smp.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217
  1. /* smp.c: Sparc64 SMP support.
  2. *
  3. * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/kernel.h>
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/smp_lock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/kernel_stat.h>
  15. #include <linux/delay.h>
  16. #include <linux/init.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/cache.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/profile.h>
  23. #include <linux/bootmem.h>
  24. #include <asm/head.h>
  25. #include <asm/ptrace.h>
  26. #include <asm/atomic.h>
  27. #include <asm/tlbflush.h>
  28. #include <asm/mmu_context.h>
  29. #include <asm/cpudata.h>
  30. #include <asm/irq.h>
  31. #include <asm/page.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/oplib.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/timer.h>
  36. #include <asm/starfire.h>
  37. #include <asm/tlb.h>
  38. #include <asm/sections.h>
  39. extern void calibrate_delay(void);
  40. /* Please don't make this stuff initdata!!! --DaveM */
  41. static unsigned char boot_cpu_id;
  42. cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
  43. cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
  44. static cpumask_t smp_commenced_mask;
  45. static cpumask_t cpu_callout_map;
  46. void smp_info(struct seq_file *m)
  47. {
  48. int i;
  49. seq_printf(m, "State:\n");
  50. for (i = 0; i < NR_CPUS; i++) {
  51. if (cpu_online(i))
  52. seq_printf(m,
  53. "CPU%d:\t\tonline\n", i);
  54. }
  55. }
  56. void smp_bogo(struct seq_file *m)
  57. {
  58. int i;
  59. for (i = 0; i < NR_CPUS; i++)
  60. if (cpu_online(i))
  61. seq_printf(m,
  62. "Cpu%dBogo\t: %lu.%02lu\n"
  63. "Cpu%dClkTck\t: %016lx\n",
  64. i, cpu_data(i).udelay_val / (500000/HZ),
  65. (cpu_data(i).udelay_val / (5000/HZ)) % 100,
  66. i, cpu_data(i).clock_tick);
  67. }
  68. void __init smp_store_cpu_info(int id)
  69. {
  70. int cpu_node;
  71. /* multiplier and counter set by
  72. smp_setup_percpu_timer() */
  73. cpu_data(id).udelay_val = loops_per_jiffy;
  74. cpu_find_by_mid(id, &cpu_node);
  75. cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
  76. "clock-frequency", 0);
  77. cpu_data(id).idle_volume = 1;
  78. cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
  79. 16 * 1024);
  80. cpu_data(id).dcache_line_size =
  81. prom_getintdefault(cpu_node, "dcache-line-size", 32);
  82. cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
  83. 16 * 1024);
  84. cpu_data(id).icache_line_size =
  85. prom_getintdefault(cpu_node, "icache-line-size", 32);
  86. cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
  87. 4 * 1024 * 1024);
  88. cpu_data(id).ecache_line_size =
  89. prom_getintdefault(cpu_node, "ecache-line-size", 64);
  90. printk("CPU[%d]: Caches "
  91. "D[sz(%d):line_sz(%d)] "
  92. "I[sz(%d):line_sz(%d)] "
  93. "E[sz(%d):line_sz(%d)]\n",
  94. id,
  95. cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
  96. cpu_data(id).icache_size, cpu_data(id).icache_line_size,
  97. cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
  98. }
  99. static void smp_setup_percpu_timer(void);
  100. static volatile unsigned long callin_flag = 0;
  101. void __init smp_callin(void)
  102. {
  103. int cpuid = hard_smp_processor_id();
  104. __local_per_cpu_offset = __per_cpu_offset(cpuid);
  105. if (tlb_type == hypervisor)
  106. sun4v_register_fault_status();
  107. __flush_tlb_all();
  108. smp_setup_percpu_timer();
  109. if (cheetah_pcache_forced_on)
  110. cheetah_enable_pcache();
  111. local_irq_enable();
  112. calibrate_delay();
  113. smp_store_cpu_info(cpuid);
  114. callin_flag = 1;
  115. __asm__ __volatile__("membar #Sync\n\t"
  116. "flush %%g6" : : : "memory");
  117. /* Clear this or we will die instantly when we
  118. * schedule back to this idler...
