. order++;
  303. }
  304. set_page_order(page, order);
  305. list_add(&page->lru, &zone->free_area[order].free_list);
  306. zone->free_area[order].nr_free++;
  307. }
  308. static inline int free_pages_check(struct page *page)
  309. {
  310. if (unlikely(page_mapcount(page) |
  311. (page->mapping != NULL) |
  312. (page_count(page) != 0) |
  313. (page->flags & (
  314. 1 << PG_lru |
  315. 1 << PG_private |
  316. 1 << PG_locked |
  317. 1 << PG_active |
  318. 1 << PG_reclaim |
  319. 1 << PG_slab |
  320. 1 << PG_swapcache |
  321. 1 << PG_writeback |
  322. 1 << PG_reserved ))))
  323. bad_page(page);
  324. if (PageDirty(page))
  325. __ClearPageDirty(page);
  326. /*
  327. * For now, we report if PG_reserved was found set, but do not
  328. * clear it, and do not free the page. But we shall soon need
  329. * to do more, for when the ZERO_PAGE count wraps negative.
  330. */
  331. return PageReserved(page);
  332. }
  333. /*
  334. * Frees a list of pages.
  335. * Assumes all pages on list are in same zone, and of same order.
  336. * count is the number of pages to free.
  337. *
  338. * If the zone was previously in an "all pages pinned" state then look to
  339. * see if this freeing clears that state.
  340. *
  341. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  342. * pinned" detection logic.
  343. */
  344. static void free_pages_bulk(struct zone *zone, int count,
  345. struct list_head *list, int order)
  346. {
  347. spin_lock(&zone->lock);
  348. zone->all_unreclaimable = 0;
  349. zone->pages_scanned = 0;
  350. while (count--) {
  351. struct page *page;
  352. BUG_ON(list_empty(list));
  353. page = list_entry(list->prev, struct page, lru);
  354. /* have to delete it as __free_one_page list manipulates */
  355. list_del(&page->lru);
  356. __free_one_page(page, zone, order);
  357. }
  358. spin_unlock(&zone->lock);
  359. }
  360. static void free_one_page(struct zone *zone, struct page *page, int order)
  361. {
  362. LIST_HEAD(list);
  363. list_add(&page->lru, &list);
  364. free_pages_bulk(zone, 1, &list, order);
  365. }
  366. static void __free_pages_ok(struct page *page, unsigned int order)
  367. {
  368. unsigned long flags;
  369. int i;
  370. int reserved = 0;
  371. arch_free_page(page, order);
  372. #ifndef CONFIG_MMU
  373. for (i = 1 ; i < (1 << order) ; ++i)
  374. __put_page(page + i);
  375. #endif
  376. for (i = 0 ; i < (1 << order) ; ++i)
  377. reserved += free_pages_check(page + i);
  378. if (reserved)
  379. return;
  380. kernel_map_pages(page, 1 << order, 0);
  381. local_irq_save(flags);
  382. __mod_page_state(pgfree, 1 << order);
  383. free_one_page(page_zone(page), page, order);
  384. local_irq_restore(flags);
  385. }
  386. /*
  387. * permit the bootmem allocator to evade page validation on high-order frees
  388. */
  389. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  390. {
  391. if (order == 0) {
  392. __ClearPageReserved(page);
  393. set_page_count(page, 0);
  394. free_hot_cold_page(page, 0);
  395. } else {
  396. LIST_HEAD(list);
  397. int loop;
  398. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  399. struct page *p = &page[loop];
  400. if (loop + 16 < BITS_PER_LONG)
  401. prefetchw(p + 16);
  402. __ClearPageReserved(p);
  403. set_page_count(p, 0);
  404. }
  405. arch_free_page(page, order);
  406. mod_page_state(pgfree, 1 << order);
  407. list_add(&page->lru, &list);
  408. kernel_map_pages(page, 1 << order, 0);
  409. free_pages_bulk(page_zone(page), 1, &list, order);
  410. }
  411. }
  412. /*
  413. * The order of subdivision here is critical for the IO subsystem.
  414. * Please do not alter this order without good reasons and regression
  415. * testing. Specifically, as large blocks of memory are subdivided,
  416. * the order in which smaller blocks are delivered depends on the order
  417. * they're subdivided in this function. This is the primary factor
  418. * influencing the order in which pages are delivered to the IO
  419. * subsystem according to empirical testing, and this is also justified
  420. * by considering the behavior of a buddy system containing a single
  421. * large block of memory acted on by a series of small allocations.
  422. * This behavior is a critical factor in sglist merging's success.
  423. *
  424. * -- wli
  425. */
  426. static inline void expand(struct zone *zone, struct page *page,
  427. int low, int high, struct free_area *area)
  428. {
  429. unsigned long size = 1 << high;
  430. while (high > low) {
  431. area--;
  432. high--;
  433. size >>= 1;
  434. BUG_ON(bad_range(zone, &page[size]));
  435. list_add(&page[size].lru, &area->free_list);
  436. area->nr_free++;
  437. set_page_order(&page[size], high);
  438. }
  439. }
  440. /*
  441. * This page is about to be returned from the page allocator
  442. */
  443. static int prep_new_page(struct page *page, int order)
  444. {
  445. if (unlikely(page_mapcount(page) |
  446. (page->mapping != NULL) |
  447. (page_count(page) != 0) |
  448. (page->flags & (
  449. 1 << PG_lru |
  450. 1 << PG_private |
  451. 1 << PG_locked |
  452. 1 << PG_active |
  453. 1 << PG_dirty |
  454. 1 << PG_reclaim |
  455. 1 << PG_slab |
  456. 1 << PG_swapcache |
  457. 1 << PG_writeback |
  458. 1 << PG_reserved ))))
  459. bad_page(page);
  460. /*
  461. * For now, we report if PG_reserved was found set, but do not
  462. * clear it, and do not allocate the page: as a safety net.
  463. */
  464. if (PageReserved(page))
  465. return 1;
  466. page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
  467. 1 << PG_referenced | 1 << PG_arch_1 |
  468. 1 << PG_checked | 1 << PG_mappedtodisk);
  469. set_page_private(page, 0);
  470. set_page_refs(page, order);
  471. kernel_map_pages(page, 1 << order, 1);
  472. return 0;
  473. }
  474. /*
  475. * Do the hard work of removing an element from the buddy allocator.
  476. * Call me with the zone->lock already held.
  477. */
  478. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  479. {
  480. struct free_area * area;
  481. unsigned int current_order;
  482. struct page *page;
  483. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  484. area = zone->free_area + current_order;
  485. if (list_empty(&area->free_list))
  486. continue;
  487. page = list_entry(area->free_list.next, struct page, lru);
  488. list_del(&page->lru);
  489. rmv_page_order(page);
  490. area->nr_free--;
  491. zone->free_pages -= 1UL << order;
  492. expand(zone, page, order, current_order, area);
  493. return page;
  494. }
  495. return NULL;
  496. }
  497. /*
  498. * Obtain a specified number of elements from the buddy allocator, all under
  499. * a single hold of the lock, for efficiency. Add them to the supplied list.
  500. * Returns the number of new pages which were placed at *list.
