mm.h 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/debug_locks.h>
  11. #include <linux/mm_types.h>
  12. struct mempolicy;
  13. struct anon_vma;
  14. struct file_ra_state;
  15. struct user_struct;
  16. struct writeback_control;
  17. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  18. extern unsigned long max_mapnr;
  19. #endif
  20. extern unsigned long num_physpages;
  21. extern void * high_memory;
  22. extern int page_cluster;
  23. #ifdef CONFIG_SYSCTL
  24. extern int sysctl_legacy_va_layout;
  25. #else
  26. #define sysctl_legacy_va_layout 0
  27. #endif
  28. extern unsigned long mmap_min_addr;
  29. #include <asm/page.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/processor.h>
  32. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  33. /*
  34. * Linux kernel virtual memory manager primitives.
  35. * The idea being to have a "virtual" mm in the same way
  36. * we have a virtual fs - giving a cleaner interface to the
  37. * mm details, and allowing different kinds of memory mappings
  38. * (from shared memory to executable loading to arbitrary
  39. * mmap() functions).
  40. */
  41. extern struct kmem_cache *vm_area_cachep;
  42. /*
  43. * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
  44. * disabled, then there's a single shared list of VMAs maintained by the
  45. * system, and mm's subscribe to these individually
  46. */
  47. struct vm_list_struct {
  48. struct vm_list_struct *next;
  49. struct vm_area_struct *vma;
  50. };
  51. #ifndef CONFIG_MMU
  52. extern struct rb_root nommu_vma_tree;
  53. extern struct rw_semaphore nommu_vma_sem;
  54. extern unsigned int kobjsize(const void *objp);
  55. #endif
  56. /*
  57. * vm_flags..
  58. */
  59. #define VM_READ 0x00000001 /* currently active flags */
  60. #define VM_WRITE 0x00000002
  61. #define VM_EXEC 0x00000004
  62. #define VM_SHARED 0x00000008
  63. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  64. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  65. #define VM_MAYWRITE 0x00000020
  66. #define VM_MAYEXEC 0x00000040
  67. #define VM_MAYSHARE 0x00000080
  68. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  69. #define VM_GROWSUP 0x00000200
  70. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  71. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  72. #define VM_EXECUTABLE 0x00001000
  73. #define VM_LOCKED 0x00002000
  74. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  75. /* Used by sys_madvise() */
  76. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  77. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  78. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  79. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  80. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  81. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  82. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  83. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  84. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  85. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  86. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  87. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  88. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  89. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  90. #endif
  91. #ifdef CONFIG_STACK_GROWSUP
  92. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  93. #else
  94. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  95. #endif
  96. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  97. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  98. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  99. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  100. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  101. /*
  102. * mapping from the currently active vm_flags protection bits (the
  103. * low four bits) to a page protection mask..
  104. */
  105. extern pgprot_t protection_map[16];
  106. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  107. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  108. /*
  109. * vm_fault is filled by the the pagefault handler and passed to the vma's
  110. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  111. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  112. *
  113. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  114. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  115. * mapping support.
  116. */
  117. struct vm_fault {
  118. unsigned int flags; /* FAULT_FLAG_xxx flags */
  119. pgoff_t pgoff; /* Logical page offset based on vma */
  120. void __user *virtual_address; /* Faulting virtual address */
  121. struct page *page; /* ->fault handlers should return a
  122. * page here, unless VM_FAULT_NOPAGE
  123. * is set (which is also implied by
  124. * VM_FAULT_ERROR).
  125. */
  126. };
  127. /*
  128. * These are the virtual MM functions - opening of an area, closing and
  129. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  130. * to the functions called when a no-page or a wp-page exception occurs.
  131. */
  132. struct vm_operations_struct {
  133. void (*open)(struct vm_area_struct * area);
  134. void (*close)(struct vm_area_struct * area);
  135. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  136. struct page *(*nopage)(struct vm_area_struct *area,
  137. unsigned long address, int *type);
  138. unsigned long (*nopfn)(struct vm_area_struct *area,
  139. unsigned long address);
  140. /* notification that a previously read-only page is about to become
  141. * writable, if an error is returned it will cause a SIGBUS */
  142. int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
  143. #ifdef CONFIG_NUMA
  144. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  145. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  146. unsigned long addr);
  147. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  148. const nodemask_t *to, unsigned long flags);
  149. #endif
  150. };
  151. struct mmu_gather;
  152. struct inode;
  153. #define page_private(page) ((page)->private)
  154. #define set_page_private(page, v) ((page)->private = (v))
  155. /*
  156. * FIXME: take this include out, include page-flags.h in
  157. * files which need it (119 of them)
  158. */
  159. #include <linux/page-flags.h>
  160. #ifdef CONFIG_DEBUG_VM
  161. #define VM_BUG_ON(cond) BUG_ON(cond)
  162. #else
  163. #define VM_BUG_ON(condition) do { } while(0)
  164. #endif
  165. /*
  166. * Methods to modify the page usage count.