  119. */
  120. current_thread_info()->new_child = 0;
  121. /* Attach to the address space of init_task. */
  122. atomic_inc(&init_mm.mm_count);
  123. current->active_mm = &init_mm;
  124. while (!cpu_isset(cpuid, smp_commenced_mask))
  125. rmb();
  126. cpu_set(cpuid, cpu_online_map);
  127. /* idle thread is expected to have preempt disabled */
  128. preempt_disable();
  129. }
  130. void cpu_panic(void)
  131. {
  132. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  133. panic("SMP bolixed\n");
  134. }
  135. static unsigned long current_tick_offset __read_mostly;
  136. /* This tick register synchronization scheme is taken entirely from
  137. * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
  138. *
  139. * The only change I've made is to rework it so that the master
  140. * initiates the synchonization instead of the slave. -DaveM
  141. */
  142. #define MASTER 0
  143. #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
  144. #define NUM_ROUNDS 64 /* magic value */
  145. #define NUM_ITERS 5 /* likewise */
  146. static DEFINE_SPINLOCK(itc_sync_lock);
  147. static unsigned long go[SLAVE + 1];
  148. #define DEBUG_TICK_SYNC 0
  149. static inline long get_delta (long *rt, long *master)
  150. {
  151. unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
  152. unsigned long tcenter, t0, t1, tm;
  153. unsigned long i;
  154. for (i = 0; i < NUM_ITERS; i++) {
  155. t0 = tick_ops->get_tick();
  156. go[MASTER] = 1;
  157. membar_storeload();
  158. while (!(tm = go[SLAVE]))
  159. rmb();
  160. go[SLAVE] = 0;
  161. wmb();
  162. t1 = tick_ops->get_tick();
  163. if (t1 - t0 < best_t1 - best_t0)
  164. best_t0 = t0, best_t1 = t1, best_tm = tm;
  165. }
  166. *rt = best_t1 - best_t0;
  167. *master = best_tm - best_t0;
  168. /* average best_t0 and best_t1 without overflow: */
  169. tcenter = (best_t0/2 + best_t1/2);
  170. if (best_t0 % 2 + best_t1 % 2 == 2)
  171. tcenter++;
  172. return tcenter - best_tm;
  173. }
  174. void smp_synchronize_tick_client(void)
  175. {
  176. long i, delta, adj, adjust_latency = 0, done = 0;
  177. unsigned long flags, rt, master_time_stamp, bound;
  178. #if DEBUG_TICK_SYNC
  179. struct {
  180. long rt; /* roundtrip time */
  181. long master; /* master's timestamp */
  182. long diff; /* difference between midpoint and master's timestamp */
  183. long lat; /* estimate of itc adjustment latency */
  184. } t[NUM_ROUNDS];
  185. #endif
  186. go[MASTER] = 1;
  187. while (go[MASTER])
  188. rmb();
  189. local_irq_save(flags);
  190. {
  191. for (i = 0; i < NUM_ROUNDS; i++) {
  192. delta = get_delta(&rt, &master_time_stamp);
  193. if (delta == 0) {
  194. done = 1; /* let's lock on to this... */
  195. bound = rt;
  196. }
  197. if (!done) {
  198. if (i > 0) {
  199. adjust_latency += -delta;
  200. adj = -delta + adjust_latency/4;
  201. } else
  202. adj = -delta;
  203. tick_ops->add_tick(adj, current_tick_offset);
  204. }
  205. #if DEBUG_TICK_SYNC
  206. t[i].rt = rt;
  207. t[i].master = master_time_stamp;
  208. t[i].diff = delta;
  209. t[i].lat = adjust_latency/4;
  210. #endif
  211. }
  212. }
  213. local_irq_restore(flags);
  214. #if DEBUG_TICK_SYNC
  215. for (i = 0; i < NUM_ROUNDS; i++)
  216. printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
  217. t[i].rt, t[i].master, t[i].diff, t[i].lat);
  218. #endif
  219. printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
  220. "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
  221. }
  222. static void smp_start_sync_tick_client(int cpu);
  223. static void smp_synchronize_one_tick(int cpu)
  224. {
  225. unsigned long flags, i;
  226. go[MASTER] = 0;
  227. smp_start_sync_tick_client(cpu);
  228. /* wait for client to be ready */
  229. while (!go[MASTER])
  230. rmb();
  231. /* now let the client proceed into his loop */
  232. go[MASTER] = 0;
  233. membar_storeload();
  234. spin_lock_irqsave(&itc_sync_lock, flags);
  235. {
  236. for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
  237. while (!go[MASTER])
  238. rmb();
  239. go[MASTER] = 0;
  240. wmb();
  241. go[SLAVE] = tick_ops->get_tick();
  242. membar_storeload();
  243. }
  244. }
  245. spin_unlock_irqrestore(&itc_sync_lock, flags);
  246. }
  247. extern unsigned long sparc64_cpu_startup;
  248. /* The OBP cpu startup callback truncates the 3rd arg cookie to
  249. * 32-bits (I think) so to be safe we have it read the pointer
  250. * contained here so we work on >4GB machines. -DaveM
  251. */
  252. static struct thread_info *cpu_new_thread = NULL;
  253. static int __devinit smp_boot_one_cpu(unsigned int cpu)
  254. {
  255. unsigned long entry =
  256. (unsigned long)(&sparc64_cpu_startup);
  257. unsigned long cookie =
  258. (unsigned long)(&cpu_new_thread);
  259. struct task_struct *p;
  260. int timeout, ret, cpu_node;
  261. p = fork_idle(cpu);
  262. callin_flag = 0;
  263. cpu_new_thread = task_thread_info(p);
  264. cpu_set(cpu, cpu_callout_map);
  265. cpu_find_by_mid(cpu, &cpu_node);
  266. prom_startcpu(cpu_node, entry, cookie);
  267. for (timeout = 0; timeout < 5000000; timeout++) {
  268. if (callin_flag)
  269. break;
  270. udelay(100);
  271. }
  272. if (callin_flag) {
  273. ret = 0;
  274. } else {
  275. printk("Processor %d is stuck.\n", cpu);
  276. cpu_clear(cpu, cpu_callout_map);
  277. ret = -ENODEV;
  278. }
  279. cpu_new_thread = NULL;
  280. return ret;
  281. }
  282. static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
  283. {
  284. u64 result, target;
  285. int stuck, tmp;
  286. if (this_is_starfire) {
  287. /* map to real upaid */
  288. cpu = (((cpu & 0x3c) << 1) |
  289. ((cpu & 0x40) >> 4) |
  290. (cpu & 0x3));
  291. }
  292. target = (cpu << 14) | 0x70;
  293. again:
  294. /* Ok, this is the real Spitfire Errata #54.
