btree.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573
  1. /*
  2. * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  3. *
  4. * Uses a block device as cache for other block devices; optimized for SSDs.
  5. * All allocation is done in buckets, which should match the erase block size
  6. * of the device.
  7. *
  8. * Buckets containing cached data are kept on a heap sorted by priority;
  9. * bucket priority is increased on cache hit, and periodically all the buckets
  10. * on the heap have their priority scaled down. This currently is just used as
  11. * an LRU but in the future should allow for more intelligent heuristics.
  12. *
  13. * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  14. * counter. Garbage collection is used to remove stale pointers.
  15. *
  16. * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  17. * as keys are inserted we only sort the pages that have not yet been written.
  18. * When garbage collection is run, we resort the entire node.
  19. *
  20. * All configuration is done via sysfs; see Documentation/bcache.txt.
  21. */
  22. #include "bcache.h"
  23. #include "btree.h"
  24. #include "debug.h"
  25. #include "writeback.h"
  26. #include <linux/slab.h>
  27. #include <linux/bitops.h>
  28. #include <linux/freezer.h>
  29. #include <linux/hash.h>
  30. #include <linux/kthread.h>
  31. #include <linux/prefetch.h>
  32. #include <linux/random.h>
  33. #include <linux/rcupdate.h>
  34. #include <trace/events/bcache.h>
  35. /*
  36. * Todo:
  37. * register_bcache: Return errors out to userspace correctly
  38. *
  39. * Writeback: don't undirty key until after a cache flush
  40. *
  41. * Create an iterator for key pointers
  42. *
  43. * On btree write error, mark bucket such that it won't be freed from the cache
  44. *
  45. * Journalling:
  46. * Check for bad keys in replay
  47. * Propagate barriers
  48. * Refcount journal entries in journal_replay
  49. *
  50. * Garbage collection:
  51. * Finish incremental gc
  52. * Gc should free old UUIDs, data for invalid UUIDs
  53. *
  54. * Provide a way to list backing device UUIDs we have data cached for, and
  55. * probably how long it's been since we've seen them, and a way to invalidate
  56. * dirty data for devices that will never be attached again
  57. *
  58. * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  59. * that based on that and how much dirty data we have we can keep writeback
  60. * from being starved
  61. *
  62. * Add a tracepoint or somesuch to watch for writeback starvation
  63. *
  64. * When btree depth > 1 and splitting an interior node, we have to make sure
  65. * alloc_bucket() cannot fail. This should be true but is not completely
  66. * obvious.
  67. *
  68. * Make sure all allocations get charged to the root cgroup
  69. *
  70. * Plugging?
  71. *
  72. * If data write is less than hard sector size of ssd, round up offset in open
  73. * bucket to the next whole sector
  74. *
  75. * Also lookup by cgroup in get_open_bucket()
  76. *
  77. * Superblock needs to be fleshed out for multiple cache devices
  78. *
  79. * Add a sysfs tunable for the number of writeback IOs in flight
  80. *
  81. * Add a sysfs tunable for the number of open data buckets
  82. *
  83. * IO tracking: Can we track when one process is doing io on behalf of another?
  84. * IO tracking: Don't use just an average, weigh more recent stuff higher
  85. *
  86. * Test module load/unload
  87. */
  88. enum {
  89. BTREE_INSERT_STATUS_INSERT,
  90. BTREE_INSERT_STATUS_BACK_MERGE,
  91. BTREE_INSERT_STATUS_OVERWROTE,
  92. BTREE_INSERT_STATUS_FRONT_MERGE,
  93. };
  94. #define MAX_NEED_GC 64
  95. #define MAX_SAVE_PRIO 72
  96. #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
  97. #define PTR_HASH(c, k) \
  98. (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  99. static struct workqueue_struct *btree_io_wq;
  100. static inline bool should_split(struct btree *b)
  101. {
  102. struct bset *i = write_block(b);
  103. return b->written >= btree_blocks(b) ||
  104. (b->written + __set_blocks(i, i->keys + 15, b->c)
  105. > btree_blocks(b));
  106. }
  107. #define insert_lock(s, b) ((b)->level <= (s)->lock)
  108. /*
  109. * These macros are for recursing down the btree - they handle the details of
  110. * locking and looking up nodes in the cache for you. They're best treated as
  111. * mere syntax when reading code that uses them.
  112. *
  113. * op->lock determines whether we take a read or a write lock at a given depth.
  114. * If you've got a read lock and find that you need a write lock (i.e. you're
  115. * going to have to split), set op->lock and return -EINTR; btree_root() will
  116. * call you again and you'll have the correct lock.
  117. */
  118. /**
  119. * btree - recurse down the btree on a specified key
  120. * @fn: function to call, which will be passed the child node
  121. * @key: key to recurse on
  122. * @b: parent btree node
  123. * @op: pointer to struct btree_op
  124. */
  125. #define btree(fn, key, b, op, ...) \
  126. ({ \
  127. int _r, l = (b)->level - 1; \
  128. bool _w = l <= (op)->lock; \
  129. struct btree *_child = bch_btree_node_get((b)->c, key, l, _w); \
  130. if (!IS_ERR(_child)) { \
  131. _child->parent = (b); \
  132. _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
  133. rw_unlock(_w, _child); \
  134. } else \
  135. _r = PTR_ERR(_child); \
  136. _r; \
  137. })
  138. /**
  139. * btree_root - call a function on the root of the btree
  140. * @fn: function to call, which will be passed the child node
  141. * @c: cache set
  142. * @op: pointer to struct btree_op
  143. */
  144. #define btree_root(fn, c, op, ...) \
  145. ({ \
  146. int _r = -EINTR; \
  147. do { \
  148. struct btree *_b = (c)->root; \
  149. bool _w = insert_lock(op, _b); \
  150. rw_lock(_w, _b, _b->level); \
  151. if (_b == (c)->root && \
  152. _w == insert_lock(op, _b)) { \
  153. _b->parent = NULL; \
  154. _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
  155. } \
  156. rw_unlock(_w, _b); \
  157. bch_cannibalize_unlock(c); \
  158. if (_r == -ENOSPC) { \
  159. wait_event((c)->try_wait, \
  160. !(c)->try_harder); \
  161. _r = -EINTR; \
  162. } \
  163. } while (_r == -EINTR); \
  164. \
  165. _r; \
  166. })
  167. /* Btree key manipulation */
  168. void bkey_put(struct cache_set *c, struct bkey *k)
  169. {
  170. unsigned i;
  171. for (i = 0; i < KEY_PTRS(k); i++)
  172. if (ptr_available(c, k, i))
  173. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  174. }
  175. /* Btree IO */
  176. static uint64_t btree_csum_set(struct btree *b, struct bset *i)
  177. {
  178. uint64_t crc = b->key.ptr[0];
  179. void *data = (void *) i + 8, *end = end(i);
  180. crc = bch_crc64_update(crc, data, end - data);
  181. return crc ^ 0xffffffffffffffffULL;
  182. }
  183. static void bch_btree_node_read_done(struct btree *b)
  184. {
  185. const char *err = "bad btree header";
  186. struct bset *i = b->sets[0].data;
  187. struct btree_iter *iter;
  188. iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
  189. iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
  190. iter->used = 0;
  191. #ifdef CONFIG_BCACHE_DEBUG
  192. iter->b = b;
  193. #endif
  194. if (!i->seq)
  195. goto err;
  196. for (;
  197. b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
  198. i = write_block(b)) {
  199. err = "unsupported bset version";
  200. if (i->version > BCACHE_BSET_VERSION)
  201. goto err;
  202. err = "bad btree header";
  203. if (b->written + set_blocks(i, b->c) > btree_blocks(b))
  204. goto err;
  205. err = "bad magic";
  206. if (i->magic != bset_magic(&b->c->sb))
  207. goto err;
  208. err = "bad checksum";
  209. switch (i->version) {
  210. case 0:
  211. if (i->csum != csum_set(i))
  212. goto err;
  213. break;
  214. case BCACHE_BSET_VERSION:
  215. if (i->csum != btree_csum_set(b, i))
  216. goto err;
  217. break;
  218. }
  219. err = "empty set";
  220. if (i != b->sets[0].data && !i->keys)
  221. goto err;
  222. bch_btree_iter_push(iter, i->start, end(i));
  223. b->written += set_blocks(i, b->c);
  224. }
  225. err = "corrupted btree";
  226. for (i = write_block(b);
  227. index(i, b) < btree_blocks(b);
  228. i = ((void *) i) + block_bytes(b->c))
  229. if (i->seq == b->sets[0].data->seq)
  230. goto err;
  231. bch_btree_sort_and_fix_extents(b, iter);
  232. i = b->sets[0].data;
  233. err = "short btree key";
  234. if (b->sets[0].size &&
  235. bkey_cmp(&b->key, &b->sets[0].end) < 0)
  236. goto err;
  237. if (b->written < btree_blocks(b))
  238. bch_bset_init_next(b);
  239. out:
  240. mempool_free(iter, b->c->fill_iter);
  241. return;
  242. err:
  243. set_btree_node_io_error(b);
  244. bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
  245. err, PTR_BUCKET_NR(b->c, &b->key, 0),
  246. index(i, b), i->keys);
  247. goto out;
  248. }
  249. static void btree_node_read_endio(struct bio *bio, int error)
  250. {
  251. struct closure *cl = bio->bi_private;
  252. closure_put(cl);
  253. }
  254. void bch_btree_node_read(struct btree *b)
