vmx.c 92 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  32. MODULE_AUTHOR("Qumranet");
  33. MODULE_LICENSE("GPL");
  34. static int bypass_guest_pf = 1;
  35. module_param(bypass_guest_pf, bool, 0);
  36. static int enable_vpid = 1;
  37. module_param(enable_vpid, bool, 0);
  38. static int flexpriority_enabled = 1;
  39. module_param(flexpriority_enabled, bool, 0);
  40. static int enable_ept = 1;
  41. module_param(enable_ept, bool, 0);
  42. static int emulate_invalid_guest_state = 0;
  43. module_param(emulate_invalid_guest_state, bool, 0);
  44. struct vmcs {
  45. u32 revision_id;
  46. u32 abort;
  47. char data[0];
  48. };
  49. struct vcpu_vmx {
  50. struct kvm_vcpu vcpu;
  51. struct list_head local_vcpus_link;
  52. unsigned long host_rsp;
  53. int launched;
  54. u8 fail;
  55. u32 idt_vectoring_info;
  56. struct kvm_msr_entry *guest_msrs;
  57. struct kvm_msr_entry *host_msrs;
  58. int nmsrs;
  59. int save_nmsrs;
  60. int msr_offset_efer;
  61. #ifdef CONFIG_X86_64
  62. int msr_offset_kernel_gs_base;
  63. #endif
  64. struct vmcs *vmcs;
  65. struct {
  66. int loaded;
  67. u16 fs_sel, gs_sel, ldt_sel;
  68. int gs_ldt_reload_needed;
  69. int fs_reload_needed;
  70. int guest_efer_loaded;
  71. } host_state;
  72. struct {
  73. struct {
  74. bool pending;
  75. u8 vector;
  76. unsigned rip;
  77. } irq;
  78. } rmode;
  79. int vpid;
  80. bool emulation_required;
  81. };
  82. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  83. {
  84. return container_of(vcpu, struct vcpu_vmx, vcpu);
  85. }
  86. static int init_rmode(struct kvm *kvm);
  87. static u64 construct_eptp(unsigned long root_hpa);
  88. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  89. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  90. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  91. static struct page *vmx_io_bitmap_a;
  92. static struct page *vmx_io_bitmap_b;
  93. static struct page *vmx_msr_bitmap;
  94. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  95. static DEFINE_SPINLOCK(vmx_vpid_lock);
  96. static struct vmcs_config {
  97. int size;
  98. int order;
  99. u32 revision_id;
  100. u32 pin_based_exec_ctrl;
  101. u32 cpu_based_exec_ctrl;
  102. u32 cpu_based_2nd_exec_ctrl;
  103. u32 vmexit_ctrl;
  104. u32 vmentry_ctrl;
  105. } vmcs_config;
  106. struct vmx_capability {
  107. u32 ept;
  108. u32 vpid;
  109. } vmx_capability;
  110. #define VMX_SEGMENT_FIELD(seg) \
  111. [VCPU_SREG_##seg] = { \
  112. .selector = GUEST_##seg##_SELECTOR, \
  113. .base = GUEST_##seg##_BASE, \
  114. .limit = GUEST_##seg##_LIMIT, \
  115. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  116. }
  117. static struct kvm_vmx_segment_field {
  118. unsigned selector;
  119. unsigned base;
  120. unsigned limit;
  121. unsigned ar_bytes;
  122. } kvm_vmx_segment_fields[] = {
  123. VMX_SEGMENT_FIELD(CS),
  124. VMX_SEGMENT_FIELD(DS),
  125. VMX_SEGMENT_FIELD(ES),
  126. VMX_SEGMENT_FIELD(FS),
  127. VMX_SEGMENT_FIELD(GS),
  128. VMX_SEGMENT_FIELD(SS),
  129. VMX_SEGMENT_FIELD(TR),
  130. VMX_SEGMENT_FIELD(LDTR),
  131. };
  132. /*
  133. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  134. * away by decrementing the array size.
  135. */
  136. static const u32 vmx_msr_index[] = {
  137. #ifdef CONFIG_X86_64
  138. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  139. #endif
  140. MSR_EFER, MSR_K6_STAR,
  141. };
  142. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  143. static void load_msrs(struct kvm_msr_entry *e, int n)
  144. {
  145. int i;
  146. for (i = 0; i < n; ++i)
  147. wrmsrl(e[i].index, e[i].data);
  148. }
  149. static void save_msrs(struct kvm_msr_entry *e, int n)
  150. {
  151. int i;
  152. for (i = 0; i < n; ++i)
  153. rdmsrl(e[i].index, e[i].data);
  154. }
  155. static inline int is_page_fault(u32 intr_info)
  156. {
  157. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  158. INTR_INFO_VALID_MASK)) ==
  159. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  160. }
  161. static inline int is_no_device(u32 intr_info)
  162. {
  163. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  164. INTR_INFO_VALID_MASK)) ==
  165. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  166. }
  167. static inline int is_invalid_opcode(u32 intr_info)
  168. {
  169. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  170. INTR_INFO_VALID_MASK)) ==
  171. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  172. }
  173. static inline int is_external_interrupt(u32 intr_info)
  174. {
  175. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  176. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  177. }
  178. static inline int cpu_has_vmx_msr_bitmap(void)
  179. {
  180. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  181. }
  182. static inline int cpu_has_vmx_tpr_shadow(void)
  183. {
  184. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  185. }
  186. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  187. {
  188. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  189. }
  190. static inline int cpu_has_secondary_exec_ctrls(void)
  191. {
  192. return (vmcs_config.cpu_based_exec_ctrl &
  193. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  194. }
  195. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  196. {
  197. return flexpriority_enabled
  198. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  199. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  200. }
  201. static inline int cpu_has_vmx_invept_individual_addr(void)
  202. {
  203. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  204. }
  205. static inline int cpu_has_vmx_invept_context(void)
  206. {
  207. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  208. }
  209. static inline int cpu_has_vmx_invept_global(void)
  210. {
  211. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  212. }
  213. static inline int cpu_has_vmx_ept(void)
  214. {
  215. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  216. SECONDARY_EXEC_ENABLE_EPT);
  217. }
  218. static inline int vm_need_ept(void)
  219. {
  220. return (cpu_has_vmx_ept() && enable_ept);
  221. }
  222. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  223. {
  224. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  225. (irqchip_in_kernel(kvm)));
  226. }
  227. static inline int cpu_has_vmx_vpid(void)
  228. {
  229. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  230. SECONDARY_EXEC_ENABLE_VPID);
  231. }
  232. static inline int cpu_has_virtual_nmis(void)
  233. {
  234. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  235. }
  236. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  237. {
  238. int i;
  239. for (i = 0; i < vmx->nmsrs; ++i)
  240. if (vmx->guest_msrs[i].index == msr)
  241. return i;
  242. return -1;
  243. }
  244. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  245. {
  246. struct {
  247. u64 vpid : 16;
  248. u64 rsvd : 48;
  249. u64 gva;
  250. } operand = { vpid, 0, gva };
  251. asm volatile (__ex(ASM_VMX_INVVPID)
  252. /* CF==1 or ZF==1 --> rc = -1 */
  253. "; ja 1f ; ud2 ; 1:"
  254. : : "a"(&operand), "c"(ext) : "cc", "memory");
  255. }
  256. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  257. {
  258. struct {
  259. u64 eptp, gpa;
  260. } operand = {eptp, gpa};
  261. asm volatile (__ex(ASM_VMX_INVEPT)
  262. /* CF==1 or ZF==1 --> rc = -1 */
  263. "; ja 1f ; ud2 ; 1:\n"
  264. : : "a" (&operand), "c" (ext) : "cc", "memory");
  265. }
  266. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  267. {
  268. int i;
  269. i = __find_msr_index(vmx, msr);
  270. if (i >= 0)
  271. return &vmx->guest_msrs[i];
  272. return NULL;
  273. }
  274. static void vmcs_clear(struct vmcs *vmcs)
  275. {
  276. u64 phys_addr = __pa(vmcs);
  277. u8 error;
  278. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  279. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  280. : "cc", "memory");
  281. if (error)
  282. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  283. vmcs, phys_addr);
  284. }
  285. static void __vcpu_clear(void *arg)
  286. {
  287. struct vcpu_vmx *vmx = arg;
  288. int cpu = raw_smp_processor_id();
  289. if (vmx->vcpu.cpu == cpu)
  290. vmcs_clear(vmx->vmcs);
  291. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  292. per_cpu(current_vmcs, cpu) = NULL;
  293. rdtscll(vmx->vcpu.arch.host_tsc);
  294. list_del(&vmx->local_vcpus_link);
  295. vmx->vcpu.cpu = -1;
  296. vmx->launched = 0;
  297. }
  298. static void vcpu_clear(struct vcpu_vmx *vmx)
  299. {
  300. if (vmx->vcpu.cpu == -1)
  301. return;
  302. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  303. }
  304. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  305. {
  306. if (vmx->vpid == 0)
  307. return;
  308. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  309. }
  310. static inline void ept_sync_global(void)
  311. {
  312. if (cpu_has_vmx_invept_global())
  313. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  314. }
  315. static inline void ept_sync_context(u64 eptp)
  316. {
  317. if (vm_need_ept()) {
  318. if (cpu_has_vmx_invept_context())
  319. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  320. else
  321. ept_sync_global();
  322. }
  323. }
  324. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  325. {
  326. if (vm_need_ept()) {
  327. if (cpu_has_vmx_invept_individual_addr())
  328. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  329. eptp, gpa);
  330. else
  331. ept_sync_context(eptp);
  332. }
  333. }
  334. static unsigned long vmcs_readl(unsigned long field)
  335. {
  336. unsigned long value;
  337. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  338. : "=a"(value) : "d"(field) : "cc");
  339. return value;
  340. }
  341. static u16 vmcs_read16(unsigned long field)
  342. {
  343. return vmcs_readl(field);
  344. }
  345. static u32 vmcs_read32(unsigned long field)
  346. {
  347. return vmcs_readl(field);
  348. }
  349. static u64 vmcs_read64(unsigned long field)
  350. {
  351. #ifdef CONFIG_X86_64
  352. return vmcs_readl(field);
  353. #else
  354. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  355. #endif
  356. }
  357. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  358. {
  359. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  360. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  361. dump_stack();
  362. }
  363. static void vmcs_writel(unsigned long field, unsigned long value)
  364. {
  365. u8 error;
  366. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  367. : "=q"(error) : "a"(value), "d"(field) : "cc");
  368. if (unlikely(error))
  369. vmwrite_error(field, value);
  370. }
  371. static void vmcs_write16(unsigned long field, u16 value)
  372. {
  373. vmcs_writel(field, value);
  374. }
  375. static void vmcs_write32(unsigned long field, u32 value)
  376. {
  377. vmcs_writel(field, value);
  378. }
  379. static void vmcs_write64(unsigned long field, u64 value)
  380. {
  381. vmcs_writel(field, value);
  382. #ifndef CONFIG_X86_64
  383. asm volatile ("");
  384. vmcs_writel(field+1, value >> 32);
  385. #endif
  386. }
  387. static void vmcs_clear_bits(unsigned long field, u32 mask)
  388. {
  389. vmcs_writel(field, vmcs_readl(field) & ~mask);
  390. }
  391. static void vmcs_set_bits(unsigned long field, u32 mask)
  392. {
  393. vmcs_writel(field, vmcs_readl(field) | mask);
  394. }
  395. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  396. {
  397. u32 eb;
  398. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  399. if (!vcpu->fpu_active)
  400. eb |= 1u << NM_VECTOR;
  401. if (vcpu->guest_debug.enabled)
  402. eb |= 1u << DB_VECTOR;
  403. if (vcpu->arch.rmode.active)
  404. eb = ~0;
  405. if (vm_need_ept())
  406. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  407. vmcs_write32(EXCEPTION_BITMAP, eb);
  408. }
  409. static void reload_tss(void)
  410. {
  411. /*
  412. * VT restores TR but not its size. Useless.
