core.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760
  1. /*P:400 This contains run_guest() which actually calls into the Host<->Guest
  2. * Switcher and analyzes the return, such as determining if the Guest wants the
  3. * Host to do something. This file also contains useful helper routines, and a
  4. * couple of non-obvious setup and teardown pieces which were implemented after
  5. * days of debugging pain. :*/
  6. #include <linux/module.h>
  7. #include <linux/stringify.h>
  8. #include <linux/stddef.h>
  9. #include <linux/io.h>
  10. #include <linux/mm.h>
  11. #include <linux/vmalloc.h>
  12. #include <linux/cpu.h>
  13. #include <linux/freezer.h>
  14. #include <asm/paravirt.h>
  15. #include <asm/desc.h>
  16. #include <asm/pgtable.h>
  17. #include <asm/uaccess.h>
  18. #include <asm/poll.h>
  19. #include <asm/highmem.h>
  20. #include <asm/asm-offsets.h>
  21. #include <asm/i387.h>
  22. #include "lg.h"
  23. /* Found in switcher.S */
  24. extern char start_switcher_text[], end_switcher_text[], switch_to_guest[];
  25. extern unsigned long default_idt_entries[];
  26. /* Every guest maps the core switcher code. */
  27. #define SHARED_SWITCHER_PAGES \
  28. DIV_ROUND_UP(end_switcher_text - start_switcher_text, PAGE_SIZE)
  29. /* Pages for switcher itself, then two pages per cpu */
  30. #define TOTAL_SWITCHER_PAGES (SHARED_SWITCHER_PAGES + 2 * NR_CPUS)
  31. /* We map at -4M for ease of mapping into the guest (one PTE page). */
  32. #define SWITCHER_ADDR 0xFFC00000
  33. static struct vm_struct *switcher_vma;
  34. static struct page **switcher_page;
  35. static int cpu_had_pge;
  36. static struct {
  37. unsigned long offset;
  38. unsigned short segment;
  39. } lguest_entry;
  40. /* This One Big lock protects all inter-guest data structures. */
  41. DEFINE_MUTEX(lguest_lock);
  42. static DEFINE_PER_CPU(struct lguest *, last_guest);
  43. /* Offset from where switcher.S was compiled to where we've copied it */
  44. static unsigned long switcher_offset(void)
  45. {
  46. return SWITCHER_ADDR - (unsigned long)start_switcher_text;
  47. }
  48. /* This cpu's struct lguest_pages. */
  49. static struct lguest_pages *lguest_pages(unsigned int cpu)
  50. {
  51. return &(((struct lguest_pages *)
  52. (SWITCHER_ADDR + SHARED_SWITCHER_PAGES*PAGE_SIZE))[cpu]);
  53. }
  54. /*H:010 We need to set up the Switcher at a high virtual address. Remember the
  55. * Switcher is a few hundred bytes of assembler code which actually changes the
  56. * CPU to run the Guest, and then changes back to the Host when a trap or
  57. * interrupt happens.
  58. *
  59. * The Switcher code must be at the same virtual address in the Guest as the
  60. * Host since it will be running as the switchover occurs.
  61. *
  62. * Trying to map memory at a particular address is an unusual thing to do, so
  63. * it's not a simple one-liner. We also set up the per-cpu parts of the
  64. * Switcher here.
  65. */
  66. static __init int map_switcher(void)
  67. {
  68. int i, err;
  69. struct page **pagep;
  70. /*
  71. * Map the Switcher in to high memory.
  72. *
  73. * It turns out that if we choose the address 0xFFC00000 (4MB under the
  74. * top virtual address), it makes setting up the page tables really
  75. * easy.