  255. {
  256. uint64_t start_time = local_clock();
  257. struct closure cl;
  258. struct bio *bio;
  259. trace_bcache_btree_read(b);
  260. closure_init_stack(&cl);
  261. bio = bch_bbio_alloc(b->c);
  262. bio->bi_rw = REQ_META|READ_SYNC;
  263. bio->bi_size = KEY_SIZE(&b->key) << 9;
  264. bio->bi_end_io = btree_node_read_endio;
  265. bio->bi_private = &cl;
  266. bch_bio_map(bio, b->sets[0].data);
  267. bch_submit_bbio(bio, b->c, &b->key, 0);
  268. closure_sync(&cl);
  269. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  270. set_btree_node_io_error(b);
  271. bch_bbio_free(bio, b->c);
  272. if (btree_node_io_error(b))
  273. goto err;
  274. bch_btree_node_read_done(b);
  275. bch_time_stats_update(&b->c->btree_read_time, start_time);
  276. return;
  277. err:
  278. bch_cache_set_error(b->c, "io error reading bucket %zu",
  279. PTR_BUCKET_NR(b->c, &b->key, 0));
  280. }
  281. static void btree_complete_write(struct btree *b, struct btree_write *w)
  282. {
  283. if (w->prio_blocked &&
  284. !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
  285. wake_up_allocators(b->c);
  286. if (w->journal) {
  287. atomic_dec_bug(w->journal);
  288. __closure_wake_up(&b->c->journal.wait);
  289. }
  290. w->prio_blocked = 0;
  291. w->journal = NULL;
  292. }
  293. static void __btree_node_write_done(struct closure *cl)
  294. {
  295. struct btree *b = container_of(cl, struct btree, io.cl);
  296. struct btree_write *w = btree_prev_write(b);
  297. bch_bbio_free(b->bio, b->c);
  298. b->bio = NULL;
  299. btree_complete_write(b, w);
  300. if (btree_node_dirty(b))
  301. queue_delayed_work(btree_io_wq, &b->work,
  302. msecs_to_jiffies(30000));
  303. closure_return(cl);
  304. }
  305. static void btree_node_write_done(struct closure *cl)
  306. {
  307. struct btree *b = container_of(cl, struct btree, io.cl);
  308. struct bio_vec *bv;
  309. int n;
  310. __bio_for_each_segment(bv, b->bio, n, 0)
  311. __free_page(bv->bv_page);
  312. __btree_node_write_done(cl);
  313. }
  314. static void btree_node_write_endio(struct bio *bio, int error)
  315. {
  316. struct closure *cl = bio->bi_private;
  317. struct btree *b = container_of(cl, struct btree, io.cl);
  318. if (error)
  319. set_btree_node_io_error(b);
  320. bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
  321. closure_put(cl);
  322. }
  323. static void do_btree_node_write(struct btree *b)
  324. {
  325. struct closure *cl = &b->io.cl;
  326. struct bset *i = b->sets[b->nsets].data;
  327. BKEY_PADDED(key) k;
  328. i->version = BCACHE_BSET_VERSION;
  329. i->csum = btree_csum_set(b, i);
  330. BUG_ON(b->bio);
  331. b->bio = bch_bbio_alloc(b->c);
  332. b->bio->bi_end_io = btree_node_write_endio;
  333. b->bio->bi_private = cl;
  334. b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
  335. b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c);
  336. bch_bio_map(b->bio, i);
  337. /*
  338. * If we're appending to a leaf node, we don't technically need FUA -
  339. * this write just needs to be persisted before the next journal write,
  340. * which will be marked FLUSH|FUA.
  341. *
  342. * Similarly if we're writing a new btree root - the pointer is going to
  343. * be in the next journal entry.
  344. *
  345. * But if we're writing a new btree node (that isn't a root) or
  346. * appending to a non leaf btree node, we need either FUA or a flush
  347. * when we write the parent with the new pointer. FUA is cheaper than a
  348. * flush, and writes appending to leaf nodes aren't blocking anything so
  349. * just make all btree node writes FUA to keep things sane.
  350. */
  351. bkey_copy(&k.key, &b->key);
  352. SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
  353. if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
  354. int j;
  355. struct bio_vec *bv;
  356. void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
  357. bio_for_each_segment(bv, b->bio, j)
  358. memcpy(page_address(bv->bv_page),
  359. base + j * PAGE_SIZE, PAGE_SIZE);
  360. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  361. continue_at(cl, btree_node_write_done, NULL);
  362. } else {
  363. b->bio->bi_vcnt = 0;
  364. bch_bio_map(b->bio, i);
  365. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  366. closure_sync(cl);
  367. __btree_node_write_done(cl);
  368. }
  369. }
  370. void bch_btree_node_write(struct btree *b, struct closure *parent)
  371. {
  372. struct bset *i = b->sets[b->nsets].data;
  373. trace_bcache_btree_write(b);
  374. BUG_ON(current->bio_list);
  375. BUG_ON(b->written >= btree_blocks(b));
  376. BUG_ON(b->written && !i->keys);
  377. BUG_ON(b->sets->data->seq != i->seq);
  378. bch_check_keys(b, "writing");
  379. cancel_delayed_work(&b->work);
  380. /* If caller isn't waiting for write, parent refcount is cache set */
  381. closure_lock(&b->io, parent ?: &b->c->cl);
  382. clear_bit(BTREE_NODE_dirty, &b->flags);
  383. change_bit(BTREE_NODE_write_idx, &b->flags);
  384. do_btree_node_write(b);
  385. b->written += set_blocks(i, b->c);
  386. atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
  387. &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
  388. bch_btree_sort_lazy(b);
  389. if (b->written < btree_blocks(b))
  390. bch_bset_init_next(b);
  391. }
  392. static void bch_btree_node_write_sync(struct btree *b)
  393. {
  394. struct closure cl;
  395. closure_init_stack(&cl);
  396. bch_btree_node_write(b, &cl);
  397. closure_sync(&cl);
  398. }
  399. static void btree_node_write_work(struct work_struct *w)
  400. {
  401. struct btree *b = container_of(to_delayed_work(w), struct btree, work);
  402. rw_lock(true, b, b->level);
  403. if (btree_node_dirty(b))
  404. bch_btree_node_write(b, NULL);
  405. rw_unlock(true, b);
  406. }
  407. static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
  408. {
  409. struct bset *i = b->sets[b->nsets].data;
  410. struct btree_write *w = btree_current_write(b);
  411. BUG_ON(!b->written);
  412. BUG_ON(!i->keys);
  413. if (!btree_node_dirty(b))
  414. queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
  415. set_btree_node_dirty(b);
  416. if (journal_ref) {
  417. if (w->journal &&
  418. journal_pin_cmp(b->c, w->journal, journal_ref)) {
  419. atomic_dec_bug(w->journal);
  420. w->journal = NULL;
  421. }
  422. if (!w->journal) {
  423. w->journal = journal_ref;
  424. atomic_inc(w->journal);
  425. }
  426. }
  427. /* Force write if set is too big */
  428. if (set_bytes(i) > PAGE_SIZE - 48 &&
  429. !current->bio_list)
  430. bch_btree_node_write(b, NULL);
  431. }
  432. /*
  433. * Btree in memory cache - allocation/freeing
  434. * mca -> memory cache
  435. */
  436. static void mca_reinit(struct btree *b)
  437. {
  438. unsigned i;
  439. b->flags = 0;
  440. b->written = 0;
  441. b->nsets = 0;
  442. for (i = 0; i < MAX_BSETS; i++)
  443. b->sets[i].size = 0;
  444. /*
  445. * Second loop starts at 1 because b->sets[0]->data is the memory we
  446. * allocated
  447. */
  448. for (i = 1; i < MAX_BSETS; i++)
  449. b->sets[i].data = NULL;
  450. }
  451. #define mca_reserve(c) (((c->root && c->root->level) \
  452. ? c->root->level : 1) * 8 + 16)
  453. #define mca_can_free(c) \
  454. max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
  455. static void mca_data_free(struct btree *b)
  456. {
  457. struct bset_tree *t = b->sets;
  458. BUG_ON(!closure_is_unlocked(&b->io.cl));
  459. if (bset_prev_bytes(b) < PAGE_SIZE)
  460. kfree(t->prev);
  461. else
  462. free_pages((unsigned long) t->prev,
  463. get_order(bset_prev_bytes(b)));
  464. if (bset_tree_bytes(b) < PAGE_SIZE)
  465. kfree(t->tree);
  466. else
  467. free_pages((unsigned long) t->tree,
  468. get_order(bset_tree_bytes(b)));
  469. free_pages((unsigned long) t->data, b->page_order);
  470. t->prev = NULL;
  471. t->tree = NULL;
  472. t->data = NULL;
  473. list_move(&b->list, &b->c->btree_cache_freed);
  474. b->c->bucket_cache_used--;
  475. }
  476. static void mca_bucket_free(struct btree *b)
  477. {
  478. BUG_ON(btree_node_dirty(b));
  479. b->key.ptr[0] = 0;
  480. hlist_del_init_rcu(&b->hash);
  481. list_move(&b->list, &b->c->btree_cache_freeable);
  482. }
  483. static unsigned btree_order(struct bkey *k)
  484. {
  485. return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
  486. }
  487. static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
  488. {
  489. struct bset_tree *t = b->sets;
  490. BUG_ON(t->data);
  491. b->page_order = max_t(unsigned,
  492. ilog2(b->c->btree_pages),
  493. btree_order(k));
  494. t->data = (void *) __get_free_pages(gfp, b->page_order);
  495. if (!t->data)
  496. goto err;
  497. t->tree = bset_tree_bytes(b) < PAGE_SIZE
  498. ? kmalloc(bset_tree_bytes(b), gfp)
  499. : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
  500. if (!t->tree)
  501. goto err;
  502. t->prev = bset_prev_bytes(b) < PAGE_SIZE
  503. ? kmalloc(bset_prev_bytes(b), gfp)
  504. : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
  505. if (!t->prev)
  506. goto err;
  507. list_move(&b->list, &b->c->btree_cache);