  501. */
  502. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  503. unsigned long count, struct list_head *list)
  504. {
  505. int i;
  506. spin_lock(&zone->lock);
  507. for (i = 0; i < count; ++i) {
  508. struct page *page = __rmqueue(zone, order);
  509. if (unlikely(page == NULL))
  510. break;
  511. list_add_tail(&page->lru, list);
  512. }
  513. spin_unlock(&zone->lock);
  514. return i;
  515. }
  516. #ifdef CONFIG_NUMA
  517. /* Called from the slab reaper to drain remote pagesets */
  518. void drain_remote_pages(void)
  519. {
  520. struct zone *zone;
  521. int i;
  522. unsigned long flags;
  523. local_irq_save(flags);
  524. for_each_zone(zone) {
  525. struct per_cpu_pageset *pset;
  526. /* Do not drain local pagesets */
  527. if (zone->zone_pgdat->node_id == numa_node_id())
  528. continue;
  529. pset = zone_pcp(zone, smp_processor_id());
  530. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  531. struct per_cpu_pages *pcp;
  532. pcp = &pset->pcp[i];
  533. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  534. pcp->count = 0;
  535. }
  536. }
  537. local_irq_restore(flags);
  538. }
  539. #endif
  540. #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
  541. static void __drain_pages(unsigned int cpu)
  542. {
  543. unsigned long flags;
  544. struct zone *zone;
  545. int i;
  546. for_each_zone(zone) {
  547. struct per_cpu_pageset *pset;
  548. pset = zone_pcp(zone, cpu);
  549. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  550. struct per_cpu_pages *pcp;
  551. pcp = &pset->pcp[i];
  552. local_irq_save(flags);
  553. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  554. pcp->count = 0;
  555. local_irq_restore(flags);
  556. }
  557. }
  558. }
  559. #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
  560. #ifdef CONFIG_PM
  561. void mark_free_pages(struct zone *zone)
  562. {
  563. unsigned long zone_pfn, flags;
  564. int order;
  565. struct list_head *curr;
  566. if (!zone->spanned_pages)
  567. return;
  568. spin_lock_irqsave(&zone->lock, flags);
  569. for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
  570. ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
  571. for (order = MAX_ORDER - 1; order >= 0; --order)
  572. list_for_each(curr, &zone->free_area[order].free_list) {
  573. unsigned long start_pfn, i;
  574. start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
  575. for (i=0; i < (1<<order); i++)
  576. SetPageNosaveFree(pfn_to_page(start_pfn+i));
  577. }
  578. spin_unlock_irqrestore(&zone->lock, flags);
  579. }
  580. /*
  581. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  582. */
  583. void drain_local_pages(void)
  584. {
  585. unsigned long flags;
  586. local_irq_save(flags);
  587. __drain_pages(smp_processor_id());
  588. local_irq_restore(flags);
  589. }
  590. #endif /* CONFIG_PM */
  591. static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
  592. {
  593. #ifdef CONFIG_NUMA
  594. pg_data_t *pg = z->zone_pgdat;
  595. pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
  596. struct per_cpu_pageset *p;
  597. p = zone_pcp(z, cpu);
  598. if (pg == orig) {
  599. p->numa_hit++;
  600. } else {
  601. p->numa_miss++;
  602. zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
  603. }
  604. if (pg == NODE_DATA(numa_node_id()))
  605. p->local_node++;
  606. else
  607. p->other_node++;
  608. #endif
  609. }
  610. /*
  611. * Free a 0-order page
  612. */
  613. static void fastcall free_hot_cold_page(struct page *page, int cold)
  614. {
  615. struct zone *zone = page_zone(page);
  616. struct per_cpu_pages *pcp;
  617. unsigned long flags;
  618. arch_free_page(page, 0);
  619. if (PageAnon(page))
  620. page->mapping = NULL;
  621. if (free_pages_check(page))
  622. return;
  623. kernel_map_pages(page, 1, 0);
  624. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  625. local_irq_save(flags);
  626. __inc_page_state(pgfree);
  627. list_add(&page->lru, &pcp->list);
  628. pcp->count++;
  629. if (pcp->count >= pcp->high) {
  630. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  631. pcp->count -= pcp->batch;
  632. }
  633. local_irq_restore(flags);
  634. put_cpu();
  635. }
  636. void fastcall free_hot_page(struct page *page)
  637. {
  638. free_hot_cold_page(page, 0);
  639. }
  640. void fastcall free_cold_page(struct page *page)
  641. {
  642. free_hot_cold_page(page, 1);
  643. }
  644. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  645. {
  646. int i;
  647. BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  648. for(i = 0; i < (1 << order); i++)
  649. clear_highpage(page + i);
  650. }
  651. /*
  652. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  653. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  654. * or two.
  655. */
  656. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  657. struct zone *zone, int order, gfp_t gfp_flags)
  658. {
  659. unsigned long flags;
  660. struct page *page;
  661. int cold = !!(gfp_flags & __GFP_COLD);
  662. int cpu;
  663. again:
  664. cpu = get_cpu();
  665. if (likely(order == 0)) {
  666. struct per_cpu_pages *pcp;
  667. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  668. local_irq_save(flags);
  669. if (!pcp->count) {
  670. pcp->count += rmqueue_bulk(zone, 0,
  671. pcp->batch, &pcp->list);
  672. if (unlikely(!pcp->count))
  673. goto failed;
  674. }
  675. page = list_entry(pcp->list.next, struct page, lru);
  676. list_del(&page->lru);
  677. pcp->count--;
  678. } else {
  679. spin_lock_irqsave(&zone->lock, flags);
  680. page = __rmqueue(zone, order);
  681. spin_unlock(&zone->lock);
  682. if (!page)
  683. goto failed;
  684. }
  685. __mod_page_state_zone(zone, pgalloc, 1 << order);
  686. zone_statistics(zonelist, zone, cpu);
  687. local_irq_restore(flags);
  688. put_cpu();
  689. BUG_ON(bad_range(zone, page));
  690. if (prep_new_page(page, order))
  691. goto again;
  692. if (gfp_flags & __GFP_ZERO)
  693. prep_zero_page(page, order, gfp_flags);
  694. if (order && (gfp_flags & __GFP_COMP))
  695. prep_compound_page(page, order);
  696. return page;
  697. failed:
  698. local_irq_restore(flags);
  699. put_cpu();
  700. return NULL;
  701. }
  702. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  703. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  704. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  705. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  706. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  707. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  708. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  709. /*
  710. * Return 1 if free pages are above 'mark'. This takes into account the order
  711. * of the allocation.
  712. */
  713. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  714. int classzone_idx, int alloc_flags)
  715. {
  716. /* free_pages my go negative - that's OK */
  717. long min = mark, free_pages = z->free_pages - (1 << order) + 1;
  718. int o;
  719. if (alloc_flags & ALLOC_HIGH)
  720. min -= min / 2;
  721. if (alloc_flags & ALLOC_HARDER)
  722. min -= min / 4;
  723. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  724. return 0;
  725. for (o = 0; o < order; o++) {
  726. /* At the next order, this order's pages become unavailable */
  727. free_pages -= z->free_area[o].nr_free << o;
  728. /* Require fewer higher order pages to be free */
  729. min >>= 1;
  730. if (free_pages <= min)
  731. return 0;
  732. }
  733. return 1;
  734. }
  735. /*
  736. * get_page_from_freeliest goes through the zonelist trying to allocate
  737. * a page.
  738. */
  739. static struct page *
  740. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  741. struct zonelist *zonelist, int alloc_flags)
  742. {
  743. struct zone **z = zonelist->zones;
  744. struct page *page = NULL;
  745. int classzone_idx = zone_idx(*z);
  746. /*
  747. * Go through the zonelist once, looking for a zone with enough free.
  748. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  749. */
  750. do {
  751. if ((alloc_flags & ALLOC_CPUSET) &&
  752. !cpuset_zone_allowed(*z, gfp_mask))
  753. continue;
  754. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  755. unsigned long mark;
  756. if (alloc_flags & ALLOC_WMARK_MIN)
  757. mark = (*z)->pages_min;
  758. else if (alloc_flags & ALLOC_WMARK_LOW)
  759. mark = (*z)->pages_low;
  760. else
  761. mark = (*z)->pages_high;
  762. if (!zone_watermark_ok(*z, order, mark,
  763. classzone_idx, alloc_flags))
  764. continue;
  765. }
  766. page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
  767. if (page) {
  768. break;
  769. }
  770. } while (*(++z) != NULL);
  771. return page;
  772. }
  773. /*
  774. * This is the 'heart' of the zoned buddy allocator.
  775. */
  776. struct page * fastcall
  777. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  778. struct zonelist *zonelist)
  779. {
  780. const gfp_t wait = gfp_mask & __GFP_WAIT;
  781. struct zone **z;
  782. struct page *page;
  783. struct reclaim_state reclaim_state;
  784. struct task_struct *p = current;
  785. int do_retry;
  786. int alloc_flags;
  787. int did_some_progress;
  788. might_sleep_if(wait);
  789. restart:
  790. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  791. if (unlikely(*z == NULL)) {
  792. /* Should this ever happen?? */
  793. return NULL;
  794. }
  795. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  796. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  797. if (page)
  798. goto got_pg;
  799. do {
  800. wakeup_kswapd(*z, order);
  801. } while (*(++z));
  802. /*
  803. * OK, we're below the kswapd watermark and have kicked background
  804. * reclaim. Now things get more complex, so set up alloc_flags according
  805. * to how we want to proceed.
  806. *
  807. * The caller may dip into page reserves a bit more if the caller
  808. * cannot run direct reclaim, or if the caller has realtime scheduling
  809. * policy.
  810. */
  811. alloc_flags = ALLOC_WMARK_MIN;
  812. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  813. alloc_flags |= ALLOC_HARDER;
  814. if (gfp_mask & __GFP_HIGH)
  815. alloc_flags |= ALLOC_HIGH;
  816. alloc_flags |= ALLOC_CPUSET;
  817. /*
  818. * Go through the zonelist again. Let __GFP_HIGH and allocations
  819. * coming from realtime tasks go deeper into reserves.
  820. *
  821. * This is the last chance, in general, before the goto nopage.
  822. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  823. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  824. */
  825. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  826. if (page)
  827. goto got_pg;
  828. /* This allocation should allow future memory freeing. */
  829. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  830. && !in_interrupt()) {
  831. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  832. nofail_alloc:
  833. /* go through the zonelist yet again, ignoring mins */
  834. page = get_page_from_freelist(gfp_mask, order,
  835. zonelist, ALLOC_NO_WATERMARKS);
  836. if (page)
  837. goto got_pg;
  838. if (gfp_mask & __GFP_NOFAIL) {
  839. blk_congestion_wait(WRITE, HZ/50);
  840. goto nofail_alloc;
  841. }
  842. }
  843. goto nopage;
  844. }
  845. /* Atomic allocations - we can't balance anything */
  846. if (!wait)
  847. goto nopage;
  848. rebalance:
  849. cond_resched();
  850. /* We now go into synchronous reclaim */
  851. p->flags |= PF_MEMALLOC;
  852. reclaim_state.reclaimed_slab = 0;
  853. p->reclaim_state = &reclaim_state;
  854. did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
  855. p->reclaim_state = NULL;
  856. p->flags &= ~PF_MEMALLOC;
  857. cond_resched();
  858. if (likely(did_some_progress)) {
  859. page = get_page_from_freelist(gfp_mask, order,
  860. zonelist, alloc_flags);
  861. if (page)
  862. goto got_pg;
  863. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  864. /*
  865. * Go through the zonelist yet one more time, keep
  866. * very high watermark here, this is only to catch
  867. * a parallel oom killing, we must fail if we're still
  868. * under heavy pressure.