  76. */
  77. /* We allocate an array of "struct page"s. map_vm_area() wants the
  78. * pages in this form, rather than just an array of pointers. */
  79. switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
  80. GFP_KERNEL);
  81. if (!switcher_page) {
  82. err = -ENOMEM;
  83. goto out;
  84. }
  85. /* Now we actually allocate the pages. The Guest will see these pages,
  86. * so we make sure they're zeroed. */
  87. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
  88. unsigned long addr = get_zeroed_page(GFP_KERNEL);
  89. if (!addr) {
  90. err = -ENOMEM;
  91. goto free_some_pages;
  92. }
  93. switcher_page[i] = virt_to_page(addr);
  94. }
  95. /* Now we reserve the "virtual memory area" we want: 0xFFC00000
  96. * (SWITCHER_ADDR). We might not get it in theory, but in practice
  97. * it's worked so far. */
  98. switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
  99. VM_ALLOC, SWITCHER_ADDR, VMALLOC_END);
  100. if (!switcher_vma) {
  101. err = -ENOMEM;
  102. printk("lguest: could not map switcher pages high\n");
  103. goto free_pages;
  104. }
  105. /* This code actually sets up the pages we've allocated to appear at
  106. * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
  107. * kind of pages we're mapping (kernel pages), and a pointer to our
  108. * array of struct pages. It increments that pointer, but we don't
  109. * care. */
  110. pagep = switcher_page;
  111. err = map_vm_area(switcher_vma, PAGE_KERNEL, &pagep);
  112. if (err) {
  113. printk("lguest: map_vm_area failed: %i\n", err);
  114. goto free_vma;
  115. }
  116. /* Now the switcher is mapped at the right address, we can't fail!
  117. * Copy in the compiled-in Switcher code (from switcher.S). */
  118. memcpy(switcher_vma->addr, start_switcher_text,
  119. end_switcher_text - start_switcher_text);
  120. /* Most of the switcher.S doesn't care that it's been moved; on Intel,
  121. * jumps are relative, and it doesn't access any references to external
  122. * code or data.
  123. *
  124. * The only exception is the interrupt handlers in switcher.S: their
  125. * addresses are placed in a table (default_idt_entries), so we need to
  126. * update the table with the new addresses. switcher_offset() is a
  127. * convenience function which returns the distance between the builtin
  128. * switcher code and the high-mapped copy we just made. */
  129. for (i = 0; i < IDT_ENTRIES; i++)
  130. default_idt_entries[i] += switcher_offset();
  131. /*
  132. * Set up the Switcher's per-cpu areas.
  133. *
  134. * Each CPU gets two pages of its own within the high-mapped region
  135. * (aka. "struct lguest_pages"). Much of this can be initialized now,
  136. * but some depends on what Guest we are running (which is set up in
  137. * copy_in_guest_info()).
  138. */
  139. for_each_possible_cpu(i) {
  140. /* lguest_pages() returns this CPU's two pages. */
  141. struct lguest_pages *pages = lguest_pages(i);
  142. /* This is a convenience pointer to make the code fit one
  143. * statement to a line. */
  144. struct lguest_ro_state *state = &pages->state;
  145. /* The Global Descriptor Table: the Host has a different one
  146. * for each CPU. We keep a descriptor for the GDT which says
  147. * where it is and how big it is (the size is actually the last
  148. * byte, not the size, hence the "-1"). */
  149. state->host_gdt_desc.size = GDT_SIZE-1;
  150. state->host_gdt_desc.address = (long)get_cpu_gdt_table(i);
  151. /* All CPUs on the Host use the same Interrupt Descriptor
  152. * Table, so we just use store_idt(), which gets this CPU's IDT
  153. * descriptor. */
  154. store_idt(&state->host_idt_desc);
  155. /* The descriptors for the Guest's GDT and IDT can be filled
  156. * out now, too. We copy the GDT & IDT into ->guest_gdt and
  157. * ->guest_idt before actually running the Guest. */
  158. state->guest_idt_desc.size = sizeof(state->guest_idt)-1;
  159. state->guest_idt_desc.address = (long)&state->guest_idt;
  160. state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1;