  508. b->c->bucket_cache_used++;
  509. return;
  510. err:
  511. mca_data_free(b);
  512. }
  513. static struct btree *mca_bucket_alloc(struct cache_set *c,
  514. struct bkey *k, gfp_t gfp)
  515. {
  516. struct btree *b = kzalloc(sizeof(struct btree), gfp);
  517. if (!b)
  518. return NULL;
  519. init_rwsem(&b->lock);
  520. lockdep_set_novalidate_class(&b->lock);
  521. INIT_LIST_HEAD(&b->list);
  522. INIT_DELAYED_WORK(&b->work, btree_node_write_work);
  523. b->c = c;
  524. closure_init_unlocked(&b->io);
  525. mca_data_alloc(b, k, gfp);
  526. return b;
  527. }
  528. static int mca_reap(struct btree *b, unsigned min_order, bool flush)
  529. {
  530. struct closure cl;
  531. closure_init_stack(&cl);
  532. lockdep_assert_held(&b->c->bucket_lock);
  533. if (!down_write_trylock(&b->lock))
  534. return -ENOMEM;
  535. BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
  536. if (b->page_order < min_order ||
  537. (!flush &&
  538. (btree_node_dirty(b) ||
  539. atomic_read(&b->io.cl.remaining) != -1))) {
  540. rw_unlock(true, b);
  541. return -ENOMEM;
  542. }
  543. if (btree_node_dirty(b))
  544. bch_btree_node_write_sync(b);
  545. /* wait for any in flight btree write */
  546. closure_wait_event(&b->io.wait, &cl,
  547. atomic_read(&b->io.cl.remaining) == -1);
  548. return 0;
  549. }
  550. static unsigned long bch_mca_scan(struct shrinker *shrink,
  551. struct shrink_control *sc)
  552. {
  553. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  554. struct btree *b, *t;
  555. unsigned long i, nr = sc->nr_to_scan;
  556. unsigned long freed = 0;
  557. if (c->shrinker_disabled)
  558. return SHRINK_STOP;
  559. if (c->try_harder)
  560. return SHRINK_STOP;
  561. /* Return -1 if we can't do anything right now */
  562. if (sc->gfp_mask & __GFP_IO)
  563. mutex_lock(&c->bucket_lock);
  564. else if (!mutex_trylock(&c->bucket_lock))
  565. return -1;
  566. /*
  567. * It's _really_ critical that we don't free too many btree nodes - we
  568. * have to always leave ourselves a reserve. The reserve is how we
  569. * guarantee that allocating memory for a new btree node can always
  570. * succeed, so that inserting keys into the btree can always succeed and
  571. * IO can always make forward progress:
  572. */
  573. nr /= c->btree_pages;
  574. nr = min_t(unsigned long, nr, mca_can_free(c));
  575. i = 0;
  576. list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
  577. if (freed >= nr)
  578. break;
  579. if (++i > 3 &&
  580. !mca_reap(b, 0, false)) {
  581. mca_data_free(b);
  582. rw_unlock(true, b);
  583. freed++;
  584. }
  585. }
  586. /*
  587. * Can happen right when we first start up, before we've read in any
  588. * btree nodes
  589. */
  590. if (list_empty(&c->btree_cache))
  591. goto out;
  592. for (i = 0; (nr--) && i < c->bucket_cache_used; i++) {
  593. b = list_first_entry(&c->btree_cache, struct btree, list);
  594. list_rotate_left(&c->btree_cache);
  595. if (!b->accessed &&
  596. !mca_reap(b, 0, false)) {
  597. mca_bucket_free(b);
  598. mca_data_free(b);
  599. rw_unlock(true, b);
  600. freed++;
  601. } else
  602. b->accessed = 0;
  603. }
  604. out:
  605. mutex_unlock(&c->bucket_lock);
  606. return freed;
  607. }
  608. static unsigned long bch_mca_count(struct shrinker *shrink,
  609. struct shrink_control *sc)
  610. {
  611. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  612. if (c->shrinker_disabled)
  613. return 0;
  614. if (c->try_harder)
  615. return 0;
  616. return mca_can_free(c) * c->btree_pages;
  617. }
  618. void bch_btree_cache_free(struct cache_set *c)
  619. {
  620. struct btree *b;
  621. struct closure cl;
  622. closure_init_stack(&cl);
  623. if (c->shrink.list.next)
  624. unregister_shrinker(&c->shrink);
  625. mutex_lock(&c->bucket_lock);
  626. #ifdef CONFIG_BCACHE_DEBUG
  627. if (c->verify_data)
  628. list_move(&c->verify_data->list, &c->btree_cache);
  629. #endif
  630. list_splice(&c->btree_cache_freeable,
  631. &c->btree_cache);
  632. while (!list_empty(&c->btree_cache)) {
  633. b = list_first_entry(&c->btree_cache, struct btree, list);
  634. if (btree_node_dirty(b))
  635. btree_complete_write(b, btree_current_write(b));
  636. clear_bit(BTREE_NODE_dirty, &b->flags);
  637. mca_data_free(b);
  638. }
  639. while (!list_empty(&c->btree_cache_freed)) {
  640. b = list_first_entry(&c->btree_cache_freed,
  641. struct btree, list);
  642. list_del(&b->list);
  643. cancel_delayed_work_sync(&b->work);
  644. kfree(b);
  645. }
  646. mutex_unlock(&c->bucket_lock);
  647. }
  648. int bch_btree_cache_alloc(struct cache_set *c)
  649. {
  650. unsigned i;
  651. for (i = 0; i < mca_reserve(c); i++)
  652. if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
  653. return -ENOMEM;
  654. list_splice_init(&c->btree_cache,
  655. &c->btree_cache_freeable);
  656. #ifdef CONFIG_BCACHE_DEBUG
  657. mutex_init(&c->verify_lock);
  658. c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  659. if (c->verify_data &&
  660. c->verify_data->sets[0].data)
  661. list_del_init(&c->verify_data->list);
  662. else
  663. c->verify_data = NULL;
  664. #endif
  665. c->shrink.count_objects = bch_mca_count;
  666. c->shrink.scan_objects = bch_mca_scan;
  667. c->shrink.seeks = 4;
  668. c->shrink.batch = c->btree_pages * 2;
  669. register_shrinker(&c->shrink);
  670. return 0;
  671. }
  672. /* Btree in memory cache - hash table */
  673. static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
  674. {
  675. return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
  676. }
  677. static struct btree *mca_find(struct cache_set *c, struct bkey *k)
  678. {
  679. struct btree *b;
  680. rcu_read_lock();
  681. hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
  682. if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
  683. goto out;
  684. b = NULL;
  685. out:
  686. rcu_read_unlock();
  687. return b;
  688. }
  689. static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k)
  690. {
  691. struct btree *b;
  692. trace_bcache_btree_cache_cannibalize(c);
  693. if (!c->try_harder) {
  694. c->try_harder = current;
  695. c->try_harder_start = local_clock();
  696. } else if (c->try_harder != current)
  697. return ERR_PTR(-ENOSPC);
  698. list_for_each_entry_reverse(b, &c->btree_cache, list)
  699. if (!mca_reap(b, btree_order(k), false))
  700. return b;
  701. list_for_each_entry_reverse(b, &c->btree_cache, list)
  702. if (!mca_reap(b, btree_order(k), true))
  703. return b;
  704. return ERR_PTR(-ENOMEM);
  705. }
  706. /*
  707. * We can only have one thread cannibalizing other cached btree nodes at a time,
  708. * or we'll deadlock. We use an open coded mutex to ensure that, which a
  709. * cannibalize_bucket() will take. This means every time we unlock the root of
  710. * the btree, we need to release this lock if we have it held.
  711. */
  712. static void bch_cannibalize_unlock(struct cache_set *c)
  713. {
  714. if (c->try_harder == current) {
  715. bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
  716. c->try_harder = NULL;
  717. wake_up(&c->try_wait);
  718. }
  719. }
  720. static struct btree *mca_alloc(struct cache_set *c, struct bkey *k, int level)
  721. {
  722. struct btree *b;
  723. BUG_ON(current->bio_list);
  724. lockdep_assert_held(&c->bucket_lock);
  725. if (mca_find(c, k))
  726. return NULL;
  727. /* btree_free() doesn't free memory; it sticks the node on the end of
  728. * the list. Check if there's any freed nodes there:
  729. */
  730. list_for_each_entry(b, &c->btree_cache_freeable, list)
  731. if (!mca_reap(b, btree_order(k), false))
  732. goto out;
  733. /* We never free struct btree itself, just the memory that holds the on
  734. * disk node. Check the freed list before allocating a new one:
  735. */
  736. list_for_each_entry(b, &c->btree_cache_freed, list)
  737. if (!mca_reap(b, 0, false)) {
  738. mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
  739. if (!b->sets[0].data)
  740. goto err;
  741. else
  742. goto out;
  743. }
  744. b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
  745. if (!b)
  746. goto err;
  747. BUG_ON(!down_write_trylock(&b->lock));
  748. if (!b->sets->data)
  749. goto err;
  750. out:
  751. BUG_ON(!closure_is_unlocked(&b->io.cl));
  752. bkey_copy(&b->key, k);
  753. list_move(&b->list, &c->btree_cache);
  754. hlist_del_init_rcu(&b->hash);
  755. hlist_add_head_rcu(&b->hash, mca_hash(c, k));
  756. lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
  757. b->level = level;
  758. b->parent = (void *) ~0UL;
  759. mca_reinit(b);
  760. return b;
  761. err:
  762. if (b)
  763. rw_unlock(true, b);
  764. b = mca_cannibalize(c, k);
  765. if (!IS_ERR(b))
  766. goto out;
  767. return b;
  768. }
  769. /**
  770. * bch_btree_node_get - find a btree node in the cache and lock it, reading it
  771. * in from disk if necessary.
  772. *
  773. * If IO is necessary and running under generic_make_request, returns -EAGAIN.
  774. *
  775. * The btree node will have either a read or a write lock held, depending on
  776. * level and op->lock.