  869. */
  870. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  871. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  872. if (page)
  873. goto got_pg;
  874. out_of_memory(gfp_mask, order);
  875. goto restart;
  876. }
  877. /*
  878. * Don't let big-order allocations loop unless the caller explicitly
  879. * requests that. Wait for some write requests to complete then retry.
  880. *
  881. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  882. * <= 3, but that may not be true in other implementations.
  883. */
  884. do_retry = 0;
  885. if (!(gfp_mask & __GFP_NORETRY)) {
  886. if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
  887. do_retry = 1;
  888. if (gfp_mask & __GFP_NOFAIL)
  889. do_retry = 1;
  890. }
  891. if (do_retry) {
  892. blk_congestion_wait(WRITE, HZ/50);
  893. goto rebalance;
  894. }
  895. nopage:
  896. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  897. printk(KERN_WARNING "%s: page allocation failure."
  898. " order:%d, mode:0x%x\n",
  899. p->comm, order, gfp_mask);
  900. dump_stack();
  901. show_mem();
  902. }
  903. got_pg:
  904. return page;
  905. }
  906. EXPORT_SYMBOL(__alloc_pages);
  907. /*
  908. * Common helper functions.
  909. */
  910. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  911. {
  912. struct page * page;
  913. page = alloc_pages(gfp_mask, order);
  914. if (!page)
  915. return 0;
  916. return (unsigned long) page_address(page);
  917. }
  918. EXPORT_SYMBOL(__get_free_pages);
  919. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  920. {
  921. struct page * page;
  922. /*
  923. * get_zeroed_page() returns a 32-bit address, which cannot represent
  924. * a highmem page
  925. */
  926. BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  927. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  928. if (page)
  929. return (unsigned long) page_address(page);
  930. return 0;
  931. }
  932. EXPORT_SYMBOL(get_zeroed_page);
  933. void __pagevec_free(struct pagevec *pvec)
  934. {
  935. int i = pagevec_count(pvec);
  936. while (--i >= 0)
  937. free_hot_cold_page(pvec->pages[i], pvec->cold);
  938. }
  939. fastcall void __free_pages(struct page *page, unsigned int order)
  940. {
  941. if (put_page_testzero(page)) {
  942. if (order == 0)
  943. free_hot_page(page);
  944. else
  945. __free_pages_ok(page, order);
  946. }
  947. }
  948. EXPORT_SYMBOL(__free_pages);
  949. fastcall void free_pages(unsigned long addr, unsigned int order)
  950. {
  951. if (addr != 0) {
  952. BUG_ON(!virt_addr_valid((void *)addr));
  953. __free_pages(virt_to_page((void *)addr), order);
  954. }
  955. }
  956. EXPORT_SYMBOL(free_pages);
  957. /*
  958. * Total amount of free (allocatable) RAM:
  959. */
  960. unsigned int nr_free_pages(void)
  961. {
  962. unsigned int sum = 0;
  963. struct zone *zone;
  964. for_each_zone(zone)
  965. sum += zone->free_pages;
  966. return sum;
  967. }
  968. EXPORT_SYMBOL(nr_free_pages);
  969. #ifdef CONFIG_NUMA
  970. unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
  971. {
  972. unsigned int i, sum = 0;
  973. for (i = 0; i < MAX_NR_ZONES; i++)
  974. sum += pgdat->node_zones[i].free_pages;
  975. return sum;
  976. }
  977. #endif
  978. static unsigned int nr_free_zone_pages(int offset)
  979. {
  980. /* Just pick one node, since fallback list is circular */
  981. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  982. unsigned int sum = 0;
  983. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  984. struct zone **zonep = zonelist->zones;
  985. struct zone *zone;
  986. for (zone = *zonep++; zone; zone = *zonep++) {
  987. unsigned long size = zone->present_pages;
  988. unsigned long high = zone->pages_high;
  989. if (size > high)
  990. sum += size - high;
  991. }
  992. return sum;
  993. }
  994. /*
  995. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  996. */
  997. unsigned int nr_free_buffer_pages(void)
  998. {
  999. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1000. }
  1001. /*
  1002. * Amount of free RAM allocatable within all zones
  1003. */
  1004. unsigned int nr_free_pagecache_pages(void)
  1005. {
  1006. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
  1007. }
  1008. #ifdef CONFIG_HIGHMEM
  1009. unsigned int nr_free_highpages (void)
  1010. {
  1011. pg_data_t *pgdat;
  1012. unsigned int pages = 0;
  1013. for_each_pgdat(pgdat)
  1014. pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1015. return pages;
  1016. }
  1017. #endif
  1018. #ifdef CONFIG_NUMA
  1019. static void show_node(struct zone *zone)
  1020. {
  1021. printk("Node %d ", zone->zone_pgdat->node_id);
  1022. }
  1023. #else
  1024. #define show_node(zone) do { } while (0)
  1025. #endif
  1026. /*
  1027. * Accumulate the page_state information across all CPUs.
  1028. * The result is unavoidably approximate - it can change
  1029. * during and after execution of this function.
  1030. */
  1031. static DEFINE_PER_CPU(struct page_state, page_states) = {0};
  1032. atomic_t nr_pagecache = ATOMIC_INIT(0);
  1033. EXPORT_SYMBOL(nr_pagecache);
  1034. #ifdef CONFIG_SMP
  1035. DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
  1036. #endif
  1037. static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
  1038. {
  1039. int cpu = 0;
  1040. memset(ret, 0, sizeof(*ret));
  1041. cpus_and(*cpumask, *cpumask, cpu_online_map);
  1042. cpu = first_cpu(*cpumask);
  1043. while (cpu < NR_CPUS) {
  1044. unsigned long *in, *out, off;
  1045. in = (unsigned long *)&per_cpu(page_states, cpu);
  1046. cpu = next_cpu(cpu, *cpumask);
  1047. if (cpu < NR_CPUS)
  1048. prefetch(&per_cpu(page_states, cpu));
  1049. out = (unsigned long *)ret;
  1050. for (off = 0; off < nr; off++)
  1051. *out++ += *in++;
  1052. }
  1053. }
  1054. void get_page_state_node(struct page_state *ret, int node)
  1055. {
  1056. int nr;
  1057. cpumask_t mask = node_to_cpumask(node);
  1058. nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
  1059. nr /= sizeof(unsigned long);
  1060. __get_page_state(ret, nr+1, &mask);
  1061. }
  1062. void get_page_state(struct page_state *ret)
  1063. {
  1064. int nr;
  1065. cpumask_t mask = CPU_MASK_ALL;
  1066. nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
  1067. nr /= sizeof(unsigned long);
  1068. __get_page_state(ret, nr + 1, &mask);
  1069. }
  1070. void get_full_page_state(struct page_state *ret)
  1071. {
  1072. cpumask_t mask = CPU_MASK_ALL;
  1073. __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
  1074. }
  1075. unsigned long read_page_state_offset(unsigned long offset)
  1076. {
  1077. unsigned long ret = 0;
  1078. int cpu;
  1079. for_each_online_cpu(cpu) {
  1080. unsigned long in;
  1081. in = (unsigned long)&per_cpu(page_states, cpu) + offset;
  1082. ret += *((unsigned long *)in);
  1083. }
  1084. return ret;
  1085. }
  1086. void __mod_page_state_offset(unsigned long offset, unsigned long delta)
  1087. {
  1088. void *ptr;
  1089. ptr = &__get_cpu_var(page_states);
  1090. *(unsigned long *)(ptr + offset) += delta;
  1091. }
  1092. EXPORT_SYMBOL(__mod_page_state_offset);
  1093. void mod_page_state_offset(unsigned long offset, unsigned long delta)
  1094. {
  1095. unsigned long flags;
  1096. void *ptr;
  1097. local_irq_save(flags);
  1098. ptr = &__get_cpu_var(page_states);
  1099. *(unsigned long *)(ptr + offset) += delta;
  1100. local_irq_restore(flags);
  1101. }
  1102. EXPORT_SYMBOL(mod_page_state_offset);
  1103. void __get_zone_counts(unsigned long *active, unsigned long *inactive,
  1104. unsigned long *free, struct pglist_data *pgdat)
  1105. {
  1106. struct zone *zones = pgdat->node_zones;
  1107. int i;
  1108. *active = 0;
  1109. *inactive = 0;
  1110. *free = 0;
  1111. for (i = 0; i < MAX_NR_ZONES; i++) {
  1112. *active += zones[i].nr_active;
  1113. *inactive += zones[i].nr_inactive;
  1114. *free += zones[i].free_pages;
  1115. }
  1116. }
  1117. void get_zone_counts(unsigned long *active,
  1118. unsigned long *inactive, unsigned long *free)
  1119. {
  1120. struct pglist_data *pgdat;
  1121. *active = 0;
  1122. *inactive = 0;
  1123. *free = 0;
  1124. for_each_pgdat(pgdat) {
  1125. unsigned long l, m, n;
  1126. __get_zone_counts(&l, &m, &n, pgdat);
  1127. *active += l;
  1128. *inactive += m;
  1129. *free += n;
  1130. }
  1131. }
  1132. void si_meminfo(struct sysinfo *val)
  1133. {
  1134. val->totalram = totalram_pages;
  1135. val->sharedram = 0;
  1136. val->freeram = nr_free_pages();
  1137. val->bufferram = nr_blockdev_pages();
  1138. #ifdef CONFIG_HIGHMEM
  1139. val->totalhigh = totalhigh_pages;
  1140. val->freehigh = nr_free_highpages();
  1141. #else
  1142. val->totalhigh = 0;
  1143. val->freehigh = 0;
  1144. #endif
  1145. val->mem_unit = PAGE_SIZE;
  1146. }
  1147. EXPORT_SYMBOL(si_meminfo);
  1148. #ifdef CONFIG_NUMA
  1149. void si_meminfo_node(struct sysinfo *val, int nid)
  1150. {
  1151. pg_data_t *pgdat = NODE_DATA(nid);
  1152. val->totalram = pgdat->node_present_pages;
  1153. val->freeram = nr_free_pages_pgdat(pgdat);
  1154. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1155. val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1156. val->mem_unit = PAGE_SIZE;
  1157. }
  1158. #endif
  1159. #define K(x) ((x) << (PAGE_SHIFT-10))
  1160. /*
  1161. * Show free area list (used inside shift_scroll-lock stuff)
  1162. * We also calculate the percentage fragmentation. We do this by counting the
  1163. * memory on each free list with the exception of the first item on the list.