  161. state->guest_gdt_desc.address = (long)&state->guest_gdt;
  162. /* We know where we want the stack to be when the Guest enters
  163. * the switcher: in pages->regs. The stack grows upwards, so
  164. * we start it at the end of that structure. */
  165. state->guest_tss.esp0 = (long)(&pages->regs + 1);
  166. /* And this is the GDT entry to use for the stack: we keep a
  167. * couple of special LGUEST entries. */
  168. state->guest_tss.ss0 = LGUEST_DS;
  169. /* x86 can have a finegrained bitmap which indicates what I/O
  170. * ports the process can use. We set it to the end of our
  171. * structure, meaning "none". */
  172. state->guest_tss.io_bitmap_base = sizeof(state->guest_tss);
  173. /* Some GDT entries are the same across all Guests, so we can
  174. * set them up now. */
  175. setup_default_gdt_entries(state);
  176. /* Most IDT entries are the same for all Guests, too.*/
  177. setup_default_idt_entries(state, default_idt_entries);
  178. /* The Host needs to be able to use the LGUEST segments on this
  179. * CPU, too, so put them in the Host GDT. */
  180. get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
  181. get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
  182. }
  183. /* In the Switcher, we want the %cs segment register to use the
  184. * LGUEST_CS GDT entry: we've put that in the Host and Guest GDTs, so
  185. * it will be undisturbed when we switch. To change %cs and jump we
  186. * need this structure to feed to Intel's "lcall" instruction. */
  187. lguest_entry.offset = (long)switch_to_guest + switcher_offset();
  188. lguest_entry.segment = LGUEST_CS;
  189. printk(KERN_INFO "lguest: mapped switcher at %p\n",
  190. switcher_vma->addr);
  191. /* And we succeeded... */
  192. return 0;
  193. free_vma:
  194. vunmap(switcher_vma->addr);
  195. free_pages:
  196. i = TOTAL_SWITCHER_PAGES;
  197. free_some_pages:
  198. for (--i; i >= 0; i--)
  199. __free_pages(switcher_page[i], 0);
  200. kfree(switcher_page);
  201. out:
  202. return err;
  203. }
  204. /*:*/
  205. /* Cleaning up the mapping when the module is unloaded is almost...
  206. * too easy. */
  207. static void unmap_switcher(void)
  208. {
  209. unsigned int i;
  210. /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
  211. vunmap(switcher_vma->addr);
  212. /* Now we just need to free the pages we copied the switcher into */
  213. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
  214. __free_pages(switcher_page[i], 0);
  215. }
  216. /*H:130 Our Guest is usually so well behaved; it never tries to do things it
  217. * isn't allowed to. Unfortunately, Linux's paravirtual infrastructure isn't
  218. * quite complete, because it doesn't contain replacements for the Intel I/O
  219. * instructions. As a result, the Guest sometimes fumbles across one during
  220. * the boot process as it probes for various things which are usually attached
  221. * to a PC.
  222. *
  223. * When the Guest uses one of these instructions, we get trap #13 (General
  224. * Protection Fault) and come here. We see if it's one of those troublesome
  225. * instructions and skip over it. We return true if we did. */
  226. static int emulate_insn(struct lguest *lg)
  227. {
  228. u8 insn;
  229. unsigned int insnlen = 0, in = 0, shift = 0;
  230. /* The eip contains the *virtual* address of the Guest's instruction:
  231. * guest_pa just subtracts the Guest's page_offset. */
  232. unsigned long physaddr = guest_pa(lg, lg->regs->eip);
  233. /* The guest_pa() function only works for Guest kernel addresses, but
  234. * that's all we're trying to do anyway. */
  235. if (lg->regs->eip < lg->page_offset)
  236. return 0;
  237. /* Decoding x86 instructions is icky. */
  238. lgread(lg, &insn, physaddr, 1);
  239. /* 0x66 is an "operand prefix". It means it's using the upper 16 bits
  240. of the eax register. */
  241. if (insn == 0x66) {
  242. shift = 16;
  243. /* The instruction is 1 byte so far, read the next byte. */
  244. insnlen = 1;
  245. lgread(lg, &insn, physaddr + insnlen, 1);
  246. }