  777. */
  778. struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
  779. int level, bool write)
  780. {
  781. int i = 0;
  782. struct btree *b;
  783. BUG_ON(level < 0);
  784. retry:
  785. b = mca_find(c, k);
  786. if (!b) {
  787. if (current->bio_list)
  788. return ERR_PTR(-EAGAIN);
  789. mutex_lock(&c->bucket_lock);
  790. b = mca_alloc(c, k, level);
  791. mutex_unlock(&c->bucket_lock);
  792. if (!b)
  793. goto retry;
  794. if (IS_ERR(b))
  795. return b;
  796. bch_btree_node_read(b);
  797. if (!write)
  798. downgrade_write(&b->lock);
  799. } else {
  800. rw_lock(write, b, level);
  801. if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
  802. rw_unlock(write, b);
  803. goto retry;
  804. }
  805. BUG_ON(b->level != level);
  806. }
  807. b->accessed = 1;
  808. for (; i <= b->nsets && b->sets[i].size; i++) {
  809. prefetch(b->sets[i].tree);
  810. prefetch(b->sets[i].data);
  811. }
  812. for (; i <= b->nsets; i++)
  813. prefetch(b->sets[i].data);
  814. if (btree_node_io_error(b)) {
  815. rw_unlock(write, b);
  816. return ERR_PTR(-EIO);
  817. }
  818. BUG_ON(!b->written);
  819. return b;
  820. }
  821. static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
  822. {
  823. struct btree *b;
  824. mutex_lock(&c->bucket_lock);
  825. b = mca_alloc(c, k, level);
  826. mutex_unlock(&c->bucket_lock);
  827. if (!IS_ERR_OR_NULL(b)) {
  828. bch_btree_node_read(b);
  829. rw_unlock(true, b);
  830. }
  831. }
  832. /* Btree alloc */
  833. static void btree_node_free(struct btree *b)
  834. {
  835. unsigned i;
  836. trace_bcache_btree_node_free(b);
  837. BUG_ON(b == b->c->root);
  838. if (btree_node_dirty(b))
  839. btree_complete_write(b, btree_current_write(b));
  840. clear_bit(BTREE_NODE_dirty, &b->flags);
  841. cancel_delayed_work(&b->work);
  842. mutex_lock(&b->c->bucket_lock);
  843. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  844. BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
  845. bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
  846. PTR_BUCKET(b->c, &b->key, i));
  847. }
  848. bch_bucket_free(b->c, &b->key);
  849. mca_bucket_free(b);
  850. mutex_unlock(&b->c->bucket_lock);
  851. }
  852. struct btree *bch_btree_node_alloc(struct cache_set *c, int level, bool wait)
  853. {
  854. BKEY_PADDED(key) k;
  855. struct btree *b = ERR_PTR(-EAGAIN);
  856. mutex_lock(&c->bucket_lock);
  857. retry:
  858. if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, wait))
  859. goto err;
  860. bkey_put(c, &k.key);
  861. SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
  862. b = mca_alloc(c, &k.key, level);
  863. if (IS_ERR(b))
  864. goto err_free;
  865. if (!b) {
  866. cache_bug(c,
  867. "Tried to allocate bucket that was in btree cache");
  868. goto retry;
  869. }
  870. b->accessed = 1;
  871. bch_bset_init_next(b);
  872. mutex_unlock(&c->bucket_lock);
  873. trace_bcache_btree_node_alloc(b);
  874. return b;
  875. err_free:
  876. bch_bucket_free(c, &k.key);
  877. err:
  878. mutex_unlock(&c->bucket_lock);
  879. trace_bcache_btree_node_alloc_fail(b);
  880. return b;
  881. }
  882. static struct btree *btree_node_alloc_replacement(struct btree *b, bool wait)
  883. {
  884. struct btree *n = bch_btree_node_alloc(b->c, b->level, wait);
  885. if (!IS_ERR_OR_NULL(n))
  886. bch_btree_sort_into(b, n);
  887. return n;
  888. }
  889. static void make_btree_freeing_key(struct btree *b, struct bkey *k)
  890. {
  891. unsigned i;
  892. bkey_copy(k, &b->key);
  893. bkey_copy_key(k, &ZERO_KEY);
  894. for (i = 0; i < KEY_PTRS(k); i++) {
  895. uint8_t g = PTR_BUCKET(b->c, k, i)->gen + 1;
  896. SET_PTR_GEN(k, i, g);
  897. }
  898. atomic_inc(&b->c->prio_blocked);
  899. }
  900. /* Garbage collection */
  901. uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
  902. {
  903. uint8_t stale = 0;
  904. unsigned i;
  905. struct bucket *g;
  906. /*
  907. * ptr_invalid() can't return true for the keys that mark btree nodes as
  908. * freed, but since ptr_bad() returns true we'll never actually use them
  909. * for anything and thus we don't want mark their pointers here
  910. */
  911. if (!bkey_cmp(k, &ZERO_KEY))
  912. return stale;
  913. for (i = 0; i < KEY_PTRS(k); i++) {
  914. if (!ptr_available(c, k, i))
  915. continue;
  916. g = PTR_BUCKET(c, k, i);
  917. if (gen_after(g->gc_gen, PTR_GEN(k, i)))
  918. g->gc_gen = PTR_GEN(k, i);
  919. if (ptr_stale(c, k, i)) {
  920. stale = max(stale, ptr_stale(c, k, i));
  921. continue;
  922. }
  923. cache_bug_on(GC_MARK(g) &&
  924. (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
  925. c, "inconsistent ptrs: mark = %llu, level = %i",
  926. GC_MARK(g), level);
  927. if (level)
  928. SET_GC_MARK(g, GC_MARK_METADATA);
  929. else if (KEY_DIRTY(k))
  930. SET_GC_MARK(g, GC_MARK_DIRTY);
  931. /* guard against overflow */
  932. SET_GC_SECTORS_USED(g, min_t(unsigned,
  933. GC_SECTORS_USED(g) + KEY_SIZE(k),
  934. (1 << 14) - 1));
  935. BUG_ON(!GC_SECTORS_USED(g));
  936. }
  937. return stale;
  938. }
  939. #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
  940. static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
  941. {
  942. uint8_t stale = 0;
  943. unsigned keys = 0, good_keys = 0;
  944. struct bkey *k;
  945. struct btree_iter iter;
  946. struct bset_tree *t;
  947. gc->nodes++;
  948. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  949. stale = max(stale, btree_mark_key(b, k));
  950. keys++;
  951. if (bch_ptr_bad(b, k))
  952. continue;
  953. gc->key_bytes += bkey_u64s(k);
  954. gc->nkeys++;
  955. good_keys++;
  956. gc->data += KEY_SIZE(k);
  957. }
  958. for (t = b->sets; t <= &b->sets[b->nsets]; t++)
  959. btree_bug_on(t->size &&
  960. bset_written(b, t) &&
  961. bkey_cmp(&b->key, &t->end) < 0,
  962. b, "found short btree key in gc");
  963. if (b->c->gc_always_rewrite)
  964. return true;
  965. if (stale > 10)
  966. return true;
  967. if ((keys - good_keys) * 2 > keys)
  968. return true;
  969. return false;
  970. }
  971. #define GC_MERGE_NODES 4U
  972. struct gc_merge_info {
  973. struct btree *b;
  974. unsigned keys;
  975. };
  976. static int bch_btree_insert_node(struct btree *, struct btree_op *,
  977. struct keylist *, atomic_t *, struct bkey *);
  978. static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
  979. struct keylist *keylist, struct gc_stat *gc,
  980. struct gc_merge_info *r)
  981. {
  982. unsigned i, nodes = 0, keys = 0, blocks;
  983. struct btree *new_nodes[GC_MERGE_NODES];
  984. struct closure cl;
  985. struct bkey *k;
  986. memset(new_nodes, 0, sizeof(new_nodes));
  987. closure_init_stack(&cl);
  988. while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
  989. keys += r[nodes++].keys;
  990. blocks = btree_default_blocks(b->c) * 2 / 3;
  991. if (nodes < 2 ||
  992. __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
  993. return 0;
  994. for (i = 0; i < nodes; i++) {
  995. new_nodes[i] = btree_node_alloc_replacement(r[i].b, false);
  996. if (IS_ERR_OR_NULL(new_nodes[i]))
  997. goto out_nocoalesce;
  998. }
  999. for (i = nodes - 1; i > 0; --i) {
  1000. struct bset *n1 = new_nodes[i]->sets->data;
  1001. struct bset *n2 = new_nodes[i - 1]->sets->data;
  1002. struct bkey *k, *last = NULL;
  1003. keys = 0;
  1004. if (i > 1) {
  1005. for (k = n2->start;
  1006. k < end(n2);
  1007. k = bkey_next(k)) {
  1008. if (__set_blocks(n1, n1->keys + keys +
  1009. bkey_u64s(k), b->c) > blocks)
  1010. break;
  1011. last = k;
  1012. keys += bkey_u64s(k);
  1013. }
  1014. } else {
  1015. /*
  1016. * Last node we're not getting rid of - we're getting
  1017. * rid of the node at r[0]. Have to try and fit all of
  1018. * the remaining keys into this node; we can't ensure
  1019. * they will always fit due to rounding and variable
  1020. * length keys (shouldn't be possible in practice,
  1021. * though)
  1022. */
  1023. if (__set_blocks(n1, n1->keys + n2->keys,
  1024. b->c) > btree_blocks(new_nodes[i]))
  1025. goto out_nocoalesce;
  1026. keys = n2->keys;
  1027. /* Take the key of the node we're getting rid of */
  1028. last = &r->b->key;
  1029. }
  1030. BUG_ON(__set_blocks(n1, n1->keys + keys,
  1031. b->c) > btree_blocks(new_nodes[i]));
  1032. if (last)
  1033. bkey_copy_key(&new_nodes[i]->key, last);
