cpuset.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. *
  18. * This file is subject to the terms and conditions of the GNU General Public
  19. * License. See the file COPYING in the main directory of the Linux
  20. * distribution for more details.
  21. */
  22. #include <linux/cpu.h>
  23. #include <linux/cpumask.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/err.h>
  26. #include <linux/errno.h>
  27. #include <linux/file.h>
  28. #include <linux/fs.h>
  29. #include <linux/init.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/kernel.h>
  32. #include <linux/kmod.h>
  33. #include <linux/list.h>
  34. #include <linux/mempolicy.h>
  35. #include <linux/mm.h>
  36. #include <linux/module.h>
  37. #include <linux/mount.h>
  38. #include <linux/namei.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/proc_fs.h>
  41. #include <linux/rcupdate.h>
  42. #include <linux/sched.h>
  43. #include <linux/seq_file.h>
  44. #include <linux/security.h>
  45. #include <linux/slab.h>
  46. #include <linux/spinlock.h>
  47. #include <linux/stat.h>
  48. #include <linux/string.h>
  49. #include <linux/time.h>
  50. #include <linux/backing-dev.h>
  51. #include <linux/sort.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/atomic.h>
  54. #include <linux/mutex.h>
  55. #include <linux/kfifo.h>
  56. #include <linux/workqueue.h>
  57. #include <linux/cgroup.h>
  58. /*
  59. * Tracks how many cpusets are currently defined in system.
  60. * When there is only one cpuset (the root cpuset) we can
  61. * short circuit some hooks.
  62. */
  63. int number_of_cpusets __read_mostly;
  64. /* Forward declare cgroup structures */
  65. struct cgroup_subsys cpuset_subsys;
  66. struct cpuset;
  67. /* See "Frequency meter" comments, below. */
  68. struct fmeter {
  69. int cnt; /* unprocessed events count */
  70. int val; /* most recent output value */
  71. time_t time; /* clock (secs) when val computed */
  72. spinlock_t lock; /* guards read or write of above */
  73. };
  74. struct cpuset {
  75. struct cgroup_subsys_state css;
  76. unsigned long flags; /* "unsigned long" so bitops work */
  77. cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  78. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  79. struct cpuset *parent; /* my parent */
  80. /*
  81. * Copy of global cpuset_mems_generation as of the most
  82. * recent time this cpuset changed its mems_allowed.
  83. */
  84. int mems_generation;
  85. struct fmeter fmeter; /* memory_pressure filter */
  86. /* partition number for rebuild_sched_domains() */
  87. int pn;
  88. /* for custom sched domain */
  89. int relax_domain_level;
  90. /* used for walking a cpuset heirarchy */
  91. struct list_head stack_list;
  92. };
  93. /* Retrieve the cpuset for a cgroup */
  94. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  95. {
  96. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  97. struct cpuset, css);
  98. }
  99. /* Retrieve the cpuset for a task */
  100. static inline struct cpuset *task_cs(struct task_struct *task)
  101. {
  102. return container_of(task_subsys_state(task, cpuset_subsys_id),
  103. struct cpuset, css);
  104. }
  105. struct cpuset_hotplug_scanner {
  106. struct cgroup_scanner scan;
  107. struct cgroup *to;
  108. };
  109. /* bits in struct cpuset flags field */
  110. typedef enum {
  111. CS_CPU_EXCLUSIVE,
  112. CS_MEM_EXCLUSIVE,
  113. CS_MEM_HARDWALL,
  114. CS_MEMORY_MIGRATE,
  115. CS_SCHED_LOAD_BALANCE,
  116. CS_SPREAD_PAGE,
  117. CS_SPREAD_SLAB,
  118. } cpuset_flagbits_t;
  119. /* convenient tests for these bits */
  120. static inline int is_cpu_exclusive(const struct cpuset *cs)
  121. {
  122. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  123. }
  124. static inline int is_mem_exclusive(const struct cpuset *cs)
  125. {
  126. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  127. }
  128. static inline int is_mem_hardwall(const struct cpuset *cs)
  129. {
  130. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  131. }
  132. static inline int is_sched_load_balance(const struct cpuset *cs)
  133. {
  134. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  135. }
  136. static inline int is_memory_migrate(const struct cpuset *cs)
  137. {
  138. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  139. }
  140. static inline int is_spread_page(const struct cpuset *cs)
  141. {
  142. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  143. }
  144. static inline int is_spread_slab(const struct cpuset *cs)
  145. {
  146. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  147. }
  148. /*
  149. * Increment this integer everytime any cpuset changes its
  150. * mems_allowed value. Users of cpusets can track this generation
  151. * number, and avoid having to lock and reload mems_allowed unless
  152. * the cpuset they're using changes generation.
  153. *
  154. * A single, global generation is needed because cpuset_attach_task() could
  155. * reattach a task to a different cpuset, which must not have its
  156. * generation numbers aliased with those of that tasks previous cpuset.
  157. *
  158. * Generations are needed for mems_allowed because one task cannot
  159. * modify another's memory placement. So we must enable every task,
  160. * on every visit to __alloc_pages(), to efficiently check whether
  161. * its current->cpuset->mems_allowed has changed, requiring an update
  162. * of its current->mems_allowed.
  163. *
  164. * Since writes to cpuset_mems_generation are guarded by the cgroup lock
  165. * there is no need to mark it atomic.
  166. */
  167. static int cpuset_mems_generation;
  168. static struct cpuset top_cpuset = {
  169. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  170. .cpus_allowed = CPU_MASK_ALL,
  171. .mems_allowed = NODE_MASK_ALL,
  172. };
  173. /*
  174. * There are two global mutexes guarding cpuset structures. The first
  175. * is the main control groups cgroup_mutex, accessed via
  176. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  177. * callback_mutex, below. They can nest. It is ok to first take
  178. * cgroup_mutex, then nest callback_mutex. We also require taking
  179. * task_lock() when dereferencing a task's cpuset pointer. See "The
  180. * task_lock() exception", at the end of this comment.
  181. *
  182. * A task must hold both mutexes to modify cpusets. If a task
  183. * holds cgroup_mutex, then it blocks others wanting that mutex,
  184. * ensuring that it is the only task able to also acquire callback_mutex
  185. * and be able to modify cpusets. It can perform various checks on
  186. * the cpuset structure first, knowing nothing will change. It can
  187. * also allocate memory while just holding cgroup_mutex. While it is
  188. * performing these checks, various callback routines can briefly
  189. * acquire callback_mutex to query cpusets. Once it is ready to make
  190. * the changes, it takes callback_mutex, blocking everyone else.
  191. *
  192. * Calls to the kernel memory allocator can not be made while holding
  193. * callback_mutex, as that would risk double tripping on callback_mutex
  194. * from one of the callbacks into the cpuset code from within
  195. * __alloc_pages().
  196. *
  197. * If a task is only holding callback_mutex, then it has read-only
  198. * access to cpusets.
  199. *
  200. * The task_struct fields mems_allowed and mems_generation may only
  201. * be accessed in the context of that task, so require no locks.
  202. *
  203. * The cpuset_common_file_read() handlers only hold callback_mutex across
  204. * small pieces of code, such as when reading out possibly multi-word
  205. * cpumasks and nodemasks.
  206. *
  207. * Accessing a task's cpuset should be done in accordance with the
  208. * guidelines for accessing subsystem state in kernel/cgroup.c
  209. */
  210. static DEFINE_MUTEX(callback_mutex);
  211. /* This is ugly, but preserves the userspace API for existing cpuset
  212. * users. If someone tries to mount the "cpuset" filesystem, we
  213. * silently switch it to mount "cgroup" instead */
  214. static int cpuset_get_sb(struct file_system_type *fs_type,
  215. int flags, const char *unused_dev_name,
  216. void *data, struct vfsmount *mnt)
  217. {
  218. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  219. int ret = -ENODEV;
  220. if (cgroup_fs) {
  221. char mountopts[] =
  222. "cpuset,noprefix,"
  223. "release_agent=/sbin/cpuset_release_agent";
  224. ret = cgroup_fs->get_sb(cgroup_fs, flags,
  225. unused_dev_name, mountopts, mnt);
  226. put_filesystem(cgroup_fs);
  227. }
  228. return ret;
  229. }
  230. static struct file_system_type cpuset_fs_type = {
  231. .name = "cpuset",
  232. .get_sb = cpuset_get_sb,
  233. };
  234. /*
  235. * Return in *pmask the portion of a cpusets's cpus_allowed that
  236. * are online. If none are online, walk up the cpuset hierarchy
  237. * until we find one that does have some online cpus. If we get
  238. * all the way to the top and still haven't found any online cpus,
  239. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  240. * task, return cpu_online_map.
  241. *
  242. * One way or another, we guarantee to return some non-empty subset
  243. * of cpu_online_map.
  244. *
  245. * Call with callback_mutex held.
  246. */
  247. static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
  248. {
  249. while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
  250. cs = cs->parent;
  251. if (cs)
  252. cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
  253. else
  254. *pmask = cpu_online_map;
  255. BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
  256. }
  257. /*
  258. * Return in *pmask the portion of a cpusets's mems_allowed that
  259. * are online, with memory. If none are online with memory, walk
  260. * up the cpuset hierarchy until we find one that does have some
  261. * online mems. If we get all the way to the top and still haven't
  262. * found any online mems, return node_states[N_HIGH_MEMORY].
  263. *
  264. * One way or another, we guarantee to return some non-empty subset
  265. * of node_states[N_HIGH_MEMORY].
  266. *
  267. * Call with callback_mutex held.
  268. */
  269. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  270. {
  271. while (cs && !nodes_intersects(cs->mems_allowed,
  272. node_states[N_HIGH_MEMORY]))
  273. cs = cs->parent;
  274. if (cs)
  275. nodes_and(*pmask, cs->mems_allowed,
  276. node_states[N_HIGH_MEMORY]);
  277. else
  278. *pmask = node_states[N_HIGH_MEMORY];
  279. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  280. }
  281. /**
  282. * cpuset_update_task_memory_state - update task memory placement
  283. *
  284. * If the current tasks cpusets mems_allowed changed behind our
  285. * backs, update current->mems_allowed, mems_generation and task NUMA
  286. * mempolicy to the new value.