  167. *
  168. * What counts for a page usage:
  169. * - cache mapping (page->mapping)
  170. * - private data (page->private)
  171. * - page mapped in a task's page tables, each mapping
  172. * is counted separately
  173. *
  174. * Also, many kernel routines increase the page count before a critical
  175. * routine so they can be sure the page doesn't go away from under them.
  176. */
  177. /*
  178. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  179. */
  180. static inline int put_page_testzero(struct page *page)
  181. {
  182. VM_BUG_ON(atomic_read(&page->_count) == 0);
  183. return atomic_dec_and_test(&page->_count);
  184. }
  185. /*
  186. * Try to grab a ref unless the page has a refcount of zero, return false if
  187. * that is the case.
  188. */
  189. static inline int get_page_unless_zero(struct page *page)
  190. {
  191. VM_BUG_ON(PageCompound(page));
  192. return atomic_inc_not_zero(&page->_count);
  193. }
  194. /* Support for virtually mapped pages */
  195. struct page *vmalloc_to_page(void *addr);
  196. unsigned long vmalloc_to_pfn(void *addr);
  197. static inline struct page *compound_head(struct page *page)
  198. {
  199. if (unlikely(PageTail(page)))
  200. return page->first_page;
  201. return page;
  202. }
  203. static inline int page_count(struct page *page)
  204. {
  205. return atomic_read(&compound_head(page)->_count);
  206. }
  207. static inline void get_page(struct page *page)
  208. {
  209. page = compound_head(page);
  210. VM_BUG_ON(atomic_read(&page->_count) == 0);
  211. atomic_inc(&page->_count);
  212. }
  213. static inline struct page *virt_to_head_page(const void *x)
  214. {
  215. struct page *page = virt_to_page(x);
  216. return compound_head(page);
  217. }
  218. /*
  219. * Setup the page count before being freed into the page allocator for
  220. * the first time (boot or memory hotplug)
  221. */
  222. static inline void init_page_count(struct page *page)
  223. {
  224. atomic_set(&page->_count, 1);
  225. }
  226. void put_page(struct page *page);
  227. void put_pages_list(struct list_head *pages);
  228. void split_page(struct page *page, unsigned int order);
  229. /*
  230. * Compound pages have a destructor function. Provide a
  231. * prototype for that function and accessor functions.
  232. * These are _only_ valid on the head of a PG_compound page.
  233. */
  234. typedef void compound_page_dtor(struct page *);
  235. static inline void set_compound_page_dtor(struct page *page,
  236. compound_page_dtor *dtor)
  237. {
  238. page[1].lru.next = (void *)dtor;
  239. }
  240. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  241. {
  242. return (compound_page_dtor *)page[1].lru.next;
  243. }
  244. static inline int compound_order(struct page *page)
  245. {
  246. if (!PageHead(page))
  247. return 0;
  248. return (unsigned long)page[1].lru.prev;
  249. }
  250. static inline void set_compound_order(struct page *page, unsigned long order)
  251. {
  252. page[1].lru.prev = (void *)order;
  253. }
  254. /*
  255. * Multiple processes may "see" the same page. E.g. for untouched
  256. * mappings of /dev/null, all processes see the same page full of
  257. * zeroes, and text pages of executables and shared libraries have
  258. * only one copy in memory, at most, normally.
  259. *
  260. * For the non-reserved pages, page_count(page) denotes a reference count.
  261. * page_count() == 0 means the page is free. page->lru is then used for
  262. * freelist management in the buddy allocator.
  263. * page_count() > 0 means the page has been allocated.
  264. *
  265. * Pages are allocated by the slab allocator in order to provide memory
  266. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  267. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  268. * unless a particular usage is carefully commented. (the responsibility of
  269. * freeing the kmalloc memory is the caller's, of course).