  295. * One must read back from a UDB internal register
  296. * after writes to the UDB interrupt dispatch, but
  297. * before the membar Sync for that write.
  298. * So we use the high UDB control register (ASI 0x7f,
  299. * ADDR 0x20) for the dummy read. -DaveM
  300. */
  301. tmp = 0x40;
  302. __asm__ __volatile__(
  303. "wrpr %1, %2, %%pstate\n\t"
  304. "stxa %4, [%0] %3\n\t"
  305. "stxa %5, [%0+%8] %3\n\t"
  306. "add %0, %8, %0\n\t"
  307. "stxa %6, [%0+%8] %3\n\t"
  308. "membar #Sync\n\t"
  309. "stxa %%g0, [%7] %3\n\t"
  310. "membar #Sync\n\t"
  311. "mov 0x20, %%g1\n\t"
  312. "ldxa [%%g1] 0x7f, %%g0\n\t"
  313. "membar #Sync"
  314. : "=r" (tmp)
  315. : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
  316. "r" (data0), "r" (data1), "r" (data2), "r" (target),
  317. "r" (0x10), "0" (tmp)
  318. : "g1");
  319. /* NOTE: PSTATE_IE is still clear. */
  320. stuck = 100000;
  321. do {
  322. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  323. : "=r" (result)
  324. : "i" (ASI_INTR_DISPATCH_STAT));
  325. if (result == 0) {
  326. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  327. : : "r" (pstate));
  328. return;
  329. }
  330. stuck -= 1;
  331. if (stuck == 0)
  332. break;
  333. } while (result & 0x1);
  334. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  335. : : "r" (pstate));
  336. if (stuck == 0) {
  337. printk("CPU[%d]: mondo stuckage result[%016lx]\n",
  338. smp_processor_id(), result);
  339. } else {
  340. udelay(2);
  341. goto again;
  342. }
  343. }
  344. static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
  345. {
  346. u64 pstate;
  347. int i;
  348. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  349. for_each_cpu_mask(i, mask)
  350. spitfire_xcall_helper(data0, data1, data2, pstate, i);
  351. }
  352. /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
  353. * packet, but we have no use for that. However we do take advantage of
  354. * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
  355. */
  356. static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
  357. {
  358. u64 pstate, ver;
  359. int nack_busy_id, is_jbus;
  360. if (cpus_empty(mask))
  361. return;
  362. /* Unfortunately, someone at Sun had the brilliant idea to make the
  363. * busy/nack fields hard-coded by ITID number for this Ultra-III
  364. * derivative processor.