  287. *
  288. * Task mempolicy is updated by rebinding it relative to the
  289. * current->cpuset if a task has its memory placement changed.
  290. * Do not call this routine if in_interrupt().
  291. *
  292. * Call without callback_mutex or task_lock() held. May be
  293. * called with or without cgroup_mutex held. Thanks in part to
  294. * 'the_top_cpuset_hack', the task's cpuset pointer will never
  295. * be NULL. This routine also might acquire callback_mutex during
  296. * call.
  297. *
  298. * Reading current->cpuset->mems_generation doesn't need task_lock
  299. * to guard the current->cpuset derefence, because it is guarded
  300. * from concurrent freeing of current->cpuset using RCU.
  301. *
  302. * The rcu_dereference() is technically probably not needed,
  303. * as I don't actually mind if I see a new cpuset pointer but
  304. * an old value of mems_generation. However this really only
  305. * matters on alpha systems using cpusets heavily. If I dropped
  306. * that rcu_dereference(), it would save them a memory barrier.
  307. * For all other arch's, rcu_dereference is a no-op anyway, and for
  308. * alpha systems not using cpusets, another planned optimization,
  309. * avoiding the rcu critical section for tasks in the root cpuset
  310. * which is statically allocated, so can't vanish, will make this
  311. * irrelevant. Better to use RCU as intended, than to engage in
  312. * some cute trick to save a memory barrier that is impossible to
  313. * test, for alpha systems using cpusets heavily, which might not
  314. * even exist.
  315. *
  316. * This routine is needed to update the per-task mems_allowed data,
  317. * within the tasks context, when it is trying to allocate memory
  318. * (in various mm/mempolicy.c routines) and notices that some other
  319. * task has been modifying its cpuset.
  320. */
  321. void cpuset_update_task_memory_state(void)
  322. {
  323. int my_cpusets_mem_gen;
  324. struct task_struct *tsk = current;
  325. struct cpuset *cs;
  326. if (task_cs(tsk) == &top_cpuset) {
  327. /* Don't need rcu for top_cpuset. It's never freed. */
  328. my_cpusets_mem_gen = top_cpuset.mems_generation;
  329. } else {
  330. rcu_read_lock();
  331. my_cpusets_mem_gen = task_cs(current)->mems_generation;
  332. rcu_read_unlock();
  333. }
  334. if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
  335. mutex_lock(&callback_mutex);
  336. task_lock(tsk);
  337. cs = task_cs(tsk); /* Maybe changed when task not locked */
  338. guarantee_online_mems(cs, &tsk->mems_allowed);
  339. tsk->cpuset_mems_generation = cs->mems_generation;
  340. if (is_spread_page(cs))
  341. tsk->flags |= PF_SPREAD_PAGE;
  342. else
  343. tsk->flags &= ~PF_SPREAD_PAGE;
  344. if (is_spread_slab(cs))
  345. tsk->flags |= PF_SPREAD_SLAB;
  346. else
  347. tsk->flags &= ~PF_SPREAD_SLAB;
  348. task_unlock(tsk);
  349. mutex_unlock(&callback_mutex);
  350. mpol_rebind_task(tsk, &tsk->mems_allowed);
  351. }
  352. }
  353. /*
  354. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  355. *
  356. * One cpuset is a subset of another if all its allowed CPUs and
  357. * Memory Nodes are a subset of the other, and its exclusive flags
  358. * are only set if the other's are set. Call holding cgroup_mutex.
  359. */
  360. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  361. {
  362. return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
  363. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  364. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  365. is_mem_exclusive(p) <= is_mem_exclusive(q);
  366. }
  367. /*
  368. * validate_change() - Used to validate that any proposed cpuset change
  369. * follows the structural rules for cpusets.
  370. *
  371. * If we replaced the flag and mask values of the current cpuset
  372. * (cur) with those values in the trial cpuset (trial), would
  373. * our various subset and exclusive rules still be valid? Presumes
  374. * cgroup_mutex held.
  375. *
  376. * 'cur' is the address of an actual, in-use cpuset. Operations
  377. * such as list traversal that depend on the actual address of the
  378. * cpuset in the list must use cur below, not trial.
  379. *
  380. * 'trial' is the address of bulk structure copy of cur, with
  381. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  382. * or flags changed to new, trial values.
  383. *
  384. * Return 0 if valid, -errno if not.
  385. */
  386. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  387. {
  388. struct cgroup *cont;
  389. struct cpuset *c, *par;
  390. /* Each of our child cpusets must be a subset of us */
  391. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  392. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  393. return -EBUSY;
  394. }
  395. /* Remaining checks don't apply to root cpuset */
  396. if (cur == &top_cpuset)
  397. return 0;
  398. par = cur->parent;
  399. /* We must be a subset of our parent cpuset */
  400. if (!is_cpuset_subset(trial, par))
  401. return -EACCES;
  402. /*
  403. * If either I or some sibling (!= me) is exclusive, we can't
  404. * overlap
  405. */
  406. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  407. c = cgroup_cs(cont);
  408. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  409. c != cur &&
  410. cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
  411. return -EINVAL;
  412. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  413. c != cur &&
  414. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  415. return -EINVAL;
  416. }
  417. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  418. if (cgroup_task_count(cur->css.cgroup)) {
  419. if (cpus_empty(trial->cpus_allowed) ||
  420. nodes_empty(trial->mems_allowed)) {
  421. return -ENOSPC;
  422. }
  423. }
  424. return 0;
  425. }
  426. /*
  427. * Helper routine for rebuild_sched_domains().
  428. * Do cpusets a, b have overlapping cpus_allowed masks?
  429. */
  430. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  431. {
  432. return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
  433. }
  434. static void
  435. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  436. {
  437. if (!dattr)
  438. return;
  439. if (dattr->relax_domain_level < c->relax_domain_level)
  440. dattr->relax_domain_level = c->relax_domain_level;
  441. return;
  442. }
  443. /*
  444. * rebuild_sched_domains()
  445. *
  446. * This routine will be called to rebuild the scheduler's dynamic
  447. * sched domains:
  448. * - if the flag 'sched_load_balance' of any cpuset with non-empty
  449. * 'cpus' changes,
  450. * - or if the 'cpus' allowed changes in any cpuset which has that
  451. * flag enabled,
  452. * - or if the 'sched_relax_domain_level' of any cpuset which has
  453. * that flag enabled and with non-empty 'cpus' changes,
  454. * - or if any cpuset with non-empty 'cpus' is removed,
  455. * - or if a cpu gets offlined.
  456. *
  457. * This routine builds a partial partition of the systems CPUs
  458. * (the set of non-overlappping cpumask_t's in the array 'part'
  459. * below), and passes that partial partition to the kernel/sched.c
  460. * partition_sched_domains() routine, which will rebuild the
  461. * schedulers load balancing domains (sched domains) as specified
  462. * by that partial partition. A 'partial partition' is a set of
  463. * non-overlapping subsets whose union is a subset of that set.
  464. *
  465. * See "What is sched_load_balance" in Documentation/cpusets.txt
  466. * for a background explanation of this.
  467. *
  468. * Does not return errors, on the theory that the callers of this
  469. * routine would rather not worry about failures to rebuild sched
  470. * domains when operating in the severe memory shortage situations
  471. * that could cause allocation failures below.
  472. *
  473. * Call with cgroup_mutex held. May take callback_mutex during
  474. * call due to the kfifo_alloc() and kmalloc() calls. May nest
  475. * a call to the get_online_cpus()/put_online_cpus() pair.
  476. * Must not be called holding callback_mutex, because we must not
  477. * call get_online_cpus() while holding callback_mutex. Elsewhere
  478. * the kernel nests callback_mutex inside get_online_cpus() calls.
  479. * So the reverse nesting would risk an ABBA deadlock.
  480. *
  481. * The three key local variables below are:
  482. * q - a kfifo queue of cpuset pointers, used to implement a
  483. * top-down scan of all cpusets. This scan loads a pointer
  484. * to each cpuset marked is_sched_load_balance into the
  485. * array 'csa'. For our purposes, rebuilding the schedulers
  486. * sched domains, we can ignore !is_sched_load_balance cpusets.
  487. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  488. * that need to be load balanced, for convenient iterative
  489. * access by the subsequent code that finds the best partition,
  490. * i.e the set of domains (subsets) of CPUs such that the
  491. * cpus_allowed of every cpuset marked is_sched_load_balance
  492. * is a subset of one of these domains, while there are as
  493. * many such domains as possible, each as small as possible.
  494. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  495. * the kernel/sched.c routine partition_sched_domains() in a
  496. * convenient format, that can be easily compared to the prior
  497. * value to determine what partition elements (sched domains)
  498. * were changed (added or removed.)
  499. *
  500. * Finding the best partition (set of domains):
  501. * The triple nested loops below over i, j, k scan over the
  502. * load balanced cpusets (using the array of cpuset pointers in
  503. * csa[]) looking for pairs of cpusets that have overlapping
  504. * cpus_allowed, but which don't have the same 'pn' partition
  505. * number and gives them in the same partition number. It keeps
  506. * looping on the 'restart' label until it can no longer find
  507. * any such pairs.
  508. *
  509. * The union of the cpus_allowed masks from the set of
  510. * all cpusets having the same 'pn' value then form the one
  511. * element of the partition (one sched domain) to be passed to
  512. * partition_sched_domains().