  413. */
  414. struct descriptor_table gdt;
  415. struct desc_struct *descs;
  416. kvm_get_gdt(&gdt);
  417. descs = (void *)gdt.base;
  418. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  419. load_TR_desc();
  420. }
  421. static void load_transition_efer(struct vcpu_vmx *vmx)
  422. {
  423. int efer_offset = vmx->msr_offset_efer;
  424. u64 host_efer = vmx->host_msrs[efer_offset].data;
  425. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  426. u64 ignore_bits;
  427. if (efer_offset < 0)
  428. return;
  429. /*
  430. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  431. * outside long mode
  432. */
  433. ignore_bits = EFER_NX | EFER_SCE;
  434. #ifdef CONFIG_X86_64
  435. ignore_bits |= EFER_LMA | EFER_LME;
  436. /* SCE is meaningful only in long mode on Intel */
  437. if (guest_efer & EFER_LMA)
  438. ignore_bits &= ~(u64)EFER_SCE;
  439. #endif
  440. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  441. return;
  442. vmx->host_state.guest_efer_loaded = 1;
  443. guest_efer &= ~ignore_bits;
  444. guest_efer |= host_efer & ignore_bits;
  445. wrmsrl(MSR_EFER, guest_efer);
  446. vmx->vcpu.stat.efer_reload++;
  447. }
  448. static void reload_host_efer(struct vcpu_vmx *vmx)
  449. {
  450. if (vmx->host_state.guest_efer_loaded) {
  451. vmx->host_state.guest_efer_loaded = 0;
  452. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  453. }
  454. }
  455. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  456. {
  457. struct vcpu_vmx *vmx = to_vmx(vcpu);
  458. if (vmx->host_state.loaded)
  459. return;
  460. vmx->host_state.loaded = 1;
  461. /*
  462. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  463. * allow segment selectors with cpl > 0 or ti == 1.
  464. */
  465. vmx->host_state.ldt_sel = kvm_read_ldt();
  466. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  467. vmx->host_state.fs_sel = kvm_read_fs();
  468. if (!(vmx->host_state.fs_sel & 7)) {
  469. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  470. vmx->host_state.fs_reload_needed = 0;
  471. } else {
  472. vmcs_write16(HOST_FS_SELECTOR, 0);
  473. vmx->host_state.fs_reload_needed = 1;
  474. }
  475. vmx->host_state.gs_sel = kvm_read_gs();
  476. if (!(vmx->host_state.gs_sel & 7))
  477. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  478. else {
  479. vmcs_write16(HOST_GS_SELECTOR, 0);
  480. vmx->host_state.gs_ldt_reload_needed = 1;
  481. }
  482. #ifdef CONFIG_X86_64
  483. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  484. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  485. #else
  486. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  487. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  488. #endif
  489. #ifdef CONFIG_X86_64
  490. if (is_long_mode(&vmx->vcpu))
  491. save_msrs(vmx->host_msrs +
  492. vmx->msr_offset_kernel_gs_base, 1);
  493. #endif
  494. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  495. load_transition_efer(vmx);
  496. }
  497. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  498. {
  499. unsigned long flags;
  500. if (!vmx->host_state.loaded)
  501. return;
  502. ++vmx->vcpu.stat.host_state_reload;
  503. vmx->host_state.loaded = 0;
  504. if (vmx->host_state.fs_reload_needed)
  505. kvm_load_fs(vmx->host_state.fs_sel);
  506. if (vmx->host_state.gs_ldt_reload_needed) {
  507. kvm_load_ldt(vmx->host_state.ldt_sel);
  508. /*
  509. * If we have to reload gs, we must take care to
  510. * preserve our gs base.
  511. */
  512. local_irq_save(flags);
  513. kvm_load_gs(vmx->host_state.gs_sel);
  514. #ifdef CONFIG_X86_64
  515. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  516. #endif
  517. local_irq_restore(flags);
  518. }
  519. reload_tss();
  520. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  521. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  522. reload_host_efer(vmx);
  523. }
  524. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  525. {
  526. preempt_disable();
  527. __vmx_load_host_state(vmx);
  528. preempt_enable();
  529. }
  530. /*
  531. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  532. * vcpu mutex is already taken.
  533. */
  534. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  535. {
  536. struct vcpu_vmx *vmx = to_vmx(vcpu);
  537. u64 phys_addr = __pa(vmx->vmcs);
  538. u64 tsc_this, delta, new_offset;
  539. if (vcpu->cpu != cpu) {
  540. vcpu_clear(vmx);
  541. kvm_migrate_timers(vcpu);
  542. vpid_sync_vcpu_all(vmx);
  543. local_irq_disable();
  544. list_add(&vmx->local_vcpus_link,
  545. &per_cpu(vcpus_on_cpu, cpu));
  546. local_irq_enable();
  547. }
  548. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  549. u8 error;
  550. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  551. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  552. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  553. : "cc");
  554. if (error)
  555. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  556. vmx->vmcs, phys_addr);
  557. }
  558. if (vcpu->cpu != cpu) {
  559. struct descriptor_table dt;
  560. unsigned long sysenter_esp;
  561. vcpu->cpu = cpu;
  562. /*
  563. * Linux uses per-cpu TSS and GDT, so set these when switching
  564. * processors.
  565. */
  566. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  567. kvm_get_gdt(&dt);
  568. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  569. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  570. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  571. /*
  572. * Make sure the time stamp counter is monotonous.
  573. */
  574. rdtscll(tsc_this);
  575. if (tsc_this < vcpu->arch.host_tsc) {
  576. delta = vcpu->arch.host_tsc - tsc_this;
  577. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  578. vmcs_write64(TSC_OFFSET, new_offset);
  579. }
  580. }
  581. }
  582. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  583. {
  584. __vmx_load_host_state(to_vmx(vcpu));
  585. }
  586. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  587. {
  588. if (vcpu->fpu_active)
  589. return;
  590. vcpu->fpu_active = 1;
  591. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  592. if (vcpu->arch.cr0 & X86_CR0_TS)
  593. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  594. update_exception_bitmap(vcpu);
  595. }
  596. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  597. {
  598. if (!vcpu->fpu_active)
  599. return;
  600. vcpu->fpu_active = 0;
  601. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  602. update_exception_bitmap(vcpu);
  603. }
  604. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  605. {
  606. return vmcs_readl(GUEST_RFLAGS);
  607. }
  608. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  609. {
  610. if (vcpu->arch.rmode.active)
  611. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  612. vmcs_writel(GUEST_RFLAGS, rflags);
  613. }
  614. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  615. {
  616. unsigned long rip;
  617. u32 interruptibility;
  618. rip = kvm_rip_read(vcpu);
  619. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  620. kvm_rip_write(vcpu, rip);
  621. /*
  622. * We emulated an instruction, so temporary interrupt blocking
  623. * should be removed, if set.
  624. */
  625. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  626. if (interruptibility & 3)
  627. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  628. interruptibility & ~3);
  629. vcpu->arch.interrupt_window_open = 1;
  630. }
  631. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  632. bool has_error_code, u32 error_code)
  633. {
  634. struct vcpu_vmx *vmx = to_vmx(vcpu);
  635. if (has_error_code)
  636. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  637. if (vcpu->arch.rmode.active) {
  638. vmx->rmode.irq.pending = true;
  639. vmx->rmode.irq.vector = nr;
  640. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  641. if (nr == BP_VECTOR)
  642. vmx->rmode.irq.rip++;
  643. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  644. nr | INTR_TYPE_SOFT_INTR
  645. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  646. | INTR_INFO_VALID_MASK);
  647. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  648. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  649. return;
  650. }
  651. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  652. nr | INTR_TYPE_EXCEPTION
  653. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  654. | INTR_INFO_VALID_MASK);
  655. }
  656. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  657. {
  658. return false;
  659. }
  660. /*
  661. * Swap MSR entry in host/guest MSR entry array.
  662. */
  663. #ifdef CONFIG_X86_64
  664. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  665. {
  666. struct kvm_msr_entry tmp;
  667. tmp = vmx->guest_msrs[to];
  668. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  669. vmx->guest_msrs[from] = tmp;
  670. tmp = vmx->host_msrs[to];
  671. vmx->host_msrs[to] = vmx->host_msrs[from];
  672. vmx->host_msrs[from] = tmp;
  673. }
  674. #endif
  675. /*
  676. * Set up the vmcs to automatically save and restore system
  677. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  678. * mode, as fiddling with msrs is very expensive.
  679. */
  680. static void setup_msrs(struct vcpu_vmx *vmx)
  681. {
  682. int save_nmsrs;
  683. vmx_load_host_state(vmx);
  684. save_nmsrs = 0;
  685. #ifdef CONFIG_X86_64
  686. if (is_long_mode(&vmx->vcpu)) {
  687. int index;
  688. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  689. if (index >= 0)
  690. move_msr_up(vmx, index, save_nmsrs++);
  691. index = __find_msr_index(vmx, MSR_LSTAR);
  692. if (index >= 0)
  693. move_msr_up(vmx, index, save_nmsrs++);
  694. index = __find_msr_index(vmx, MSR_CSTAR);
  695. if (index >= 0)
  696. move_msr_up(vmx, index, save_nmsrs++);
  697. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  698. if (index >= 0)
  699. move_msr_up(vmx, index, save_nmsrs++);
  700. /*
  701. * MSR_K6_STAR is only needed on long mode guests, and only
  702. * if efer.sce is enabled.
  703. */
  704. index = __find_msr_index(vmx, MSR_K6_STAR);
  705. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  706. move_msr_up(vmx, index, save_nmsrs++);
  707. }
  708. #endif
  709. vmx->save_nmsrs = save_nmsrs;
  710. #ifdef CONFIG_X86_64
  711. vmx->msr_offset_kernel_gs_base =
  712. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  713. #endif
  714. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  715. }
  716. /*
  717. * reads and returns guest's timestamp counter "register"
  718. * guest_tsc = host_tsc + tsc_offset -- 21.3
  719. */
  720. static u64 guest_read_tsc(void)
  721. {
  722. u64 host_tsc, tsc_offset;
  723. rdtscll(host_tsc);
  724. tsc_offset = vmcs_read64(TSC_OFFSET);
  725. return host_tsc + tsc_offset;
  726. }
  727. /*
  728. * writes 'guest_tsc' into guest's timestamp counter "register"
  729. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  730. */
  731. static void guest_write_tsc(u64 guest_tsc)
  732. {
  733. u64 host_tsc;
  734. rdtscll(host_tsc);
  735. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  736. }
  737. /*
  738. * Reads an msr value (of 'msr_index') into 'pdata'.
  739. * Returns 0 on success, non-0 otherwise.
  740. * Assumes vcpu_load() was already called.
  741. */
  742. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  743. {
  744. u64 data;
  745. struct kvm_msr_entry *msr;
  746. if (!pdata) {
  747. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  748. return -EINVAL;
  749. }
  750. switch (msr_index) {
  751. #ifdef CONFIG_X86_64
  752. case MSR_FS_BASE:
  753. data = vmcs_readl(GUEST_FS_BASE);
  754. break;
  755. case MSR_GS_BASE:
  756. data = vmcs_readl(GUEST_GS_BASE);
  757. break;
  758. case MSR_EFER:
  759. return kvm_get_msr_common(vcpu, msr_index, pdata);
  760. #endif
  761. case MSR_IA32_TIME_STAMP_COUNTER:
  762. data = guest_read_tsc();
  763. break;
  764. case MSR_IA32_SYSENTER_CS:
  765. data = vmcs_read32(GUEST_SYSENTER_CS);
  766. break;
  767. case MSR_IA32_SYSENTER_EIP:
  768. data = vmcs_readl(GUEST_SYSENTER_EIP);
  769. break;
  770. case MSR_IA32_SYSENTER_ESP:
  771. data = vmcs_readl(GUEST_SYSENTER_ESP);
  772. break;
  773. default:
  774. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  775. if (msr) {
  776. data = msr->data;
  777. break;
  778. }
  779. return kvm_get_msr_common(vcpu, msr_index, pdata);
  780. }
  781. *pdata = data;
  782. return 0;
  783. }
  784. /*
  785. * Writes msr value into into the appropriate "register".
  786. * Returns 0 on success, non-0 otherwise.
  787. * Assumes vcpu_load() was already called.