  365. */
  366. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  367. is_jbus = ((ver >> 32) == __JALAPENO_ID ||
  368. (ver >> 32) == __SERRANO_ID);
  369. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  370. retry:
  371. __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
  372. : : "r" (pstate), "i" (PSTATE_IE));
  373. /* Setup the dispatch data registers. */
  374. __asm__ __volatile__("stxa %0, [%3] %6\n\t"
  375. "stxa %1, [%4] %6\n\t"
  376. "stxa %2, [%5] %6\n\t"
  377. "membar #Sync\n\t"
  378. : /* no outputs */
  379. : "r" (data0), "r" (data1), "r" (data2),
  380. "r" (0x40), "r" (0x50), "r" (0x60),
  381. "i" (ASI_INTR_W));
  382. nack_busy_id = 0;
  383. {
  384. int i;
  385. for_each_cpu_mask(i, mask) {
  386. u64 target = (i << 14) | 0x70;
  387. if (!is_jbus)
  388. target |= (nack_busy_id << 24);
  389. __asm__ __volatile__(
  390. "stxa %%g0, [%0] %1\n\t"
  391. "membar #Sync\n\t"
  392. : /* no outputs */
  393. : "r" (target), "i" (ASI_INTR_W));
  394. nack_busy_id++;
  395. }
  396. }
  397. /* Now, poll for completion. */
  398. {
  399. u64 dispatch_stat;
  400. long stuck;
  401. stuck = 100000 * nack_busy_id;
  402. do {
  403. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  404. : "=r" (dispatch_stat)
  405. : "i" (ASI_INTR_DISPATCH_STAT));
  406. if (dispatch_stat == 0UL) {
  407. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  408. : : "r" (pstate));
  409. return;
  410. }
  411. if (!--stuck)
  412. break;
  413. } while (dispatch_stat & 0x5555555555555555UL);
  414. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  415. : : "r" (pstate));
  416. if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
  417. /* Busy bits will not clear, continue instead
  418. * of freezing up on this cpu.
  419. */
  420. printk("CPU[%d]: mondo stuckage result[%016lx]\n",
  421. smp_processor_id(), dispatch_stat);
  422. } else {
  423. int i, this_busy_nack = 0;
  424. /* Delay some random time with interrupts enabled
  425. * to prevent deadlock.
  426. */
  427. udelay(2 * nack_busy_id);
  428. /* Clear out the mask bits for cpus which did not
  429. * NACK us.
  430. */
  431. for_each_cpu_mask(i, mask) {
  432. u64 check_mask;
  433. if (is_jbus)
  434. check_mask = (0x2UL << (2*i));
  435. else
  436. check_mask = (0x2UL <<
  437. this_busy_nack);
  438. if ((dispatch_stat & check_mask) == 0)
  439. cpu_clear(i, mask);
  440. this_busy_nack += 2;
  441. }
  442. goto retry;
  443. }
  444. }
  445. }
  446. static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
  447. {
  448. /* XXX implement me */
  449. }
  450. /* Send cross call to all processors mentioned in MASK
  451. * except self.
  452. */
  453. static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
  454. {
  455. u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
  456. int this_cpu = get_cpu();
  457. cpus_and(mask, mask, cpu_online_map);
  458. cpu_clear(this_cpu, mask);
  459. if (tlb_type == spitfire)
  460. spitfire_xcall_deliver(data0, data1, data2, mask);
  461. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  462. cheetah_xcall_deliver(data0, data1, data2, mask);
  463. else
  464. hypervisor_xcall_deliver(data0, data1, data2, mask);
  465. /* NOTE: Caller runs local copy on master. */
  466. put_cpu();
  467. }
  468. extern unsigned long xcall_sync_tick;
  469. static void smp_start_sync_tick_client(int cpu)
  470. {
  471. cpumask_t mask = cpumask_of_cpu(cpu);
  472. smp_cross_call_masked(&xcall_sync_tick,
  473. 0, 0, 0, mask);
  474. }
  475. /* Send cross call to all processors except self. */
  476. #define smp_cross_call(func, ctx, data1, data2) \
  477. smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
  478. struct call_data_struct {
  479. void (*func) (void *info);
  480. void *info;
  481. atomic_t finished;
  482. int wait;
  483. };
  484. static DEFINE_SPINLOCK(call_lock);
  485. static struct call_data_struct *call_data;
  486. extern unsigned long xcall_call_function;
  487. /*
  488. * You must not call this function with disabled interrupts or from a
  489. * hardware interrupt handler or from a bottom half handler.
  490. */
  491. static int smp_call_function_mask(void (*func)(void *info), void *info,
  492. int nonatomic, int wait, cpumask_t mask)
  493. {
  494. struct call_data_struct data;
  495. int cpus = cpus_weight(mask) - 1;
  496. long timeout;
  497. if (!cpus)
  498. return 0;
  499. /* Can deadlock when called with interrupts disabled */
  500. WARN_ON(irqs_disabled());
  501. data.func = func;
  502. data.info = info;
  503. atomic_set(&data.finished, 0);
  504. data.wait = wait;
  505. spin_lock(&call_lock);
  506. call_data = &data;
  507. smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
  508. /*
  509. * Wait for other cpus to complete function or at
  510. * least snap the call data.