  270. *
  271. * A page may be used by anyone else who does a __get_free_page().
  272. * In this case, page_count still tracks the references, and should only
  273. * be used through the normal accessor functions. The top bits of page->flags
  274. * and page->virtual store page management information, but all other fields
  275. * are unused and could be used privately, carefully. The management of this
  276. * page is the responsibility of the one who allocated it, and those who have
  277. * subsequently been given references to it.
  278. *
  279. * The other pages (we may call them "pagecache pages") are completely
  280. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  281. * The following discussion applies only to them.
  282. *
  283. * A pagecache page contains an opaque `private' member, which belongs to the
  284. * page's address_space. Usually, this is the address of a circular list of
  285. * the page's disk buffers. PG_private must be set to tell the VM to call
  286. * into the filesystem to release these pages.
  287. *
  288. * A page may belong to an inode's memory mapping. In this case, page->mapping
  289. * is the pointer to the inode, and page->index is the file offset of the page,
  290. * in units of PAGE_CACHE_SIZE.
  291. *
  292. * If pagecache pages are not associated with an inode, they are said to be
  293. * anonymous pages. These may become associated with the swapcache, and in that
  294. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  295. *
  296. * In either case (swapcache or inode backed), the pagecache itself holds one
  297. * reference to the page. Setting PG_private should also increment the
  298. * refcount. The each user mapping also has a reference to the page.
  299. *
  300. * The pagecache pages are stored in a per-mapping radix tree, which is
  301. * rooted at mapping->page_tree, and indexed by offset.
  302. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  303. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  304. *
  305. * All pagecache pages may be subject to I/O:
  306. * - inode pages may need to be read from disk,
  307. * - inode pages which have been modified and are MAP_SHARED may need
  308. * to be written back to the inode on disk,
  309. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  310. * modified may need to be swapped out to swap space and (later) to be read
  311. * back into memory.
  312. */
  313. /*
  314. * The zone field is never updated after free_area_init_core()
  315. * sets it, so none of the operations on it need to be atomic.
  316. */
  317. /*
  318. * page->flags layout:
  319. *
  320. * There are three possibilities for how page->flags get
  321. * laid out. The first is for the normal case, without
  322. * sparsemem. The second is for sparsemem when there is
  323. * plenty of space for node and section. The last is when
  324. * we have run out of space and have to fall back to an
  325. * alternate (slower) way of determining the node.
  326. *
  327. * No sparsemem: | NODE | ZONE | ... | FLAGS |
  328. * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
  329. * no space for node: | SECTION | ZONE | ... | FLAGS |
  330. */
  331. #ifdef CONFIG_SPARSEMEM
  332. #define SECTIONS_WIDTH SECTIONS_SHIFT
  333. #else
  334. #define SECTIONS_WIDTH 0
  335. #endif
  336. #define ZONES_WIDTH ZONES_SHIFT
  337. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
  338. #define NODES_WIDTH NODES_SHIFT
  339. #else
  340. #define NODES_WIDTH 0
  341. #endif
  342. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  343. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  344. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  345. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  346. /*
  347. * We are going to use the flags for the page to node mapping if its in
  348. * there. This includes the case where there is no node, so it is implicit.
  349. */
  350. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  351. #define NODE_NOT_IN_PAGE_FLAGS
  352. #endif
  353. #ifndef PFN_SECTION_SHIFT
  354. #define PFN_SECTION_SHIFT 0
  355. #endif
  356. /*
  357. * Define the bit shifts to access each section. For non-existant
  358. * sections we define the shift as 0; that plus a 0 mask ensures
  359. * the compiler will optimise away reference to them.
  360. */
  361. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  362. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  363. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  364. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
  365. #ifdef NODE_NOT_IN_PAGEFLAGS
  366. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  367. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  368. SECTIONS_PGOFF : ZONES_PGOFF)
  369. #else
  370. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  371. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  372. NODES_PGOFF : ZONES_PGOFF)
  373. #endif
  374. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  375. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  376. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  377. #endif
  378. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  379. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  380. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  381. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  382. static inline enum zone_type page_zonenum(struct page *page)
  383. {
  384. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  385. }
  386. /*
  387. * The identification function is only used by the buddy allocator for
  388. * determining if two pages could be buddies. We are not really
  389. * identifying a zone since we could be using a the section number
  390. * id if we have not node id available in page flags.
  391. * We guarantee only that it will return the same value for two
  392. * combinable pages in a zone.