  1164. */
  1165. void show_free_areas(void)
  1166. {
  1167. struct page_state ps;
  1168. int cpu, temperature;
  1169. unsigned long active;
  1170. unsigned long inactive;
  1171. unsigned long free;
  1172. struct zone *zone;
  1173. for_each_zone(zone) {
  1174. show_node(zone);
  1175. printk("%s per-cpu:", zone->name);
  1176. if (!populated_zone(zone)) {
  1177. printk(" empty\n");
  1178. continue;
  1179. } else
  1180. printk("\n");
  1181. for_each_online_cpu(cpu) {
  1182. struct per_cpu_pageset *pageset;
  1183. pageset = zone_pcp(zone, cpu);
  1184. for (temperature = 0; temperature < 2; temperature++)
  1185. printk("cpu %d %s: high %d, batch %d used:%d\n",
  1186. cpu,
  1187. temperature ? "cold" : "hot",
  1188. pageset->pcp[temperature].high,
  1189. pageset->pcp[temperature].batch,
  1190. pageset->pcp[temperature].count);
  1191. }
  1192. }
  1193. get_page_state(&ps);
  1194. get_zone_counts(&active, &inactive, &free);
  1195. printk("Free pages: %11ukB (%ukB HighMem)\n",
  1196. K(nr_free_pages()),
  1197. K(nr_free_highpages()));
  1198. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
  1199. "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
  1200. active,
  1201. inactive,
  1202. ps.nr_dirty,
  1203. ps.nr_writeback,
  1204. ps.nr_unstable,
  1205. nr_free_pages(),
  1206. ps.nr_slab,
  1207. ps.nr_mapped,
  1208. ps.nr_page_table_pages);
  1209. for_each_zone(zone) {
  1210. int i;
  1211. show_node(zone);
  1212. printk("%s"
  1213. " free:%lukB"
  1214. " min:%lukB"
  1215. " low:%lukB"
  1216. " high:%lukB"
  1217. " active:%lukB"
  1218. " inactive:%lukB"
  1219. " present:%lukB"
  1220. " pages_scanned:%lu"
  1221. " all_unreclaimable? %s"
  1222. "\n",
  1223. zone->name,
  1224. K(zone->free_pages),
  1225. K(zone->pages_min),
  1226. K(zone->pages_low),
  1227. K(zone->pages_high),
  1228. K(zone->nr_active),
  1229. K(zone->nr_inactive),
  1230. K(zone->present_pages),
  1231. zone->pages_scanned,
  1232. (zone->all_unreclaimable ? "yes" : "no")
  1233. );
  1234. printk("lowmem_reserve[]:");
  1235. for (i = 0; i < MAX_NR_ZONES; i++)
  1236. printk(" %lu", zone->lowmem_reserve[i]);
  1237. printk("\n");
  1238. }
  1239. for_each_zone(zone) {
  1240. unsigned long nr, flags, order, total = 0;
  1241. show_node(zone);
  1242. printk("%s: ", zone->name);
  1243. if (!populated_zone(zone)) {
  1244. printk("empty\n");
  1245. continue;
  1246. }
  1247. spin_lock_irqsave(&zone->lock, flags);
  1248. for (order = 0; order < MAX_ORDER; order++) {
  1249. nr = zone->free_area[order].nr_free;
  1250. total += nr << order;
  1251. printk("%lu*%lukB ", nr, K(1UL) << order);
  1252. }
  1253. spin_unlock_irqrestore(&zone->lock, flags);
  1254. printk("= %lukB\n", K(total));
  1255. }
  1256. show_swap_cache_info();
  1257. }
  1258. /*
  1259. * Builds allocation fallback zone lists.
  1260. *
  1261. * Add all populated zones of a node to the zonelist.
  1262. */
  1263. static int __init build_zonelists_node(pg_data_t *pgdat,
  1264. struct zonelist *zonelist, int nr_zones, int zone_type)
  1265. {
  1266. struct zone *zone;
  1267. BUG_ON(zone_type > ZONE_HIGHMEM);
  1268. do {
  1269. zone = pgdat->node_zones + zone_type;
  1270. if (populated_zone(zone)) {
  1271. #ifndef CONFIG_HIGHMEM
  1272. BUG_ON(zone_type > ZONE_NORMAL);
  1273. #endif
  1274. zonelist->zones[nr_zones++] = zone;
  1275. check_highest_zone(zone_type);
  1276. }
  1277. zone_type--;
  1278. } while (zone_type >= 0);
  1279. return nr_zones;
  1280. }
  1281. static inline int highest_zone(int zone_bits)
  1282. {
  1283. int res = ZONE_NORMAL;
  1284. if (zone_bits & (__force int)__GFP_HIGHMEM)
  1285. res = ZONE_HIGHMEM;
  1286. if (zone_bits & (__force int)__GFP_DMA32)
  1287. res = ZONE_DMA32;
  1288. if (zone_bits & (__force int)__GFP_DMA)
  1289. res = ZONE_DMA;
  1290. return res;
  1291. }
  1292. #ifdef CONFIG_NUMA
  1293. #define MAX_NODE_LOAD (num_online_nodes())
  1294. static int __initdata node_load[MAX_NUMNODES];
  1295. /**
  1296. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1297. * @node: node whose fallback list we're appending
  1298. * @used_node_mask: nodemask_t of already used nodes
  1299. *
  1300. * We use a number of factors to determine which is the next node that should
  1301. * appear on a given node's fallback list. The node should not have appeared
  1302. * already in @node's fallback list, and it should be the next closest node
  1303. * according to the distance array (which contains arbitrary distance values
  1304. * from each node to each node in the system), and should also prefer nodes
  1305. * with no CPUs, since presumably they'll have very little allocation pressure
  1306. * on them otherwise.
  1307. * It returns -1 if no node is found.
  1308. */
  1309. static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
  1310. {
  1311. int i, n, val;
  1312. int min_val = INT_MAX;
  1313. int best_node = -1;
  1314. for_each_online_node(i) {
  1315. cpumask_t tmp;
  1316. /* Start from local node */
  1317. n = (node+i) % num_online_nodes();
  1318. /* Don't want a node to appear more than once */
  1319. if (node_isset(n, *used_node_mask))
  1320. continue;
  1321. /* Use the local node if we haven't already */
  1322. if (!node_isset(node, *used_node_mask)) {
  1323. best_node = node;
  1324. break;
  1325. }
  1326. /* Use the distance array to find the distance */
  1327. val = node_distance(node, n);
  1328. /* Give preference to headless and unused nodes */
  1329. tmp = node_to_cpumask(n);
  1330. if (!cpus_empty(tmp))
  1331. val += PENALTY_FOR_NODE_WITH_CPUS;
  1332. /* Slight preference for less loaded node */
  1333. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1334. val += node_load[n];
  1335. if (val < min_val) {
  1336. min_val = val;
  1337. best_node = n;
  1338. }
  1339. }
  1340. if (best_node >= 0)
  1341. node_set(best_node, *used_node_mask);
  1342. return best_node;
  1343. }
  1344. static void __init build_zonelists(pg_data_t *pgdat)
  1345. {
  1346. int i, j, k, node, local_node;
  1347. int prev_node, load;
  1348. struct zonelist *zonelist;
  1349. nodemask_t used_mask;
  1350. /* initialize zonelists */
  1351. for (i = 0; i < GFP_ZONETYPES; i++) {
  1352. zonelist = pgdat->node_zonelists + i;
  1353. zonelist->zones[0] = NULL;
  1354. }
  1355. /* NUMA-aware ordering of nodes */
  1356. local_node = pgdat->node_id;
  1357. load = num_online_nodes();
  1358. prev_node = local_node;
  1359. nodes_clear(used_mask);
  1360. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1361. /*
  1362. * We don't want to pressure a particular node.