  511. */
  512. timeout = 1000000;
  513. while (atomic_read(&data.finished) != cpus) {
  514. if (--timeout <= 0)
  515. goto out_timeout;
  516. barrier();
  517. udelay(1);
  518. }
  519. spin_unlock(&call_lock);
  520. return 0;
  521. out_timeout:
  522. spin_unlock(&call_lock);
  523. printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
  524. (long) num_online_cpus() - 1L,
  525. (long) atomic_read(&data.finished));
  526. return 0;
  527. }
  528. int smp_call_function(void (*func)(void *info), void *info,
  529. int nonatomic, int wait)
  530. {
  531. return smp_call_function_mask(func, info, nonatomic, wait,
  532. cpu_online_map);
  533. }
  534. void smp_call_function_client(int irq, struct pt_regs *regs)
  535. {
  536. void (*func) (void *info) = call_data->func;
  537. void *info = call_data->info;
  538. clear_softint(1 << irq);
  539. if (call_data->wait) {
  540. /* let initiator proceed only after completion */
  541. func(info);
  542. atomic_inc(&call_data->finished);
  543. } else {
  544. /* let initiator proceed after getting data */
  545. atomic_inc(&call_data->finished);
  546. func(info);
  547. }
  548. }
  549. static void tsb_sync(void *info)
  550. {
  551. struct mm_struct *mm = info;
  552. if (current->active_mm == mm)
  553. tsb_context_switch(mm);
  554. }
  555. void smp_tsb_sync(struct mm_struct *mm)
  556. {
  557. smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
  558. }
  559. extern unsigned long xcall_flush_tlb_mm;
  560. extern unsigned long xcall_flush_tlb_pending;
  561. extern unsigned long xcall_flush_tlb_kernel_range;
  562. extern unsigned long xcall_report_regs;
  563. extern unsigned long xcall_receive_signal;
  564. #ifdef DCACHE_ALIASING_POSSIBLE
  565. extern unsigned long xcall_flush_dcache_page_cheetah;
  566. #endif
  567. extern unsigned long xcall_flush_dcache_page_spitfire;
  568. #ifdef CONFIG_DEBUG_DCFLUSH
  569. extern atomic_t dcpage_flushes;
  570. extern atomic_t dcpage_flushes_xcall;
  571. #endif
  572. static __inline__ void __local_flush_dcache_page(struct page *page)
  573. {
  574. #ifdef DCACHE_ALIASING_POSSIBLE
  575. __flush_dcache_page(page_address(page),
  576. ((tlb_type == spitfire) &&
  577. page_mapping(page) != NULL));
  578. #else
  579. if (page_mapping(page) != NULL &&
  580. tlb_type == spitfire)
  581. __flush_icache_page(__pa(page_address(page)));
  582. #endif
  583. }
  584. void smp_flush_dcache_page_impl(struct page *page, int cpu)
  585. {
  586. cpumask_t mask = cpumask_of_cpu(cpu);
  587. int this_cpu;
  588. if (tlb_type == hypervisor)
  589. return;
  590. #ifdef CONFIG_DEBUG_DCFLUSH
  591. atomic_inc(&dcpage_flushes);
  592. #endif
  593. this_cpu = get_cpu();
  594. if (cpu == this_cpu) {
  595. __local_flush_dcache_page(page);
  596. } else if (cpu_online(cpu)) {
  597. void *pg_addr = page_address(page);
  598. u64 data0;
  599. if (tlb_type == spitfire) {
  600. data0 =
  601. ((u64)&xcall_flush_dcache_page_spitfire);
  602. if (page_mapping(page) != NULL)
  603. data0 |= ((u64)1 << 32);
  604. spitfire_xcall_deliver(data0,
  605. __pa(pg_addr),
  606. (u64) pg_addr,
  607. mask);
  608. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  609. #ifdef DCACHE_ALIASING_POSSIBLE
  610. data0 =
  611. ((u64)&xcall_flush_dcache_page_cheetah);
  612. cheetah_xcall_deliver(data0,
  613. __pa(pg_addr),
  614. 0, mask);
  615. #endif
  616. }
  617. #ifdef CONFIG_DEBUG_DCFLUSH
  618. atomic_inc(&dcpage_flushes_xcall);
  619. #endif
  620. }
  621. put_cpu();
  622. }
  623. void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
  624. {
  625. void *pg_addr = page_address(page);
  626. cpumask_t mask = cpu_online_map;
  627. u64 data0;
  628. int this_cpu;
  629. if (tlb_type == hypervisor)
  630. return;
  631. this_cpu = get_cpu();
  632. cpu_clear(this_cpu, mask);
  633. #ifdef CONFIG_DEBUG_DCFLUSH
  634. atomic_inc(&dcpage_flushes);
  635. #endif
  636. if (cpus_empty(mask))
  637. goto flush_self;
  638. if (tlb_type == spitfire) {
  639. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  640. if (page_mapping(page) != NULL)
  641. data0 |= ((u64)1 << 32);