  247. /* We can ignore the lower bit for the moment and decode the 4 opcodes
  248. * we need to emulate. */
  249. switch (insn & 0xFE) {
  250. case 0xE4: /* in <next byte>,%al */
  251. insnlen += 2;
  252. in = 1;
  253. break;
  254. case 0xEC: /* in (%dx),%al */
  255. insnlen += 1;
  256. in = 1;
  257. break;
  258. case 0xE6: /* out %al,<next byte> */
  259. insnlen += 2;
  260. break;
  261. case 0xEE: /* out %al,(%dx) */
  262. insnlen += 1;
  263. break;
  264. default:
  265. /* OK, we don't know what this is, can't emulate. */
  266. return 0;
  267. }
  268. /* If it was an "IN" instruction, they expect the result to be read
  269. * into %eax, so we change %eax. We always return all-ones, which
  270. * traditionally means "there's nothing there". */
  271. if (in) {
  272. /* Lower bit tells is whether it's a 16 or 32 bit access */
  273. if (insn & 0x1)
  274. lg->regs->eax = 0xFFFFFFFF;
  275. else
  276. lg->regs->eax |= (0xFFFF << shift);
  277. }
  278. /* Finally, we've "done" the instruction, so move past it. */
  279. lg->regs->eip += insnlen;
  280. /* Success! */
  281. return 1;
  282. }
  283. /*:*/
  284. /*L:305
  285. * Dealing With Guest Memory.
  286. *
  287. * When the Guest gives us (what it thinks is) a physical address, we can use
  288. * the normal copy_from_user() & copy_to_user() on the corresponding place in
  289. * the memory region allocated by the Launcher.
  290. *
  291. * But we can't trust the Guest: it might be trying to access the Launcher
  292. * code. We have to check that the range is below the pfn_limit the Launcher
  293. * gave us. We have to make sure that addr + len doesn't give us a false
  294. * positive by overflowing, too. */
  295. int lguest_address_ok(const struct lguest *lg,
  296. unsigned long addr, unsigned long len)
  297. {
  298. return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
  299. }
  300. /* This is a convenient routine to get a 32-bit value from the Guest (a very
  301. * common operation). Here we can see how useful the kill_lguest() routine we
  302. * met in the Launcher can be: we return a random value (0) instead of needing
  303. * to return an error. */
  304. u32 lgread_u32(struct lguest *lg, unsigned long addr)
  305. {
  306. u32 val = 0;
  307. /* Don't let them access lguest binary. */
  308. if (!lguest_address_ok(lg, addr, sizeof(val))
  309. || get_user(val, (u32 *)(lg->mem_base + addr)) != 0)
  310. kill_guest(lg, "bad read address %#lx: pfn_limit=%u membase=%p", addr, lg->pfn_limit, lg->mem_base);
  311. return val;
  312. }
  313. /* Same thing for writing a value. */
  314. void lgwrite_u32(struct lguest *lg, unsigned long addr, u32 val)
  315. {
  316. if (!lguest_address_ok(lg, addr, sizeof(val))
  317. || put_user(val, (u32 *)(lg->mem_base + addr)) != 0)
  318. kill_guest(lg, "bad write address %#lx", addr);
  319. }
  320. /* This routine is more generic, and copies a range of Guest bytes into a
  321. * buffer. If the copy_from_user() fails, we fill the buffer with zeroes, so
  322. * the caller doesn't end up using uninitialized kernel memory. */
  323. void lgread(struct lguest *lg, void *b, unsigned long addr, unsigned bytes)
  324. {
  325. if (!lguest_address_ok(lg, addr, bytes)
  326. || copy_from_user(b, lg->mem_base + addr, bytes) != 0) {
  327. /* copy_from_user should do this, but as we rely on it... */
  328. memset(b, 0, bytes);
  329. kill_guest(lg, "bad read address %#lx len %u", addr, bytes);
  330. }
  331. }
  332. /* Similarly, our generic routine to copy into a range of Guest bytes. */
  333. void lgwrite(struct lguest *lg, unsigned long addr, const void *b,
  334. unsigned bytes)
  335. {
  336. if (!lguest_address_ok(lg, addr, bytes)
  337. || copy_to_user(lg->mem_base + addr, b, bytes) != 0)
  338. kill_guest(lg, "bad write address %#lx len %u", addr, bytes);
  339. }
  340. /* (end of memory access helper routines) :*/
  341. static void set_ts(void)
  342. {
  343. u32 cr0;
  344. cr0 = read_cr0();
  345. if (!(cr0 & 8))
  346. write_cr0(cr0|8);
  347. }
  348. /*S:010
  349. * We are getting close to the Switcher.