  788. */
  789. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  790. {
  791. struct vcpu_vmx *vmx = to_vmx(vcpu);
  792. struct kvm_msr_entry *msr;
  793. int ret = 0;
  794. switch (msr_index) {
  795. #ifdef CONFIG_X86_64
  796. case MSR_EFER:
  797. vmx_load_host_state(vmx);
  798. ret = kvm_set_msr_common(vcpu, msr_index, data);
  799. break;
  800. case MSR_FS_BASE:
  801. vmcs_writel(GUEST_FS_BASE, data);
  802. break;
  803. case MSR_GS_BASE:
  804. vmcs_writel(GUEST_GS_BASE, data);
  805. break;
  806. #endif
  807. case MSR_IA32_SYSENTER_CS:
  808. vmcs_write32(GUEST_SYSENTER_CS, data);
  809. break;
  810. case MSR_IA32_SYSENTER_EIP:
  811. vmcs_writel(GUEST_SYSENTER_EIP, data);
  812. break;
  813. case MSR_IA32_SYSENTER_ESP:
  814. vmcs_writel(GUEST_SYSENTER_ESP, data);
  815. break;
  816. case MSR_IA32_TIME_STAMP_COUNTER:
  817. guest_write_tsc(data);
  818. break;
  819. case MSR_P6_PERFCTR0:
  820. case MSR_P6_PERFCTR1:
  821. case MSR_P6_EVNTSEL0:
  822. case MSR_P6_EVNTSEL1:
  823. /*
  824. * Just discard all writes to the performance counters; this
  825. * should keep both older linux and windows 64-bit guests
  826. * happy
  827. */
  828. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  829. break;
  830. default:
  831. vmx_load_host_state(vmx);
  832. msr = find_msr_entry(vmx, msr_index);
  833. if (msr) {
  834. msr->data = data;
  835. break;
  836. }
  837. ret = kvm_set_msr_common(vcpu, msr_index, data);
  838. }
  839. return ret;
  840. }
  841. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  842. {
  843. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  844. switch (reg) {
  845. case VCPU_REGS_RSP:
  846. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  847. break;
  848. case VCPU_REGS_RIP:
  849. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  850. break;
  851. default:
  852. break;
  853. }
  854. }
  855. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  856. {
  857. unsigned long dr7 = 0x400;
  858. int old_singlestep;
  859. old_singlestep = vcpu->guest_debug.singlestep;
  860. vcpu->guest_debug.enabled = dbg->enabled;
  861. if (vcpu->guest_debug.enabled) {
  862. int i;
  863. dr7 |= 0x200; /* exact */
  864. for (i = 0; i < 4; ++i) {
  865. if (!dbg->breakpoints[i].enabled)
  866. continue;
  867. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  868. dr7 |= 2 << (i*2); /* global enable */
  869. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  870. }
  871. vcpu->guest_debug.singlestep = dbg->singlestep;
  872. } else
  873. vcpu->guest_debug.singlestep = 0;
  874. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  875. unsigned long flags;
  876. flags = vmcs_readl(GUEST_RFLAGS);
  877. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  878. vmcs_writel(GUEST_RFLAGS, flags);
  879. }
  880. update_exception_bitmap(vcpu);
  881. vmcs_writel(GUEST_DR7, dr7);
  882. return 0;
  883. }
  884. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  885. {
  886. if (!vcpu->arch.interrupt.pending)
  887. return -1;
  888. return vcpu->arch.interrupt.nr;
  889. }
  890. static __init int cpu_has_kvm_support(void)
  891. {
  892. unsigned long ecx = cpuid_ecx(1);
  893. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  894. }
  895. static __init int vmx_disabled_by_bios(void)
  896. {
  897. u64 msr;
  898. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  899. return (msr & (FEATURE_CONTROL_LOCKED |
  900. FEATURE_CONTROL_VMXON_ENABLED))
  901. == FEATURE_CONTROL_LOCKED;
  902. /* locked but not enabled */
  903. }
  904. static void hardware_enable(void *garbage)
  905. {
  906. int cpu = raw_smp_processor_id();
  907. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  908. u64 old;
  909. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  910. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  911. if ((old & (FEATURE_CONTROL_LOCKED |
  912. FEATURE_CONTROL_VMXON_ENABLED))
  913. != (FEATURE_CONTROL_LOCKED |
  914. FEATURE_CONTROL_VMXON_ENABLED))
  915. /* enable and lock */
  916. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  917. FEATURE_CONTROL_LOCKED |
  918. FEATURE_CONTROL_VMXON_ENABLED);
  919. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  920. asm volatile (ASM_VMX_VMXON_RAX
  921. : : "a"(&phys_addr), "m"(phys_addr)
  922. : "memory", "cc");
  923. }
  924. static void vmclear_local_vcpus(void)
  925. {
  926. int cpu = raw_smp_processor_id();
  927. struct vcpu_vmx *vmx, *n;
  928. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  929. local_vcpus_link)
  930. __vcpu_clear(vmx);
  931. }
  932. static void hardware_disable(void *garbage)
  933. {
  934. vmclear_local_vcpus();
  935. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  936. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  937. }
  938. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  939. u32 msr, u32 *result)
  940. {
  941. u32 vmx_msr_low, vmx_msr_high;
  942. u32 ctl = ctl_min | ctl_opt;
  943. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  944. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  945. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  946. /* Ensure minimum (required) set of control bits are supported. */
  947. if (ctl_min & ~ctl)
  948. return -EIO;
  949. *result = ctl;
  950. return 0;
  951. }
  952. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  953. {
  954. u32 vmx_msr_low, vmx_msr_high;
  955. u32 min, opt, min2, opt2;
  956. u32 _pin_based_exec_control = 0;
  957. u32 _cpu_based_exec_control = 0;
  958. u32 _cpu_based_2nd_exec_control = 0;
  959. u32 _vmexit_control = 0;
  960. u32 _vmentry_control = 0;
  961. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  962. opt = PIN_BASED_VIRTUAL_NMIS;
  963. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  964. &_pin_based_exec_control) < 0)
  965. return -EIO;
  966. min = CPU_BASED_HLT_EXITING |
  967. #ifdef CONFIG_X86_64
  968. CPU_BASED_CR8_LOAD_EXITING |
  969. CPU_BASED_CR8_STORE_EXITING |
  970. #endif
  971. CPU_BASED_CR3_LOAD_EXITING |
  972. CPU_BASED_CR3_STORE_EXITING |
  973. CPU_BASED_USE_IO_BITMAPS |
  974. CPU_BASED_MOV_DR_EXITING |
  975. CPU_BASED_USE_TSC_OFFSETING |
  976. CPU_BASED_INVLPG_EXITING;
  977. opt = CPU_BASED_TPR_SHADOW |
  978. CPU_BASED_USE_MSR_BITMAPS |
  979. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  980. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  981. &_cpu_based_exec_control) < 0)
  982. return -EIO;
  983. #ifdef CONFIG_X86_64
  984. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  985. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  986. ~CPU_BASED_CR8_STORE_EXITING;
  987. #endif
  988. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  989. min2 = 0;
  990. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  991. SECONDARY_EXEC_WBINVD_EXITING |
  992. SECONDARY_EXEC_ENABLE_VPID |
  993. SECONDARY_EXEC_ENABLE_EPT;
  994. if (adjust_vmx_controls(min2, opt2,
  995. MSR_IA32_VMX_PROCBASED_CTLS2,
  996. &_cpu_based_2nd_exec_control) < 0)
  997. return -EIO;
  998. }
  999. #ifndef CONFIG_X86_64
  1000. if (!(_cpu_based_2nd_exec_control &
  1001. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1002. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1003. #endif
  1004. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1005. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1006. enabled */
  1007. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1008. CPU_BASED_CR3_STORE_EXITING |
  1009. CPU_BASED_INVLPG_EXITING);
  1010. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1011. &_cpu_based_exec_control) < 0)
  1012. return -EIO;
  1013. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1014. vmx_capability.ept, vmx_capability.vpid);
  1015. }
  1016. min = 0;
  1017. #ifdef CONFIG_X86_64
  1018. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1019. #endif
  1020. opt = 0;
  1021. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1022. &_vmexit_control) < 0)
  1023. return -EIO;
  1024. min = opt = 0;
  1025. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1026. &_vmentry_control) < 0)
  1027. return -EIO;
  1028. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1029. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1030. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1031. return -EIO;
  1032. #ifdef CONFIG_X86_64
  1033. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1034. if (vmx_msr_high & (1u<<16))
  1035. return -EIO;
  1036. #endif
  1037. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1038. if (((vmx_msr_high >> 18) & 15) != 6)
  1039. return -EIO;
  1040. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1041. vmcs_conf->order = get_order(vmcs_config.size);
  1042. vmcs_conf->revision_id = vmx_msr_low;
  1043. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1044. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1045. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1046. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1047. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1048. return 0;
  1049. }
  1050. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1051. {
  1052. int node = cpu_to_node(cpu);
  1053. struct page *pages;
  1054. struct vmcs *vmcs;
  1055. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1056. if (!pages)
  1057. return NULL;
  1058. vmcs = page_address(pages);
  1059. memset(vmcs, 0, vmcs_config.size);
  1060. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1061. return vmcs;
  1062. }
  1063. static struct vmcs *alloc_vmcs(void)
  1064. {
  1065. return alloc_vmcs_cpu(raw_smp_processor_id());
  1066. }
  1067. static void free_vmcs(struct vmcs *vmcs)
  1068. {
  1069. free_pages((unsigned long)vmcs, vmcs_config.order);
  1070. }
  1071. static void free_kvm_area(void)
  1072. {
  1073. int cpu;
  1074. for_each_online_cpu(cpu)
  1075. free_vmcs(per_cpu(vmxarea, cpu));
  1076. }
  1077. static __init int alloc_kvm_area(void)
  1078. {
  1079. int cpu;
  1080. for_each_online_cpu(cpu) {
  1081. struct vmcs *vmcs;
  1082. vmcs = alloc_vmcs_cpu(cpu);
  1083. if (!vmcs) {
  1084. free_kvm_area();
  1085. return -ENOMEM;
  1086. }
  1087. per_cpu(vmxarea, cpu) = vmcs;
  1088. }
  1089. return 0;
  1090. }
  1091. static __init int hardware_setup(void)
  1092. {
  1093. if (setup_vmcs_config(&vmcs_config) < 0)
  1094. return -EIO;
  1095. if (boot_cpu_has(X86_FEATURE_NX))
  1096. kvm_enable_efer_bits(EFER_NX);
  1097. return alloc_kvm_area();
  1098. }
  1099. static __exit void hardware_unsetup(void)
  1100. {
  1101. free_kvm_area();
  1102. }
  1103. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1104. {
  1105. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1106. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1107. vmcs_write16(sf->selector, save->selector);
  1108. vmcs_writel(sf->base, save->base);
  1109. vmcs_write32(sf->limit, save->limit);
  1110. vmcs_write32(sf->ar_bytes, save->ar);
  1111. } else {
  1112. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1113. << AR_DPL_SHIFT;
  1114. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1115. }
  1116. }
  1117. static void enter_pmode(struct kvm_vcpu *vcpu)
  1118. {
  1119. unsigned long flags;
  1120. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1121. vmx->emulation_required = 1;
  1122. vcpu->arch.rmode.active = 0;
  1123. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1124. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1125. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1126. flags = vmcs_readl(GUEST_RFLAGS);
  1127. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1128. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1129. vmcs_writel(GUEST_RFLAGS, flags);
  1130. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1131. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1132. update_exception_bitmap(vcpu);
  1133. if (emulate_invalid_guest_state)
  1134. return;
  1135. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1136. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1137. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1138. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1139. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1140. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1141. vmcs_write16(GUEST_CS_SELECTOR,
  1142. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1143. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1144. }
  1145. static gva_t rmode_tss_base(struct kvm *kvm)
  1146. {
  1147. if (!kvm->arch.tss_addr) {
  1148. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1149. kvm->memslots[0].npages - 3;
  1150. return base_gfn << PAGE_SHIFT;
  1151. }
  1152. return kvm->arch.tss_addr;
  1153. }
  1154. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1155. {
  1156. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1157. save->selector = vmcs_read16(sf->selector);
  1158. save->base = vmcs_readl(sf->base);
  1159. save->limit = vmcs_read32(sf->limit);
  1160. save->ar = vmcs_read32(sf->ar_bytes);
  1161. vmcs_write16(sf->selector, save->base >> 4);
  1162. vmcs_write32(sf->base, save->base & 0xfffff);
  1163. vmcs_write32(sf->limit, 0xffff);
  1164. vmcs_write32(sf->ar_bytes, 0xf3);
  1165. }
  1166. static void enter_rmode(struct kvm_vcpu *vcpu)
  1167. {
  1168. unsigned long flags;
  1169. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1170. vmx->emulation_required = 1;
  1171. vcpu->arch.rmode.active = 1;
  1172. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1173. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1174. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1175. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1176. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1177. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1178. flags = vmcs_readl(GUEST_RFLAGS);
  1179. vcpu->arch.rmode.save_iopl
  1180. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1181. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1182. vmcs_writel(GUEST_RFLAGS, flags);
  1183. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1184. update_exception_bitmap(vcpu);
