splice.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. /*
  2. * "splice": joining two ropes together by interweaving their strands.
  3. *
  4. * This is the "extended pipe" functionality, where a pipe is used as
  5. * an arbitrary in-memory buffer. Think of a pipe as a small kernel
  6. * buffer that you can use to transfer data from one end to the other.
  7. *
  8. * The traditional unix read/write is extended with a "splice()" operation
  9. * that transfers data buffers to or from a pipe buffer.
  10. *
  11. * Named by Larry McVoy, original implementation from Linus, extended by
  12. * Jens to support splicing to files and fixing the initial implementation
  13. * bugs.
  14. *
  15. * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
  16. * Copyright (C) 2005 Linus Torvalds <torvalds@osdl.org>
  17. *
  18. */
  19. #include <linux/fs.h>
  20. #include <linux/file.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/pipe_fs_i.h>
  23. #include <linux/mm_inline.h>
  24. #include <linux/swap.h>
  25. #include <linux/module.h>
  26. /*
  27. * Passed to the actors
  28. */
  29. struct splice_desc {
  30. unsigned int len, total_len; /* current and remaining length */
  31. unsigned int flags; /* splice flags */
  32. struct file *file; /* file to read/write */
  33. loff_t pos; /* file position */
  34. };
  35. static int page_cache_pipe_buf_steal(struct pipe_inode_info *info,
  36. struct pipe_buffer *buf)
  37. {
  38. struct page *page = buf->page;
  39. WARN_ON(!PageLocked(page));
  40. WARN_ON(!PageUptodate(page));
  41. if (!remove_mapping(page_mapping(page), page))
  42. return 1;
  43. if (PageLRU(page)) {
  44. struct zone *zone = page_zone(page);
  45. spin_lock_irq(&zone->lru_lock);
  46. BUG_ON(!PageLRU(page));
  47. __ClearPageLRU(page);
  48. del_page_from_lru(zone, page);
  49. spin_unlock_irq(&zone->lru_lock);
  50. }
  51. buf->stolen = 1;
  52. return 0;
  53. }
  54. static void page_cache_pipe_buf_release(struct pipe_inode_info *info,
  55. struct pipe_buffer *buf)
  56. {
  57. page_cache_release(buf->page);
  58. buf->page = NULL;
  59. buf->stolen = 0;
  60. }
  61. static void *page_cache_pipe_buf_map(struct file *file,
  62. struct pipe_inode_info *info,
  63. struct pipe_buffer *buf)
  64. {
  65. struct page *page = buf->page;
  66. lock_page(page);
  67. if (!PageUptodate(page)) {
  68. unlock_page(page);
  69. return ERR_PTR(-EIO);
  70. }
  71. if (!page->mapping) {
  72. unlock_page(page);
  73. return ERR_PTR(-ENODATA);
  74. }
  75. return kmap(buf->page);
  76. }
  77. static void page_cache_pipe_buf_unmap(struct pipe_inode_info *info,
  78. struct pipe_buffer *buf)
  79. {
  80. if (!buf->stolen)
  81. unlock_page(buf->page);
  82. kunmap(buf->page);
  83. }
  84. static struct pipe_buf_operations page_cache_pipe_buf_ops = {
  85. .can_merge = 0,
  86. .map = page_cache_pipe_buf_map,
  87. .unmap = page_cache_pipe_buf_unmap,
  88. .release = page_cache_pipe_buf_release,
  89. .steal = page_cache_pipe_buf_steal,
  90. };
  91. static ssize_t move_to_pipe(struct inode *inode, struct page **pages,
  92. int nr_pages, unsigned long offset,
  93. unsigned long len)
  94. {
  95. struct pipe_inode_info *info;
  96. int ret, do_wakeup, i;
  97. ret = 0;
  98. do_wakeup = 0;
  99. i = 0;
  100. mutex_lock(PIPE_MUTEX(*inode));
  101. info = inode->i_pipe;
  102. for (;;) {
  103. int bufs;
  104. if (!PIPE_READERS(*inode)) {
  105. send_sig(SIGPIPE, current, 0);
  106. if (!ret)
  107. ret = -EPIPE;
  108. break;
  109. }
  110. bufs = info->nrbufs;
  111. if (bufs < PIPE_BUFFERS) {
  112. int newbuf = (info->curbuf + bufs) & (PIPE_BUFFERS - 1);