  1363. * So adding penalty to the first node in same
  1364. * distance group to make it round-robin.
  1365. */
  1366. if (node_distance(local_node, node) !=
  1367. node_distance(local_node, prev_node))
  1368. node_load[node] += load;
  1369. prev_node = node;
  1370. load--;
  1371. for (i = 0; i < GFP_ZONETYPES; i++) {
  1372. zonelist = pgdat->node_zonelists + i;
  1373. for (j = 0; zonelist->zones[j] != NULL; j++);
  1374. k = highest_zone(i);
  1375. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1376. zonelist->zones[j] = NULL;
  1377. }
  1378. }
  1379. }
  1380. #else /* CONFIG_NUMA */
  1381. static void __init build_zonelists(pg_data_t *pgdat)
  1382. {
  1383. int i, j, k, node, local_node;
  1384. local_node = pgdat->node_id;
  1385. for (i = 0; i < GFP_ZONETYPES; i++) {
  1386. struct zonelist *zonelist;
  1387. zonelist = pgdat->node_zonelists + i;
  1388. j = 0;
  1389. k = highest_zone(i);
  1390. j = build_zonelists_node(pgdat, zonelist, j, k);
  1391. /*
  1392. * Now we build the zonelist so that it contains the zones
  1393. * of all the other nodes.
  1394. * We don't want to pressure a particular node, so when
  1395. * building the zones for node N, we make sure that the
  1396. * zones coming right after the local ones are those from
  1397. * node N+1 (modulo N)
  1398. */
  1399. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1400. if (!node_online(node))
  1401. continue;
  1402. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1403. }
  1404. for (node = 0; node < local_node; node++) {
  1405. if (!node_online(node))
  1406. continue;
  1407. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1408. }
  1409. zonelist->zones[j] = NULL;
  1410. }
  1411. }
  1412. #endif /* CONFIG_NUMA */
  1413. void __init build_all_zonelists(void)
  1414. {
  1415. int i;
  1416. for_each_online_node(i)
  1417. build_zonelists(NODE_DATA(i));
  1418. printk("Built %i zonelists\n", num_online_nodes());
  1419. cpuset_init_current_mems_allowed();
  1420. }
  1421. /*
  1422. * Helper functions to size the waitqueue hash table.
  1423. * Essentially these want to choose hash table sizes sufficiently
  1424. * large so that collisions trying to wait on pages are rare.
  1425. * But in fact, the number of active page waitqueues on typical
  1426. * systems is ridiculously low, less than 200. So this is even
  1427. * conservative, even though it seems large.
  1428. *
  1429. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1430. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1431. */
  1432. #define PAGES_PER_WAITQUEUE 256
  1433. static inline unsigned long wait_table_size(unsigned long pages)
  1434. {
  1435. unsigned long size = 1;
  1436. pages /= PAGES_PER_WAITQUEUE;
  1437. while (size < pages)
  1438. size <<= 1;
  1439. /*
  1440. * Once we have dozens or even hundreds of threads sleeping
  1441. * on IO we've got bigger problems than wait queue collision.
  1442. * Limit the size of the wait table to a reasonable size.
  1443. */
  1444. size = min(size, 4096UL);
  1445. return max(size, 4UL);
  1446. }
  1447. /*
  1448. * This is an integer logarithm so that shifts can be used later
  1449. * to extract the more random high bits from the multiplicative
  1450. * hash function before the remainder is taken.
  1451. */
  1452. static inline unsigned long wait_table_bits(unsigned long size)
  1453. {
  1454. return ffz(~size);
  1455. }
  1456. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1457. static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
  1458. unsigned long *zones_size, unsigned long *zholes_size)
  1459. {
  1460. unsigned long realtotalpages, totalpages = 0;
  1461. int i;
  1462. for (i = 0; i < MAX_NR_ZONES; i++)
  1463. totalpages += zones_size[i];
  1464. pgdat->node_spanned_pages = totalpages;
  1465. realtotalpages = totalpages;
  1466. if (zholes_size)
  1467. for (i = 0; i < MAX_NR_ZONES; i++)
  1468. realtotalpages -= zholes_size[i];
  1469. pgdat->node_present_pages = realtotalpages;
  1470. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
  1471. }
  1472. /*
  1473. * Initially all pages are reserved - free ones are freed
  1474. * up by free_all_bootmem() once the early boot process is
  1475. * done. Non-atomic initialization, single-pass.
  1476. */
  1477. void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1478. unsigned long start_pfn)
  1479. {
  1480. struct page *page;
  1481. unsigned long end_pfn = start_pfn + size;
  1482. unsigned long pfn;
  1483. for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
  1484. if (!early_pfn_valid(pfn))
  1485. continue;
  1486. page = pfn_to_page(pfn);
  1487. set_page_links(page, zone, nid, pfn);
  1488. set_page_count(page, 1);
  1489. reset_page_mapcount(page);
  1490. SetPageReserved(page);
  1491. INIT_LIST_HEAD(&page->lru);
  1492. #ifdef WANT_PAGE_VIRTUAL
  1493. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1494. if (!is_highmem_idx(zone))
  1495. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1496. #endif
  1497. }
  1498. }
  1499. void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
  1500. unsigned long size)
  1501. {
  1502. int order;
  1503. for (order = 0; order < MAX_ORDER ; order++) {
  1504. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1505. zone->free_area[order].nr_free = 0;
  1506. }
  1507. }
  1508. #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
  1509. void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
  1510. unsigned long size)
  1511. {
  1512. unsigned long snum = pfn_to_section_nr(pfn);
  1513. unsigned long end = pfn_to_section_nr(pfn + size);
  1514. if (FLAGS_HAS_NODE)
  1515. zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
  1516. else
  1517. for (; snum <= end; snum++)
  1518. zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
  1519. }
  1520. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1521. #define memmap_init(size, nid, zone, start_pfn) \
  1522. memmap_init_zone((size), (nid), (zone), (start_pfn))
  1523. #endif
  1524. static int __devinit zone_batchsize(struct zone *zone)
  1525. {
  1526. int batch;
  1527. /*
  1528. * The per-cpu-pages pools are set to around 1000th of the
  1529. * size of the zone. But no more than 1/2 of a meg.
  1530. *
  1531. * OK, so we don't know how big the cache is. So guess.
  1532. */
  1533. batch = zone->present_pages / 1024;
  1534. if (batch * PAGE_SIZE > 512 * 1024)
  1535. batch = (512 * 1024) / PAGE_SIZE;
  1536. batch /= 4; /* We effectively *= 4 below */
  1537. if (batch < 1)
  1538. batch = 1;
  1539. /*
  1540. * Clamp the batch to a 2^n - 1 value. Having a power
  1541. * of 2 value was found to be more likely to have
  1542. * suboptimal cache aliasing properties in some cases.
  1543. *
  1544. * For example if 2 tasks are alternately allocating
  1545. * batches of pages, one task can end up with a lot
  1546. * of pages of one half of the possible page colors
  1547. * and the other with pages of the other colors.
  1548. */
  1549. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  1550. return batch;
  1551. }
  1552. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1553. {
  1554. struct per_cpu_pages *pcp;
  1555. memset(p, 0, sizeof(*p));
  1556. pcp = &p->pcp[0]; /* hot */
  1557. pcp->count = 0;
  1558. pcp->high = 6 * batch;
  1559. pcp->batch = max(1UL, 1 * batch);
  1560. INIT_LIST_HEAD(&pcp->list);
  1561. pcp = &p->pcp[1]; /* cold*/
  1562. pcp->count = 0;
  1563. pcp->high = 2 * batch;
  1564. pcp->batch = max(1UL, batch/2);
  1565. INIT_LIST_HEAD(&pcp->list);
  1566. }
  1567. /*
  1568. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  1569. * to the value high for the pageset p.
  1570. */
  1571. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  1572. unsigned long high)
  1573. {
  1574. struct per_cpu_pages *pcp;
  1575. pcp = &p->pcp[0]; /* hot list */
  1576. pcp->high = high;
  1577. pcp->batch = max(1UL, high/4);
  1578. if ((high/4) > (PAGE_SHIFT * 8))
  1579. pcp->batch = PAGE_SHIFT * 8;
  1580. }
  1581. #ifdef CONFIG_NUMA
  1582. /*
  1583. * Boot pageset table. One per cpu which is going to be used for all
  1584. * zones and all nodes. The parameters will be set in such a way
  1585. * that an item put on a list will immediately be handed over to
  1586. * the buddy list. This is safe since pageset manipulation is done
  1587. * with interrupts disabled.