  1185. if (emulate_invalid_guest_state)
  1186. goto continue_rmode;
  1187. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1188. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1189. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1190. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1191. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1192. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1193. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1194. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1195. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1196. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1197. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1198. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1199. continue_rmode:
  1200. kvm_mmu_reset_context(vcpu);
  1201. init_rmode(vcpu->kvm);
  1202. }
  1203. #ifdef CONFIG_X86_64
  1204. static void enter_lmode(struct kvm_vcpu *vcpu)
  1205. {
  1206. u32 guest_tr_ar;
  1207. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1208. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1209. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1210. __func__);
  1211. vmcs_write32(GUEST_TR_AR_BYTES,
  1212. (guest_tr_ar & ~AR_TYPE_MASK)
  1213. | AR_TYPE_BUSY_64_TSS);
  1214. }
  1215. vcpu->arch.shadow_efer |= EFER_LMA;
  1216. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1217. vmcs_write32(VM_ENTRY_CONTROLS,
  1218. vmcs_read32(VM_ENTRY_CONTROLS)
  1219. | VM_ENTRY_IA32E_MODE);
  1220. }
  1221. static void exit_lmode(struct kvm_vcpu *vcpu)
  1222. {
  1223. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1224. vmcs_write32(VM_ENTRY_CONTROLS,
  1225. vmcs_read32(VM_ENTRY_CONTROLS)
  1226. & ~VM_ENTRY_IA32E_MODE);
  1227. }
  1228. #endif
  1229. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1230. {
  1231. vpid_sync_vcpu_all(to_vmx(vcpu));
  1232. if (vm_need_ept())
  1233. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1234. }
  1235. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1236. {
  1237. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1238. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1239. }
  1240. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1241. {
  1242. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1243. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1244. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1245. return;
  1246. }
  1247. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1248. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1249. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1250. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1251. }
  1252. }
  1253. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1254. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1255. unsigned long cr0,
  1256. struct kvm_vcpu *vcpu)
  1257. {
  1258. if (!(cr0 & X86_CR0_PG)) {
  1259. /* From paging/starting to nonpaging */
  1260. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1261. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1262. (CPU_BASED_CR3_LOAD_EXITING |
  1263. CPU_BASED_CR3_STORE_EXITING));
  1264. vcpu->arch.cr0 = cr0;
  1265. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1266. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1267. *hw_cr0 &= ~X86_CR0_WP;
  1268. } else if (!is_paging(vcpu)) {
  1269. /* From nonpaging to paging */
  1270. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1271. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1272. ~(CPU_BASED_CR3_LOAD_EXITING |
  1273. CPU_BASED_CR3_STORE_EXITING));
  1274. vcpu->arch.cr0 = cr0;
  1275. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1276. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1277. *hw_cr0 &= ~X86_CR0_WP;
  1278. }
  1279. }
  1280. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1281. struct kvm_vcpu *vcpu)
  1282. {
  1283. if (!is_paging(vcpu)) {
  1284. *hw_cr4 &= ~X86_CR4_PAE;
  1285. *hw_cr4 |= X86_CR4_PSE;
  1286. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1287. *hw_cr4 &= ~X86_CR4_PAE;
  1288. }
  1289. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1290. {
  1291. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1292. KVM_VM_CR0_ALWAYS_ON;
  1293. vmx_fpu_deactivate(vcpu);
  1294. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1295. enter_pmode(vcpu);
  1296. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1297. enter_rmode(vcpu);
  1298. #ifdef CONFIG_X86_64
  1299. if (vcpu->arch.shadow_efer & EFER_LME) {
  1300. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1301. enter_lmode(vcpu);
  1302. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1303. exit_lmode(vcpu);
  1304. }
  1305. #endif
  1306. if (vm_need_ept())
  1307. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1308. vmcs_writel(CR0_READ_SHADOW, cr0);
  1309. vmcs_writel(GUEST_CR0, hw_cr0);
  1310. vcpu->arch.cr0 = cr0;
  1311. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1312. vmx_fpu_activate(vcpu);
  1313. }
  1314. static u64 construct_eptp(unsigned long root_hpa)
  1315. {
  1316. u64 eptp;
  1317. /* TODO write the value reading from MSR */
  1318. eptp = VMX_EPT_DEFAULT_MT |
  1319. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1320. eptp |= (root_hpa & PAGE_MASK);
  1321. return eptp;
  1322. }
  1323. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1324. {
  1325. unsigned long guest_cr3;
  1326. u64 eptp;
  1327. guest_cr3 = cr3;
  1328. if (vm_need_ept()) {
  1329. eptp = construct_eptp(cr3);
  1330. vmcs_write64(EPT_POINTER, eptp);
  1331. ept_sync_context(eptp);
  1332. ept_load_pdptrs(vcpu);
  1333. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1334. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1335. }
  1336. vmx_flush_tlb(vcpu);
  1337. vmcs_writel(GUEST_CR3, guest_cr3);
  1338. if (vcpu->arch.cr0 & X86_CR0_PE)
  1339. vmx_fpu_deactivate(vcpu);
  1340. }
  1341. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1342. {
  1343. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1344. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1345. vcpu->arch.cr4 = cr4;
  1346. if (vm_need_ept())
  1347. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1348. vmcs_writel(CR4_READ_SHADOW, cr4);
  1349. vmcs_writel(GUEST_CR4, hw_cr4);
  1350. }
  1351. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1352. {
  1353. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1354. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1355. vcpu->arch.shadow_efer = efer;
  1356. if (!msr)
  1357. return;
  1358. if (efer & EFER_LMA) {
  1359. vmcs_write32(VM_ENTRY_CONTROLS,
  1360. vmcs_read32(VM_ENTRY_CONTROLS) |
  1361. VM_ENTRY_IA32E_MODE);
  1362. msr->data = efer;
  1363. } else {
  1364. vmcs_write32(VM_ENTRY_CONTROLS,
  1365. vmcs_read32(VM_ENTRY_CONTROLS) &
  1366. ~VM_ENTRY_IA32E_MODE);
  1367. msr->data = efer & ~EFER_LME;
  1368. }
  1369. setup_msrs(vmx);
  1370. }
  1371. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1372. {
  1373. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1374. return vmcs_readl(sf->base);
  1375. }
  1376. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1377. struct kvm_segment *var, int seg)
  1378. {
  1379. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1380. u32 ar;
  1381. var->base = vmcs_readl(sf->base);
  1382. var->limit = vmcs_read32(sf->limit);
  1383. var->selector = vmcs_read16(sf->selector);
  1384. ar = vmcs_read32(sf->ar_bytes);
  1385. if (ar & AR_UNUSABLE_MASK)
  1386. ar = 0;
  1387. var->type = ar & 15;
  1388. var->s = (ar >> 4) & 1;
  1389. var->dpl = (ar >> 5) & 3;
  1390. var->present = (ar >> 7) & 1;
  1391. var->avl = (ar >> 12) & 1;
  1392. var->l = (ar >> 13) & 1;
  1393. var->db = (ar >> 14) & 1;
  1394. var->g = (ar >> 15) & 1;
  1395. var->unusable = (ar >> 16) & 1;
  1396. }
  1397. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1398. {
  1399. struct kvm_segment kvm_seg;
  1400. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1401. return 0;
  1402. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1403. return 3;
  1404. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1405. return kvm_seg.selector & 3;
  1406. }
  1407. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1408. {
  1409. u32 ar;
  1410. if (var->unusable)
  1411. ar = 1 << 16;
  1412. else {
  1413. ar = var->type & 15;
  1414. ar |= (var->s & 1) << 4;
  1415. ar |= (var->dpl & 3) << 5;
  1416. ar |= (var->present & 1) << 7;
  1417. ar |= (var->avl & 1) << 12;
  1418. ar |= (var->l & 1) << 13;
  1419. ar |= (var->db & 1) << 14;
  1420. ar |= (var->g & 1) << 15;
  1421. }
  1422. if (ar == 0) /* a 0 value means unusable */
  1423. ar = AR_UNUSABLE_MASK;
  1424. return ar;
  1425. }
  1426. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1427. struct kvm_segment *var, int seg)
  1428. {
  1429. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1430. u32 ar;
  1431. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1432. vcpu->arch.rmode.tr.selector = var->selector;
  1433. vcpu->arch.rmode.tr.base = var->base;
  1434. vcpu->arch.rmode.tr.limit = var->limit;
  1435. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1436. return;
  1437. }
  1438. vmcs_writel(sf->base, var->base);
  1439. vmcs_write32(sf->limit, var->limit);
  1440. vmcs_write16(sf->selector, var->selector);
  1441. if (vcpu->arch.rmode.active && var->s) {
  1442. /*
  1443. * Hack real-mode segments into vm86 compatibility.
  1444. */
  1445. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1446. vmcs_writel(sf->base, 0xf0000);
  1447. ar = 0xf3;
  1448. } else
  1449. ar = vmx_segment_access_rights(var);
  1450. vmcs_write32(sf->ar_bytes, ar);
  1451. }
  1452. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1453. {
  1454. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1455. *db = (ar >> 14) & 1;
  1456. *l = (ar >> 13) & 1;
  1457. }
  1458. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1459. {
  1460. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1461. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1462. }
  1463. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1464. {
  1465. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1466. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1467. }
  1468. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1469. {
  1470. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1471. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1472. }
  1473. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1474. {
  1475. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1476. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1477. }
  1478. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1479. {
  1480. struct kvm_segment var;
  1481. u32 ar;
  1482. vmx_get_segment(vcpu, &var, seg);
  1483. ar = vmx_segment_access_rights(&var);
  1484. if (var.base != (var.selector << 4))
  1485. return false;
  1486. if (var.limit != 0xffff)
  1487. return false;
  1488. if (ar != 0xf3)
  1489. return false;
  1490. return true;
  1491. }
  1492. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1493. {
  1494. struct kvm_segment cs;
  1495. unsigned int cs_rpl;
  1496. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1497. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1498. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1499. return false;
  1500. if (!cs.s)
  1501. return false;
  1502. if (!(~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK))) {
  1503. if (cs.dpl > cs_rpl)
  1504. return false;
  1505. } else if (cs.type & AR_TYPE_CODE_MASK) {
  1506. if (cs.dpl != cs_rpl)
  1507. return false;
  1508. }
  1509. if (!cs.present)
  1510. return false;
  1511. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1512. return true;
  1513. }
  1514. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1515. {
  1516. struct kvm_segment ss;
  1517. unsigned int ss_rpl;
  1518. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1519. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1520. if ((ss.type != 3) || (ss.type != 7))
  1521. return false;
  1522. if (!ss.s)
  1523. return false;
  1524. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1525. return false;
  1526. if (!ss.present)
  1527. return false;
  1528. return true;
  1529. }
  1530. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1531. {
  1532. struct kvm_segment var;
  1533. unsigned int rpl;
  1534. vmx_get_segment(vcpu, &var, seg);
  1535. rpl = var.selector & SELECTOR_RPL_MASK;
  1536. if (!var.s)
  1537. return false;
  1538. if (!var.present)
  1539. return false;
  1540. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1541. if (var.dpl < rpl) /* DPL < RPL */
  1542. return false;
  1543. }
  1544. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1545. * rights flags
  1546. */
  1547. return true;
  1548. }
  1549. static bool tr_valid(struct kvm_vcpu *vcpu)
  1550. {
  1551. struct kvm_segment tr;
  1552. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1553. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1554. return false;
  1555. if ((tr.type != 3) || (tr.type != 11)) /* TODO: Check if guest is in IA32e mode */
  1556. return false;
  1557. if (!tr.present)
  1558. return false;
  1559. return true;
  1560. }
  1561. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1562. {
  1563. struct kvm_segment ldtr;
  1564. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1565. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1566. return false;
  1567. if (ldtr.type != 2)
  1568. return false;
  1569. if (!ldtr.present)
  1570. return false;
  1571. return true;
  1572. }
  1573. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1574. {
  1575. struct kvm_segment cs, ss;
  1576. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1577. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1578. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1579. (ss.selector & SELECTOR_RPL_MASK));
  1580. }
  1581. /*
  1582. * Check if guest state is valid. Returns true if valid, false if
  1583. * not.