  113. struct pipe_buffer *buf = info->bufs + newbuf;
  114. struct page *page = pages[i++];
  115. unsigned long this_len;
  116. this_len = PAGE_CACHE_SIZE - offset;
  117. if (this_len > len)
  118. this_len = len;
  119. buf->page = page;
  120. buf->offset = offset;
  121. buf->len = this_len;
  122. buf->ops = &page_cache_pipe_buf_ops;
  123. info->nrbufs = ++bufs;
  124. do_wakeup = 1;
  125. ret += this_len;
  126. len -= this_len;
  127. offset = 0;
  128. if (!--nr_pages)
  129. break;
  130. if (!len)
  131. break;
  132. if (bufs < PIPE_BUFFERS)
  133. continue;
  134. break;
  135. }
  136. if (signal_pending(current)) {
  137. if (!ret)
  138. ret = -ERESTARTSYS;
  139. break;
  140. }
  141. if (do_wakeup) {
  142. wake_up_interruptible_sync(PIPE_WAIT(*inode));
  143. kill_fasync(PIPE_FASYNC_READERS(*inode), SIGIO,
  144. POLL_IN);
  145. do_wakeup = 0;
  146. }
  147. PIPE_WAITING_WRITERS(*inode)++;
  148. pipe_wait(inode);
  149. PIPE_WAITING_WRITERS(*inode)--;
  150. }
  151. mutex_unlock(PIPE_MUTEX(*inode));
  152. if (do_wakeup) {
  153. wake_up_interruptible(PIPE_WAIT(*inode));
  154. kill_fasync(PIPE_FASYNC_READERS(*inode), SIGIO, POLL_IN);
  155. }
  156. while (i < nr_pages)
  157. page_cache_release(pages[i++]);
  158. return ret;
  159. }
  160. static int __generic_file_splice_read(struct file *in, struct inode *pipe,
  161. size_t len)
  162. {
  163. struct address_space *mapping = in->f_mapping;
  164. unsigned int offset, nr_pages;
  165. struct page *pages[PIPE_BUFFERS], *shadow[PIPE_BUFFERS];
  166. struct page *page;
  167. pgoff_t index, pidx;
  168. int i, j;
  169. index = in->f_pos >> PAGE_CACHE_SHIFT;
  170. offset = in->f_pos & ~PAGE_CACHE_MASK;
  171. nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  172. if (nr_pages > PIPE_BUFFERS)
  173. nr_pages = PIPE_BUFFERS;
  174. /*
  175. * initiate read-ahead on this page range
  176. */
  177. do_page_cache_readahead(mapping, in, index, nr_pages);
  178. /*
  179. * Get as many pages from the page cache as possible..
  180. * Start IO on the page cache entries we create (we
  181. * can assume that any pre-existing ones we find have
  182. * already had IO started on them).
  183. */
  184. i = find_get_pages(mapping, index, nr_pages, pages);
  185. /*
  186. * common case - we found all pages and they are contiguous,
  187. * kick them off
  188. */
  189. if (i && (pages[i - 1]->index == index + i - 1))
  190. goto splice_them;
  191. /*
  192. * fill shadow[] with pages at the right locations, so we only
  193. * have to fill holes
  194. */
  195. memset(shadow, 0, i * sizeof(struct page *));
  196. for (j = 0, pidx = index; j < i; pidx++, j++)
  197. shadow[pages[j]->index - pidx] = pages[j];
  198. /*
  199. * now fill in the holes
  200. */
  201. for (i = 0, pidx = index; i < nr_pages; pidx++, i++) {
  202. int error;
  203. if (shadow[i])
  204. continue;
  205. /*
  206. * no page there, look one up / create it
  207. */
  208. page = find_or_create_page(mapping, pidx,
  209. mapping_gfp_mask(mapping));
  210. if (!page)
  211. break;
  212. if (PageUptodate(page))
  213. unlock_page(page);
  214. else {
  215. error = mapping->a_ops->readpage(in, page);
  216. if (unlikely(error)) {
  217. page_cache_release(page);
  218. break;
  219. }
  220. }
  221. shadow[i] = page;
  222. }
  223. if (!i) {
  224. for (i = 0; i < nr_pages; i++) {
  225. if (shadow[i])
  226. page_cache_release(shadow[i]);
  227. }
  228. return 0;
  229. }
  230. memcpy(pages, shadow, i * sizeof(struct page *));
  231. /*
  232. * Now we splice them into the pipe..