  1034. memcpy(end(n1),
  1035. n2->start,
  1036. (void *) node(n2, keys) - (void *) n2->start);
  1037. n1->keys += keys;
  1038. r[i].keys = n1->keys;
  1039. memmove(n2->start,
  1040. node(n2, keys),
  1041. (void *) end(n2) - (void *) node(n2, keys));
  1042. n2->keys -= keys;
  1043. if (bch_keylist_realloc(keylist,
  1044. KEY_PTRS(&new_nodes[i]->key), b->c))
  1045. goto out_nocoalesce;
  1046. bch_btree_node_write(new_nodes[i], &cl);
  1047. bch_keylist_add(keylist, &new_nodes[i]->key);
  1048. }
  1049. for (i = 0; i < nodes; i++) {
  1050. if (bch_keylist_realloc(keylist, KEY_PTRS(&r[i].b->key), b->c))
  1051. goto out_nocoalesce;
  1052. make_btree_freeing_key(r[i].b, keylist->top);
  1053. bch_keylist_push(keylist);
  1054. }
  1055. /* We emptied out this node */
  1056. BUG_ON(new_nodes[0]->sets->data->keys);
  1057. btree_node_free(new_nodes[0]);
  1058. rw_unlock(true, new_nodes[0]);
  1059. closure_sync(&cl);
  1060. for (i = 0; i < nodes; i++) {
  1061. btree_node_free(r[i].b);
  1062. rw_unlock(true, r[i].b);
  1063. r[i].b = new_nodes[i];
  1064. }
  1065. bch_btree_insert_node(b, op, keylist, NULL, NULL);
  1066. BUG_ON(!bch_keylist_empty(keylist));
  1067. memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
  1068. r[nodes - 1].b = ERR_PTR(-EINTR);
  1069. trace_bcache_btree_gc_coalesce(nodes);
  1070. gc->nodes--;
  1071. /* Invalidated our iterator */
  1072. return -EINTR;
  1073. out_nocoalesce:
  1074. closure_sync(&cl);
  1075. while ((k = bch_keylist_pop(keylist)))
  1076. if (!bkey_cmp(k, &ZERO_KEY))
  1077. atomic_dec(&b->c->prio_blocked);
  1078. for (i = 0; i < nodes; i++)
  1079. if (!IS_ERR_OR_NULL(new_nodes[i])) {
  1080. btree_node_free(new_nodes[i]);
  1081. rw_unlock(true, new_nodes[i]);
  1082. }
  1083. return 0;
  1084. }
  1085. static unsigned btree_gc_count_keys(struct btree *b)
  1086. {
  1087. struct bkey *k;
  1088. struct btree_iter iter;
  1089. unsigned ret = 0;
  1090. for_each_key_filter(b, k, &iter, bch_ptr_bad)
  1091. ret += bkey_u64s(k);
  1092. return ret;
  1093. }
  1094. static int btree_gc_recurse(struct btree *b, struct btree_op *op,
  1095. struct closure *writes, struct gc_stat *gc)
  1096. {
  1097. unsigned i;
  1098. int ret = 0;
  1099. bool should_rewrite;
  1100. struct btree *n;
  1101. struct bkey *k;
  1102. struct keylist keys;
  1103. struct btree_iter iter;
  1104. struct gc_merge_info r[GC_MERGE_NODES];
  1105. struct gc_merge_info *last = r + GC_MERGE_NODES - 1;
  1106. bch_keylist_init(&keys);
  1107. bch_btree_iter_init(b, &iter, &b->c->gc_done);
  1108. for (i = 0; i < GC_MERGE_NODES; i++)
  1109. r[i].b = ERR_PTR(-EINTR);
  1110. while (1) {
  1111. k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
  1112. if (k) {
  1113. r->b = bch_btree_node_get(b->c, k, b->level - 1, true);
  1114. if (IS_ERR(r->b)) {
  1115. ret = PTR_ERR(r->b);
  1116. break;
  1117. }
  1118. r->keys = btree_gc_count_keys(r->b);
  1119. ret = btree_gc_coalesce(b, op, &keys, gc, r);
  1120. if (ret)
  1121. break;
  1122. }
  1123. if (!last->b)
  1124. break;
  1125. if (!IS_ERR(last->b)) {
  1126. should_rewrite = btree_gc_mark_node(last->b, gc);
  1127. if (should_rewrite) {
  1128. n = btree_node_alloc_replacement(last->b,
  1129. false);
  1130. if (!IS_ERR_OR_NULL(n)) {
  1131. bch_btree_node_write_sync(n);
  1132. bch_keylist_add(&keys, &n->key);
  1133. make_btree_freeing_key(last->b,
  1134. keys.top);
  1135. bch_keylist_push(&keys);
  1136. btree_node_free(last->b);
  1137. bch_btree_insert_node(b, op, &keys,
  1138. NULL, NULL);
  1139. BUG_ON(!bch_keylist_empty(&keys));
  1140. rw_unlock(true, last->b);
  1141. last->b = n;
  1142. /* Invalidated our iterator */
  1143. ret = -EINTR;
  1144. break;
  1145. }
  1146. }
  1147. if (last->b->level) {
  1148. ret = btree_gc_recurse(last->b, op, writes, gc);
  1149. if (ret)
  1150. break;
  1151. }
  1152. bkey_copy_key(&b->c->gc_done, &last->b->key);
  1153. /*
  1154. * Must flush leaf nodes before gc ends, since replace
  1155. * operations aren't journalled
  1156. */
  1157. if (btree_node_dirty(last->b))
  1158. bch_btree_node_write(last->b, writes);
  1159. rw_unlock(true, last->b);
  1160. }
  1161. memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
  1162. r->b = NULL;
  1163. if (need_resched()) {
  1164. ret = -EAGAIN;
  1165. break;
  1166. }
  1167. }
  1168. for (i = 0; i < GC_MERGE_NODES; i++)
  1169. if (!IS_ERR_OR_NULL(r[i].b)) {
  1170. if (btree_node_dirty(r[i].b))
  1171. bch_btree_node_write(r[i].b, writes);
  1172. rw_unlock(true, r[i].b);
  1173. }
  1174. bch_keylist_free(&keys);
  1175. return ret;
  1176. }
  1177. static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
  1178. struct closure *writes, struct gc_stat *gc)
  1179. {
  1180. struct btree *n = NULL;
  1181. int ret = 0;
  1182. bool should_rewrite;
  1183. should_rewrite = btree_gc_mark_node(b, gc);
  1184. if (should_rewrite) {
  1185. n = btree_node_alloc_replacement(b, false);
  1186. if (!IS_ERR_OR_NULL(n)) {
  1187. bch_btree_node_write_sync(n);
  1188. bch_btree_set_root(n);
  1189. btree_node_free(b);
  1190. rw_unlock(true, n);
  1191. return -EINTR;
  1192. }
  1193. }
  1194. if (b->level) {
  1195. ret = btree_gc_recurse(b, op, writes, gc);
  1196. if (ret)
  1197. return ret;
  1198. }
  1199. bkey_copy_key(&b->c->gc_done, &b->key);
  1200. return ret;
  1201. }
  1202. static void btree_gc_start(struct cache_set *c)
  1203. {
  1204. struct cache *ca;
  1205. struct bucket *b;
  1206. unsigned i;
  1207. if (!c->gc_mark_valid)
  1208. return;
  1209. mutex_lock(&c->bucket_lock);
  1210. c->gc_mark_valid = 0;
  1211. c->gc_done = ZERO_KEY;
  1212. for_each_cache(ca, c, i)
  1213. for_each_bucket(b, ca) {
  1214. b->gc_gen = b->gen;
  1215. if (!atomic_read(&b->pin)) {
  1216. SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
  1217. SET_GC_SECTORS_USED(b, 0);
  1218. }
  1219. }
  1220. mutex_unlock(&c->bucket_lock);
  1221. }
  1222. size_t bch_btree_gc_finish(struct cache_set *c)
  1223. {
  1224. size_t available = 0;
  1225. struct bucket *b;
  1226. struct cache *ca;
  1227. unsigned i;
  1228. mutex_lock(&c->bucket_lock);
  1229. set_gc_sectors(c);
  1230. c->gc_mark_valid = 1;
  1231. c->need_gc = 0;
  1232. if (c->root)
  1233. for (i = 0; i < KEY_PTRS(&c->root->key); i++)
  1234. SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
  1235. GC_MARK_METADATA);
  1236. for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
  1237. SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
  1238. GC_MARK_METADATA);
  1239. for_each_cache(ca, c, i) {
  1240. uint64_t *i;
  1241. ca->invalidate_needs_gc = 0;
  1242. for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
  1243. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1244. for (i = ca->prio_buckets;
  1245. i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
  1246. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1247. for_each_bucket(b, ca) {
  1248. b->last_gc = b->gc_gen;
  1249. c->need_gc = max(c->need_gc, bucket_gc_gen(b));
  1250. if (!atomic_read(&b->pin) &&
  1251. GC_MARK(b) == GC_MARK_RECLAIMABLE) {
  1252. available++;
  1253. if (!GC_SECTORS_USED(b))
  1254. bch_bucket_add_unused(ca, b);
  1255. }
  1256. }
  1257. }
  1258. mutex_unlock(&c->bucket_lock);
  1259. return available;
  1260. }
  1261. static void bch_btree_gc(struct cache_set *c)
  1262. {
  1263. int ret;
  1264. unsigned long available;
  1265. struct gc_stat stats;
  1266. struct closure writes;
  1267. struct btree_op op;
  1268. uint64_t start_time = local_clock();
  1269. trace_bcache_gc_start(c);
  1270. memset(&stats, 0, sizeof(struct gc_stat));
  1271. closure_init_stack(&writes);
  1272. bch_btree_op_init(&op, SHRT_MAX);
  1273. btree_gc_start(c);
  1274. do {
  1275. ret = btree_root(gc_root, c, &op, &writes, &stats);
  1276. closure_sync(&writes);
  1277. if (ret && ret != -EAGAIN)
  1278. pr_warn("gc failed!");
  1279. } while (ret);
  1280. available = bch_btree_gc_finish(c);
  1281. wake_up_allocators(c);
  1282. bch_time_stats_update(&c->btree_gc_time, start_time);
  1283. stats.key_bytes *= sizeof(uint64_t);
  1284. stats.data <<= 9;
  1285. stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
  1286. memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