  1584. * We assume that registers are always usable
  1585. */
  1586. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1587. {
  1588. /* real mode guest state checks */
  1589. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1590. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1591. return false;
  1592. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1593. return false;
  1594. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1595. return false;
  1596. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1597. return false;
  1598. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1599. return false;
  1600. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1601. return false;
  1602. } else {
  1603. /* protected mode guest state checks */
  1604. if (!cs_ss_rpl_check(vcpu))
  1605. return false;
  1606. if (!code_segment_valid(vcpu))
  1607. return false;
  1608. if (!stack_segment_valid(vcpu))
  1609. return false;
  1610. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1611. return false;
  1612. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1613. return false;
  1614. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1615. return false;
  1616. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1617. return false;
  1618. if (!tr_valid(vcpu))
  1619. return false;
  1620. if (!ldtr_valid(vcpu))
  1621. return false;
  1622. }
  1623. /* TODO:
  1624. * - Add checks on RIP
  1625. * - Add checks on RFLAGS
  1626. */
  1627. return true;
  1628. }
  1629. static int init_rmode_tss(struct kvm *kvm)
  1630. {
  1631. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1632. u16 data = 0;
  1633. int ret = 0;
  1634. int r;
  1635. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1636. if (r < 0)
  1637. goto out;
  1638. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1639. r = kvm_write_guest_page(kvm, fn++, &data,
  1640. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1641. if (r < 0)
  1642. goto out;
  1643. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1644. if (r < 0)
  1645. goto out;
  1646. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1647. if (r < 0)
  1648. goto out;
  1649. data = ~0;
  1650. r = kvm_write_guest_page(kvm, fn, &data,
  1651. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1652. sizeof(u8));
  1653. if (r < 0)
  1654. goto out;
  1655. ret = 1;
  1656. out:
  1657. return ret;
  1658. }
  1659. static int init_rmode_identity_map(struct kvm *kvm)
  1660. {
  1661. int i, r, ret;
  1662. pfn_t identity_map_pfn;
  1663. u32 tmp;
  1664. if (!vm_need_ept())
  1665. return 1;
  1666. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1667. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1668. "haven't been allocated!\n");
  1669. return 0;
  1670. }
  1671. if (likely(kvm->arch.ept_identity_pagetable_done))
  1672. return 1;
  1673. ret = 0;
  1674. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1675. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1676. if (r < 0)
  1677. goto out;
  1678. /* Set up identity-mapping pagetable for EPT in real mode */
  1679. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1680. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1681. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1682. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1683. &tmp, i * sizeof(tmp), sizeof(tmp));
  1684. if (r < 0)
  1685. goto out;
  1686. }
  1687. kvm->arch.ept_identity_pagetable_done = true;
  1688. ret = 1;
  1689. out:
  1690. return ret;
  1691. }
  1692. static void seg_setup(int seg)
  1693. {
  1694. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1695. vmcs_write16(sf->selector, 0);
  1696. vmcs_writel(sf->base, 0);
  1697. vmcs_write32(sf->limit, 0xffff);
  1698. vmcs_write32(sf->ar_bytes, 0xf3);
  1699. }
  1700. static int alloc_apic_access_page(struct kvm *kvm)
  1701. {
  1702. struct kvm_userspace_memory_region kvm_userspace_mem;
  1703. int r = 0;
  1704. down_write(&kvm->slots_lock);
  1705. if (kvm->arch.apic_access_page)
  1706. goto out;
  1707. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1708. kvm_userspace_mem.flags = 0;
  1709. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1710. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1711. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1712. if (r)
  1713. goto out;
  1714. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1715. out:
  1716. up_write(&kvm->slots_lock);
  1717. return r;
  1718. }
  1719. static int alloc_identity_pagetable(struct kvm *kvm)
  1720. {
  1721. struct kvm_userspace_memory_region kvm_userspace_mem;
  1722. int r = 0;
  1723. down_write(&kvm->slots_lock);
  1724. if (kvm->arch.ept_identity_pagetable)
  1725. goto out;
  1726. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1727. kvm_userspace_mem.flags = 0;
  1728. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1729. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1730. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1731. if (r)
  1732. goto out;
  1733. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1734. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1735. out:
  1736. up_write(&kvm->slots_lock);
  1737. return r;
  1738. }
  1739. static void allocate_vpid(struct vcpu_vmx *vmx)
  1740. {
  1741. int vpid;
  1742. vmx->vpid = 0;
  1743. if (!enable_vpid || !cpu_has_vmx_vpid())
  1744. return;
  1745. spin_lock(&vmx_vpid_lock);
  1746. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1747. if (vpid < VMX_NR_VPIDS) {
  1748. vmx->vpid = vpid;
  1749. __set_bit(vpid, vmx_vpid_bitmap);
  1750. }
  1751. spin_unlock(&vmx_vpid_lock);
  1752. }
  1753. static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1754. {
  1755. void *va;
  1756. if (!cpu_has_vmx_msr_bitmap())
  1757. return;
  1758. /*
  1759. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1760. * have the write-low and read-high bitmap offsets the wrong way round.
  1761. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1762. */
  1763. va = kmap(msr_bitmap);
  1764. if (msr <= 0x1fff) {
  1765. __clear_bit(msr, va + 0x000); /* read-low */
  1766. __clear_bit(msr, va + 0x800); /* write-low */
  1767. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1768. msr &= 0x1fff;
  1769. __clear_bit(msr, va + 0x400); /* read-high */
  1770. __clear_bit(msr, va + 0xc00); /* write-high */
  1771. }
  1772. kunmap(msr_bitmap);
  1773. }
  1774. /*
  1775. * Sets up the vmcs for emulated real mode.
  1776. */
  1777. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1778. {
  1779. u32 host_sysenter_cs;
  1780. u32 junk;
  1781. unsigned long a;
  1782. struct descriptor_table dt;
  1783. int i;
  1784. unsigned long kvm_vmx_return;
  1785. u32 exec_control;
  1786. /* I/O */
  1787. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1788. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1789. if (cpu_has_vmx_msr_bitmap())
  1790. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1791. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1792. /* Control */
  1793. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1794. vmcs_config.pin_based_exec_ctrl);
  1795. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1796. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1797. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1798. #ifdef CONFIG_X86_64
  1799. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1800. CPU_BASED_CR8_LOAD_EXITING;
  1801. #endif
  1802. }
  1803. if (!vm_need_ept())
  1804. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1805. CPU_BASED_CR3_LOAD_EXITING |
  1806. CPU_BASED_INVLPG_EXITING;
  1807. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1808. if (cpu_has_secondary_exec_ctrls()) {
  1809. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1810. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1811. exec_control &=
  1812. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1813. if (vmx->vpid == 0)
  1814. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1815. if (!vm_need_ept())
  1816. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1817. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1818. }
  1819. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1820. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1821. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1822. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1823. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1824. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1825. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1826. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1827. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1828. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1829. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1830. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1831. #ifdef CONFIG_X86_64
  1832. rdmsrl(MSR_FS_BASE, a);
  1833. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1834. rdmsrl(MSR_GS_BASE, a);
  1835. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1836. #else
  1837. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1838. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1839. #endif
  1840. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1841. kvm_get_idt(&dt);
  1842. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1843. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1844. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1845. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1846. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1847. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1848. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1849. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1850. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1851. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1852. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1853. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1854. for (i = 0; i < NR_VMX_MSR; ++i) {
  1855. u32 index = vmx_msr_index[i];
  1856. u32 data_low, data_high;
  1857. u64 data;
  1858. int j = vmx->nmsrs;
  1859. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1860. continue;
  1861. if (wrmsr_safe(index, data_low, data_high) < 0)
  1862. continue;
  1863. data = data_low | ((u64)data_high << 32);
  1864. vmx->host_msrs[j].index = index;
  1865. vmx->host_msrs[j].reserved = 0;
  1866. vmx->host_msrs[j].data = data;
  1867. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1868. ++vmx->nmsrs;
  1869. }
  1870. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1871. /* 22.2.1, 20.8.1 */
  1872. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1873. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1874. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1875. return 0;
  1876. }
  1877. static int init_rmode(struct kvm *kvm)
  1878. {
  1879. if (!init_rmode_tss(kvm))
  1880. return 0;
  1881. if (!init_rmode_identity_map(kvm))
  1882. return 0;
  1883. return 1;
  1884. }
  1885. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1886. {
  1887. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1888. u64 msr;
  1889. int ret;
  1890. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1891. down_read(&vcpu->kvm->slots_lock);
  1892. if (!init_rmode(vmx->vcpu.kvm)) {
  1893. ret = -ENOMEM;
  1894. goto out;
  1895. }
  1896. vmx->vcpu.arch.rmode.active = 0;
  1897. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1898. kvm_set_cr8(&vmx->vcpu, 0);
  1899. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1900. if (vmx->vcpu.vcpu_id == 0)
  1901. msr |= MSR_IA32_APICBASE_BSP;
  1902. kvm_set_apic_base(&vmx->vcpu, msr);
  1903. fx_init(&vmx->vcpu);
  1904. seg_setup(VCPU_SREG_CS);
  1905. /*
  1906. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1907. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1908. */
  1909. if (vmx->vcpu.vcpu_id == 0) {
  1910. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1911. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1912. } else {
  1913. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1914. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1915. }
  1916. seg_setup(VCPU_SREG_DS);
  1917. seg_setup(VCPU_SREG_ES);
  1918. seg_setup(VCPU_SREG_FS);
  1919. seg_setup(VCPU_SREG_GS);
  1920. seg_setup(VCPU_SREG_SS);
  1921. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1922. vmcs_writel(GUEST_TR_BASE, 0);
  1923. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1924. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1925. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1926. vmcs_writel(GUEST_LDTR_BASE, 0);
  1927. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1928. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1929. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1930. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1931. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1932. vmcs_writel(GUEST_RFLAGS, 0x02);
  1933. if (vmx->vcpu.vcpu_id == 0)
  1934. kvm_rip_write(vcpu, 0xfff0);
  1935. else
  1936. kvm_rip_write(vcpu, 0);
  1937. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  1938. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1939. vmcs_writel(GUEST_DR7, 0x400);
  1940. vmcs_writel(GUEST_GDTR_BASE, 0);
  1941. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1942. vmcs_writel(GUEST_IDTR_BASE, 0);
  1943. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1944. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1945. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1946. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1947. guest_write_tsc(0);
  1948. /* Special registers */
  1949. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1950. setup_msrs(vmx);
  1951. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1952. if (cpu_has_vmx_tpr_shadow()) {