  233. */
  234. splice_them:
  235. return move_to_pipe(pipe, pages, i, offset, len);
  236. }
  237. ssize_t generic_file_splice_read(struct file *in, struct inode *pipe,
  238. size_t len, unsigned int flags)
  239. {
  240. ssize_t spliced;
  241. int ret;
  242. ret = 0;
  243. spliced = 0;
  244. while (len) {
  245. ret = __generic_file_splice_read(in, pipe, len);
  246. if (ret <= 0)
  247. break;
  248. in->f_pos += ret;
  249. len -= ret;
  250. spliced += ret;
  251. }
  252. if (spliced)
  253. return spliced;
  254. return ret;
  255. }
  256. /*
  257. * Send 'len' bytes to socket from 'file' at position 'pos' using sendpage().
  258. */
  259. static int pipe_to_sendpage(struct pipe_inode_info *info,
  260. struct pipe_buffer *buf, struct splice_desc *sd)
  261. {
  262. struct file *file = sd->file;
  263. loff_t pos = sd->pos;
  264. unsigned int offset;
  265. ssize_t ret;
  266. void *ptr;
  267. /*
  268. * sub-optimal, but we are limited by the pipe ->map. we don't
  269. * need a kmap'ed buffer here, we just want to make sure we
  270. * have the page pinned if the pipe page originates from the
  271. * page cache
  272. */
  273. ptr = buf->ops->map(file, info, buf);
  274. if (IS_ERR(ptr))
  275. return PTR_ERR(ptr);
  276. offset = pos & ~PAGE_CACHE_MASK;
  277. ret = file->f_op->sendpage(file, buf->page, offset, sd->len, &pos,
  278. sd->len < sd->total_len);
  279. buf->ops->unmap(info, buf);
  280. if (ret == sd->len)
  281. return 0;
  282. return -EIO;
  283. }
  284. /*
  285. * This is a little more tricky than the file -> pipe splicing. There are
  286. * basically three cases:
  287. *
  288. * - Destination page already exists in the address space and there
  289. * are users of it. For that case we have no other option that
  290. * copying the data. Tough luck.
  291. * - Destination page already exists in the address space, but there
  292. * are no users of it. Make sure it's uptodate, then drop it. Fall
  293. * through to last case.
  294. * - Destination page does not exist, we can add the pipe page to
  295. * the page cache and avoid the copy.
  296. *
  297. * For now we just do the slower thing and always copy pages over, it's
  298. * easier than migrating pages from the pipe to the target file. For the
  299. * case of doing file | file splicing, the migrate approach had some LRU
  300. * nastiness...
  301. */
  302. static int pipe_to_file(struct pipe_inode_info *info, struct pipe_buffer *buf,
  303. struct splice_desc *sd)
  304. {
  305. struct file *file = sd->file;
  306. struct address_space *mapping = file->f_mapping;
  307. unsigned int offset;
  308. struct page *page;
  309. pgoff_t index;
  310. char *src;
  311. int ret;
  312. /*
  313. * after this, page will be locked and unmapped
  314. */
  315. src = buf->ops->map(file, info, buf);
  316. if (IS_ERR(src))
  317. return PTR_ERR(src);
  318. index = sd->pos >> PAGE_CACHE_SHIFT;
  319. offset = sd->pos & ~PAGE_CACHE_MASK;
  320. /*
  321. * reuse buf page, if SPLICE_F_MOVE is set
  322. */
  323. if (sd->flags & SPLICE_F_MOVE) {
  324. if (buf->ops->steal(info, buf))
  325. goto find_page;
  326. page = buf->page;
  327. if (add_to_page_cache_lru(page, mapping, index,
  328. mapping_gfp_mask(mapping)))
  329. goto find_page;
  330. } else {
  331. find_page:
  332. ret = -ENOMEM;
  333. page = find_or_create_page(mapping, index,
  334. mapping_gfp_mask(mapping));
  335. if (!page)
  336. goto out;
  337. /*
  338. * If the page is uptodate, it is also locked. If it isn't
  339. * uptodate, we can mark it uptodate if we are filling the
  340. * full page. Otherwise we need to read it in first...