  393. */
  394. static inline int page_zone_id(struct page *page)
  395. {
  396. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  397. }
  398. static inline int zone_to_nid(struct zone *zone)
  399. {
  400. #ifdef CONFIG_NUMA
  401. return zone->node;
  402. #else
  403. return 0;
  404. #endif
  405. }
  406. #ifdef NODE_NOT_IN_PAGE_FLAGS
  407. extern int page_to_nid(struct page *page);
  408. #else
  409. static inline int page_to_nid(struct page *page)
  410. {
  411. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  412. }
  413. #endif
  414. static inline struct zone *page_zone(struct page *page)
  415. {
  416. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  417. }
  418. static inline unsigned long page_to_section(struct page *page)
  419. {
  420. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  421. }
  422. static inline void set_page_zone(struct page *page, enum zone_type zone)
  423. {
  424. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  425. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  426. }
  427. static inline void set_page_node(struct page *page, unsigned long node)
  428. {
  429. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  430. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  431. }
  432. static inline void set_page_section(struct page *page, unsigned long section)
  433. {
  434. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  435. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  436. }
  437. static inline void set_page_links(struct page *page, enum zone_type zone,
  438. unsigned long node, unsigned long pfn)
  439. {
  440. set_page_zone(page, zone);
  441. set_page_node(page, node);
  442. set_page_section(page, pfn_to_section_nr(pfn));
  443. }
  444. /*
  445. * If a hint addr is less than mmap_min_addr change hint to be as
  446. * low as possible but still greater than mmap_min_addr
  447. */
  448. static inline unsigned long round_hint_to_min(unsigned long hint)
  449. {
  450. #ifdef CONFIG_SECURITY
  451. hint &= PAGE_MASK;
  452. if (((void *)hint != NULL) &&
  453. (hint < mmap_min_addr))
  454. return PAGE_ALIGN(mmap_min_addr);
  455. #endif
  456. return hint;
  457. }
  458. /*
  459. * Some inline functions in vmstat.h depend on page_zone()
  460. */
  461. #include <linux/vmstat.h>
  462. static __always_inline void *lowmem_page_address(struct page *page)
  463. {
  464. return __va(page_to_pfn(page) << PAGE_SHIFT);
  465. }
  466. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  467. #define HASHED_PAGE_VIRTUAL
  468. #endif
  469. #if defined(WANT_PAGE_VIRTUAL)
  470. #define page_address(page) ((page)->virtual)
  471. #define set_page_address(page, address) \
  472. do { \
  473. (page)->virtual = (address); \
  474. } while(0)
  475. #define page_address_init() do { } while(0)
  476. #endif
  477. #if defined(HASHED_PAGE_VIRTUAL)
  478. void *page_address(struct page *page);
  479. void set_page_address(struct page *page, void *virtual);
  480. void page_address_init(void);
  481. #endif
  482. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  483. #define page_address(page) lowmem_page_address(page)
  484. #define set_page_address(page, address) do { } while(0)
  485. #define page_address_init() do { } while(0)
  486. #endif
  487. /*
  488. * On an anonymous page mapped into a user virtual memory area,
  489. * page->mapping points to its anon_vma, not to a struct address_space;
  490. * with the PAGE_MAPPING_ANON bit set to distinguish it.
  491. *
  492. * Please note that, confusingly, "page_mapping" refers to the inode
  493. * address_space which maps the page from disk; whereas "page_mapped"
  494. * refers to user virtual address space into which the page is mapped.
  495. */
  496. #define PAGE_MAPPING_ANON 1
  497. extern struct address_space swapper_space;
  498. static inline struct address_space *page_mapping(struct page *page)
  499. {
  500. struct address_space *mapping = page->mapping;
  501. VM_BUG_ON(PageSlab(page));
  502. if (unlikely(PageSwapCache(page)))
  503. mapping = &swapper_space;
  504. else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
  505. mapping = NULL;
  506. return mapping;
  507. }
  508. static inline int PageAnon(struct page *page)
  509. {
  510. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  511. }
  512. /*
  513. * Return the pagecache index of the passed page. Regular pagecache pages
  514. * use ->index whereas swapcache pages use ->private
  515. */
  516. static inline pgoff_t page_index(struct page *page)
  517. {
  518. if (unlikely(PageSwapCache(page)))
  519. return page_private(page);
  520. return page->index;
  521. }
  522. /*
  523. * The atomic page->_mapcount, like _count, starts from -1:
  524. * so that transitions both from it and to it can be tracked,
  525. * using atomic_inc_and_test and atomic_add_negative(-1).