  1953. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1954. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1955. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1956. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1957. vmcs_write32(TPR_THRESHOLD, 0);
  1958. }
  1959. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1960. vmcs_write64(APIC_ACCESS_ADDR,
  1961. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1962. if (vmx->vpid != 0)
  1963. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1964. vmx->vcpu.arch.cr0 = 0x60000010;
  1965. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1966. vmx_set_cr4(&vmx->vcpu, 0);
  1967. vmx_set_efer(&vmx->vcpu, 0);
  1968. vmx_fpu_activate(&vmx->vcpu);
  1969. update_exception_bitmap(&vmx->vcpu);
  1970. vpid_sync_vcpu_all(vmx);
  1971. ret = 0;
  1972. /* HACK: Don't enable emulation on guest boot/reset */
  1973. vmx->emulation_required = 0;
  1974. out:
  1975. up_read(&vcpu->kvm->slots_lock);
  1976. return ret;
  1977. }
  1978. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1979. {
  1980. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1981. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  1982. ++vcpu->stat.irq_injections;
  1983. if (vcpu->arch.rmode.active) {
  1984. vmx->rmode.irq.pending = true;
  1985. vmx->rmode.irq.vector = irq;
  1986. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  1987. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1988. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1989. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1990. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  1991. return;
  1992. }
  1993. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1994. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1995. }
  1996. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  1997. {
  1998. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1999. ++vcpu->stat.nmi_injections;
  2000. if (vcpu->arch.rmode.active) {
  2001. vmx->rmode.irq.pending = true;
  2002. vmx->rmode.irq.vector = NMI_VECTOR;
  2003. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2004. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2005. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2006. INTR_INFO_VALID_MASK);
  2007. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2008. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2009. return;
  2010. }
  2011. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2012. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2013. }
  2014. static void vmx_update_window_states(struct kvm_vcpu *vcpu)
  2015. {
  2016. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2017. vcpu->arch.nmi_window_open =
  2018. !(guest_intr & (GUEST_INTR_STATE_STI |
  2019. GUEST_INTR_STATE_MOV_SS |
  2020. GUEST_INTR_STATE_NMI));
  2021. vcpu->arch.interrupt_window_open =
  2022. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2023. !(guest_intr & (GUEST_INTR_STATE_STI |
  2024. GUEST_INTR_STATE_MOV_SS)));
  2025. }
  2026. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  2027. {
  2028. int word_index = __ffs(vcpu->arch.irq_summary);
  2029. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  2030. int irq = word_index * BITS_PER_LONG + bit_index;
  2031. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  2032. if (!vcpu->arch.irq_pending[word_index])
  2033. clear_bit(word_index, &vcpu->arch.irq_summary);
  2034. kvm_queue_interrupt(vcpu, irq);
  2035. }
  2036. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2037. {
  2038. u32 cpu_based_vm_exec_control;
  2039. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2040. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2041. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2042. }
  2043. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2044. {
  2045. u32 cpu_based_vm_exec_control;
  2046. if (!cpu_has_virtual_nmis())
  2047. return;
  2048. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2049. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2050. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2051. }
  2052. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  2053. struct kvm_run *kvm_run)
  2054. {
  2055. vmx_update_window_states(vcpu);
  2056. if (cpu_has_virtual_nmis()) {
  2057. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2058. if (vcpu->arch.nmi_window_open) {
  2059. vcpu->arch.nmi_pending = false;
  2060. vcpu->arch.nmi_injected = true;
  2061. } else {
  2062. enable_nmi_window(vcpu);
  2063. return;
  2064. }
  2065. }
  2066. if (vcpu->arch.nmi_injected) {
  2067. vmx_inject_nmi(vcpu);
  2068. if (vcpu->arch.nmi_pending
  2069. || kvm_run->request_nmi_window)
  2070. enable_nmi_window(vcpu);
  2071. else if (vcpu->arch.irq_summary
  2072. || kvm_run->request_interrupt_window)
  2073. enable_irq_window(vcpu);
  2074. return;
  2075. }
  2076. if (!vcpu->arch.nmi_window_open || kvm_run->request_nmi_window)
  2077. enable_nmi_window(vcpu);
  2078. }
  2079. if (vcpu->arch.interrupt_window_open) {
  2080. if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
  2081. kvm_do_inject_irq(vcpu);
  2082. if (vcpu->arch.interrupt.pending)
  2083. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2084. }
  2085. if (!vcpu->arch.interrupt_window_open &&
  2086. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  2087. enable_irq_window(vcpu);
  2088. }
  2089. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2090. {
  2091. int ret;
  2092. struct kvm_userspace_memory_region tss_mem = {
  2093. .slot = 8,
  2094. .guest_phys_addr = addr,
  2095. .memory_size = PAGE_SIZE * 3,
  2096. .flags = 0,
  2097. };
  2098. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2099. if (ret)
  2100. return ret;
  2101. kvm->arch.tss_addr = addr;
  2102. return 0;
  2103. }
  2104. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  2105. {
  2106. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  2107. set_debugreg(dbg->bp[0], 0);
  2108. set_debugreg(dbg->bp[1], 1);
  2109. set_debugreg(dbg->bp[2], 2);
  2110. set_debugreg(dbg->bp[3], 3);
  2111. if (dbg->singlestep) {
  2112. unsigned long flags;
  2113. flags = vmcs_readl(GUEST_RFLAGS);
  2114. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  2115. vmcs_writel(GUEST_RFLAGS, flags);
  2116. }
  2117. }
  2118. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2119. int vec, u32 err_code)
  2120. {
  2121. /*
  2122. * Instruction with address size override prefix opcode 0x67
  2123. * Cause the #SS fault with 0 error code in VM86 mode.
  2124. */
  2125. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2126. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2127. return 1;
  2128. /*
  2129. * Forward all other exceptions that are valid in real mode.
  2130. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2131. * the required debugging infrastructure rework.
  2132. */
  2133. switch (vec) {
  2134. case DE_VECTOR:
  2135. case DB_VECTOR:
  2136. case BP_VECTOR:
  2137. case OF_VECTOR:
  2138. case BR_VECTOR:
  2139. case UD_VECTOR:
  2140. case DF_VECTOR:
  2141. case SS_VECTOR:
  2142. case GP_VECTOR:
  2143. case MF_VECTOR:
  2144. kvm_queue_exception(vcpu, vec);
  2145. return 1;
  2146. }
  2147. return 0;
  2148. }
  2149. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2150. {
  2151. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2152. u32 intr_info, error_code;
  2153. unsigned long cr2, rip;
  2154. u32 vect_info;
  2155. enum emulation_result er;
  2156. vect_info = vmx->idt_vectoring_info;
  2157. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2158. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2159. !is_page_fault(intr_info))
  2160. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2161. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2162. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  2163. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  2164. set_bit(irq, vcpu->arch.irq_pending);
  2165. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  2166. }
  2167. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2168. return 1; /* already handled by vmx_vcpu_run() */
  2169. if (is_no_device(intr_info)) {
  2170. vmx_fpu_activate(vcpu);
  2171. return 1;
  2172. }
  2173. if (is_invalid_opcode(intr_info)) {
  2174. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2175. if (er != EMULATE_DONE)
  2176. kvm_queue_exception(vcpu, UD_VECTOR);
  2177. return 1;
  2178. }
  2179. error_code = 0;
  2180. rip = kvm_rip_read(vcpu);
  2181. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2182. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2183. if (is_page_fault(intr_info)) {
  2184. /* EPT won't cause page fault directly */
  2185. if (vm_need_ept())
  2186. BUG();
  2187. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2188. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2189. (u32)((u64)cr2 >> 32), handler);
  2190. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  2191. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2192. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2193. }
  2194. if (vcpu->arch.rmode.active &&
  2195. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2196. error_code)) {
  2197. if (vcpu->arch.halt_request) {
  2198. vcpu->arch.halt_request = 0;
  2199. return kvm_emulate_halt(vcpu);
  2200. }
  2201. return 1;
  2202. }
  2203. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  2204. (INTR_TYPE_EXCEPTION | 1)) {
  2205. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2206. return 0;
  2207. }
  2208. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2209. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  2210. kvm_run->ex.error_code = error_code;
  2211. return 0;
  2212. }
  2213. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2214. struct kvm_run *kvm_run)
  2215. {
  2216. ++vcpu->stat.irq_exits;
  2217. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2218. return 1;
  2219. }
  2220. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2221. {
  2222. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2223. return 0;
  2224. }
  2225. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2226. {
  2227. unsigned long exit_qualification;
  2228. int size, down, in, string, rep;
  2229. unsigned port;
  2230. ++vcpu->stat.io_exits;
  2231. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2232. string = (exit_qualification & 16) != 0;
  2233. if (string) {
  2234. if (emulate_instruction(vcpu,
  2235. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2236. return 0;
  2237. return 1;
  2238. }
  2239. size = (exit_qualification & 7) + 1;
  2240. in = (exit_qualification & 8) != 0;
  2241. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  2242. rep = (exit_qualification & 32) != 0;
  2243. port = exit_qualification >> 16;
  2244. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2245. }
  2246. static void
  2247. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2248. {
  2249. /*
  2250. * Patch in the VMCALL instruction:
  2251. */
  2252. hypercall[0] = 0x0f;
  2253. hypercall[1] = 0x01;
  2254. hypercall[2] = 0xc1;
  2255. }
  2256. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2257. {
  2258. unsigned long exit_qualification;
  2259. int cr;
  2260. int reg;
  2261. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2262. cr = exit_qualification & 15;
  2263. reg = (exit_qualification >> 8) & 15;
  2264. switch ((exit_qualification >> 4) & 3) {
  2265. case 0: /* mov to cr */
  2266. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2267. (u32)kvm_register_read(vcpu, reg),
  2268. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2269. handler);
  2270. switch (cr) {
  2271. case 0:
  2272. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2273. skip_emulated_instruction(vcpu);
  2274. return 1;
  2275. case 3:
  2276. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2277. skip_emulated_instruction(vcpu);
  2278. return 1;
  2279. case 4:
  2280. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2281. skip_emulated_instruction(vcpu);
  2282. return 1;
  2283. case 8:
  2284. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2285. skip_emulated_instruction(vcpu);
  2286. if (irqchip_in_kernel(vcpu->kvm))
  2287. return 1;
  2288. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2289. return 0;
  2290. };
  2291. break;
  2292. case 2: /* clts */
  2293. vmx_fpu_deactivate(vcpu);
  2294. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2295. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2296. vmx_fpu_activate(vcpu);
  2297. KVMTRACE_0D(CLTS, vcpu, handler);
  2298. skip_emulated_instruction(vcpu);
  2299. return 1;
  2300. case 1: /*mov from cr*/
  2301. switch (cr) {
  2302. case 3:
  2303. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2304. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2305. (u32)kvm_register_read(vcpu, reg),
  2306. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2307. handler);
  2308. skip_emulated_instruction(vcpu);
  2309. return 1;
  2310. case 8:
  2311. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2312. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2313. (u32)kvm_register_read(vcpu, reg), handler);
  2314. skip_emulated_instruction(vcpu);
  2315. return 1;
  2316. }
  2317. break;
  2318. case 3: /* lmsw */
  2319. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2320. skip_emulated_instruction(vcpu);
  2321. return 1;
  2322. default:
  2323. break;
  2324. }
  2325. kvm_run->exit_reason = 0;
  2326. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2327. (int)(exit_qualification >> 4) & 3, cr);
  2328. return 0;
  2329. }
  2330. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2331. {
  2332. unsigned long exit_qualification;
  2333. unsigned long val;
  2334. int dr, reg;
  2335. /*
  2336. * FIXME: this code assumes the host is debugging the guest.
  2337. * need to deal with guest debugging itself too.