  1287. trace_bcache_gc_end(c);
  1288. bch_moving_gc(c);
  1289. }
  1290. static int bch_gc_thread(void *arg)
  1291. {
  1292. struct cache_set *c = arg;
  1293. struct cache *ca;
  1294. unsigned i;
  1295. while (1) {
  1296. again:
  1297. bch_btree_gc(c);
  1298. set_current_state(TASK_INTERRUPTIBLE);
  1299. if (kthread_should_stop())
  1300. break;
  1301. mutex_lock(&c->bucket_lock);
  1302. for_each_cache(ca, c, i)
  1303. if (ca->invalidate_needs_gc) {
  1304. mutex_unlock(&c->bucket_lock);
  1305. set_current_state(TASK_RUNNING);
  1306. goto again;
  1307. }
  1308. mutex_unlock(&c->bucket_lock);
  1309. try_to_freeze();
  1310. schedule();
  1311. }
  1312. return 0;
  1313. }
  1314. int bch_gc_thread_start(struct cache_set *c)
  1315. {
  1316. c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
  1317. if (IS_ERR(c->gc_thread))
  1318. return PTR_ERR(c->gc_thread);
  1319. set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
  1320. return 0;
  1321. }
  1322. /* Initial partial gc */
  1323. static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
  1324. unsigned long **seen)
  1325. {
  1326. int ret = 0;
  1327. unsigned i;
  1328. struct bkey *k, *p = NULL;
  1329. struct bucket *g;
  1330. struct btree_iter iter;
  1331. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  1332. for (i = 0; i < KEY_PTRS(k); i++) {
  1333. if (!ptr_available(b->c, k, i))
  1334. continue;
  1335. g = PTR_BUCKET(b->c, k, i);
  1336. if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
  1337. seen[PTR_DEV(k, i)]) ||
  1338. !ptr_stale(b->c, k, i)) {
  1339. g->gen = PTR_GEN(k, i);
  1340. if (b->level)
  1341. g->prio = BTREE_PRIO;
  1342. else if (g->prio == BTREE_PRIO)
  1343. g->prio = INITIAL_PRIO;
  1344. }
  1345. }
  1346. btree_mark_key(b, k);
  1347. }
  1348. if (b->level) {
  1349. bch_btree_iter_init(b, &iter, NULL);
  1350. do {
  1351. k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
  1352. if (k)
  1353. btree_node_prefetch(b->c, k, b->level - 1);
  1354. if (p)
  1355. ret = btree(check_recurse, p, b, op, seen);
  1356. p = k;
  1357. } while (p && !ret);
  1358. }
  1359. return 0;
  1360. }
  1361. int bch_btree_check(struct cache_set *c)
  1362. {
  1363. int ret = -ENOMEM;
  1364. unsigned i;
  1365. unsigned long *seen[MAX_CACHES_PER_SET];
  1366. struct btree_op op;
  1367. memset(seen, 0, sizeof(seen));
  1368. bch_btree_op_init(&op, SHRT_MAX);
  1369. for (i = 0; c->cache[i]; i++) {
  1370. size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
  1371. seen[i] = kmalloc(n, GFP_KERNEL);
  1372. if (!seen[i])
  1373. goto err;
  1374. /* Disables the seen array until prio_read() uses it too */
  1375. memset(seen[i], 0xFF, n);
  1376. }
  1377. ret = btree_root(check_recurse, c, &op, seen);
  1378. err:
  1379. for (i = 0; i < MAX_CACHES_PER_SET; i++)
  1380. kfree(seen[i]);
  1381. return ret;
  1382. }
  1383. /* Btree insertion */
  1384. static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
  1385. {
  1386. struct bset *i = b->sets[b->nsets].data;
  1387. memmove((uint64_t *) where + bkey_u64s(insert),
  1388. where,
  1389. (void *) end(i) - (void *) where);
  1390. i->keys += bkey_u64s(insert);
  1391. bkey_copy(where, insert);
  1392. bch_bset_fix_lookup_table(b, where);
  1393. }
  1394. static bool fix_overlapping_extents(struct btree *b, struct bkey *insert,
  1395. struct btree_iter *iter,
  1396. struct bkey *replace_key)
  1397. {
  1398. void subtract_dirty(struct bkey *k, uint64_t offset, int sectors)
  1399. {
  1400. if (KEY_DIRTY(k))
  1401. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1402. offset, -sectors);
  1403. }
  1404. uint64_t old_offset;
  1405. unsigned old_size, sectors_found = 0;
  1406. while (1) {
  1407. struct bkey *k = bch_btree_iter_next(iter);
  1408. if (!k ||
  1409. bkey_cmp(&START_KEY(k), insert) >= 0)
  1410. break;
  1411. if (bkey_cmp(k, &START_KEY(insert)) <= 0)
  1412. continue;
  1413. old_offset = KEY_START(k);
  1414. old_size = KEY_SIZE(k);
  1415. /*
  1416. * We might overlap with 0 size extents; we can't skip these
  1417. * because if they're in the set we're inserting to we have to
  1418. * adjust them so they don't overlap with the key we're
  1419. * inserting. But we don't want to check them for replace
  1420. * operations.
  1421. */
  1422. if (replace_key && KEY_SIZE(k)) {
  1423. /*
  1424. * k might have been split since we inserted/found the
  1425. * key we're replacing
  1426. */
  1427. unsigned i;
  1428. uint64_t offset = KEY_START(k) -
  1429. KEY_START(replace_key);
  1430. /* But it must be a subset of the replace key */
  1431. if (KEY_START(k) < KEY_START(replace_key) ||
  1432. KEY_OFFSET(k) > KEY_OFFSET(replace_key))
  1433. goto check_failed;
  1434. /* We didn't find a key that we were supposed to */
  1435. if (KEY_START(k) > KEY_START(insert) + sectors_found)
  1436. goto check_failed;
  1437. if (KEY_PTRS(replace_key) != KEY_PTRS(k))
  1438. goto check_failed;
  1439. /* skip past gen */
  1440. offset <<= 8;
  1441. BUG_ON(!KEY_PTRS(replace_key));
  1442. for (i = 0; i < KEY_PTRS(replace_key); i++)
  1443. if (k->ptr[i] != replace_key->ptr[i] + offset)
  1444. goto check_failed;
  1445. sectors_found = KEY_OFFSET(k) - KEY_START(insert);
  1446. }
  1447. if (bkey_cmp(insert, k) < 0 &&
  1448. bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
  1449. /*
  1450. * We overlapped in the middle of an existing key: that
  1451. * means we have to split the old key. But we have to do
  1452. * slightly different things depending on whether the
  1453. * old key has been written out yet.
  1454. */
  1455. struct bkey *top;
  1456. subtract_dirty(k, KEY_START(insert), KEY_SIZE(insert));
  1457. if (bkey_written(b, k)) {
  1458. /*
  1459. * We insert a new key to cover the top of the
  1460. * old key, and the old key is modified in place
  1461. * to represent the bottom split.
  1462. *
  1463. * It's completely arbitrary whether the new key
  1464. * is the top or the bottom, but it has to match
  1465. * up with what btree_sort_fixup() does - it
  1466. * doesn't check for this kind of overlap, it
  1467. * depends on us inserting a new key for the top
  1468. * here.
  1469. */
  1470. top = bch_bset_search(b, &b->sets[b->nsets],
  1471. insert);
  1472. shift_keys(b, top, k);
  1473. } else {
  1474. BKEY_PADDED(key) temp;
  1475. bkey_copy(&temp.key, k);
  1476. shift_keys(b, k, &temp.key);
  1477. top = bkey_next(k);
  1478. }
  1479. bch_cut_front(insert, top);
  1480. bch_cut_back(&START_KEY(insert), k);
  1481. bch_bset_fix_invalidated_key(b, k);
  1482. return false;
  1483. }
  1484. if (bkey_cmp(insert, k) < 0) {
  1485. bch_cut_front(insert, k);
  1486. } else {
  1487. if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
  1488. old_offset = KEY_START(insert);
  1489. if (bkey_written(b, k) &&
  1490. bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
  1491. /*
  1492. * Completely overwrote, so we don't have to
  1493. * invalidate the binary search tree
  1494. */
  1495. bch_cut_front(k, k);
  1496. } else {
  1497. __bch_cut_back(&START_KEY(insert), k);
  1498. bch_bset_fix_invalidated_key(b, k);
  1499. }
  1500. }
  1501. subtract_dirty(k, old_offset, old_size - KEY_SIZE(k));
  1502. }
  1503. check_failed:
  1504. if (replace_key) {
  1505. if (!sectors_found) {
  1506. return true;
  1507. } else if (sectors_found < KEY_SIZE(insert)) {
  1508. SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
  1509. (KEY_SIZE(insert) - sectors_found));
  1510. SET_KEY_SIZE(insert, sectors_found);
  1511. }
  1512. }
  1513. return false;
  1514. }
  1515. static bool btree_insert_key(struct btree *b, struct btree_op *op,
  1516. struct bkey *k, struct bkey *replace_key)
  1517. {
  1518. struct bset *i = b->sets[b->nsets].data;
  1519. struct bkey *m, *prev;
  1520. unsigned status = BTREE_INSERT_STATUS_INSERT;
  1521. BUG_ON(bkey_cmp(k, &b->key) > 0);
  1522. BUG_ON(b->level && !KEY_PTRS(k));
  1523. BUG_ON(!b->level && !KEY_OFFSET(k));
  1524. if (!b->level) {
  1525. struct btree_iter iter;
  1526. /*
  1527. * bset_search() returns the first key that is strictly greater
  1528. * than the search key - but for back merging, we want to find
  1529. * the previous key.