  642. spitfire_xcall_deliver(data0,
  643. __pa(pg_addr),
  644. (u64) pg_addr,
  645. mask);
  646. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  647. #ifdef DCACHE_ALIASING_POSSIBLE
  648. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  649. cheetah_xcall_deliver(data0,
  650. __pa(pg_addr),
  651. 0, mask);
  652. #endif
  653. }
  654. #ifdef CONFIG_DEBUG_DCFLUSH
  655. atomic_inc(&dcpage_flushes_xcall);
  656. #endif
  657. flush_self:
  658. __local_flush_dcache_page(page);
  659. put_cpu();
  660. }
  661. void smp_receive_signal(int cpu)
  662. {
  663. cpumask_t mask = cpumask_of_cpu(cpu);
  664. if (cpu_online(cpu)) {
  665. u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
  666. if (tlb_type == spitfire)
  667. spitfire_xcall_deliver(data0, 0, 0, mask);
  668. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  669. cheetah_xcall_deliver(data0, 0, 0, mask);
  670. else if (tlb_type == hypervisor)
  671. hypervisor_xcall_deliver(data0, 0, 0, mask);
  672. }
  673. }
  674. void smp_receive_signal_client(int irq, struct pt_regs *regs)
  675. {
  676. /* Just return, rtrap takes care of the rest. */
  677. clear_softint(1 << irq);
  678. }
  679. void smp_report_regs(void)
  680. {
  681. smp_cross_call(&xcall_report_regs, 0, 0, 0);
  682. }
  683. /* We know that the window frames of the user have been flushed
  684. * to the stack before we get here because all callers of us
  685. * are flush_tlb_*() routines, and these run after flush_cache_*()
  686. * which performs the flushw.
  687. *
  688. * The SMP TLB coherency scheme we use works as follows:
  689. *
  690. * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
  691. * space has (potentially) executed on, this is the heuristic
  692. * we use to avoid doing cross calls.
  693. *
  694. * Also, for flushing from kswapd and also for clones, we
  695. * use cpu_vm_mask as the list of cpus to make run the TLB.
  696. *
  697. * 2) TLB context numbers are shared globally across all processors
  698. * in the system, this allows us to play several games to avoid
  699. * cross calls.
  700. *
  701. * One invariant is that when a cpu switches to a process, and
  702. * that processes tsk->active_mm->cpu_vm_mask does not have the
  703. * current cpu's bit set, that tlb context is flushed locally.
  704. *
  705. * If the address space is non-shared (ie. mm->count == 1) we avoid
  706. * cross calls when we want to flush the currently running process's
  707. * tlb state. This is done by clearing all cpu bits except the current
  708. * processor's in current->active_mm->cpu_vm_mask and performing the
  709. * flush locally only. This will force any subsequent cpus which run
  710. * this task to flush the context from the local tlb if the process
  711. * migrates to another cpu (again).
  712. *
  713. * 3) For shared address spaces (threads) and swapping we bite the
  714. * bullet for most cases and perform the cross call (but only to
  715. * the cpus listed in cpu_vm_mask).
  716. *
  717. * The performance gain from "optimizing" away the cross call for threads is
  718. * questionable (in theory the big win for threads is the massive sharing of
  719. * address space state across processors).
  720. */
  721. /* This currently is only used by the hugetlb arch pre-fault
  722. * hook on UltraSPARC-III+ and later when changing the pagesize
  723. * bits of the context register for an address space.
  724. */
  725. void smp_flush_tlb_mm(struct mm_struct *mm)
  726. {
  727. u32 ctx = CTX_HWBITS(mm->context);
  728. int cpu = get_cpu();
  729. if (atomic_read(&mm->mm_users) == 1) {
  730. mm->cpu_vm_mask = cpumask_of_cpu(cpu);
  731. goto local_flush_and_out;
  732. }
  733. smp_cross_call_masked(&xcall_flush_tlb_mm,
  734. ctx, 0, 0,
  735. mm->cpu_vm_mask);
  736. local_flush_and_out:
  737. __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
  738. put_cpu();
  739. }
  740. void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
  741. {
  742. u32 ctx = CTX_HWBITS(mm->context);
  743. int cpu = get_cpu();
  744. if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