  513. */
  514. void rebuild_sched_domains(void)
  515. {
  516. struct kfifo *q; /* queue of cpusets to be scanned */
  517. struct cpuset *cp; /* scans q */
  518. struct cpuset **csa; /* array of all cpuset ptrs */
  519. int csn; /* how many cpuset ptrs in csa so far */
  520. int i, j, k; /* indices for partition finding loops */
  521. cpumask_t *doms; /* resulting partition; i.e. sched domains */
  522. struct sched_domain_attr *dattr; /* attributes for custom domains */
  523. int ndoms; /* number of sched domains in result */
  524. int nslot; /* next empty doms[] cpumask_t slot */
  525. q = NULL;
  526. csa = NULL;
  527. doms = NULL;
  528. dattr = NULL;
  529. /* Special case for the 99% of systems with one, full, sched domain */
  530. if (is_sched_load_balance(&top_cpuset)) {
  531. ndoms = 1;
  532. doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  533. if (!doms)
  534. goto rebuild;
  535. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  536. if (dattr) {
  537. *dattr = SD_ATTR_INIT;
  538. update_domain_attr(dattr, &top_cpuset);
  539. }
  540. *doms = top_cpuset.cpus_allowed;
  541. goto rebuild;
  542. }
  543. q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
  544. if (IS_ERR(q))
  545. goto done;
  546. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  547. if (!csa)
  548. goto done;
  549. csn = 0;
  550. cp = &top_cpuset;
  551. __kfifo_put(q, (void *)&cp, sizeof(cp));
  552. while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
  553. struct cgroup *cont;
  554. struct cpuset *child; /* scans child cpusets of cp */
  555. if (cpus_empty(cp->cpus_allowed))
  556. continue;
  557. if (is_sched_load_balance(cp))
  558. csa[csn++] = cp;
  559. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  560. child = cgroup_cs(cont);
  561. __kfifo_put(q, (void *)&child, sizeof(cp));
  562. }
  563. }
  564. for (i = 0; i < csn; i++)
  565. csa[i]->pn = i;
  566. ndoms = csn;
  567. restart:
  568. /* Find the best partition (set of sched domains) */
  569. for (i = 0; i < csn; i++) {
  570. struct cpuset *a = csa[i];
  571. int apn = a->pn;
  572. for (j = 0; j < csn; j++) {
  573. struct cpuset *b = csa[j];
  574. int bpn = b->pn;
  575. if (apn != bpn && cpusets_overlap(a, b)) {
  576. for (k = 0; k < csn; k++) {
  577. struct cpuset *c = csa[k];
  578. if (c->pn == bpn)
  579. c->pn = apn;
  580. }
  581. ndoms--; /* one less element */
  582. goto restart;
  583. }
  584. }
  585. }
  586. /* Convert <csn, csa> to <ndoms, doms> */
  587. doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
  588. if (!doms)
  589. goto rebuild;
  590. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  591. for (nslot = 0, i = 0; i < csn; i++) {
  592. struct cpuset *a = csa[i];
  593. int apn = a->pn;
  594. if (apn >= 0) {
  595. cpumask_t *dp = doms + nslot;
  596. if (nslot == ndoms) {
  597. static int warnings = 10;
  598. if (warnings) {
  599. printk(KERN_WARNING
  600. "rebuild_sched_domains confused:"
  601. " nslot %d, ndoms %d, csn %d, i %d,"
  602. " apn %d\n",
  603. nslot, ndoms, csn, i, apn);
  604. warnings--;
  605. }
  606. continue;
  607. }
  608. cpus_clear(*dp);
  609. if (dattr)
  610. *(dattr + nslot) = SD_ATTR_INIT;
  611. for (j = i; j < csn; j++) {
  612. struct cpuset *b = csa[j];
  613. if (apn == b->pn) {
  614. cpus_or(*dp, *dp, b->cpus_allowed);
  615. b->pn = -1;
  616. if (dattr)
  617. update_domain_attr(dattr
  618. + nslot, b);
  619. }
  620. }
  621. nslot++;
  622. }
  623. }
  624. BUG_ON(nslot != ndoms);
  625. rebuild:
  626. /* Have scheduler rebuild sched domains */
  627. get_online_cpus();
  628. partition_sched_domains(ndoms, doms, dattr);
  629. put_online_cpus();
  630. done:
  631. if (q && !IS_ERR(q))
  632. kfifo_free(q);
  633. kfree(csa);
  634. /* Don't kfree(doms) -- partition_sched_domains() does that. */
  635. /* Don't kfree(dattr) -- partition_sched_domains() does that. */
  636. }
  637. static inline int started_after_time(struct task_struct *t1,
  638. struct timespec *time,
  639. struct task_struct *t2)
  640. {
  641. int start_diff = timespec_compare(&t1->start_time, time);
  642. if (start_diff > 0) {
  643. return 1;
  644. } else if (start_diff < 0) {
  645. return 0;
  646. } else {
  647. /*
  648. * Arbitrarily, if two processes started at the same
  649. * time, we'll say that the lower pointer value
  650. * started first. Note that t2 may have exited by now
  651. * so this may not be a valid pointer any longer, but
  652. * that's fine - it still serves to distinguish
  653. * between two tasks started (effectively)
  654. * simultaneously.
  655. */
  656. return t1 > t2;
  657. }
  658. }
  659. static inline int started_after(void *p1, void *p2)
  660. {
  661. struct task_struct *t1 = p1;
  662. struct task_struct *t2 = p2;
  663. return started_after_time(t1, &t2->start_time, t2);
  664. }
  665. /**
  666. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  667. * @tsk: task to test
  668. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  669. *
  670. * Call with cgroup_mutex held. May take callback_mutex during call.
  671. * Called for each task in a cgroup by cgroup_scan_tasks().
  672. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  673. * words, if its mask is not equal to its cpuset's mask).
  674. */
  675. static int cpuset_test_cpumask(struct task_struct *tsk,
  676. struct cgroup_scanner *scan)
  677. {
  678. return !cpus_equal(tsk->cpus_allowed,
  679. (cgroup_cs(scan->cg))->cpus_allowed);
  680. }
  681. /**
  682. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  683. * @tsk: task to test
  684. * @scan: struct cgroup_scanner containing the cgroup of the task
  685. *
  686. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  687. * cpus_allowed mask needs to be changed.
  688. *
  689. * We don't need to re-check for the cgroup/cpuset membership, since we're
  690. * holding cgroup_lock() at this point.
  691. */
  692. static void cpuset_change_cpumask(struct task_struct *tsk,
  693. struct cgroup_scanner *scan)
  694. {
  695. set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
  696. }
  697. /**
  698. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  699. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  700. *
  701. * Called with cgroup_mutex held
  702. *
  703. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  704. * calling callback functions for each.
  705. *
  706. * Return 0 if successful, -errno if not.
  707. */
  708. static int update_tasks_cpumask(struct cpuset *cs)
  709. {
  710. struct cgroup_scanner scan;
  711. struct ptr_heap heap;
  712. int retval;
  713. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
  714. if (retval)
  715. return retval;
  716. scan.cg = cs->css.cgroup;
  717. scan.test_task = cpuset_test_cpumask;
  718. scan.process_task = cpuset_change_cpumask;
  719. scan.heap = &heap;
  720. retval = cgroup_scan_tasks(&scan);
  721. heap_free(&heap);
  722. return retval;
  723. }
  724. /**
  725. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  726. * @cs: the cpuset to consider
  727. * @buf: buffer of cpu numbers written to this cpuset
  728. */
  729. static int update_cpumask(struct cpuset *cs, const char *buf)
  730. {
  731. struct cpuset trialcs;
  732. int retval;
  733. int is_load_balanced;
  734. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  735. if (cs == &top_cpuset)
  736. return -EACCES;
  737. trialcs = *cs;
  738. /*
  739. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  740. * Since cpulist_parse() fails on an empty mask, we special case
  741. * that parsing. The validate_change() call ensures that cpusets
  742. * with tasks have cpus.
  743. */
  744. if (!*buf) {
  745. cpus_clear(trialcs.cpus_allowed);
  746. } else {
  747. retval = cpulist_parse(buf, trialcs.cpus_allowed);
  748. if (retval < 0)
  749. return retval;
  750. if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
  751. return -EINVAL;
  752. }
  753. retval = validate_change(cs, &trialcs);
  754. if (retval < 0)
  755. return retval;
  756. /* Nothing to do if the cpus didn't change */
  757. if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
  758. return 0;
  759. is_load_balanced = is_sched_load_balance(&trialcs);
  760. mutex_lock(&callback_mutex);
  761. cs->cpus_allowed = trialcs.cpus_allowed;
  762. mutex_unlock(&callback_mutex);
  763. /*
  764. * Scan tasks in the cpuset, and update the cpumasks of any
  765. * that need an update.
  766. */
  767. retval = update_tasks_cpumask(cs);
  768. if (retval < 0)
  769. return retval;
  770. if (is_load_balanced)
  771. rebuild_sched_domains();
  772. return 0;
  773. }
  774. /*
  775. * cpuset_migrate_mm
  776. *
  777. * Migrate memory region from one set of nodes to another.
  778. *
  779. * Temporarilly set tasks mems_allowed to target nodes of migration,
  780. * so that the migration code can allocate pages on these nodes.
  781. *
  782. * Call holding cgroup_mutex, so current's cpuset won't change
  783. * during this call, as manage_mutex holds off any cpuset_attach()
  784. * calls. Therefore we don't need to take task_lock around the
  785. * call to guarantee_online_mems(), as we know no one is changing
  786. * our task's cpuset.
  787. *
  788. * Hold callback_mutex around the two modifications of our tasks
  789. * mems_allowed to synchronize with cpuset_mems_allowed().
  790. *
  791. * While the mm_struct we are migrating is typically from some
  792. * other task, the task_struct mems_allowed that we are hacking
  793. * is for our current task, which must allocate new pages for that
  794. * migrating memory region.
  795. *
  796. * We call cpuset_update_task_memory_state() before hacking
  797. * our tasks mems_allowed, so that we are assured of being in
  798. * sync with our tasks cpuset, and in particular, callbacks to
  799. * cpuset_update_task_memory_state() from nested page allocations
  800. * won't see any mismatch of our cpuset and task mems_generation
  801. * values, so won't overwrite our hacked tasks mems_allowed
  802. * nodemask.