  526. */
  527. static inline void reset_page_mapcount(struct page *page)
  528. {
  529. atomic_set(&(page)->_mapcount, -1);
  530. }
  531. static inline int page_mapcount(struct page *page)
  532. {
  533. return atomic_read(&(page)->_mapcount) + 1;
  534. }
  535. /*
  536. * Return true if this page is mapped into pagetables.
  537. */
  538. static inline int page_mapped(struct page *page)
  539. {
  540. return atomic_read(&(page)->_mapcount) >= 0;
  541. }
  542. /*
  543. * Error return values for the *_nopage functions
  544. */
  545. #define NOPAGE_SIGBUS (NULL)
  546. #define NOPAGE_OOM ((struct page *) (-1))
  547. /*
  548. * Error return values for the *_nopfn functions
  549. */
  550. #define NOPFN_SIGBUS ((unsigned long) -1)
  551. #define NOPFN_OOM ((unsigned long) -2)
  552. #define NOPFN_REFAULT ((unsigned long) -3)
  553. /*
  554. * Different kinds of faults, as returned by handle_mm_fault().
  555. * Used to decide whether a process gets delivered SIGBUS or
  556. * just gets major/minor fault counters bumped up.
  557. */
  558. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  559. #define VM_FAULT_OOM 0x0001
  560. #define VM_FAULT_SIGBUS 0x0002
  561. #define VM_FAULT_MAJOR 0x0004
  562. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  563. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  564. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  565. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
  566. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  567. extern void show_free_areas(void);
  568. #ifdef CONFIG_SHMEM
  569. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  570. #else
  571. static inline int shmem_lock(struct file *file, int lock,
  572. struct user_struct *user)
  573. {
  574. return 0;
  575. }
  576. #endif
  577. struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
  578. int shmem_zero_setup(struct vm_area_struct *);
  579. #ifndef CONFIG_MMU
  580. extern unsigned long shmem_get_unmapped_area(struct file *file,
  581. unsigned long addr,
  582. unsigned long len,
  583. unsigned long pgoff,
  584. unsigned long flags);
  585. #endif
  586. extern int can_do_mlock(void);
  587. extern int user_shm_lock(size_t, struct user_struct *);
  588. extern void user_shm_unlock(size_t, struct user_struct *);
  589. /*
  590. * Parameter block passed down to zap_pte_range in exceptional cases.
  591. */
  592. struct zap_details {
  593. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  594. struct address_space *check_mapping; /* Check page->mapping if set */
  595. pgoff_t first_index; /* Lowest page->index to unmap */
  596. pgoff_t last_index; /* Highest page->index to unmap */
  597. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  598. unsigned long truncate_count; /* Compare vm_truncate_count */
  599. };
  600. struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
  601. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  602. unsigned long size, struct zap_details *);
  603. unsigned long unmap_vmas(struct mmu_gather **tlb,
  604. struct vm_area_struct *start_vma, unsigned long start_addr,
  605. unsigned long end_addr, unsigned long *nr_accounted,
  606. struct zap_details *);
  607. void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
  608. unsigned long end, unsigned long floor, unsigned long ceiling);
  609. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
  610. unsigned long floor, unsigned long ceiling);
  611. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  612. struct vm_area_struct *vma);
  613. void unmap_mapping_range(struct address_space *mapping,
  614. loff_t const holebegin, loff_t const holelen, int even_cows);
  615. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  616. loff_t const holebegin, loff_t const holelen)
  617. {
  618. unmap_mapping_range(mapping, holebegin, holelen, 0);
  619. }
  620. extern int vmtruncate(struct inode * inode, loff_t offset);
  621. extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
  622. #ifdef CONFIG_MMU
  623. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  624. unsigned long address, int write_access);
  625. #else
  626. static inline int handle_mm_fault(struct mm_struct *mm,
  627. struct vm_area_struct *vma, unsigned long address,
  628. int write_access)
  629. {
  630. /* should never happen if there's no MMU */
  631. BUG();
  632. return VM_FAULT_SIGBUS;
  633. }
  634. #endif
  635. extern int make_pages_present(unsigned long addr, unsigned long end);
  636. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  637. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
  638. int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
  639. void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
  640. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  641. extern void do_invalidatepage(struct page *page, unsigned long offset);
  642. int __set_page_dirty_nobuffers(struct page *page);
  643. int __set_page_dirty_no_writeback(struct page *page);
  644. int redirty_page_for_writepage(struct writeback_control *wbc,
  645. struct page *page);
  646. int FASTCALL(set_page_dirty(struct page *page));
  647. int set_page_dirty_lock(struct page *page);
  648. int clear_page_dirty_for_io(struct page *page);
  649. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  650. unsigned long old_addr, struct vm_area_struct *new_vma,
  651. unsigned long new_addr, unsigned long len);
  652. extern unsigned long do_mremap(unsigned long addr,
  653. unsigned long old_len, unsigned long new_len,
  654. unsigned long flags, unsigned long new_addr);
  655. extern int mprotect_fixup(struct vm_area_struct *vma,
  656. struct vm_area_struct **pprev, unsigned long start,
  657. unsigned long end, unsigned long newflags);
  658. /*
  659. * A callback you can register to apply pressure to ageable caches.