  1530. */
  1531. prev = NULL;
  1532. m = bch_btree_iter_init(b, &iter, PRECEDING_KEY(&START_KEY(k)));
  1533. if (fix_overlapping_extents(b, k, &iter, replace_key)) {
  1534. op->insert_collision = true;
  1535. return false;
  1536. }
  1537. if (KEY_DIRTY(k))
  1538. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1539. KEY_START(k), KEY_SIZE(k));
  1540. while (m != end(i) &&
  1541. bkey_cmp(k, &START_KEY(m)) > 0)
  1542. prev = m, m = bkey_next(m);
  1543. if (key_merging_disabled(b->c))
  1544. goto insert;
  1545. /* prev is in the tree, if we merge we're done */
  1546. status = BTREE_INSERT_STATUS_BACK_MERGE;
  1547. if (prev &&
  1548. bch_bkey_try_merge(b, prev, k))
  1549. goto merged;
  1550. status = BTREE_INSERT_STATUS_OVERWROTE;
  1551. if (m != end(i) &&
  1552. KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
  1553. goto copy;
  1554. status = BTREE_INSERT_STATUS_FRONT_MERGE;
  1555. if (m != end(i) &&
  1556. bch_bkey_try_merge(b, k, m))
  1557. goto copy;
  1558. } else {
  1559. BUG_ON(replace_key);
  1560. m = bch_bset_search(b, &b->sets[b->nsets], k);
  1561. }
  1562. insert: shift_keys(b, m, k);
  1563. copy: bkey_copy(m, k);
  1564. merged:
  1565. bch_check_keys(b, "%u for %s", status,
  1566. replace_key ? "replace" : "insert");
  1567. if (b->level && !KEY_OFFSET(k))
  1568. btree_current_write(b)->prio_blocked++;
  1569. trace_bcache_btree_insert_key(b, k, replace_key != NULL, status);
  1570. return true;
  1571. }
  1572. static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
  1573. struct keylist *insert_keys,
  1574. struct bkey *replace_key)
  1575. {
  1576. bool ret = false;
  1577. int oldsize = bch_count_data(b);
  1578. while (!bch_keylist_empty(insert_keys)) {
  1579. struct bset *i = write_block(b);
  1580. struct bkey *k = insert_keys->keys;
  1581. if (b->written + __set_blocks(i, i->keys + bkey_u64s(k), b->c)
  1582. > btree_blocks(b))
  1583. break;
  1584. if (bkey_cmp(k, &b->key) <= 0) {
  1585. if (!b->level)
  1586. bkey_put(b->c, k);
  1587. ret |= btree_insert_key(b, op, k, replace_key);
  1588. bch_keylist_pop_front(insert_keys);
  1589. } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
  1590. BKEY_PADDED(key) temp;
  1591. bkey_copy(&temp.key, insert_keys->keys);
  1592. bch_cut_back(&b->key, &temp.key);
  1593. bch_cut_front(&b->key, insert_keys->keys);
  1594. ret |= btree_insert_key(b, op, &temp.key, replace_key);
  1595. break;
  1596. } else {
  1597. break;
  1598. }
  1599. }
  1600. BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
  1601. BUG_ON(bch_count_data(b) < oldsize);
  1602. return ret;
  1603. }
  1604. static int btree_split(struct btree *b, struct btree_op *op,
  1605. struct keylist *insert_keys,
  1606. struct bkey *replace_key)
  1607. {
  1608. bool split;
  1609. struct btree *n1, *n2 = NULL, *n3 = NULL;
  1610. uint64_t start_time = local_clock();
  1611. struct closure cl;
  1612. struct keylist parent_keys;
  1613. closure_init_stack(&cl);
  1614. bch_keylist_init(&parent_keys);
  1615. n1 = btree_node_alloc_replacement(b, true);
  1616. if (IS_ERR(n1))
  1617. goto err;
  1618. split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
  1619. if (split) {
  1620. unsigned keys = 0;
  1621. trace_bcache_btree_node_split(b, n1->sets[0].data->keys);
  1622. n2 = bch_btree_node_alloc(b->c, b->level, true);
  1623. if (IS_ERR(n2))
  1624. goto err_free1;
  1625. if (!b->parent) {
  1626. n3 = bch_btree_node_alloc(b->c, b->level + 1, true);
  1627. if (IS_ERR(n3))
  1628. goto err_free2;
  1629. }
  1630. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1631. /*
  1632. * Has to be a linear search because we don't have an auxiliary
  1633. * search tree yet
  1634. */
  1635. while (keys < (n1->sets[0].data->keys * 3) / 5)
  1636. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1637. bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
  1638. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1639. n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
  1640. n1->sets[0].data->keys = keys;
  1641. memcpy(n2->sets[0].data->start,
  1642. end(n1->sets[0].data),
  1643. n2->sets[0].data->keys * sizeof(uint64_t));
  1644. bkey_copy_key(&n2->key, &b->key);
  1645. bch_keylist_add(&parent_keys, &n2->key);
  1646. bch_btree_node_write(n2, &cl);
  1647. rw_unlock(true, n2);
  1648. } else {
  1649. trace_bcache_btree_node_compact(b, n1->sets[0].data->keys);
  1650. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1651. }
  1652. bch_keylist_add(&parent_keys, &n1->key);
  1653. bch_btree_node_write(n1, &cl);
  1654. if (n3) {
  1655. /* Depth increases, make a new root */
  1656. bkey_copy_key(&n3->key, &MAX_KEY);
  1657. bch_btree_insert_keys(n3, op, &parent_keys, NULL);
  1658. bch_btree_node_write(n3, &cl);
  1659. closure_sync(&cl);
  1660. bch_btree_set_root(n3);
  1661. rw_unlock(true, n3);
  1662. btree_node_free(b);
  1663. } else if (!b->parent) {
  1664. /* Root filled up but didn't need to be split */
  1665. closure_sync(&cl);
  1666. bch_btree_set_root(n1);
  1667. btree_node_free(b);
  1668. } else {
  1669. /* Split a non root node */
  1670. closure_sync(&cl);
  1671. make_btree_freeing_key(b, parent_keys.top);
  1672. bch_keylist_push(&parent_keys);
  1673. btree_node_free(b);
  1674. bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
  1675. BUG_ON(!bch_keylist_empty(&parent_keys));
  1676. }
  1677. rw_unlock(true, n1);
  1678. bch_time_stats_update(&b->c->btree_split_time, start_time);
  1679. return 0;
  1680. err_free2:
  1681. btree_node_free(n2);
  1682. rw_unlock(true, n2);
  1683. err_free1:
  1684. btree_node_free(n1);
  1685. rw_unlock(true, n1);
  1686. err:
  1687. if (n3 == ERR_PTR(-EAGAIN) ||
  1688. n2 == ERR_PTR(-EAGAIN) ||
  1689. n1 == ERR_PTR(-EAGAIN))
  1690. return -EAGAIN;
  1691. pr_warn("couldn't split");
  1692. return -ENOMEM;
  1693. }
  1694. static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
  1695. struct keylist *insert_keys,
  1696. atomic_t *journal_ref,
  1697. struct bkey *replace_key)
  1698. {
  1699. BUG_ON(b->level && replace_key);
  1700. if (should_split(b)) {
  1701. if (current->bio_list) {
  1702. op->lock = b->c->root->level + 1;
  1703. return -EAGAIN;
  1704. } else if (op->lock <= b->c->root->level) {
  1705. op->lock = b->c->root->level + 1;
  1706. return -EINTR;
  1707. } else {
  1708. /* Invalidated all iterators */
  1709. return btree_split(b, op, insert_keys, replace_key) ?:
  1710. -EINTR;
  1711. }
  1712. } else {
  1713. BUG_ON(write_block(b) != b->sets[b->nsets].data);
  1714. if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
  1715. if (!b->level)
  1716. bch_btree_leaf_dirty(b, journal_ref);
  1717. else
  1718. bch_btree_node_write_sync(b);
  1719. }
  1720. return 0;
  1721. }
  1722. }
  1723. int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
  1724. struct bkey *check_key)
  1725. {
  1726. int ret = -EINTR;
  1727. uint64_t btree_ptr = b->key.ptr[0];
  1728. unsigned long seq = b->seq;
  1729. struct keylist insert;
  1730. bool upgrade = op->lock == -1;
  1731. bch_keylist_init(&insert);
  1732. if (upgrade) {
  1733. rw_unlock(false, b);
  1734. rw_lock(true, b, b->level);
  1735. if (b->key.ptr[0] != btree_ptr ||
  1736. b->seq != seq + 1)
  1737. goto out;
  1738. }
  1739. SET_KEY_PTRS(check_key, 1);
  1740. get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
  1741. SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
  1742. bch_keylist_add(&insert, check_key);
  1743. ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
  1744. BUG_ON(!ret && !bch_keylist_empty(&insert));
  1745. out:
  1746. if (upgrade)
  1747. downgrade_write(&b->lock);
  1748. return ret;
  1749. }
  1750. struct btree_insert_op {
  1751. struct btree_op op;
  1752. struct keylist *keys;
  1753. atomic_t *journal_ref;
  1754. struct bkey *replace_key;
  1755. };
  1756. int btree_insert_fn(struct btree_op *b_op, struct btree *b)
  1757. {
  1758. struct btree_insert_op *op = container_of(b_op,
  1759. struct btree_insert_op, op);
  1760. int ret = bch_btree_insert_node(b, &op->op, op->keys,
  1761. op->journal_ref, op->replace_key);
  1762. if (ret && !bch_keylist_empty(op->keys))
  1763. return ret;
  1764. else
  1765. return MAP_DONE;
  1766. }
  1767. int bch_btree_insert(struct cache_set *c, struct keylist *keys,