  803. */
  804. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  805. const nodemask_t *to)
  806. {
  807. struct task_struct *tsk = current;
  808. cpuset_update_task_memory_state();
  809. mutex_lock(&callback_mutex);
  810. tsk->mems_allowed = *to;
  811. mutex_unlock(&callback_mutex);
  812. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  813. mutex_lock(&callback_mutex);
  814. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  815. mutex_unlock(&callback_mutex);
  816. }
  817. static void *cpuset_being_rebound;
  818. /**
  819. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  820. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  821. * @oldmem: old mems_allowed of cpuset cs
  822. *
  823. * Called with cgroup_mutex held
  824. * Return 0 if successful, -errno if not.
  825. */
  826. static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
  827. {
  828. struct task_struct *p;
  829. struct mm_struct **mmarray;
  830. int i, n, ntasks;
  831. int migrate;
  832. int fudge;
  833. struct cgroup_iter it;
  834. int retval;
  835. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  836. fudge = 10; /* spare mmarray[] slots */
  837. fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
  838. retval = -ENOMEM;
  839. /*
  840. * Allocate mmarray[] to hold mm reference for each task
  841. * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
  842. * tasklist_lock. We could use GFP_ATOMIC, but with a
  843. * few more lines of code, we can retry until we get a big
  844. * enough mmarray[] w/o using GFP_ATOMIC.
  845. */
  846. while (1) {
  847. ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
  848. ntasks += fudge;
  849. mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
  850. if (!mmarray)
  851. goto done;
  852. read_lock(&tasklist_lock); /* block fork */
  853. if (cgroup_task_count(cs->css.cgroup) <= ntasks)
  854. break; /* got enough */
  855. read_unlock(&tasklist_lock); /* try again */
  856. kfree(mmarray);
  857. }
  858. n = 0;
  859. /* Load up mmarray[] with mm reference for each task in cpuset. */
  860. cgroup_iter_start(cs->css.cgroup, &it);
  861. while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
  862. struct mm_struct *mm;
  863. if (n >= ntasks) {
  864. printk(KERN_WARNING
  865. "Cpuset mempolicy rebind incomplete.\n");
  866. break;
  867. }
  868. mm = get_task_mm(p);
  869. if (!mm)
  870. continue;
  871. mmarray[n++] = mm;
  872. }
  873. cgroup_iter_end(cs->css.cgroup, &it);
  874. read_unlock(&tasklist_lock);
  875. /*
  876. * Now that we've dropped the tasklist spinlock, we can
  877. * rebind the vma mempolicies of each mm in mmarray[] to their
  878. * new cpuset, and release that mm. The mpol_rebind_mm()
  879. * call takes mmap_sem, which we couldn't take while holding
  880. * tasklist_lock. Forks can happen again now - the mpol_dup()
  881. * cpuset_being_rebound check will catch such forks, and rebind
  882. * their vma mempolicies too. Because we still hold the global
  883. * cgroup_mutex, we know that no other rebind effort will
  884. * be contending for the global variable cpuset_being_rebound.
  885. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  886. * is idempotent. Also migrate pages in each mm to new nodes.
  887. */
  888. migrate = is_memory_migrate(cs);
  889. for (i = 0; i < n; i++) {
  890. struct mm_struct *mm = mmarray[i];
  891. mpol_rebind_mm(mm, &cs->mems_allowed);
  892. if (migrate)
  893. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  894. mmput(mm);
  895. }
  896. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  897. kfree(mmarray);
  898. cpuset_being_rebound = NULL;
  899. retval = 0;
  900. done:
  901. return retval;
  902. }
  903. /*
  904. * Handle user request to change the 'mems' memory placement
  905. * of a cpuset. Needs to validate the request, update the
  906. * cpusets mems_allowed and mems_generation, and for each
  907. * task in the cpuset, rebind any vma mempolicies and if
  908. * the cpuset is marked 'memory_migrate', migrate the tasks
  909. * pages to the new memory.
  910. *
  911. * Call with cgroup_mutex held. May take callback_mutex during call.
  912. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  913. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  914. * their mempolicies to the cpusets new mems_allowed.
  915. */
  916. static int update_nodemask(struct cpuset *cs, const char *buf)
  917. {
  918. struct cpuset trialcs;
  919. nodemask_t oldmem;
  920. int retval;
  921. /*
  922. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  923. * it's read-only
  924. */
  925. if (cs == &top_cpuset)
  926. return -EACCES;
  927. trialcs = *cs;
  928. /*
  929. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  930. * Since nodelist_parse() fails on an empty mask, we special case
  931. * that parsing. The validate_change() call ensures that cpusets
  932. * with tasks have memory.
  933. */
  934. if (!*buf) {
  935. nodes_clear(trialcs.mems_allowed);
  936. } else {
  937. retval = nodelist_parse(buf, trialcs.mems_allowed);
  938. if (retval < 0)
  939. goto done;
  940. if (!nodes_subset(trialcs.mems_allowed,
  941. node_states[N_HIGH_MEMORY]))
  942. return -EINVAL;
  943. }
  944. oldmem = cs->mems_allowed;
  945. if (nodes_equal(oldmem, trialcs.mems_allowed)) {
  946. retval = 0; /* Too easy - nothing to do */
  947. goto done;
  948. }
  949. retval = validate_change(cs, &trialcs);
  950. if (retval < 0)
  951. goto done;
  952. mutex_lock(&callback_mutex);
  953. cs->mems_allowed = trialcs.mems_allowed;
  954. cs->mems_generation = cpuset_mems_generation++;
  955. mutex_unlock(&callback_mutex);
  956. retval = update_tasks_nodemask(cs, &oldmem);
  957. done:
  958. return retval;
  959. }
  960. int current_cpuset_is_being_rebound(void)
  961. {
  962. return task_cs(current) == cpuset_being_rebound;
  963. }
  964. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  965. {
  966. if (val < -1 || val >= SD_LV_MAX)
  967. return -EINVAL;
  968. if (val != cs->relax_domain_level) {
  969. cs->relax_domain_level = val;
  970. if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
  971. rebuild_sched_domains();
  972. }
  973. return 0;
  974. }
  975. /*
  976. * update_flag - read a 0 or a 1 in a file and update associated flag
  977. * bit: the bit to update (see cpuset_flagbits_t)
  978. * cs: the cpuset to update
  979. * turning_on: whether the flag is being set or cleared
  980. *
  981. * Call with cgroup_mutex held.
  982. */
  983. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  984. int turning_on)
  985. {
  986. struct cpuset trialcs;
  987. int err;
  988. int cpus_nonempty, balance_flag_changed;
  989. trialcs = *cs;
  990. if (turning_on)
  991. set_bit(bit, &trialcs.flags);
  992. else
  993. clear_bit(bit, &trialcs.flags);
  994. err = validate_change(cs, &trialcs);
  995. if (err < 0)
  996. return err;
  997. cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
  998. balance_flag_changed = (is_sched_load_balance(cs) !=
  999. is_sched_load_balance(&trialcs));
  1000. mutex_lock(&callback_mutex);
  1001. cs->flags = trialcs.flags;
  1002. mutex_unlock(&callback_mutex);
  1003. if (cpus_nonempty && balance_flag_changed)
  1004. rebuild_sched_domains();
  1005. return 0;
  1006. }
  1007. /*
  1008. * Frequency meter - How fast is some event occurring?
  1009. *
  1010. * These routines manage a digitally filtered, constant time based,
  1011. * event frequency meter. There are four routines:
  1012. * fmeter_init() - initialize a frequency meter.
  1013. * fmeter_markevent() - called each time the event happens.
  1014. * fmeter_getrate() - returns the recent rate of such events.
  1015. * fmeter_update() - internal routine used to update fmeter.
  1016. *
  1017. * A common data structure is passed to each of these routines,
  1018. * which is used to keep track of the state required to manage the
  1019. * frequency meter and its digital filter.
  1020. *
  1021. * The filter works on the number of events marked per unit time.
  1022. * The filter is single-pole low-pass recursive (IIR). The time unit
  1023. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1024. * simulate 3 decimal digits of precision (multiplied by 1000).
  1025. *
  1026. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1027. * has a half-life of 10 seconds, meaning that if the events quit
  1028. * happening, then the rate returned from the fmeter_getrate()
  1029. * will be cut in half each 10 seconds, until it converges to zero.
  1030. *
  1031. * It is not worth doing a real infinitely recursive filter. If more
  1032. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1033. * just compute FM_MAXTICKS ticks worth, by which point the level
  1034. * will be stable.
  1035. *
  1036. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1037. * arithmetic overflow in the fmeter_update() routine.
  1038. *
  1039. * Given the simple 32 bit integer arithmetic used, this meter works
  1040. * best for reporting rates between one per millisecond (msec) and
  1041. * one per 32 (approx) seconds. At constant rates faster than one
  1042. * per msec it maxes out at values just under 1,000,000. At constant
  1043. * rates between one per msec, and one per second it will stabilize
  1044. * to a value N*1000, where N is the rate of events per second.
  1045. * At constant rates between one per second and one per 32 seconds,
  1046. * it will be choppy, moving up on the seconds that have an event,
  1047. * and then decaying until the next event. At rates slower than
  1048. * about one in 32 seconds, it decays all the way back to zero between
  1049. * each event.