  745. mm->cpu_vm_mask = cpumask_of_cpu(cpu);
  746. else
  747. smp_cross_call_masked(&xcall_flush_tlb_pending,
  748. ctx, nr, (unsigned long) vaddrs,
  749. mm->cpu_vm_mask);
  750. __flush_tlb_pending(ctx, nr, vaddrs);
  751. put_cpu();
  752. }
  753. void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
  754. {
  755. start &= PAGE_MASK;
  756. end = PAGE_ALIGN(end);
  757. if (start != end) {
  758. smp_cross_call(&xcall_flush_tlb_kernel_range,
  759. 0, start, end);
  760. __flush_tlb_kernel_range(start, end);
  761. }
  762. }
  763. /* CPU capture. */
  764. /* #define CAPTURE_DEBUG */
  765. extern unsigned long xcall_capture;
  766. static atomic_t smp_capture_depth = ATOMIC_INIT(0);
  767. static atomic_t smp_capture_registry = ATOMIC_INIT(0);
  768. static unsigned long penguins_are_doing_time;
  769. void smp_capture(void)
  770. {
  771. int result = atomic_add_ret(1, &smp_capture_depth);
  772. if (result == 1) {
  773. int ncpus = num_online_cpus();
  774. #ifdef CAPTURE_DEBUG
  775. printk("CPU[%d]: Sending penguins to jail...",
  776. smp_processor_id());
  777. #endif
  778. penguins_are_doing_time = 1;
  779. membar_storestore_loadstore();
  780. atomic_inc(&smp_capture_registry);
  781. smp_cross_call(&xcall_capture, 0, 0, 0);
  782. while (atomic_read(&smp_capture_registry) != ncpus)
  783. rmb();
  784. #ifdef CAPTURE_DEBUG
  785. printk("done\n");
  786. #endif
  787. }
  788. }
  789. void smp_release(void)
  790. {
  791. if (atomic_dec_and_test(&smp_capture_depth)) {
  792. #ifdef CAPTURE_DEBUG
  793. printk("CPU[%d]: Giving pardon to "
  794. "imprisoned penguins\n",
  795. smp_processor_id());
  796. #endif
  797. penguins_are_doing_time = 0;
  798. membar_storeload_storestore();
  799. atomic_dec(&smp_capture_registry);
  800. }
  801. }
  802. /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
  803. * can service tlb flush xcalls...
  804. */
  805. extern void prom_world(int);
  806. void smp_penguin_jailcell(int irq, struct pt_regs *regs)
  807. {
  808. clear_softint(1 << irq);
  809. preempt_disable();
  810. __asm__ __volatile__("flushw");
  811. prom_world(1);
  812. atomic_inc(&smp_capture_registry);
  813. membar_storeload_storestore();
  814. while (penguins_are_doing_time)
  815. rmb();
  816. atomic_dec(&smp_capture_registry);
  817. prom_world(0);
  818. preempt_enable();
  819. }
  820. #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
  821. #define prof_counter(__cpu) cpu_data(__cpu).counter
  822. void smp_percpu_timer_interrupt(struct pt_regs *regs)
  823. {
  824. unsigned long compare, tick, pstate;
  825. int cpu = smp_processor_id();
  826. int user = user_mode(regs);
  827. /*
  828. * Check for level 14 softint.
  829. */
  830. {
  831. unsigned long tick_mask = tick_ops->softint_mask;
  832. if (!(get_softint() & tick_mask)) {
  833. extern void handler_irq(int, struct pt_regs *);
  834. handler_irq(14, regs);
  835. return;
  836. }
  837. clear_softint(tick_mask);
  838. }
  839. do {
  840. profile_tick(CPU_PROFILING, regs);
  841. if (!--prof_counter(cpu)) {
  842. irq_enter();
  843. if (cpu == boot_cpu_id) {
  844. kstat_this_cpu.irqs[0]++;
  845. timer_tick_interrupt(regs);
  846. }
  847. update_process_times(user);
  848. irq_exit();
  849. prof_counter(cpu) = prof_multiplier(cpu);
  850. }
  851. /* Guarantee that the following sequences execute
  852. * uninterrupted.
  853. */
  854. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  855. "wrpr %0, %1, %%pstate"
  856. : "=r" (pstate)
  857. : "i" (PSTATE_IE));
  858. compare = tick_ops->add_compare(current_tick_offset);
  859. tick = tick_ops->get_tick();
  860. /* Restore PSTATE_IE. */
  861. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  862. : /* no outputs */
  863. : "r" (pstate));
  864. } while (time_after_eq(tick, compare));
  865. }
  866. static void __init smp_setup_percpu_timer(void)
  867. {
  868. int cpu = smp_processor_id();
  869. unsigned long pstate;
  870. prof_counter(cpu) = prof_multiplier(cpu) = 1;
  871. /* Guarantee that the following sequences execute
  872. * uninterrupted.