  1768. atomic_t *journal_ref, struct bkey *replace_key)
  1769. {
  1770. struct btree_insert_op op;
  1771. int ret = 0;
  1772. BUG_ON(current->bio_list);
  1773. BUG_ON(bch_keylist_empty(keys));
  1774. bch_btree_op_init(&op.op, 0);
  1775. op.keys = keys;
  1776. op.journal_ref = journal_ref;
  1777. op.replace_key = replace_key;
  1778. while (!ret && !bch_keylist_empty(keys)) {
  1779. op.op.lock = 0;
  1780. ret = bch_btree_map_leaf_nodes(&op.op, c,
  1781. &START_KEY(keys->keys),
  1782. btree_insert_fn);
  1783. }
  1784. if (ret) {
  1785. struct bkey *k;
  1786. pr_err("error %i", ret);
  1787. while ((k = bch_keylist_pop(keys)))
  1788. bkey_put(c, k);
  1789. } else if (op.op.insert_collision)
  1790. ret = -ESRCH;
  1791. return ret;
  1792. }
  1793. void bch_btree_set_root(struct btree *b)
  1794. {
  1795. unsigned i;
  1796. struct closure cl;
  1797. closure_init_stack(&cl);
  1798. trace_bcache_btree_set_root(b);
  1799. BUG_ON(!b->written);
  1800. for (i = 0; i < KEY_PTRS(&b->key); i++)
  1801. BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
  1802. mutex_lock(&b->c->bucket_lock);
  1803. list_del_init(&b->list);
  1804. mutex_unlock(&b->c->bucket_lock);
  1805. b->c->root = b;
  1806. bch_journal_meta(b->c, &cl);
  1807. closure_sync(&cl);
  1808. }
  1809. /* Map across nodes or keys */
  1810. static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
  1811. struct bkey *from,
  1812. btree_map_nodes_fn *fn, int flags)
  1813. {
  1814. int ret = MAP_CONTINUE;
  1815. if (b->level) {
  1816. struct bkey *k;
  1817. struct btree_iter iter;
  1818. bch_btree_iter_init(b, &iter, from);
  1819. while ((k = bch_btree_iter_next_filter(&iter, b,
  1820. bch_ptr_bad))) {
  1821. ret = btree(map_nodes_recurse, k, b,
  1822. op, from, fn, flags);
  1823. from = NULL;
  1824. if (ret != MAP_CONTINUE)
  1825. return ret;
  1826. }
  1827. }
  1828. if (!b->level || flags == MAP_ALL_NODES)
  1829. ret = fn(op, b);
  1830. return ret;
  1831. }
  1832. int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
  1833. struct bkey *from, btree_map_nodes_fn *fn, int flags)
  1834. {
  1835. return btree_root(map_nodes_recurse, c, op, from, fn, flags);
  1836. }
  1837. static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
  1838. struct bkey *from, btree_map_keys_fn *fn,
  1839. int flags)
  1840. {
  1841. int ret = MAP_CONTINUE;
  1842. struct bkey *k;
  1843. struct btree_iter iter;
  1844. bch_btree_iter_init(b, &iter, from);
  1845. while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad))) {
  1846. ret = !b->level
  1847. ? fn(op, b, k)
  1848. : btree(map_keys_recurse, k, b, op, from, fn, flags);
  1849. from = NULL;
  1850. if (ret != MAP_CONTINUE)
  1851. return ret;
  1852. }
  1853. if (!b->level && (flags & MAP_END_KEY))
  1854. ret = fn(op, b, &KEY(KEY_INODE(&b->key),
  1855. KEY_OFFSET(&b->key), 0));
  1856. return ret;
  1857. }
  1858. int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
  1859. struct bkey *from, btree_map_keys_fn *fn, int flags)
  1860. {
  1861. return btree_root(map_keys_recurse, c, op, from, fn, flags);
  1862. }
  1863. /* Keybuf code */
  1864. static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
  1865. {
  1866. /* Overlapping keys compare equal */
  1867. if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
  1868. return -1;
  1869. if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
  1870. return 1;
  1871. return 0;
  1872. }
  1873. static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
  1874. struct keybuf_key *r)
  1875. {
  1876. return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
  1877. }
  1878. struct refill {
  1879. struct btree_op op;
  1880. unsigned nr_found;
  1881. struct keybuf *buf;
  1882. struct bkey *end;
  1883. keybuf_pred_fn *pred;
  1884. };
  1885. static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
  1886. struct bkey *k)
  1887. {
  1888. struct refill *refill = container_of(op, struct refill, op);
  1889. struct keybuf *buf = refill->buf;
  1890. int ret = MAP_CONTINUE;
  1891. if (bkey_cmp(k, refill->end) >= 0) {
  1892. ret = MAP_DONE;
  1893. goto out;
  1894. }
  1895. if (!KEY_SIZE(k)) /* end key */
  1896. goto out;
  1897. if (refill->pred(buf, k)) {
  1898. struct keybuf_key *w;
  1899. spin_lock(&buf->lock);
  1900. w = array_alloc(&buf->freelist);
  1901. if (!w) {
  1902. spin_unlock(&buf->lock);
  1903. return MAP_DONE;
  1904. }
  1905. w->private = NULL;
  1906. bkey_copy(&w->key, k);
  1907. if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
  1908. array_free(&buf->freelist, w);
  1909. else
  1910. refill->nr_found++;
  1911. if (array_freelist_empty(&buf->freelist))
  1912. ret = MAP_DONE;
  1913. spin_unlock(&buf->lock);
  1914. }
  1915. out:
  1916. buf->last_scanned = *k;
  1917. return ret;
  1918. }
  1919. void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
  1920. struct bkey *end, keybuf_pred_fn *pred)
  1921. {
  1922. struct bkey start = buf->last_scanned;
  1923. struct refill refill;
  1924. cond_resched();
  1925. bch_btree_op_init(&refill.op, -1);
  1926. refill.nr_found = 0;
  1927. refill.buf = buf;
  1928. refill.end = end;
  1929. refill.pred = pred;
  1930. bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
  1931. refill_keybuf_fn, MAP_END_KEY);
  1932. trace_bcache_keyscan(refill.nr_found,
  1933. KEY_INODE(&start), KEY_OFFSET(&start),
  1934. KEY_INODE(&buf->last_scanned),
  1935. KEY_OFFSET(&buf->last_scanned));
  1936. spin_lock(&buf->lock);
  1937. if (!RB_EMPTY_ROOT(&buf->keys)) {
  1938. struct keybuf_key *w;
  1939. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1940. buf->start = START_KEY(&w->key);
  1941. w = RB_LAST(&buf->keys, struct keybuf_key, node);
  1942. buf->end = w->key;
  1943. } else {
  1944. buf->start = MAX_KEY;
  1945. buf->end = MAX_KEY;
  1946. }
  1947. spin_unlock(&buf->lock);
  1948. }
  1949. static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1950. {
  1951. rb_erase(&w->node, &buf->keys);
  1952. array_free(&buf->freelist, w);
  1953. }
  1954. void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1955. {
  1956. spin_lock(&buf->lock);
  1957. __bch_keybuf_del(buf, w);
  1958. spin_unlock(&buf->lock);
  1959. }
  1960. bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
  1961. struct bkey *end)
  1962. {
  1963. bool ret = false;
  1964. struct keybuf_key *p, *w, s;
  1965. s.key = *start;
  1966. if (bkey_cmp(end, &buf->start) <= 0 ||
  1967. bkey_cmp(start, &buf->end) >= 0)
  1968. return false;
  1969. spin_lock(&buf->lock);
  1970. w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
  1971. while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
  1972. p = w;
  1973. w = RB_NEXT(w, node);
  1974. if (p->private)
  1975. ret = true;
  1976. else
  1977. __bch_keybuf_del(buf, p);
  1978. }
  1979. spin_unlock(&buf->lock);
  1980. return ret;
  1981. }
  1982. struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
  1983. {
  1984. struct keybuf_key *w;
  1985. spin_lock(&buf->lock);
  1986. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1987. while (w && w->private)
  1988. w = RB_NEXT(w, node);
  1989. if (w)
  1990. w->private = ERR_PTR(-EINTR);
  1991. spin_unlock(&buf->lock);
  1992. return w;
  1993. }
  1994. struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
  1995. struct keybuf *buf,
  1996. struct bkey *end,
  1997. keybuf_pred_fn *pred)
  1998. {
  1999. struct keybuf_key *ret;
  2000. while (1) {
  2001. ret = bch_keybuf_next(buf);
  2002. if (ret)
  2003. break;
  2004. if (bkey_cmp(&buf->last_scanned, end) >= 0) {
  2005. pr_debug("scan finished");
  2006. break;
  2007. }
  2008. bch_refill_keybuf(c, buf, end, pred);
  2009. }
  2010. return ret;
  2011. }
  2012. void bch_keybuf_init(struct keybuf *buf)
  2013. {
  2014. buf->last_scanned = MAX_KEY;
  2015. buf->keys = RB_ROOT;
  2016. spin_lock_init(&buf->lock);
  2017. array_allocator_init(&buf->freelist);
  2018. }
  2019. void bch_btree_exit(void)
  2020. {
  2021. if (btree_io_wq)
  2022. destroy_workqueue(btree_io_wq);
  2023. }
  2024. int __init bch_btree_init(void)
  2025. {
  2026. btree_io_wq = create_singlethread_workqueue("bch_btree_io");
  2027. if (!btree_io_wq)
  2028. return -ENOMEM;
  2029. return 0;
  2030. }