  1050. */
  1051. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1052. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1053. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1054. #define FM_SCALE 1000 /* faux fixed point scale */
  1055. /* Initialize a frequency meter */
  1056. static void fmeter_init(struct fmeter *fmp)
  1057. {
  1058. fmp->cnt = 0;
  1059. fmp->val = 0;
  1060. fmp->time = 0;
  1061. spin_lock_init(&fmp->lock);
  1062. }
  1063. /* Internal meter update - process cnt events and update value */
  1064. static void fmeter_update(struct fmeter *fmp)
  1065. {
  1066. time_t now = get_seconds();
  1067. time_t ticks = now - fmp->time;
  1068. if (ticks == 0)
  1069. return;
  1070. ticks = min(FM_MAXTICKS, ticks);
  1071. while (ticks-- > 0)
  1072. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1073. fmp->time = now;
  1074. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1075. fmp->cnt = 0;
  1076. }
  1077. /* Process any previous ticks, then bump cnt by one (times scale). */
  1078. static void fmeter_markevent(struct fmeter *fmp)
  1079. {
  1080. spin_lock(&fmp->lock);
  1081. fmeter_update(fmp);
  1082. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1083. spin_unlock(&fmp->lock);
  1084. }
  1085. /* Process any previous ticks, then return current value. */
  1086. static int fmeter_getrate(struct fmeter *fmp)
  1087. {
  1088. int val;
  1089. spin_lock(&fmp->lock);
  1090. fmeter_update(fmp);
  1091. val = fmp->val;
  1092. spin_unlock(&fmp->lock);
  1093. return val;
  1094. }
  1095. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1096. static int cpuset_can_attach(struct cgroup_subsys *ss,
  1097. struct cgroup *cont, struct task_struct *tsk)
  1098. {
  1099. struct cpuset *cs = cgroup_cs(cont);
  1100. if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1101. return -ENOSPC;
  1102. if (tsk->flags & PF_THREAD_BOUND) {
  1103. cpumask_t mask;
  1104. mutex_lock(&callback_mutex);
  1105. mask = cs->cpus_allowed;
  1106. mutex_unlock(&callback_mutex);
  1107. if (!cpus_equal(tsk->cpus_allowed, mask))
  1108. return -EINVAL;
  1109. }
  1110. return security_task_setscheduler(tsk, 0, NULL);
  1111. }
  1112. static void cpuset_attach(struct cgroup_subsys *ss,
  1113. struct cgroup *cont, struct cgroup *oldcont,
  1114. struct task_struct *tsk)
  1115. {
  1116. cpumask_t cpus;
  1117. nodemask_t from, to;
  1118. struct mm_struct *mm;
  1119. struct cpuset *cs = cgroup_cs(cont);
  1120. struct cpuset *oldcs = cgroup_cs(oldcont);
  1121. int err;
  1122. mutex_lock(&callback_mutex);
  1123. guarantee_online_cpus(cs, &cpus);
  1124. err = set_cpus_allowed_ptr(tsk, &cpus);
  1125. mutex_unlock(&callback_mutex);
  1126. if (err)
  1127. return;
  1128. from = oldcs->mems_allowed;
  1129. to = cs->mems_allowed;
  1130. mm = get_task_mm(tsk);
  1131. if (mm) {
  1132. mpol_rebind_mm(mm, &to);
  1133. if (is_memory_migrate(cs))
  1134. cpuset_migrate_mm(mm, &from, &to);
  1135. mmput(mm);
  1136. }
  1137. }
  1138. /* The various types of files and directories in a cpuset file system */
  1139. typedef enum {
  1140. FILE_MEMORY_MIGRATE,
  1141. FILE_CPULIST,
  1142. FILE_MEMLIST,
  1143. FILE_CPU_EXCLUSIVE,
  1144. FILE_MEM_EXCLUSIVE,
  1145. FILE_MEM_HARDWALL,
  1146. FILE_SCHED_LOAD_BALANCE,
  1147. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1148. FILE_MEMORY_PRESSURE_ENABLED,
  1149. FILE_MEMORY_PRESSURE,
  1150. FILE_SPREAD_PAGE,
  1151. FILE_SPREAD_SLAB,
  1152. } cpuset_filetype_t;
  1153. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1154. {
  1155. int retval = 0;
  1156. struct cpuset *cs = cgroup_cs(cgrp);
  1157. cpuset_filetype_t type = cft->private;
  1158. if (!cgroup_lock_live_group(cgrp))
  1159. return -ENODEV;
  1160. switch (type) {
  1161. case FILE_CPU_EXCLUSIVE:
  1162. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1163. break;
  1164. case FILE_MEM_EXCLUSIVE:
  1165. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1166. break;
  1167. case FILE_MEM_HARDWALL:
  1168. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1169. break;
  1170. case FILE_SCHED_LOAD_BALANCE:
  1171. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1172. break;
  1173. case FILE_MEMORY_MIGRATE:
  1174. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1175. break;
  1176. case FILE_MEMORY_PRESSURE_ENABLED:
  1177. cpuset_memory_pressure_enabled = !!val;
  1178. break;
  1179. case FILE_MEMORY_PRESSURE:
  1180. retval = -EACCES;
  1181. break;
  1182. case FILE_SPREAD_PAGE:
  1183. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1184. cs->mems_generation = cpuset_mems_generation++;
  1185. break;
  1186. case FILE_SPREAD_SLAB:
  1187. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1188. cs->mems_generation = cpuset_mems_generation++;
  1189. break;
  1190. default:
  1191. retval = -EINVAL;
  1192. break;
  1193. }
  1194. cgroup_unlock();
  1195. return retval;
  1196. }
  1197. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1198. {
  1199. int retval = 0;
  1200. struct cpuset *cs = cgroup_cs(cgrp);
  1201. cpuset_filetype_t type = cft->private;
  1202. if (!cgroup_lock_live_group(cgrp))
  1203. return -ENODEV;
  1204. switch (type) {
  1205. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1206. retval = update_relax_domain_level(cs, val);
  1207. break;
  1208. default:
  1209. retval = -EINVAL;
  1210. break;
  1211. }
  1212. cgroup_unlock();
  1213. return retval;
  1214. }
  1215. /*
  1216. * Common handling for a write to a "cpus" or "mems" file.
  1217. */
  1218. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1219. const char *buf)
  1220. {
  1221. int retval = 0;
  1222. if (!cgroup_lock_live_group(cgrp))
  1223. return -ENODEV;
  1224. switch (cft->private) {
  1225. case FILE_CPULIST:
  1226. retval = update_cpumask(cgroup_cs(cgrp), buf);
  1227. break;
  1228. case FILE_MEMLIST:
  1229. retval = update_nodemask(cgroup_cs(cgrp), buf);
  1230. break;
  1231. default:
  1232. retval = -EINVAL;
  1233. break;
  1234. }
  1235. cgroup_unlock();
  1236. return retval;
  1237. }
  1238. /*
  1239. * These ascii lists should be read in a single call, by using a user
  1240. * buffer large enough to hold the entire map. If read in smaller
  1241. * chunks, there is no guarantee of atomicity. Since the display format
  1242. * used, list of ranges of sequential numbers, is variable length,
  1243. * and since these maps can change value dynamically, one could read
  1244. * gibberish by doing partial reads while a list was changing.
  1245. * A single large read to a buffer that crosses a page boundary is
  1246. * ok, because the result being copied to user land is not recomputed
  1247. * across a page fault.
  1248. */
  1249. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1250. {
  1251. cpumask_t mask;
  1252. mutex_lock(&callback_mutex);
  1253. mask = cs->cpus_allowed;
  1254. mutex_unlock(&callback_mutex);
  1255. return cpulist_scnprintf(page, PAGE_SIZE, mask);
  1256. }
  1257. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1258. {
  1259. nodemask_t mask;
  1260. mutex_lock(&callback_mutex);
  1261. mask = cs->mems_allowed;
  1262. mutex_unlock(&callback_mutex);
  1263. return nodelist_scnprintf(page, PAGE_SIZE, mask);
  1264. }
  1265. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1266. struct cftype *cft,
  1267. struct file *file,
  1268. char __user *buf,
  1269. size_t nbytes, loff_t *ppos)
  1270. {
  1271. struct cpuset *cs = cgroup_cs(cont);
  1272. cpuset_filetype_t type = cft->private;
  1273. char *page;
  1274. ssize_t retval = 0;
  1275. char *s;
  1276. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1277. return -ENOMEM;
  1278. s = page;
  1279. switch (type) {
  1280. case FILE_CPULIST:
  1281. s += cpuset_sprintf_cpulist(s, cs);
  1282. break;
  1283. case FILE_MEMLIST:
  1284. s += cpuset_sprintf_memlist(s, cs);
  1285. break;
  1286. default:
  1287. retval = -EINVAL;
  1288. goto out;
  1289. }
  1290. *s++ = '\n';
  1291. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1292. out:
  1293. free_page((unsigned long)page);
  1294. return retval;
  1295. }
  1296. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1297. {
  1298. struct cpuset *cs = cgroup_cs(cont);
  1299. cpuset_filetype_t type = cft->private;
  1300. switch (type) {
  1301. case FILE_CPU_EXCLUSIVE:
  1302. return is_cpu_exclusive(cs);
  1303. case FILE_MEM_EXCLUSIVE:
  1304. return is_mem_exclusive(cs);
  1305. case FILE_MEM_HARDWALL:
  1306. return is_mem_hardwall(cs);
  1307. case FILE_SCHED_LOAD_BALANCE:
  1308. return is_sched_load_balance(cs);
  1309. case FILE_MEMORY_MIGRATE:
  1310. return is_memory_migrate(cs);
  1311. case FILE_MEMORY_PRESSURE_ENABLED:
  1312. return cpuset_memory_pressure_enabled;
  1313. case FILE_MEMORY_PRESSURE:
  1314. return fmeter_getrate(&cs->fmeter);
  1315. case FILE_SPREAD_PAGE:
  1316. return is_spread_page(cs);
  1317. case FILE_SPREAD_SLAB:
  1318. return is_spread_slab(cs);
  1319. default:
  1320. BUG();
  1321. }
  1322. }
  1323. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1324. {
  1325. struct cpuset *cs = cgroup_cs(cont);
  1326. cpuset_filetype_t type = cft->private;
  1327. switch (type) {
  1328. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1329. return cs->relax_domain_level;
  1330. default:
  1331. BUG();
  1332. }
  1333. }
  1334. /*
  1335. * for the common functions, 'private' gives the type of file
  1336. */