  660. *
  661. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  662. * look through the least-recently-used 'nr_to_scan' entries and
  663. * attempt to free them up. It should return the number of objects
  664. * which remain in the cache. If it returns -1, it means it cannot do
  665. * any scanning at this time (eg. there is a risk of deadlock).
  666. *
  667. * The 'gfpmask' refers to the allocation we are currently trying to
  668. * fulfil.
  669. *
  670. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  671. * querying the cache size, so a fastpath for that case is appropriate.
  672. */
  673. struct shrinker {
  674. int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
  675. int seeks; /* seeks to recreate an obj */
  676. /* These are for internal use */
  677. struct list_head list;
  678. long nr; /* objs pending delete */
  679. };
  680. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  681. extern void register_shrinker(struct shrinker *);
  682. extern void unregister_shrinker(struct shrinker *);
  683. int vma_wants_writenotify(struct vm_area_struct *vma);
  684. extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
  685. #ifdef __PAGETABLE_PUD_FOLDED
  686. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  687. unsigned long address)
  688. {
  689. return 0;
  690. }
  691. #else
  692. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  693. #endif
  694. #ifdef __PAGETABLE_PMD_FOLDED
  695. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  696. unsigned long address)
  697. {
  698. return 0;
  699. }
  700. #else
  701. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  702. #endif
  703. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  704. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  705. /*
  706. * The following ifdef needed to get the 4level-fixup.h header to work.
  707. * Remove it when 4level-fixup.h has been removed.
  708. */
  709. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  710. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  711. {
  712. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  713. NULL: pud_offset(pgd, address);
  714. }
  715. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  716. {
  717. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  718. NULL: pmd_offset(pud, address);
  719. }
  720. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  721. #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
  722. /*
  723. * We tuck a spinlock to guard each pagetable page into its struct page,
  724. * at page->private, with BUILD_BUG_ON to make sure that this will not
  725. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  726. * When freeing, reset page->mapping so free_pages_check won't complain.
  727. */
  728. #define __pte_lockptr(page) &((page)->ptl)
  729. #define pte_lock_init(_page) do { \
  730. spin_lock_init(__pte_lockptr(_page)); \
  731. } while (0)
  732. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  733. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  734. #else
  735. /*
  736. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  737. */
  738. #define pte_lock_init(page) do {} while (0)
  739. #define pte_lock_deinit(page) do {} while (0)
  740. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  741. #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
  742. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  743. ({ \
  744. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  745. pte_t *__pte = pte_offset_map(pmd, address); \
  746. *(ptlp) = __ptl; \
  747. spin_lock(__ptl); \
  748. __pte; \
  749. })
  750. #define pte_unmap_unlock(pte, ptl) do { \
  751. spin_unlock(ptl); \
  752. pte_unmap(pte); \
  753. } while (0)
  754. #define pte_alloc_map(mm, pmd, address) \
  755. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  756. NULL: pte_offset_map(pmd, address))
  757. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  758. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  759. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  760. #define pte_alloc_kernel(pmd, address) \
  761. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  762. NULL: pte_offset_kernel(pmd, address))
  763. extern void free_area_init(unsigned long * zones_size);
  764. extern void free_area_init_node(int nid, pg_data_t *pgdat,
  765. unsigned long * zones_size, unsigned long zone_start_pfn,
  766. unsigned long *zholes_size);
  767. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  768. /*
  769. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  770. * zones, allocate the backing mem_map and account for memory holes in a more
  771. * architecture independent manner. This is a substitute for creating the
  772. * zone_sizes[] and zholes_size[] arrays and passing them to
  773. * free_area_init_node()
  774. *
  775. * An architecture is expected to register range of page frames backed by
  776. * physical memory with add_active_range() before calling
  777. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  778. * usage, an architecture is expected to do something like
  779. *
  780. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  781. * max_highmem_pfn};
  782. * for_each_valid_physical_page_range()
  783. * add_active_range(node_id, start_pfn, end_pfn)
  784. * free_area_init_nodes(max_zone_pfns);
  785. *
  786. * If the architecture guarantees that there are no holes in the ranges
  787. * registered with add_active_range(), free_bootmem_active_regions()
  788. * will call free_bootmem_node() for each registered physical page range.