  1588. *
  1589. * Some NUMA counter updates may also be caught by the boot pagesets.
  1590. *
  1591. * The boot_pagesets must be kept even after bootup is complete for
  1592. * unused processors and/or zones. They do play a role for bootstrapping
  1593. * hotplugged processors.
  1594. *
  1595. * zoneinfo_show() and maybe other functions do
  1596. * not check if the processor is online before following the pageset pointer.
  1597. * Other parts of the kernel may not check if the zone is available.
  1598. */
  1599. static struct per_cpu_pageset
  1600. boot_pageset[NR_CPUS];
  1601. /*
  1602. * Dynamically allocate memory for the
  1603. * per cpu pageset array in struct zone.
  1604. */
  1605. static int __devinit process_zones(int cpu)
  1606. {
  1607. struct zone *zone, *dzone;
  1608. for_each_zone(zone) {
  1609. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  1610. GFP_KERNEL, cpu_to_node(cpu));
  1611. if (!zone_pcp(zone, cpu))
  1612. goto bad;
  1613. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  1614. if (percpu_pagelist_fraction)
  1615. setup_pagelist_highmark(zone_pcp(zone, cpu),
  1616. (zone->present_pages / percpu_pagelist_fraction));
  1617. }
  1618. return 0;
  1619. bad:
  1620. for_each_zone(dzone) {
  1621. if (dzone == zone)
  1622. break;
  1623. kfree(zone_pcp(dzone, cpu));
  1624. zone_pcp(dzone, cpu) = NULL;
  1625. }
  1626. return -ENOMEM;
  1627. }
  1628. static inline void free_zone_pagesets(int cpu)
  1629. {
  1630. struct zone *zone;
  1631. for_each_zone(zone) {
  1632. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  1633. zone_pcp(zone, cpu) = NULL;
  1634. kfree(pset);
  1635. }
  1636. }
  1637. static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
  1638. unsigned long action,
  1639. void *hcpu)
  1640. {
  1641. int cpu = (long)hcpu;
  1642. int ret = NOTIFY_OK;
  1643. switch (action) {
  1644. case CPU_UP_PREPARE:
  1645. if (process_zones(cpu))
  1646. ret = NOTIFY_BAD;
  1647. break;
  1648. case CPU_UP_CANCELED:
  1649. case CPU_DEAD:
  1650. free_zone_pagesets(cpu);
  1651. break;
  1652. default:
  1653. break;
  1654. }
  1655. return ret;
  1656. }
  1657. static struct notifier_block pageset_notifier =
  1658. { &pageset_cpuup_callback, NULL, 0 };
  1659. void __init setup_per_cpu_pageset(void)
  1660. {
  1661. int err;
  1662. /* Initialize per_cpu_pageset for cpu 0.
  1663. * A cpuup callback will do this for every cpu
  1664. * as it comes online
  1665. */
  1666. err = process_zones(smp_processor_id());
  1667. BUG_ON(err);
  1668. register_cpu_notifier(&pageset_notifier);
  1669. }
  1670. #endif
  1671. static __devinit
  1672. void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  1673. {
  1674. int i;
  1675. struct pglist_data *pgdat = zone->zone_pgdat;
  1676. /*
  1677. * The per-page waitqueue mechanism uses hashed waitqueues
  1678. * per zone.
  1679. */
  1680. zone->wait_table_size = wait_table_size(zone_size_pages);
  1681. zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
  1682. zone->wait_table = (wait_queue_head_t *)
  1683. alloc_bootmem_node(pgdat, zone->wait_table_size
  1684. * sizeof(wait_queue_head_t));
  1685. for(i = 0; i < zone->wait_table_size; ++i)
  1686. init_waitqueue_head(zone->wait_table + i);
  1687. }
  1688. static __devinit void zone_pcp_init(struct zone *zone)
  1689. {
  1690. int cpu;
  1691. unsigned long batch = zone_batchsize(zone);
  1692. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  1693. #ifdef CONFIG_NUMA
  1694. /* Early boot. Slab allocator not functional yet */
  1695. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  1696. setup_pageset(&boot_pageset[cpu],0);
  1697. #else
  1698. setup_pageset(zone_pcp(zone,cpu), batch);
  1699. #endif
  1700. }
  1701. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  1702. zone->name, zone->present_pages, batch);
  1703. }
  1704. static __devinit void init_currently_empty_zone(struct zone *zone,
  1705. unsigned long zone_start_pfn, unsigned long size)
  1706. {
  1707. struct pglist_data *pgdat = zone->zone_pgdat;
  1708. zone_wait_table_init(zone, size);
  1709. pgdat->nr_zones = zone_idx(zone) + 1;
  1710. zone->zone_mem_map = pfn_to_page(zone_start_pfn);
  1711. zone->zone_start_pfn = zone_start_pfn;
  1712. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  1713. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  1714. }
  1715. /*
  1716. * Set up the zone data structures:
  1717. * - mark all pages reserved
  1718. * - mark all memory queues empty
  1719. * - clear the memory bitmaps
  1720. */
  1721. static void __init free_area_init_core(struct pglist_data *pgdat,
  1722. unsigned long *zones_size, unsigned long *zholes_size)
  1723. {
  1724. unsigned long j;
  1725. int nid = pgdat->node_id;
  1726. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  1727. pgdat_resize_init(pgdat);
  1728. pgdat->nr_zones = 0;
  1729. init_waitqueue_head(&pgdat->kswapd_wait);
  1730. pgdat->kswapd_max_order = 0;
  1731. for (j = 0; j < MAX_NR_ZONES; j++) {
  1732. struct zone *zone = pgdat->node_zones + j;
  1733. unsigned long size, realsize;
  1734. realsize = size = zones_size[j];
  1735. if (zholes_size)
  1736. realsize -= zholes_size[j];
  1737. if (j < ZONE_HIGHMEM)
  1738. nr_kernel_pages += realsize;
  1739. nr_all_pages += realsize;
  1740. zone->spanned_pages = size;
  1741. zone->present_pages = realsize;
  1742. zone->name = zone_names[j];
  1743. spin_lock_init(&zone->lock);
  1744. spin_lock_init(&zone->lru_lock);
  1745. zone_seqlock_init(zone);
  1746. zone->zone_pgdat = pgdat;
  1747. zone->free_pages = 0;
  1748. zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
  1749. zone_pcp_init(zone);
  1750. INIT_LIST_HEAD(&zone->active_list);
  1751. INIT_LIST_HEAD(&zone->inactive_list);
  1752. zone->nr_scan_active = 0;
  1753. zone->nr_scan_inactive = 0;
  1754. zone->nr_active = 0;
  1755. zone->nr_inactive = 0;
  1756. atomic_set(&zone->reclaim_in_progress, 0);
  1757. if (!size)
  1758. continue;
  1759. zonetable_add(zone, nid, j, zone_start_pfn, size);
  1760. init_currently_empty_zone(zone, zone_start_pfn, size);
  1761. zone_start_pfn += size;
  1762. }
  1763. }
  1764. static void __init alloc_node_mem_map(struct pglist_data *pgdat)
  1765. {
  1766. /* Skip empty nodes */
  1767. if (!pgdat->node_spanned_pages)
  1768. return;
  1769. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  1770. /* ia64 gets its own node_mem_map, before this, without bootmem */
  1771. if (!pgdat->node_mem_map) {
  1772. unsigned long size;
  1773. struct page *map;
  1774. size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
  1775. map = alloc_remap(pgdat->node_id, size);
  1776. if (!map)
  1777. map = alloc_bootmem_node(pgdat, size);
  1778. pgdat->node_mem_map = map;
  1779. }
  1780. #ifdef CONFIG_FLATMEM
  1781. /*
  1782. * With no DISCONTIG, the global mem_map is just set as node 0's
  1783. */
  1784. if (pgdat == NODE_DATA(0))
  1785. mem_map = NODE_DATA(0)->node_mem_map;
  1786. #endif
  1787. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  1788. }
  1789. void __init free_area_init_node(int nid, struct pglist_data *pgdat,
  1790. unsigned long *zones_size, unsigned long node_start_pfn,
  1791. unsigned long *zholes_size)
  1792. {
  1793. pgdat->node_id = nid;
  1794. pgdat->node_start_pfn = node_start_pfn;
  1795. calculate_zone_totalpages(pgdat, zones_size, zholes_size);
  1796. alloc_node_mem_map(pgdat);
  1797. free_area_init_core(pgdat, zones_size, zholes_size);
  1798. }
  1799. #ifndef CONFIG_NEED_MULTIPLE_NODES
  1800. static bootmem_data_t contig_bootmem_data;
  1801. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  1802. EXPORT_SYMBOL(contig_page_data);
  1803. #endif
  1804. void __init free_area_init(unsigned long *zones_size)
  1805. {
  1806. free_area_init_node(0, NODE_DATA(0), zones_size,
  1807. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  1808. }
  1809. #ifdef CONFIG_PROC_FS
  1810. #include <linux/seq_file.h>
  1811. static void *frag_start(struct seq_file *m, loff_t *pos)
  1812. {
  1813. pg_data_t *pgdat;
  1814. loff_t node = *pos;
  1815. for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
  1816. --node;
  1817. return pgdat;
  1818. }
  1819. static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
  1820. {
  1821. pg_data_t *pgdat = (pg_data_t *)arg;
  1822. (*pos)++;
  1823. return pgdat->pgdat_next;
  1824. }
  1825. static void frag_stop(struct seq_file *m, void *arg)
  1826. {
  1827. }
  1828. /*
  1829. * This walks the free areas for each zone.