  1337. static struct cftype files[] = {
  1338. {
  1339. .name = "cpus",
  1340. .read = cpuset_common_file_read,
  1341. .write_string = cpuset_write_resmask,
  1342. .max_write_len = (100U + 6 * NR_CPUS),
  1343. .private = FILE_CPULIST,
  1344. },
  1345. {
  1346. .name = "mems",
  1347. .read = cpuset_common_file_read,
  1348. .write_string = cpuset_write_resmask,
  1349. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1350. .private = FILE_MEMLIST,
  1351. },
  1352. {
  1353. .name = "cpu_exclusive",
  1354. .read_u64 = cpuset_read_u64,
  1355. .write_u64 = cpuset_write_u64,
  1356. .private = FILE_CPU_EXCLUSIVE,
  1357. },
  1358. {
  1359. .name = "mem_exclusive",
  1360. .read_u64 = cpuset_read_u64,
  1361. .write_u64 = cpuset_write_u64,
  1362. .private = FILE_MEM_EXCLUSIVE,
  1363. },
  1364. {
  1365. .name = "mem_hardwall",
  1366. .read_u64 = cpuset_read_u64,
  1367. .write_u64 = cpuset_write_u64,
  1368. .private = FILE_MEM_HARDWALL,
  1369. },
  1370. {
  1371. .name = "sched_load_balance",
  1372. .read_u64 = cpuset_read_u64,
  1373. .write_u64 = cpuset_write_u64,
  1374. .private = FILE_SCHED_LOAD_BALANCE,
  1375. },
  1376. {
  1377. .name = "sched_relax_domain_level",
  1378. .read_s64 = cpuset_read_s64,
  1379. .write_s64 = cpuset_write_s64,
  1380. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1381. },
  1382. {
  1383. .name = "memory_migrate",
  1384. .read_u64 = cpuset_read_u64,
  1385. .write_u64 = cpuset_write_u64,
  1386. .private = FILE_MEMORY_MIGRATE,
  1387. },
  1388. {
  1389. .name = "memory_pressure",
  1390. .read_u64 = cpuset_read_u64,
  1391. .write_u64 = cpuset_write_u64,
  1392. .private = FILE_MEMORY_PRESSURE,
  1393. },
  1394. {
  1395. .name = "memory_spread_page",
  1396. .read_u64 = cpuset_read_u64,
  1397. .write_u64 = cpuset_write_u64,
  1398. .private = FILE_SPREAD_PAGE,
  1399. },
  1400. {
  1401. .name = "memory_spread_slab",
  1402. .read_u64 = cpuset_read_u64,
  1403. .write_u64 = cpuset_write_u64,
  1404. .private = FILE_SPREAD_SLAB,
  1405. },
  1406. };
  1407. static struct cftype cft_memory_pressure_enabled = {
  1408. .name = "memory_pressure_enabled",
  1409. .read_u64 = cpuset_read_u64,
  1410. .write_u64 = cpuset_write_u64,
  1411. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1412. };
  1413. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1414. {
  1415. int err;
  1416. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1417. if (err)
  1418. return err;
  1419. /* memory_pressure_enabled is in root cpuset only */
  1420. if (!cont->parent)
  1421. err = cgroup_add_file(cont, ss,
  1422. &cft_memory_pressure_enabled);
  1423. return err;
  1424. }
  1425. /*
  1426. * post_clone() is called at the end of cgroup_clone().
  1427. * 'cgroup' was just created automatically as a result of
  1428. * a cgroup_clone(), and the current task is about to
  1429. * be moved into 'cgroup'.
  1430. *
  1431. * Currently we refuse to set up the cgroup - thereby
  1432. * refusing the task to be entered, and as a result refusing
  1433. * the sys_unshare() or clone() which initiated it - if any
  1434. * sibling cpusets have exclusive cpus or mem.
  1435. *
  1436. * If this becomes a problem for some users who wish to
  1437. * allow that scenario, then cpuset_post_clone() could be
  1438. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1439. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1440. * held.
  1441. */
  1442. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1443. struct cgroup *cgroup)
  1444. {
  1445. struct cgroup *parent, *child;
  1446. struct cpuset *cs, *parent_cs;
  1447. parent = cgroup->parent;
  1448. list_for_each_entry(child, &parent->children, sibling) {
  1449. cs = cgroup_cs(child);
  1450. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1451. return;
  1452. }
  1453. cs = cgroup_cs(cgroup);
  1454. parent_cs = cgroup_cs(parent);
  1455. cs->mems_allowed = parent_cs->mems_allowed;
  1456. cs->cpus_allowed = parent_cs->cpus_allowed;
  1457. return;
  1458. }
  1459. /*
  1460. * cpuset_create - create a cpuset
  1461. * ss: cpuset cgroup subsystem
  1462. * cont: control group that the new cpuset will be part of
  1463. */
  1464. static struct cgroup_subsys_state *cpuset_create(
  1465. struct cgroup_subsys *ss,
  1466. struct cgroup *cont)
  1467. {
  1468. struct cpuset *cs;
  1469. struct cpuset *parent;
  1470. if (!cont->parent) {
  1471. /* This is early initialization for the top cgroup */
  1472. top_cpuset.mems_generation = cpuset_mems_generation++;
  1473. return &top_cpuset.css;
  1474. }
  1475. parent = cgroup_cs(cont->parent);
  1476. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1477. if (!cs)
  1478. return ERR_PTR(-ENOMEM);
  1479. cpuset_update_task_memory_state();
  1480. cs->flags = 0;
  1481. if (is_spread_page(parent))
  1482. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1483. if (is_spread_slab(parent))
  1484. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1485. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1486. cpus_clear(cs->cpus_allowed);
  1487. nodes_clear(cs->mems_allowed);
  1488. cs->mems_generation = cpuset_mems_generation++;
  1489. fmeter_init(&cs->fmeter);
  1490. cs->relax_domain_level = -1;
  1491. cs->parent = parent;
  1492. number_of_cpusets++;
  1493. return &cs->css ;
  1494. }
  1495. /*
  1496. * Locking note on the strange update_flag() call below:
  1497. *
  1498. * If the cpuset being removed has its flag 'sched_load_balance'
  1499. * enabled, then simulate turning sched_load_balance off, which
  1500. * will call rebuild_sched_domains(). The get_online_cpus()
  1501. * call in rebuild_sched_domains() must not be made while holding
  1502. * callback_mutex. Elsewhere the kernel nests callback_mutex inside
  1503. * get_online_cpus() calls. So the reverse nesting would risk an
  1504. * ABBA deadlock.
  1505. */
  1506. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1507. {
  1508. struct cpuset *cs = cgroup_cs(cont);
  1509. cpuset_update_task_memory_state();
  1510. if (is_sched_load_balance(cs))
  1511. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1512. number_of_cpusets--;
  1513. kfree(cs);
  1514. }
  1515. struct cgroup_subsys cpuset_subsys = {
  1516. .name = "cpuset",
  1517. .create = cpuset_create,
  1518. .destroy = cpuset_destroy,
  1519. .can_attach = cpuset_can_attach,
  1520. .attach = cpuset_attach,
  1521. .populate = cpuset_populate,
  1522. .post_clone = cpuset_post_clone,
  1523. .subsys_id = cpuset_subsys_id,
  1524. .early_init = 1,
  1525. };
  1526. /*
  1527. * cpuset_init_early - just enough so that the calls to
  1528. * cpuset_update_task_memory_state() in early init code
  1529. * are harmless.
  1530. */
  1531. int __init cpuset_init_early(void)
  1532. {
  1533. top_cpuset.mems_generation = cpuset_mems_generation++;
  1534. return 0;
  1535. }
  1536. /**
  1537. * cpuset_init - initialize cpusets at system boot
  1538. *
  1539. * Description: Initialize top_cpuset and the cpuset internal file system,
  1540. **/
  1541. int __init cpuset_init(void)
  1542. {
  1543. int err = 0;
  1544. cpus_setall(top_cpuset.cpus_allowed);
  1545. nodes_setall(top_cpuset.mems_allowed);
  1546. fmeter_init(&top_cpuset.fmeter);
  1547. top_cpuset.mems_generation = cpuset_mems_generation++;
  1548. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1549. top_cpuset.relax_domain_level = -1;
  1550. err = register_filesystem(&cpuset_fs_type);
  1551. if (err < 0)
  1552. return err;
  1553. number_of_cpusets = 1;
  1554. return 0;
  1555. }
  1556. /**
  1557. * cpuset_do_move_task - move a given task to another cpuset
  1558. * @tsk: pointer to task_struct the task to move
  1559. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1560. *
  1561. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1562. * Return nonzero to stop the walk through the tasks.
  1563. */
  1564. static void cpuset_do_move_task(struct task_struct *tsk,
  1565. struct cgroup_scanner *scan)
  1566. {
  1567. struct cpuset_hotplug_scanner *chsp;
  1568. chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
  1569. cgroup_attach_task(chsp->to, tsk);
  1570. }
  1571. /**
  1572. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1573. * @from: cpuset in which the tasks currently reside
  1574. * @to: cpuset to which the tasks will be moved
  1575. *
  1576. * Called with cgroup_mutex held
  1577. * callback_mutex must not be held, as cpuset_attach() will take it.
  1578. *
  1579. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1580. * calling callback functions for each.
  1581. */
  1582. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1583. {
  1584. struct cpuset_hotplug_scanner scan;
  1585. scan.scan.cg = from->css.cgroup;
  1586. scan.scan.test_task = NULL; /* select all tasks in cgroup */
  1587. scan.scan.process_task = cpuset_do_move_task;
  1588. scan.scan.heap = NULL;
  1589. scan.to = to->css.cgroup;
  1590. if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
  1591. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1592. "cgroup_scan_tasks failed\n");
  1593. }
  1594. /*
  1595. * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
  1596. * or memory nodes, we need to walk over the cpuset hierarchy,
  1597. * removing that CPU or node from all cpusets. If this removes the
  1598. * last CPU or node from a cpuset, then move the tasks in the empty
  1599. * cpuset to its next-highest non-empty parent.