  789. * Similarly sparse_memory_present_with_active_regions() calls
  790. * memory_present() for each range when SPARSEMEM is enabled.
  791. *
  792. * See mm/page_alloc.c for more information on each function exposed by
  793. * CONFIG_ARCH_POPULATES_NODE_MAP
  794. */
  795. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  796. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  797. unsigned long end_pfn);
  798. extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  799. unsigned long new_end_pfn);
  800. extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
  801. unsigned long end_pfn);
  802. extern void remove_all_active_ranges(void);
  803. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  804. unsigned long end_pfn);
  805. extern void get_pfn_range_for_nid(unsigned int nid,
  806. unsigned long *start_pfn, unsigned long *end_pfn);
  807. extern unsigned long find_min_pfn_with_active_regions(void);
  808. extern unsigned long find_max_pfn_with_active_regions(void);
  809. extern void free_bootmem_with_active_regions(int nid,
  810. unsigned long max_low_pfn);
  811. extern void sparse_memory_present_with_active_regions(int nid);
  812. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  813. extern int early_pfn_to_nid(unsigned long pfn);
  814. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  815. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  816. extern void set_dma_reserve(unsigned long new_dma_reserve);
  817. extern void memmap_init_zone(unsigned long, int, unsigned long,
  818. unsigned long, enum memmap_context);
  819. extern void setup_per_zone_pages_min(void);
  820. extern void mem_init(void);
  821. extern void show_mem(void);
  822. extern void si_meminfo(struct sysinfo * val);
  823. extern void si_meminfo_node(struct sysinfo *val, int nid);
  824. #ifdef CONFIG_NUMA
  825. extern void setup_per_cpu_pageset(void);
  826. #else
  827. static inline void setup_per_cpu_pageset(void) {}
  828. #endif
  829. /* prio_tree.c */
  830. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  831. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  832. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  833. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  834. struct prio_tree_iter *iter);
  835. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  836. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  837. (vma = vma_prio_tree_next(vma, iter)); )
  838. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  839. struct list_head *list)
  840. {
  841. vma->shared.vm_set.parent = NULL;
  842. list_add_tail(&vma->shared.vm_set.list, list);
  843. }
  844. /* mmap.c */
  845. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  846. extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
  847. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  848. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  849. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  850. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  851. struct mempolicy *);
  852. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  853. extern int split_vma(struct mm_struct *,
  854. struct vm_area_struct *, unsigned long addr, int new_below);
  855. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  856. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  857. struct rb_node **, struct rb_node *);
  858. extern void unlink_file_vma(struct vm_area_struct *);
  859. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  860. unsigned long addr, unsigned long len, pgoff_t pgoff);
  861. extern void exit_mmap(struct mm_struct *);
  862. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  863. extern int install_special_mapping(struct mm_struct *mm,
  864. unsigned long addr, unsigned long len,
  865. unsigned long flags, struct page **pages);
  866. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  867. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  868. unsigned long len, unsigned long prot,
  869. unsigned long flag, unsigned long pgoff);
  870. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  871. unsigned long len, unsigned long flags,
  872. unsigned int vm_flags, unsigned long pgoff,
  873. int accountable);
  874. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  875. unsigned long len, unsigned long prot,
  876. unsigned long flag, unsigned long offset)
  877. {
  878. unsigned long ret = -EINVAL;
  879. if ((offset + PAGE_ALIGN(len)) < offset)
  880. goto out;
  881. if (!(offset & ~PAGE_MASK))
  882. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  883. out:
  884. return ret;
  885. }
  886. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  887. extern unsigned long do_brk(unsigned long, unsigned long);
  888. /* filemap.c */
  889. extern unsigned long page_unuse(struct page *);
  890. extern void truncate_inode_pages(struct address_space *, loff_t);
  891. extern void truncate_inode_pages_range(struct address_space *,
  892. loff_t lstart, loff_t lend);
  893. /* generic vm_area_ops exported for stackable file systems */