  350. *
  351. * Remember that each CPU has two pages which are visible to the Guest when it
  352. * runs on that CPU. This has to contain the state for that Guest: we copy the
  353. * state in just before we run the Guest.
  354. *
  355. * Each Guest has "changed" flags which indicate what has changed in the Guest
  356. * since it last ran. We saw this set in interrupts_and_traps.c and
  357. * segments.c.
  358. */
  359. static void copy_in_guest_info(struct lguest *lg, struct lguest_pages *pages)
  360. {
  361. /* Copying all this data can be quite expensive. We usually run the
  362. * same Guest we ran last time (and that Guest hasn't run anywhere else
  363. * meanwhile). If that's not the case, we pretend everything in the
  364. * Guest has changed. */
  365. if (__get_cpu_var(last_guest) != lg || lg->last_pages != pages) {
  366. __get_cpu_var(last_guest) = lg;
  367. lg->last_pages = pages;
  368. lg->changed = CHANGED_ALL;
  369. }
  370. /* These copies are pretty cheap, so we do them unconditionally: */
  371. /* Save the current Host top-level page directory. */
  372. pages->state.host_cr3 = __pa(current->mm->pgd);
  373. /* Set up the Guest's page tables to see this CPU's pages (and no
  374. * other CPU's pages). */
  375. map_switcher_in_guest(lg, pages);
  376. /* Set up the two "TSS" members which tell the CPU what stack to use
  377. * for traps which do directly into the Guest (ie. traps at privilege
  378. * level 1). */
  379. pages->state.guest_tss.esp1 = lg->esp1;
  380. pages->state.guest_tss.ss1 = lg->ss1;
  381. /* Copy direct-to-Guest trap entries. */
  382. if (lg->changed & CHANGED_IDT)
  383. copy_traps(lg, pages->state.guest_idt, default_idt_entries);
  384. /* Copy all GDT entries which the Guest can change. */
  385. if (lg->changed & CHANGED_GDT)
  386. copy_gdt(lg, pages->state.guest_gdt);
  387. /* If only the TLS entries have changed, copy them. */
  388. else if (lg->changed & CHANGED_GDT_TLS)
  389. copy_gdt_tls(lg, pages->state.guest_gdt);
  390. /* Mark the Guest as unchanged for next time. */
  391. lg->changed = 0;
  392. }
  393. /* Finally: the code to actually call into the Switcher to run the Guest. */
  394. static void run_guest_once(struct lguest *lg, struct lguest_pages *pages)
  395. {
  396. /* This is a dummy value we need for GCC's sake. */
  397. unsigned int clobber;
  398. /* Copy the guest-specific information into this CPU's "struct
  399. * lguest_pages". */
  400. copy_in_guest_info(lg, pages);
  401. /* Set the trap number to 256 (impossible value). If we fault while
  402. * switching to the Guest (bad segment registers or bug), this will
  403. * cause us to abort the Guest. */
  404. lg->regs->trapnum = 256;
  405. /* Now: we push the "eflags" register on the stack, then do an "lcall".
  406. * This is how we change from using the kernel code segment to using
  407. * the dedicated lguest code segment, as well as jumping into the
  408. * Switcher.