  1600. *
  1601. * Called with cgroup_mutex held
  1602. * callback_mutex must not be held, as cpuset_attach() will take it.
  1603. */
  1604. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1605. {
  1606. struct cpuset *parent;
  1607. /*
  1608. * The cgroup's css_sets list is in use if there are tasks
  1609. * in the cpuset; the list is empty if there are none;
  1610. * the cs->css.refcnt seems always 0.
  1611. */
  1612. if (list_empty(&cs->css.cgroup->css_sets))
  1613. return;
  1614. /*
  1615. * Find its next-highest non-empty parent, (top cpuset
  1616. * has online cpus, so can't be empty).
  1617. */
  1618. parent = cs->parent;
  1619. while (cpus_empty(parent->cpus_allowed) ||
  1620. nodes_empty(parent->mems_allowed))
  1621. parent = parent->parent;
  1622. move_member_tasks_to_cpuset(cs, parent);
  1623. }
  1624. /*
  1625. * Walk the specified cpuset subtree and look for empty cpusets.
  1626. * The tasks of such cpuset must be moved to a parent cpuset.
  1627. *
  1628. * Called with cgroup_mutex held. We take callback_mutex to modify
  1629. * cpus_allowed and mems_allowed.
  1630. *
  1631. * This walk processes the tree from top to bottom, completing one layer
  1632. * before dropping down to the next. It always processes a node before
  1633. * any of its children.
  1634. *
  1635. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1636. * that has tasks along with an empty 'mems'. But if we did see such
  1637. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1638. */
  1639. static void scan_for_empty_cpusets(const struct cpuset *root)
  1640. {
  1641. struct cpuset *cp; /* scans cpusets being updated */
  1642. struct cpuset *child; /* scans child cpusets of cp */
  1643. struct list_head queue;
  1644. struct cgroup *cont;
  1645. nodemask_t oldmems;
  1646. INIT_LIST_HEAD(&queue);
  1647. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1648. while (!list_empty(&queue)) {
  1649. cp = container_of(queue.next, struct cpuset, stack_list);
  1650. list_del(queue.next);
  1651. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1652. child = cgroup_cs(cont);
  1653. list_add_tail(&child->stack_list, &queue);
  1654. }
  1655. cont = cp->css.cgroup;
  1656. /* Continue past cpusets with all cpus, mems online */
  1657. if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
  1658. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1659. continue;
  1660. oldmems = cp->mems_allowed;
  1661. /* Remove offline cpus and mems from this cpuset. */
  1662. mutex_lock(&callback_mutex);
  1663. cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
  1664. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1665. node_states[N_HIGH_MEMORY]);
  1666. mutex_unlock(&callback_mutex);
  1667. /* Move tasks from the empty cpuset to a parent */
  1668. if (cpus_empty(cp->cpus_allowed) ||
  1669. nodes_empty(cp->mems_allowed))
  1670. remove_tasks_in_empty_cpuset(cp);
  1671. else {
  1672. update_tasks_cpumask(cp);
  1673. update_tasks_nodemask(cp, &oldmems);
  1674. }
  1675. }
  1676. }
  1677. /*
  1678. * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
  1679. * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
  1680. * track what's online after any CPU or memory node hotplug or unplug event.
  1681. *
  1682. * Since there are two callers of this routine, one for CPU hotplug
  1683. * events and one for memory node hotplug events, we could have coded
  1684. * two separate routines here. We code it as a single common routine
  1685. * in order to minimize text size.
  1686. */
  1687. static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
  1688. {
  1689. cgroup_lock();
  1690. top_cpuset.cpus_allowed = cpu_online_map;
  1691. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1692. scan_for_empty_cpusets(&top_cpuset);
  1693. /*
  1694. * Scheduler destroys domains on hotplug events.
  1695. * Rebuild them based on the current settings.
  1696. */
  1697. if (rebuild_sd)
  1698. rebuild_sched_domains();
  1699. cgroup_unlock();
  1700. }
  1701. /*
  1702. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1703. * period. This is necessary in order to make cpusets transparent
  1704. * (of no affect) on systems that are actively using CPU hotplug
  1705. * but making no active use of cpusets.
  1706. *
  1707. * This routine ensures that top_cpuset.cpus_allowed tracks
  1708. * cpu_online_map on each CPU hotplug (cpuhp) event.
  1709. */
  1710. static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
  1711. unsigned long phase, void *unused_cpu)
  1712. {
  1713. switch (phase) {
  1714. case CPU_UP_CANCELED:
  1715. case CPU_UP_CANCELED_FROZEN:
  1716. case CPU_DOWN_FAILED:
  1717. case CPU_DOWN_FAILED_FROZEN:
  1718. case CPU_ONLINE:
  1719. case CPU_ONLINE_FROZEN:
  1720. case CPU_DEAD:
  1721. case CPU_DEAD_FROZEN:
  1722. common_cpu_mem_hotplug_unplug(1);
  1723. break;
  1724. default:
  1725. return NOTIFY_DONE;
  1726. }
  1727. return NOTIFY_OK;
  1728. }
  1729. #ifdef CONFIG_MEMORY_HOTPLUG
  1730. /*
  1731. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1732. * Call this routine anytime after you change
  1733. * node_states[N_HIGH_MEMORY].
  1734. * See also the previous routine cpuset_handle_cpuhp().
  1735. */
  1736. void cpuset_track_online_nodes(void)
  1737. {
  1738. common_cpu_mem_hotplug_unplug(0);
  1739. }
  1740. #endif
  1741. /**
  1742. * cpuset_init_smp - initialize cpus_allowed
  1743. *
  1744. * Description: Finish top cpuset after cpu, node maps are initialized
  1745. **/
  1746. void __init cpuset_init_smp(void)
  1747. {
  1748. top_cpuset.cpus_allowed = cpu_online_map;
  1749. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1750. hotcpu_notifier(cpuset_handle_cpuhp, 0);
  1751. }
  1752. /**
  1753. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1754. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1755. * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
  1756. *
  1757. * Description: Returns the cpumask_t cpus_allowed of the cpuset
  1758. * attached to the specified @tsk. Guaranteed to return some non-empty
  1759. * subset of cpu_online_map, even if this means going outside the
  1760. * tasks cpuset.
  1761. **/
  1762. void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
  1763. {
  1764. mutex_lock(&callback_mutex);
  1765. cpuset_cpus_allowed_locked(tsk, pmask);
  1766. mutex_unlock(&callback_mutex);
  1767. }
  1768. /**
  1769. * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
  1770. * Must be called with callback_mutex held.
  1771. **/
  1772. void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
  1773. {
  1774. task_lock(tsk);
  1775. guarantee_online_cpus(task_cs(tsk), pmask);
  1776. task_unlock(tsk);
  1777. }
  1778. void cpuset_init_current_mems_allowed(void)
  1779. {
  1780. nodes_setall(current->mems_allowed);
  1781. }
  1782. /**
  1783. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1784. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1785. *
  1786. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1787. * attached to the specified @tsk. Guaranteed to return some non-empty
  1788. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1789. * tasks cpuset.
  1790. **/
  1791. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1792. {
  1793. nodemask_t mask;
  1794. mutex_lock(&callback_mutex);
  1795. task_lock(tsk);
  1796. guarantee_online_mems(task_cs(tsk), &mask);
  1797. task_unlock(tsk);
  1798. mutex_unlock(&callback_mutex);
  1799. return mask;
  1800. }
  1801. /**
  1802. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1803. * @nodemask: the nodemask to be checked
  1804. *
  1805. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1806. */
  1807. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1808. {
  1809. return nodes_intersects(*nodemask, current->mems_allowed);
  1810. }
  1811. /*
  1812. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1813. * mem_hardwall ancestor to the specified cpuset. Call holding
  1814. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1815. * (an unusual configuration), then returns the root cpuset.
  1816. */
  1817. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1818. {
  1819. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1820. cs = cs->parent;
  1821. return cs;
  1822. }
  1823. /**
  1824. * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
  1825. * @z: is this zone on an allowed node?
  1826. * @gfp_mask: memory allocation flags
  1827. *
  1828. * If we're in interrupt, yes, we can always allocate. If
  1829. * __GFP_THISNODE is set, yes, we can always allocate. If zone
  1830. * z's node is in our tasks mems_allowed, yes. If it's not a
  1831. * __GFP_HARDWALL request and this zone's nodes is in the nearest
  1832. * hardwalled cpuset ancestor to this tasks cpuset, yes.
  1833. * If the task has been OOM killed and has access to memory reserves
  1834. * as specified by the TIF_MEMDIE flag, yes.
  1835. * Otherwise, no.
  1836. *
  1837. * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
  1838. * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
  1839. * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
  1840. * from an enclosing cpuset.
  1841. *
  1842. * cpuset_zone_allowed_hardwall() only handles the simpler case of
  1843. * hardwall cpusets, and never sleeps.
  1844. *
  1845. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1846. * by forcibly using a zonelist starting at a specified node, and by
  1847. * (in get_page_from_freelist()) refusing to consider the zones for
  1848. * any node on the zonelist except the first. By the time any such
  1849. * calls get to this routine, we should just shut up and say 'yes'.
  1850. *
  1851. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1852. * and do not allow allocations outside the current tasks cpuset
  1853. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  1854. * GFP_KERNEL allocations are not so marked, so can escape to the
  1855. * nearest enclosing hardwalled ancestor cpuset.
  1856. *
  1857. * Scanning up parent cpusets requires callback_mutex. The
  1858. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  1859. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  1860. * current tasks mems_allowed came up empty on the first pass over
  1861. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  1862. * cpuset are short of memory, might require taking the callback_mutex
  1863. * mutex.