  1830. */
  1831. static int frag_show(struct seq_file *m, void *arg)
  1832. {
  1833. pg_data_t *pgdat = (pg_data_t *)arg;
  1834. struct zone *zone;
  1835. struct zone *node_zones = pgdat->node_zones;
  1836. unsigned long flags;
  1837. int order;
  1838. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
  1839. if (!populated_zone(zone))
  1840. continue;
  1841. spin_lock_irqsave(&zone->lock, flags);
  1842. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  1843. for (order = 0; order < MAX_ORDER; ++order)
  1844. seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
  1845. spin_unlock_irqrestore(&zone->lock, flags);
  1846. seq_putc(m, '\n');
  1847. }
  1848. return 0;
  1849. }
  1850. struct seq_operations fragmentation_op = {
  1851. .start = frag_start,
  1852. .next = frag_next,
  1853. .stop = frag_stop,
  1854. .show = frag_show,
  1855. };
  1856. /*
  1857. * Output information about zones in @pgdat.
  1858. */
  1859. static int zoneinfo_show(struct seq_file *m, void *arg)
  1860. {
  1861. pg_data_t *pgdat = arg;
  1862. struct zone *zone;
  1863. struct zone *node_zones = pgdat->node_zones;
  1864. unsigned long flags;
  1865. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
  1866. int i;
  1867. if (!populated_zone(zone))
  1868. continue;
  1869. spin_lock_irqsave(&zone->lock, flags);
  1870. seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
  1871. seq_printf(m,
  1872. "\n pages free %lu"
  1873. "\n min %lu"
  1874. "\n low %lu"
  1875. "\n high %lu"
  1876. "\n active %lu"
  1877. "\n inactive %lu"
  1878. "\n scanned %lu (a: %lu i: %lu)"
  1879. "\n spanned %lu"
  1880. "\n present %lu",
  1881. zone->free_pages,
  1882. zone->pages_min,
  1883. zone->pages_low,
  1884. zone->pages_high,
  1885. zone->nr_active,
  1886. zone->nr_inactive,
  1887. zone->pages_scanned,
  1888. zone->nr_scan_active, zone->nr_scan_inactive,
  1889. zone->spanned_pages,
  1890. zone->present_pages);
  1891. seq_printf(m,
  1892. "\n protection: (%lu",
  1893. zone->lowmem_reserve[0]);
  1894. for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
  1895. seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
  1896. seq_printf(m,
  1897. ")"
  1898. "\n pagesets");
  1899. for_each_online_cpu(i) {
  1900. struct per_cpu_pageset *pageset;
  1901. int j;
  1902. pageset = zone_pcp(zone, i);
  1903. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1904. if (pageset->pcp[j].count)
  1905. break;
  1906. }
  1907. if (j == ARRAY_SIZE(pageset->pcp))
  1908. continue;
  1909. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1910. seq_printf(m,
  1911. "\n cpu: %i pcp: %i"
  1912. "\n count: %i"
  1913. "\n high: %i"
  1914. "\n batch: %i",
  1915. i, j,
  1916. pageset->pcp[j].count,
  1917. pageset->pcp[j].high,
  1918. pageset->pcp[j].batch);
  1919. }
  1920. #ifdef CONFIG_NUMA
  1921. seq_printf(m,
  1922. "\n numa_hit: %lu"
  1923. "\n numa_miss: %lu"
  1924. "\n numa_foreign: %lu"
  1925. "\n interleave_hit: %lu"
  1926. "\n local_node: %lu"
  1927. "\n other_node: %lu",
  1928. pageset->numa_hit,
  1929. pageset->numa_miss,
  1930. pageset->numa_foreign,
  1931. pageset->interleave_hit,
  1932. pageset->local_node,
  1933. pageset->other_node);
  1934. #endif
  1935. }
  1936. seq_printf(m,
  1937. "\n all_unreclaimable: %u"
  1938. "\n prev_priority: %i"
  1939. "\n temp_priority: %i"
  1940. "\n start_pfn: %lu",
  1941. zone->all_unreclaimable,
  1942. zone->prev_priority,
  1943. zone->temp_priority,
  1944. zone->zone_start_pfn);
  1945. spin_unlock_irqrestore(&zone->lock, flags);
  1946. seq_putc(m, '\n');
  1947. }
  1948. return 0;
  1949. }
  1950. struct seq_operations zoneinfo_op = {
  1951. .start = frag_start, /* iterate over all zones. The same as in
  1952. * fragmentation. */
  1953. .next = frag_next,
  1954. .stop = frag_stop,
  1955. .show = zoneinfo_show,
  1956. };
  1957. static char *vmstat_text[] = {
  1958. "nr_dirty",
  1959. "nr_writeback",
  1960. "nr_unstable",
  1961. "nr_page_table_pages",
  1962. "nr_mapped",
  1963. "nr_slab",
  1964. "pgpgin",
  1965. "pgpgout",
  1966. "pswpin",
  1967. "pswpout",
  1968. "pgalloc_high",
  1969. "pgalloc_normal",
  1970. "pgalloc_dma32",
  1971. "pgalloc_dma",
  1972. "pgfree",
  1973. "pgactivate",
  1974. "pgdeactivate",
  1975. "pgfault",
  1976. "pgmajfault",
  1977. "pgrefill_high",
  1978. "pgrefill_normal",
  1979. "pgrefill_dma32",
  1980. "pgrefill_dma",
  1981. "pgsteal_high",
  1982. "pgsteal_normal",
  1983. "pgsteal_dma32",
  1984. "pgsteal_dma",
  1985. "pgscan_kswapd_high",
  1986. "pgscan_kswapd_normal",
  1987. "pgscan_kswapd_dma32",
  1988. "pgscan_kswapd_dma",
  1989. "pgscan_direct_high",
  1990. "pgscan_direct_normal",
  1991. "pgscan_direct_dma32",
  1992. "pgscan_direct_dma",
  1993. "pginodesteal",
  1994. "slabs_scanned",
  1995. "kswapd_steal",
  1996. "kswapd_inodesteal",
  1997. "pageoutrun",
  1998. "allocstall",
  1999. "pgrotated",
  2000. "nr_bounce",
  2001. };
  2002. static void *vmstat_start(struct seq_file *m, loff_t *pos)
  2003. {
  2004. struct page_state *ps;
  2005. if (*pos >= ARRAY_SIZE(vmstat_text))
  2006. return NULL;
  2007. ps = kmalloc(sizeof(*ps), GFP_KERNEL);
  2008. m->private = ps;
  2009. if (!ps)
  2010. return ERR_PTR(-ENOMEM);
  2011. get_full_page_state(ps);
  2012. ps->pgpgin /= 2; /* sectors -> kbytes */
  2013. ps->pgpgout /= 2;
  2014. return (unsigned long *)ps + *pos;
  2015. }
  2016. static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
  2017. {
  2018. (*pos)++;
  2019. if (*pos >= ARRAY_SIZE(vmstat_text))
  2020. return NULL;
  2021. return (unsigned long *)m->private + *pos;
  2022. }
  2023. static int vmstat_show(struct seq_file *m, void *arg)
  2024. {
  2025. unsigned long *l = arg;
  2026. unsigned long off = l - (unsigned long *)m->private;
  2027. seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
  2028. return 0;
  2029. }
  2030. static void vmstat_stop(struct seq_file *m, void *arg)
  2031. {
  2032. kfree(m->private);
  2033. m->private = NULL;
  2034. }
  2035. struct seq_operations vmstat_op = {
  2036. .start = vmstat_start,
  2037. .next = vmstat_next,
  2038. .stop = vmstat_stop,
  2039. .show = vmstat_show,
  2040. };
  2041. #endif /* CONFIG_PROC_FS */
  2042. #ifdef CONFIG_HOTPLUG_CPU
  2043. static int page_alloc_cpu_notify(struct notifier_block *self,
  2044. unsigned long action, void *hcpu)
  2045. {
  2046. int cpu = (unsigned long)hcpu;
  2047. long *count;
  2048. unsigned long *src, *dest;
  2049. if (action == CPU_DEAD) {
  2050. int i;
  2051. /* Drain local pagecache count. */
  2052. count = &per_cpu(nr_pagecache_local, cpu);
  2053. atomic_add(*count, &nr_pagecache);
  2054. *count = 0;
  2055. local_irq_disable();
  2056. __drain_pages(cpu);
  2057. /* Add dead cpu's page_states to our own. */
  2058. dest = (unsigned long *)&__get_cpu_var(page_states);
  2059. src = (unsigned long *)&per_cpu(page_states, cpu);
  2060. for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
  2061. i++) {
  2062. dest[i] += src[i];
  2063. src[i] = 0;
  2064. }
  2065. local_irq_enable();
  2066. }
  2067. return NOTIFY_OK;
  2068. }
  2069. #endif /* CONFIG_HOTPLUG_CPU */
  2070. void __init page_alloc_init(void)
  2071. {
  2072. hotcpu_notifier(page_alloc_cpu_notify, 0);
  2073. }
  2074. /*
  2075. * setup_per_zone_lowmem_reserve - called whenever
  2076. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  2077. * has a correct pages reserved value, so an adequate number of
  2078. * pages are left in the zone after a successful __alloc_pages().