  409. *
  410. * The lcall also pushes the old code segment (KERNEL_CS) onto the
  411. * stack, then the address of this call. This stack layout happens to
  412. * exactly match the stack of an interrupt... */
  413. asm volatile("pushf; lcall *lguest_entry"
  414. /* This is how we tell GCC that %eax ("a") and %ebx ("b")
  415. * are changed by this routine. The "=" means output. */
  416. : "=a"(clobber), "=b"(clobber)
  417. /* %eax contains the pages pointer. ("0" refers to the
  418. * 0-th argument above, ie "a"). %ebx contains the
  419. * physical address of the Guest's top-level page
  420. * directory. */
  421. : "0"(pages), "1"(__pa(lg->pgdirs[lg->pgdidx].pgdir))
  422. /* We tell gcc that all these registers could change,
  423. * which means we don't have to save and restore them in
  424. * the Switcher. */
  425. : "memory", "%edx", "%ecx", "%edi", "%esi");
  426. }
  427. /*:*/
  428. /*H:030 Let's jump straight to the the main loop which runs the Guest.
  429. * Remember, this is called by the Launcher reading /dev/lguest, and we keep
  430. * going around and around until something interesting happens. */
  431. int run_guest(struct lguest *lg, unsigned long __user *user)
  432. {
  433. /* We stop running once the Guest is dead. */
  434. while (!lg->dead) {
  435. /* We need to initialize this, otherwise gcc complains. It's
  436. * not (yet) clever enough to see that it's initialized when we
  437. * need it. */
  438. unsigned int cr2 = 0; /* Damn gcc */
  439. /* First we run any hypercalls the Guest wants done: either in
  440. * the hypercall ring in "struct lguest_data", or directly by
  441. * using int 31 (LGUEST_TRAP_ENTRY). */
  442. do_hypercalls(lg);
  443. /* It's possible the Guest did a SEND_DMA hypercall to the
  444. * Launcher, in which case we return from the read() now. */
  445. if (lg->dma_is_pending) {
  446. if (put_user(lg->pending_dma, user) ||
  447. put_user(lg->pending_key, user+1))
  448. return -EFAULT;
  449. return sizeof(unsigned long)*2;
  450. }
  451. /* Check for signals */
  452. if (signal_pending(current))
  453. return -ERESTARTSYS;
  454. /* If Waker set break_out, return to Launcher. */
  455. if (lg->break_out)
  456. return -EAGAIN;
  457. /* Check if there are any interrupts which can be delivered
  458. * now: if so, this sets up the hander to be executed when we
  459. * next run the Guest. */
  460. maybe_do_interrupt(lg);
  461. /* All long-lived kernel loops need to check with this horrible
  462. * thing called the freezer. If the Host is trying to suspend,
  463. * it stops us. */
  464. try_to_freeze();
  465. /* Just make absolutely sure the Guest is still alive. One of
  466. * those hypercalls could have been fatal, for example. */
  467. if (lg->dead)
  468. break;
  469. /* If the Guest asked to be stopped, we sleep. The Guest's
  470. * clock timer or LHCALL_BREAK from the Waker will wake us. */
  471. if (lg->halted) {
  472. set_current_state(TASK_INTERRUPTIBLE);
  473. schedule();
  474. continue;
  475. }
  476. /* OK, now we're ready to jump into the Guest. First we put up
  477. * the "Do Not Disturb" sign: */
  478. local_irq_disable();
  479. /* Remember the awfully-named TS bit? If the Guest has asked
  480. * to set it we set it now, so we can trap and pass that trap
  481. * to the Guest if it uses the FPU. */
  482. if (lg->ts)
  483. set_ts();
  484. /* SYSENTER is an optimized way of doing system calls. We
  485. * can't allow it because it always jumps to privilege level 0.