  1864. *
  1865. * The first call here from mm/page_alloc:get_page_from_freelist()
  1866. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  1867. * so no allocation on a node outside the cpuset is allowed (unless
  1868. * in interrupt, of course).
  1869. *
  1870. * The second pass through get_page_from_freelist() doesn't even call
  1871. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  1872. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  1873. * in alloc_flags. That logic and the checks below have the combined
  1874. * affect that:
  1875. * in_interrupt - any node ok (current task context irrelevant)
  1876. * GFP_ATOMIC - any node ok
  1877. * TIF_MEMDIE - any node ok
  1878. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  1879. * GFP_USER - only nodes in current tasks mems allowed ok.
  1880. *
  1881. * Rule:
  1882. * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
  1883. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  1884. * the code that might scan up ancestor cpusets and sleep.
  1885. */
  1886. int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
  1887. {
  1888. int node; /* node that zone z is on */
  1889. const struct cpuset *cs; /* current cpuset ancestors */
  1890. int allowed; /* is allocation in zone z allowed? */
  1891. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1892. return 1;
  1893. node = zone_to_nid(z);
  1894. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  1895. if (node_isset(node, current->mems_allowed))
  1896. return 1;
  1897. /*
  1898. * Allow tasks that have access to memory reserves because they have
  1899. * been OOM killed to get memory anywhere.
  1900. */
  1901. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1902. return 1;
  1903. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  1904. return 0;
  1905. if (current->flags & PF_EXITING) /* Let dying task have memory */
  1906. return 1;
  1907. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  1908. mutex_lock(&callback_mutex);
  1909. task_lock(current);
  1910. cs = nearest_hardwall_ancestor(task_cs(current));
  1911. task_unlock(current);
  1912. allowed = node_isset(node, cs->mems_allowed);
  1913. mutex_unlock(&callback_mutex);
  1914. return allowed;
  1915. }
  1916. /*
  1917. * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
  1918. * @z: is this zone on an allowed node?
  1919. * @gfp_mask: memory allocation flags
  1920. *
  1921. * If we're in interrupt, yes, we can always allocate.
  1922. * If __GFP_THISNODE is set, yes, we can always allocate. If zone
  1923. * z's node is in our tasks mems_allowed, yes. If the task has been
  1924. * OOM killed and has access to memory reserves as specified by the
  1925. * TIF_MEMDIE flag, yes. Otherwise, no.
  1926. *
  1927. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1928. * by forcibly using a zonelist starting at a specified node, and by
  1929. * (in get_page_from_freelist()) refusing to consider the zones for
  1930. * any node on the zonelist except the first. By the time any such
  1931. * calls get to this routine, we should just shut up and say 'yes'.
  1932. *
  1933. * Unlike the cpuset_zone_allowed_softwall() variant, above,
  1934. * this variant requires that the zone be in the current tasks
  1935. * mems_allowed or that we're in interrupt. It does not scan up the
  1936. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  1937. * It never sleeps.
  1938. */
  1939. int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
  1940. {
  1941. int node; /* node that zone z is on */
  1942. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1943. return 1;
  1944. node = zone_to_nid(z);
  1945. if (node_isset(node, current->mems_allowed))
  1946. return 1;
  1947. /*
  1948. * Allow tasks that have access to memory reserves because they have
  1949. * been OOM killed to get memory anywhere.
  1950. */
  1951. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1952. return 1;
  1953. return 0;
  1954. }
  1955. /**
  1956. * cpuset_lock - lock out any changes to cpuset structures
  1957. *
  1958. * The out of memory (oom) code needs to mutex_lock cpusets
  1959. * from being changed while it scans the tasklist looking for a
  1960. * task in an overlapping cpuset. Expose callback_mutex via this
  1961. * cpuset_lock() routine, so the oom code can lock it, before
  1962. * locking the task list. The tasklist_lock is a spinlock, so
  1963. * must be taken inside callback_mutex.
  1964. */
  1965. void cpuset_lock(void)
  1966. {
  1967. mutex_lock(&callback_mutex);
  1968. }
  1969. /**
  1970. * cpuset_unlock - release lock on cpuset changes
  1971. *
  1972. * Undo the lock taken in a previous cpuset_lock() call.
  1973. */
  1974. void cpuset_unlock(void)
  1975. {
  1976. mutex_unlock(&callback_mutex);
  1977. }
  1978. /**
  1979. * cpuset_mem_spread_node() - On which node to begin search for a page
  1980. *
  1981. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  1982. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  1983. * and if the memory allocation used cpuset_mem_spread_node()
  1984. * to determine on which node to start looking, as it will for
  1985. * certain page cache or slab cache pages such as used for file
  1986. * system buffers and inode caches, then instead of starting on the
  1987. * local node to look for a free page, rather spread the starting
  1988. * node around the tasks mems_allowed nodes.
  1989. *
  1990. * We don't have to worry about the returned node being offline
  1991. * because "it can't happen", and even if it did, it would be ok.
  1992. *
  1993. * The routines calling guarantee_online_mems() are careful to
  1994. * only set nodes in task->mems_allowed that are online. So it
  1995. * should not be possible for the following code to return an
  1996. * offline node. But if it did, that would be ok, as this routine
  1997. * is not returning the node where the allocation must be, only
  1998. * the node where the search should start. The zonelist passed to
  1999. * __alloc_pages() will include all nodes. If the slab allocator
  2000. * is passed an offline node, it will fall back to the local node.
  2001. * See kmem_cache_alloc_node().
  2002. */
  2003. int cpuset_mem_spread_node(void)
  2004. {
  2005. int node;
  2006. node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
  2007. if (node == MAX_NUMNODES)
  2008. node = first_node(current->mems_allowed);
  2009. current->cpuset_mem_spread_rotor = node;
  2010. return node;
  2011. }
  2012. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2013. /**
  2014. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2015. * @tsk1: pointer to task_struct of some task.
  2016. * @tsk2: pointer to task_struct of some other task.
  2017. *
  2018. * Description: Return true if @tsk1's mems_allowed intersects the
  2019. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2020. * one of the task's memory usage might impact the memory available
  2021. * to the other.
  2022. **/
  2023. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2024. const struct task_struct *tsk2)
  2025. {
  2026. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2027. }
  2028. /*
  2029. * Collection of memory_pressure is suppressed unless
  2030. * this flag is enabled by writing "1" to the special
  2031. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2032. */
  2033. int cpuset_memory_pressure_enabled __read_mostly;
  2034. /**
  2035. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2036. *
  2037. * Keep a running average of the rate of synchronous (direct)
  2038. * page reclaim efforts initiated by tasks in each cpuset.
  2039. *
  2040. * This represents the rate at which some task in the cpuset
  2041. * ran low on memory on all nodes it was allowed to use, and
  2042. * had to enter the kernels page reclaim code in an effort to
  2043. * create more free memory by tossing clean pages or swapping
  2044. * or writing dirty pages.
  2045. *
  2046. * Display to user space in the per-cpuset read-only file
  2047. * "memory_pressure". Value displayed is an integer
  2048. * representing the recent rate of entry into the synchronous
  2049. * (direct) page reclaim by any task attached to the cpuset.
  2050. **/
  2051. void __cpuset_memory_pressure_bump(void)
  2052. {
  2053. task_lock(current);
  2054. fmeter_markevent(&task_cs(current)->fmeter);
  2055. task_unlock(current);
  2056. }
  2057. #ifdef CONFIG_PROC_PID_CPUSET
  2058. /*
  2059. * proc_cpuset_show()
  2060. * - Print tasks cpuset path into seq_file.
  2061. * - Used for /proc/<pid>/cpuset.
  2062. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2063. * doesn't really matter if tsk->cpuset changes after we read it,
  2064. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2065. * anyway.
  2066. */
  2067. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2068. {
  2069. struct pid *pid;
  2070. struct task_struct *tsk;
  2071. char *buf;
  2072. struct cgroup_subsys_state *css;
  2073. int retval;
  2074. retval = -ENOMEM;
  2075. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2076. if (!buf)
  2077. goto out;
  2078. retval = -ESRCH;
  2079. pid = m->private;
  2080. tsk = get_pid_task(pid, PIDTYPE_PID);
  2081. if (!tsk)
  2082. goto out_free;
  2083. retval = -EINVAL;
  2084. cgroup_lock();
  2085. css = task_subsys_state(tsk, cpuset_subsys_id);
  2086. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2087. if (retval < 0)
  2088. goto out_unlock;
  2089. seq_puts(m, buf);
  2090. seq_putc(m, '\n');
  2091. out_unlock:
  2092. cgroup_unlock();
  2093. put_task_struct(tsk);
  2094. out_free:
  2095. kfree(buf);
  2096. out:
  2097. return retval;
  2098. }
  2099. static int cpuset_open(struct inode *inode, struct file *file)
  2100. {
  2101. struct pid *pid = PROC_I(inode)->pid;
  2102. return single_open(file, proc_cpuset_show, pid);
  2103. }
  2104. const struct file_operations proc_cpuset_operations = {
  2105. .open = cpuset_open,
  2106. .read = seq_read,
  2107. .llseek = seq_lseek,
  2108. .release = single_release,
  2109. };
  2110. #endif /* CONFIG_PROC_PID_CPUSET */
  2111. /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
  2112. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2113. {
  2114. seq_printf(m, "Cpus_allowed:\t");
  2115. m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
  2116. task->cpus_allowed);
  2117. seq_printf(m, "\n");
  2118. seq_printf(m, "Cpus_allowed_list:\t");
  2119. m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
  2120. task->cpus_allowed);
  2121. seq_printf(m, "\n");
  2122. seq_printf(m, "Mems_allowed:\t");
  2123. m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
  2124. task->mems_allowed);
  2125. seq_printf(m, "\n");
  2126. seq_printf(m, "Mems_allowed_list:\t");
  2127. m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
  2128. task->mems_allowed);
  2129. seq_printf(m, "\n");
  2130. }