  2338. */
  2339. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2340. dr = exit_qualification & 7;
  2341. reg = (exit_qualification >> 8) & 15;
  2342. if (exit_qualification & 16) {
  2343. /* mov from dr */
  2344. switch (dr) {
  2345. case 6:
  2346. val = 0xffff0ff0;
  2347. break;
  2348. case 7:
  2349. val = 0x400;
  2350. break;
  2351. default:
  2352. val = 0;
  2353. }
  2354. kvm_register_write(vcpu, reg, val);
  2355. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2356. } else {
  2357. /* mov to dr */
  2358. }
  2359. skip_emulated_instruction(vcpu);
  2360. return 1;
  2361. }
  2362. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2363. {
  2364. kvm_emulate_cpuid(vcpu);
  2365. return 1;
  2366. }
  2367. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2368. {
  2369. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2370. u64 data;
  2371. if (vmx_get_msr(vcpu, ecx, &data)) {
  2372. kvm_inject_gp(vcpu, 0);
  2373. return 1;
  2374. }
  2375. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2376. handler);
  2377. /* FIXME: handling of bits 32:63 of rax, rdx */
  2378. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2379. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2380. skip_emulated_instruction(vcpu);
  2381. return 1;
  2382. }
  2383. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2384. {
  2385. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2386. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2387. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2388. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2389. handler);
  2390. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2391. kvm_inject_gp(vcpu, 0);
  2392. return 1;
  2393. }
  2394. skip_emulated_instruction(vcpu);
  2395. return 1;
  2396. }
  2397. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2398. struct kvm_run *kvm_run)
  2399. {
  2400. return 1;
  2401. }
  2402. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2403. struct kvm_run *kvm_run)
  2404. {
  2405. u32 cpu_based_vm_exec_control;
  2406. /* clear pending irq */
  2407. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2408. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2409. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2410. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2411. ++vcpu->stat.irq_window_exits;
  2412. /*
  2413. * If the user space waits to inject interrupts, exit as soon as
  2414. * possible
  2415. */
  2416. if (kvm_run->request_interrupt_window &&
  2417. !vcpu->arch.irq_summary) {
  2418. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2419. return 0;
  2420. }
  2421. return 1;
  2422. }
  2423. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2424. {
  2425. skip_emulated_instruction(vcpu);
  2426. return kvm_emulate_halt(vcpu);
  2427. }
  2428. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2429. {
  2430. skip_emulated_instruction(vcpu);
  2431. kvm_emulate_hypercall(vcpu);
  2432. return 1;
  2433. }
  2434. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2435. {
  2436. u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2437. kvm_mmu_invlpg(vcpu, exit_qualification);
  2438. skip_emulated_instruction(vcpu);
  2439. return 1;
  2440. }
  2441. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2442. {
  2443. skip_emulated_instruction(vcpu);
  2444. /* TODO: Add support for VT-d/pass-through device */
  2445. return 1;
  2446. }
  2447. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2448. {
  2449. u64 exit_qualification;
  2450. enum emulation_result er;
  2451. unsigned long offset;
  2452. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2453. offset = exit_qualification & 0xffful;
  2454. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2455. if (er != EMULATE_DONE) {
  2456. printk(KERN_ERR
  2457. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2458. offset);
  2459. return -ENOTSUPP;
  2460. }
  2461. return 1;
  2462. }
  2463. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2464. {
  2465. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2466. unsigned long exit_qualification;
  2467. u16 tss_selector;
  2468. int reason;
  2469. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2470. reason = (u32)exit_qualification >> 30;
  2471. if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
  2472. (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2473. (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
  2474. == INTR_TYPE_NMI_INTR) {
  2475. vcpu->arch.nmi_injected = false;
  2476. if (cpu_has_virtual_nmis())
  2477. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2478. GUEST_INTR_STATE_NMI);
  2479. }
  2480. tss_selector = exit_qualification;
  2481. return kvm_task_switch(vcpu, tss_selector, reason);
  2482. }
  2483. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2484. {
  2485. u64 exit_qualification;
  2486. enum emulation_result er;
  2487. gpa_t gpa;
  2488. unsigned long hva;
  2489. int gla_validity;
  2490. int r;
  2491. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2492. if (exit_qualification & (1 << 6)) {
  2493. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2494. return -ENOTSUPP;
  2495. }
  2496. gla_validity = (exit_qualification >> 7) & 0x3;
  2497. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2498. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2499. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2500. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2501. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2502. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2503. (long unsigned int)exit_qualification);
  2504. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2505. kvm_run->hw.hardware_exit_reason = 0;
  2506. return -ENOTSUPP;
  2507. }
  2508. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2509. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2510. if (!kvm_is_error_hva(hva)) {
  2511. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2512. if (r < 0) {
  2513. printk(KERN_ERR "EPT: Not enough memory!\n");
  2514. return -ENOMEM;
  2515. }
  2516. return 1;
  2517. } else {
  2518. /* must be MMIO */
  2519. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2520. if (er == EMULATE_FAIL) {
  2521. printk(KERN_ERR
  2522. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2523. er);
  2524. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2525. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2526. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2527. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2528. (long unsigned int)exit_qualification);
  2529. return -ENOTSUPP;
  2530. } else if (er == EMULATE_DO_MMIO)
  2531. return 0;
  2532. }
  2533. return 1;
  2534. }
  2535. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2536. {
  2537. u32 cpu_based_vm_exec_control;
  2538. /* clear pending NMI */
  2539. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2540. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2541. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2542. ++vcpu->stat.nmi_window_exits;
  2543. /*
  2544. * If the user space waits to inject a NMI, exit as soon as possible
  2545. */
  2546. if (kvm_run->request_nmi_window && !vcpu->arch.nmi_pending) {
  2547. kvm_run->exit_reason = KVM_EXIT_NMI_WINDOW_OPEN;
  2548. return 0;
  2549. }
  2550. return 1;
  2551. }
  2552. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2553. struct kvm_run *kvm_run)
  2554. {
  2555. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2556. int err;
  2557. preempt_enable();
  2558. local_irq_enable();
  2559. while (!guest_state_valid(vcpu)) {
  2560. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2561. switch (err) {
  2562. case EMULATE_DONE:
  2563. break;
  2564. case EMULATE_DO_MMIO:
  2565. kvm_report_emulation_failure(vcpu, "mmio");
  2566. /* TODO: Handle MMIO */
  2567. return;
  2568. default:
  2569. kvm_report_emulation_failure(vcpu, "emulation failure");
  2570. return;
  2571. }
  2572. if (signal_pending(current))
  2573. break;
  2574. if (need_resched())
  2575. schedule();
  2576. }
  2577. local_irq_disable();
  2578. preempt_disable();
  2579. /* Guest state should be valid now, no more emulation should be needed */
  2580. vmx->emulation_required = 0;
  2581. }
  2582. /*
  2583. * The exit handlers return 1 if the exit was handled fully and guest execution
  2584. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2585. * to be done to userspace and return 0.
  2586. */
  2587. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2588. struct kvm_run *kvm_run) = {
  2589. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2590. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2591. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2592. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2593. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2594. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2595. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2596. [EXIT_REASON_CPUID] = handle_cpuid,
  2597. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2598. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2599. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2600. [EXIT_REASON_HLT] = handle_halt,
  2601. [EXIT_REASON_INVLPG] = handle_invlpg,
  2602. [EXIT_REASON_VMCALL] = handle_vmcall,
  2603. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2604. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2605. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2606. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2607. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2608. };
  2609. static const int kvm_vmx_max_exit_handlers =
  2610. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2611. /*
  2612. * The guest has exited. See if we can fix it or if we need userspace
  2613. * assistance.
  2614. */
  2615. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2616. {
  2617. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2618. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2619. u32 vectoring_info = vmx->idt_vectoring_info;
  2620. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2621. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2622. /* Access CR3 don't cause VMExit in paging mode, so we need
  2623. * to sync with guest real CR3. */
  2624. if (vm_need_ept() && is_paging(vcpu)) {
  2625. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2626. ept_load_pdptrs(vcpu);
  2627. }
  2628. if (unlikely(vmx->fail)) {
  2629. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2630. kvm_run->fail_entry.hardware_entry_failure_reason
  2631. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2632. return 0;
  2633. }
  2634. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2635. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2636. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2637. exit_reason != EXIT_REASON_TASK_SWITCH))
  2638. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2639. "(0x%x) and exit reason is 0x%x\n",
  2640. __func__, vectoring_info, exit_reason);
  2641. if (exit_reason < kvm_vmx_max_exit_handlers
  2642. && kvm_vmx_exit_handlers[exit_reason])
  2643. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2644. else {
  2645. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2646. kvm_run->hw.hardware_exit_reason = exit_reason;
  2647. }
  2648. return 0;
  2649. }
  2650. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2651. {
  2652. int max_irr, tpr;
  2653. if (!vm_need_tpr_shadow(vcpu->kvm))
  2654. return;
  2655. if (!kvm_lapic_enabled(vcpu) ||
  2656. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2657. vmcs_write32(TPR_THRESHOLD, 0);
  2658. return;
  2659. }
  2660. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2661. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2662. }
  2663. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2664. {
  2665. u32 exit_intr_info;
  2666. u32 idt_vectoring_info;
  2667. bool unblock_nmi;
  2668. u8 vector;
  2669. int type;
  2670. bool idtv_info_valid;
  2671. u32 error;
  2672. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2673. if (cpu_has_virtual_nmis()) {
  2674. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2675. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2676. /*
  2677. * SDM 3: 25.7.1.2
  2678. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2679. * a guest IRET fault.
  2680. */
  2681. if (unblock_nmi && vector != DF_VECTOR)
  2682. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2683. GUEST_INTR_STATE_NMI);
  2684. }
  2685. idt_vectoring_info = vmx->idt_vectoring_info;
  2686. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2687. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2688. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2689. if (vmx->vcpu.arch.nmi_injected) {
  2690. /*
  2691. * SDM 3: 25.7.1.2
  2692. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2693. * faulted.
  2694. */
  2695. if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
  2696. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2697. GUEST_INTR_STATE_NMI);
  2698. else
  2699. vmx->vcpu.arch.nmi_injected = false;
  2700. }
  2701. kvm_clear_exception_queue(&vmx->vcpu);
  2702. if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
  2703. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2704. error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2705. kvm_queue_exception_e(&vmx->vcpu, vector, error);
  2706. } else
  2707. kvm_queue_exception(&vmx->vcpu, vector);
  2708. vmx->idt_vectoring_info = 0;
  2709. }
  2710. kvm_clear_interrupt_queue(&vmx->vcpu);
  2711. if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
  2712. kvm_queue_interrupt(&vmx->vcpu, vector);
  2713. vmx->idt_vectoring_info = 0;
  2714. }
  2715. }
  2716. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2717. {
  2718. update_tpr_threshold(vcpu);
  2719. vmx_update_window_states(vcpu);
  2720. if (cpu_has_virtual_nmis()) {
  2721. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2722. if (vcpu->arch.interrupt.pending) {
  2723. enable_nmi_window(vcpu);
  2724. } else if (vcpu->arch.nmi_window_open) {
  2725. vcpu->arch.nmi_pending = false;
  2726. vcpu->arch.nmi_injected = true;
  2727. } else {
  2728. enable_nmi_window(vcpu);
  2729. return;
  2730. }
  2731. }
  2732. if (vcpu->arch.nmi_injected) {
  2733. vmx_inject_nmi(vcpu);
  2734. if (vcpu->arch.nmi_pending)
  2735. enable_nmi_window(vcpu);
  2736. else if (kvm_cpu_has_interrupt(vcpu))
  2737. enable_irq_window(vcpu);
  2738. return;
  2739. }
  2740. }
  2741. if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
  2742. if (vcpu->arch.interrupt_window_open)
  2743. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
  2744. else
  2745. enable_irq_window(vcpu);
  2746. }
  2747. if (vcpu->arch.interrupt.pending) {
  2748. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2749. kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
  2750. }
  2751. }
  2752. /*
  2753. * Failure to inject an interrupt should give us the information
  2754. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2755. * when fetching the interrupt redirection bitmap in the real-mode
  2756. * tss, this doesn't happen. So we do it ourselves.