  486. * A normal Guest won't try it because we don't advertise it in
  487. * CPUID, but a malicious Guest (or malicious Guest userspace
  488. * program) could, so we tell the CPU to disable it before
  489. * running the Guest. */
  490. if (boot_cpu_has(X86_FEATURE_SEP))
  491. wrmsr(MSR_IA32_SYSENTER_CS, 0, 0);
  492. /* Now we actually run the Guest. It will pop back out when
  493. * something interesting happens, and we can examine its
  494. * registers to see what it was doing. */
  495. run_guest_once(lg, lguest_pages(raw_smp_processor_id()));
  496. /* The "regs" pointer contains two extra entries which are not
  497. * really registers: a trap number which says what interrupt or
  498. * trap made the switcher code come back, and an error code
  499. * which some traps set. */
  500. /* If the Guest page faulted, then the cr2 register will tell
  501. * us the bad virtual address. We have to grab this now,
  502. * because once we re-enable interrupts an interrupt could
  503. * fault and thus overwrite cr2, or we could even move off to a
  504. * different CPU. */
  505. if (lg->regs->trapnum == 14)
  506. cr2 = read_cr2();
  507. /* Similarly, if we took a trap because the Guest used the FPU,
  508. * we have to restore the FPU it expects to see. */
  509. else if (lg->regs->trapnum == 7)
  510. math_state_restore();
  511. /* Restore SYSENTER if it's supposed to be on. */
  512. if (boot_cpu_has(X86_FEATURE_SEP))
  513. wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
  514. /* Now we're ready to be interrupted or moved to other CPUs */
  515. local_irq_enable();
  516. /* OK, so what happened? */
  517. switch (lg->regs->trapnum) {
  518. case 13: /* We've intercepted a GPF. */
  519. /* Check if this was one of those annoying IN or OUT
  520. * instructions which we need to emulate. If so, we
  521. * just go back into the Guest after we've done it. */
  522. if (lg->regs->errcode == 0) {
  523. if (emulate_insn(lg))
  524. continue;
  525. }
  526. break;
  527. case 14: /* We've intercepted a page fault. */
  528. /* The Guest accessed a virtual address that wasn't
  529. * mapped. This happens a lot: we don't actually set
  530. * up most of the page tables for the Guest at all when
  531. * we start: as it runs it asks for more and more, and
  532. * we set them up as required. In this case, we don't
  533. * even tell the Guest that the fault happened.
  534. *
  535. * The errcode tells whether this was a read or a
  536. * write, and whether kernel or userspace code. */
  537. if (demand_page(lg, cr2, lg->regs->errcode))
  538. continue;
  539. /* OK, it's really not there (or not OK): the Guest
  540. * needs to know. We write out the cr2 value so it
  541. * knows where the fault occurred.
  542. *
  543. * Note that if the Guest were really messed up, this
  544. * could happen before it's done the INITIALIZE
  545. * hypercall, so lg->lguest_data will be NULL */
  546. if (lg->lguest_data
  547. && put_user(cr2, &lg->lguest_data->cr2))
  548. kill_guest(lg, "Writing cr2");
  549. break;
  550. case 7: /* We've intercepted a Device Not Available fault. */
  551. /* If the Guest doesn't want to know, we already
  552. * restored the Floating Point Unit, so we just
  553. * continue without telling it. */
  554. if (!lg->ts)
  555. continue;
  556. break;
  557. case 32 ... 255:
  558. /* These values mean a real interrupt occurred, in
  559. * which case the Host handler has already been run.
  560. * We just do a friendly check if another process
  561. * should now be run, then fall through to loop
  562. * around: */
  563. cond_resched();
  564. case LGUEST_TRAP_ENTRY: /* Handled at top of loop */
  565. continue;
  566. }
  567. /* If we get here, it's a trap the Guest wants to know
  568. * about. */
  569. if (deliver_trap(lg, lg->regs->trapnum))
  570. continue;
  571. /* If the Guest doesn't have a handler (either it hasn't
  572. * registered any yet, or it's one of the faults we don't let
  573. * it handle), it dies with a cryptic error message. */
  574. kill_guest(lg, "unhandled trap %li at %#lx (%#lx)",
  575. lg->regs->trapnum, lg->regs->eip,
  576. lg->regs->trapnum == 14 ? cr2 : lg->regs->errcode);
  577. }
  578. /* The Guest is dead => "No such file or directory" */
  579. return -ENOENT;
  580. }
  581. /* Now we can look at each of the routines this calls, in increasing order of
  582. * complexity: do_hypercalls(), emulate_insn(), maybe_do_interrupt(),
  583. * deliver_trap() and demand_page(). After all those, we'll be ready to
  584. * examine the Switcher, and our philosophical understanding of the Host/Guest
  585. * duality will be complete. :*/
  586. static void adjust_pge(void *on)
  587. {
  588. if (on)
  589. write_cr4(read_cr4() | X86_CR4_PGE);
  590. else
  591. write_cr4(read_cr4() & ~X86_CR4_PGE);
  592. }
  593. /*H:000
  594. * Welcome to the Host!