  873. */
  874. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  875. "wrpr %0, %1, %%pstate"
  876. : "=r" (pstate)
  877. : "i" (PSTATE_IE));
  878. tick_ops->init_tick(current_tick_offset);
  879. /* Restore PSTATE_IE. */
  880. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  881. : /* no outputs */
  882. : "r" (pstate));
  883. }
  884. void __init smp_tick_init(void)
  885. {
  886. boot_cpu_id = hard_smp_processor_id();
  887. current_tick_offset = timer_tick_offset;
  888. cpu_set(boot_cpu_id, cpu_online_map);
  889. prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
  890. }
  891. /* /proc/profile writes can call this, don't __init it please. */
  892. static DEFINE_SPINLOCK(prof_setup_lock);
  893. int setup_profiling_timer(unsigned int multiplier)
  894. {
  895. unsigned long flags;
  896. int i;
  897. if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
  898. return -EINVAL;
  899. spin_lock_irqsave(&prof_setup_lock, flags);
  900. for (i = 0; i < NR_CPUS; i++)
  901. prof_multiplier(i) = multiplier;
  902. current_tick_offset = (timer_tick_offset / multiplier);
  903. spin_unlock_irqrestore(&prof_setup_lock, flags);
  904. return 0;
  905. }
  906. /* Constrain the number of cpus to max_cpus. */
  907. void __init smp_prepare_cpus(unsigned int max_cpus)
  908. {
  909. if (num_possible_cpus() > max_cpus) {
  910. int instance, mid;
  911. instance = 0;
  912. while (!cpu_find_by_instance(instance, NULL, &mid)) {
  913. if (mid != boot_cpu_id) {
  914. cpu_clear(mid, phys_cpu_present_map);
  915. if (num_possible_cpus() <= max_cpus)
  916. break;
  917. }
  918. instance++;
  919. }
  920. }
  921. smp_store_cpu_info(boot_cpu_id);
  922. }
  923. /* Set this up early so that things like the scheduler can init
  924. * properly. We use the same cpu mask for both the present and
  925. * possible cpu map.
  926. */
  927. void __init smp_setup_cpu_possible_map(void)
  928. {
  929. int instance, mid;
  930. instance = 0;
  931. while (!cpu_find_by_instance(instance, NULL, &mid)) {
  932. if (mid < NR_CPUS)
  933. cpu_set(mid, phys_cpu_present_map);
  934. instance++;
  935. }
  936. }
  937. void __devinit smp_prepare_boot_cpu(void)
  938. {
  939. int cpu = hard_smp_processor_id();
  940. if (cpu >= NR_CPUS) {
  941. prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
  942. prom_halt();
  943. }
  944. current_thread_info()->cpu = cpu;
  945. __local_per_cpu_offset = __per_cpu_offset(cpu);
  946. cpu_set(smp_processor_id(), cpu_online_map);
  947. cpu_set(smp_processor_id(), phys_cpu_present_map);
  948. }
  949. int __devinit __cpu_up(unsigned int cpu)
  950. {
  951. int ret = smp_boot_one_cpu(cpu);
  952. if (!ret) {
  953. cpu_set(cpu, smp_commenced_mask);
  954. while (!cpu_isset(cpu, cpu_online_map))
  955. mb();
  956. if (!cpu_isset(cpu, cpu_online_map)) {
  957. ret = -ENODEV;
  958. } else {
  959. smp_synchronize_one_tick(cpu);
  960. }
  961. }
  962. return ret;
  963. }
  964. void __init smp_cpus_done(unsigned int max_cpus)
  965. {
  966. unsigned long bogosum = 0;
  967. int i;
  968. for (i = 0; i < NR_CPUS; i++) {
  969. if (cpu_online(i))
  970. bogosum += cpu_data(i).udelay_val;
  971. }
  972. printk("Total of %ld processors activated "
  973. "(%lu.%02lu BogoMIPS).\n",
  974. (long) num_online_cpus(),
  975. bogosum/(500000/HZ),
  976. (bogosum/(5000/HZ))%100);
  977. }
  978. void smp_send_reschedule(int cpu)
  979. {
  980. smp_receive_signal(cpu);
  981. }
  982. /* This is a nop because we capture all other cpus
  983. * anyways when making the PROM active.
  984. */
  985. void smp_send_stop(void)
  986. {
  987. }
  988. unsigned long __per_cpu_base __read_mostly;
  989. unsigned long __per_cpu_shift __read_mostly;
  990. EXPORT_SYMBOL(__per_cpu_base);
  991. EXPORT_SYMBOL(__per_cpu_shift);
  992. void __init setup_per_cpu_areas(void)
  993. {
  994. unsigned long goal, size, i;
  995. char *ptr;
  996. /* Copy section for each CPU (we discard the original) */
  997. goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
  998. #ifdef CONFIG_MODULES
  999. if (goal < PERCPU_ENOUGH_ROOM)
  1000. goal = PERCPU_ENOUGH_ROOM;
  1001. #endif
  1002. __per_cpu_shift = 0;
  1003. for (size = 1UL; size < goal; size <<= 1UL)
  1004. __per_cpu_shift++;
  1005. ptr = alloc_bootmem(size * NR_CPUS);
  1006. __per_cpu_base = ptr - __per_cpu_start;
  1007. for (i = 0; i < NR_CPUS; i++, ptr += size)
  1008. memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
  1009. }