  341. */
  342. if (!PageUptodate(page)) {
  343. if (sd->len < PAGE_CACHE_SIZE) {
  344. ret = mapping->a_ops->readpage(file, page);
  345. if (unlikely(ret))
  346. goto out;
  347. lock_page(page);
  348. if (!PageUptodate(page)) {
  349. /*
  350. * page got invalidated, repeat
  351. */
  352. if (!page->mapping) {
  353. unlock_page(page);
  354. page_cache_release(page);
  355. goto find_page;
  356. }
  357. ret = -EIO;
  358. goto out;
  359. }
  360. } else {
  361. WARN_ON(!PageLocked(page));
  362. SetPageUptodate(page);
  363. }
  364. }
  365. }
  366. ret = mapping->a_ops->prepare_write(file, page, 0, sd->len);
  367. if (ret)
  368. goto out;
  369. if (!buf->stolen) {
  370. char *dst = kmap_atomic(page, KM_USER0);
  371. memcpy(dst + offset, src + buf->offset, sd->len);
  372. flush_dcache_page(page);
  373. kunmap_atomic(dst, KM_USER0);
  374. }
  375. ret = mapping->a_ops->commit_write(file, page, 0, sd->len);
  376. if (ret < 0)
  377. goto out;
  378. set_page_dirty(page);
  379. ret = write_one_page(page, 0);
  380. out:
  381. if (ret < 0)
  382. unlock_page(page);
  383. if (!buf->stolen)
  384. page_cache_release(page);
  385. buf->ops->unmap(info, buf);
  386. return ret;
  387. }
  388. typedef int (splice_actor)(struct pipe_inode_info *, struct pipe_buffer *,
  389. struct splice_desc *);
  390. static ssize_t move_from_pipe(struct inode *inode, struct file *out,
  391. size_t len, unsigned int flags,
  392. splice_actor *actor)
  393. {
  394. struct pipe_inode_info *info;
  395. int ret, do_wakeup, err;
  396. struct splice_desc sd;
  397. ret = 0;
  398. do_wakeup = 0;
  399. sd.total_len = len;
  400. sd.flags = flags;
  401. sd.file = out;
  402. sd.pos = out->f_pos;
  403. mutex_lock(PIPE_MUTEX(*inode));
  404. info = inode->i_pipe;
  405. for (;;) {
  406. int bufs = info->nrbufs;
  407. if (bufs) {
  408. int curbuf = info->curbuf;
  409. struct pipe_buffer *buf = info->bufs + curbuf;
  410. struct pipe_buf_operations *ops = buf->ops;
  411. sd.len = buf->len;
  412. if (sd.len > sd.total_len)
  413. sd.len = sd.total_len;
  414. err = actor(info, buf, &sd);
  415. if (err) {
  416. if (!ret && err != -ENODATA)
  417. ret = err;
  418. break;
  419. }
  420. ret += sd.len;
  421. buf->offset += sd.len;
  422. buf->len -= sd.len;
  423. if (!buf->len) {
  424. buf->ops = NULL;
  425. ops->release(info, buf);
  426. curbuf = (curbuf + 1) & (PIPE_BUFFERS - 1);
  427. info->curbuf = curbuf;
  428. info->nrbufs = --bufs;
  429. do_wakeup = 1;
  430. }
  431. sd.pos += sd.len;
  432. sd.total_len -= sd.len;
  433. if (!sd.total_len)
  434. break;
  435. }
  436. if (bufs)
  437. continue;
  438. if (!PIPE_WRITERS(*inode))
  439. break;
  440. if (!PIPE_WAITING_WRITERS(*inode)) {
  441. if (ret)
  442. break;
  443. }
  444. if (signal_pending(current)) {
  445. if (!ret)
  446. ret = -ERESTARTSYS;
  447. break;
  448. }
  449. if (do_wakeup) {
  450. wake_up_interruptible_sync(PIPE_WAIT(*inode));
  451. kill_fasync(PIPE_FASYNC_WRITERS(*inode),SIGIO,POLL_OUT);
  452. do_wakeup = 0;