  595. *
  596. * By this point your brain has been tickled by the Guest code and numbed by
  597. * the Launcher code; prepare for it to be stretched by the Host code. This is
  598. * the heart. Let's begin at the initialization routine for the Host's lg
  599. * module.
  600. */
  601. static int __init init(void)
  602. {
  603. int err;
  604. /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
  605. if (paravirt_enabled()) {
  606. printk("lguest is afraid of %s\n", pv_info.name);
  607. return -EPERM;
  608. }
  609. /* First we put the Switcher up in very high virtual memory. */
  610. err = map_switcher();
  611. if (err)
  612. return err;
  613. /* Now we set up the pagetable implementation for the Guests. */
  614. err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
  615. if (err) {
  616. unmap_switcher();
  617. return err;
  618. }
  619. /* The I/O subsystem needs some things initialized. */
  620. lguest_io_init();
  621. /* /dev/lguest needs to be registered. */
  622. err = lguest_device_init();
  623. if (err) {
  624. free_pagetables();
  625. unmap_switcher();
  626. return err;
  627. }
  628. /* Finally, we need to turn off "Page Global Enable". PGE is an
  629. * optimization where page table entries are specially marked to show
  630. * they never change. The Host kernel marks all the kernel pages this
  631. * way because it's always present, even when userspace is running.
  632. *
  633. * Lguest breaks this: unbeknownst to the rest of the Host kernel, we
  634. * switch to the Guest kernel. If you don't disable this on all CPUs,
  635. * you'll get really weird bugs that you'll chase for two days.
  636. *
  637. * I used to turn PGE off every time we switched to the Guest and back
  638. * on when we return, but that slowed the Switcher down noticibly. */
  639. /* We don't need the complexity of CPUs coming and going while we're
  640. * doing this. */
  641. lock_cpu_hotplug();
  642. if (cpu_has_pge) { /* We have a broader idea of "global". */
  643. /* Remember that this was originally set (for cleanup). */
  644. cpu_had_pge = 1;
  645. /* adjust_pge is a helper function which sets or unsets the PGE
  646. * bit on its CPU, depending on the argument (0 == unset). */
  647. on_each_cpu(adjust_pge, (void *)0, 0, 1);
  648. /* Turn off the feature in the global feature set. */
  649. clear_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability);
  650. }
  651. unlock_cpu_hotplug();
  652. /* All good! */
  653. return 0;
  654. }
  655. /* Cleaning up is just the same code, backwards. With a little French. */
  656. static void __exit fini(void)
  657. {
  658. lguest_device_remove();
  659. free_pagetables();
  660. unmap_switcher();
  661. /* If we had PGE before we started, turn it back on now. */
  662. lock_cpu_hotplug();
  663. if (cpu_had_pge) {
  664. set_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability);
  665. /* adjust_pge's argument "1" means set PGE. */
  666. on_each_cpu(adjust_pge, (void *)1, 0, 1);
  667. }
  668. unlock_cpu_hotplug();
  669. }
  670. /* The Host side of lguest can be a module. This is a nice way for people to
  671. * play with it. */
  672. module_init(init);
  673. module_exit(fini);
  674. MODULE_LICENSE("GPL");
  675. MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");