  894. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  895. /* mm/page-writeback.c */
  896. int write_one_page(struct page *page, int wait);
  897. /* readahead.c */
  898. #define VM_MAX_READAHEAD 128 /* kbytes */
  899. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  900. int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  901. pgoff_t offset, unsigned long nr_to_read);
  902. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  903. pgoff_t offset, unsigned long nr_to_read);
  904. void page_cache_sync_readahead(struct address_space *mapping,
  905. struct file_ra_state *ra,
  906. struct file *filp,
  907. pgoff_t offset,
  908. unsigned long size);
  909. void page_cache_async_readahead(struct address_space *mapping,
  910. struct file_ra_state *ra,
  911. struct file *filp,
  912. struct page *pg,
  913. pgoff_t offset,
  914. unsigned long size);
  915. unsigned long max_sane_readahead(unsigned long nr);
  916. /* Do stack extension */
  917. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  918. #ifdef CONFIG_IA64
  919. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  920. #endif
  921. extern int expand_stack_downwards(struct vm_area_struct *vma,
  922. unsigned long address);
  923. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  924. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  925. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  926. struct vm_area_struct **pprev);
  927. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  928. NULL if none. Assume start_addr < end_addr. */
  929. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  930. {
  931. struct vm_area_struct * vma = find_vma(mm,start_addr);
  932. if (vma && end_addr <= vma->vm_start)
  933. vma = NULL;
  934. return vma;
  935. }
  936. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  937. {
  938. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  939. }
  940. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  941. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  942. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  943. unsigned long pfn, unsigned long size, pgprot_t);
  944. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  945. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  946. unsigned long pfn);
  947. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  948. unsigned int foll_flags);
  949. #define FOLL_WRITE 0x01 /* check pte is writable */
  950. #define FOLL_TOUCH 0x02 /* mark page accessed */
  951. #define FOLL_GET 0x04 /* do get_page on page */
  952. #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
  953. typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
  954. void *data);
  955. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  956. unsigned long size, pte_fn_t fn, void *data);
  957. #ifdef CONFIG_PROC_FS
  958. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  959. #else
  960. static inline void vm_stat_account(struct mm_struct *mm,
  961. unsigned long flags, struct file *file, long pages)
  962. {
  963. }
  964. #endif /* CONFIG_PROC_FS */
  965. #ifdef CONFIG_DEBUG_PAGEALLOC
  966. extern int debug_pagealloc_enabled;
  967. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  968. static inline void enable_debug_pagealloc(void)
  969. {
  970. debug_pagealloc_enabled = 1;
  971. }
  972. #else
  973. static inline void
  974. kernel_map_pages(struct page *page, int numpages, int enable) {}
  975. static inline void enable_debug_pagealloc(void)
  976. {
  977. }
  978. #endif
  979. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  980. #ifdef __HAVE_ARCH_GATE_AREA
  981. int in_gate_area_no_task(unsigned long addr);
  982. int in_gate_area(struct task_struct *task, unsigned long addr);
  983. #else
  984. int in_gate_area_no_task(unsigned long addr);
  985. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  986. #endif /* __HAVE_ARCH_GATE_AREA */
  987. int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
  988. void __user *, size_t *, loff_t *);
  989. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  990. unsigned long lru_pages);
  991. void drop_pagecache(void);
  992. void drop_slab(void);
  993. #ifndef CONFIG_MMU
  994. #define randomize_va_space 0
  995. #else
  996. extern int randomize_va_space;
  997. #endif
  998. const char * arch_vma_name(struct vm_area_struct *vma);
  999. void print_vma_addr(char *prefix, unsigned long rip);
  1000. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1001. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1002. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1003. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1004. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1005. void *vmemmap_alloc_block(unsigned long size, int node);
  1006. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1007. int vmemmap_populate_basepages(struct page *start_page,
  1008. unsigned long pages, int node);
  1009. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1010. #endif /* __KERNEL__ */
  1011. #endif /* _LINUX_MM_H */