  453. }
  454. pipe_wait(inode);
  455. }
  456. mutex_unlock(PIPE_MUTEX(*inode));
  457. if (do_wakeup) {
  458. wake_up_interruptible(PIPE_WAIT(*inode));
  459. kill_fasync(PIPE_FASYNC_WRITERS(*inode), SIGIO, POLL_OUT);
  460. }
  461. mutex_lock(&out->f_mapping->host->i_mutex);
  462. out->f_pos = sd.pos;
  463. mutex_unlock(&out->f_mapping->host->i_mutex);
  464. return ret;
  465. }
  466. ssize_t generic_file_splice_write(struct inode *inode, struct file *out,
  467. size_t len, unsigned int flags)
  468. {
  469. return move_from_pipe(inode, out, len, flags, pipe_to_file);
  470. }
  471. ssize_t generic_splice_sendpage(struct inode *inode, struct file *out,
  472. size_t len, unsigned int flags)
  473. {
  474. return move_from_pipe(inode, out, len, flags, pipe_to_sendpage);
  475. }
  476. EXPORT_SYMBOL(generic_file_splice_write);
  477. EXPORT_SYMBOL(generic_file_splice_read);
  478. static long do_splice_from(struct inode *pipe, struct file *out, size_t len,
  479. unsigned int flags)
  480. {
  481. loff_t pos;
  482. int ret;
  483. if (!out->f_op || !out->f_op->splice_write)
  484. return -EINVAL;
  485. if (!(out->f_mode & FMODE_WRITE))
  486. return -EBADF;
  487. pos = out->f_pos;
  488. ret = rw_verify_area(WRITE, out, &pos, len);
  489. if (unlikely(ret < 0))
  490. return ret;
  491. return out->f_op->splice_write(pipe, out, len, flags);
  492. }
  493. static long do_splice_to(struct file *in, struct inode *pipe, size_t len,
  494. unsigned int flags)
  495. {
  496. loff_t pos, isize, left;
  497. int ret;
  498. if (!in->f_op || !in->f_op->splice_read)
  499. return -EINVAL;
  500. if (!(in->f_mode & FMODE_READ))
  501. return -EBADF;
  502. pos = in->f_pos;
  503. ret = rw_verify_area(READ, in, &pos, len);
  504. if (unlikely(ret < 0))
  505. return ret;
  506. isize = i_size_read(in->f_mapping->host);
  507. if (unlikely(in->f_pos >= isize))
  508. return 0;
  509. left = isize - in->f_pos;
  510. if (left < len)
  511. len = left;
  512. return in->f_op->splice_read(in, pipe, len, flags);
  513. }
  514. static long do_splice(struct file *in, struct file *out, size_t len,
  515. unsigned int flags)
  516. {
  517. struct inode *pipe;
  518. pipe = in->f_dentry->d_inode;
  519. if (pipe->i_pipe)
  520. return do_splice_from(pipe, out, len, flags);
  521. pipe = out->f_dentry->d_inode;
  522. if (pipe->i_pipe)
  523. return do_splice_to(in, pipe, len, flags);
  524. return -EINVAL;
  525. }
  526. asmlinkage long sys_splice(int fdin, int fdout, size_t len, unsigned int flags)
  527. {
  528. long error;
  529. struct file *in, *out;
  530. int fput_in, fput_out;
  531. if (unlikely(!len))
  532. return 0;
  533. error = -EBADF;
  534. in = fget_light(fdin, &fput_in);
  535. if (in) {
  536. if (in->f_mode & FMODE_READ) {
  537. out = fget_light(fdout, &fput_out);
  538. if (out) {
  539. if (out->f_mode & FMODE_WRITE)
  540. error = do_splice(in, out, len, flags);
  541. fput_light(out, fput_out);
  542. }
  543. }
  544. fput_light(in, fput_in);
  545. }
  546. return error;
  547. }