  2757. */
  2758. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2759. {
  2760. vmx->rmode.irq.pending = 0;
  2761. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2762. return;
  2763. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2764. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2765. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2766. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2767. return;
  2768. }
  2769. vmx->idt_vectoring_info =
  2770. VECTORING_INFO_VALID_MASK
  2771. | INTR_TYPE_EXT_INTR
  2772. | vmx->rmode.irq.vector;
  2773. }
  2774. #ifdef CONFIG_X86_64
  2775. #define R "r"
  2776. #define Q "q"
  2777. #else
  2778. #define R "e"
  2779. #define Q "l"
  2780. #endif
  2781. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2782. {
  2783. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2784. u32 intr_info;
  2785. /* Handle invalid guest state instead of entering VMX */
  2786. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2787. handle_invalid_guest_state(vcpu, kvm_run);
  2788. return;
  2789. }
  2790. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2791. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2792. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2793. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2794. /*
  2795. * Loading guest fpu may have cleared host cr0.ts
  2796. */
  2797. vmcs_writel(HOST_CR0, read_cr0());
  2798. asm(
  2799. /* Store host registers */
  2800. "push %%"R"dx; push %%"R"bp;"
  2801. "push %%"R"cx \n\t"
  2802. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2803. "je 1f \n\t"
  2804. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2805. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2806. "1: \n\t"
  2807. /* Check if vmlaunch of vmresume is needed */
  2808. "cmpl $0, %c[launched](%0) \n\t"
  2809. /* Load guest registers. Don't clobber flags. */
  2810. "mov %c[cr2](%0), %%"R"ax \n\t"
  2811. "mov %%"R"ax, %%cr2 \n\t"
  2812. "mov %c[rax](%0), %%"R"ax \n\t"
  2813. "mov %c[rbx](%0), %%"R"bx \n\t"
  2814. "mov %c[rdx](%0), %%"R"dx \n\t"
  2815. "mov %c[rsi](%0), %%"R"si \n\t"
  2816. "mov %c[rdi](%0), %%"R"di \n\t"
  2817. "mov %c[rbp](%0), %%"R"bp \n\t"
  2818. #ifdef CONFIG_X86_64
  2819. "mov %c[r8](%0), %%r8 \n\t"
  2820. "mov %c[r9](%0), %%r9 \n\t"
  2821. "mov %c[r10](%0), %%r10 \n\t"
  2822. "mov %c[r11](%0), %%r11 \n\t"
  2823. "mov %c[r12](%0), %%r12 \n\t"
  2824. "mov %c[r13](%0), %%r13 \n\t"
  2825. "mov %c[r14](%0), %%r14 \n\t"
  2826. "mov %c[r15](%0), %%r15 \n\t"
  2827. #endif
  2828. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2829. /* Enter guest mode */
  2830. "jne .Llaunched \n\t"
  2831. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2832. "jmp .Lkvm_vmx_return \n\t"
  2833. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2834. ".Lkvm_vmx_return: "
  2835. /* Save guest registers, load host registers, keep flags */
  2836. "xchg %0, (%%"R"sp) \n\t"
  2837. "mov %%"R"ax, %c[rax](%0) \n\t"
  2838. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2839. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2840. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2841. "mov %%"R"si, %c[rsi](%0) \n\t"
  2842. "mov %%"R"di, %c[rdi](%0) \n\t"
  2843. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2844. #ifdef CONFIG_X86_64
  2845. "mov %%r8, %c[r8](%0) \n\t"
  2846. "mov %%r9, %c[r9](%0) \n\t"
  2847. "mov %%r10, %c[r10](%0) \n\t"
  2848. "mov %%r11, %c[r11](%0) \n\t"
  2849. "mov %%r12, %c[r12](%0) \n\t"
  2850. "mov %%r13, %c[r13](%0) \n\t"
  2851. "mov %%r14, %c[r14](%0) \n\t"
  2852. "mov %%r15, %c[r15](%0) \n\t"
  2853. #endif
  2854. "mov %%cr2, %%"R"ax \n\t"
  2855. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2856. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2857. "setbe %c[fail](%0) \n\t"
  2858. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2859. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2860. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2861. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  2862. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2863. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2864. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2865. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2866. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2867. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2868. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2869. #ifdef CONFIG_X86_64
  2870. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2871. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2872. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2873. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2874. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2875. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2876. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2877. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2878. #endif
  2879. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2880. : "cc", "memory"
  2881. , R"bx", R"di", R"si"
  2882. #ifdef CONFIG_X86_64
  2883. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2884. #endif
  2885. );
  2886. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2887. vcpu->arch.regs_dirty = 0;
  2888. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2889. if (vmx->rmode.irq.pending)
  2890. fixup_rmode_irq(vmx);
  2891. vmx_update_window_states(vcpu);
  2892. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2893. vmx->launched = 1;
  2894. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2895. /* We need to handle NMIs before interrupts are enabled */
  2896. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  2897. (intr_info & INTR_INFO_VALID_MASK)) {
  2898. KVMTRACE_0D(NMI, vcpu, handler);
  2899. asm("int $2");
  2900. }
  2901. vmx_complete_interrupts(vmx);
  2902. }
  2903. #undef R
  2904. #undef Q
  2905. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2906. {
  2907. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2908. if (vmx->vmcs) {
  2909. vcpu_clear(vmx);
  2910. free_vmcs(vmx->vmcs);
  2911. vmx->vmcs = NULL;
  2912. }
  2913. }
  2914. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2915. {
  2916. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2917. spin_lock(&vmx_vpid_lock);
  2918. if (vmx->vpid != 0)
  2919. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2920. spin_unlock(&vmx_vpid_lock);
  2921. vmx_free_vmcs(vcpu);
  2922. kfree(vmx->host_msrs);
  2923. kfree(vmx->guest_msrs);
  2924. kvm_vcpu_uninit(vcpu);
  2925. kmem_cache_free(kvm_vcpu_cache, vmx);
  2926. }
  2927. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2928. {
  2929. int err;
  2930. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2931. int cpu;
  2932. if (!vmx)
  2933. return ERR_PTR(-ENOMEM);
  2934. allocate_vpid(vmx);
  2935. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2936. if (err)
  2937. goto free_vcpu;
  2938. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2939. if (!vmx->guest_msrs) {
  2940. err = -ENOMEM;
  2941. goto uninit_vcpu;
  2942. }
  2943. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2944. if (!vmx->host_msrs)
  2945. goto free_guest_msrs;
  2946. vmx->vmcs = alloc_vmcs();
  2947. if (!vmx->vmcs)
  2948. goto free_msrs;
  2949. vmcs_clear(vmx->vmcs);
  2950. cpu = get_cpu();
  2951. vmx_vcpu_load(&vmx->vcpu, cpu);
  2952. err = vmx_vcpu_setup(vmx);
  2953. vmx_vcpu_put(&vmx->vcpu);
  2954. put_cpu();
  2955. if (err)
  2956. goto free_vmcs;
  2957. if (vm_need_virtualize_apic_accesses(kvm))
  2958. if (alloc_apic_access_page(kvm) != 0)
  2959. goto free_vmcs;
  2960. if (vm_need_ept())
  2961. if (alloc_identity_pagetable(kvm) != 0)
  2962. goto free_vmcs;
  2963. return &vmx->vcpu;
  2964. free_vmcs:
  2965. free_vmcs(vmx->vmcs);
  2966. free_msrs:
  2967. kfree(vmx->host_msrs);
  2968. free_guest_msrs:
  2969. kfree(vmx->guest_msrs);
  2970. uninit_vcpu:
  2971. kvm_vcpu_uninit(&vmx->vcpu);
  2972. free_vcpu:
  2973. kmem_cache_free(kvm_vcpu_cache, vmx);
  2974. return ERR_PTR(err);
  2975. }
  2976. static void __init vmx_check_processor_compat(void *rtn)
  2977. {
  2978. struct vmcs_config vmcs_conf;
  2979. *(int *)rtn = 0;
  2980. if (setup_vmcs_config(&vmcs_conf) < 0)
  2981. *(int *)rtn = -EIO;
  2982. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2983. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2984. smp_processor_id());
  2985. *(int *)rtn = -EIO;
  2986. }
  2987. }
  2988. static int get_ept_level(void)
  2989. {
  2990. return VMX_EPT_DEFAULT_GAW + 1;
  2991. }
  2992. static struct kvm_x86_ops vmx_x86_ops = {
  2993. .cpu_has_kvm_support = cpu_has_kvm_support,
  2994. .disabled_by_bios = vmx_disabled_by_bios,
  2995. .hardware_setup = hardware_setup,
  2996. .hardware_unsetup = hardware_unsetup,
  2997. .check_processor_compatibility = vmx_check_processor_compat,
  2998. .hardware_enable = hardware_enable,
  2999. .hardware_disable = hardware_disable,
  3000. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  3001. .vcpu_create = vmx_create_vcpu,
  3002. .vcpu_free = vmx_free_vcpu,
  3003. .vcpu_reset = vmx_vcpu_reset,
  3004. .prepare_guest_switch = vmx_save_host_state,
  3005. .vcpu_load = vmx_vcpu_load,
  3006. .vcpu_put = vmx_vcpu_put,
  3007. .set_guest_debug = set_guest_debug,
  3008. .guest_debug_pre = kvm_guest_debug_pre,
  3009. .get_msr = vmx_get_msr,
  3010. .set_msr = vmx_set_msr,
  3011. .get_segment_base = vmx_get_segment_base,
  3012. .get_segment = vmx_get_segment,
  3013. .set_segment = vmx_set_segment,
  3014. .get_cpl = vmx_get_cpl,
  3015. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3016. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3017. .set_cr0 = vmx_set_cr0,
  3018. .set_cr3 = vmx_set_cr3,
  3019. .set_cr4 = vmx_set_cr4,
  3020. .set_efer = vmx_set_efer,
  3021. .get_idt = vmx_get_idt,
  3022. .set_idt = vmx_set_idt,
  3023. .get_gdt = vmx_get_gdt,
  3024. .set_gdt = vmx_set_gdt,
  3025. .cache_reg = vmx_cache_reg,
  3026. .get_rflags = vmx_get_rflags,
  3027. .set_rflags = vmx_set_rflags,
  3028. .tlb_flush = vmx_flush_tlb,
  3029. .run = vmx_vcpu_run,
  3030. .handle_exit = kvm_handle_exit,
  3031. .skip_emulated_instruction = skip_emulated_instruction,
  3032. .patch_hypercall = vmx_patch_hypercall,
  3033. .get_irq = vmx_get_irq,
  3034. .set_irq = vmx_inject_irq,
  3035. .queue_exception = vmx_queue_exception,
  3036. .exception_injected = vmx_exception_injected,
  3037. .inject_pending_irq = vmx_intr_assist,
  3038. .inject_pending_vectors = do_interrupt_requests,
  3039. .set_tss_addr = vmx_set_tss_addr,
  3040. .get_tdp_level = get_ept_level,
  3041. };
  3042. static int __init vmx_init(void)
  3043. {
  3044. void *va;
  3045. int r;
  3046. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3047. if (!vmx_io_bitmap_a)
  3048. return -ENOMEM;
  3049. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3050. if (!vmx_io_bitmap_b) {
  3051. r = -ENOMEM;
  3052. goto out;
  3053. }
  3054. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3055. if (!vmx_msr_bitmap) {
  3056. r = -ENOMEM;
  3057. goto out1;
  3058. }
  3059. /*
  3060. * Allow direct access to the PC debug port (it is often used for I/O
  3061. * delays, but the vmexits simply slow things down).
  3062. */
  3063. va = kmap(vmx_io_bitmap_a);
  3064. memset(va, 0xff, PAGE_SIZE);
  3065. clear_bit(0x80, va);
  3066. kunmap(vmx_io_bitmap_a);
  3067. va = kmap(vmx_io_bitmap_b);
  3068. memset(va, 0xff, PAGE_SIZE);
  3069. kunmap(vmx_io_bitmap_b);
  3070. va = kmap(vmx_msr_bitmap);
  3071. memset(va, 0xff, PAGE_SIZE);
  3072. kunmap(vmx_msr_bitmap);
  3073. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3074. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3075. if (r)
  3076. goto out2;
  3077. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  3078. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  3079. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  3080. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  3081. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  3082. if (vm_need_ept()) {
  3083. bypass_guest_pf = 0;
  3084. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3085. VMX_EPT_WRITABLE_MASK |
  3086. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT |
  3087. VMX_EPT_IGMT_BIT);
  3088. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3089. VMX_EPT_EXECUTABLE_MASK);
  3090. kvm_enable_tdp();
  3091. } else
  3092. kvm_disable_tdp();
  3093. if (bypass_guest_pf)
  3094. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3095. ept_sync_global();
  3096. return 0;
  3097. out2:
  3098. __free_page(vmx_msr_bitmap);
  3099. out1:
  3100. __free_page(vmx_io_bitmap_b);
  3101. out:
  3102. __free_page(vmx_io_bitmap_a);
  3103. return r;
  3104. }
  3105. static void __exit vmx_exit(void)
  3106. {
  3107. __free_page(vmx_msr_bitmap);
  3108. __free_page(vmx_io_bitmap_b);
  3109. __free_page(vmx_io_bitmap_a);
  3110. kvm_exit();
  3111. }
  3112. module_init(vmx_init)
  3113. module_exit(vmx_exit)