  2079. */
  2080. static void setup_per_zone_lowmem_reserve(void)
  2081. {
  2082. struct pglist_data *pgdat;
  2083. int j, idx;
  2084. for_each_pgdat(pgdat) {
  2085. for (j = 0; j < MAX_NR_ZONES; j++) {
  2086. struct zone *zone = pgdat->node_zones + j;
  2087. unsigned long present_pages = zone->present_pages;
  2088. zone->lowmem_reserve[j] = 0;
  2089. for (idx = j-1; idx >= 0; idx--) {
  2090. struct zone *lower_zone;
  2091. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  2092. sysctl_lowmem_reserve_ratio[idx] = 1;
  2093. lower_zone = pgdat->node_zones + idx;
  2094. lower_zone->lowmem_reserve[j] = present_pages /
  2095. sysctl_lowmem_reserve_ratio[idx];
  2096. present_pages += lower_zone->present_pages;
  2097. }
  2098. }
  2099. }
  2100. }
  2101. /*
  2102. * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
  2103. * that the pages_{min,low,high} values for each zone are set correctly
  2104. * with respect to min_free_kbytes.
  2105. */
  2106. void setup_per_zone_pages_min(void)
  2107. {
  2108. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  2109. unsigned long lowmem_pages = 0;
  2110. struct zone *zone;
  2111. unsigned long flags;
  2112. /* Calculate total number of !ZONE_HIGHMEM pages */
  2113. for_each_zone(zone) {
  2114. if (!is_highmem(zone))
  2115. lowmem_pages += zone->present_pages;
  2116. }
  2117. for_each_zone(zone) {
  2118. unsigned long tmp;
  2119. spin_lock_irqsave(&zone->lru_lock, flags);
  2120. tmp = (pages_min * zone->present_pages) / lowmem_pages;
  2121. if (is_highmem(zone)) {
  2122. /*
  2123. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  2124. * need highmem pages, so cap pages_min to a small
  2125. * value here.
  2126. *
  2127. * The (pages_high-pages_low) and (pages_low-pages_min)
  2128. * deltas controls asynch page reclaim, and so should
  2129. * not be capped for highmem.
  2130. */
  2131. int min_pages;
  2132. min_pages = zone->present_pages / 1024;
  2133. if (min_pages < SWAP_CLUSTER_MAX)
  2134. min_pages = SWAP_CLUSTER_MAX;
  2135. if (min_pages > 128)
  2136. min_pages = 128;
  2137. zone->pages_min = min_pages;
  2138. } else {
  2139. /*
  2140. * If it's a lowmem zone, reserve a number of pages
  2141. * proportionate to the zone's size.
  2142. */
  2143. zone->pages_min = tmp;
  2144. }
  2145. zone->pages_low = zone->pages_min + tmp / 4;
  2146. zone->pages_high = zone->pages_min + tmp / 2;
  2147. spin_unlock_irqrestore(&zone->lru_lock, flags);
  2148. }
  2149. }
  2150. /*
  2151. * Initialise min_free_kbytes.
  2152. *
  2153. * For small machines we want it small (128k min). For large machines
  2154. * we want it large (64MB max). But it is not linear, because network
  2155. * bandwidth does not increase linearly with machine size. We use
  2156. *
  2157. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  2158. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  2159. *
  2160. * which yields
  2161. *
  2162. * 16MB: 512k
  2163. * 32MB: 724k
  2164. * 64MB: 1024k
  2165. * 128MB: 1448k
  2166. * 256MB: 2048k
  2167. * 512MB: 2896k
  2168. * 1024MB: 4096k
  2169. * 2048MB: 5792k
  2170. * 4096MB: 8192k
  2171. * 8192MB: 11584k
  2172. * 16384MB: 16384k
  2173. */
  2174. static int __init init_per_zone_pages_min(void)
  2175. {
  2176. unsigned long lowmem_kbytes;
  2177. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  2178. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  2179. if (min_free_kbytes < 128)
  2180. min_free_kbytes = 128;
  2181. if (min_free_kbytes > 65536)
  2182. min_free_kbytes = 65536;
  2183. setup_per_zone_pages_min();
  2184. setup_per_zone_lowmem_reserve();
  2185. return 0;
  2186. }
  2187. module_init(init_per_zone_pages_min)
  2188. /*
  2189. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  2190. * that we can call two helper functions whenever min_free_kbytes
  2191. * changes.
  2192. */
  2193. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  2194. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2195. {
  2196. proc_dointvec(table, write, file, buffer, length, ppos);
  2197. setup_per_zone_pages_min();
  2198. return 0;
  2199. }
  2200. /*
  2201. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  2202. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  2203. * whenever sysctl_lowmem_reserve_ratio changes.
  2204. *
  2205. * The reserve ratio obviously has absolutely no relation with the
  2206. * pages_min watermarks. The lowmem reserve ratio can only make sense
  2207. * if in function of the boot time zone sizes.
  2208. */
  2209. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  2210. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2211. {
  2212. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2213. setup_per_zone_lowmem_reserve();
  2214. return 0;
  2215. }
  2216. /*
  2217. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  2218. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  2219. * can have before it gets flushed back to buddy allocator.
  2220. */
  2221. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  2222. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2223. {
  2224. struct zone *zone;
  2225. unsigned int cpu;
  2226. int ret;
  2227. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2228. if (!write || (ret == -EINVAL))
  2229. return ret;
  2230. for_each_zone(zone) {
  2231. for_each_online_cpu(cpu) {
  2232. unsigned long high;
  2233. high = zone->present_pages / percpu_pagelist_fraction;
  2234. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  2235. }
  2236. }
  2237. return 0;
  2238. }
  2239. __initdata int hashdist = HASHDIST_DEFAULT;
  2240. #ifdef CONFIG_NUMA
  2241. static int __init set_hashdist(char *str)
  2242. {
  2243. if (!str)
  2244. return 0;
  2245. hashdist = simple_strtoul(str, &str, 0);
  2246. return 1;
  2247. }
  2248. __setup("hashdist=", set_hashdist);
  2249. #endif
  2250. /*
  2251. * allocate a large system hash table from bootmem
  2252. * - it is assumed that the hash table must contain an exact power-of-2
  2253. * quantity of entries
  2254. * - limit is the number of hash buckets, not the total allocation size
  2255. */
  2256. void *__init alloc_large_system_hash(const char *tablename,
  2257. unsigned long bucketsize,
  2258. unsigned long numentries,
  2259. int scale,
  2260. int flags,
  2261. unsigned int *_hash_shift,
  2262. unsigned int *_hash_mask,
  2263. unsigned long limit)
  2264. {
  2265. unsigned long long max = limit;
  2266. unsigned long log2qty, size;
  2267. void *table = NULL;
  2268. /* allow the kernel cmdline to have a say */
  2269. if (!numentries) {
  2270. /* round applicable memory size up to nearest megabyte */
  2271. numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
  2272. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  2273. numentries >>= 20 - PAGE_SHIFT;
  2274. numentries <<= 20 - PAGE_SHIFT;
  2275. /* limit to 1 bucket per 2^scale bytes of low memory */
  2276. if (scale > PAGE_SHIFT)
  2277. numentries >>= (scale - PAGE_SHIFT);
  2278. else
  2279. numentries <<= (PAGE_SHIFT - scale);
  2280. }
  2281. /* rounded up to nearest power of 2 in size */
  2282. numentries = 1UL << (long_log2(numentries) + 1);
  2283. /* limit allocation size to 1/16 total memory by default */
  2284. if (max == 0) {
  2285. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  2286. do_div(max, bucketsize);
  2287. }
  2288. if (numentries > max)
  2289. numentries = max;
  2290. log2qty = long_log2(numentries);
  2291. do {
  2292. size = bucketsize << log2qty;
  2293. if (flags & HASH_EARLY)
  2294. table = alloc_bootmem(size);
  2295. else if (hashdist)
  2296. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  2297. else {
  2298. unsigned long order;
  2299. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  2300. ;
  2301. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  2302. }
  2303. } while (!table && size > PAGE_SIZE && --log2qty);
  2304. if (!table)
  2305. panic("Failed to allocate %s hash table\n", tablename);
  2306. printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
  2307. tablename,
  2308. (1U << log2qty),
  2309. long_log2(size) - PAGE_SHIFT,
  2310. size);
  2311. if (_hash_shift)
  2312. *_hash_shift = log2qty;
  2313. if (_hash_mask)
  2314. *_hash_mask = (1 << log2qty) - 1;
  2315. return table;
  2316. }